• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8 
9 #define pr_fmt(fmt) "genirq: " fmt
10 
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24 
25 #include "internals.h"
26 
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29 
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 	static_branch_enable(&force_irqthreads_key);
33 	return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37 
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 	struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 	bool inprogress;
42 
43 	do {
44 		unsigned long flags;
45 
46 		/*
47 		 * Wait until we're out of the critical section.  This might
48 		 * give the wrong answer due to the lack of memory barriers.
49 		 */
50 		while (irqd_irq_inprogress(&desc->irq_data))
51 			cpu_relax();
52 
53 		/* Ok, that indicated we're done: double-check carefully. */
54 		raw_spin_lock_irqsave(&desc->lock, flags);
55 		inprogress = irqd_irq_inprogress(&desc->irq_data);
56 
57 		/*
58 		 * If requested and supported, check at the chip whether it
59 		 * is in flight at the hardware level, i.e. already pending
60 		 * in a CPU and waiting for service and acknowledge.
61 		 */
62 		if (!inprogress && sync_chip) {
63 			/*
64 			 * Ignore the return code. inprogress is only updated
65 			 * when the chip supports it.
66 			 */
67 			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 						&inprogress);
69 		}
70 		raw_spin_unlock_irqrestore(&desc->lock, flags);
71 
72 		/* Oops, that failed? */
73 	} while (inprogress);
74 }
75 
76 /**
77  *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *	@irq: interrupt number to wait for
79  *
80  *	This function waits for any pending hard IRQ handlers for this
81  *	interrupt to complete before returning. If you use this
82  *	function while holding a resource the IRQ handler may need you
83  *	will deadlock. It does not take associated threaded handlers
84  *	into account.
85  *
86  *	Do not use this for shutdown scenarios where you must be sure
87  *	that all parts (hardirq and threaded handler) have completed.
88  *
89  *	Returns: false if a threaded handler is active.
90  *
91  *	This function may be called - with care - from IRQ context.
92  *
93  *	It does not check whether there is an interrupt in flight at the
94  *	hardware level, but not serviced yet, as this might deadlock when
95  *	called with interrupts disabled and the target CPU of the interrupt
96  *	is the current CPU.
97  */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 	struct irq_desc *desc = irq_to_desc(irq);
101 
102 	if (desc) {
103 		__synchronize_hardirq(desc, false);
104 		return !atomic_read(&desc->threads_active);
105 	}
106 
107 	return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110 
__synchronize_irq(struct irq_desc * desc)111 static void __synchronize_irq(struct irq_desc *desc)
112 {
113 	__synchronize_hardirq(desc, true);
114 	/*
115 	 * We made sure that no hardirq handler is running. Now verify that no
116 	 * threaded handlers are active.
117 	 */
118 	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119 }
120 
121 /**
122  *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123  *	@irq: interrupt number to wait for
124  *
125  *	This function waits for any pending IRQ handlers for this interrupt
126  *	to complete before returning. If you use this function while
127  *	holding a resource the IRQ handler may need you will deadlock.
128  *
129  *	Can only be called from preemptible code as it might sleep when
130  *	an interrupt thread is associated to @irq.
131  *
132  *	It optionally makes sure (when the irq chip supports that method)
133  *	that the interrupt is not pending in any CPU and waiting for
134  *	service.
135  */
synchronize_irq(unsigned int irq)136 void synchronize_irq(unsigned int irq)
137 {
138 	struct irq_desc *desc = irq_to_desc(irq);
139 
140 	if (desc)
141 		__synchronize_irq(desc);
142 }
143 EXPORT_SYMBOL(synchronize_irq);
144 
145 #ifdef CONFIG_SMP
146 cpumask_var_t irq_default_affinity;
147 
__irq_can_set_affinity(struct irq_desc * desc)148 static bool __irq_can_set_affinity(struct irq_desc *desc)
149 {
150 	if (!desc || !irqd_can_balance(&desc->irq_data) ||
151 	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152 		return false;
153 	return true;
154 }
155 
156 /**
157  *	irq_can_set_affinity - Check if the affinity of a given irq can be set
158  *	@irq:		Interrupt to check
159  *
160  */
irq_can_set_affinity(unsigned int irq)161 int irq_can_set_affinity(unsigned int irq)
162 {
163 	return __irq_can_set_affinity(irq_to_desc(irq));
164 }
165 
166 /**
167  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168  * @irq:	Interrupt to check
169  *
170  * Like irq_can_set_affinity() above, but additionally checks for the
171  * AFFINITY_MANAGED flag.
172  */
irq_can_set_affinity_usr(unsigned int irq)173 bool irq_can_set_affinity_usr(unsigned int irq)
174 {
175 	struct irq_desc *desc = irq_to_desc(irq);
176 
177 	return __irq_can_set_affinity(desc) &&
178 		!irqd_affinity_is_managed(&desc->irq_data);
179 }
180 
181 /**
182  *	irq_set_thread_affinity - Notify irq threads to adjust affinity
183  *	@desc:		irq descriptor which has affinity changed
184  *
185  *	We just set IRQTF_AFFINITY and delegate the affinity setting
186  *	to the interrupt thread itself. We can not call
187  *	set_cpus_allowed_ptr() here as we hold desc->lock and this
188  *	code can be called from hard interrupt context.
189  */
irq_set_thread_affinity(struct irq_desc * desc)190 void irq_set_thread_affinity(struct irq_desc *desc)
191 {
192 	struct irqaction *action;
193 
194 	for_each_action_of_desc(desc, action) {
195 		if (action->thread)
196 			set_bit(IRQTF_AFFINITY, &action->thread_flags);
197 		if (action->secondary && action->secondary->thread)
198 			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
199 	}
200 }
201 
202 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)203 static void irq_validate_effective_affinity(struct irq_data *data)
204 {
205 	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
206 	struct irq_chip *chip = irq_data_get_irq_chip(data);
207 
208 	if (!cpumask_empty(m))
209 		return;
210 	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
211 		     chip->name, data->irq);
212 }
213 #else
irq_validate_effective_affinity(struct irq_data * data)214 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
215 #endif
216 
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)217 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
218 			bool force)
219 {
220 	struct irq_desc *desc = irq_data_to_desc(data);
221 	struct irq_chip *chip = irq_data_get_irq_chip(data);
222 	const struct cpumask  *prog_mask;
223 	int ret;
224 
225 	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
226 	static struct cpumask tmp_mask;
227 
228 	if (!chip || !chip->irq_set_affinity)
229 		return -EINVAL;
230 
231 	raw_spin_lock(&tmp_mask_lock);
232 	/*
233 	 * If this is a managed interrupt and housekeeping is enabled on
234 	 * it check whether the requested affinity mask intersects with
235 	 * a housekeeping CPU. If so, then remove the isolated CPUs from
236 	 * the mask and just keep the housekeeping CPU(s). This prevents
237 	 * the affinity setter from routing the interrupt to an isolated
238 	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
239 	 * interrupts on an isolated one.
240 	 *
241 	 * If the masks do not intersect or include online CPU(s) then
242 	 * keep the requested mask. The isolated target CPUs are only
243 	 * receiving interrupts when the I/O operation was submitted
244 	 * directly from them.
245 	 *
246 	 * If all housekeeping CPUs in the affinity mask are offline, the
247 	 * interrupt will be migrated by the CPU hotplug code once a
248 	 * housekeeping CPU which belongs to the affinity mask comes
249 	 * online.
250 	 */
251 	if (irqd_affinity_is_managed(data) &&
252 	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
253 		const struct cpumask *hk_mask;
254 
255 		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
256 
257 		cpumask_and(&tmp_mask, mask, hk_mask);
258 		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
259 			prog_mask = mask;
260 		else
261 			prog_mask = &tmp_mask;
262 	} else {
263 		prog_mask = mask;
264 	}
265 
266 	/*
267 	 * Make sure we only provide online CPUs to the irqchip,
268 	 * unless we are being asked to force the affinity (in which
269 	 * case we do as we are told).
270 	 */
271 	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
272 	if (!force && !cpumask_empty(&tmp_mask))
273 		ret = chip->irq_set_affinity(data, &tmp_mask, force);
274 	else if (force)
275 		ret = chip->irq_set_affinity(data, mask, force);
276 	else
277 		ret = -EINVAL;
278 
279 	raw_spin_unlock(&tmp_mask_lock);
280 
281 	switch (ret) {
282 	case IRQ_SET_MASK_OK:
283 	case IRQ_SET_MASK_OK_DONE:
284 		cpumask_copy(desc->irq_common_data.affinity, mask);
285 		fallthrough;
286 	case IRQ_SET_MASK_OK_NOCOPY:
287 		irq_validate_effective_affinity(data);
288 		irq_set_thread_affinity(desc);
289 		ret = 0;
290 	}
291 
292 	return ret;
293 }
294 EXPORT_SYMBOL_GPL(irq_do_set_affinity);
295 
296 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)297 static inline int irq_set_affinity_pending(struct irq_data *data,
298 					   const struct cpumask *dest)
299 {
300 	struct irq_desc *desc = irq_data_to_desc(data);
301 
302 	irqd_set_move_pending(data);
303 	irq_copy_pending(desc, dest);
304 	return 0;
305 }
306 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)307 static inline int irq_set_affinity_pending(struct irq_data *data,
308 					   const struct cpumask *dest)
309 {
310 	return -EBUSY;
311 }
312 #endif
313 
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)314 static int irq_try_set_affinity(struct irq_data *data,
315 				const struct cpumask *dest, bool force)
316 {
317 	int ret = irq_do_set_affinity(data, dest, force);
318 
319 	/*
320 	 * In case that the underlying vector management is busy and the
321 	 * architecture supports the generic pending mechanism then utilize
322 	 * this to avoid returning an error to user space.
323 	 */
324 	if (ret == -EBUSY && !force)
325 		ret = irq_set_affinity_pending(data, dest);
326 	return ret;
327 }
328 
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask)329 static bool irq_set_affinity_deactivated(struct irq_data *data,
330 					 const struct cpumask *mask)
331 {
332 	struct irq_desc *desc = irq_data_to_desc(data);
333 
334 	/*
335 	 * Handle irq chips which can handle affinity only in activated
336 	 * state correctly
337 	 *
338 	 * If the interrupt is not yet activated, just store the affinity
339 	 * mask and do not call the chip driver at all. On activation the
340 	 * driver has to make sure anyway that the interrupt is in a
341 	 * usable state so startup works.
342 	 */
343 	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
344 	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
345 		return false;
346 
347 	cpumask_copy(desc->irq_common_data.affinity, mask);
348 	irq_data_update_effective_affinity(data, mask);
349 	irqd_set(data, IRQD_AFFINITY_SET);
350 	return true;
351 }
352 
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)353 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
354 			    bool force)
355 {
356 	struct irq_chip *chip = irq_data_get_irq_chip(data);
357 	struct irq_desc *desc = irq_data_to_desc(data);
358 	int ret = 0;
359 
360 	if (!chip || !chip->irq_set_affinity)
361 		return -EINVAL;
362 
363 	if (irq_set_affinity_deactivated(data, mask))
364 		return 0;
365 
366 	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
367 		ret = irq_try_set_affinity(data, mask, force);
368 	} else {
369 		irqd_set_move_pending(data);
370 		irq_copy_pending(desc, mask);
371 	}
372 
373 	if (desc->affinity_notify) {
374 		kref_get(&desc->affinity_notify->kref);
375 		if (!schedule_work(&desc->affinity_notify->work)) {
376 			/* Work was already scheduled, drop our extra ref */
377 			kref_put(&desc->affinity_notify->kref,
378 				 desc->affinity_notify->release);
379 		}
380 	}
381 	irqd_set(data, IRQD_AFFINITY_SET);
382 
383 	return ret;
384 }
385 
386 /**
387  * irq_update_affinity_desc - Update affinity management for an interrupt
388  * @irq:	The interrupt number to update
389  * @affinity:	Pointer to the affinity descriptor
390  *
391  * This interface can be used to configure the affinity management of
392  * interrupts which have been allocated already.
393  *
394  * There are certain limitations on when it may be used - attempts to use it
395  * for when the kernel is configured for generic IRQ reservation mode (in
396  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
397  * managed/non-managed interrupt accounting. In addition, attempts to use it on
398  * an interrupt which is already started or which has already been configured
399  * as managed will also fail, as these mean invalid init state or double init.
400  */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)401 int irq_update_affinity_desc(unsigned int irq,
402 			     struct irq_affinity_desc *affinity)
403 {
404 	struct irq_desc *desc;
405 	unsigned long flags;
406 	bool activated;
407 	int ret = 0;
408 
409 	/*
410 	 * Supporting this with the reservation scheme used by x86 needs
411 	 * some more thought. Fail it for now.
412 	 */
413 	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
414 		return -EOPNOTSUPP;
415 
416 	desc = irq_get_desc_buslock(irq, &flags, 0);
417 	if (!desc)
418 		return -EINVAL;
419 
420 	/* Requires the interrupt to be shut down */
421 	if (irqd_is_started(&desc->irq_data)) {
422 		ret = -EBUSY;
423 		goto out_unlock;
424 	}
425 
426 	/* Interrupts which are already managed cannot be modified */
427 	if (irqd_affinity_is_managed(&desc->irq_data)) {
428 		ret = -EBUSY;
429 		goto out_unlock;
430 	}
431 
432 	/*
433 	 * Deactivate the interrupt. That's required to undo
434 	 * anything an earlier activation has established.
435 	 */
436 	activated = irqd_is_activated(&desc->irq_data);
437 	if (activated)
438 		irq_domain_deactivate_irq(&desc->irq_data);
439 
440 	if (affinity->is_managed) {
441 		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
442 		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
443 	}
444 
445 	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
446 
447 	/* Restore the activation state */
448 	if (activated)
449 		irq_domain_activate_irq(&desc->irq_data, false);
450 
451 out_unlock:
452 	irq_put_desc_busunlock(desc, flags);
453 	return ret;
454 }
455 
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)456 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
457 			      bool force)
458 {
459 	struct irq_desc *desc = irq_to_desc(irq);
460 	unsigned long flags;
461 	int ret;
462 
463 	if (!desc)
464 		return -EINVAL;
465 
466 	raw_spin_lock_irqsave(&desc->lock, flags);
467 	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
468 	raw_spin_unlock_irqrestore(&desc->lock, flags);
469 	return ret;
470 }
471 
472 /**
473  * irq_set_affinity - Set the irq affinity of a given irq
474  * @irq:	Interrupt to set affinity
475  * @cpumask:	cpumask
476  *
477  * Fails if cpumask does not contain an online CPU
478  */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)479 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
480 {
481 	return __irq_set_affinity(irq, cpumask, false);
482 }
483 EXPORT_SYMBOL_GPL(irq_set_affinity);
484 
485 /**
486  * irq_force_affinity - Force the irq affinity of a given irq
487  * @irq:	Interrupt to set affinity
488  * @cpumask:	cpumask
489  *
490  * Same as irq_set_affinity, but without checking the mask against
491  * online cpus.
492  *
493  * Solely for low level cpu hotplug code, where we need to make per
494  * cpu interrupts affine before the cpu becomes online.
495  */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)496 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
497 {
498 	return __irq_set_affinity(irq, cpumask, true);
499 }
500 EXPORT_SYMBOL_GPL(irq_force_affinity);
501 
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)502 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
503 			      bool setaffinity)
504 {
505 	unsigned long flags;
506 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
507 
508 	if (!desc)
509 		return -EINVAL;
510 	desc->affinity_hint = m;
511 	irq_put_desc_unlock(desc, flags);
512 	if (m && setaffinity)
513 		__irq_set_affinity(irq, m, false);
514 	return 0;
515 }
516 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
517 
irq_affinity_notify(struct work_struct * work)518 static void irq_affinity_notify(struct work_struct *work)
519 {
520 	struct irq_affinity_notify *notify =
521 		container_of(work, struct irq_affinity_notify, work);
522 	struct irq_desc *desc = irq_to_desc(notify->irq);
523 	cpumask_var_t cpumask;
524 	unsigned long flags;
525 
526 	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
527 		goto out;
528 
529 	raw_spin_lock_irqsave(&desc->lock, flags);
530 	if (irq_move_pending(&desc->irq_data))
531 		irq_get_pending(cpumask, desc);
532 	else
533 		cpumask_copy(cpumask, desc->irq_common_data.affinity);
534 	raw_spin_unlock_irqrestore(&desc->lock, flags);
535 
536 	notify->notify(notify, cpumask);
537 
538 	free_cpumask_var(cpumask);
539 out:
540 	kref_put(&notify->kref, notify->release);
541 }
542 
543 /**
544  *	irq_set_affinity_notifier - control notification of IRQ affinity changes
545  *	@irq:		Interrupt for which to enable/disable notification
546  *	@notify:	Context for notification, or %NULL to disable
547  *			notification.  Function pointers must be initialised;
548  *			the other fields will be initialised by this function.
549  *
550  *	Must be called in process context.  Notification may only be enabled
551  *	after the IRQ is allocated and must be disabled before the IRQ is
552  *	freed using free_irq().
553  */
554 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)555 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
556 {
557 	struct irq_desc *desc = irq_to_desc(irq);
558 	struct irq_affinity_notify *old_notify;
559 	unsigned long flags;
560 
561 	/* The release function is promised process context */
562 	might_sleep();
563 
564 	if (!desc || desc->istate & IRQS_NMI)
565 		return -EINVAL;
566 
567 	/* Complete initialisation of *notify */
568 	if (notify) {
569 		notify->irq = irq;
570 		kref_init(&notify->kref);
571 		INIT_WORK(&notify->work, irq_affinity_notify);
572 	}
573 
574 	raw_spin_lock_irqsave(&desc->lock, flags);
575 	old_notify = desc->affinity_notify;
576 	desc->affinity_notify = notify;
577 	raw_spin_unlock_irqrestore(&desc->lock, flags);
578 
579 	if (old_notify) {
580 		if (cancel_work_sync(&old_notify->work)) {
581 			/* Pending work had a ref, put that one too */
582 			kref_put(&old_notify->kref, old_notify->release);
583 		}
584 		kref_put(&old_notify->kref, old_notify->release);
585 	}
586 
587 	return 0;
588 }
589 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
590 
591 #ifndef CONFIG_AUTO_IRQ_AFFINITY
592 /*
593  * Generic version of the affinity autoselector.
594  */
irq_setup_affinity(struct irq_desc * desc)595 int irq_setup_affinity(struct irq_desc *desc)
596 {
597 	struct cpumask *set = irq_default_affinity;
598 	int ret, node = irq_desc_get_node(desc);
599 	static DEFINE_RAW_SPINLOCK(mask_lock);
600 	static struct cpumask mask;
601 
602 	/* Excludes PER_CPU and NO_BALANCE interrupts */
603 	if (!__irq_can_set_affinity(desc))
604 		return 0;
605 
606 	raw_spin_lock(&mask_lock);
607 	/*
608 	 * Preserve the managed affinity setting and a userspace affinity
609 	 * setup, but make sure that one of the targets is online.
610 	 */
611 	if (irqd_affinity_is_managed(&desc->irq_data) ||
612 	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
613 		if (cpumask_intersects(desc->irq_common_data.affinity,
614 				       cpu_online_mask))
615 			set = desc->irq_common_data.affinity;
616 		else
617 			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
618 	}
619 
620 	cpumask_and(&mask, cpu_online_mask, set);
621 	if (cpumask_empty(&mask))
622 		cpumask_copy(&mask, cpu_online_mask);
623 
624 	if (node != NUMA_NO_NODE) {
625 		const struct cpumask *nodemask = cpumask_of_node(node);
626 
627 		/* make sure at least one of the cpus in nodemask is online */
628 		if (cpumask_intersects(&mask, nodemask))
629 			cpumask_and(&mask, &mask, nodemask);
630 	}
631 	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
632 	raw_spin_unlock(&mask_lock);
633 	return ret;
634 }
635 #else
636 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)637 int irq_setup_affinity(struct irq_desc *desc)
638 {
639 	return irq_select_affinity(irq_desc_get_irq(desc));
640 }
641 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
642 #endif /* CONFIG_SMP */
643 
644 
645 /**
646  *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
647  *	@irq: interrupt number to set affinity
648  *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
649  *	            specific data for percpu_devid interrupts
650  *
651  *	This function uses the vCPU specific data to set the vCPU
652  *	affinity for an irq. The vCPU specific data is passed from
653  *	outside, such as KVM. One example code path is as below:
654  *	KVM -> IOMMU -> irq_set_vcpu_affinity().
655  */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)656 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
657 {
658 	unsigned long flags;
659 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
660 	struct irq_data *data;
661 	struct irq_chip *chip;
662 	int ret = -ENOSYS;
663 
664 	if (!desc)
665 		return -EINVAL;
666 
667 	data = irq_desc_get_irq_data(desc);
668 	do {
669 		chip = irq_data_get_irq_chip(data);
670 		if (chip && chip->irq_set_vcpu_affinity)
671 			break;
672 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
673 		data = data->parent_data;
674 #else
675 		data = NULL;
676 #endif
677 	} while (data);
678 
679 	if (data)
680 		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
681 	irq_put_desc_unlock(desc, flags);
682 
683 	return ret;
684 }
685 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
686 
__disable_irq(struct irq_desc * desc)687 void __disable_irq(struct irq_desc *desc)
688 {
689 	if (!desc->depth++)
690 		irq_disable(desc);
691 }
692 
__disable_irq_nosync(unsigned int irq)693 static int __disable_irq_nosync(unsigned int irq)
694 {
695 	unsigned long flags;
696 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
697 
698 	if (!desc)
699 		return -EINVAL;
700 	__disable_irq(desc);
701 	irq_put_desc_busunlock(desc, flags);
702 	return 0;
703 }
704 
705 /**
706  *	disable_irq_nosync - disable an irq without waiting
707  *	@irq: Interrupt to disable
708  *
709  *	Disable the selected interrupt line.  Disables and Enables are
710  *	nested.
711  *	Unlike disable_irq(), this function does not ensure existing
712  *	instances of the IRQ handler have completed before returning.
713  *
714  *	This function may be called from IRQ context.
715  */
disable_irq_nosync(unsigned int irq)716 void disable_irq_nosync(unsigned int irq)
717 {
718 	__disable_irq_nosync(irq);
719 }
720 EXPORT_SYMBOL(disable_irq_nosync);
721 
722 /**
723  *	disable_irq - disable an irq and wait for completion
724  *	@irq: Interrupt to disable
725  *
726  *	Disable the selected interrupt line.  Enables and Disables are
727  *	nested.
728  *	This function waits for any pending IRQ handlers for this interrupt
729  *	to complete before returning. If you use this function while
730  *	holding a resource the IRQ handler may need you will deadlock.
731  *
732  *	Can only be called from preemptible code as it might sleep when
733  *	an interrupt thread is associated to @irq.
734  *
735  */
disable_irq(unsigned int irq)736 void disable_irq(unsigned int irq)
737 {
738 	might_sleep();
739 	if (!__disable_irq_nosync(irq))
740 		synchronize_irq(irq);
741 }
742 EXPORT_SYMBOL(disable_irq);
743 
744 /**
745  *	disable_hardirq - disables an irq and waits for hardirq completion
746  *	@irq: Interrupt to disable
747  *
748  *	Disable the selected interrupt line.  Enables and Disables are
749  *	nested.
750  *	This function waits for any pending hard IRQ handlers for this
751  *	interrupt to complete before returning. If you use this function while
752  *	holding a resource the hard IRQ handler may need you will deadlock.
753  *
754  *	When used to optimistically disable an interrupt from atomic context
755  *	the return value must be checked.
756  *
757  *	Returns: false if a threaded handler is active.
758  *
759  *	This function may be called - with care - from IRQ context.
760  */
disable_hardirq(unsigned int irq)761 bool disable_hardirq(unsigned int irq)
762 {
763 	if (!__disable_irq_nosync(irq))
764 		return synchronize_hardirq(irq);
765 
766 	return false;
767 }
768 EXPORT_SYMBOL_GPL(disable_hardirq);
769 
770 /**
771  *	disable_nmi_nosync - disable an nmi without waiting
772  *	@irq: Interrupt to disable
773  *
774  *	Disable the selected interrupt line. Disables and enables are
775  *	nested.
776  *	The interrupt to disable must have been requested through request_nmi.
777  *	Unlike disable_nmi(), this function does not ensure existing
778  *	instances of the IRQ handler have completed before returning.
779  */
disable_nmi_nosync(unsigned int irq)780 void disable_nmi_nosync(unsigned int irq)
781 {
782 	disable_irq_nosync(irq);
783 }
784 
__enable_irq(struct irq_desc * desc)785 void __enable_irq(struct irq_desc *desc)
786 {
787 	switch (desc->depth) {
788 	case 0:
789  err_out:
790 		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
791 		     irq_desc_get_irq(desc));
792 		break;
793 	case 1: {
794 		if (desc->istate & IRQS_SUSPENDED)
795 			goto err_out;
796 		/* Prevent probing on this irq: */
797 		irq_settings_set_noprobe(desc);
798 		/*
799 		 * Call irq_startup() not irq_enable() here because the
800 		 * interrupt might be marked NOAUTOEN so irq_startup()
801 		 * needs to be invoked when it gets enabled the first time.
802 		 * This is also required when __enable_irq() is invoked for
803 		 * a managed and shutdown interrupt from the S3 resume
804 		 * path.
805 		 *
806 		 * If it was already started up, then irq_startup() will
807 		 * invoke irq_enable() under the hood.
808 		 */
809 		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
810 		break;
811 	}
812 	default:
813 		desc->depth--;
814 	}
815 }
816 
817 /**
818  *	enable_irq - enable handling of an irq
819  *	@irq: Interrupt to enable
820  *
821  *	Undoes the effect of one call to disable_irq().  If this
822  *	matches the last disable, processing of interrupts on this
823  *	IRQ line is re-enabled.
824  *
825  *	This function may be called from IRQ context only when
826  *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
827  */
enable_irq(unsigned int irq)828 void enable_irq(unsigned int irq)
829 {
830 	unsigned long flags;
831 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
832 
833 	if (!desc)
834 		return;
835 	if (WARN(!desc->irq_data.chip,
836 		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
837 		goto out;
838 
839 	__enable_irq(desc);
840 out:
841 	irq_put_desc_busunlock(desc, flags);
842 }
843 EXPORT_SYMBOL(enable_irq);
844 
845 /**
846  *	enable_nmi - enable handling of an nmi
847  *	@irq: Interrupt to enable
848  *
849  *	The interrupt to enable must have been requested through request_nmi.
850  *	Undoes the effect of one call to disable_nmi(). If this
851  *	matches the last disable, processing of interrupts on this
852  *	IRQ line is re-enabled.
853  */
enable_nmi(unsigned int irq)854 void enable_nmi(unsigned int irq)
855 {
856 	enable_irq(irq);
857 }
858 
set_irq_wake_real(unsigned int irq,unsigned int on)859 static int set_irq_wake_real(unsigned int irq, unsigned int on)
860 {
861 	struct irq_desc *desc = irq_to_desc(irq);
862 	int ret = -ENXIO;
863 
864 	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
865 		return 0;
866 
867 	if (desc->irq_data.chip->irq_set_wake)
868 		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
869 
870 	return ret;
871 }
872 
873 /**
874  *	irq_set_irq_wake - control irq power management wakeup
875  *	@irq:	interrupt to control
876  *	@on:	enable/disable power management wakeup
877  *
878  *	Enable/disable power management wakeup mode, which is
879  *	disabled by default.  Enables and disables must match,
880  *	just as they match for non-wakeup mode support.
881  *
882  *	Wakeup mode lets this IRQ wake the system from sleep
883  *	states like "suspend to RAM".
884  *
885  *	Note: irq enable/disable state is completely orthogonal
886  *	to the enable/disable state of irq wake. An irq can be
887  *	disabled with disable_irq() and still wake the system as
888  *	long as the irq has wake enabled. If this does not hold,
889  *	then the underlying irq chip and the related driver need
890  *	to be investigated.
891  */
irq_set_irq_wake(unsigned int irq,unsigned int on)892 int irq_set_irq_wake(unsigned int irq, unsigned int on)
893 {
894 	unsigned long flags;
895 	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
896 	int ret = 0;
897 
898 	if (!desc)
899 		return -EINVAL;
900 
901 	/* Don't use NMIs as wake up interrupts please */
902 	if (desc->istate & IRQS_NMI) {
903 		ret = -EINVAL;
904 		goto out_unlock;
905 	}
906 
907 	/* wakeup-capable irqs can be shared between drivers that
908 	 * don't need to have the same sleep mode behaviors.
909 	 */
910 	if (on) {
911 		if (desc->wake_depth++ == 0) {
912 			ret = set_irq_wake_real(irq, on);
913 			if (ret)
914 				desc->wake_depth = 0;
915 			else
916 				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
917 		}
918 	} else {
919 		if (desc->wake_depth == 0) {
920 			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
921 		} else if (--desc->wake_depth == 0) {
922 			ret = set_irq_wake_real(irq, on);
923 			if (ret)
924 				desc->wake_depth = 1;
925 			else
926 				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
927 		}
928 	}
929 
930 out_unlock:
931 	irq_put_desc_busunlock(desc, flags);
932 	return ret;
933 }
934 EXPORT_SYMBOL(irq_set_irq_wake);
935 
936 /*
937  * Internal function that tells the architecture code whether a
938  * particular irq has been exclusively allocated or is available
939  * for driver use.
940  */
can_request_irq(unsigned int irq,unsigned long irqflags)941 int can_request_irq(unsigned int irq, unsigned long irqflags)
942 {
943 	unsigned long flags;
944 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
945 	int canrequest = 0;
946 
947 	if (!desc)
948 		return 0;
949 
950 	if (irq_settings_can_request(desc)) {
951 		if (!desc->action ||
952 		    irqflags & desc->action->flags & IRQF_SHARED)
953 			canrequest = 1;
954 	}
955 	irq_put_desc_unlock(desc, flags);
956 	return canrequest;
957 }
958 
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)959 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
960 {
961 	struct irq_chip *chip = desc->irq_data.chip;
962 	int ret, unmask = 0;
963 
964 	if (!chip || !chip->irq_set_type) {
965 		/*
966 		 * IRQF_TRIGGER_* but the PIC does not support multiple
967 		 * flow-types?
968 		 */
969 		pr_debug("No set_type function for IRQ %d (%s)\n",
970 			 irq_desc_get_irq(desc),
971 			 chip ? (chip->name ? : "unknown") : "unknown");
972 		return 0;
973 	}
974 
975 	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
976 		if (!irqd_irq_masked(&desc->irq_data))
977 			mask_irq(desc);
978 		if (!irqd_irq_disabled(&desc->irq_data))
979 			unmask = 1;
980 	}
981 
982 	/* Mask all flags except trigger mode */
983 	flags &= IRQ_TYPE_SENSE_MASK;
984 	ret = chip->irq_set_type(&desc->irq_data, flags);
985 
986 	switch (ret) {
987 	case IRQ_SET_MASK_OK:
988 	case IRQ_SET_MASK_OK_DONE:
989 		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
990 		irqd_set(&desc->irq_data, flags);
991 		fallthrough;
992 
993 	case IRQ_SET_MASK_OK_NOCOPY:
994 		flags = irqd_get_trigger_type(&desc->irq_data);
995 		irq_settings_set_trigger_mask(desc, flags);
996 		irqd_clear(&desc->irq_data, IRQD_LEVEL);
997 		irq_settings_clr_level(desc);
998 		if (flags & IRQ_TYPE_LEVEL_MASK) {
999 			irq_settings_set_level(desc);
1000 			irqd_set(&desc->irq_data, IRQD_LEVEL);
1001 		}
1002 
1003 		ret = 0;
1004 		break;
1005 	default:
1006 		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1007 		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
1008 	}
1009 	if (unmask)
1010 		unmask_irq(desc);
1011 	return ret;
1012 }
1013 
1014 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)1015 int irq_set_parent(int irq, int parent_irq)
1016 {
1017 	unsigned long flags;
1018 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1019 
1020 	if (!desc)
1021 		return -EINVAL;
1022 
1023 	desc->parent_irq = parent_irq;
1024 
1025 	irq_put_desc_unlock(desc, flags);
1026 	return 0;
1027 }
1028 EXPORT_SYMBOL_GPL(irq_set_parent);
1029 #endif
1030 
1031 /*
1032  * Default primary interrupt handler for threaded interrupts. Is
1033  * assigned as primary handler when request_threaded_irq is called
1034  * with handler == NULL. Useful for oneshot interrupts.
1035  */
irq_default_primary_handler(int irq,void * dev_id)1036 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1037 {
1038 	return IRQ_WAKE_THREAD;
1039 }
1040 
1041 /*
1042  * Primary handler for nested threaded interrupts. Should never be
1043  * called.
1044  */
irq_nested_primary_handler(int irq,void * dev_id)1045 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1046 {
1047 	WARN(1, "Primary handler called for nested irq %d\n", irq);
1048 	return IRQ_NONE;
1049 }
1050 
irq_forced_secondary_handler(int irq,void * dev_id)1051 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1052 {
1053 	WARN(1, "Secondary action handler called for irq %d\n", irq);
1054 	return IRQ_NONE;
1055 }
1056 
irq_wait_for_interrupt(struct irqaction * action)1057 static int irq_wait_for_interrupt(struct irqaction *action)
1058 {
1059 	for (;;) {
1060 		set_current_state(TASK_INTERRUPTIBLE);
1061 
1062 		if (kthread_should_stop()) {
1063 			/* may need to run one last time */
1064 			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1065 					       &action->thread_flags)) {
1066 				__set_current_state(TASK_RUNNING);
1067 				return 0;
1068 			}
1069 			__set_current_state(TASK_RUNNING);
1070 			return -1;
1071 		}
1072 
1073 		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1074 				       &action->thread_flags)) {
1075 			__set_current_state(TASK_RUNNING);
1076 			return 0;
1077 		}
1078 		schedule();
1079 	}
1080 }
1081 
1082 /*
1083  * Oneshot interrupts keep the irq line masked until the threaded
1084  * handler finished. unmask if the interrupt has not been disabled and
1085  * is marked MASKED.
1086  */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1087 static void irq_finalize_oneshot(struct irq_desc *desc,
1088 				 struct irqaction *action)
1089 {
1090 	if (!(desc->istate & IRQS_ONESHOT) ||
1091 	    action->handler == irq_forced_secondary_handler)
1092 		return;
1093 again:
1094 	chip_bus_lock(desc);
1095 	raw_spin_lock_irq(&desc->lock);
1096 
1097 	/*
1098 	 * Implausible though it may be we need to protect us against
1099 	 * the following scenario:
1100 	 *
1101 	 * The thread is faster done than the hard interrupt handler
1102 	 * on the other CPU. If we unmask the irq line then the
1103 	 * interrupt can come in again and masks the line, leaves due
1104 	 * to IRQS_INPROGRESS and the irq line is masked forever.
1105 	 *
1106 	 * This also serializes the state of shared oneshot handlers
1107 	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1108 	 * irq_wake_thread(). See the comment there which explains the
1109 	 * serialization.
1110 	 */
1111 	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1112 		raw_spin_unlock_irq(&desc->lock);
1113 		chip_bus_sync_unlock(desc);
1114 		cpu_relax();
1115 		goto again;
1116 	}
1117 
1118 	/*
1119 	 * Now check again, whether the thread should run. Otherwise
1120 	 * we would clear the threads_oneshot bit of this thread which
1121 	 * was just set.
1122 	 */
1123 	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1124 		goto out_unlock;
1125 
1126 	desc->threads_oneshot &= ~action->thread_mask;
1127 
1128 	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1129 	    irqd_irq_masked(&desc->irq_data))
1130 		unmask_threaded_irq(desc);
1131 
1132 out_unlock:
1133 	raw_spin_unlock_irq(&desc->lock);
1134 	chip_bus_sync_unlock(desc);
1135 }
1136 
1137 #ifdef CONFIG_SMP
1138 /*
1139  * Check whether we need to change the affinity of the interrupt thread.
1140  */
1141 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1142 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1143 {
1144 	cpumask_var_t mask;
1145 	bool valid = true;
1146 
1147 	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1148 		return;
1149 
1150 	/*
1151 	 * In case we are out of memory we set IRQTF_AFFINITY again and
1152 	 * try again next time
1153 	 */
1154 	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1155 		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1156 		return;
1157 	}
1158 
1159 	raw_spin_lock_irq(&desc->lock);
1160 	/*
1161 	 * This code is triggered unconditionally. Check the affinity
1162 	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1163 	 */
1164 	if (cpumask_available(desc->irq_common_data.affinity)) {
1165 		const struct cpumask *m;
1166 
1167 		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1168 		cpumask_copy(mask, m);
1169 	} else {
1170 		valid = false;
1171 	}
1172 	raw_spin_unlock_irq(&desc->lock);
1173 
1174 	if (valid)
1175 		set_cpus_allowed_ptr(current, mask);
1176 	free_cpumask_var(mask);
1177 }
1178 #else
1179 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1180 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1181 #endif
1182 
1183 /*
1184  * Interrupts which are not explicitly requested as threaded
1185  * interrupts rely on the implicit bh/preempt disable of the hard irq
1186  * context. So we need to disable bh here to avoid deadlocks and other
1187  * side effects.
1188  */
1189 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1190 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1191 {
1192 	irqreturn_t ret;
1193 
1194 	local_bh_disable();
1195 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1196 		local_irq_disable();
1197 	ret = action->thread_fn(action->irq, action->dev_id);
1198 	if (ret == IRQ_HANDLED)
1199 		atomic_inc(&desc->threads_handled);
1200 
1201 	irq_finalize_oneshot(desc, action);
1202 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1203 		local_irq_enable();
1204 	local_bh_enable();
1205 	return ret;
1206 }
1207 
1208 /*
1209  * Interrupts explicitly requested as threaded interrupts want to be
1210  * preemptible - many of them need to sleep and wait for slow busses to
1211  * complete.
1212  */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1213 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1214 		struct irqaction *action)
1215 {
1216 	irqreturn_t ret;
1217 
1218 	ret = action->thread_fn(action->irq, action->dev_id);
1219 	if (ret == IRQ_HANDLED)
1220 		atomic_inc(&desc->threads_handled);
1221 
1222 	irq_finalize_oneshot(desc, action);
1223 	return ret;
1224 }
1225 
wake_threads_waitq(struct irq_desc * desc)1226 void wake_threads_waitq(struct irq_desc *desc)
1227 {
1228 	if (atomic_dec_and_test(&desc->threads_active))
1229 		wake_up(&desc->wait_for_threads);
1230 }
1231 
irq_thread_dtor(struct callback_head * unused)1232 static void irq_thread_dtor(struct callback_head *unused)
1233 {
1234 	struct task_struct *tsk = current;
1235 	struct irq_desc *desc;
1236 	struct irqaction *action;
1237 
1238 	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1239 		return;
1240 
1241 	action = kthread_data(tsk);
1242 
1243 	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1244 	       tsk->comm, tsk->pid, action->irq);
1245 
1246 
1247 	desc = irq_to_desc(action->irq);
1248 	/*
1249 	 * If IRQTF_RUNTHREAD is set, we need to decrement
1250 	 * desc->threads_active and wake possible waiters.
1251 	 */
1252 	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1253 		wake_threads_waitq(desc);
1254 
1255 	/* Prevent a stale desc->threads_oneshot */
1256 	irq_finalize_oneshot(desc, action);
1257 }
1258 
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1259 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1260 {
1261 	struct irqaction *secondary = action->secondary;
1262 
1263 	if (WARN_ON_ONCE(!secondary))
1264 		return;
1265 
1266 	raw_spin_lock_irq(&desc->lock);
1267 	__irq_wake_thread(desc, secondary);
1268 	raw_spin_unlock_irq(&desc->lock);
1269 }
1270 
1271 /*
1272  * Internal function to notify that a interrupt thread is ready.
1273  */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1274 static void irq_thread_set_ready(struct irq_desc *desc,
1275 				 struct irqaction *action)
1276 {
1277 	set_bit(IRQTF_READY, &action->thread_flags);
1278 	wake_up(&desc->wait_for_threads);
1279 }
1280 
1281 /*
1282  * Internal function to wake up a interrupt thread and wait until it is
1283  * ready.
1284  */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1285 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1286 						  struct irqaction *action)
1287 {
1288 	if (!action || !action->thread)
1289 		return;
1290 
1291 	wake_up_process(action->thread);
1292 	wait_event(desc->wait_for_threads,
1293 		   test_bit(IRQTF_READY, &action->thread_flags));
1294 }
1295 
1296 /*
1297  * Interrupt handler thread
1298  */
irq_thread(void * data)1299 static int irq_thread(void *data)
1300 {
1301 	struct callback_head on_exit_work;
1302 	struct irqaction *action = data;
1303 	struct irq_desc *desc = irq_to_desc(action->irq);
1304 	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1305 			struct irqaction *action);
1306 
1307 	irq_thread_set_ready(desc, action);
1308 
1309 	sched_set_fifo(current);
1310 
1311 	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1312 					   &action->thread_flags))
1313 		handler_fn = irq_forced_thread_fn;
1314 	else
1315 		handler_fn = irq_thread_fn;
1316 
1317 	init_task_work(&on_exit_work, irq_thread_dtor);
1318 	task_work_add(current, &on_exit_work, TWA_NONE);
1319 
1320 	irq_thread_check_affinity(desc, action);
1321 
1322 	while (!irq_wait_for_interrupt(action)) {
1323 		irqreturn_t action_ret;
1324 
1325 		irq_thread_check_affinity(desc, action);
1326 
1327 		action_ret = handler_fn(desc, action);
1328 		if (action_ret == IRQ_WAKE_THREAD)
1329 			irq_wake_secondary(desc, action);
1330 
1331 		wake_threads_waitq(desc);
1332 	}
1333 
1334 	/*
1335 	 * This is the regular exit path. __free_irq() is stopping the
1336 	 * thread via kthread_stop() after calling
1337 	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1338 	 * oneshot mask bit can be set.
1339 	 */
1340 	task_work_cancel_func(current, irq_thread_dtor);
1341 	return 0;
1342 }
1343 
1344 /**
1345  *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1346  *	@irq:		Interrupt line
1347  *	@dev_id:	Device identity for which the thread should be woken
1348  *
1349  */
irq_wake_thread(unsigned int irq,void * dev_id)1350 void irq_wake_thread(unsigned int irq, void *dev_id)
1351 {
1352 	struct irq_desc *desc = irq_to_desc(irq);
1353 	struct irqaction *action;
1354 	unsigned long flags;
1355 
1356 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1357 		return;
1358 
1359 	raw_spin_lock_irqsave(&desc->lock, flags);
1360 	for_each_action_of_desc(desc, action) {
1361 		if (action->dev_id == dev_id) {
1362 			if (action->thread)
1363 				__irq_wake_thread(desc, action);
1364 			break;
1365 		}
1366 	}
1367 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1368 }
1369 EXPORT_SYMBOL_GPL(irq_wake_thread);
1370 
irq_setup_forced_threading(struct irqaction * new)1371 static int irq_setup_forced_threading(struct irqaction *new)
1372 {
1373 	if (!force_irqthreads())
1374 		return 0;
1375 	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1376 		return 0;
1377 
1378 	/*
1379 	 * No further action required for interrupts which are requested as
1380 	 * threaded interrupts already
1381 	 */
1382 	if (new->handler == irq_default_primary_handler)
1383 		return 0;
1384 
1385 	new->flags |= IRQF_ONESHOT;
1386 
1387 	/*
1388 	 * Handle the case where we have a real primary handler and a
1389 	 * thread handler. We force thread them as well by creating a
1390 	 * secondary action.
1391 	 */
1392 	if (new->handler && new->thread_fn) {
1393 		/* Allocate the secondary action */
1394 		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1395 		if (!new->secondary)
1396 			return -ENOMEM;
1397 		new->secondary->handler = irq_forced_secondary_handler;
1398 		new->secondary->thread_fn = new->thread_fn;
1399 		new->secondary->dev_id = new->dev_id;
1400 		new->secondary->irq = new->irq;
1401 		new->secondary->name = new->name;
1402 	}
1403 	/* Deal with the primary handler */
1404 	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1405 	new->thread_fn = new->handler;
1406 	new->handler = irq_default_primary_handler;
1407 	return 0;
1408 }
1409 
irq_request_resources(struct irq_desc * desc)1410 static int irq_request_resources(struct irq_desc *desc)
1411 {
1412 	struct irq_data *d = &desc->irq_data;
1413 	struct irq_chip *c = d->chip;
1414 
1415 	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1416 }
1417 
irq_release_resources(struct irq_desc * desc)1418 static void irq_release_resources(struct irq_desc *desc)
1419 {
1420 	struct irq_data *d = &desc->irq_data;
1421 	struct irq_chip *c = d->chip;
1422 
1423 	if (c->irq_release_resources)
1424 		c->irq_release_resources(d);
1425 }
1426 
irq_supports_nmi(struct irq_desc * desc)1427 static bool irq_supports_nmi(struct irq_desc *desc)
1428 {
1429 	struct irq_data *d = irq_desc_get_irq_data(desc);
1430 
1431 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1432 	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1433 	if (d->parent_data)
1434 		return false;
1435 #endif
1436 	/* Don't support NMIs for chips behind a slow bus */
1437 	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1438 		return false;
1439 
1440 	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1441 }
1442 
irq_nmi_setup(struct irq_desc * desc)1443 static int irq_nmi_setup(struct irq_desc *desc)
1444 {
1445 	struct irq_data *d = irq_desc_get_irq_data(desc);
1446 	struct irq_chip *c = d->chip;
1447 
1448 	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1449 }
1450 
irq_nmi_teardown(struct irq_desc * desc)1451 static void irq_nmi_teardown(struct irq_desc *desc)
1452 {
1453 	struct irq_data *d = irq_desc_get_irq_data(desc);
1454 	struct irq_chip *c = d->chip;
1455 
1456 	if (c->irq_nmi_teardown)
1457 		c->irq_nmi_teardown(d);
1458 }
1459 
1460 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1461 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1462 {
1463 	struct task_struct *t;
1464 
1465 	if (!secondary) {
1466 		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1467 				   new->name);
1468 	} else {
1469 		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1470 				   new->name);
1471 	}
1472 
1473 	if (IS_ERR(t))
1474 		return PTR_ERR(t);
1475 
1476 	/*
1477 	 * We keep the reference to the task struct even if
1478 	 * the thread dies to avoid that the interrupt code
1479 	 * references an already freed task_struct.
1480 	 */
1481 	new->thread = get_task_struct(t);
1482 	/*
1483 	 * Tell the thread to set its affinity. This is
1484 	 * important for shared interrupt handlers as we do
1485 	 * not invoke setup_affinity() for the secondary
1486 	 * handlers as everything is already set up. Even for
1487 	 * interrupts marked with IRQF_NO_BALANCE this is
1488 	 * correct as we want the thread to move to the cpu(s)
1489 	 * on which the requesting code placed the interrupt.
1490 	 */
1491 	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1492 	return 0;
1493 }
1494 
1495 /*
1496  * Internal function to register an irqaction - typically used to
1497  * allocate special interrupts that are part of the architecture.
1498  *
1499  * Locking rules:
1500  *
1501  * desc->request_mutex	Provides serialization against a concurrent free_irq()
1502  *   chip_bus_lock	Provides serialization for slow bus operations
1503  *     desc->lock	Provides serialization against hard interrupts
1504  *
1505  * chip_bus_lock and desc->lock are sufficient for all other management and
1506  * interrupt related functions. desc->request_mutex solely serializes
1507  * request/free_irq().
1508  */
1509 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1510 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1511 {
1512 	struct irqaction *old, **old_ptr;
1513 	unsigned long flags, thread_mask = 0;
1514 	int ret, nested, shared = 0;
1515 
1516 	if (!desc)
1517 		return -EINVAL;
1518 
1519 	if (desc->irq_data.chip == &no_irq_chip)
1520 		return -ENOSYS;
1521 	if (!try_module_get(desc->owner))
1522 		return -ENODEV;
1523 
1524 	new->irq = irq;
1525 
1526 	/*
1527 	 * If the trigger type is not specified by the caller,
1528 	 * then use the default for this interrupt.
1529 	 */
1530 	if (!(new->flags & IRQF_TRIGGER_MASK))
1531 		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1532 
1533 	/*
1534 	 * Check whether the interrupt nests into another interrupt
1535 	 * thread.
1536 	 */
1537 	nested = irq_settings_is_nested_thread(desc);
1538 	if (nested) {
1539 		if (!new->thread_fn) {
1540 			ret = -EINVAL;
1541 			goto out_mput;
1542 		}
1543 		/*
1544 		 * Replace the primary handler which was provided from
1545 		 * the driver for non nested interrupt handling by the
1546 		 * dummy function which warns when called.
1547 		 */
1548 		new->handler = irq_nested_primary_handler;
1549 	} else {
1550 		if (irq_settings_can_thread(desc)) {
1551 			ret = irq_setup_forced_threading(new);
1552 			if (ret)
1553 				goto out_mput;
1554 		}
1555 	}
1556 
1557 	/*
1558 	 * Create a handler thread when a thread function is supplied
1559 	 * and the interrupt does not nest into another interrupt
1560 	 * thread.
1561 	 */
1562 	if (new->thread_fn && !nested) {
1563 		ret = setup_irq_thread(new, irq, false);
1564 		if (ret)
1565 			goto out_mput;
1566 		if (new->secondary) {
1567 			ret = setup_irq_thread(new->secondary, irq, true);
1568 			if (ret)
1569 				goto out_thread;
1570 		}
1571 	}
1572 
1573 	/*
1574 	 * Drivers are often written to work w/o knowledge about the
1575 	 * underlying irq chip implementation, so a request for a
1576 	 * threaded irq without a primary hard irq context handler
1577 	 * requires the ONESHOT flag to be set. Some irq chips like
1578 	 * MSI based interrupts are per se one shot safe. Check the
1579 	 * chip flags, so we can avoid the unmask dance at the end of
1580 	 * the threaded handler for those.
1581 	 */
1582 	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1583 		new->flags &= ~IRQF_ONESHOT;
1584 
1585 	/*
1586 	 * Protects against a concurrent __free_irq() call which might wait
1587 	 * for synchronize_hardirq() to complete without holding the optional
1588 	 * chip bus lock and desc->lock. Also protects against handing out
1589 	 * a recycled oneshot thread_mask bit while it's still in use by
1590 	 * its previous owner.
1591 	 */
1592 	mutex_lock(&desc->request_mutex);
1593 
1594 	/*
1595 	 * Acquire bus lock as the irq_request_resources() callback below
1596 	 * might rely on the serialization or the magic power management
1597 	 * functions which are abusing the irq_bus_lock() callback,
1598 	 */
1599 	chip_bus_lock(desc);
1600 
1601 	/* First installed action requests resources. */
1602 	if (!desc->action) {
1603 		ret = irq_request_resources(desc);
1604 		if (ret) {
1605 			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1606 			       new->name, irq, desc->irq_data.chip->name);
1607 			goto out_bus_unlock;
1608 		}
1609 	}
1610 
1611 	/*
1612 	 * The following block of code has to be executed atomically
1613 	 * protected against a concurrent interrupt and any of the other
1614 	 * management calls which are not serialized via
1615 	 * desc->request_mutex or the optional bus lock.
1616 	 */
1617 	raw_spin_lock_irqsave(&desc->lock, flags);
1618 	old_ptr = &desc->action;
1619 	old = *old_ptr;
1620 	if (old) {
1621 		/*
1622 		 * Can't share interrupts unless both agree to and are
1623 		 * the same type (level, edge, polarity). So both flag
1624 		 * fields must have IRQF_SHARED set and the bits which
1625 		 * set the trigger type must match. Also all must
1626 		 * agree on ONESHOT.
1627 		 * Interrupt lines used for NMIs cannot be shared.
1628 		 */
1629 		unsigned int oldtype;
1630 
1631 		if (desc->istate & IRQS_NMI) {
1632 			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1633 				new->name, irq, desc->irq_data.chip->name);
1634 			ret = -EINVAL;
1635 			goto out_unlock;
1636 		}
1637 
1638 		/*
1639 		 * If nobody did set the configuration before, inherit
1640 		 * the one provided by the requester.
1641 		 */
1642 		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1643 			oldtype = irqd_get_trigger_type(&desc->irq_data);
1644 		} else {
1645 			oldtype = new->flags & IRQF_TRIGGER_MASK;
1646 			irqd_set_trigger_type(&desc->irq_data, oldtype);
1647 		}
1648 
1649 		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1650 		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1651 		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1652 			goto mismatch;
1653 
1654 		/* All handlers must agree on per-cpuness */
1655 		if ((old->flags & IRQF_PERCPU) !=
1656 		    (new->flags & IRQF_PERCPU))
1657 			goto mismatch;
1658 
1659 		/* add new interrupt at end of irq queue */
1660 		do {
1661 			/*
1662 			 * Or all existing action->thread_mask bits,
1663 			 * so we can find the next zero bit for this
1664 			 * new action.
1665 			 */
1666 			thread_mask |= old->thread_mask;
1667 			old_ptr = &old->next;
1668 			old = *old_ptr;
1669 		} while (old);
1670 		shared = 1;
1671 	}
1672 
1673 	/*
1674 	 * Setup the thread mask for this irqaction for ONESHOT. For
1675 	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1676 	 * conditional in irq_wake_thread().
1677 	 */
1678 	if (new->flags & IRQF_ONESHOT) {
1679 		/*
1680 		 * Unlikely to have 32 resp 64 irqs sharing one line,
1681 		 * but who knows.
1682 		 */
1683 		if (thread_mask == ~0UL) {
1684 			ret = -EBUSY;
1685 			goto out_unlock;
1686 		}
1687 		/*
1688 		 * The thread_mask for the action is or'ed to
1689 		 * desc->thread_active to indicate that the
1690 		 * IRQF_ONESHOT thread handler has been woken, but not
1691 		 * yet finished. The bit is cleared when a thread
1692 		 * completes. When all threads of a shared interrupt
1693 		 * line have completed desc->threads_active becomes
1694 		 * zero and the interrupt line is unmasked. See
1695 		 * handle.c:irq_wake_thread() for further information.
1696 		 *
1697 		 * If no thread is woken by primary (hard irq context)
1698 		 * interrupt handlers, then desc->threads_active is
1699 		 * also checked for zero to unmask the irq line in the
1700 		 * affected hard irq flow handlers
1701 		 * (handle_[fasteoi|level]_irq).
1702 		 *
1703 		 * The new action gets the first zero bit of
1704 		 * thread_mask assigned. See the loop above which or's
1705 		 * all existing action->thread_mask bits.
1706 		 */
1707 		new->thread_mask = 1UL << ffz(thread_mask);
1708 
1709 	} else if (new->handler == irq_default_primary_handler &&
1710 		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1711 		/*
1712 		 * The interrupt was requested with handler = NULL, so
1713 		 * we use the default primary handler for it. But it
1714 		 * does not have the oneshot flag set. In combination
1715 		 * with level interrupts this is deadly, because the
1716 		 * default primary handler just wakes the thread, then
1717 		 * the irq lines is reenabled, but the device still
1718 		 * has the level irq asserted. Rinse and repeat....
1719 		 *
1720 		 * While this works for edge type interrupts, we play
1721 		 * it safe and reject unconditionally because we can't
1722 		 * say for sure which type this interrupt really
1723 		 * has. The type flags are unreliable as the
1724 		 * underlying chip implementation can override them.
1725 		 */
1726 		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1727 		       new->name, irq);
1728 		ret = -EINVAL;
1729 		goto out_unlock;
1730 	}
1731 
1732 	if (!shared) {
1733 		/* Setup the type (level, edge polarity) if configured: */
1734 		if (new->flags & IRQF_TRIGGER_MASK) {
1735 			ret = __irq_set_trigger(desc,
1736 						new->flags & IRQF_TRIGGER_MASK);
1737 
1738 			if (ret)
1739 				goto out_unlock;
1740 		}
1741 
1742 		/*
1743 		 * Activate the interrupt. That activation must happen
1744 		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1745 		 * and the callers are supposed to handle
1746 		 * that. enable_irq() of an interrupt requested with
1747 		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1748 		 * keeps it in shutdown mode, it merily associates
1749 		 * resources if necessary and if that's not possible it
1750 		 * fails. Interrupts which are in managed shutdown mode
1751 		 * will simply ignore that activation request.
1752 		 */
1753 		ret = irq_activate(desc);
1754 		if (ret)
1755 			goto out_unlock;
1756 
1757 		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1758 				  IRQS_ONESHOT | IRQS_WAITING);
1759 		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1760 
1761 		if (new->flags & IRQF_PERCPU) {
1762 			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1763 			irq_settings_set_per_cpu(desc);
1764 			if (new->flags & IRQF_NO_DEBUG)
1765 				irq_settings_set_no_debug(desc);
1766 		}
1767 
1768 		if (noirqdebug)
1769 			irq_settings_set_no_debug(desc);
1770 
1771 		if (new->flags & IRQF_ONESHOT)
1772 			desc->istate |= IRQS_ONESHOT;
1773 
1774 		/* Exclude IRQ from balancing if requested */
1775 		if (new->flags & IRQF_NOBALANCING) {
1776 			irq_settings_set_no_balancing(desc);
1777 			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1778 		}
1779 
1780 		if (!(new->flags & IRQF_NO_AUTOEN) &&
1781 		    irq_settings_can_autoenable(desc)) {
1782 			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1783 		} else {
1784 			/*
1785 			 * Shared interrupts do not go well with disabling
1786 			 * auto enable. The sharing interrupt might request
1787 			 * it while it's still disabled and then wait for
1788 			 * interrupts forever.
1789 			 */
1790 			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1791 			/* Undo nested disables: */
1792 			desc->depth = 1;
1793 		}
1794 
1795 	} else if (new->flags & IRQF_TRIGGER_MASK) {
1796 		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1797 		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1798 
1799 		if (nmsk != omsk)
1800 			/* hope the handler works with current  trigger mode */
1801 			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1802 				irq, omsk, nmsk);
1803 	}
1804 
1805 	*old_ptr = new;
1806 
1807 	irq_pm_install_action(desc, new);
1808 
1809 	/* Reset broken irq detection when installing new handler */
1810 	desc->irq_count = 0;
1811 	desc->irqs_unhandled = 0;
1812 
1813 	/*
1814 	 * Check whether we disabled the irq via the spurious handler
1815 	 * before. Reenable it and give it another chance.
1816 	 */
1817 	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1818 		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1819 		__enable_irq(desc);
1820 	}
1821 
1822 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1823 	chip_bus_sync_unlock(desc);
1824 	mutex_unlock(&desc->request_mutex);
1825 
1826 	irq_setup_timings(desc, new);
1827 
1828 	wake_up_and_wait_for_irq_thread_ready(desc, new);
1829 	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1830 
1831 	register_irq_proc(irq, desc);
1832 	new->dir = NULL;
1833 	register_handler_proc(irq, new);
1834 	return 0;
1835 
1836 mismatch:
1837 	if (!(new->flags & IRQF_PROBE_SHARED)) {
1838 		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1839 		       irq, new->flags, new->name, old->flags, old->name);
1840 #ifdef CONFIG_DEBUG_SHIRQ
1841 		dump_stack();
1842 #endif
1843 	}
1844 	ret = -EBUSY;
1845 
1846 out_unlock:
1847 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1848 
1849 	if (!desc->action)
1850 		irq_release_resources(desc);
1851 out_bus_unlock:
1852 	chip_bus_sync_unlock(desc);
1853 	mutex_unlock(&desc->request_mutex);
1854 
1855 out_thread:
1856 	if (new->thread) {
1857 		struct task_struct *t = new->thread;
1858 
1859 		new->thread = NULL;
1860 		kthread_stop_put(t);
1861 	}
1862 	if (new->secondary && new->secondary->thread) {
1863 		struct task_struct *t = new->secondary->thread;
1864 
1865 		new->secondary->thread = NULL;
1866 		kthread_stop_put(t);
1867 	}
1868 out_mput:
1869 	module_put(desc->owner);
1870 	return ret;
1871 }
1872 
1873 /*
1874  * Internal function to unregister an irqaction - used to free
1875  * regular and special interrupts that are part of the architecture.
1876  */
__free_irq(struct irq_desc * desc,void * dev_id)1877 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1878 {
1879 	unsigned irq = desc->irq_data.irq;
1880 	struct irqaction *action, **action_ptr;
1881 	unsigned long flags;
1882 
1883 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1884 
1885 	mutex_lock(&desc->request_mutex);
1886 	chip_bus_lock(desc);
1887 	raw_spin_lock_irqsave(&desc->lock, flags);
1888 
1889 	/*
1890 	 * There can be multiple actions per IRQ descriptor, find the right
1891 	 * one based on the dev_id:
1892 	 */
1893 	action_ptr = &desc->action;
1894 	for (;;) {
1895 		action = *action_ptr;
1896 
1897 		if (!action) {
1898 			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1899 			raw_spin_unlock_irqrestore(&desc->lock, flags);
1900 			chip_bus_sync_unlock(desc);
1901 			mutex_unlock(&desc->request_mutex);
1902 			return NULL;
1903 		}
1904 
1905 		if (action->dev_id == dev_id)
1906 			break;
1907 		action_ptr = &action->next;
1908 	}
1909 
1910 	/* Found it - now remove it from the list of entries: */
1911 	*action_ptr = action->next;
1912 
1913 	irq_pm_remove_action(desc, action);
1914 
1915 	/* If this was the last handler, shut down the IRQ line: */
1916 	if (!desc->action) {
1917 		irq_settings_clr_disable_unlazy(desc);
1918 		/* Only shutdown. Deactivate after synchronize_hardirq() */
1919 		irq_shutdown(desc);
1920 	}
1921 
1922 #ifdef CONFIG_SMP
1923 	/* make sure affinity_hint is cleaned up */
1924 	if (WARN_ON_ONCE(desc->affinity_hint))
1925 		desc->affinity_hint = NULL;
1926 #endif
1927 
1928 	raw_spin_unlock_irqrestore(&desc->lock, flags);
1929 	/*
1930 	 * Drop bus_lock here so the changes which were done in the chip
1931 	 * callbacks above are synced out to the irq chips which hang
1932 	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1933 	 *
1934 	 * Aside of that the bus_lock can also be taken from the threaded
1935 	 * handler in irq_finalize_oneshot() which results in a deadlock
1936 	 * because kthread_stop() would wait forever for the thread to
1937 	 * complete, which is blocked on the bus lock.
1938 	 *
1939 	 * The still held desc->request_mutex() protects against a
1940 	 * concurrent request_irq() of this irq so the release of resources
1941 	 * and timing data is properly serialized.
1942 	 */
1943 	chip_bus_sync_unlock(desc);
1944 
1945 	unregister_handler_proc(irq, action);
1946 
1947 	/*
1948 	 * Make sure it's not being used on another CPU and if the chip
1949 	 * supports it also make sure that there is no (not yet serviced)
1950 	 * interrupt in flight at the hardware level.
1951 	 */
1952 	__synchronize_irq(desc);
1953 
1954 #ifdef CONFIG_DEBUG_SHIRQ
1955 	/*
1956 	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1957 	 * event to happen even now it's being freed, so let's make sure that
1958 	 * is so by doing an extra call to the handler ....
1959 	 *
1960 	 * ( We do this after actually deregistering it, to make sure that a
1961 	 *   'real' IRQ doesn't run in parallel with our fake. )
1962 	 */
1963 	if (action->flags & IRQF_SHARED) {
1964 		local_irq_save(flags);
1965 		action->handler(irq, dev_id);
1966 		local_irq_restore(flags);
1967 	}
1968 #endif
1969 
1970 	/*
1971 	 * The action has already been removed above, but the thread writes
1972 	 * its oneshot mask bit when it completes. Though request_mutex is
1973 	 * held across this which prevents __setup_irq() from handing out
1974 	 * the same bit to a newly requested action.
1975 	 */
1976 	if (action->thread) {
1977 		kthread_stop_put(action->thread);
1978 		if (action->secondary && action->secondary->thread)
1979 			kthread_stop_put(action->secondary->thread);
1980 	}
1981 
1982 	/* Last action releases resources */
1983 	if (!desc->action) {
1984 		/*
1985 		 * Reacquire bus lock as irq_release_resources() might
1986 		 * require it to deallocate resources over the slow bus.
1987 		 */
1988 		chip_bus_lock(desc);
1989 		/*
1990 		 * There is no interrupt on the fly anymore. Deactivate it
1991 		 * completely.
1992 		 */
1993 		raw_spin_lock_irqsave(&desc->lock, flags);
1994 		irq_domain_deactivate_irq(&desc->irq_data);
1995 		raw_spin_unlock_irqrestore(&desc->lock, flags);
1996 
1997 		irq_release_resources(desc);
1998 		chip_bus_sync_unlock(desc);
1999 		irq_remove_timings(desc);
2000 	}
2001 
2002 	mutex_unlock(&desc->request_mutex);
2003 
2004 	irq_chip_pm_put(&desc->irq_data);
2005 	module_put(desc->owner);
2006 	kfree(action->secondary);
2007 	return action;
2008 }
2009 
2010 /**
2011  *	free_irq - free an interrupt allocated with request_irq
2012  *	@irq: Interrupt line to free
2013  *	@dev_id: Device identity to free
2014  *
2015  *	Remove an interrupt handler. The handler is removed and if the
2016  *	interrupt line is no longer in use by any driver it is disabled.
2017  *	On a shared IRQ the caller must ensure the interrupt is disabled
2018  *	on the card it drives before calling this function. The function
2019  *	does not return until any executing interrupts for this IRQ
2020  *	have completed.
2021  *
2022  *	This function must not be called from interrupt context.
2023  *
2024  *	Returns the devname argument passed to request_irq.
2025  */
free_irq(unsigned int irq,void * dev_id)2026 const void *free_irq(unsigned int irq, void *dev_id)
2027 {
2028 	struct irq_desc *desc = irq_to_desc(irq);
2029 	struct irqaction *action;
2030 	const char *devname;
2031 
2032 	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2033 		return NULL;
2034 
2035 #ifdef CONFIG_SMP
2036 	if (WARN_ON(desc->affinity_notify))
2037 		desc->affinity_notify = NULL;
2038 #endif
2039 
2040 	action = __free_irq(desc, dev_id);
2041 
2042 	if (!action)
2043 		return NULL;
2044 
2045 	devname = action->name;
2046 	kfree(action);
2047 	return devname;
2048 }
2049 EXPORT_SYMBOL(free_irq);
2050 
2051 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2052 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2053 {
2054 	const char *devname = NULL;
2055 
2056 	desc->istate &= ~IRQS_NMI;
2057 
2058 	if (!WARN_ON(desc->action == NULL)) {
2059 		irq_pm_remove_action(desc, desc->action);
2060 		devname = desc->action->name;
2061 		unregister_handler_proc(irq, desc->action);
2062 
2063 		kfree(desc->action);
2064 		desc->action = NULL;
2065 	}
2066 
2067 	irq_settings_clr_disable_unlazy(desc);
2068 	irq_shutdown_and_deactivate(desc);
2069 
2070 	irq_release_resources(desc);
2071 
2072 	irq_chip_pm_put(&desc->irq_data);
2073 	module_put(desc->owner);
2074 
2075 	return devname;
2076 }
2077 
free_nmi(unsigned int irq,void * dev_id)2078 const void *free_nmi(unsigned int irq, void *dev_id)
2079 {
2080 	struct irq_desc *desc = irq_to_desc(irq);
2081 	unsigned long flags;
2082 	const void *devname;
2083 
2084 	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2085 		return NULL;
2086 
2087 	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2088 		return NULL;
2089 
2090 	/* NMI still enabled */
2091 	if (WARN_ON(desc->depth == 0))
2092 		disable_nmi_nosync(irq);
2093 
2094 	raw_spin_lock_irqsave(&desc->lock, flags);
2095 
2096 	irq_nmi_teardown(desc);
2097 	devname = __cleanup_nmi(irq, desc);
2098 
2099 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2100 
2101 	return devname;
2102 }
2103 
2104 /**
2105  *	request_threaded_irq - allocate an interrupt line
2106  *	@irq: Interrupt line to allocate
2107  *	@handler: Function to be called when the IRQ occurs.
2108  *		  Primary handler for threaded interrupts.
2109  *		  If handler is NULL and thread_fn != NULL
2110  *		  the default primary handler is installed.
2111  *	@thread_fn: Function called from the irq handler thread
2112  *		    If NULL, no irq thread is created
2113  *	@irqflags: Interrupt type flags
2114  *	@devname: An ascii name for the claiming device
2115  *	@dev_id: A cookie passed back to the handler function
2116  *
2117  *	This call allocates interrupt resources and enables the
2118  *	interrupt line and IRQ handling. From the point this
2119  *	call is made your handler function may be invoked. Since
2120  *	your handler function must clear any interrupt the board
2121  *	raises, you must take care both to initialise your hardware
2122  *	and to set up the interrupt handler in the right order.
2123  *
2124  *	If you want to set up a threaded irq handler for your device
2125  *	then you need to supply @handler and @thread_fn. @handler is
2126  *	still called in hard interrupt context and has to check
2127  *	whether the interrupt originates from the device. If yes it
2128  *	needs to disable the interrupt on the device and return
2129  *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2130  *	@thread_fn. This split handler design is necessary to support
2131  *	shared interrupts.
2132  *
2133  *	Dev_id must be globally unique. Normally the address of the
2134  *	device data structure is used as the cookie. Since the handler
2135  *	receives this value it makes sense to use it.
2136  *
2137  *	If your interrupt is shared you must pass a non NULL dev_id
2138  *	as this is required when freeing the interrupt.
2139  *
2140  *	Flags:
2141  *
2142  *	IRQF_SHARED		Interrupt is shared
2143  *	IRQF_TRIGGER_*		Specify active edge(s) or level
2144  *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2145  */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2146 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2147 			 irq_handler_t thread_fn, unsigned long irqflags,
2148 			 const char *devname, void *dev_id)
2149 {
2150 	struct irqaction *action;
2151 	struct irq_desc *desc;
2152 	int retval;
2153 
2154 	if (irq == IRQ_NOTCONNECTED)
2155 		return -ENOTCONN;
2156 
2157 	/*
2158 	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2159 	 * otherwise we'll have trouble later trying to figure out
2160 	 * which interrupt is which (messes up the interrupt freeing
2161 	 * logic etc).
2162 	 *
2163 	 * Also shared interrupts do not go well with disabling auto enable.
2164 	 * The sharing interrupt might request it while it's still disabled
2165 	 * and then wait for interrupts forever.
2166 	 *
2167 	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2168 	 * it cannot be set along with IRQF_NO_SUSPEND.
2169 	 */
2170 	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2171 	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2172 	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2173 	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2174 		return -EINVAL;
2175 
2176 	desc = irq_to_desc(irq);
2177 	if (!desc)
2178 		return -EINVAL;
2179 
2180 	if (!irq_settings_can_request(desc) ||
2181 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2182 		return -EINVAL;
2183 
2184 	if (!handler) {
2185 		if (!thread_fn)
2186 			return -EINVAL;
2187 		handler = irq_default_primary_handler;
2188 	}
2189 
2190 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2191 	if (!action)
2192 		return -ENOMEM;
2193 
2194 	action->handler = handler;
2195 	action->thread_fn = thread_fn;
2196 	action->flags = irqflags;
2197 	action->name = devname;
2198 	action->dev_id = dev_id;
2199 
2200 	retval = irq_chip_pm_get(&desc->irq_data);
2201 	if (retval < 0) {
2202 		kfree(action);
2203 		return retval;
2204 	}
2205 
2206 	retval = __setup_irq(irq, desc, action);
2207 
2208 	if (retval) {
2209 		irq_chip_pm_put(&desc->irq_data);
2210 		kfree(action->secondary);
2211 		kfree(action);
2212 	}
2213 
2214 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2215 	if (!retval && (irqflags & IRQF_SHARED)) {
2216 		/*
2217 		 * It's a shared IRQ -- the driver ought to be prepared for it
2218 		 * to happen immediately, so let's make sure....
2219 		 * We disable the irq to make sure that a 'real' IRQ doesn't
2220 		 * run in parallel with our fake.
2221 		 */
2222 		unsigned long flags;
2223 
2224 		disable_irq(irq);
2225 		local_irq_save(flags);
2226 
2227 		handler(irq, dev_id);
2228 
2229 		local_irq_restore(flags);
2230 		enable_irq(irq);
2231 	}
2232 #endif
2233 	return retval;
2234 }
2235 EXPORT_SYMBOL(request_threaded_irq);
2236 
2237 /**
2238  *	request_any_context_irq - allocate an interrupt line
2239  *	@irq: Interrupt line to allocate
2240  *	@handler: Function to be called when the IRQ occurs.
2241  *		  Threaded handler for threaded interrupts.
2242  *	@flags: Interrupt type flags
2243  *	@name: An ascii name for the claiming device
2244  *	@dev_id: A cookie passed back to the handler function
2245  *
2246  *	This call allocates interrupt resources and enables the
2247  *	interrupt line and IRQ handling. It selects either a
2248  *	hardirq or threaded handling method depending on the
2249  *	context.
2250  *
2251  *	On failure, it returns a negative value. On success,
2252  *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2253  */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2254 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2255 			    unsigned long flags, const char *name, void *dev_id)
2256 {
2257 	struct irq_desc *desc;
2258 	int ret;
2259 
2260 	if (irq == IRQ_NOTCONNECTED)
2261 		return -ENOTCONN;
2262 
2263 	desc = irq_to_desc(irq);
2264 	if (!desc)
2265 		return -EINVAL;
2266 
2267 	if (irq_settings_is_nested_thread(desc)) {
2268 		ret = request_threaded_irq(irq, NULL, handler,
2269 					   flags, name, dev_id);
2270 		return !ret ? IRQC_IS_NESTED : ret;
2271 	}
2272 
2273 	ret = request_irq(irq, handler, flags, name, dev_id);
2274 	return !ret ? IRQC_IS_HARDIRQ : ret;
2275 }
2276 EXPORT_SYMBOL_GPL(request_any_context_irq);
2277 
2278 /**
2279  *	request_nmi - allocate an interrupt line for NMI delivery
2280  *	@irq: Interrupt line to allocate
2281  *	@handler: Function to be called when the IRQ occurs.
2282  *		  Threaded handler for threaded interrupts.
2283  *	@irqflags: Interrupt type flags
2284  *	@name: An ascii name for the claiming device
2285  *	@dev_id: A cookie passed back to the handler function
2286  *
2287  *	This call allocates interrupt resources and enables the
2288  *	interrupt line and IRQ handling. It sets up the IRQ line
2289  *	to be handled as an NMI.
2290  *
2291  *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2292  *	cannot be threaded.
2293  *
2294  *	Interrupt lines requested for NMI delivering must produce per cpu
2295  *	interrupts and have auto enabling setting disabled.
2296  *
2297  *	Dev_id must be globally unique. Normally the address of the
2298  *	device data structure is used as the cookie. Since the handler
2299  *	receives this value it makes sense to use it.
2300  *
2301  *	If the interrupt line cannot be used to deliver NMIs, function
2302  *	will fail and return a negative value.
2303  */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2304 int request_nmi(unsigned int irq, irq_handler_t handler,
2305 		unsigned long irqflags, const char *name, void *dev_id)
2306 {
2307 	struct irqaction *action;
2308 	struct irq_desc *desc;
2309 	unsigned long flags;
2310 	int retval;
2311 
2312 	if (irq == IRQ_NOTCONNECTED)
2313 		return -ENOTCONN;
2314 
2315 	/* NMI cannot be shared, used for Polling */
2316 	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2317 		return -EINVAL;
2318 
2319 	if (!(irqflags & IRQF_PERCPU))
2320 		return -EINVAL;
2321 
2322 	if (!handler)
2323 		return -EINVAL;
2324 
2325 	desc = irq_to_desc(irq);
2326 
2327 	if (!desc || (irq_settings_can_autoenable(desc) &&
2328 	    !(irqflags & IRQF_NO_AUTOEN)) ||
2329 	    !irq_settings_can_request(desc) ||
2330 	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2331 	    !irq_supports_nmi(desc))
2332 		return -EINVAL;
2333 
2334 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2335 	if (!action)
2336 		return -ENOMEM;
2337 
2338 	action->handler = handler;
2339 	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2340 	action->name = name;
2341 	action->dev_id = dev_id;
2342 
2343 	retval = irq_chip_pm_get(&desc->irq_data);
2344 	if (retval < 0)
2345 		goto err_out;
2346 
2347 	retval = __setup_irq(irq, desc, action);
2348 	if (retval)
2349 		goto err_irq_setup;
2350 
2351 	raw_spin_lock_irqsave(&desc->lock, flags);
2352 
2353 	/* Setup NMI state */
2354 	desc->istate |= IRQS_NMI;
2355 	retval = irq_nmi_setup(desc);
2356 	if (retval) {
2357 		__cleanup_nmi(irq, desc);
2358 		raw_spin_unlock_irqrestore(&desc->lock, flags);
2359 		return -EINVAL;
2360 	}
2361 
2362 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2363 
2364 	return 0;
2365 
2366 err_irq_setup:
2367 	irq_chip_pm_put(&desc->irq_data);
2368 err_out:
2369 	kfree(action);
2370 
2371 	return retval;
2372 }
2373 
enable_percpu_irq(unsigned int irq,unsigned int type)2374 void enable_percpu_irq(unsigned int irq, unsigned int type)
2375 {
2376 	unsigned int cpu = smp_processor_id();
2377 	unsigned long flags;
2378 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2379 
2380 	if (!desc)
2381 		return;
2382 
2383 	/*
2384 	 * If the trigger type is not specified by the caller, then
2385 	 * use the default for this interrupt.
2386 	 */
2387 	type &= IRQ_TYPE_SENSE_MASK;
2388 	if (type == IRQ_TYPE_NONE)
2389 		type = irqd_get_trigger_type(&desc->irq_data);
2390 
2391 	if (type != IRQ_TYPE_NONE) {
2392 		int ret;
2393 
2394 		ret = __irq_set_trigger(desc, type);
2395 
2396 		if (ret) {
2397 			WARN(1, "failed to set type for IRQ%d\n", irq);
2398 			goto out;
2399 		}
2400 	}
2401 
2402 	irq_percpu_enable(desc, cpu);
2403 out:
2404 	irq_put_desc_unlock(desc, flags);
2405 }
2406 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2407 
enable_percpu_nmi(unsigned int irq,unsigned int type)2408 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2409 {
2410 	enable_percpu_irq(irq, type);
2411 }
2412 
2413 /**
2414  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2415  * @irq:	Linux irq number to check for
2416  *
2417  * Must be called from a non migratable context. Returns the enable
2418  * state of a per cpu interrupt on the current cpu.
2419  */
irq_percpu_is_enabled(unsigned int irq)2420 bool irq_percpu_is_enabled(unsigned int irq)
2421 {
2422 	unsigned int cpu = smp_processor_id();
2423 	struct irq_desc *desc;
2424 	unsigned long flags;
2425 	bool is_enabled;
2426 
2427 	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2428 	if (!desc)
2429 		return false;
2430 
2431 	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2432 	irq_put_desc_unlock(desc, flags);
2433 
2434 	return is_enabled;
2435 }
2436 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2437 
disable_percpu_irq(unsigned int irq)2438 void disable_percpu_irq(unsigned int irq)
2439 {
2440 	unsigned int cpu = smp_processor_id();
2441 	unsigned long flags;
2442 	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2443 
2444 	if (!desc)
2445 		return;
2446 
2447 	irq_percpu_disable(desc, cpu);
2448 	irq_put_desc_unlock(desc, flags);
2449 }
2450 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2451 
disable_percpu_nmi(unsigned int irq)2452 void disable_percpu_nmi(unsigned int irq)
2453 {
2454 	disable_percpu_irq(irq);
2455 }
2456 
2457 /*
2458  * Internal function to unregister a percpu irqaction.
2459  */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2460 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2461 {
2462 	struct irq_desc *desc = irq_to_desc(irq);
2463 	struct irqaction *action;
2464 	unsigned long flags;
2465 
2466 	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2467 
2468 	if (!desc)
2469 		return NULL;
2470 
2471 	raw_spin_lock_irqsave(&desc->lock, flags);
2472 
2473 	action = desc->action;
2474 	if (!action || action->percpu_dev_id != dev_id) {
2475 		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2476 		goto bad;
2477 	}
2478 
2479 	if (!cpumask_empty(desc->percpu_enabled)) {
2480 		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2481 		     irq, cpumask_first(desc->percpu_enabled));
2482 		goto bad;
2483 	}
2484 
2485 	/* Found it - now remove it from the list of entries: */
2486 	desc->action = NULL;
2487 
2488 	desc->istate &= ~IRQS_NMI;
2489 
2490 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2491 
2492 	unregister_handler_proc(irq, action);
2493 
2494 	irq_chip_pm_put(&desc->irq_data);
2495 	module_put(desc->owner);
2496 	return action;
2497 
2498 bad:
2499 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2500 	return NULL;
2501 }
2502 
2503 /**
2504  *	remove_percpu_irq - free a per-cpu interrupt
2505  *	@irq: Interrupt line to free
2506  *	@act: irqaction for the interrupt
2507  *
2508  * Used to remove interrupts statically setup by the early boot process.
2509  */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2510 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2511 {
2512 	struct irq_desc *desc = irq_to_desc(irq);
2513 
2514 	if (desc && irq_settings_is_per_cpu_devid(desc))
2515 	    __free_percpu_irq(irq, act->percpu_dev_id);
2516 }
2517 
2518 /**
2519  *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2520  *	@irq: Interrupt line to free
2521  *	@dev_id: Device identity to free
2522  *
2523  *	Remove a percpu interrupt handler. The handler is removed, but
2524  *	the interrupt line is not disabled. This must be done on each
2525  *	CPU before calling this function. The function does not return
2526  *	until any executing interrupts for this IRQ have completed.
2527  *
2528  *	This function must not be called from interrupt context.
2529  */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2530 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2531 {
2532 	struct irq_desc *desc = irq_to_desc(irq);
2533 
2534 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2535 		return;
2536 
2537 	chip_bus_lock(desc);
2538 	kfree(__free_percpu_irq(irq, dev_id));
2539 	chip_bus_sync_unlock(desc);
2540 }
2541 EXPORT_SYMBOL_GPL(free_percpu_irq);
2542 
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2543 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2544 {
2545 	struct irq_desc *desc = irq_to_desc(irq);
2546 
2547 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2548 		return;
2549 
2550 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2551 		return;
2552 
2553 	kfree(__free_percpu_irq(irq, dev_id));
2554 }
2555 
2556 /**
2557  *	setup_percpu_irq - setup a per-cpu interrupt
2558  *	@irq: Interrupt line to setup
2559  *	@act: irqaction for the interrupt
2560  *
2561  * Used to statically setup per-cpu interrupts in the early boot process.
2562  */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2563 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2564 {
2565 	struct irq_desc *desc = irq_to_desc(irq);
2566 	int retval;
2567 
2568 	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2569 		return -EINVAL;
2570 
2571 	retval = irq_chip_pm_get(&desc->irq_data);
2572 	if (retval < 0)
2573 		return retval;
2574 
2575 	retval = __setup_irq(irq, desc, act);
2576 
2577 	if (retval)
2578 		irq_chip_pm_put(&desc->irq_data);
2579 
2580 	return retval;
2581 }
2582 
2583 /**
2584  *	__request_percpu_irq - allocate a percpu interrupt line
2585  *	@irq: Interrupt line to allocate
2586  *	@handler: Function to be called when the IRQ occurs.
2587  *	@flags: Interrupt type flags (IRQF_TIMER only)
2588  *	@devname: An ascii name for the claiming device
2589  *	@dev_id: A percpu cookie passed back to the handler function
2590  *
2591  *	This call allocates interrupt resources and enables the
2592  *	interrupt on the local CPU. If the interrupt is supposed to be
2593  *	enabled on other CPUs, it has to be done on each CPU using
2594  *	enable_percpu_irq().
2595  *
2596  *	Dev_id must be globally unique. It is a per-cpu variable, and
2597  *	the handler gets called with the interrupted CPU's instance of
2598  *	that variable.
2599  */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2600 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2601 			 unsigned long flags, const char *devname,
2602 			 void __percpu *dev_id)
2603 {
2604 	struct irqaction *action;
2605 	struct irq_desc *desc;
2606 	int retval;
2607 
2608 	if (!dev_id)
2609 		return -EINVAL;
2610 
2611 	desc = irq_to_desc(irq);
2612 	if (!desc || !irq_settings_can_request(desc) ||
2613 	    !irq_settings_is_per_cpu_devid(desc))
2614 		return -EINVAL;
2615 
2616 	if (flags && flags != IRQF_TIMER)
2617 		return -EINVAL;
2618 
2619 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2620 	if (!action)
2621 		return -ENOMEM;
2622 
2623 	action->handler = handler;
2624 	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2625 	action->name = devname;
2626 	action->percpu_dev_id = dev_id;
2627 
2628 	retval = irq_chip_pm_get(&desc->irq_data);
2629 	if (retval < 0) {
2630 		kfree(action);
2631 		return retval;
2632 	}
2633 
2634 	retval = __setup_irq(irq, desc, action);
2635 
2636 	if (retval) {
2637 		irq_chip_pm_put(&desc->irq_data);
2638 		kfree(action);
2639 	}
2640 
2641 	return retval;
2642 }
2643 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2644 
2645 /**
2646  *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2647  *	@irq: Interrupt line to allocate
2648  *	@handler: Function to be called when the IRQ occurs.
2649  *	@name: An ascii name for the claiming device
2650  *	@dev_id: A percpu cookie passed back to the handler function
2651  *
2652  *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2653  *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2654  *	being enabled on the same CPU by using enable_percpu_nmi().
2655  *
2656  *	Dev_id must be globally unique. It is a per-cpu variable, and
2657  *	the handler gets called with the interrupted CPU's instance of
2658  *	that variable.
2659  *
2660  *	Interrupt lines requested for NMI delivering should have auto enabling
2661  *	setting disabled.
2662  *
2663  *	If the interrupt line cannot be used to deliver NMIs, function
2664  *	will fail returning a negative value.
2665  */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2666 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2667 		       const char *name, void __percpu *dev_id)
2668 {
2669 	struct irqaction *action;
2670 	struct irq_desc *desc;
2671 	unsigned long flags;
2672 	int retval;
2673 
2674 	if (!handler)
2675 		return -EINVAL;
2676 
2677 	desc = irq_to_desc(irq);
2678 
2679 	if (!desc || !irq_settings_can_request(desc) ||
2680 	    !irq_settings_is_per_cpu_devid(desc) ||
2681 	    irq_settings_can_autoenable(desc) ||
2682 	    !irq_supports_nmi(desc))
2683 		return -EINVAL;
2684 
2685 	/* The line cannot already be NMI */
2686 	if (desc->istate & IRQS_NMI)
2687 		return -EINVAL;
2688 
2689 	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2690 	if (!action)
2691 		return -ENOMEM;
2692 
2693 	action->handler = handler;
2694 	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2695 		| IRQF_NOBALANCING;
2696 	action->name = name;
2697 	action->percpu_dev_id = dev_id;
2698 
2699 	retval = irq_chip_pm_get(&desc->irq_data);
2700 	if (retval < 0)
2701 		goto err_out;
2702 
2703 	retval = __setup_irq(irq, desc, action);
2704 	if (retval)
2705 		goto err_irq_setup;
2706 
2707 	raw_spin_lock_irqsave(&desc->lock, flags);
2708 	desc->istate |= IRQS_NMI;
2709 	raw_spin_unlock_irqrestore(&desc->lock, flags);
2710 
2711 	return 0;
2712 
2713 err_irq_setup:
2714 	irq_chip_pm_put(&desc->irq_data);
2715 err_out:
2716 	kfree(action);
2717 
2718 	return retval;
2719 }
2720 
2721 /**
2722  *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2723  *	@irq: Interrupt line to prepare for NMI delivery
2724  *
2725  *	This call prepares an interrupt line to deliver NMI on the current CPU,
2726  *	before that interrupt line gets enabled with enable_percpu_nmi().
2727  *
2728  *	As a CPU local operation, this should be called from non-preemptible
2729  *	context.
2730  *
2731  *	If the interrupt line cannot be used to deliver NMIs, function
2732  *	will fail returning a negative value.
2733  */
prepare_percpu_nmi(unsigned int irq)2734 int prepare_percpu_nmi(unsigned int irq)
2735 {
2736 	unsigned long flags;
2737 	struct irq_desc *desc;
2738 	int ret = 0;
2739 
2740 	WARN_ON(preemptible());
2741 
2742 	desc = irq_get_desc_lock(irq, &flags,
2743 				 IRQ_GET_DESC_CHECK_PERCPU);
2744 	if (!desc)
2745 		return -EINVAL;
2746 
2747 	if (WARN(!(desc->istate & IRQS_NMI),
2748 		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2749 		 irq)) {
2750 		ret = -EINVAL;
2751 		goto out;
2752 	}
2753 
2754 	ret = irq_nmi_setup(desc);
2755 	if (ret) {
2756 		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2757 		goto out;
2758 	}
2759 
2760 out:
2761 	irq_put_desc_unlock(desc, flags);
2762 	return ret;
2763 }
2764 
2765 /**
2766  *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2767  *	@irq: Interrupt line from which CPU local NMI configuration should be
2768  *	      removed
2769  *
2770  *	This call undoes the setup done by prepare_percpu_nmi().
2771  *
2772  *	IRQ line should not be enabled for the current CPU.
2773  *
2774  *	As a CPU local operation, this should be called from non-preemptible
2775  *	context.
2776  */
teardown_percpu_nmi(unsigned int irq)2777 void teardown_percpu_nmi(unsigned int irq)
2778 {
2779 	unsigned long flags;
2780 	struct irq_desc *desc;
2781 
2782 	WARN_ON(preemptible());
2783 
2784 	desc = irq_get_desc_lock(irq, &flags,
2785 				 IRQ_GET_DESC_CHECK_PERCPU);
2786 	if (!desc)
2787 		return;
2788 
2789 	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2790 		goto out;
2791 
2792 	irq_nmi_teardown(desc);
2793 out:
2794 	irq_put_desc_unlock(desc, flags);
2795 }
2796 
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2797 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2798 			    bool *state)
2799 {
2800 	struct irq_chip *chip;
2801 	int err = -EINVAL;
2802 
2803 	do {
2804 		chip = irq_data_get_irq_chip(data);
2805 		if (WARN_ON_ONCE(!chip))
2806 			return -ENODEV;
2807 		if (chip->irq_get_irqchip_state)
2808 			break;
2809 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2810 		data = data->parent_data;
2811 #else
2812 		data = NULL;
2813 #endif
2814 	} while (data);
2815 
2816 	if (data)
2817 		err = chip->irq_get_irqchip_state(data, which, state);
2818 	return err;
2819 }
2820 
2821 /**
2822  *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2823  *	@irq: Interrupt line that is forwarded to a VM
2824  *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2825  *	@state: a pointer to a boolean where the state is to be stored
2826  *
2827  *	This call snapshots the internal irqchip state of an
2828  *	interrupt, returning into @state the bit corresponding to
2829  *	stage @which
2830  *
2831  *	This function should be called with preemption disabled if the
2832  *	interrupt controller has per-cpu registers.
2833  */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2834 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2835 			  bool *state)
2836 {
2837 	struct irq_desc *desc;
2838 	struct irq_data *data;
2839 	unsigned long flags;
2840 	int err = -EINVAL;
2841 
2842 	desc = irq_get_desc_buslock(irq, &flags, 0);
2843 	if (!desc)
2844 		return err;
2845 
2846 	data = irq_desc_get_irq_data(desc);
2847 
2848 	err = __irq_get_irqchip_state(data, which, state);
2849 
2850 	irq_put_desc_busunlock(desc, flags);
2851 	return err;
2852 }
2853 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2854 
2855 /**
2856  *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2857  *	@irq: Interrupt line that is forwarded to a VM
2858  *	@which: State to be restored (one of IRQCHIP_STATE_*)
2859  *	@val: Value corresponding to @which
2860  *
2861  *	This call sets the internal irqchip state of an interrupt,
2862  *	depending on the value of @which.
2863  *
2864  *	This function should be called with migration disabled if the
2865  *	interrupt controller has per-cpu registers.
2866  */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2867 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2868 			  bool val)
2869 {
2870 	struct irq_desc *desc;
2871 	struct irq_data *data;
2872 	struct irq_chip *chip;
2873 	unsigned long flags;
2874 	int err = -EINVAL;
2875 
2876 	desc = irq_get_desc_buslock(irq, &flags, 0);
2877 	if (!desc)
2878 		return err;
2879 
2880 	data = irq_desc_get_irq_data(desc);
2881 
2882 	do {
2883 		chip = irq_data_get_irq_chip(data);
2884 		if (WARN_ON_ONCE(!chip)) {
2885 			err = -ENODEV;
2886 			goto out_unlock;
2887 		}
2888 		if (chip->irq_set_irqchip_state)
2889 			break;
2890 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2891 		data = data->parent_data;
2892 #else
2893 		data = NULL;
2894 #endif
2895 	} while (data);
2896 
2897 	if (data)
2898 		err = chip->irq_set_irqchip_state(data, which, val);
2899 
2900 out_unlock:
2901 	irq_put_desc_busunlock(desc, flags);
2902 	return err;
2903 }
2904 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2905 
2906 /**
2907  * irq_has_action - Check whether an interrupt is requested
2908  * @irq:	The linux irq number
2909  *
2910  * Returns: A snapshot of the current state
2911  */
irq_has_action(unsigned int irq)2912 bool irq_has_action(unsigned int irq)
2913 {
2914 	bool res;
2915 
2916 	rcu_read_lock();
2917 	res = irq_desc_has_action(irq_to_desc(irq));
2918 	rcu_read_unlock();
2919 	return res;
2920 }
2921 EXPORT_SYMBOL_GPL(irq_has_action);
2922 
2923 /**
2924  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2925  * @irq:	The linux irq number
2926  * @bitmask:	The bitmask to evaluate
2927  *
2928  * Returns: True if one of the bits in @bitmask is set
2929  */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2930 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2931 {
2932 	struct irq_desc *desc;
2933 	bool res = false;
2934 
2935 	rcu_read_lock();
2936 	desc = irq_to_desc(irq);
2937 	if (desc)
2938 		res = !!(desc->status_use_accessors & bitmask);
2939 	rcu_read_unlock();
2940 	return res;
2941 }
2942 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2943