• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/android_kabi.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_ORDER 10
31 #else
32 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_ORDER + 1)
39 
40 /*
41  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42  * costly to service.  That is between allocation orders which should
43  * coalesce naturally under reasonable reclaim pressure and those which
44  * will not.
45  */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47 
48 enum migratetype {
49 	MIGRATE_UNMOVABLE,
50 	MIGRATE_MOVABLE,
51 	MIGRATE_RECLAIMABLE,
52 	/* the number of types that have fallbacks */
53 	MIGRATE_FALLBACKS,
54 #ifdef CONFIG_CMA
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA = MIGRATE_FALLBACKS,
66 	MIGRATE_PCPTYPES,
67 #else
68 	/* the number of types on the pcp lists */
69 	MIGRATE_PCPTYPES = MIGRATE_FALLBACKS,
70 #endif
71 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
72 #ifdef CONFIG_MEMORY_ISOLATION
73 	MIGRATE_ISOLATE,	/* can't allocate from here */
74 #endif
75 	MIGRATE_TYPES
76 };
77 
78 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
79 extern const char * const migratetype_names[MIGRATE_TYPES];
80 
81 #ifdef CONFIG_CMA
82 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
83 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
84 #  define get_cma_migrate_type() MIGRATE_CMA
85 #else
86 #  define is_migrate_cma(migratetype) false
87 #  define is_migrate_cma_page(_page) false
88 #  define get_cma_migrate_type() MIGRATE_MOVABLE
89 #endif
90 
is_migrate_movable(int mt)91 static inline bool is_migrate_movable(int mt)
92 {
93 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
94 }
95 
96 /*
97  * Check whether a migratetype can be merged with another migratetype.
98  *
99  * It is only mergeable when it can fall back to other migratetypes for
100  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
101  */
migratetype_is_mergeable(int mt)102 static inline bool migratetype_is_mergeable(int mt)
103 {
104 	return mt < MIGRATE_FALLBACKS;
105 }
106 
107 #define for_each_migratetype_order(order, type) \
108 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
109 		for (type = 0; type < MIGRATE_TYPES; type++)
110 
111 extern int page_group_by_mobility_disabled;
112 
113 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
114 
115 #define get_pageblock_migratetype(page)					\
116 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
117 
118 #define folio_migratetype(folio)				\
119 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
120 			MIGRATETYPE_MASK)
121 struct free_area {
122 	struct list_head	free_list[MIGRATE_TYPES];
123 	unsigned long		nr_free;
124 };
125 
126 struct pglist_data;
127 
128 #ifdef CONFIG_NUMA
129 enum numa_stat_item {
130 	NUMA_HIT,		/* allocated in intended node */
131 	NUMA_MISS,		/* allocated in non intended node */
132 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
133 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
134 	NUMA_LOCAL,		/* allocation from local node */
135 	NUMA_OTHER,		/* allocation from other node */
136 	NR_VM_NUMA_EVENT_ITEMS
137 };
138 #else
139 #define NR_VM_NUMA_EVENT_ITEMS 0
140 #endif
141 
142 enum zone_stat_item {
143 	/* First 128 byte cacheline (assuming 64 bit words) */
144 	NR_FREE_PAGES,
145 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
146 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
147 	NR_ZONE_ACTIVE_ANON,
148 	NR_ZONE_INACTIVE_FILE,
149 	NR_ZONE_ACTIVE_FILE,
150 	NR_ZONE_UNEVICTABLE,
151 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
152 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
153 	/* Second 128 byte cacheline */
154 	NR_BOUNCE,
155 	NR_ZSPAGES,		/* allocated in zsmalloc */
156 	NR_FREE_CMA_PAGES,
157 #ifdef CONFIG_UNACCEPTED_MEMORY
158 	NR_UNACCEPTED,
159 #endif
160 	NR_VM_ZONE_STAT_ITEMS };
161 
162 enum node_stat_item {
163 	NR_LRU_BASE,
164 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
165 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
166 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
167 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
168 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
169 	NR_SLAB_RECLAIMABLE_B,
170 	NR_SLAB_UNRECLAIMABLE_B,
171 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
172 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
173 	WORKINGSET_NODES,
174 	WORKINGSET_REFAULT_BASE,
175 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
176 	WORKINGSET_REFAULT_FILE,
177 	WORKINGSET_ACTIVATE_BASE,
178 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
179 	WORKINGSET_ACTIVATE_FILE,
180 	WORKINGSET_RESTORE_BASE,
181 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
182 	WORKINGSET_RESTORE_FILE,
183 	WORKINGSET_NODERECLAIM,
184 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
185 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
186 			   only modified from process context */
187 	NR_FILE_PAGES,
188 	NR_FILE_DIRTY,
189 	NR_WRITEBACK,
190 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
191 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
192 	NR_SHMEM_THPS,
193 	NR_SHMEM_PMDMAPPED,
194 	NR_FILE_THPS,
195 	NR_FILE_PMDMAPPED,
196 	NR_ANON_THPS,
197 	NR_VMSCAN_WRITE,
198 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
199 	NR_DIRTIED,		/* page dirtyings since bootup */
200 	NR_WRITTEN,		/* page writings since bootup */
201 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
202 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
203 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
204 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
205 	NR_KERNEL_STACK_KB,	/* measured in KiB */
206 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
207 	NR_KERNEL_SCS_KB,	/* measured in KiB */
208 #endif
209 	NR_PAGETABLE,		/* used for pagetables */
210 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
211 #ifdef CONFIG_SWAP
212 	NR_SWAPCACHE,
213 #endif
214 #ifdef CONFIG_NUMA_BALANCING
215 	PGPROMOTE_SUCCESS,	/* promote successfully */
216 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
217 #endif
218 	NR_VM_NODE_STAT_ITEMS
219 };
220 
221 /*
222  * Returns true if the item should be printed in THPs (/proc/vmstat
223  * currently prints number of anon, file and shmem THPs. But the item
224  * is charged in pages).
225  */
vmstat_item_print_in_thp(enum node_stat_item item)226 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
227 {
228 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
229 		return false;
230 
231 	return item == NR_ANON_THPS ||
232 	       item == NR_FILE_THPS ||
233 	       item == NR_SHMEM_THPS ||
234 	       item == NR_SHMEM_PMDMAPPED ||
235 	       item == NR_FILE_PMDMAPPED;
236 }
237 
238 /*
239  * Returns true if the value is measured in bytes (most vmstat values are
240  * measured in pages). This defines the API part, the internal representation
241  * might be different.
242  */
vmstat_item_in_bytes(int idx)243 static __always_inline bool vmstat_item_in_bytes(int idx)
244 {
245 	/*
246 	 * Global and per-node slab counters track slab pages.
247 	 * It's expected that changes are multiples of PAGE_SIZE.
248 	 * Internally values are stored in pages.
249 	 *
250 	 * Per-memcg and per-lruvec counters track memory, consumed
251 	 * by individual slab objects. These counters are actually
252 	 * byte-precise.
253 	 */
254 	return (idx == NR_SLAB_RECLAIMABLE_B ||
255 		idx == NR_SLAB_UNRECLAIMABLE_B);
256 }
257 
258 /*
259  * We do arithmetic on the LRU lists in various places in the code,
260  * so it is important to keep the active lists LRU_ACTIVE higher in
261  * the array than the corresponding inactive lists, and to keep
262  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
263  *
264  * This has to be kept in sync with the statistics in zone_stat_item
265  * above and the descriptions in vmstat_text in mm/vmstat.c
266  */
267 #define LRU_BASE 0
268 #define LRU_ACTIVE 1
269 #define LRU_FILE 2
270 
271 enum lru_list {
272 	LRU_INACTIVE_ANON = LRU_BASE,
273 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
274 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
275 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
276 	LRU_UNEVICTABLE,
277 	NR_LRU_LISTS
278 };
279 
280 enum vmscan_throttle_state {
281 	VMSCAN_THROTTLE_WRITEBACK,
282 	VMSCAN_THROTTLE_ISOLATED,
283 	VMSCAN_THROTTLE_NOPROGRESS,
284 	VMSCAN_THROTTLE_CONGESTED,
285 	NR_VMSCAN_THROTTLE,
286 };
287 
288 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
289 
290 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
291 
is_file_lru(enum lru_list lru)292 static inline bool is_file_lru(enum lru_list lru)
293 {
294 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
295 }
296 
is_active_lru(enum lru_list lru)297 static inline bool is_active_lru(enum lru_list lru)
298 {
299 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
300 }
301 
302 #define WORKINGSET_ANON 0
303 #define WORKINGSET_FILE 1
304 #define ANON_AND_FILE 2
305 
306 enum lruvec_flags {
307 	/*
308 	 * An lruvec has many dirty pages backed by a congested BDI:
309 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
310 	 *    It can be cleared by cgroup reclaim or kswapd.
311 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
312 	 *    It can only be cleared by kswapd.
313 	 *
314 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
315 	 * reclaim, but not vice versa. This only applies to the root cgroup.
316 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
317 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
318 	 * by kswapd).
319 	 */
320 	LRUVEC_CGROUP_CONGESTED,
321 	LRUVEC_NODE_CONGESTED,
322 };
323 
324 #endif /* !__GENERATING_BOUNDS_H */
325 
326 /*
327  * Evictable pages are divided into multiple generations. The youngest and the
328  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
329  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
330  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
331  * corresponding generation. The gen counter in folio->flags stores gen+1 while
332  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
333  *
334  * A page is added to the youngest generation on faulting. The aging needs to
335  * check the accessed bit at least twice before handing this page over to the
336  * eviction. The first check takes care of the accessed bit set on the initial
337  * fault; the second check makes sure this page hasn't been used since then.
338  * This process, AKA second chance, requires a minimum of two generations,
339  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
340  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
341  * rest of generations, if they exist, are considered inactive. See
342  * lru_gen_is_active().
343  *
344  * PG_active is always cleared while a page is on one of lrugen->folios[] so
345  * that the aging needs not to worry about it. And it's set again when a page
346  * considered active is isolated for non-reclaiming purposes, e.g., migration.
347  * See lru_gen_add_folio() and lru_gen_del_folio().
348  *
349  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
350  * number of categories of the active/inactive LRU when keeping track of
351  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
352  * in folio->flags.
353  */
354 #define MIN_NR_GENS		2U
355 #define MAX_NR_GENS		4U
356 
357 /*
358  * Each generation is divided into multiple tiers. A page accessed N times
359  * through file descriptors is in tier order_base_2(N). A page in the first tier
360  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
361  * tables or read ahead. A page in any other tier (N>1) is marked by
362  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
363  * supported without using additional bits in folio->flags.
364  *
365  * In contrast to moving across generations which requires the LRU lock, moving
366  * across tiers only involves atomic operations on folio->flags and therefore
367  * has a negligible cost in the buffered access path. In the eviction path,
368  * comparisons of refaulted/(evicted+protected) from the first tier and the
369  * rest infer whether pages accessed multiple times through file descriptors
370  * are statistically hot and thus worth protecting.
371  *
372  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
373  * number of categories of the active/inactive LRU when keeping track of
374  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
375  * folio->flags.
376  */
377 #define MAX_NR_TIERS		4U
378 
379 #ifndef __GENERATING_BOUNDS_H
380 
381 struct lruvec;
382 struct page_vma_mapped_walk;
383 
384 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
385 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
386 
387 #ifdef CONFIG_LRU_GEN
388 
389 enum {
390 	LRU_GEN_ANON,
391 	LRU_GEN_FILE,
392 };
393 
394 enum {
395 	LRU_GEN_CORE,
396 	LRU_GEN_MM_WALK,
397 	LRU_GEN_NONLEAF_YOUNG,
398 	NR_LRU_GEN_CAPS
399 };
400 
401 #define MIN_LRU_BATCH		BITS_PER_LONG
402 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
403 
404 /* whether to keep historical stats from evicted generations */
405 #ifdef CONFIG_LRU_GEN_STATS
406 #define NR_HIST_GENS		MAX_NR_GENS
407 #else
408 #define NR_HIST_GENS		1U
409 #endif
410 
411 /*
412  * The youngest generation number is stored in max_seq for both anon and file
413  * types as they are aged on an equal footing. The oldest generation numbers are
414  * stored in min_seq[] separately for anon and file types as clean file pages
415  * can be evicted regardless of swap constraints.
416  *
417  * Normally anon and file min_seq are in sync. But if swapping is constrained,
418  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
419  * min_seq behind.
420  *
421  * The number of pages in each generation is eventually consistent and therefore
422  * can be transiently negative when reset_batch_size() is pending.
423  */
424 struct lru_gen_folio {
425 	/* the aging increments the youngest generation number */
426 	unsigned long max_seq;
427 	/* the eviction increments the oldest generation numbers */
428 	unsigned long min_seq[ANON_AND_FILE];
429 	/* the birth time of each generation in jiffies */
430 	unsigned long timestamps[MAX_NR_GENS];
431 	/* the multi-gen LRU lists, lazily sorted on eviction */
432 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
433 	/* the multi-gen LRU sizes, eventually consistent */
434 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
435 	/* the exponential moving average of refaulted */
436 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
437 	/* the exponential moving average of evicted+protected */
438 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
439 	/* the first tier doesn't need protection, hence the minus one */
440 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
441 	/* can be modified without holding the LRU lock */
442 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
443 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
444 	/* whether the multi-gen LRU is enabled */
445 	bool enabled;
446 #ifdef CONFIG_MEMCG
447 	/* the memcg generation this lru_gen_folio belongs to */
448 	u8 gen;
449 	/* the list segment this lru_gen_folio belongs to */
450 	u8 seg;
451 	/* per-node lru_gen_folio list for global reclaim */
452 	struct hlist_nulls_node list;
453 #endif
454 
455 	ANDROID_KABI_RESERVE(1);
456 	ANDROID_KABI_RESERVE(2);
457 };
458 
459 enum {
460 	MM_LEAF_TOTAL,		/* total leaf entries */
461 	MM_LEAF_OLD,		/* old leaf entries */
462 	MM_LEAF_YOUNG,		/* young leaf entries */
463 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
464 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
465 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
466 	NR_MM_STATS
467 };
468 
469 /* double-buffering Bloom filters */
470 #define NR_BLOOM_FILTERS	2
471 
472 struct lru_gen_mm_state {
473 	/* set to max_seq after each iteration */
474 	unsigned long seq;
475 	/* where the current iteration continues after */
476 	struct list_head *head;
477 	/* where the last iteration ended before */
478 	struct list_head *tail;
479 	/* Bloom filters flip after each iteration */
480 	unsigned long *filters[NR_BLOOM_FILTERS];
481 	/* the mm stats for debugging */
482 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
483 
484 	ANDROID_KABI_RESERVE(1);
485 };
486 
487 struct lru_gen_mm_walk {
488 	/* the lruvec under reclaim */
489 	struct lruvec *lruvec;
490 	/* unstable max_seq from lru_gen_folio */
491 	unsigned long max_seq;
492 	/* the next address within an mm to scan */
493 	unsigned long next_addr;
494 	/* to batch promoted pages */
495 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
496 	/* to batch the mm stats */
497 	int mm_stats[NR_MM_STATS];
498 	/* total batched items */
499 	int batched;
500 	bool can_swap;
501 	bool force_scan;
502 
503 	ANDROID_KABI_RESERVE(1);
504 };
505 
506 void lru_gen_init_lruvec(struct lruvec *lruvec);
507 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
508 
509 #ifdef CONFIG_MEMCG
510 
511 /*
512  * For each node, memcgs are divided into two generations: the old and the
513  * young. For each generation, memcgs are randomly sharded into multiple bins
514  * to improve scalability. For each bin, the hlist_nulls is virtually divided
515  * into three segments: the head, the tail and the default.
516  *
517  * An onlining memcg is added to the tail of a random bin in the old generation.
518  * The eviction starts at the head of a random bin in the old generation. The
519  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
520  * the old generation, is incremented when all its bins become empty.
521  *
522  * There are four operations:
523  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
524  *    current generation (old or young) and updates its "seg" to "head";
525  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
526  *    current generation (old or young) and updates its "seg" to "tail";
527  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
528  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
529  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
530  *    young generation, updates its "gen" to "young" and resets its "seg" to
531  *    "default".
532  *
533  * The events that trigger the above operations are:
534  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
535  * 2. The first attempt to reclaim a memcg below low, which triggers
536  *    MEMCG_LRU_TAIL;
537  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
538  *    threshold, which triggers MEMCG_LRU_TAIL;
539  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
540  *    threshold, which triggers MEMCG_LRU_YOUNG;
541  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
542  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
543  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
544  *
545  * Notes:
546  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
547  *    of their max_seq counters ensures the eventual fairness to all eligible
548  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
549  * 2. There are only two valid generations: old (seq) and young (seq+1).
550  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
551  *    locklessly, a stale value (seq-1) does not wraparound to young.
552  */
553 #define MEMCG_NR_GENS	3
554 #define MEMCG_NR_BINS	8
555 
556 struct lru_gen_memcg {
557 	/* the per-node memcg generation counter */
558 	unsigned long seq;
559 	/* each memcg has one lru_gen_folio per node */
560 	unsigned long nr_memcgs[MEMCG_NR_GENS];
561 	/* per-node lru_gen_folio list for global reclaim */
562 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
563 	/* protects the above */
564 	spinlock_t lock;
565 };
566 
567 void lru_gen_init_pgdat(struct pglist_data *pgdat);
568 
569 void lru_gen_init_memcg(struct mem_cgroup *memcg);
570 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
571 void lru_gen_online_memcg(struct mem_cgroup *memcg);
572 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
573 void lru_gen_release_memcg(struct mem_cgroup *memcg);
574 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
575 
576 #else /* !CONFIG_MEMCG */
577 
578 #define MEMCG_NR_GENS	1
579 
580 struct lru_gen_memcg {
581 };
582 
lru_gen_init_pgdat(struct pglist_data * pgdat)583 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
584 {
585 }
586 
587 #endif /* CONFIG_MEMCG */
588 
589 #else /* !CONFIG_LRU_GEN */
590 
lru_gen_init_pgdat(struct pglist_data * pgdat)591 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
592 {
593 }
594 
lru_gen_init_lruvec(struct lruvec * lruvec)595 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
596 {
597 }
598 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)599 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
600 {
601 }
602 
603 #ifdef CONFIG_MEMCG
604 
lru_gen_init_memcg(struct mem_cgroup * memcg)605 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
606 {
607 }
608 
lru_gen_exit_memcg(struct mem_cgroup * memcg)609 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
610 {
611 }
612 
lru_gen_online_memcg(struct mem_cgroup * memcg)613 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
614 {
615 }
616 
lru_gen_offline_memcg(struct mem_cgroup * memcg)617 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
618 {
619 }
620 
lru_gen_release_memcg(struct mem_cgroup * memcg)621 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
622 {
623 }
624 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)625 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
626 {
627 }
628 
629 #endif /* CONFIG_MEMCG */
630 
631 #endif /* CONFIG_LRU_GEN */
632 
633 struct lruvec {
634 	struct list_head		lists[NR_LRU_LISTS];
635 	/* per lruvec lru_lock for memcg */
636 	spinlock_t			lru_lock;
637 	/*
638 	 * These track the cost of reclaiming one LRU - file or anon -
639 	 * over the other. As the observed cost of reclaiming one LRU
640 	 * increases, the reclaim scan balance tips toward the other.
641 	 */
642 	unsigned long			anon_cost;
643 	unsigned long			file_cost;
644 	/* Non-resident age, driven by LRU movement */
645 	atomic_long_t			nonresident_age;
646 	/* Refaults at the time of last reclaim cycle */
647 	unsigned long			refaults[ANON_AND_FILE];
648 	/* Various lruvec state flags (enum lruvec_flags) */
649 	unsigned long			flags;
650 #ifdef CONFIG_LRU_GEN
651 	/* evictable pages divided into generations */
652 	struct lru_gen_folio		lrugen;
653 	/* to concurrently iterate lru_gen_mm_list */
654 	struct lru_gen_mm_state		mm_state;
655 #endif
656 #ifdef CONFIG_MEMCG
657 	struct pglist_data *pgdat;
658 #endif
659 };
660 
661 /* Isolate unmapped pages */
662 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
663 /* Isolate for asynchronous migration */
664 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
665 /* Isolate unevictable pages */
666 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
667 
668 /* LRU Isolation modes. */
669 typedef unsigned __bitwise isolate_mode_t;
670 
671 enum zone_watermarks {
672 	WMARK_MIN,
673 	WMARK_LOW,
674 	WMARK_HIGH,
675 	WMARK_PROMO,
676 	NR_WMARK
677 };
678 
679 /*
680  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
681  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
682  * it should not contribute to serious fragmentation causing THP allocation
683  * failures.
684  */
685 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
686 #define NR_PCP_THP 1
687 #else
688 #define NR_PCP_THP 0
689 #endif
690 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
691 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
692 
693 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
694 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
695 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
696 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
697 
698 struct per_cpu_pages {
699 	spinlock_t lock;	/* Protects lists field */
700 	int count;		/* number of pages in the list */
701 	int high;		/* high watermark, emptying needed */
702 	int batch;		/* chunk size for buddy add/remove */
703 	short free_factor;	/* batch scaling factor during free */
704 #ifdef CONFIG_NUMA
705 	short expire;		/* When 0, remote pagesets are drained */
706 #endif
707 
708 	/* Lists of pages, one per migrate type stored on the pcp-lists */
709 	struct list_head lists[NR_PCP_LISTS];
710 } ____cacheline_aligned_in_smp;
711 
712 struct per_cpu_zonestat {
713 #ifdef CONFIG_SMP
714 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
715 	s8 stat_threshold;
716 #endif
717 #ifdef CONFIG_NUMA
718 	/*
719 	 * Low priority inaccurate counters that are only folded
720 	 * on demand. Use a large type to avoid the overhead of
721 	 * folding during refresh_cpu_vm_stats.
722 	 */
723 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
724 #endif
725 };
726 
727 struct per_cpu_nodestat {
728 	s8 stat_threshold;
729 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
730 };
731 
732 #endif /* !__GENERATING_BOUNDS.H */
733 
734 enum zone_type {
735 	/*
736 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
737 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
738 	 * On architectures where this area covers the whole 32 bit address
739 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
740 	 * DMA addressing constraints. This distinction is important as a 32bit
741 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
742 	 * platforms may need both zones as they support peripherals with
743 	 * different DMA addressing limitations.
744 	 */
745 #ifdef CONFIG_ZONE_DMA
746 	ZONE_DMA,
747 #endif
748 #ifdef CONFIG_ZONE_DMA32
749 	ZONE_DMA32,
750 #endif
751 	/*
752 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
753 	 * performed on pages in ZONE_NORMAL if the DMA devices support
754 	 * transfers to all addressable memory.
755 	 */
756 	ZONE_NORMAL,
757 #ifdef CONFIG_HIGHMEM
758 	/*
759 	 * A memory area that is only addressable by the kernel through
760 	 * mapping portions into its own address space. This is for example
761 	 * used by i386 to allow the kernel to address the memory beyond
762 	 * 900MB. The kernel will set up special mappings (page
763 	 * table entries on i386) for each page that the kernel needs to
764 	 * access.
765 	 */
766 	ZONE_HIGHMEM,
767 #endif
768 	/*
769 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
770 	 * movable pages with few exceptional cases described below. Main use
771 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
772 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
773 	 * to increase the number of THP/huge pages. Notable special cases are:
774 	 *
775 	 * 1. Pinned pages: (long-term) pinning of movable pages might
776 	 *    essentially turn such pages unmovable. Therefore, we do not allow
777 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
778 	 *    faulted, they come from the right zone right away. However, it is
779 	 *    still possible that address space already has pages in
780 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
781 	 *    touches that memory before pinning). In such case we migrate them
782 	 *    to a different zone. When migration fails - pinning fails.
783 	 * 2. memblock allocations: kernelcore/movablecore setups might create
784 	 *    situations where ZONE_MOVABLE contains unmovable allocations
785 	 *    after boot. Memory offlining and allocations fail early.
786 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
787 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
788 	 *    for example, if we have sections that are only partially
789 	 *    populated. Memory offlining and allocations fail early.
790 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
791 	 *    memory offlining, such pages cannot be allocated.
792 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
793 	 *    hotplugged memory blocks might only partially be managed by the
794 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
795 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
796 	 *    some cases (virtio-mem), such pages can be skipped during
797 	 *    memory offlining, however, cannot be moved/allocated. These
798 	 *    techniques might use alloc_contig_range() to hide previously
799 	 *    exposed pages from the buddy again (e.g., to implement some sort
800 	 *    of memory unplug in virtio-mem).
801 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
802 	 *    situations where ZERO_PAGE(0) which is allocated differently
803 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
804 	 *    cannot be migrated.
805 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
806 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
807 	 *    such zone. Such pages cannot be really moved around as they are
808 	 *    self-stored in the range, but they are treated as movable when
809 	 *    the range they describe is about to be offlined.
810 	 *
811 	 * In general, no unmovable allocations that degrade memory offlining
812 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
813 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
814 	 * if has_unmovable_pages() states that there are no unmovable pages,
815 	 * there can be false negatives).
816 	 */
817 	ZONE_MOVABLE,
818 	ZONE_NOSPLIT,
819 	ZONE_NOMERGE,
820 #ifdef CONFIG_ZONE_DEVICE
821 	ZONE_DEVICE,
822 #endif
823 	__MAX_NR_ZONES,
824 
825 	LAST_PHYS_ZONE = ZONE_MOVABLE - 1,
826 	LAST_VIRT_ZONE = ZONE_NOMERGE,
827 };
828 
829 #ifndef __GENERATING_BOUNDS_H
830 
831 #define ASYNC_AND_SYNC 2
832 
833 struct zone {
834 	/* Read-mostly fields */
835 
836 	/* zone watermarks, access with *_wmark_pages(zone) macros */
837 	unsigned long _watermark[NR_WMARK];
838 	unsigned long watermark_boost;
839 
840 	unsigned long nr_reserved_highatomic;
841 
842 	/*
843 	 * We don't know if the memory that we're going to allocate will be
844 	 * freeable or/and it will be released eventually, so to avoid totally
845 	 * wasting several GB of ram we must reserve some of the lower zone
846 	 * memory (otherwise we risk to run OOM on the lower zones despite
847 	 * there being tons of freeable ram on the higher zones).  This array is
848 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
849 	 * changes.
850 	 */
851 	long lowmem_reserve[MAX_NR_ZONES];
852 
853 #ifdef CONFIG_NUMA
854 	int node;
855 #endif
856 	struct pglist_data	*zone_pgdat;
857 	struct per_cpu_pages	__percpu *per_cpu_pageset;
858 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
859 	/*
860 	 * the high and batch values are copied to individual pagesets for
861 	 * faster access
862 	 */
863 	int pageset_high;
864 	int pageset_batch;
865 
866 #ifndef CONFIG_SPARSEMEM
867 	/*
868 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
869 	 * In SPARSEMEM, this map is stored in struct mem_section
870 	 */
871 	unsigned long		*pageblock_flags;
872 #endif /* CONFIG_SPARSEMEM */
873 
874 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
875 	unsigned long		zone_start_pfn;
876 
877 	/*
878 	 * spanned_pages is the total pages spanned by the zone, including
879 	 * holes, which is calculated as:
880 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
881 	 *
882 	 * present_pages is physical pages existing within the zone, which
883 	 * is calculated as:
884 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
885 	 *
886 	 * present_early_pages is present pages existing within the zone
887 	 * located on memory available since early boot, excluding hotplugged
888 	 * memory.
889 	 *
890 	 * managed_pages is present pages managed by the buddy system, which
891 	 * is calculated as (reserved_pages includes pages allocated by the
892 	 * bootmem allocator):
893 	 *	managed_pages = present_pages - reserved_pages;
894 	 *
895 	 * cma pages is present pages that are assigned for CMA use
896 	 * (MIGRATE_CMA).
897 	 *
898 	 * So present_pages may be used by memory hotplug or memory power
899 	 * management logic to figure out unmanaged pages by checking
900 	 * (present_pages - managed_pages). And managed_pages should be used
901 	 * by page allocator and vm scanner to calculate all kinds of watermarks
902 	 * and thresholds.
903 	 *
904 	 * Locking rules:
905 	 *
906 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
907 	 * It is a seqlock because it has to be read outside of zone->lock,
908 	 * and it is done in the main allocator path.  But, it is written
909 	 * quite infrequently.
910 	 *
911 	 * The span_seq lock is declared along with zone->lock because it is
912 	 * frequently read in proximity to zone->lock.  It's good to
913 	 * give them a chance of being in the same cacheline.
914 	 *
915 	 * Write access to present_pages at runtime should be protected by
916 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
917 	 * present_pages should use get_online_mems() to get a stable value.
918 	 */
919 	atomic_long_t		managed_pages;
920 	unsigned long		spanned_pages;
921 	unsigned long		present_pages;
922 #if defined(CONFIG_MEMORY_HOTPLUG)
923 	unsigned long		present_early_pages;
924 #endif
925 #ifdef CONFIG_CMA
926 	unsigned long		cma_pages;
927 #endif
928 
929 	const char		*name;
930 
931 #ifdef CONFIG_MEMORY_ISOLATION
932 	/*
933 	 * Number of isolated pageblock. It is used to solve incorrect
934 	 * freepage counting problem due to racy retrieving migratetype
935 	 * of pageblock. Protected by zone->lock.
936 	 */
937 	unsigned long		nr_isolate_pageblock;
938 #endif
939 
940 #ifdef CONFIG_MEMORY_HOTPLUG
941 	/* see spanned/present_pages for more description */
942 	seqlock_t		span_seqlock;
943 #endif
944 
945 	int order;
946 
947 	int initialized;
948 
949 	/* Write-intensive fields used from the page allocator */
950 	CACHELINE_PADDING(_pad1_);
951 
952 	/* free areas of different sizes */
953 	struct free_area	free_area[NR_PAGE_ORDERS];
954 
955 #ifdef CONFIG_UNACCEPTED_MEMORY
956 	/* Pages to be accepted. All pages on the list are MAX_ORDER */
957 	struct list_head	unaccepted_pages;
958 #endif
959 
960 	/* zone flags, see below */
961 	unsigned long		flags;
962 
963 	/* Primarily protects free_area */
964 	spinlock_t		lock;
965 
966 	/* Write-intensive fields used by compaction and vmstats. */
967 	CACHELINE_PADDING(_pad2_);
968 
969 	/*
970 	 * When free pages are below this point, additional steps are taken
971 	 * when reading the number of free pages to avoid per-cpu counter
972 	 * drift allowing watermarks to be breached
973 	 */
974 	unsigned long percpu_drift_mark;
975 
976 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
977 	/* pfn where compaction free scanner should start */
978 	unsigned long		compact_cached_free_pfn;
979 	/* pfn where compaction migration scanner should start */
980 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
981 	unsigned long		compact_init_migrate_pfn;
982 	unsigned long		compact_init_free_pfn;
983 #endif
984 
985 #ifdef CONFIG_COMPACTION
986 	/*
987 	 * On compaction failure, 1<<compact_defer_shift compactions
988 	 * are skipped before trying again. The number attempted since
989 	 * last failure is tracked with compact_considered.
990 	 * compact_order_failed is the minimum compaction failed order.
991 	 */
992 	unsigned int		compact_considered;
993 	unsigned int		compact_defer_shift;
994 	int			compact_order_failed;
995 #endif
996 
997 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
998 	/* Set to true when the PG_migrate_skip bits should be cleared */
999 	bool			compact_blockskip_flush;
1000 #endif
1001 
1002 	bool			contiguous;
1003 
1004 	CACHELINE_PADDING(_pad3_);
1005 	/* Zone statistics */
1006 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1007 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1008 } ____cacheline_internodealigned_in_smp;
1009 
1010 enum pgdat_flags {
1011 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1012 					 * many dirty file pages at the tail
1013 					 * of the LRU.
1014 					 */
1015 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1016 					 * many pages under writeback
1017 					 */
1018 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1019 };
1020 
1021 enum zone_flags {
1022 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1023 					 * Cleared when kswapd is woken.
1024 					 */
1025 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1026 };
1027 
zone_managed_pages(struct zone * zone)1028 static inline unsigned long zone_managed_pages(struct zone *zone)
1029 {
1030 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1031 }
1032 
zone_cma_pages(struct zone * zone)1033 static inline unsigned long zone_cma_pages(struct zone *zone)
1034 {
1035 #ifdef CONFIG_CMA
1036 	return zone->cma_pages;
1037 #else
1038 	return 0;
1039 #endif
1040 }
1041 
zone_end_pfn(const struct zone * zone)1042 static inline unsigned long zone_end_pfn(const struct zone *zone)
1043 {
1044 	return zone->zone_start_pfn + zone->spanned_pages;
1045 }
1046 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1047 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1048 {
1049 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1050 }
1051 
zone_is_initialized(struct zone * zone)1052 static inline bool zone_is_initialized(struct zone *zone)
1053 {
1054 	return zone->initialized;
1055 }
1056 
zone_is_empty(struct zone * zone)1057 static inline bool zone_is_empty(struct zone *zone)
1058 {
1059 	return zone->spanned_pages == 0;
1060 }
1061 
1062 #ifndef BUILD_VDSO32_64
1063 /*
1064  * The zone field is never updated after free_area_init_core()
1065  * sets it, so none of the operations on it need to be atomic.
1066  */
1067 
1068 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1069 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1070 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1071 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1072 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1073 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1074 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1075 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1076 
1077 /*
1078  * Define the bit shifts to access each section.  For non-existent
1079  * sections we define the shift as 0; that plus a 0 mask ensures
1080  * the compiler will optimise away reference to them.
1081  */
1082 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1083 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1084 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1085 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1086 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1087 
1088 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1089 #ifdef NODE_NOT_IN_PAGE_FLAGS
1090 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1091 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1092 						SECTIONS_PGOFF : ZONES_PGOFF)
1093 #else
1094 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1095 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1096 						NODES_PGOFF : ZONES_PGOFF)
1097 #endif
1098 
1099 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1100 
1101 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1102 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1103 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1104 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1105 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1106 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1107 
page_zonenum(const struct page * page)1108 static inline enum zone_type page_zonenum(const struct page *page)
1109 {
1110 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1111 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1112 }
1113 
folio_zonenum(const struct folio * folio)1114 static inline enum zone_type folio_zonenum(const struct folio *folio)
1115 {
1116 	return page_zonenum(&folio->page);
1117 }
1118 
1119 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1120 static inline bool is_zone_device_page(const struct page *page)
1121 {
1122 	return page_zonenum(page) == ZONE_DEVICE;
1123 }
1124 
1125 /*
1126  * Consecutive zone device pages should not be merged into the same sgl
1127  * or bvec segment with other types of pages or if they belong to different
1128  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1129  * without scanning the entire segment. This helper returns true either if
1130  * both pages are not zone device pages or both pages are zone device pages
1131  * with the same pgmap.
1132  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1133 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1134 						     const struct page *b)
1135 {
1136 	if (is_zone_device_page(a) != is_zone_device_page(b))
1137 		return false;
1138 	if (!is_zone_device_page(a))
1139 		return true;
1140 	return a->pgmap == b->pgmap;
1141 }
1142 
1143 extern void memmap_init_zone_device(struct zone *, unsigned long,
1144 				    unsigned long, struct dev_pagemap *);
1145 #else
is_zone_device_page(const struct page * page)1146 static inline bool is_zone_device_page(const struct page *page)
1147 {
1148 	return false;
1149 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1150 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1151 						     const struct page *b)
1152 {
1153 	return true;
1154 }
1155 #endif
1156 
folio_is_zone_device(const struct folio * folio)1157 static inline bool folio_is_zone_device(const struct folio *folio)
1158 {
1159 	return is_zone_device_page(&folio->page);
1160 }
1161 
is_zone_movable_page(const struct page * page)1162 static inline bool is_zone_movable_page(const struct page *page)
1163 {
1164 	return page_zonenum(page) >= ZONE_MOVABLE;
1165 }
1166 
folio_is_zone_movable(const struct folio * folio)1167 static inline bool folio_is_zone_movable(const struct folio *folio)
1168 {
1169 	return folio_zonenum(folio) >= ZONE_MOVABLE;
1170 }
1171 
page_can_split(struct page * page)1172 static inline bool page_can_split(struct page *page)
1173 {
1174 	return page_zonenum(page) < ZONE_NOSPLIT;
1175 }
1176 
folio_can_split(struct folio * folio)1177 static inline bool folio_can_split(struct folio *folio)
1178 {
1179 	return folio_zonenum(folio) < ZONE_NOSPLIT;
1180 }
1181 #endif
1182 
1183 /*
1184  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1185  * intersection with the given zone
1186  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1187 static inline bool zone_intersects(struct zone *zone,
1188 		unsigned long start_pfn, unsigned long nr_pages)
1189 {
1190 	if (zone_is_empty(zone))
1191 		return false;
1192 	if (start_pfn >= zone_end_pfn(zone) ||
1193 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1194 		return false;
1195 
1196 	return true;
1197 }
1198 
1199 /*
1200  * The "priority" of VM scanning is how much of the queues we will scan in one
1201  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1202  * queues ("queue_length >> 12") during an aging round.
1203  */
1204 #define DEF_PRIORITY 12
1205 
1206 /* Maximum number of zones on a zonelist */
1207 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1208 
1209 enum {
1210 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1211 #ifdef CONFIG_NUMA
1212 	/*
1213 	 * The NUMA zonelists are doubled because we need zonelists that
1214 	 * restrict the allocations to a single node for __GFP_THISNODE.
1215 	 */
1216 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1217 #endif
1218 	MAX_ZONELISTS
1219 };
1220 
1221 /*
1222  * This struct contains information about a zone in a zonelist. It is stored
1223  * here to avoid dereferences into large structures and lookups of tables
1224  */
1225 struct zoneref {
1226 	struct zone *zone;	/* Pointer to actual zone */
1227 	int zone_idx;		/* zone_idx(zoneref->zone) */
1228 };
1229 
1230 /*
1231  * One allocation request operates on a zonelist. A zonelist
1232  * is a list of zones, the first one is the 'goal' of the
1233  * allocation, the other zones are fallback zones, in decreasing
1234  * priority.
1235  *
1236  * To speed the reading of the zonelist, the zonerefs contain the zone index
1237  * of the entry being read. Helper functions to access information given
1238  * a struct zoneref are
1239  *
1240  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1241  * zonelist_zone_idx()	- Return the index of the zone for an entry
1242  * zonelist_node_idx()	- Return the index of the node for an entry
1243  */
1244 struct zonelist {
1245 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1246 };
1247 
1248 /*
1249  * The array of struct pages for flatmem.
1250  * It must be declared for SPARSEMEM as well because there are configurations
1251  * that rely on that.
1252  */
1253 extern struct page *mem_map;
1254 
1255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1256 struct deferred_split {
1257 	spinlock_t split_queue_lock;
1258 	struct list_head split_queue;
1259 	unsigned long split_queue_len;
1260 };
1261 #endif
1262 
1263 #ifdef CONFIG_MEMORY_FAILURE
1264 /*
1265  * Per NUMA node memory failure handling statistics.
1266  */
1267 struct memory_failure_stats {
1268 	/*
1269 	 * Number of raw pages poisoned.
1270 	 * Cases not accounted: memory outside kernel control, offline page,
1271 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1272 	 * error events, and unpoison actions from hwpoison_unpoison.
1273 	 */
1274 	unsigned long total;
1275 	/*
1276 	 * Recovery results of poisoned raw pages handled by memory_failure,
1277 	 * in sync with mf_result.
1278 	 * total = ignored + failed + delayed + recovered.
1279 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1280 	 */
1281 	unsigned long ignored;
1282 	unsigned long failed;
1283 	unsigned long delayed;
1284 	unsigned long recovered;
1285 };
1286 #endif
1287 
1288 /*
1289  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1290  * it's memory layout. On UMA machines there is a single pglist_data which
1291  * describes the whole memory.
1292  *
1293  * Memory statistics and page replacement data structures are maintained on a
1294  * per-zone basis.
1295  */
1296 typedef struct pglist_data {
1297 	/*
1298 	 * node_zones contains just the zones for THIS node. Not all of the
1299 	 * zones may be populated, but it is the full list. It is referenced by
1300 	 * this node's node_zonelists as well as other node's node_zonelists.
1301 	 */
1302 	struct zone node_zones[MAX_NR_ZONES];
1303 
1304 	/*
1305 	 * node_zonelists contains references to all zones in all nodes.
1306 	 * Generally the first zones will be references to this node's
1307 	 * node_zones.
1308 	 */
1309 	struct zonelist node_zonelists[MAX_ZONELISTS];
1310 
1311 	int nr_zones; /* number of populated zones in this node */
1312 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1313 	struct page *node_mem_map;
1314 #ifdef CONFIG_PAGE_EXTENSION
1315 	struct page_ext *node_page_ext;
1316 #endif
1317 #endif
1318 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1319 	/*
1320 	 * Must be held any time you expect node_start_pfn,
1321 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1322 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1323 	 * init.
1324 	 *
1325 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1326 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1327 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1328 	 *
1329 	 * Nests above zone->lock and zone->span_seqlock
1330 	 */
1331 	spinlock_t node_size_lock;
1332 #endif
1333 	unsigned long node_start_pfn;
1334 	unsigned long node_present_pages; /* total number of physical pages */
1335 	unsigned long node_spanned_pages; /* total size of physical page
1336 					     range, including holes */
1337 	int node_id;
1338 	wait_queue_head_t kswapd_wait;
1339 	wait_queue_head_t pfmemalloc_wait;
1340 
1341 	/* workqueues for throttling reclaim for different reasons. */
1342 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1343 
1344 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1345 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1346 					 * when throttling started. */
1347 #ifdef CONFIG_MEMORY_HOTPLUG
1348 	struct mutex kswapd_lock;
1349 #endif
1350 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1351 	int kswapd_order;
1352 	enum zone_type kswapd_highest_zoneidx;
1353 
1354 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1355 
1356 	ANDROID_OEM_DATA(1);
1357 #ifdef CONFIG_COMPACTION
1358 	int kcompactd_max_order;
1359 	enum zone_type kcompactd_highest_zoneidx;
1360 	wait_queue_head_t kcompactd_wait;
1361 	struct task_struct *kcompactd;
1362 	bool proactive_compact_trigger;
1363 #endif
1364 	/*
1365 	 * This is a per-node reserve of pages that are not available
1366 	 * to userspace allocations.
1367 	 */
1368 	unsigned long		totalreserve_pages;
1369 
1370 #ifdef CONFIG_NUMA
1371 	/*
1372 	 * node reclaim becomes active if more unmapped pages exist.
1373 	 */
1374 	unsigned long		min_unmapped_pages;
1375 	unsigned long		min_slab_pages;
1376 #endif /* CONFIG_NUMA */
1377 
1378 	/* Write-intensive fields used by page reclaim */
1379 	CACHELINE_PADDING(_pad1_);
1380 
1381 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1382 	/*
1383 	 * If memory initialisation on large machines is deferred then this
1384 	 * is the first PFN that needs to be initialised.
1385 	 */
1386 	unsigned long first_deferred_pfn;
1387 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1388 
1389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1390 	struct deferred_split deferred_split_queue;
1391 #endif
1392 
1393 #ifdef CONFIG_NUMA_BALANCING
1394 	/* start time in ms of current promote rate limit period */
1395 	unsigned int nbp_rl_start;
1396 	/* number of promote candidate pages at start time of current rate limit period */
1397 	unsigned long nbp_rl_nr_cand;
1398 	/* promote threshold in ms */
1399 	unsigned int nbp_threshold;
1400 	/* start time in ms of current promote threshold adjustment period */
1401 	unsigned int nbp_th_start;
1402 	/*
1403 	 * number of promote candidate pages at start time of current promote
1404 	 * threshold adjustment period
1405 	 */
1406 	unsigned long nbp_th_nr_cand;
1407 #endif
1408 	/* Fields commonly accessed by the page reclaim scanner */
1409 
1410 	/*
1411 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1412 	 *
1413 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1414 	 */
1415 	struct lruvec		__lruvec;
1416 
1417 	unsigned long		flags;
1418 
1419 #ifdef CONFIG_LRU_GEN
1420 	/* kswap mm walk data */
1421 	struct lru_gen_mm_walk mm_walk;
1422 	/* lru_gen_folio list */
1423 	struct lru_gen_memcg memcg_lru;
1424 #endif
1425 
1426 	CACHELINE_PADDING(_pad2_);
1427 
1428 	/* Per-node vmstats */
1429 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1430 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1431 #ifdef CONFIG_NUMA
1432 	struct memory_tier __rcu *memtier;
1433 #endif
1434 #ifdef CONFIG_MEMORY_FAILURE
1435 	struct memory_failure_stats mf_stats;
1436 #endif
1437 
1438 	ANDROID_KABI_RESERVE(1);
1439 } pg_data_t;
1440 
1441 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1442 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1443 
1444 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1445 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1446 
pgdat_end_pfn(pg_data_t * pgdat)1447 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1448 {
1449 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1450 }
1451 
1452 #include <linux/memory_hotplug.h>
1453 
1454 void build_all_zonelists(pg_data_t *pgdat);
1455 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1456 		   enum zone_type highest_zoneidx);
1457 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1458 			 int highest_zoneidx, unsigned int alloc_flags,
1459 			 long free_pages);
1460 bool zone_watermark_ok(struct zone *z, unsigned int order,
1461 		unsigned long mark, int highest_zoneidx,
1462 		unsigned int alloc_flags);
1463 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1464 		unsigned long mark, int highest_zoneidx);
1465 /*
1466  * Memory initialization context, use to differentiate memory added by
1467  * the platform statically or via memory hotplug interface.
1468  */
1469 enum meminit_context {
1470 	MEMINIT_EARLY,
1471 	MEMINIT_HOTPLUG,
1472 };
1473 
1474 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1475 				     unsigned long size);
1476 
1477 extern void lruvec_init(struct lruvec *lruvec);
1478 
lruvec_pgdat(struct lruvec * lruvec)1479 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1480 {
1481 #ifdef CONFIG_MEMCG
1482 	return lruvec->pgdat;
1483 #else
1484 	return container_of(lruvec, struct pglist_data, __lruvec);
1485 #endif
1486 }
1487 
1488 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1489 int local_memory_node(int node_id);
1490 #else
local_memory_node(int node_id)1491 static inline int local_memory_node(int node_id) { return node_id; };
1492 #endif
1493 
1494 /*
1495  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1496  */
1497 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1498 
zid_is_virt(enum zone_type zid)1499 static inline bool zid_is_virt(enum zone_type zid)
1500 {
1501 	return zid > LAST_PHYS_ZONE && zid <= LAST_VIRT_ZONE;
1502 }
1503 
zone_can_frag(struct zone * zone)1504 static inline bool zone_can_frag(struct zone *zone)
1505 {
1506 	VM_WARN_ON_ONCE(zone->order && zone_idx(zone) < ZONE_NOSPLIT);
1507 
1508 	return zone_idx(zone) < ZONE_NOSPLIT;
1509 }
1510 
zone_is_suitable(struct zone * zone,int order)1511 static inline bool zone_is_suitable(struct zone *zone, int order)
1512 {
1513 	int zid = zone_idx(zone);
1514 
1515 	if (zid < ZONE_NOSPLIT)
1516 		return true;
1517 
1518 	if (!zone->order)
1519 		return false;
1520 
1521 	return (zid == ZONE_NOSPLIT && order >= zone->order) ||
1522 	       (zid == ZONE_NOMERGE && order == zone->order);
1523 }
1524 
1525 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1526 static inline bool zone_is_zone_device(struct zone *zone)
1527 {
1528 	return zone_idx(zone) == ZONE_DEVICE;
1529 }
1530 #else
zone_is_zone_device(struct zone * zone)1531 static inline bool zone_is_zone_device(struct zone *zone)
1532 {
1533 	return false;
1534 }
1535 #endif
1536 
1537 /*
1538  * Returns true if a zone has pages managed by the buddy allocator.
1539  * All the reclaim decisions have to use this function rather than
1540  * populated_zone(). If the whole zone is reserved then we can easily
1541  * end up with populated_zone() && !managed_zone().
1542  */
managed_zone(struct zone * zone)1543 static inline bool managed_zone(struct zone *zone)
1544 {
1545 	return zone_managed_pages(zone);
1546 }
1547 
1548 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1549 static inline bool populated_zone(struct zone *zone)
1550 {
1551 	return zone->present_pages;
1552 }
1553 
1554 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1555 static inline int zone_to_nid(struct zone *zone)
1556 {
1557 	return zone->node;
1558 }
1559 
zone_set_nid(struct zone * zone,int nid)1560 static inline void zone_set_nid(struct zone *zone, int nid)
1561 {
1562 	zone->node = nid;
1563 }
1564 #else
zone_to_nid(struct zone * zone)1565 static inline int zone_to_nid(struct zone *zone)
1566 {
1567 	return 0;
1568 }
1569 
zone_set_nid(struct zone * zone,int nid)1570 static inline void zone_set_nid(struct zone *zone, int nid) {}
1571 #endif
1572 
1573 extern int virt_zone;
1574 
is_highmem_idx(enum zone_type idx)1575 static inline int is_highmem_idx(enum zone_type idx)
1576 {
1577 #ifdef CONFIG_HIGHMEM
1578 	return (idx == ZONE_HIGHMEM ||
1579 		(zid_is_virt(idx) && virt_zone == ZONE_HIGHMEM));
1580 #else
1581 	return 0;
1582 #endif
1583 }
1584 
1585 /**
1586  * is_highmem - helper function to quickly check if a struct zone is a
1587  *              highmem zone or not.  This is an attempt to keep references
1588  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1589  * @zone: pointer to struct zone variable
1590  * Return: 1 for a highmem zone, 0 otherwise
1591  */
is_highmem(struct zone * zone)1592 static inline int is_highmem(struct zone *zone)
1593 {
1594 	return is_highmem_idx(zone_idx(zone));
1595 }
1596 
1597 #ifdef CONFIG_ZONE_DMA
1598 bool has_managed_dma(void);
1599 #else
has_managed_dma(void)1600 static inline bool has_managed_dma(void)
1601 {
1602 	return false;
1603 }
1604 #endif
1605 
1606 
1607 #ifndef CONFIG_NUMA
1608 
1609 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1610 static inline struct pglist_data *NODE_DATA(int nid)
1611 {
1612 	return &contig_page_data;
1613 }
1614 
1615 #else /* CONFIG_NUMA */
1616 
1617 #include <asm/mmzone.h>
1618 
1619 #endif /* !CONFIG_NUMA */
1620 
1621 extern struct pglist_data *first_online_pgdat(void);
1622 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1623 extern struct zone *next_zone(struct zone *zone);
1624 extern int isolate_anon_lru_page(struct page *page);
1625 
1626 /**
1627  * for_each_online_pgdat - helper macro to iterate over all online nodes
1628  * @pgdat: pointer to a pg_data_t variable
1629  */
1630 #define for_each_online_pgdat(pgdat)			\
1631 	for (pgdat = first_online_pgdat();		\
1632 	     pgdat;					\
1633 	     pgdat = next_online_pgdat(pgdat))
1634 /**
1635  * for_each_zone - helper macro to iterate over all memory zones
1636  * @zone: pointer to struct zone variable
1637  *
1638  * The user only needs to declare the zone variable, for_each_zone
1639  * fills it in.
1640  */
1641 #define for_each_zone(zone)			        \
1642 	for (zone = (first_online_pgdat())->node_zones; \
1643 	     zone;					\
1644 	     zone = next_zone(zone))
1645 
1646 #define for_each_populated_zone(zone)		        \
1647 	for (zone = (first_online_pgdat())->node_zones; \
1648 	     zone;					\
1649 	     zone = next_zone(zone))			\
1650 		if (!populated_zone(zone))		\
1651 			; /* do nothing */		\
1652 		else
1653 
zonelist_zone(struct zoneref * zoneref)1654 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1655 {
1656 	return zoneref->zone;
1657 }
1658 
zonelist_zone_idx(struct zoneref * zoneref)1659 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1660 {
1661 	return zoneref->zone_idx;
1662 }
1663 
zonelist_node_idx(struct zoneref * zoneref)1664 static inline int zonelist_node_idx(struct zoneref *zoneref)
1665 {
1666 	return zone_to_nid(zoneref->zone);
1667 }
1668 
1669 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1670 					enum zone_type highest_zoneidx,
1671 					nodemask_t *nodes);
1672 
1673 /**
1674  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1675  * @z: The cursor used as a starting point for the search
1676  * @highest_zoneidx: The zone index of the highest zone to return
1677  * @nodes: An optional nodemask to filter the zonelist with
1678  *
1679  * This function returns the next zone at or below a given zone index that is
1680  * within the allowed nodemask using a cursor as the starting point for the
1681  * search. The zoneref returned is a cursor that represents the current zone
1682  * being examined. It should be advanced by one before calling
1683  * next_zones_zonelist again.
1684  *
1685  * Return: the next zone at or below highest_zoneidx within the allowed
1686  * nodemask using a cursor within a zonelist as a starting point
1687  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1688 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1689 					enum zone_type highest_zoneidx,
1690 					nodemask_t *nodes)
1691 {
1692 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1693 		return z;
1694 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1695 }
1696 
1697 /**
1698  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1699  * @zonelist: The zonelist to search for a suitable zone
1700  * @highest_zoneidx: The zone index of the highest zone to return
1701  * @nodes: An optional nodemask to filter the zonelist with
1702  *
1703  * This function returns the first zone at or below a given zone index that is
1704  * within the allowed nodemask. The zoneref returned is a cursor that can be
1705  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1706  * one before calling.
1707  *
1708  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1709  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1710  * update due to cpuset modification.
1711  *
1712  * Return: Zoneref pointer for the first suitable zone found
1713  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1714 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1715 					enum zone_type highest_zoneidx,
1716 					nodemask_t *nodes)
1717 {
1718 	return next_zones_zonelist(zonelist->_zonerefs,
1719 							highest_zoneidx, nodes);
1720 }
1721 
1722 /**
1723  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1724  * @zone: The current zone in the iterator
1725  * @z: The current pointer within zonelist->_zonerefs being iterated
1726  * @zlist: The zonelist being iterated
1727  * @highidx: The zone index of the highest zone to return
1728  * @nodemask: Nodemask allowed by the allocator
1729  *
1730  * This iterator iterates though all zones at or below a given zone index and
1731  * within a given nodemask
1732  */
1733 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1734 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1735 		zone;							\
1736 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1737 			zone = zonelist_zone(z))
1738 
1739 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1740 	for (zone = z->zone;	\
1741 		zone;							\
1742 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1743 			zone = zonelist_zone(z))
1744 
1745 
1746 /**
1747  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1748  * @zone: The current zone in the iterator
1749  * @z: The current pointer within zonelist->zones being iterated
1750  * @zlist: The zonelist being iterated
1751  * @highidx: The zone index of the highest zone to return
1752  *
1753  * This iterator iterates though all zones at or below a given zone index.
1754  */
1755 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1756 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1757 
1758 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1759 static inline bool movable_only_nodes(nodemask_t *nodes)
1760 {
1761 	struct zonelist *zonelist;
1762 	struct zoneref *z;
1763 	int nid;
1764 
1765 	if (nodes_empty(*nodes))
1766 		return false;
1767 
1768 	/*
1769 	 * We can chose arbitrary node from the nodemask to get a
1770 	 * zonelist as they are interlinked. We just need to find
1771 	 * at least one zone that can satisfy kernel allocations.
1772 	 */
1773 	nid = first_node(*nodes);
1774 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1775 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1776 	return (!z->zone) ? true : false;
1777 }
1778 
1779 
1780 #ifdef CONFIG_SPARSEMEM
1781 #include <asm/sparsemem.h>
1782 #endif
1783 
1784 #ifdef CONFIG_FLATMEM
1785 #define pfn_to_nid(pfn)		(0)
1786 #endif
1787 
1788 #ifdef CONFIG_SPARSEMEM
1789 
1790 /*
1791  * PA_SECTION_SHIFT		physical address to/from section number
1792  * PFN_SECTION_SHIFT		pfn to/from section number
1793  */
1794 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1795 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1796 
1797 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1798 
1799 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1800 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1801 
1802 #define SECTION_BLOCKFLAGS_BITS \
1803 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1804 
1805 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1806 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1807 #endif
1808 
pfn_to_section_nr(unsigned long pfn)1809 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1810 {
1811 	return pfn >> PFN_SECTION_SHIFT;
1812 }
section_nr_to_pfn(unsigned long sec)1813 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1814 {
1815 	return sec << PFN_SECTION_SHIFT;
1816 }
1817 
1818 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1819 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1820 
1821 #define SUBSECTION_SHIFT 21
1822 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1823 
1824 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1825 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1826 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1827 
1828 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1829 #error Subsection size exceeds section size
1830 #else
1831 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1832 #endif
1833 
1834 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1835 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1836 
1837 struct mem_section_usage {
1838 	struct rcu_head rcu;
1839 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1840 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1841 #endif
1842 	/* See declaration of similar field in struct zone */
1843 	unsigned long pageblock_flags[0];
1844 };
1845 
1846 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1847 
1848 struct page;
1849 struct page_ext;
1850 struct mem_section {
1851 	/*
1852 	 * This is, logically, a pointer to an array of struct
1853 	 * pages.  However, it is stored with some other magic.
1854 	 * (see sparse.c::sparse_init_one_section())
1855 	 *
1856 	 * Additionally during early boot we encode node id of
1857 	 * the location of the section here to guide allocation.
1858 	 * (see sparse.c::memory_present())
1859 	 *
1860 	 * Making it a UL at least makes someone do a cast
1861 	 * before using it wrong.
1862 	 */
1863 	unsigned long section_mem_map;
1864 
1865 	struct mem_section_usage *usage;
1866 #ifdef CONFIG_PAGE_EXTENSION
1867 	/*
1868 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1869 	 * section. (see page_ext.h about this.)
1870 	 */
1871 	struct page_ext *page_ext;
1872 	unsigned long pad;
1873 #endif
1874 	/*
1875 	 * WARNING: mem_section must be a power-of-2 in size for the
1876 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1877 	 */
1878 };
1879 
1880 #ifdef CONFIG_SPARSEMEM_EXTREME
1881 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1882 #else
1883 #define SECTIONS_PER_ROOT	1
1884 #endif
1885 
1886 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1887 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1888 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1889 
1890 #ifdef CONFIG_SPARSEMEM_EXTREME
1891 extern struct mem_section **mem_section;
1892 #else
1893 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1894 #endif
1895 
section_to_usemap(struct mem_section * ms)1896 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1897 {
1898 	return ms->usage->pageblock_flags;
1899 }
1900 
__nr_to_section(unsigned long nr)1901 static inline struct mem_section *__nr_to_section(unsigned long nr)
1902 {
1903 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1904 
1905 	if (unlikely(root >= NR_SECTION_ROOTS))
1906 		return NULL;
1907 
1908 #ifdef CONFIG_SPARSEMEM_EXTREME
1909 	if (!mem_section || !mem_section[root])
1910 		return NULL;
1911 #endif
1912 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1913 }
1914 extern size_t mem_section_usage_size(void);
1915 
1916 /*
1917  * We use the lower bits of the mem_map pointer to store
1918  * a little bit of information.  The pointer is calculated
1919  * as mem_map - section_nr_to_pfn(pnum).  The result is
1920  * aligned to the minimum alignment of the two values:
1921  *   1. All mem_map arrays are page-aligned.
1922  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1923  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1924  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1925  *      worst combination is powerpc with 256k pages,
1926  *      which results in PFN_SECTION_SHIFT equal 6.
1927  * To sum it up, at least 6 bits are available on all architectures.
1928  * However, we can exceed 6 bits on some other architectures except
1929  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1930  * with the worst case of 64K pages on arm64) if we make sure the
1931  * exceeded bit is not applicable to powerpc.
1932  */
1933 enum {
1934 	SECTION_MARKED_PRESENT_BIT,
1935 	SECTION_HAS_MEM_MAP_BIT,
1936 	SECTION_IS_ONLINE_BIT,
1937 	SECTION_IS_EARLY_BIT,
1938 #ifdef CONFIG_ZONE_DEVICE
1939 	SECTION_TAINT_ZONE_DEVICE_BIT,
1940 #endif
1941 	SECTION_MAP_LAST_BIT,
1942 };
1943 
1944 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1945 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1946 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1947 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1948 #ifdef CONFIG_ZONE_DEVICE
1949 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1950 #endif
1951 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1952 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1953 
__section_mem_map_addr(struct mem_section * section)1954 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1955 {
1956 	unsigned long map = section->section_mem_map;
1957 	map &= SECTION_MAP_MASK;
1958 	return (struct page *)map;
1959 }
1960 
present_section(struct mem_section * section)1961 static inline int present_section(struct mem_section *section)
1962 {
1963 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1964 }
1965 
present_section_nr(unsigned long nr)1966 static inline int present_section_nr(unsigned long nr)
1967 {
1968 	return present_section(__nr_to_section(nr));
1969 }
1970 
valid_section(struct mem_section * section)1971 static inline int valid_section(struct mem_section *section)
1972 {
1973 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1974 }
1975 
early_section(struct mem_section * section)1976 static inline int early_section(struct mem_section *section)
1977 {
1978 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1979 }
1980 
valid_section_nr(unsigned long nr)1981 static inline int valid_section_nr(unsigned long nr)
1982 {
1983 	return valid_section(__nr_to_section(nr));
1984 }
1985 
online_section(struct mem_section * section)1986 static inline int online_section(struct mem_section *section)
1987 {
1988 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1989 }
1990 
1991 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1992 static inline int online_device_section(struct mem_section *section)
1993 {
1994 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1995 
1996 	return section && ((section->section_mem_map & flags) == flags);
1997 }
1998 #else
online_device_section(struct mem_section * section)1999 static inline int online_device_section(struct mem_section *section)
2000 {
2001 	return 0;
2002 }
2003 #endif
2004 
online_section_nr(unsigned long nr)2005 static inline int online_section_nr(unsigned long nr)
2006 {
2007 	return online_section(__nr_to_section(nr));
2008 }
2009 
2010 #ifdef CONFIG_MEMORY_HOTPLUG
2011 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2012 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2013 #endif
2014 
__pfn_to_section(unsigned long pfn)2015 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2016 {
2017 	return __nr_to_section(pfn_to_section_nr(pfn));
2018 }
2019 
2020 extern unsigned long __highest_present_section_nr;
2021 
subsection_map_index(unsigned long pfn)2022 static inline int subsection_map_index(unsigned long pfn)
2023 {
2024 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2025 }
2026 
2027 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2028 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2029 {
2030 	int idx = subsection_map_index(pfn);
2031 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2032 
2033 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2034 }
2035 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2036 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2037 {
2038 	return 1;
2039 }
2040 #endif
2041 
2042 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2043 /**
2044  * pfn_valid - check if there is a valid memory map entry for a PFN
2045  * @pfn: the page frame number to check
2046  *
2047  * Check if there is a valid memory map entry aka struct page for the @pfn.
2048  * Note, that availability of the memory map entry does not imply that
2049  * there is actual usable memory at that @pfn. The struct page may
2050  * represent a hole or an unusable page frame.
2051  *
2052  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2053  */
pfn_valid(unsigned long pfn)2054 static inline int pfn_valid(unsigned long pfn)
2055 {
2056 	struct mem_section *ms;
2057 	int ret;
2058 
2059 	/*
2060 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2061 	 * pfn. Else it might lead to false positives when
2062 	 * some of the upper bits are set, but the lower bits
2063 	 * match a valid pfn.
2064 	 */
2065 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2066 		return 0;
2067 
2068 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2069 		return 0;
2070 	ms = __pfn_to_section(pfn);
2071 	rcu_read_lock_sched();
2072 	if (!valid_section(ms)) {
2073 		rcu_read_unlock_sched();
2074 		return 0;
2075 	}
2076 	/*
2077 	 * Traditionally early sections always returned pfn_valid() for
2078 	 * the entire section-sized span.
2079 	 */
2080 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2081 	rcu_read_unlock_sched();
2082 
2083 	return ret;
2084 }
2085 #endif
2086 
pfn_in_present_section(unsigned long pfn)2087 static inline int pfn_in_present_section(unsigned long pfn)
2088 {
2089 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2090 		return 0;
2091 	return present_section(__pfn_to_section(pfn));
2092 }
2093 
next_present_section_nr(unsigned long section_nr)2094 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2095 {
2096 	while (++section_nr <= __highest_present_section_nr) {
2097 		if (present_section_nr(section_nr))
2098 			return section_nr;
2099 	}
2100 
2101 	return -1;
2102 }
2103 
2104 /*
2105  * These are _only_ used during initialisation, therefore they
2106  * can use __initdata ...  They could have names to indicate
2107  * this restriction.
2108  */
2109 #ifdef CONFIG_NUMA
2110 #define pfn_to_nid(pfn)							\
2111 ({									\
2112 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2113 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2114 })
2115 #else
2116 #define pfn_to_nid(pfn)		(0)
2117 #endif
2118 
2119 void sparse_init(void);
2120 #else
2121 #define sparse_init()	do {} while (0)
2122 #define sparse_index_init(_sec, _nid)  do {} while (0)
2123 #define pfn_in_present_section pfn_valid
2124 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2125 #endif /* CONFIG_SPARSEMEM */
2126 
2127 #endif /* !__GENERATING_BOUNDS.H */
2128 #endif /* !__ASSEMBLY__ */
2129 #endif /* _LINUX_MMZONE_H */
2130