1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 bool inprogress;
42
43 do {
44 unsigned long flags;
45
46 /*
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
49 */
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
52
53 /* Ok, that indicated we're done: double-check carefully. */
54 raw_spin_lock_irqsave(&desc->lock, flags);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57 /*
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
61 */
62 if (!inprogress && sync_chip) {
63 /*
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
66 */
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
69 }
70 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72 /* Oops, that failed? */
73 } while (inprogress);
74 }
75
76 /**
77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 * @irq: interrupt number to wait for
79 *
80 * This function waits for any pending hard IRQ handlers for this
81 * interrupt to complete before returning. If you use this
82 * function while holding a resource the IRQ handler may need you
83 * will deadlock. It does not take associated threaded handlers
84 * into account.
85 *
86 * Do not use this for shutdown scenarios where you must be sure
87 * that all parts (hardirq and threaded handler) have completed.
88 *
89 * Returns: false if a threaded handler is active.
90 *
91 * This function may be called - with care - from IRQ context.
92 *
93 * It does not check whether there is an interrupt in flight at the
94 * hardware level, but not serviced yet, as this might deadlock when
95 * called with interrupts disabled and the target CPU of the interrupt
96 * is the current CPU.
97 */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc, false);
104 return !atomic_read(&desc->threads_active);
105 }
106
107 return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
__synchronize_irq(struct irq_desc * desc)111 static void __synchronize_irq(struct irq_desc *desc)
112 {
113 __synchronize_hardirq(desc, true);
114 /*
115 * We made sure that no hardirq handler is running. Now verify that no
116 * threaded handlers are active.
117 */
118 wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119 }
120
121 /**
122 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123 * @irq: interrupt number to wait for
124 *
125 * This function waits for any pending IRQ handlers for this interrupt
126 * to complete before returning. If you use this function while
127 * holding a resource the IRQ handler may need you will deadlock.
128 *
129 * Can only be called from preemptible code as it might sleep when
130 * an interrupt thread is associated to @irq.
131 *
132 * It optionally makes sure (when the irq chip supports that method)
133 * that the interrupt is not pending in any CPU and waiting for
134 * service.
135 */
synchronize_irq(unsigned int irq)136 void synchronize_irq(unsigned int irq)
137 {
138 struct irq_desc *desc = irq_to_desc(irq);
139
140 if (desc)
141 __synchronize_irq(desc);
142 }
143 EXPORT_SYMBOL(synchronize_irq);
144
145 #ifdef CONFIG_SMP
146 cpumask_var_t irq_default_affinity;
147
__irq_can_set_affinity(struct irq_desc * desc)148 static bool __irq_can_set_affinity(struct irq_desc *desc)
149 {
150 if (!desc || !irqd_can_balance(&desc->irq_data) ||
151 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152 return false;
153 return true;
154 }
155
156 /**
157 * irq_can_set_affinity - Check if the affinity of a given irq can be set
158 * @irq: Interrupt to check
159 *
160 */
irq_can_set_affinity(unsigned int irq)161 int irq_can_set_affinity(unsigned int irq)
162 {
163 return __irq_can_set_affinity(irq_to_desc(irq));
164 }
165
166 /**
167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168 * @irq: Interrupt to check
169 *
170 * Like irq_can_set_affinity() above, but additionally checks for the
171 * AFFINITY_MANAGED flag.
172 */
irq_can_set_affinity_usr(unsigned int irq)173 bool irq_can_set_affinity_usr(unsigned int irq)
174 {
175 struct irq_desc *desc = irq_to_desc(irq);
176
177 return __irq_can_set_affinity(desc) &&
178 !irqd_affinity_is_managed(&desc->irq_data);
179 }
180
181 /**
182 * irq_set_thread_affinity - Notify irq threads to adjust affinity
183 * @desc: irq descriptor which has affinity changed
184 *
185 * We just set IRQTF_AFFINITY and delegate the affinity setting
186 * to the interrupt thread itself. We can not call
187 * set_cpus_allowed_ptr() here as we hold desc->lock and this
188 * code can be called from hard interrupt context.
189 */
irq_set_thread_affinity(struct irq_desc * desc)190 void irq_set_thread_affinity(struct irq_desc *desc)
191 {
192 struct irqaction *action;
193
194 for_each_action_of_desc(desc, action) {
195 if (action->thread)
196 set_bit(IRQTF_AFFINITY, &action->thread_flags);
197 if (action->secondary && action->secondary->thread)
198 set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
199 }
200 }
201
202 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)203 static void irq_validate_effective_affinity(struct irq_data *data)
204 {
205 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
206 struct irq_chip *chip = irq_data_get_irq_chip(data);
207
208 if (!cpumask_empty(m))
209 return;
210 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
211 chip->name, data->irq);
212 }
213 #else
irq_validate_effective_affinity(struct irq_data * data)214 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
215 #endif
216
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)217 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
218 bool force)
219 {
220 struct irq_desc *desc = irq_data_to_desc(data);
221 struct irq_chip *chip = irq_data_get_irq_chip(data);
222 const struct cpumask *prog_mask;
223 int ret;
224
225 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
226 static struct cpumask tmp_mask;
227
228 if (!chip || !chip->irq_set_affinity)
229 return -EINVAL;
230
231 raw_spin_lock(&tmp_mask_lock);
232 /*
233 * If this is a managed interrupt and housekeeping is enabled on
234 * it check whether the requested affinity mask intersects with
235 * a housekeeping CPU. If so, then remove the isolated CPUs from
236 * the mask and just keep the housekeeping CPU(s). This prevents
237 * the affinity setter from routing the interrupt to an isolated
238 * CPU to avoid that I/O submitted from a housekeeping CPU causes
239 * interrupts on an isolated one.
240 *
241 * If the masks do not intersect or include online CPU(s) then
242 * keep the requested mask. The isolated target CPUs are only
243 * receiving interrupts when the I/O operation was submitted
244 * directly from them.
245 *
246 * If all housekeeping CPUs in the affinity mask are offline, the
247 * interrupt will be migrated by the CPU hotplug code once a
248 * housekeeping CPU which belongs to the affinity mask comes
249 * online.
250 */
251 if (irqd_affinity_is_managed(data) &&
252 housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
253 const struct cpumask *hk_mask;
254
255 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
256
257 cpumask_and(&tmp_mask, mask, hk_mask);
258 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
259 prog_mask = mask;
260 else
261 prog_mask = &tmp_mask;
262 } else {
263 prog_mask = mask;
264 }
265
266 /*
267 * Make sure we only provide online CPUs to the irqchip,
268 * unless we are being asked to force the affinity (in which
269 * case we do as we are told).
270 */
271 cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
272 if (!force && !cpumask_empty(&tmp_mask))
273 ret = chip->irq_set_affinity(data, &tmp_mask, force);
274 else if (force)
275 ret = chip->irq_set_affinity(data, mask, force);
276 else
277 ret = -EINVAL;
278
279 raw_spin_unlock(&tmp_mask_lock);
280
281 switch (ret) {
282 case IRQ_SET_MASK_OK:
283 case IRQ_SET_MASK_OK_DONE:
284 cpumask_copy(desc->irq_common_data.affinity, mask);
285 fallthrough;
286 case IRQ_SET_MASK_OK_NOCOPY:
287 irq_validate_effective_affinity(data);
288 irq_set_thread_affinity(desc);
289 ret = 0;
290 }
291
292 return ret;
293 }
294 EXPORT_SYMBOL_GPL(irq_do_set_affinity);
295
296 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)297 static inline int irq_set_affinity_pending(struct irq_data *data,
298 const struct cpumask *dest)
299 {
300 struct irq_desc *desc = irq_data_to_desc(data);
301
302 irqd_set_move_pending(data);
303 irq_copy_pending(desc, dest);
304 return 0;
305 }
306 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)307 static inline int irq_set_affinity_pending(struct irq_data *data,
308 const struct cpumask *dest)
309 {
310 return -EBUSY;
311 }
312 #endif
313
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)314 static int irq_try_set_affinity(struct irq_data *data,
315 const struct cpumask *dest, bool force)
316 {
317 int ret = irq_do_set_affinity(data, dest, force);
318
319 /*
320 * In case that the underlying vector management is busy and the
321 * architecture supports the generic pending mechanism then utilize
322 * this to avoid returning an error to user space.
323 */
324 if (ret == -EBUSY && !force)
325 ret = irq_set_affinity_pending(data, dest);
326 return ret;
327 }
328
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask)329 static bool irq_set_affinity_deactivated(struct irq_data *data,
330 const struct cpumask *mask)
331 {
332 struct irq_desc *desc = irq_data_to_desc(data);
333
334 /*
335 * Handle irq chips which can handle affinity only in activated
336 * state correctly
337 *
338 * If the interrupt is not yet activated, just store the affinity
339 * mask and do not call the chip driver at all. On activation the
340 * driver has to make sure anyway that the interrupt is in a
341 * usable state so startup works.
342 */
343 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
344 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
345 return false;
346
347 cpumask_copy(desc->irq_common_data.affinity, mask);
348 irq_data_update_effective_affinity(data, mask);
349 irqd_set(data, IRQD_AFFINITY_SET);
350 return true;
351 }
352
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)353 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
354 bool force)
355 {
356 struct irq_chip *chip = irq_data_get_irq_chip(data);
357 struct irq_desc *desc = irq_data_to_desc(data);
358 int ret = 0;
359
360 if (!chip || !chip->irq_set_affinity)
361 return -EINVAL;
362
363 if (irq_set_affinity_deactivated(data, mask))
364 return 0;
365
366 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
367 ret = irq_try_set_affinity(data, mask, force);
368 } else {
369 irqd_set_move_pending(data);
370 irq_copy_pending(desc, mask);
371 }
372
373 if (desc->affinity_notify) {
374 kref_get(&desc->affinity_notify->kref);
375 if (!schedule_work(&desc->affinity_notify->work)) {
376 /* Work was already scheduled, drop our extra ref */
377 kref_put(&desc->affinity_notify->kref,
378 desc->affinity_notify->release);
379 }
380 }
381 irqd_set(data, IRQD_AFFINITY_SET);
382
383 return ret;
384 }
385
386 /**
387 * irq_update_affinity_desc - Update affinity management for an interrupt
388 * @irq: The interrupt number to update
389 * @affinity: Pointer to the affinity descriptor
390 *
391 * This interface can be used to configure the affinity management of
392 * interrupts which have been allocated already.
393 *
394 * There are certain limitations on when it may be used - attempts to use it
395 * for when the kernel is configured for generic IRQ reservation mode (in
396 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
397 * managed/non-managed interrupt accounting. In addition, attempts to use it on
398 * an interrupt which is already started or which has already been configured
399 * as managed will also fail, as these mean invalid init state or double init.
400 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)401 int irq_update_affinity_desc(unsigned int irq,
402 struct irq_affinity_desc *affinity)
403 {
404 struct irq_desc *desc;
405 unsigned long flags;
406 bool activated;
407 int ret = 0;
408
409 /*
410 * Supporting this with the reservation scheme used by x86 needs
411 * some more thought. Fail it for now.
412 */
413 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
414 return -EOPNOTSUPP;
415
416 desc = irq_get_desc_buslock(irq, &flags, 0);
417 if (!desc)
418 return -EINVAL;
419
420 /* Requires the interrupt to be shut down */
421 if (irqd_is_started(&desc->irq_data)) {
422 ret = -EBUSY;
423 goto out_unlock;
424 }
425
426 /* Interrupts which are already managed cannot be modified */
427 if (irqd_affinity_is_managed(&desc->irq_data)) {
428 ret = -EBUSY;
429 goto out_unlock;
430 }
431
432 /*
433 * Deactivate the interrupt. That's required to undo
434 * anything an earlier activation has established.
435 */
436 activated = irqd_is_activated(&desc->irq_data);
437 if (activated)
438 irq_domain_deactivate_irq(&desc->irq_data);
439
440 if (affinity->is_managed) {
441 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
442 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
443 }
444
445 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
446
447 /* Restore the activation state */
448 if (activated)
449 irq_domain_activate_irq(&desc->irq_data, false);
450
451 out_unlock:
452 irq_put_desc_busunlock(desc, flags);
453 return ret;
454 }
455
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)456 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
457 bool force)
458 {
459 struct irq_desc *desc = irq_to_desc(irq);
460 unsigned long flags;
461 int ret;
462
463 if (!desc)
464 return -EINVAL;
465
466 raw_spin_lock_irqsave(&desc->lock, flags);
467 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
468 raw_spin_unlock_irqrestore(&desc->lock, flags);
469 return ret;
470 }
471
472 /**
473 * irq_set_affinity - Set the irq affinity of a given irq
474 * @irq: Interrupt to set affinity
475 * @cpumask: cpumask
476 *
477 * Fails if cpumask does not contain an online CPU
478 */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)479 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
480 {
481 return __irq_set_affinity(irq, cpumask, false);
482 }
483 EXPORT_SYMBOL_GPL(irq_set_affinity);
484
485 /**
486 * irq_force_affinity - Force the irq affinity of a given irq
487 * @irq: Interrupt to set affinity
488 * @cpumask: cpumask
489 *
490 * Same as irq_set_affinity, but without checking the mask against
491 * online cpus.
492 *
493 * Solely for low level cpu hotplug code, where we need to make per
494 * cpu interrupts affine before the cpu becomes online.
495 */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)496 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
497 {
498 return __irq_set_affinity(irq, cpumask, true);
499 }
500 EXPORT_SYMBOL_GPL(irq_force_affinity);
501
__irq_apply_affinity_hint(unsigned int irq,const struct cpumask * m,bool setaffinity)502 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
503 bool setaffinity)
504 {
505 unsigned long flags;
506 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
507
508 if (!desc)
509 return -EINVAL;
510 desc->affinity_hint = m;
511 irq_put_desc_unlock(desc, flags);
512 if (m && setaffinity)
513 __irq_set_affinity(irq, m, false);
514 return 0;
515 }
516 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
517
irq_affinity_notify(struct work_struct * work)518 static void irq_affinity_notify(struct work_struct *work)
519 {
520 struct irq_affinity_notify *notify =
521 container_of(work, struct irq_affinity_notify, work);
522 struct irq_desc *desc = irq_to_desc(notify->irq);
523 cpumask_var_t cpumask;
524 unsigned long flags;
525
526 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
527 goto out;
528
529 raw_spin_lock_irqsave(&desc->lock, flags);
530 if (irq_move_pending(&desc->irq_data))
531 irq_get_pending(cpumask, desc);
532 else
533 cpumask_copy(cpumask, desc->irq_common_data.affinity);
534 raw_spin_unlock_irqrestore(&desc->lock, flags);
535
536 notify->notify(notify, cpumask);
537
538 free_cpumask_var(cpumask);
539 out:
540 kref_put(¬ify->kref, notify->release);
541 }
542
543 /**
544 * irq_set_affinity_notifier - control notification of IRQ affinity changes
545 * @irq: Interrupt for which to enable/disable notification
546 * @notify: Context for notification, or %NULL to disable
547 * notification. Function pointers must be initialised;
548 * the other fields will be initialised by this function.
549 *
550 * Must be called in process context. Notification may only be enabled
551 * after the IRQ is allocated and must be disabled before the IRQ is
552 * freed using free_irq().
553 */
554 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)555 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
556 {
557 struct irq_desc *desc = irq_to_desc(irq);
558 struct irq_affinity_notify *old_notify;
559 unsigned long flags;
560
561 /* The release function is promised process context */
562 might_sleep();
563
564 if (!desc || desc->istate & IRQS_NMI)
565 return -EINVAL;
566
567 /* Complete initialisation of *notify */
568 if (notify) {
569 notify->irq = irq;
570 kref_init(¬ify->kref);
571 INIT_WORK(¬ify->work, irq_affinity_notify);
572 }
573
574 raw_spin_lock_irqsave(&desc->lock, flags);
575 old_notify = desc->affinity_notify;
576 desc->affinity_notify = notify;
577 raw_spin_unlock_irqrestore(&desc->lock, flags);
578
579 if (old_notify) {
580 if (cancel_work_sync(&old_notify->work)) {
581 /* Pending work had a ref, put that one too */
582 kref_put(&old_notify->kref, old_notify->release);
583 }
584 kref_put(&old_notify->kref, old_notify->release);
585 }
586
587 return 0;
588 }
589 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
590
591 #ifndef CONFIG_AUTO_IRQ_AFFINITY
592 /*
593 * Generic version of the affinity autoselector.
594 */
irq_setup_affinity(struct irq_desc * desc)595 int irq_setup_affinity(struct irq_desc *desc)
596 {
597 struct cpumask *set = irq_default_affinity;
598 int ret, node = irq_desc_get_node(desc);
599 static DEFINE_RAW_SPINLOCK(mask_lock);
600 static struct cpumask mask;
601
602 /* Excludes PER_CPU and NO_BALANCE interrupts */
603 if (!__irq_can_set_affinity(desc))
604 return 0;
605
606 raw_spin_lock(&mask_lock);
607 /*
608 * Preserve the managed affinity setting and a userspace affinity
609 * setup, but make sure that one of the targets is online.
610 */
611 if (irqd_affinity_is_managed(&desc->irq_data) ||
612 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
613 if (cpumask_intersects(desc->irq_common_data.affinity,
614 cpu_online_mask))
615 set = desc->irq_common_data.affinity;
616 else
617 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
618 }
619
620 cpumask_and(&mask, cpu_online_mask, set);
621 if (cpumask_empty(&mask))
622 cpumask_copy(&mask, cpu_online_mask);
623
624 if (node != NUMA_NO_NODE) {
625 const struct cpumask *nodemask = cpumask_of_node(node);
626
627 /* make sure at least one of the cpus in nodemask is online */
628 if (cpumask_intersects(&mask, nodemask))
629 cpumask_and(&mask, &mask, nodemask);
630 }
631 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
632 raw_spin_unlock(&mask_lock);
633 return ret;
634 }
635 #else
636 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)637 int irq_setup_affinity(struct irq_desc *desc)
638 {
639 return irq_select_affinity(irq_desc_get_irq(desc));
640 }
641 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
642 #endif /* CONFIG_SMP */
643
644
645 /**
646 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
647 * @irq: interrupt number to set affinity
648 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
649 * specific data for percpu_devid interrupts
650 *
651 * This function uses the vCPU specific data to set the vCPU
652 * affinity for an irq. The vCPU specific data is passed from
653 * outside, such as KVM. One example code path is as below:
654 * KVM -> IOMMU -> irq_set_vcpu_affinity().
655 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)656 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
657 {
658 unsigned long flags;
659 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
660 struct irq_data *data;
661 struct irq_chip *chip;
662 int ret = -ENOSYS;
663
664 if (!desc)
665 return -EINVAL;
666
667 data = irq_desc_get_irq_data(desc);
668 do {
669 chip = irq_data_get_irq_chip(data);
670 if (chip && chip->irq_set_vcpu_affinity)
671 break;
672 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
673 data = data->parent_data;
674 #else
675 data = NULL;
676 #endif
677 } while (data);
678
679 if (data)
680 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
681 irq_put_desc_unlock(desc, flags);
682
683 return ret;
684 }
685 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
686
__disable_irq(struct irq_desc * desc)687 void __disable_irq(struct irq_desc *desc)
688 {
689 if (!desc->depth++)
690 irq_disable(desc);
691 }
692
__disable_irq_nosync(unsigned int irq)693 static int __disable_irq_nosync(unsigned int irq)
694 {
695 unsigned long flags;
696 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
697
698 if (!desc)
699 return -EINVAL;
700 __disable_irq(desc);
701 irq_put_desc_busunlock(desc, flags);
702 return 0;
703 }
704
705 /**
706 * disable_irq_nosync - disable an irq without waiting
707 * @irq: Interrupt to disable
708 *
709 * Disable the selected interrupt line. Disables and Enables are
710 * nested.
711 * Unlike disable_irq(), this function does not ensure existing
712 * instances of the IRQ handler have completed before returning.
713 *
714 * This function may be called from IRQ context.
715 */
disable_irq_nosync(unsigned int irq)716 void disable_irq_nosync(unsigned int irq)
717 {
718 __disable_irq_nosync(irq);
719 }
720 EXPORT_SYMBOL(disable_irq_nosync);
721
722 /**
723 * disable_irq - disable an irq and wait for completion
724 * @irq: Interrupt to disable
725 *
726 * Disable the selected interrupt line. Enables and Disables are
727 * nested.
728 * This function waits for any pending IRQ handlers for this interrupt
729 * to complete before returning. If you use this function while
730 * holding a resource the IRQ handler may need you will deadlock.
731 *
732 * Can only be called from preemptible code as it might sleep when
733 * an interrupt thread is associated to @irq.
734 *
735 */
disable_irq(unsigned int irq)736 void disable_irq(unsigned int irq)
737 {
738 might_sleep();
739 if (!__disable_irq_nosync(irq))
740 synchronize_irq(irq);
741 }
742 EXPORT_SYMBOL(disable_irq);
743
744 /**
745 * disable_hardirq - disables an irq and waits for hardirq completion
746 * @irq: Interrupt to disable
747 *
748 * Disable the selected interrupt line. Enables and Disables are
749 * nested.
750 * This function waits for any pending hard IRQ handlers for this
751 * interrupt to complete before returning. If you use this function while
752 * holding a resource the hard IRQ handler may need you will deadlock.
753 *
754 * When used to optimistically disable an interrupt from atomic context
755 * the return value must be checked.
756 *
757 * Returns: false if a threaded handler is active.
758 *
759 * This function may be called - with care - from IRQ context.
760 */
disable_hardirq(unsigned int irq)761 bool disable_hardirq(unsigned int irq)
762 {
763 if (!__disable_irq_nosync(irq))
764 return synchronize_hardirq(irq);
765
766 return false;
767 }
768 EXPORT_SYMBOL_GPL(disable_hardirq);
769
770 /**
771 * disable_nmi_nosync - disable an nmi without waiting
772 * @irq: Interrupt to disable
773 *
774 * Disable the selected interrupt line. Disables and enables are
775 * nested.
776 * The interrupt to disable must have been requested through request_nmi.
777 * Unlike disable_nmi(), this function does not ensure existing
778 * instances of the IRQ handler have completed before returning.
779 */
disable_nmi_nosync(unsigned int irq)780 void disable_nmi_nosync(unsigned int irq)
781 {
782 disable_irq_nosync(irq);
783 }
784
__enable_irq(struct irq_desc * desc)785 void __enable_irq(struct irq_desc *desc)
786 {
787 switch (desc->depth) {
788 case 0:
789 err_out:
790 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
791 irq_desc_get_irq(desc));
792 break;
793 case 1: {
794 if (desc->istate & IRQS_SUSPENDED)
795 goto err_out;
796 /* Prevent probing on this irq: */
797 irq_settings_set_noprobe(desc);
798 /*
799 * Call irq_startup() not irq_enable() here because the
800 * interrupt might be marked NOAUTOEN so irq_startup()
801 * needs to be invoked when it gets enabled the first time.
802 * This is also required when __enable_irq() is invoked for
803 * a managed and shutdown interrupt from the S3 resume
804 * path.
805 *
806 * If it was already started up, then irq_startup() will
807 * invoke irq_enable() under the hood.
808 */
809 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
810 break;
811 }
812 default:
813 desc->depth--;
814 }
815 }
816
817 /**
818 * enable_irq - enable handling of an irq
819 * @irq: Interrupt to enable
820 *
821 * Undoes the effect of one call to disable_irq(). If this
822 * matches the last disable, processing of interrupts on this
823 * IRQ line is re-enabled.
824 *
825 * This function may be called from IRQ context only when
826 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
827 */
enable_irq(unsigned int irq)828 void enable_irq(unsigned int irq)
829 {
830 unsigned long flags;
831 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
832
833 if (!desc)
834 return;
835 if (WARN(!desc->irq_data.chip,
836 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
837 goto out;
838
839 __enable_irq(desc);
840 out:
841 irq_put_desc_busunlock(desc, flags);
842 }
843 EXPORT_SYMBOL(enable_irq);
844
845 /**
846 * enable_nmi - enable handling of an nmi
847 * @irq: Interrupt to enable
848 *
849 * The interrupt to enable must have been requested through request_nmi.
850 * Undoes the effect of one call to disable_nmi(). If this
851 * matches the last disable, processing of interrupts on this
852 * IRQ line is re-enabled.
853 */
enable_nmi(unsigned int irq)854 void enable_nmi(unsigned int irq)
855 {
856 enable_irq(irq);
857 }
858
set_irq_wake_real(unsigned int irq,unsigned int on)859 static int set_irq_wake_real(unsigned int irq, unsigned int on)
860 {
861 struct irq_desc *desc = irq_to_desc(irq);
862 int ret = -ENXIO;
863
864 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
865 return 0;
866
867 if (desc->irq_data.chip->irq_set_wake)
868 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
869
870 return ret;
871 }
872
873 /**
874 * irq_set_irq_wake - control irq power management wakeup
875 * @irq: interrupt to control
876 * @on: enable/disable power management wakeup
877 *
878 * Enable/disable power management wakeup mode, which is
879 * disabled by default. Enables and disables must match,
880 * just as they match for non-wakeup mode support.
881 *
882 * Wakeup mode lets this IRQ wake the system from sleep
883 * states like "suspend to RAM".
884 *
885 * Note: irq enable/disable state is completely orthogonal
886 * to the enable/disable state of irq wake. An irq can be
887 * disabled with disable_irq() and still wake the system as
888 * long as the irq has wake enabled. If this does not hold,
889 * then the underlying irq chip and the related driver need
890 * to be investigated.
891 */
irq_set_irq_wake(unsigned int irq,unsigned int on)892 int irq_set_irq_wake(unsigned int irq, unsigned int on)
893 {
894 unsigned long flags;
895 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
896 int ret = 0;
897
898 if (!desc)
899 return -EINVAL;
900
901 /* Don't use NMIs as wake up interrupts please */
902 if (desc->istate & IRQS_NMI) {
903 ret = -EINVAL;
904 goto out_unlock;
905 }
906
907 /* wakeup-capable irqs can be shared between drivers that
908 * don't need to have the same sleep mode behaviors.
909 */
910 if (on) {
911 if (desc->wake_depth++ == 0) {
912 ret = set_irq_wake_real(irq, on);
913 if (ret)
914 desc->wake_depth = 0;
915 else
916 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
917 }
918 } else {
919 if (desc->wake_depth == 0) {
920 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
921 } else if (--desc->wake_depth == 0) {
922 ret = set_irq_wake_real(irq, on);
923 if (ret)
924 desc->wake_depth = 1;
925 else
926 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
927 }
928 }
929
930 out_unlock:
931 irq_put_desc_busunlock(desc, flags);
932 return ret;
933 }
934 EXPORT_SYMBOL(irq_set_irq_wake);
935
936 /*
937 * Internal function that tells the architecture code whether a
938 * particular irq has been exclusively allocated or is available
939 * for driver use.
940 */
can_request_irq(unsigned int irq,unsigned long irqflags)941 int can_request_irq(unsigned int irq, unsigned long irqflags)
942 {
943 unsigned long flags;
944 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
945 int canrequest = 0;
946
947 if (!desc)
948 return 0;
949
950 if (irq_settings_can_request(desc)) {
951 if (!desc->action ||
952 irqflags & desc->action->flags & IRQF_SHARED)
953 canrequest = 1;
954 }
955 irq_put_desc_unlock(desc, flags);
956 return canrequest;
957 }
958
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)959 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
960 {
961 struct irq_chip *chip = desc->irq_data.chip;
962 int ret, unmask = 0;
963
964 if (!chip || !chip->irq_set_type) {
965 /*
966 * IRQF_TRIGGER_* but the PIC does not support multiple
967 * flow-types?
968 */
969 pr_debug("No set_type function for IRQ %d (%s)\n",
970 irq_desc_get_irq(desc),
971 chip ? (chip->name ? : "unknown") : "unknown");
972 return 0;
973 }
974
975 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
976 if (!irqd_irq_masked(&desc->irq_data))
977 mask_irq(desc);
978 if (!irqd_irq_disabled(&desc->irq_data))
979 unmask = 1;
980 }
981
982 /* Mask all flags except trigger mode */
983 flags &= IRQ_TYPE_SENSE_MASK;
984 ret = chip->irq_set_type(&desc->irq_data, flags);
985
986 switch (ret) {
987 case IRQ_SET_MASK_OK:
988 case IRQ_SET_MASK_OK_DONE:
989 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
990 irqd_set(&desc->irq_data, flags);
991 fallthrough;
992
993 case IRQ_SET_MASK_OK_NOCOPY:
994 flags = irqd_get_trigger_type(&desc->irq_data);
995 irq_settings_set_trigger_mask(desc, flags);
996 irqd_clear(&desc->irq_data, IRQD_LEVEL);
997 irq_settings_clr_level(desc);
998 if (flags & IRQ_TYPE_LEVEL_MASK) {
999 irq_settings_set_level(desc);
1000 irqd_set(&desc->irq_data, IRQD_LEVEL);
1001 }
1002
1003 ret = 0;
1004 break;
1005 default:
1006 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1007 flags, irq_desc_get_irq(desc), chip->irq_set_type);
1008 }
1009 if (unmask)
1010 unmask_irq(desc);
1011 return ret;
1012 }
1013
1014 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)1015 int irq_set_parent(int irq, int parent_irq)
1016 {
1017 unsigned long flags;
1018 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1019
1020 if (!desc)
1021 return -EINVAL;
1022
1023 desc->parent_irq = parent_irq;
1024
1025 irq_put_desc_unlock(desc, flags);
1026 return 0;
1027 }
1028 EXPORT_SYMBOL_GPL(irq_set_parent);
1029 #endif
1030
1031 /*
1032 * Default primary interrupt handler for threaded interrupts. Is
1033 * assigned as primary handler when request_threaded_irq is called
1034 * with handler == NULL. Useful for oneshot interrupts.
1035 */
irq_default_primary_handler(int irq,void * dev_id)1036 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1037 {
1038 return IRQ_WAKE_THREAD;
1039 }
1040
1041 /*
1042 * Primary handler for nested threaded interrupts. Should never be
1043 * called.
1044 */
irq_nested_primary_handler(int irq,void * dev_id)1045 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1046 {
1047 WARN(1, "Primary handler called for nested irq %d\n", irq);
1048 return IRQ_NONE;
1049 }
1050
irq_forced_secondary_handler(int irq,void * dev_id)1051 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1052 {
1053 WARN(1, "Secondary action handler called for irq %d\n", irq);
1054 return IRQ_NONE;
1055 }
1056
irq_wait_for_interrupt(struct irqaction * action)1057 static int irq_wait_for_interrupt(struct irqaction *action)
1058 {
1059 for (;;) {
1060 set_current_state(TASK_INTERRUPTIBLE);
1061
1062 if (kthread_should_stop()) {
1063 /* may need to run one last time */
1064 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1065 &action->thread_flags)) {
1066 __set_current_state(TASK_RUNNING);
1067 return 0;
1068 }
1069 __set_current_state(TASK_RUNNING);
1070 return -1;
1071 }
1072
1073 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1074 &action->thread_flags)) {
1075 __set_current_state(TASK_RUNNING);
1076 return 0;
1077 }
1078 schedule();
1079 }
1080 }
1081
1082 /*
1083 * Oneshot interrupts keep the irq line masked until the threaded
1084 * handler finished. unmask if the interrupt has not been disabled and
1085 * is marked MASKED.
1086 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1087 static void irq_finalize_oneshot(struct irq_desc *desc,
1088 struct irqaction *action)
1089 {
1090 if (!(desc->istate & IRQS_ONESHOT) ||
1091 action->handler == irq_forced_secondary_handler)
1092 return;
1093 again:
1094 chip_bus_lock(desc);
1095 raw_spin_lock_irq(&desc->lock);
1096
1097 /*
1098 * Implausible though it may be we need to protect us against
1099 * the following scenario:
1100 *
1101 * The thread is faster done than the hard interrupt handler
1102 * on the other CPU. If we unmask the irq line then the
1103 * interrupt can come in again and masks the line, leaves due
1104 * to IRQS_INPROGRESS and the irq line is masked forever.
1105 *
1106 * This also serializes the state of shared oneshot handlers
1107 * versus "desc->threads_oneshot |= action->thread_mask;" in
1108 * irq_wake_thread(). See the comment there which explains the
1109 * serialization.
1110 */
1111 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1112 raw_spin_unlock_irq(&desc->lock);
1113 chip_bus_sync_unlock(desc);
1114 cpu_relax();
1115 goto again;
1116 }
1117
1118 /*
1119 * Now check again, whether the thread should run. Otherwise
1120 * we would clear the threads_oneshot bit of this thread which
1121 * was just set.
1122 */
1123 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1124 goto out_unlock;
1125
1126 desc->threads_oneshot &= ~action->thread_mask;
1127
1128 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1129 irqd_irq_masked(&desc->irq_data))
1130 unmask_threaded_irq(desc);
1131
1132 out_unlock:
1133 raw_spin_unlock_irq(&desc->lock);
1134 chip_bus_sync_unlock(desc);
1135 }
1136
1137 #ifdef CONFIG_SMP
1138 /*
1139 * Check whether we need to change the affinity of the interrupt thread.
1140 */
1141 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1142 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1143 {
1144 cpumask_var_t mask;
1145 bool valid = true;
1146
1147 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1148 return;
1149
1150 /*
1151 * In case we are out of memory we set IRQTF_AFFINITY again and
1152 * try again next time
1153 */
1154 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1155 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1156 return;
1157 }
1158
1159 raw_spin_lock_irq(&desc->lock);
1160 /*
1161 * This code is triggered unconditionally. Check the affinity
1162 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1163 */
1164 if (cpumask_available(desc->irq_common_data.affinity)) {
1165 const struct cpumask *m;
1166
1167 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1168 cpumask_copy(mask, m);
1169 } else {
1170 valid = false;
1171 }
1172 raw_spin_unlock_irq(&desc->lock);
1173
1174 if (valid)
1175 set_cpus_allowed_ptr(current, mask);
1176 free_cpumask_var(mask);
1177 }
1178 #else
1179 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1180 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1181 #endif
1182
1183 /*
1184 * Interrupts which are not explicitly requested as threaded
1185 * interrupts rely on the implicit bh/preempt disable of the hard irq
1186 * context. So we need to disable bh here to avoid deadlocks and other
1187 * side effects.
1188 */
1189 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1190 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1191 {
1192 irqreturn_t ret;
1193
1194 local_bh_disable();
1195 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1196 local_irq_disable();
1197 ret = action->thread_fn(action->irq, action->dev_id);
1198 if (ret == IRQ_HANDLED)
1199 atomic_inc(&desc->threads_handled);
1200
1201 irq_finalize_oneshot(desc, action);
1202 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1203 local_irq_enable();
1204 local_bh_enable();
1205 return ret;
1206 }
1207
1208 /*
1209 * Interrupts explicitly requested as threaded interrupts want to be
1210 * preemptible - many of them need to sleep and wait for slow busses to
1211 * complete.
1212 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1213 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1214 struct irqaction *action)
1215 {
1216 irqreturn_t ret;
1217
1218 ret = action->thread_fn(action->irq, action->dev_id);
1219 if (ret == IRQ_HANDLED)
1220 atomic_inc(&desc->threads_handled);
1221
1222 irq_finalize_oneshot(desc, action);
1223 return ret;
1224 }
1225
wake_threads_waitq(struct irq_desc * desc)1226 void wake_threads_waitq(struct irq_desc *desc)
1227 {
1228 if (atomic_dec_and_test(&desc->threads_active))
1229 wake_up(&desc->wait_for_threads);
1230 }
1231
irq_thread_dtor(struct callback_head * unused)1232 static void irq_thread_dtor(struct callback_head *unused)
1233 {
1234 struct task_struct *tsk = current;
1235 struct irq_desc *desc;
1236 struct irqaction *action;
1237
1238 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1239 return;
1240
1241 action = kthread_data(tsk);
1242
1243 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1244 tsk->comm, tsk->pid, action->irq);
1245
1246
1247 desc = irq_to_desc(action->irq);
1248 /*
1249 * If IRQTF_RUNTHREAD is set, we need to decrement
1250 * desc->threads_active and wake possible waiters.
1251 */
1252 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1253 wake_threads_waitq(desc);
1254
1255 /* Prevent a stale desc->threads_oneshot */
1256 irq_finalize_oneshot(desc, action);
1257 }
1258
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1259 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1260 {
1261 struct irqaction *secondary = action->secondary;
1262
1263 if (WARN_ON_ONCE(!secondary))
1264 return;
1265
1266 raw_spin_lock_irq(&desc->lock);
1267 __irq_wake_thread(desc, secondary);
1268 raw_spin_unlock_irq(&desc->lock);
1269 }
1270
1271 /*
1272 * Internal function to notify that a interrupt thread is ready.
1273 */
irq_thread_set_ready(struct irq_desc * desc,struct irqaction * action)1274 static void irq_thread_set_ready(struct irq_desc *desc,
1275 struct irqaction *action)
1276 {
1277 set_bit(IRQTF_READY, &action->thread_flags);
1278 wake_up(&desc->wait_for_threads);
1279 }
1280
1281 /*
1282 * Internal function to wake up a interrupt thread and wait until it is
1283 * ready.
1284 */
wake_up_and_wait_for_irq_thread_ready(struct irq_desc * desc,struct irqaction * action)1285 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1286 struct irqaction *action)
1287 {
1288 if (!action || !action->thread)
1289 return;
1290
1291 wake_up_process(action->thread);
1292 wait_event(desc->wait_for_threads,
1293 test_bit(IRQTF_READY, &action->thread_flags));
1294 }
1295
1296 /*
1297 * Interrupt handler thread
1298 */
irq_thread(void * data)1299 static int irq_thread(void *data)
1300 {
1301 struct callback_head on_exit_work;
1302 struct irqaction *action = data;
1303 struct irq_desc *desc = irq_to_desc(action->irq);
1304 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1305 struct irqaction *action);
1306
1307 irq_thread_set_ready(desc, action);
1308
1309 sched_set_fifo(current);
1310
1311 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1312 &action->thread_flags))
1313 handler_fn = irq_forced_thread_fn;
1314 else
1315 handler_fn = irq_thread_fn;
1316
1317 init_task_work(&on_exit_work, irq_thread_dtor);
1318 task_work_add(current, &on_exit_work, TWA_NONE);
1319
1320 irq_thread_check_affinity(desc, action);
1321
1322 while (!irq_wait_for_interrupt(action)) {
1323 irqreturn_t action_ret;
1324
1325 irq_thread_check_affinity(desc, action);
1326
1327 action_ret = handler_fn(desc, action);
1328 if (action_ret == IRQ_WAKE_THREAD)
1329 irq_wake_secondary(desc, action);
1330
1331 wake_threads_waitq(desc);
1332 }
1333
1334 /*
1335 * This is the regular exit path. __free_irq() is stopping the
1336 * thread via kthread_stop() after calling
1337 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1338 * oneshot mask bit can be set.
1339 */
1340 task_work_cancel_func(current, irq_thread_dtor);
1341 return 0;
1342 }
1343
1344 /**
1345 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1346 * @irq: Interrupt line
1347 * @dev_id: Device identity for which the thread should be woken
1348 *
1349 */
irq_wake_thread(unsigned int irq,void * dev_id)1350 void irq_wake_thread(unsigned int irq, void *dev_id)
1351 {
1352 struct irq_desc *desc = irq_to_desc(irq);
1353 struct irqaction *action;
1354 unsigned long flags;
1355
1356 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1357 return;
1358
1359 raw_spin_lock_irqsave(&desc->lock, flags);
1360 for_each_action_of_desc(desc, action) {
1361 if (action->dev_id == dev_id) {
1362 if (action->thread)
1363 __irq_wake_thread(desc, action);
1364 break;
1365 }
1366 }
1367 raw_spin_unlock_irqrestore(&desc->lock, flags);
1368 }
1369 EXPORT_SYMBOL_GPL(irq_wake_thread);
1370
irq_setup_forced_threading(struct irqaction * new)1371 static int irq_setup_forced_threading(struct irqaction *new)
1372 {
1373 if (!force_irqthreads())
1374 return 0;
1375 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1376 return 0;
1377
1378 /*
1379 * No further action required for interrupts which are requested as
1380 * threaded interrupts already
1381 */
1382 if (new->handler == irq_default_primary_handler)
1383 return 0;
1384
1385 new->flags |= IRQF_ONESHOT;
1386
1387 /*
1388 * Handle the case where we have a real primary handler and a
1389 * thread handler. We force thread them as well by creating a
1390 * secondary action.
1391 */
1392 if (new->handler && new->thread_fn) {
1393 /* Allocate the secondary action */
1394 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1395 if (!new->secondary)
1396 return -ENOMEM;
1397 new->secondary->handler = irq_forced_secondary_handler;
1398 new->secondary->thread_fn = new->thread_fn;
1399 new->secondary->dev_id = new->dev_id;
1400 new->secondary->irq = new->irq;
1401 new->secondary->name = new->name;
1402 }
1403 /* Deal with the primary handler */
1404 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1405 new->thread_fn = new->handler;
1406 new->handler = irq_default_primary_handler;
1407 return 0;
1408 }
1409
irq_request_resources(struct irq_desc * desc)1410 static int irq_request_resources(struct irq_desc *desc)
1411 {
1412 struct irq_data *d = &desc->irq_data;
1413 struct irq_chip *c = d->chip;
1414
1415 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1416 }
1417
irq_release_resources(struct irq_desc * desc)1418 static void irq_release_resources(struct irq_desc *desc)
1419 {
1420 struct irq_data *d = &desc->irq_data;
1421 struct irq_chip *c = d->chip;
1422
1423 if (c->irq_release_resources)
1424 c->irq_release_resources(d);
1425 }
1426
irq_supports_nmi(struct irq_desc * desc)1427 static bool irq_supports_nmi(struct irq_desc *desc)
1428 {
1429 struct irq_data *d = irq_desc_get_irq_data(desc);
1430
1431 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1432 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1433 if (d->parent_data)
1434 return false;
1435 #endif
1436 /* Don't support NMIs for chips behind a slow bus */
1437 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1438 return false;
1439
1440 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1441 }
1442
irq_nmi_setup(struct irq_desc * desc)1443 static int irq_nmi_setup(struct irq_desc *desc)
1444 {
1445 struct irq_data *d = irq_desc_get_irq_data(desc);
1446 struct irq_chip *c = d->chip;
1447
1448 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1449 }
1450
irq_nmi_teardown(struct irq_desc * desc)1451 static void irq_nmi_teardown(struct irq_desc *desc)
1452 {
1453 struct irq_data *d = irq_desc_get_irq_data(desc);
1454 struct irq_chip *c = d->chip;
1455
1456 if (c->irq_nmi_teardown)
1457 c->irq_nmi_teardown(d);
1458 }
1459
1460 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1461 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1462 {
1463 struct task_struct *t;
1464
1465 if (!secondary) {
1466 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1467 new->name);
1468 } else {
1469 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1470 new->name);
1471 }
1472
1473 if (IS_ERR(t))
1474 return PTR_ERR(t);
1475
1476 /*
1477 * We keep the reference to the task struct even if
1478 * the thread dies to avoid that the interrupt code
1479 * references an already freed task_struct.
1480 */
1481 new->thread = get_task_struct(t);
1482 /*
1483 * Tell the thread to set its affinity. This is
1484 * important for shared interrupt handlers as we do
1485 * not invoke setup_affinity() for the secondary
1486 * handlers as everything is already set up. Even for
1487 * interrupts marked with IRQF_NO_BALANCE this is
1488 * correct as we want the thread to move to the cpu(s)
1489 * on which the requesting code placed the interrupt.
1490 */
1491 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1492 return 0;
1493 }
1494
1495 /*
1496 * Internal function to register an irqaction - typically used to
1497 * allocate special interrupts that are part of the architecture.
1498 *
1499 * Locking rules:
1500 *
1501 * desc->request_mutex Provides serialization against a concurrent free_irq()
1502 * chip_bus_lock Provides serialization for slow bus operations
1503 * desc->lock Provides serialization against hard interrupts
1504 *
1505 * chip_bus_lock and desc->lock are sufficient for all other management and
1506 * interrupt related functions. desc->request_mutex solely serializes
1507 * request/free_irq().
1508 */
1509 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1510 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1511 {
1512 struct irqaction *old, **old_ptr;
1513 unsigned long flags, thread_mask = 0;
1514 int ret, nested, shared = 0;
1515
1516 if (!desc)
1517 return -EINVAL;
1518
1519 if (desc->irq_data.chip == &no_irq_chip)
1520 return -ENOSYS;
1521 if (!try_module_get(desc->owner))
1522 return -ENODEV;
1523
1524 new->irq = irq;
1525
1526 /*
1527 * If the trigger type is not specified by the caller,
1528 * then use the default for this interrupt.
1529 */
1530 if (!(new->flags & IRQF_TRIGGER_MASK))
1531 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1532
1533 /*
1534 * Check whether the interrupt nests into another interrupt
1535 * thread.
1536 */
1537 nested = irq_settings_is_nested_thread(desc);
1538 if (nested) {
1539 if (!new->thread_fn) {
1540 ret = -EINVAL;
1541 goto out_mput;
1542 }
1543 /*
1544 * Replace the primary handler which was provided from
1545 * the driver for non nested interrupt handling by the
1546 * dummy function which warns when called.
1547 */
1548 new->handler = irq_nested_primary_handler;
1549 } else {
1550 if (irq_settings_can_thread(desc)) {
1551 ret = irq_setup_forced_threading(new);
1552 if (ret)
1553 goto out_mput;
1554 }
1555 }
1556
1557 /*
1558 * Create a handler thread when a thread function is supplied
1559 * and the interrupt does not nest into another interrupt
1560 * thread.
1561 */
1562 if (new->thread_fn && !nested) {
1563 ret = setup_irq_thread(new, irq, false);
1564 if (ret)
1565 goto out_mput;
1566 if (new->secondary) {
1567 ret = setup_irq_thread(new->secondary, irq, true);
1568 if (ret)
1569 goto out_thread;
1570 }
1571 }
1572
1573 /*
1574 * Drivers are often written to work w/o knowledge about the
1575 * underlying irq chip implementation, so a request for a
1576 * threaded irq without a primary hard irq context handler
1577 * requires the ONESHOT flag to be set. Some irq chips like
1578 * MSI based interrupts are per se one shot safe. Check the
1579 * chip flags, so we can avoid the unmask dance at the end of
1580 * the threaded handler for those.
1581 */
1582 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1583 new->flags &= ~IRQF_ONESHOT;
1584
1585 /*
1586 * Protects against a concurrent __free_irq() call which might wait
1587 * for synchronize_hardirq() to complete without holding the optional
1588 * chip bus lock and desc->lock. Also protects against handing out
1589 * a recycled oneshot thread_mask bit while it's still in use by
1590 * its previous owner.
1591 */
1592 mutex_lock(&desc->request_mutex);
1593
1594 /*
1595 * Acquire bus lock as the irq_request_resources() callback below
1596 * might rely on the serialization or the magic power management
1597 * functions which are abusing the irq_bus_lock() callback,
1598 */
1599 chip_bus_lock(desc);
1600
1601 /* First installed action requests resources. */
1602 if (!desc->action) {
1603 ret = irq_request_resources(desc);
1604 if (ret) {
1605 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1606 new->name, irq, desc->irq_data.chip->name);
1607 goto out_bus_unlock;
1608 }
1609 }
1610
1611 /*
1612 * The following block of code has to be executed atomically
1613 * protected against a concurrent interrupt and any of the other
1614 * management calls which are not serialized via
1615 * desc->request_mutex or the optional bus lock.
1616 */
1617 raw_spin_lock_irqsave(&desc->lock, flags);
1618 old_ptr = &desc->action;
1619 old = *old_ptr;
1620 if (old) {
1621 /*
1622 * Can't share interrupts unless both agree to and are
1623 * the same type (level, edge, polarity). So both flag
1624 * fields must have IRQF_SHARED set and the bits which
1625 * set the trigger type must match. Also all must
1626 * agree on ONESHOT.
1627 * Interrupt lines used for NMIs cannot be shared.
1628 */
1629 unsigned int oldtype;
1630
1631 if (desc->istate & IRQS_NMI) {
1632 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1633 new->name, irq, desc->irq_data.chip->name);
1634 ret = -EINVAL;
1635 goto out_unlock;
1636 }
1637
1638 /*
1639 * If nobody did set the configuration before, inherit
1640 * the one provided by the requester.
1641 */
1642 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1643 oldtype = irqd_get_trigger_type(&desc->irq_data);
1644 } else {
1645 oldtype = new->flags & IRQF_TRIGGER_MASK;
1646 irqd_set_trigger_type(&desc->irq_data, oldtype);
1647 }
1648
1649 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1650 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1651 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1652 goto mismatch;
1653
1654 /* All handlers must agree on per-cpuness */
1655 if ((old->flags & IRQF_PERCPU) !=
1656 (new->flags & IRQF_PERCPU))
1657 goto mismatch;
1658
1659 /* add new interrupt at end of irq queue */
1660 do {
1661 /*
1662 * Or all existing action->thread_mask bits,
1663 * so we can find the next zero bit for this
1664 * new action.
1665 */
1666 thread_mask |= old->thread_mask;
1667 old_ptr = &old->next;
1668 old = *old_ptr;
1669 } while (old);
1670 shared = 1;
1671 }
1672
1673 /*
1674 * Setup the thread mask for this irqaction for ONESHOT. For
1675 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1676 * conditional in irq_wake_thread().
1677 */
1678 if (new->flags & IRQF_ONESHOT) {
1679 /*
1680 * Unlikely to have 32 resp 64 irqs sharing one line,
1681 * but who knows.
1682 */
1683 if (thread_mask == ~0UL) {
1684 ret = -EBUSY;
1685 goto out_unlock;
1686 }
1687 /*
1688 * The thread_mask for the action is or'ed to
1689 * desc->thread_active to indicate that the
1690 * IRQF_ONESHOT thread handler has been woken, but not
1691 * yet finished. The bit is cleared when a thread
1692 * completes. When all threads of a shared interrupt
1693 * line have completed desc->threads_active becomes
1694 * zero and the interrupt line is unmasked. See
1695 * handle.c:irq_wake_thread() for further information.
1696 *
1697 * If no thread is woken by primary (hard irq context)
1698 * interrupt handlers, then desc->threads_active is
1699 * also checked for zero to unmask the irq line in the
1700 * affected hard irq flow handlers
1701 * (handle_[fasteoi|level]_irq).
1702 *
1703 * The new action gets the first zero bit of
1704 * thread_mask assigned. See the loop above which or's
1705 * all existing action->thread_mask bits.
1706 */
1707 new->thread_mask = 1UL << ffz(thread_mask);
1708
1709 } else if (new->handler == irq_default_primary_handler &&
1710 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1711 /*
1712 * The interrupt was requested with handler = NULL, so
1713 * we use the default primary handler for it. But it
1714 * does not have the oneshot flag set. In combination
1715 * with level interrupts this is deadly, because the
1716 * default primary handler just wakes the thread, then
1717 * the irq lines is reenabled, but the device still
1718 * has the level irq asserted. Rinse and repeat....
1719 *
1720 * While this works for edge type interrupts, we play
1721 * it safe and reject unconditionally because we can't
1722 * say for sure which type this interrupt really
1723 * has. The type flags are unreliable as the
1724 * underlying chip implementation can override them.
1725 */
1726 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1727 new->name, irq);
1728 ret = -EINVAL;
1729 goto out_unlock;
1730 }
1731
1732 if (!shared) {
1733 /* Setup the type (level, edge polarity) if configured: */
1734 if (new->flags & IRQF_TRIGGER_MASK) {
1735 ret = __irq_set_trigger(desc,
1736 new->flags & IRQF_TRIGGER_MASK);
1737
1738 if (ret)
1739 goto out_unlock;
1740 }
1741
1742 /*
1743 * Activate the interrupt. That activation must happen
1744 * independently of IRQ_NOAUTOEN. request_irq() can fail
1745 * and the callers are supposed to handle
1746 * that. enable_irq() of an interrupt requested with
1747 * IRQ_NOAUTOEN is not supposed to fail. The activation
1748 * keeps it in shutdown mode, it merily associates
1749 * resources if necessary and if that's not possible it
1750 * fails. Interrupts which are in managed shutdown mode
1751 * will simply ignore that activation request.
1752 */
1753 ret = irq_activate(desc);
1754 if (ret)
1755 goto out_unlock;
1756
1757 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1758 IRQS_ONESHOT | IRQS_WAITING);
1759 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1760
1761 if (new->flags & IRQF_PERCPU) {
1762 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1763 irq_settings_set_per_cpu(desc);
1764 if (new->flags & IRQF_NO_DEBUG)
1765 irq_settings_set_no_debug(desc);
1766 }
1767
1768 if (noirqdebug)
1769 irq_settings_set_no_debug(desc);
1770
1771 if (new->flags & IRQF_ONESHOT)
1772 desc->istate |= IRQS_ONESHOT;
1773
1774 /* Exclude IRQ from balancing if requested */
1775 if (new->flags & IRQF_NOBALANCING) {
1776 irq_settings_set_no_balancing(desc);
1777 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1778 }
1779
1780 if (!(new->flags & IRQF_NO_AUTOEN) &&
1781 irq_settings_can_autoenable(desc)) {
1782 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1783 } else {
1784 /*
1785 * Shared interrupts do not go well with disabling
1786 * auto enable. The sharing interrupt might request
1787 * it while it's still disabled and then wait for
1788 * interrupts forever.
1789 */
1790 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1791 /* Undo nested disables: */
1792 desc->depth = 1;
1793 }
1794
1795 } else if (new->flags & IRQF_TRIGGER_MASK) {
1796 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1797 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1798
1799 if (nmsk != omsk)
1800 /* hope the handler works with current trigger mode */
1801 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1802 irq, omsk, nmsk);
1803 }
1804
1805 *old_ptr = new;
1806
1807 irq_pm_install_action(desc, new);
1808
1809 /* Reset broken irq detection when installing new handler */
1810 desc->irq_count = 0;
1811 desc->irqs_unhandled = 0;
1812
1813 /*
1814 * Check whether we disabled the irq via the spurious handler
1815 * before. Reenable it and give it another chance.
1816 */
1817 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1818 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1819 __enable_irq(desc);
1820 }
1821
1822 raw_spin_unlock_irqrestore(&desc->lock, flags);
1823 chip_bus_sync_unlock(desc);
1824 mutex_unlock(&desc->request_mutex);
1825
1826 irq_setup_timings(desc, new);
1827
1828 wake_up_and_wait_for_irq_thread_ready(desc, new);
1829 wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1830
1831 register_irq_proc(irq, desc);
1832 new->dir = NULL;
1833 register_handler_proc(irq, new);
1834 return 0;
1835
1836 mismatch:
1837 if (!(new->flags & IRQF_PROBE_SHARED)) {
1838 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1839 irq, new->flags, new->name, old->flags, old->name);
1840 #ifdef CONFIG_DEBUG_SHIRQ
1841 dump_stack();
1842 #endif
1843 }
1844 ret = -EBUSY;
1845
1846 out_unlock:
1847 raw_spin_unlock_irqrestore(&desc->lock, flags);
1848
1849 if (!desc->action)
1850 irq_release_resources(desc);
1851 out_bus_unlock:
1852 chip_bus_sync_unlock(desc);
1853 mutex_unlock(&desc->request_mutex);
1854
1855 out_thread:
1856 if (new->thread) {
1857 struct task_struct *t = new->thread;
1858
1859 new->thread = NULL;
1860 kthread_stop_put(t);
1861 }
1862 if (new->secondary && new->secondary->thread) {
1863 struct task_struct *t = new->secondary->thread;
1864
1865 new->secondary->thread = NULL;
1866 kthread_stop_put(t);
1867 }
1868 out_mput:
1869 module_put(desc->owner);
1870 return ret;
1871 }
1872
1873 /*
1874 * Internal function to unregister an irqaction - used to free
1875 * regular and special interrupts that are part of the architecture.
1876 */
__free_irq(struct irq_desc * desc,void * dev_id)1877 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1878 {
1879 unsigned irq = desc->irq_data.irq;
1880 struct irqaction *action, **action_ptr;
1881 unsigned long flags;
1882
1883 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1884
1885 mutex_lock(&desc->request_mutex);
1886 chip_bus_lock(desc);
1887 raw_spin_lock_irqsave(&desc->lock, flags);
1888
1889 /*
1890 * There can be multiple actions per IRQ descriptor, find the right
1891 * one based on the dev_id:
1892 */
1893 action_ptr = &desc->action;
1894 for (;;) {
1895 action = *action_ptr;
1896
1897 if (!action) {
1898 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1899 raw_spin_unlock_irqrestore(&desc->lock, flags);
1900 chip_bus_sync_unlock(desc);
1901 mutex_unlock(&desc->request_mutex);
1902 return NULL;
1903 }
1904
1905 if (action->dev_id == dev_id)
1906 break;
1907 action_ptr = &action->next;
1908 }
1909
1910 /* Found it - now remove it from the list of entries: */
1911 *action_ptr = action->next;
1912
1913 irq_pm_remove_action(desc, action);
1914
1915 /* If this was the last handler, shut down the IRQ line: */
1916 if (!desc->action) {
1917 irq_settings_clr_disable_unlazy(desc);
1918 /* Only shutdown. Deactivate after synchronize_hardirq() */
1919 irq_shutdown(desc);
1920 }
1921
1922 #ifdef CONFIG_SMP
1923 /* make sure affinity_hint is cleaned up */
1924 if (WARN_ON_ONCE(desc->affinity_hint))
1925 desc->affinity_hint = NULL;
1926 #endif
1927
1928 raw_spin_unlock_irqrestore(&desc->lock, flags);
1929 /*
1930 * Drop bus_lock here so the changes which were done in the chip
1931 * callbacks above are synced out to the irq chips which hang
1932 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1933 *
1934 * Aside of that the bus_lock can also be taken from the threaded
1935 * handler in irq_finalize_oneshot() which results in a deadlock
1936 * because kthread_stop() would wait forever for the thread to
1937 * complete, which is blocked on the bus lock.
1938 *
1939 * The still held desc->request_mutex() protects against a
1940 * concurrent request_irq() of this irq so the release of resources
1941 * and timing data is properly serialized.
1942 */
1943 chip_bus_sync_unlock(desc);
1944
1945 unregister_handler_proc(irq, action);
1946
1947 /*
1948 * Make sure it's not being used on another CPU and if the chip
1949 * supports it also make sure that there is no (not yet serviced)
1950 * interrupt in flight at the hardware level.
1951 */
1952 __synchronize_irq(desc);
1953
1954 #ifdef CONFIG_DEBUG_SHIRQ
1955 /*
1956 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1957 * event to happen even now it's being freed, so let's make sure that
1958 * is so by doing an extra call to the handler ....
1959 *
1960 * ( We do this after actually deregistering it, to make sure that a
1961 * 'real' IRQ doesn't run in parallel with our fake. )
1962 */
1963 if (action->flags & IRQF_SHARED) {
1964 local_irq_save(flags);
1965 action->handler(irq, dev_id);
1966 local_irq_restore(flags);
1967 }
1968 #endif
1969
1970 /*
1971 * The action has already been removed above, but the thread writes
1972 * its oneshot mask bit when it completes. Though request_mutex is
1973 * held across this which prevents __setup_irq() from handing out
1974 * the same bit to a newly requested action.
1975 */
1976 if (action->thread) {
1977 kthread_stop_put(action->thread);
1978 if (action->secondary && action->secondary->thread)
1979 kthread_stop_put(action->secondary->thread);
1980 }
1981
1982 /* Last action releases resources */
1983 if (!desc->action) {
1984 /*
1985 * Reacquire bus lock as irq_release_resources() might
1986 * require it to deallocate resources over the slow bus.
1987 */
1988 chip_bus_lock(desc);
1989 /*
1990 * There is no interrupt on the fly anymore. Deactivate it
1991 * completely.
1992 */
1993 raw_spin_lock_irqsave(&desc->lock, flags);
1994 irq_domain_deactivate_irq(&desc->irq_data);
1995 raw_spin_unlock_irqrestore(&desc->lock, flags);
1996
1997 irq_release_resources(desc);
1998 chip_bus_sync_unlock(desc);
1999 irq_remove_timings(desc);
2000 }
2001
2002 mutex_unlock(&desc->request_mutex);
2003
2004 irq_chip_pm_put(&desc->irq_data);
2005 module_put(desc->owner);
2006 kfree(action->secondary);
2007 return action;
2008 }
2009
2010 /**
2011 * free_irq - free an interrupt allocated with request_irq
2012 * @irq: Interrupt line to free
2013 * @dev_id: Device identity to free
2014 *
2015 * Remove an interrupt handler. The handler is removed and if the
2016 * interrupt line is no longer in use by any driver it is disabled.
2017 * On a shared IRQ the caller must ensure the interrupt is disabled
2018 * on the card it drives before calling this function. The function
2019 * does not return until any executing interrupts for this IRQ
2020 * have completed.
2021 *
2022 * This function must not be called from interrupt context.
2023 *
2024 * Returns the devname argument passed to request_irq.
2025 */
free_irq(unsigned int irq,void * dev_id)2026 const void *free_irq(unsigned int irq, void *dev_id)
2027 {
2028 struct irq_desc *desc = irq_to_desc(irq);
2029 struct irqaction *action;
2030 const char *devname;
2031
2032 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2033 return NULL;
2034
2035 #ifdef CONFIG_SMP
2036 if (WARN_ON(desc->affinity_notify))
2037 desc->affinity_notify = NULL;
2038 #endif
2039
2040 action = __free_irq(desc, dev_id);
2041
2042 if (!action)
2043 return NULL;
2044
2045 devname = action->name;
2046 kfree(action);
2047 return devname;
2048 }
2049 EXPORT_SYMBOL(free_irq);
2050
2051 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2052 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2053 {
2054 const char *devname = NULL;
2055
2056 desc->istate &= ~IRQS_NMI;
2057
2058 if (!WARN_ON(desc->action == NULL)) {
2059 irq_pm_remove_action(desc, desc->action);
2060 devname = desc->action->name;
2061 unregister_handler_proc(irq, desc->action);
2062
2063 kfree(desc->action);
2064 desc->action = NULL;
2065 }
2066
2067 irq_settings_clr_disable_unlazy(desc);
2068 irq_shutdown_and_deactivate(desc);
2069
2070 irq_release_resources(desc);
2071
2072 irq_chip_pm_put(&desc->irq_data);
2073 module_put(desc->owner);
2074
2075 return devname;
2076 }
2077
free_nmi(unsigned int irq,void * dev_id)2078 const void *free_nmi(unsigned int irq, void *dev_id)
2079 {
2080 struct irq_desc *desc = irq_to_desc(irq);
2081 unsigned long flags;
2082 const void *devname;
2083
2084 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2085 return NULL;
2086
2087 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2088 return NULL;
2089
2090 /* NMI still enabled */
2091 if (WARN_ON(desc->depth == 0))
2092 disable_nmi_nosync(irq);
2093
2094 raw_spin_lock_irqsave(&desc->lock, flags);
2095
2096 irq_nmi_teardown(desc);
2097 devname = __cleanup_nmi(irq, desc);
2098
2099 raw_spin_unlock_irqrestore(&desc->lock, flags);
2100
2101 return devname;
2102 }
2103
2104 /**
2105 * request_threaded_irq - allocate an interrupt line
2106 * @irq: Interrupt line to allocate
2107 * @handler: Function to be called when the IRQ occurs.
2108 * Primary handler for threaded interrupts.
2109 * If handler is NULL and thread_fn != NULL
2110 * the default primary handler is installed.
2111 * @thread_fn: Function called from the irq handler thread
2112 * If NULL, no irq thread is created
2113 * @irqflags: Interrupt type flags
2114 * @devname: An ascii name for the claiming device
2115 * @dev_id: A cookie passed back to the handler function
2116 *
2117 * This call allocates interrupt resources and enables the
2118 * interrupt line and IRQ handling. From the point this
2119 * call is made your handler function may be invoked. Since
2120 * your handler function must clear any interrupt the board
2121 * raises, you must take care both to initialise your hardware
2122 * and to set up the interrupt handler in the right order.
2123 *
2124 * If you want to set up a threaded irq handler for your device
2125 * then you need to supply @handler and @thread_fn. @handler is
2126 * still called in hard interrupt context and has to check
2127 * whether the interrupt originates from the device. If yes it
2128 * needs to disable the interrupt on the device and return
2129 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2130 * @thread_fn. This split handler design is necessary to support
2131 * shared interrupts.
2132 *
2133 * Dev_id must be globally unique. Normally the address of the
2134 * device data structure is used as the cookie. Since the handler
2135 * receives this value it makes sense to use it.
2136 *
2137 * If your interrupt is shared you must pass a non NULL dev_id
2138 * as this is required when freeing the interrupt.
2139 *
2140 * Flags:
2141 *
2142 * IRQF_SHARED Interrupt is shared
2143 * IRQF_TRIGGER_* Specify active edge(s) or level
2144 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2145 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2146 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2147 irq_handler_t thread_fn, unsigned long irqflags,
2148 const char *devname, void *dev_id)
2149 {
2150 struct irqaction *action;
2151 struct irq_desc *desc;
2152 int retval;
2153
2154 if (irq == IRQ_NOTCONNECTED)
2155 return -ENOTCONN;
2156
2157 /*
2158 * Sanity-check: shared interrupts must pass in a real dev-ID,
2159 * otherwise we'll have trouble later trying to figure out
2160 * which interrupt is which (messes up the interrupt freeing
2161 * logic etc).
2162 *
2163 * Also shared interrupts do not go well with disabling auto enable.
2164 * The sharing interrupt might request it while it's still disabled
2165 * and then wait for interrupts forever.
2166 *
2167 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2168 * it cannot be set along with IRQF_NO_SUSPEND.
2169 */
2170 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2171 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2172 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2173 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2174 return -EINVAL;
2175
2176 desc = irq_to_desc(irq);
2177 if (!desc)
2178 return -EINVAL;
2179
2180 if (!irq_settings_can_request(desc) ||
2181 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2182 return -EINVAL;
2183
2184 if (!handler) {
2185 if (!thread_fn)
2186 return -EINVAL;
2187 handler = irq_default_primary_handler;
2188 }
2189
2190 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2191 if (!action)
2192 return -ENOMEM;
2193
2194 action->handler = handler;
2195 action->thread_fn = thread_fn;
2196 action->flags = irqflags;
2197 action->name = devname;
2198 action->dev_id = dev_id;
2199
2200 retval = irq_chip_pm_get(&desc->irq_data);
2201 if (retval < 0) {
2202 kfree(action);
2203 return retval;
2204 }
2205
2206 retval = __setup_irq(irq, desc, action);
2207
2208 if (retval) {
2209 irq_chip_pm_put(&desc->irq_data);
2210 kfree(action->secondary);
2211 kfree(action);
2212 }
2213
2214 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2215 if (!retval && (irqflags & IRQF_SHARED)) {
2216 /*
2217 * It's a shared IRQ -- the driver ought to be prepared for it
2218 * to happen immediately, so let's make sure....
2219 * We disable the irq to make sure that a 'real' IRQ doesn't
2220 * run in parallel with our fake.
2221 */
2222 unsigned long flags;
2223
2224 disable_irq(irq);
2225 local_irq_save(flags);
2226
2227 handler(irq, dev_id);
2228
2229 local_irq_restore(flags);
2230 enable_irq(irq);
2231 }
2232 #endif
2233 return retval;
2234 }
2235 EXPORT_SYMBOL(request_threaded_irq);
2236
2237 /**
2238 * request_any_context_irq - allocate an interrupt line
2239 * @irq: Interrupt line to allocate
2240 * @handler: Function to be called when the IRQ occurs.
2241 * Threaded handler for threaded interrupts.
2242 * @flags: Interrupt type flags
2243 * @name: An ascii name for the claiming device
2244 * @dev_id: A cookie passed back to the handler function
2245 *
2246 * This call allocates interrupt resources and enables the
2247 * interrupt line and IRQ handling. It selects either a
2248 * hardirq or threaded handling method depending on the
2249 * context.
2250 *
2251 * On failure, it returns a negative value. On success,
2252 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2253 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2254 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2255 unsigned long flags, const char *name, void *dev_id)
2256 {
2257 struct irq_desc *desc;
2258 int ret;
2259
2260 if (irq == IRQ_NOTCONNECTED)
2261 return -ENOTCONN;
2262
2263 desc = irq_to_desc(irq);
2264 if (!desc)
2265 return -EINVAL;
2266
2267 if (irq_settings_is_nested_thread(desc)) {
2268 ret = request_threaded_irq(irq, NULL, handler,
2269 flags, name, dev_id);
2270 return !ret ? IRQC_IS_NESTED : ret;
2271 }
2272
2273 ret = request_irq(irq, handler, flags, name, dev_id);
2274 return !ret ? IRQC_IS_HARDIRQ : ret;
2275 }
2276 EXPORT_SYMBOL_GPL(request_any_context_irq);
2277
2278 /**
2279 * request_nmi - allocate an interrupt line for NMI delivery
2280 * @irq: Interrupt line to allocate
2281 * @handler: Function to be called when the IRQ occurs.
2282 * Threaded handler for threaded interrupts.
2283 * @irqflags: Interrupt type flags
2284 * @name: An ascii name for the claiming device
2285 * @dev_id: A cookie passed back to the handler function
2286 *
2287 * This call allocates interrupt resources and enables the
2288 * interrupt line and IRQ handling. It sets up the IRQ line
2289 * to be handled as an NMI.
2290 *
2291 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2292 * cannot be threaded.
2293 *
2294 * Interrupt lines requested for NMI delivering must produce per cpu
2295 * interrupts and have auto enabling setting disabled.
2296 *
2297 * Dev_id must be globally unique. Normally the address of the
2298 * device data structure is used as the cookie. Since the handler
2299 * receives this value it makes sense to use it.
2300 *
2301 * If the interrupt line cannot be used to deliver NMIs, function
2302 * will fail and return a negative value.
2303 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2304 int request_nmi(unsigned int irq, irq_handler_t handler,
2305 unsigned long irqflags, const char *name, void *dev_id)
2306 {
2307 struct irqaction *action;
2308 struct irq_desc *desc;
2309 unsigned long flags;
2310 int retval;
2311
2312 if (irq == IRQ_NOTCONNECTED)
2313 return -ENOTCONN;
2314
2315 /* NMI cannot be shared, used for Polling */
2316 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2317 return -EINVAL;
2318
2319 if (!(irqflags & IRQF_PERCPU))
2320 return -EINVAL;
2321
2322 if (!handler)
2323 return -EINVAL;
2324
2325 desc = irq_to_desc(irq);
2326
2327 if (!desc || (irq_settings_can_autoenable(desc) &&
2328 !(irqflags & IRQF_NO_AUTOEN)) ||
2329 !irq_settings_can_request(desc) ||
2330 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2331 !irq_supports_nmi(desc))
2332 return -EINVAL;
2333
2334 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2335 if (!action)
2336 return -ENOMEM;
2337
2338 action->handler = handler;
2339 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2340 action->name = name;
2341 action->dev_id = dev_id;
2342
2343 retval = irq_chip_pm_get(&desc->irq_data);
2344 if (retval < 0)
2345 goto err_out;
2346
2347 retval = __setup_irq(irq, desc, action);
2348 if (retval)
2349 goto err_irq_setup;
2350
2351 raw_spin_lock_irqsave(&desc->lock, flags);
2352
2353 /* Setup NMI state */
2354 desc->istate |= IRQS_NMI;
2355 retval = irq_nmi_setup(desc);
2356 if (retval) {
2357 __cleanup_nmi(irq, desc);
2358 raw_spin_unlock_irqrestore(&desc->lock, flags);
2359 return -EINVAL;
2360 }
2361
2362 raw_spin_unlock_irqrestore(&desc->lock, flags);
2363
2364 return 0;
2365
2366 err_irq_setup:
2367 irq_chip_pm_put(&desc->irq_data);
2368 err_out:
2369 kfree(action);
2370
2371 return retval;
2372 }
2373
enable_percpu_irq(unsigned int irq,unsigned int type)2374 void enable_percpu_irq(unsigned int irq, unsigned int type)
2375 {
2376 unsigned int cpu = smp_processor_id();
2377 unsigned long flags;
2378 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2379
2380 if (!desc)
2381 return;
2382
2383 /*
2384 * If the trigger type is not specified by the caller, then
2385 * use the default for this interrupt.
2386 */
2387 type &= IRQ_TYPE_SENSE_MASK;
2388 if (type == IRQ_TYPE_NONE)
2389 type = irqd_get_trigger_type(&desc->irq_data);
2390
2391 if (type != IRQ_TYPE_NONE) {
2392 int ret;
2393
2394 ret = __irq_set_trigger(desc, type);
2395
2396 if (ret) {
2397 WARN(1, "failed to set type for IRQ%d\n", irq);
2398 goto out;
2399 }
2400 }
2401
2402 irq_percpu_enable(desc, cpu);
2403 out:
2404 irq_put_desc_unlock(desc, flags);
2405 }
2406 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2407
enable_percpu_nmi(unsigned int irq,unsigned int type)2408 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2409 {
2410 enable_percpu_irq(irq, type);
2411 }
2412
2413 /**
2414 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2415 * @irq: Linux irq number to check for
2416 *
2417 * Must be called from a non migratable context. Returns the enable
2418 * state of a per cpu interrupt on the current cpu.
2419 */
irq_percpu_is_enabled(unsigned int irq)2420 bool irq_percpu_is_enabled(unsigned int irq)
2421 {
2422 unsigned int cpu = smp_processor_id();
2423 struct irq_desc *desc;
2424 unsigned long flags;
2425 bool is_enabled;
2426
2427 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2428 if (!desc)
2429 return false;
2430
2431 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2432 irq_put_desc_unlock(desc, flags);
2433
2434 return is_enabled;
2435 }
2436 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2437
disable_percpu_irq(unsigned int irq)2438 void disable_percpu_irq(unsigned int irq)
2439 {
2440 unsigned int cpu = smp_processor_id();
2441 unsigned long flags;
2442 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2443
2444 if (!desc)
2445 return;
2446
2447 irq_percpu_disable(desc, cpu);
2448 irq_put_desc_unlock(desc, flags);
2449 }
2450 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2451
disable_percpu_nmi(unsigned int irq)2452 void disable_percpu_nmi(unsigned int irq)
2453 {
2454 disable_percpu_irq(irq);
2455 }
2456
2457 /*
2458 * Internal function to unregister a percpu irqaction.
2459 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2460 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2461 {
2462 struct irq_desc *desc = irq_to_desc(irq);
2463 struct irqaction *action;
2464 unsigned long flags;
2465
2466 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2467
2468 if (!desc)
2469 return NULL;
2470
2471 raw_spin_lock_irqsave(&desc->lock, flags);
2472
2473 action = desc->action;
2474 if (!action || action->percpu_dev_id != dev_id) {
2475 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2476 goto bad;
2477 }
2478
2479 if (!cpumask_empty(desc->percpu_enabled)) {
2480 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2481 irq, cpumask_first(desc->percpu_enabled));
2482 goto bad;
2483 }
2484
2485 /* Found it - now remove it from the list of entries: */
2486 desc->action = NULL;
2487
2488 desc->istate &= ~IRQS_NMI;
2489
2490 raw_spin_unlock_irqrestore(&desc->lock, flags);
2491
2492 unregister_handler_proc(irq, action);
2493
2494 irq_chip_pm_put(&desc->irq_data);
2495 module_put(desc->owner);
2496 return action;
2497
2498 bad:
2499 raw_spin_unlock_irqrestore(&desc->lock, flags);
2500 return NULL;
2501 }
2502
2503 /**
2504 * remove_percpu_irq - free a per-cpu interrupt
2505 * @irq: Interrupt line to free
2506 * @act: irqaction for the interrupt
2507 *
2508 * Used to remove interrupts statically setup by the early boot process.
2509 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2510 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2511 {
2512 struct irq_desc *desc = irq_to_desc(irq);
2513
2514 if (desc && irq_settings_is_per_cpu_devid(desc))
2515 __free_percpu_irq(irq, act->percpu_dev_id);
2516 }
2517
2518 /**
2519 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2520 * @irq: Interrupt line to free
2521 * @dev_id: Device identity to free
2522 *
2523 * Remove a percpu interrupt handler. The handler is removed, but
2524 * the interrupt line is not disabled. This must be done on each
2525 * CPU before calling this function. The function does not return
2526 * until any executing interrupts for this IRQ have completed.
2527 *
2528 * This function must not be called from interrupt context.
2529 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2530 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2531 {
2532 struct irq_desc *desc = irq_to_desc(irq);
2533
2534 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2535 return;
2536
2537 chip_bus_lock(desc);
2538 kfree(__free_percpu_irq(irq, dev_id));
2539 chip_bus_sync_unlock(desc);
2540 }
2541 EXPORT_SYMBOL_GPL(free_percpu_irq);
2542
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2543 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2544 {
2545 struct irq_desc *desc = irq_to_desc(irq);
2546
2547 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2548 return;
2549
2550 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2551 return;
2552
2553 kfree(__free_percpu_irq(irq, dev_id));
2554 }
2555
2556 /**
2557 * setup_percpu_irq - setup a per-cpu interrupt
2558 * @irq: Interrupt line to setup
2559 * @act: irqaction for the interrupt
2560 *
2561 * Used to statically setup per-cpu interrupts in the early boot process.
2562 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2563 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2564 {
2565 struct irq_desc *desc = irq_to_desc(irq);
2566 int retval;
2567
2568 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2569 return -EINVAL;
2570
2571 retval = irq_chip_pm_get(&desc->irq_data);
2572 if (retval < 0)
2573 return retval;
2574
2575 retval = __setup_irq(irq, desc, act);
2576
2577 if (retval)
2578 irq_chip_pm_put(&desc->irq_data);
2579
2580 return retval;
2581 }
2582
2583 /**
2584 * __request_percpu_irq - allocate a percpu interrupt line
2585 * @irq: Interrupt line to allocate
2586 * @handler: Function to be called when the IRQ occurs.
2587 * @flags: Interrupt type flags (IRQF_TIMER only)
2588 * @devname: An ascii name for the claiming device
2589 * @dev_id: A percpu cookie passed back to the handler function
2590 *
2591 * This call allocates interrupt resources and enables the
2592 * interrupt on the local CPU. If the interrupt is supposed to be
2593 * enabled on other CPUs, it has to be done on each CPU using
2594 * enable_percpu_irq().
2595 *
2596 * Dev_id must be globally unique. It is a per-cpu variable, and
2597 * the handler gets called with the interrupted CPU's instance of
2598 * that variable.
2599 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2600 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2601 unsigned long flags, const char *devname,
2602 void __percpu *dev_id)
2603 {
2604 struct irqaction *action;
2605 struct irq_desc *desc;
2606 int retval;
2607
2608 if (!dev_id)
2609 return -EINVAL;
2610
2611 desc = irq_to_desc(irq);
2612 if (!desc || !irq_settings_can_request(desc) ||
2613 !irq_settings_is_per_cpu_devid(desc))
2614 return -EINVAL;
2615
2616 if (flags && flags != IRQF_TIMER)
2617 return -EINVAL;
2618
2619 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2620 if (!action)
2621 return -ENOMEM;
2622
2623 action->handler = handler;
2624 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2625 action->name = devname;
2626 action->percpu_dev_id = dev_id;
2627
2628 retval = irq_chip_pm_get(&desc->irq_data);
2629 if (retval < 0) {
2630 kfree(action);
2631 return retval;
2632 }
2633
2634 retval = __setup_irq(irq, desc, action);
2635
2636 if (retval) {
2637 irq_chip_pm_put(&desc->irq_data);
2638 kfree(action);
2639 }
2640
2641 return retval;
2642 }
2643 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2644
2645 /**
2646 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2647 * @irq: Interrupt line to allocate
2648 * @handler: Function to be called when the IRQ occurs.
2649 * @name: An ascii name for the claiming device
2650 * @dev_id: A percpu cookie passed back to the handler function
2651 *
2652 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2653 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2654 * being enabled on the same CPU by using enable_percpu_nmi().
2655 *
2656 * Dev_id must be globally unique. It is a per-cpu variable, and
2657 * the handler gets called with the interrupted CPU's instance of
2658 * that variable.
2659 *
2660 * Interrupt lines requested for NMI delivering should have auto enabling
2661 * setting disabled.
2662 *
2663 * If the interrupt line cannot be used to deliver NMIs, function
2664 * will fail returning a negative value.
2665 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2666 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2667 const char *name, void __percpu *dev_id)
2668 {
2669 struct irqaction *action;
2670 struct irq_desc *desc;
2671 unsigned long flags;
2672 int retval;
2673
2674 if (!handler)
2675 return -EINVAL;
2676
2677 desc = irq_to_desc(irq);
2678
2679 if (!desc || !irq_settings_can_request(desc) ||
2680 !irq_settings_is_per_cpu_devid(desc) ||
2681 irq_settings_can_autoenable(desc) ||
2682 !irq_supports_nmi(desc))
2683 return -EINVAL;
2684
2685 /* The line cannot already be NMI */
2686 if (desc->istate & IRQS_NMI)
2687 return -EINVAL;
2688
2689 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2690 if (!action)
2691 return -ENOMEM;
2692
2693 action->handler = handler;
2694 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2695 | IRQF_NOBALANCING;
2696 action->name = name;
2697 action->percpu_dev_id = dev_id;
2698
2699 retval = irq_chip_pm_get(&desc->irq_data);
2700 if (retval < 0)
2701 goto err_out;
2702
2703 retval = __setup_irq(irq, desc, action);
2704 if (retval)
2705 goto err_irq_setup;
2706
2707 raw_spin_lock_irqsave(&desc->lock, flags);
2708 desc->istate |= IRQS_NMI;
2709 raw_spin_unlock_irqrestore(&desc->lock, flags);
2710
2711 return 0;
2712
2713 err_irq_setup:
2714 irq_chip_pm_put(&desc->irq_data);
2715 err_out:
2716 kfree(action);
2717
2718 return retval;
2719 }
2720
2721 /**
2722 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2723 * @irq: Interrupt line to prepare for NMI delivery
2724 *
2725 * This call prepares an interrupt line to deliver NMI on the current CPU,
2726 * before that interrupt line gets enabled with enable_percpu_nmi().
2727 *
2728 * As a CPU local operation, this should be called from non-preemptible
2729 * context.
2730 *
2731 * If the interrupt line cannot be used to deliver NMIs, function
2732 * will fail returning a negative value.
2733 */
prepare_percpu_nmi(unsigned int irq)2734 int prepare_percpu_nmi(unsigned int irq)
2735 {
2736 unsigned long flags;
2737 struct irq_desc *desc;
2738 int ret = 0;
2739
2740 WARN_ON(preemptible());
2741
2742 desc = irq_get_desc_lock(irq, &flags,
2743 IRQ_GET_DESC_CHECK_PERCPU);
2744 if (!desc)
2745 return -EINVAL;
2746
2747 if (WARN(!(desc->istate & IRQS_NMI),
2748 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2749 irq)) {
2750 ret = -EINVAL;
2751 goto out;
2752 }
2753
2754 ret = irq_nmi_setup(desc);
2755 if (ret) {
2756 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2757 goto out;
2758 }
2759
2760 out:
2761 irq_put_desc_unlock(desc, flags);
2762 return ret;
2763 }
2764
2765 /**
2766 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2767 * @irq: Interrupt line from which CPU local NMI configuration should be
2768 * removed
2769 *
2770 * This call undoes the setup done by prepare_percpu_nmi().
2771 *
2772 * IRQ line should not be enabled for the current CPU.
2773 *
2774 * As a CPU local operation, this should be called from non-preemptible
2775 * context.
2776 */
teardown_percpu_nmi(unsigned int irq)2777 void teardown_percpu_nmi(unsigned int irq)
2778 {
2779 unsigned long flags;
2780 struct irq_desc *desc;
2781
2782 WARN_ON(preemptible());
2783
2784 desc = irq_get_desc_lock(irq, &flags,
2785 IRQ_GET_DESC_CHECK_PERCPU);
2786 if (!desc)
2787 return;
2788
2789 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2790 goto out;
2791
2792 irq_nmi_teardown(desc);
2793 out:
2794 irq_put_desc_unlock(desc, flags);
2795 }
2796
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2797 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2798 bool *state)
2799 {
2800 struct irq_chip *chip;
2801 int err = -EINVAL;
2802
2803 do {
2804 chip = irq_data_get_irq_chip(data);
2805 if (WARN_ON_ONCE(!chip))
2806 return -ENODEV;
2807 if (chip->irq_get_irqchip_state)
2808 break;
2809 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2810 data = data->parent_data;
2811 #else
2812 data = NULL;
2813 #endif
2814 } while (data);
2815
2816 if (data)
2817 err = chip->irq_get_irqchip_state(data, which, state);
2818 return err;
2819 }
2820
2821 /**
2822 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2823 * @irq: Interrupt line that is forwarded to a VM
2824 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2825 * @state: a pointer to a boolean where the state is to be stored
2826 *
2827 * This call snapshots the internal irqchip state of an
2828 * interrupt, returning into @state the bit corresponding to
2829 * stage @which
2830 *
2831 * This function should be called with preemption disabled if the
2832 * interrupt controller has per-cpu registers.
2833 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2834 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2835 bool *state)
2836 {
2837 struct irq_desc *desc;
2838 struct irq_data *data;
2839 unsigned long flags;
2840 int err = -EINVAL;
2841
2842 desc = irq_get_desc_buslock(irq, &flags, 0);
2843 if (!desc)
2844 return err;
2845
2846 data = irq_desc_get_irq_data(desc);
2847
2848 err = __irq_get_irqchip_state(data, which, state);
2849
2850 irq_put_desc_busunlock(desc, flags);
2851 return err;
2852 }
2853 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2854
2855 /**
2856 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2857 * @irq: Interrupt line that is forwarded to a VM
2858 * @which: State to be restored (one of IRQCHIP_STATE_*)
2859 * @val: Value corresponding to @which
2860 *
2861 * This call sets the internal irqchip state of an interrupt,
2862 * depending on the value of @which.
2863 *
2864 * This function should be called with migration disabled if the
2865 * interrupt controller has per-cpu registers.
2866 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2867 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2868 bool val)
2869 {
2870 struct irq_desc *desc;
2871 struct irq_data *data;
2872 struct irq_chip *chip;
2873 unsigned long flags;
2874 int err = -EINVAL;
2875
2876 desc = irq_get_desc_buslock(irq, &flags, 0);
2877 if (!desc)
2878 return err;
2879
2880 data = irq_desc_get_irq_data(desc);
2881
2882 do {
2883 chip = irq_data_get_irq_chip(data);
2884 if (WARN_ON_ONCE(!chip)) {
2885 err = -ENODEV;
2886 goto out_unlock;
2887 }
2888 if (chip->irq_set_irqchip_state)
2889 break;
2890 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2891 data = data->parent_data;
2892 #else
2893 data = NULL;
2894 #endif
2895 } while (data);
2896
2897 if (data)
2898 err = chip->irq_set_irqchip_state(data, which, val);
2899
2900 out_unlock:
2901 irq_put_desc_busunlock(desc, flags);
2902 return err;
2903 }
2904 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2905
2906 /**
2907 * irq_has_action - Check whether an interrupt is requested
2908 * @irq: The linux irq number
2909 *
2910 * Returns: A snapshot of the current state
2911 */
irq_has_action(unsigned int irq)2912 bool irq_has_action(unsigned int irq)
2913 {
2914 bool res;
2915
2916 rcu_read_lock();
2917 res = irq_desc_has_action(irq_to_desc(irq));
2918 rcu_read_unlock();
2919 return res;
2920 }
2921 EXPORT_SYMBOL_GPL(irq_has_action);
2922
2923 /**
2924 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2925 * @irq: The linux irq number
2926 * @bitmask: The bitmask to evaluate
2927 *
2928 * Returns: True if one of the bits in @bitmask is set
2929 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2930 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2931 {
2932 struct irq_desc *desc;
2933 bool res = false;
2934
2935 rcu_read_lock();
2936 desc = irq_to_desc(irq);
2937 if (desc)
2938 res = !!(desc->status_use_accessors & bitmask);
2939 rcu_read_unlock();
2940 return res;
2941 }
2942 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2943