1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 #include <trace/hooks/net.h>
113
114 #ifdef CONFIG_NET_RX_BUSY_POLL
115 unsigned int sysctl_net_busy_read __read_mostly;
116 unsigned int sysctl_net_busy_poll __read_mostly;
117 #endif
118
119 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
120 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122
123 static int sock_close(struct inode *inode, struct file *file);
124 static __poll_t sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
135 static void sock_splice_eof(struct file *file);
136
137 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)138 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
139 {
140 struct socket *sock = f->private_data;
141 const struct proto_ops *ops = READ_ONCE(sock->ops);
142
143 if (ops->show_fdinfo)
144 ops->show_fdinfo(m, sock);
145 }
146 #else
147 #define sock_show_fdinfo NULL
148 #endif
149
150 /*
151 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
152 * in the operation structures but are done directly via the socketcall() multiplexor.
153 */
154
155 static const struct file_operations socket_file_ops = {
156 .owner = THIS_MODULE,
157 .llseek = no_llseek,
158 .read_iter = sock_read_iter,
159 .write_iter = sock_write_iter,
160 .poll = sock_poll,
161 .unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 .compat_ioctl = compat_sock_ioctl,
164 #endif
165 .uring_cmd = io_uring_cmd_sock,
166 .mmap = sock_mmap,
167 .release = sock_close,
168 .fasync = sock_fasync,
169 .splice_write = splice_to_socket,
170 .splice_read = sock_splice_read,
171 .splice_eof = sock_splice_eof,
172 .show_fdinfo = sock_show_fdinfo,
173 };
174
175 static const char * const pf_family_names[] = {
176 [PF_UNSPEC] = "PF_UNSPEC",
177 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
178 [PF_INET] = "PF_INET",
179 [PF_AX25] = "PF_AX25",
180 [PF_IPX] = "PF_IPX",
181 [PF_APPLETALK] = "PF_APPLETALK",
182 [PF_NETROM] = "PF_NETROM",
183 [PF_BRIDGE] = "PF_BRIDGE",
184 [PF_ATMPVC] = "PF_ATMPVC",
185 [PF_X25] = "PF_X25",
186 [PF_INET6] = "PF_INET6",
187 [PF_ROSE] = "PF_ROSE",
188 [PF_DECnet] = "PF_DECnet",
189 [PF_NETBEUI] = "PF_NETBEUI",
190 [PF_SECURITY] = "PF_SECURITY",
191 [PF_KEY] = "PF_KEY",
192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
193 [PF_PACKET] = "PF_PACKET",
194 [PF_ASH] = "PF_ASH",
195 [PF_ECONET] = "PF_ECONET",
196 [PF_ATMSVC] = "PF_ATMSVC",
197 [PF_RDS] = "PF_RDS",
198 [PF_SNA] = "PF_SNA",
199 [PF_IRDA] = "PF_IRDA",
200 [PF_PPPOX] = "PF_PPPOX",
201 [PF_WANPIPE] = "PF_WANPIPE",
202 [PF_LLC] = "PF_LLC",
203 [PF_IB] = "PF_IB",
204 [PF_MPLS] = "PF_MPLS",
205 [PF_CAN] = "PF_CAN",
206 [PF_TIPC] = "PF_TIPC",
207 [PF_BLUETOOTH] = "PF_BLUETOOTH",
208 [PF_IUCV] = "PF_IUCV",
209 [PF_RXRPC] = "PF_RXRPC",
210 [PF_ISDN] = "PF_ISDN",
211 [PF_PHONET] = "PF_PHONET",
212 [PF_IEEE802154] = "PF_IEEE802154",
213 [PF_CAIF] = "PF_CAIF",
214 [PF_ALG] = "PF_ALG",
215 [PF_NFC] = "PF_NFC",
216 [PF_VSOCK] = "PF_VSOCK",
217 [PF_KCM] = "PF_KCM",
218 [PF_QIPCRTR] = "PF_QIPCRTR",
219 [PF_SMC] = "PF_SMC",
220 [PF_XDP] = "PF_XDP",
221 [PF_MCTP] = "PF_MCTP",
222 };
223
224 /*
225 * The protocol list. Each protocol is registered in here.
226 */
227
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230
231 /*
232 * Support routines.
233 * Move socket addresses back and forth across the kernel/user
234 * divide and look after the messy bits.
235 */
236
237 /**
238 * move_addr_to_kernel - copy a socket address into kernel space
239 * @uaddr: Address in user space
240 * @kaddr: Address in kernel space
241 * @ulen: Length in user space
242 *
243 * The address is copied into kernel space. If the provided address is
244 * too long an error code of -EINVAL is returned. If the copy gives
245 * invalid addresses -EFAULT is returned. On a success 0 is returned.
246 */
247
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 return -EINVAL;
252 if (ulen == 0)
253 return 0;
254 if (copy_from_user(kaddr, uaddr, ulen))
255 return -EFAULT;
256 return audit_sockaddr(ulen, kaddr);
257 }
258
259 /**
260 * move_addr_to_user - copy an address to user space
261 * @kaddr: kernel space address
262 * @klen: length of address in kernel
263 * @uaddr: user space address
264 * @ulen: pointer to user length field
265 *
266 * The value pointed to by ulen on entry is the buffer length available.
267 * This is overwritten with the buffer space used. -EINVAL is returned
268 * if an overlong buffer is specified or a negative buffer size. -EFAULT
269 * is returned if either the buffer or the length field are not
270 * accessible.
271 * After copying the data up to the limit the user specifies, the true
272 * length of the data is written over the length limit the user
273 * specified. Zero is returned for a success.
274 */
275
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 void __user *uaddr, int __user *ulen)
278 {
279 int err;
280 int len;
281
282 BUG_ON(klen > sizeof(struct sockaddr_storage));
283 err = get_user(len, ulen);
284 if (err)
285 return err;
286 if (len > klen)
287 len = klen;
288 if (len < 0)
289 return -EINVAL;
290 if (len) {
291 if (audit_sockaddr(klen, kaddr))
292 return -ENOMEM;
293 if (copy_to_user(uaddr, kaddr, len))
294 return -EFAULT;
295 }
296 /*
297 * "fromlen shall refer to the value before truncation.."
298 * 1003.1g
299 */
300 return __put_user(klen, ulen);
301 }
302
303 static struct kmem_cache *sock_inode_cachep __ro_after_init;
304
sock_alloc_inode(struct super_block * sb)305 static struct inode *sock_alloc_inode(struct super_block *sb)
306 {
307 struct socket_alloc *ei;
308
309 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
310 if (!ei)
311 return NULL;
312 init_waitqueue_head(&ei->socket.wq.wait);
313 ei->socket.wq.fasync_list = NULL;
314 ei->socket.wq.flags = 0;
315
316 ei->socket.state = SS_UNCONNECTED;
317 ei->socket.flags = 0;
318 ei->socket.ops = NULL;
319 ei->socket.sk = NULL;
320 ei->socket.file = NULL;
321
322 return &ei->vfs_inode;
323 }
324
sock_free_inode(struct inode * inode)325 static void sock_free_inode(struct inode *inode)
326 {
327 struct socket_alloc *ei;
328
329 ei = container_of(inode, struct socket_alloc, vfs_inode);
330 kmem_cache_free(sock_inode_cachep, ei);
331 }
332
init_once(void * foo)333 static void init_once(void *foo)
334 {
335 struct socket_alloc *ei = (struct socket_alloc *)foo;
336
337 inode_init_once(&ei->vfs_inode);
338 }
339
init_inodecache(void)340 static void init_inodecache(void)
341 {
342 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
343 sizeof(struct socket_alloc),
344 0,
345 (SLAB_HWCACHE_ALIGN |
346 SLAB_RECLAIM_ACCOUNT |
347 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
348 init_once);
349 BUG_ON(sock_inode_cachep == NULL);
350 }
351
352 static const struct super_operations sockfs_ops = {
353 .alloc_inode = sock_alloc_inode,
354 .free_inode = sock_free_inode,
355 .statfs = simple_statfs,
356 };
357
358 /*
359 * sockfs_dname() is called from d_path().
360 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
362 {
363 return dynamic_dname(buffer, buflen, "socket:[%lu]",
364 d_inode(dentry)->i_ino);
365 }
366
367 static const struct dentry_operations sockfs_dentry_operations = {
368 .d_dname = sockfs_dname,
369 };
370
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)371 static int sockfs_xattr_get(const struct xattr_handler *handler,
372 struct dentry *dentry, struct inode *inode,
373 const char *suffix, void *value, size_t size)
374 {
375 if (value) {
376 if (dentry->d_name.len + 1 > size)
377 return -ERANGE;
378 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
379 }
380 return dentry->d_name.len + 1;
381 }
382
383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
386
387 static const struct xattr_handler sockfs_xattr_handler = {
388 .name = XATTR_NAME_SOCKPROTONAME,
389 .get = sockfs_xattr_get,
390 };
391
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)392 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
393 struct mnt_idmap *idmap,
394 struct dentry *dentry, struct inode *inode,
395 const char *suffix, const void *value,
396 size_t size, int flags)
397 {
398 /* Handled by LSM. */
399 return -EAGAIN;
400 }
401
402 static const struct xattr_handler sockfs_security_xattr_handler = {
403 .prefix = XATTR_SECURITY_PREFIX,
404 .set = sockfs_security_xattr_set,
405 };
406
407 static const struct xattr_handler *sockfs_xattr_handlers[] = {
408 &sockfs_xattr_handler,
409 &sockfs_security_xattr_handler,
410 NULL
411 };
412
sockfs_init_fs_context(struct fs_context * fc)413 static int sockfs_init_fs_context(struct fs_context *fc)
414 {
415 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
416 if (!ctx)
417 return -ENOMEM;
418 ctx->ops = &sockfs_ops;
419 ctx->dops = &sockfs_dentry_operations;
420 ctx->xattr = sockfs_xattr_handlers;
421 return 0;
422 }
423
424 static struct vfsmount *sock_mnt __read_mostly;
425
426 static struct file_system_type sock_fs_type = {
427 .name = "sockfs",
428 .init_fs_context = sockfs_init_fs_context,
429 .kill_sb = kill_anon_super,
430 };
431
432 /*
433 * Obtains the first available file descriptor and sets it up for use.
434 *
435 * These functions create file structures and maps them to fd space
436 * of the current process. On success it returns file descriptor
437 * and file struct implicitly stored in sock->file.
438 * Note that another thread may close file descriptor before we return
439 * from this function. We use the fact that now we do not refer
440 * to socket after mapping. If one day we will need it, this
441 * function will increment ref. count on file by 1.
442 *
443 * In any case returned fd MAY BE not valid!
444 * This race condition is unavoidable
445 * with shared fd spaces, we cannot solve it inside kernel,
446 * but we take care of internal coherence yet.
447 */
448
449 /**
450 * sock_alloc_file - Bind a &socket to a &file
451 * @sock: socket
452 * @flags: file status flags
453 * @dname: protocol name
454 *
455 * Returns the &file bound with @sock, implicitly storing it
456 * in sock->file. If dname is %NULL, sets to "".
457 *
458 * On failure @sock is released, and an ERR pointer is returned.
459 *
460 * This function uses GFP_KERNEL internally.
461 */
462
sock_alloc_file(struct socket * sock,int flags,const char * dname)463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
464 {
465 struct file *file;
466
467 if (!dname)
468 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
469
470 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
471 O_RDWR | (flags & O_NONBLOCK),
472 &socket_file_ops);
473 if (IS_ERR(file)) {
474 sock_release(sock);
475 return file;
476 }
477
478 file->f_mode |= FMODE_NOWAIT;
479 sock->file = file;
480 file->private_data = sock;
481 stream_open(SOCK_INODE(sock), file);
482 return file;
483 }
484 EXPORT_SYMBOL(sock_alloc_file);
485
sock_map_fd(struct socket * sock,int flags)486 static int sock_map_fd(struct socket *sock, int flags)
487 {
488 struct file *newfile;
489 int fd = get_unused_fd_flags(flags);
490 if (unlikely(fd < 0)) {
491 sock_release(sock);
492 return fd;
493 }
494
495 newfile = sock_alloc_file(sock, flags, NULL);
496 if (!IS_ERR(newfile)) {
497 fd_install(fd, newfile);
498 return fd;
499 }
500
501 put_unused_fd(fd);
502 return PTR_ERR(newfile);
503 }
504
505 /**
506 * sock_from_file - Return the &socket bounded to @file.
507 * @file: file
508 *
509 * On failure returns %NULL.
510 */
511
sock_from_file(struct file * file)512 struct socket *sock_from_file(struct file *file)
513 {
514 if (file->f_op == &socket_file_ops)
515 return file->private_data; /* set in sock_alloc_file */
516
517 return NULL;
518 }
519 EXPORT_SYMBOL(sock_from_file);
520
521 /**
522 * sockfd_lookup - Go from a file number to its socket slot
523 * @fd: file handle
524 * @err: pointer to an error code return
525 *
526 * The file handle passed in is locked and the socket it is bound
527 * to is returned. If an error occurs the err pointer is overwritten
528 * with a negative errno code and NULL is returned. The function checks
529 * for both invalid handles and passing a handle which is not a socket.
530 *
531 * On a success the socket object pointer is returned.
532 */
533
sockfd_lookup(int fd,int * err)534 struct socket *sockfd_lookup(int fd, int *err)
535 {
536 struct file *file;
537 struct socket *sock;
538
539 file = fget(fd);
540 if (!file) {
541 *err = -EBADF;
542 return NULL;
543 }
544
545 sock = sock_from_file(file);
546 if (!sock) {
547 *err = -ENOTSOCK;
548 fput(file);
549 }
550 return sock;
551 }
552 EXPORT_SYMBOL(sockfd_lookup);
553
sockfd_lookup_light(int fd,int * err,int * fput_needed)554 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
555 {
556 struct fd f = fdget(fd);
557 struct socket *sock;
558
559 *err = -EBADF;
560 if (f.file) {
561 sock = sock_from_file(f.file);
562 if (likely(sock)) {
563 *fput_needed = f.flags & FDPUT_FPUT;
564 return sock;
565 }
566 *err = -ENOTSOCK;
567 fdput(f);
568 }
569 return NULL;
570 }
571
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)572 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
573 size_t size)
574 {
575 ssize_t len;
576 ssize_t used = 0;
577
578 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
579 if (len < 0)
580 return len;
581 used += len;
582 if (buffer) {
583 if (size < used)
584 return -ERANGE;
585 buffer += len;
586 }
587
588 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
589 used += len;
590 if (buffer) {
591 if (size < used)
592 return -ERANGE;
593 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
594 buffer += len;
595 }
596
597 return used;
598 }
599
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)600 static int sockfs_setattr(struct mnt_idmap *idmap,
601 struct dentry *dentry, struct iattr *iattr)
602 {
603 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
604
605 if (!err && (iattr->ia_valid & ATTR_UID)) {
606 struct socket *sock = SOCKET_I(d_inode(dentry));
607
608 if (sock->sk)
609 sock->sk->sk_uid = iattr->ia_uid;
610 else
611 err = -ENOENT;
612 }
613
614 return err;
615 }
616
617 static const struct inode_operations sockfs_inode_ops = {
618 .listxattr = sockfs_listxattr,
619 .setattr = sockfs_setattr,
620 };
621
622 /**
623 * sock_alloc - allocate a socket
624 *
625 * Allocate a new inode and socket object. The two are bound together
626 * and initialised. The socket is then returned. If we are out of inodes
627 * NULL is returned. This functions uses GFP_KERNEL internally.
628 */
629
sock_alloc(void)630 struct socket *sock_alloc(void)
631 {
632 struct inode *inode;
633 struct socket *sock;
634
635 inode = new_inode_pseudo(sock_mnt->mnt_sb);
636 if (!inode)
637 return NULL;
638
639 sock = SOCKET_I(inode);
640
641 inode->i_ino = get_next_ino();
642 inode->i_mode = S_IFSOCK | S_IRWXUGO;
643 inode->i_uid = current_fsuid();
644 inode->i_gid = current_fsgid();
645 inode->i_op = &sockfs_inode_ops;
646
647 return sock;
648 }
649 EXPORT_SYMBOL(sock_alloc);
650
__sock_release(struct socket * sock,struct inode * inode)651 static void __sock_release(struct socket *sock, struct inode *inode)
652 {
653 const struct proto_ops *ops = READ_ONCE(sock->ops);
654
655 if (ops) {
656 struct module *owner = ops->owner;
657
658 if (inode)
659 inode_lock(inode);
660 ops->release(sock);
661 sock->sk = NULL;
662 if (inode)
663 inode_unlock(inode);
664 sock->ops = NULL;
665 module_put(owner);
666 }
667
668 if (sock->wq.fasync_list)
669 pr_err("%s: fasync list not empty!\n", __func__);
670
671 if (!sock->file) {
672 iput(SOCK_INODE(sock));
673 return;
674 }
675 sock->file = NULL;
676 }
677
678 /**
679 * sock_release - close a socket
680 * @sock: socket to close
681 *
682 * The socket is released from the protocol stack if it has a release
683 * callback, and the inode is then released if the socket is bound to
684 * an inode not a file.
685 */
sock_release(struct socket * sock)686 void sock_release(struct socket *sock)
687 {
688 __sock_release(sock, NULL);
689 }
690 EXPORT_SYMBOL(sock_release);
691
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)692 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
693 {
694 u8 flags = *tx_flags;
695
696 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
697 flags |= SKBTX_HW_TSTAMP;
698
699 /* PTP hardware clocks can provide a free running cycle counter
700 * as a time base for virtual clocks. Tell driver to use the
701 * free running cycle counter for timestamp if socket is bound
702 * to virtual clock.
703 */
704 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
705 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
706 }
707
708 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
709 flags |= SKBTX_SW_TSTAMP;
710
711 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
712 flags |= SKBTX_SCHED_TSTAMP;
713
714 *tx_flags = flags;
715 }
716 EXPORT_SYMBOL(__sock_tx_timestamp);
717
718 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
719 size_t));
720 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
721 size_t));
722
call_trace_sock_send_length(struct sock * sk,int ret,int flags)723 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
724 int flags)
725 {
726 trace_sock_send_length(sk, ret, 0);
727 }
728
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)729 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
730 {
731 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
732 inet_sendmsg, sock, msg,
733 msg_data_left(msg));
734 BUG_ON(ret == -EIOCBQUEUED);
735
736 if (trace_sock_send_length_enabled())
737 call_trace_sock_send_length(sock->sk, ret, 0);
738 return ret;
739 }
740
__sock_sendmsg(struct socket * sock,struct msghdr * msg)741 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
742 {
743 int err = security_socket_sendmsg(sock, msg,
744 msg_data_left(msg));
745
746 return err ?: sock_sendmsg_nosec(sock, msg);
747 }
748
749 /**
750 * sock_sendmsg - send a message through @sock
751 * @sock: socket
752 * @msg: message to send
753 *
754 * Sends @msg through @sock, passing through LSM.
755 * Returns the number of bytes sent, or an error code.
756 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)757 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
758 {
759 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
760 struct sockaddr_storage address;
761 int save_len = msg->msg_namelen;
762 int ret;
763
764 if (msg->msg_name) {
765 memcpy(&address, msg->msg_name, msg->msg_namelen);
766 msg->msg_name = &address;
767 }
768
769 ret = __sock_sendmsg(sock, msg);
770 msg->msg_name = save_addr;
771 msg->msg_namelen = save_len;
772
773 return ret;
774 }
775 EXPORT_SYMBOL(sock_sendmsg);
776
777 /**
778 * kernel_sendmsg - send a message through @sock (kernel-space)
779 * @sock: socket
780 * @msg: message header
781 * @vec: kernel vec
782 * @num: vec array length
783 * @size: total message data size
784 *
785 * Builds the message data with @vec and sends it through @sock.
786 * Returns the number of bytes sent, or an error code.
787 */
788
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)789 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
790 struct kvec *vec, size_t num, size_t size)
791 {
792 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
793 return sock_sendmsg(sock, msg);
794 }
795 EXPORT_SYMBOL(kernel_sendmsg);
796
797 /**
798 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
799 * @sk: sock
800 * @msg: message header
801 * @vec: output s/g array
802 * @num: output s/g array length
803 * @size: total message data size
804 *
805 * Builds the message data with @vec and sends it through @sock.
806 * Returns the number of bytes sent, or an error code.
807 * Caller must hold @sk.
808 */
809
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)810 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
811 struct kvec *vec, size_t num, size_t size)
812 {
813 struct socket *sock = sk->sk_socket;
814 const struct proto_ops *ops = READ_ONCE(sock->ops);
815
816 if (!ops->sendmsg_locked)
817 return sock_no_sendmsg_locked(sk, msg, size);
818
819 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
820
821 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
822 }
823 EXPORT_SYMBOL(kernel_sendmsg_locked);
824
skb_is_err_queue(const struct sk_buff * skb)825 static bool skb_is_err_queue(const struct sk_buff *skb)
826 {
827 /* pkt_type of skbs enqueued on the error queue are set to
828 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
829 * in recvmsg, since skbs received on a local socket will never
830 * have a pkt_type of PACKET_OUTGOING.
831 */
832 return skb->pkt_type == PACKET_OUTGOING;
833 }
834
835 /* On transmit, software and hardware timestamps are returned independently.
836 * As the two skb clones share the hardware timestamp, which may be updated
837 * before the software timestamp is received, a hardware TX timestamp may be
838 * returned only if there is no software TX timestamp. Ignore false software
839 * timestamps, which may be made in the __sock_recv_timestamp() call when the
840 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
841 * hardware timestamp.
842 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)843 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
844 {
845 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
846 }
847
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)848 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
849 {
850 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
851 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
852 struct net_device *orig_dev;
853 ktime_t hwtstamp;
854
855 rcu_read_lock();
856 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
857 if (orig_dev) {
858 *if_index = orig_dev->ifindex;
859 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
860 } else {
861 hwtstamp = shhwtstamps->hwtstamp;
862 }
863 rcu_read_unlock();
864
865 return hwtstamp;
866 }
867
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)868 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
869 int if_index)
870 {
871 struct scm_ts_pktinfo ts_pktinfo;
872 struct net_device *orig_dev;
873
874 if (!skb_mac_header_was_set(skb))
875 return;
876
877 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
878
879 if (!if_index) {
880 rcu_read_lock();
881 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
882 if (orig_dev)
883 if_index = orig_dev->ifindex;
884 rcu_read_unlock();
885 }
886 ts_pktinfo.if_index = if_index;
887
888 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
889 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
890 sizeof(ts_pktinfo), &ts_pktinfo);
891 }
892
893 /*
894 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
895 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)896 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
897 struct sk_buff *skb)
898 {
899 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
900 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
901 struct scm_timestamping_internal tss;
902 int empty = 1, false_tstamp = 0;
903 struct skb_shared_hwtstamps *shhwtstamps =
904 skb_hwtstamps(skb);
905 int if_index;
906 ktime_t hwtstamp;
907 u32 tsflags;
908
909 /* Race occurred between timestamp enabling and packet
910 receiving. Fill in the current time for now. */
911 if (need_software_tstamp && skb->tstamp == 0) {
912 __net_timestamp(skb);
913 false_tstamp = 1;
914 }
915
916 if (need_software_tstamp) {
917 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
918 if (new_tstamp) {
919 struct __kernel_sock_timeval tv;
920
921 skb_get_new_timestamp(skb, &tv);
922 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
923 sizeof(tv), &tv);
924 } else {
925 struct __kernel_old_timeval tv;
926
927 skb_get_timestamp(skb, &tv);
928 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
929 sizeof(tv), &tv);
930 }
931 } else {
932 if (new_tstamp) {
933 struct __kernel_timespec ts;
934
935 skb_get_new_timestampns(skb, &ts);
936 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
937 sizeof(ts), &ts);
938 } else {
939 struct __kernel_old_timespec ts;
940
941 skb_get_timestampns(skb, &ts);
942 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
943 sizeof(ts), &ts);
944 }
945 }
946 }
947
948 memset(&tss, 0, sizeof(tss));
949 tsflags = READ_ONCE(sk->sk_tsflags);
950 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
951 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
952 empty = 0;
953 if (shhwtstamps &&
954 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
955 !skb_is_swtx_tstamp(skb, false_tstamp)) {
956 if_index = 0;
957 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
958 hwtstamp = get_timestamp(sk, skb, &if_index);
959 else
960 hwtstamp = shhwtstamps->hwtstamp;
961
962 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
963 hwtstamp = ptp_convert_timestamp(&hwtstamp,
964 READ_ONCE(sk->sk_bind_phc));
965
966 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
967 empty = 0;
968
969 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
970 !skb_is_err_queue(skb))
971 put_ts_pktinfo(msg, skb, if_index);
972 }
973 }
974 if (!empty) {
975 if (sock_flag(sk, SOCK_TSTAMP_NEW))
976 put_cmsg_scm_timestamping64(msg, &tss);
977 else
978 put_cmsg_scm_timestamping(msg, &tss);
979
980 if (skb_is_err_queue(skb) && skb->len &&
981 SKB_EXT_ERR(skb)->opt_stats)
982 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
983 skb->len, skb->data);
984 }
985 }
986 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
987
988 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)989 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
990 struct sk_buff *skb)
991 {
992 int ack;
993
994 if (!sock_flag(sk, SOCK_WIFI_STATUS))
995 return;
996 if (!skb->wifi_acked_valid)
997 return;
998
999 ack = skb->wifi_acked;
1000
1001 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1002 }
1003 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1004 #endif
1005
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1006 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1007 struct sk_buff *skb)
1008 {
1009 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1010 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1011 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1012 }
1013
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1014 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1015 struct sk_buff *skb)
1016 {
1017 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1018 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1019 __u32 mark = skb->mark;
1020
1021 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1022 }
1023 }
1024
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1025 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1026 struct sk_buff *skb)
1027 {
1028 sock_recv_timestamp(msg, sk, skb);
1029 sock_recv_drops(msg, sk, skb);
1030 sock_recv_mark(msg, sk, skb);
1031 }
1032 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1033
1034 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1035 size_t, int));
1036 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1037 size_t, int));
1038
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1039 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1040 {
1041 trace_sock_recv_length(sk, ret, flags);
1042 }
1043
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1044 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1045 int flags)
1046 {
1047 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1048 inet6_recvmsg,
1049 inet_recvmsg, sock, msg,
1050 msg_data_left(msg), flags);
1051 if (trace_sock_recv_length_enabled())
1052 call_trace_sock_recv_length(sock->sk, ret, flags);
1053 return ret;
1054 }
1055
1056 /**
1057 * sock_recvmsg - receive a message from @sock
1058 * @sock: socket
1059 * @msg: message to receive
1060 * @flags: message flags
1061 *
1062 * Receives @msg from @sock, passing through LSM. Returns the total number
1063 * of bytes received, or an error.
1064 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1065 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1066 {
1067 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1068
1069 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1070 }
1071 EXPORT_SYMBOL(sock_recvmsg);
1072
1073 /**
1074 * kernel_recvmsg - Receive a message from a socket (kernel space)
1075 * @sock: The socket to receive the message from
1076 * @msg: Received message
1077 * @vec: Input s/g array for message data
1078 * @num: Size of input s/g array
1079 * @size: Number of bytes to read
1080 * @flags: Message flags (MSG_DONTWAIT, etc...)
1081 *
1082 * On return the msg structure contains the scatter/gather array passed in the
1083 * vec argument. The array is modified so that it consists of the unfilled
1084 * portion of the original array.
1085 *
1086 * The returned value is the total number of bytes received, or an error.
1087 */
1088
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1089 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1090 struct kvec *vec, size_t num, size_t size, int flags)
1091 {
1092 msg->msg_control_is_user = false;
1093 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1094 return sock_recvmsg(sock, msg, flags);
1095 }
1096 EXPORT_SYMBOL(kernel_recvmsg);
1097
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1098 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1099 struct pipe_inode_info *pipe, size_t len,
1100 unsigned int flags)
1101 {
1102 struct socket *sock = file->private_data;
1103 const struct proto_ops *ops;
1104
1105 ops = READ_ONCE(sock->ops);
1106 if (unlikely(!ops->splice_read))
1107 return copy_splice_read(file, ppos, pipe, len, flags);
1108
1109 return ops->splice_read(sock, ppos, pipe, len, flags);
1110 }
1111
sock_splice_eof(struct file * file)1112 static void sock_splice_eof(struct file *file)
1113 {
1114 struct socket *sock = file->private_data;
1115 const struct proto_ops *ops;
1116
1117 ops = READ_ONCE(sock->ops);
1118 if (ops->splice_eof)
1119 ops->splice_eof(sock);
1120 }
1121
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1122 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1123 {
1124 struct file *file = iocb->ki_filp;
1125 struct socket *sock = file->private_data;
1126 struct msghdr msg = {.msg_iter = *to,
1127 .msg_iocb = iocb};
1128 ssize_t res;
1129
1130 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1131 msg.msg_flags = MSG_DONTWAIT;
1132
1133 if (iocb->ki_pos != 0)
1134 return -ESPIPE;
1135
1136 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1137 return 0;
1138
1139 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1140 *to = msg.msg_iter;
1141 return res;
1142 }
1143
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1144 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1145 {
1146 struct file *file = iocb->ki_filp;
1147 struct socket *sock = file->private_data;
1148 struct msghdr msg = {.msg_iter = *from,
1149 .msg_iocb = iocb};
1150 ssize_t res;
1151
1152 if (iocb->ki_pos != 0)
1153 return -ESPIPE;
1154
1155 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1156 msg.msg_flags = MSG_DONTWAIT;
1157
1158 if (sock->type == SOCK_SEQPACKET)
1159 msg.msg_flags |= MSG_EOR;
1160
1161 res = __sock_sendmsg(sock, &msg);
1162 *from = msg.msg_iter;
1163 return res;
1164 }
1165
1166 /*
1167 * Atomic setting of ioctl hooks to avoid race
1168 * with module unload.
1169 */
1170
1171 static DEFINE_MUTEX(br_ioctl_mutex);
1172 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1173 unsigned int cmd, struct ifreq *ifr,
1174 void __user *uarg);
1175
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1176 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1177 unsigned int cmd, struct ifreq *ifr,
1178 void __user *uarg))
1179 {
1180 mutex_lock(&br_ioctl_mutex);
1181 br_ioctl_hook = hook;
1182 mutex_unlock(&br_ioctl_mutex);
1183 }
1184 EXPORT_SYMBOL(brioctl_set);
1185
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1186 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1187 struct ifreq *ifr, void __user *uarg)
1188 {
1189 int err = -ENOPKG;
1190
1191 if (!br_ioctl_hook)
1192 request_module("bridge");
1193
1194 mutex_lock(&br_ioctl_mutex);
1195 if (br_ioctl_hook)
1196 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1197 mutex_unlock(&br_ioctl_mutex);
1198
1199 return err;
1200 }
1201
1202 static DEFINE_MUTEX(vlan_ioctl_mutex);
1203 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1204
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1205 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1206 {
1207 mutex_lock(&vlan_ioctl_mutex);
1208 vlan_ioctl_hook = hook;
1209 mutex_unlock(&vlan_ioctl_mutex);
1210 }
1211 EXPORT_SYMBOL(vlan_ioctl_set);
1212
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1213 static long sock_do_ioctl(struct net *net, struct socket *sock,
1214 unsigned int cmd, unsigned long arg)
1215 {
1216 const struct proto_ops *ops = READ_ONCE(sock->ops);
1217 struct ifreq ifr;
1218 bool need_copyout;
1219 int err;
1220 void __user *argp = (void __user *)arg;
1221 void __user *data;
1222
1223 err = ops->ioctl(sock, cmd, arg);
1224
1225 /*
1226 * If this ioctl is unknown try to hand it down
1227 * to the NIC driver.
1228 */
1229 if (err != -ENOIOCTLCMD)
1230 return err;
1231
1232 if (!is_socket_ioctl_cmd(cmd))
1233 return -ENOTTY;
1234
1235 if (get_user_ifreq(&ifr, &data, argp))
1236 return -EFAULT;
1237 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1238 if (!err && need_copyout)
1239 if (put_user_ifreq(&ifr, argp))
1240 return -EFAULT;
1241
1242 return err;
1243 }
1244
1245 /*
1246 * With an ioctl, arg may well be a user mode pointer, but we don't know
1247 * what to do with it - that's up to the protocol still.
1248 */
1249
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1250 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1251 {
1252 const struct proto_ops *ops;
1253 struct socket *sock;
1254 struct sock *sk;
1255 void __user *argp = (void __user *)arg;
1256 int pid, err;
1257 struct net *net;
1258
1259 sock = file->private_data;
1260 ops = READ_ONCE(sock->ops);
1261 sk = sock->sk;
1262 net = sock_net(sk);
1263 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1264 struct ifreq ifr;
1265 void __user *data;
1266 bool need_copyout;
1267 if (get_user_ifreq(&ifr, &data, argp))
1268 return -EFAULT;
1269 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1270 if (!err && need_copyout)
1271 if (put_user_ifreq(&ifr, argp))
1272 return -EFAULT;
1273 } else
1274 #ifdef CONFIG_WEXT_CORE
1275 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1276 err = wext_handle_ioctl(net, cmd, argp);
1277 } else
1278 #endif
1279 switch (cmd) {
1280 case FIOSETOWN:
1281 case SIOCSPGRP:
1282 err = -EFAULT;
1283 if (get_user(pid, (int __user *)argp))
1284 break;
1285 err = f_setown(sock->file, pid, 1);
1286 break;
1287 case FIOGETOWN:
1288 case SIOCGPGRP:
1289 err = put_user(f_getown(sock->file),
1290 (int __user *)argp);
1291 break;
1292 case SIOCGIFBR:
1293 case SIOCSIFBR:
1294 case SIOCBRADDBR:
1295 case SIOCBRDELBR:
1296 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1297 break;
1298 case SIOCGIFVLAN:
1299 case SIOCSIFVLAN:
1300 err = -ENOPKG;
1301 if (!vlan_ioctl_hook)
1302 request_module("8021q");
1303
1304 mutex_lock(&vlan_ioctl_mutex);
1305 if (vlan_ioctl_hook)
1306 err = vlan_ioctl_hook(net, argp);
1307 mutex_unlock(&vlan_ioctl_mutex);
1308 break;
1309 case SIOCGSKNS:
1310 err = -EPERM;
1311 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1312 break;
1313
1314 err = open_related_ns(&net->ns, get_net_ns);
1315 break;
1316 case SIOCGSTAMP_OLD:
1317 case SIOCGSTAMPNS_OLD:
1318 if (!ops->gettstamp) {
1319 err = -ENOIOCTLCMD;
1320 break;
1321 }
1322 err = ops->gettstamp(sock, argp,
1323 cmd == SIOCGSTAMP_OLD,
1324 !IS_ENABLED(CONFIG_64BIT));
1325 break;
1326 case SIOCGSTAMP_NEW:
1327 case SIOCGSTAMPNS_NEW:
1328 if (!ops->gettstamp) {
1329 err = -ENOIOCTLCMD;
1330 break;
1331 }
1332 err = ops->gettstamp(sock, argp,
1333 cmd == SIOCGSTAMP_NEW,
1334 false);
1335 break;
1336
1337 case SIOCGIFCONF:
1338 err = dev_ifconf(net, argp);
1339 break;
1340
1341 default:
1342 err = sock_do_ioctl(net, sock, cmd, arg);
1343 break;
1344 }
1345 return err;
1346 }
1347
1348 /**
1349 * sock_create_lite - creates a socket
1350 * @family: protocol family (AF_INET, ...)
1351 * @type: communication type (SOCK_STREAM, ...)
1352 * @protocol: protocol (0, ...)
1353 * @res: new socket
1354 *
1355 * Creates a new socket and assigns it to @res, passing through LSM.
1356 * The new socket initialization is not complete, see kernel_accept().
1357 * Returns 0 or an error. On failure @res is set to %NULL.
1358 * This function internally uses GFP_KERNEL.
1359 */
1360
sock_create_lite(int family,int type,int protocol,struct socket ** res)1361 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1362 {
1363 int err;
1364 struct socket *sock = NULL;
1365
1366 err = security_socket_create(family, type, protocol, 1);
1367 if (err)
1368 goto out;
1369
1370 sock = sock_alloc();
1371 if (!sock) {
1372 err = -ENOMEM;
1373 goto out;
1374 }
1375
1376 sock->type = type;
1377 err = security_socket_post_create(sock, family, type, protocol, 1);
1378 if (err)
1379 goto out_release;
1380
1381 out:
1382 *res = sock;
1383 return err;
1384 out_release:
1385 sock_release(sock);
1386 sock = NULL;
1387 goto out;
1388 }
1389 EXPORT_SYMBOL(sock_create_lite);
1390
1391 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1392 static __poll_t sock_poll(struct file *file, poll_table *wait)
1393 {
1394 struct socket *sock = file->private_data;
1395 const struct proto_ops *ops = READ_ONCE(sock->ops);
1396 __poll_t events = poll_requested_events(wait), flag = 0;
1397
1398 if (!ops->poll)
1399 return 0;
1400
1401 if (sk_can_busy_loop(sock->sk)) {
1402 /* poll once if requested by the syscall */
1403 if (events & POLL_BUSY_LOOP)
1404 sk_busy_loop(sock->sk, 1);
1405
1406 /* if this socket can poll_ll, tell the system call */
1407 flag = POLL_BUSY_LOOP;
1408 }
1409
1410 return ops->poll(file, sock, wait) | flag;
1411 }
1412
sock_mmap(struct file * file,struct vm_area_struct * vma)1413 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1414 {
1415 struct socket *sock = file->private_data;
1416
1417 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1418 }
1419
sock_close(struct inode * inode,struct file * filp)1420 static int sock_close(struct inode *inode, struct file *filp)
1421 {
1422 __sock_release(SOCKET_I(inode), inode);
1423 return 0;
1424 }
1425
1426 /*
1427 * Update the socket async list
1428 *
1429 * Fasync_list locking strategy.
1430 *
1431 * 1. fasync_list is modified only under process context socket lock
1432 * i.e. under semaphore.
1433 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1434 * or under socket lock
1435 */
1436
sock_fasync(int fd,struct file * filp,int on)1437 static int sock_fasync(int fd, struct file *filp, int on)
1438 {
1439 struct socket *sock = filp->private_data;
1440 struct sock *sk = sock->sk;
1441 struct socket_wq *wq = &sock->wq;
1442
1443 if (sk == NULL)
1444 return -EINVAL;
1445
1446 lock_sock(sk);
1447 fasync_helper(fd, filp, on, &wq->fasync_list);
1448
1449 if (!wq->fasync_list)
1450 sock_reset_flag(sk, SOCK_FASYNC);
1451 else
1452 sock_set_flag(sk, SOCK_FASYNC);
1453
1454 release_sock(sk);
1455 return 0;
1456 }
1457
1458 /* This function may be called only under rcu_lock */
1459
sock_wake_async(struct socket_wq * wq,int how,int band)1460 int sock_wake_async(struct socket_wq *wq, int how, int band)
1461 {
1462 if (!wq || !wq->fasync_list)
1463 return -1;
1464
1465 switch (how) {
1466 case SOCK_WAKE_WAITD:
1467 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1468 break;
1469 goto call_kill;
1470 case SOCK_WAKE_SPACE:
1471 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1472 break;
1473 fallthrough;
1474 case SOCK_WAKE_IO:
1475 call_kill:
1476 kill_fasync(&wq->fasync_list, SIGIO, band);
1477 break;
1478 case SOCK_WAKE_URG:
1479 kill_fasync(&wq->fasync_list, SIGURG, band);
1480 }
1481
1482 return 0;
1483 }
1484 EXPORT_SYMBOL(sock_wake_async);
1485
1486 /**
1487 * __sock_create - creates a socket
1488 * @net: net namespace
1489 * @family: protocol family (AF_INET, ...)
1490 * @type: communication type (SOCK_STREAM, ...)
1491 * @protocol: protocol (0, ...)
1492 * @res: new socket
1493 * @kern: boolean for kernel space sockets
1494 *
1495 * Creates a new socket and assigns it to @res, passing through LSM.
1496 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1497 * be set to true if the socket resides in kernel space.
1498 * This function internally uses GFP_KERNEL.
1499 */
1500
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1501 int __sock_create(struct net *net, int family, int type, int protocol,
1502 struct socket **res, int kern)
1503 {
1504 int err;
1505 struct socket *sock;
1506 const struct net_proto_family *pf;
1507
1508 /*
1509 * Check protocol is in range
1510 */
1511 if (family < 0 || family >= NPROTO)
1512 return -EAFNOSUPPORT;
1513 if (type < 0 || type >= SOCK_MAX)
1514 return -EINVAL;
1515
1516 /* Compatibility.
1517
1518 This uglymoron is moved from INET layer to here to avoid
1519 deadlock in module load.
1520 */
1521 if (family == PF_INET && type == SOCK_PACKET) {
1522 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1523 current->comm);
1524 family = PF_PACKET;
1525 }
1526
1527 err = security_socket_create(family, type, protocol, kern);
1528 if (err)
1529 return err;
1530
1531 /*
1532 * Allocate the socket and allow the family to set things up. if
1533 * the protocol is 0, the family is instructed to select an appropriate
1534 * default.
1535 */
1536 sock = sock_alloc();
1537 if (!sock) {
1538 net_warn_ratelimited("socket: no more sockets\n");
1539 return -ENFILE; /* Not exactly a match, but its the
1540 closest posix thing */
1541 }
1542
1543 sock->type = type;
1544
1545 #ifdef CONFIG_MODULES
1546 /* Attempt to load a protocol module if the find failed.
1547 *
1548 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1549 * requested real, full-featured networking support upon configuration.
1550 * Otherwise module support will break!
1551 */
1552 if (rcu_access_pointer(net_families[family]) == NULL)
1553 request_module("net-pf-%d", family);
1554 #endif
1555
1556 rcu_read_lock();
1557 pf = rcu_dereference(net_families[family]);
1558 err = -EAFNOSUPPORT;
1559 if (!pf)
1560 goto out_release;
1561
1562 /*
1563 * We will call the ->create function, that possibly is in a loadable
1564 * module, so we have to bump that loadable module refcnt first.
1565 */
1566 if (!try_module_get(pf->owner))
1567 goto out_release;
1568
1569 /* Now protected by module ref count */
1570 rcu_read_unlock();
1571
1572 err = pf->create(net, sock, protocol, kern);
1573 if (err < 0)
1574 goto out_module_put;
1575
1576 /*
1577 * Now to bump the refcnt of the [loadable] module that owns this
1578 * socket at sock_release time we decrement its refcnt.
1579 */
1580 if (!try_module_get(sock->ops->owner))
1581 goto out_module_busy;
1582
1583 /*
1584 * Now that we're done with the ->create function, the [loadable]
1585 * module can have its refcnt decremented
1586 */
1587 module_put(pf->owner);
1588 err = security_socket_post_create(sock, family, type, protocol, kern);
1589 if (err)
1590 goto out_sock_release;
1591 *res = sock;
1592
1593 trace_android_vh_sock_create(sock->sk);
1594
1595 return 0;
1596
1597 out_module_busy:
1598 err = -EAFNOSUPPORT;
1599 out_module_put:
1600 sock->ops = NULL;
1601 module_put(pf->owner);
1602 out_sock_release:
1603 sock_release(sock);
1604 return err;
1605
1606 out_release:
1607 rcu_read_unlock();
1608 goto out_sock_release;
1609 }
1610 EXPORT_SYMBOL(__sock_create);
1611
1612 /**
1613 * sock_create - creates a socket
1614 * @family: protocol family (AF_INET, ...)
1615 * @type: communication type (SOCK_STREAM, ...)
1616 * @protocol: protocol (0, ...)
1617 * @res: new socket
1618 *
1619 * A wrapper around __sock_create().
1620 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1621 */
1622
sock_create(int family,int type,int protocol,struct socket ** res)1623 int sock_create(int family, int type, int protocol, struct socket **res)
1624 {
1625 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1626 }
1627 EXPORT_SYMBOL(sock_create);
1628
1629 /**
1630 * sock_create_kern - creates a socket (kernel space)
1631 * @net: net namespace
1632 * @family: protocol family (AF_INET, ...)
1633 * @type: communication type (SOCK_STREAM, ...)
1634 * @protocol: protocol (0, ...)
1635 * @res: new socket
1636 *
1637 * A wrapper around __sock_create().
1638 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1639 */
1640
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1641 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1642 {
1643 return __sock_create(net, family, type, protocol, res, 1);
1644 }
1645 EXPORT_SYMBOL(sock_create_kern);
1646
__sys_socket_create(int family,int type,int protocol)1647 static struct socket *__sys_socket_create(int family, int type, int protocol)
1648 {
1649 struct socket *sock;
1650 int retval;
1651
1652 /* Check the SOCK_* constants for consistency. */
1653 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1654 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1655 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1656 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1657
1658 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1659 return ERR_PTR(-EINVAL);
1660 type &= SOCK_TYPE_MASK;
1661
1662 retval = sock_create(family, type, protocol, &sock);
1663 if (retval < 0)
1664 return ERR_PTR(retval);
1665
1666 return sock;
1667 }
1668
__sys_socket_file(int family,int type,int protocol)1669 struct file *__sys_socket_file(int family, int type, int protocol)
1670 {
1671 struct socket *sock;
1672 int flags;
1673
1674 sock = __sys_socket_create(family, type, protocol);
1675 if (IS_ERR(sock))
1676 return ERR_CAST(sock);
1677
1678 flags = type & ~SOCK_TYPE_MASK;
1679 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1680 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1681
1682 return sock_alloc_file(sock, flags, NULL);
1683 }
1684
1685 /* A hook for bpf progs to attach to and update socket protocol.
1686 *
1687 * A static noinline declaration here could cause the compiler to
1688 * optimize away the function. A global noinline declaration will
1689 * keep the definition, but may optimize away the callsite.
1690 * Therefore, __weak is needed to ensure that the call is still
1691 * emitted, by telling the compiler that we don't know what the
1692 * function might eventually be.
1693 *
1694 * __diag_* below are needed to dismiss the missing prototype warning.
1695 */
1696
1697 __diag_push();
1698 __diag_ignore_all("-Wmissing-prototypes",
1699 "A fmod_ret entry point for BPF programs");
1700
update_socket_protocol(int family,int type,int protocol)1701 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1702 {
1703 return protocol;
1704 }
1705
1706 __diag_pop();
1707
__sys_socket(int family,int type,int protocol)1708 int __sys_socket(int family, int type, int protocol)
1709 {
1710 struct socket *sock;
1711 int flags;
1712
1713 sock = __sys_socket_create(family, type,
1714 update_socket_protocol(family, type, protocol));
1715 if (IS_ERR(sock))
1716 return PTR_ERR(sock);
1717
1718 flags = type & ~SOCK_TYPE_MASK;
1719 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1720 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1721
1722 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1723 }
1724
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1725 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1726 {
1727 return __sys_socket(family, type, protocol);
1728 }
1729
1730 /*
1731 * Create a pair of connected sockets.
1732 */
1733
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1734 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1735 {
1736 struct socket *sock1, *sock2;
1737 int fd1, fd2, err;
1738 struct file *newfile1, *newfile2;
1739 int flags;
1740
1741 flags = type & ~SOCK_TYPE_MASK;
1742 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1743 return -EINVAL;
1744 type &= SOCK_TYPE_MASK;
1745
1746 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1747 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1748
1749 /*
1750 * reserve descriptors and make sure we won't fail
1751 * to return them to userland.
1752 */
1753 fd1 = get_unused_fd_flags(flags);
1754 if (unlikely(fd1 < 0))
1755 return fd1;
1756
1757 fd2 = get_unused_fd_flags(flags);
1758 if (unlikely(fd2 < 0)) {
1759 put_unused_fd(fd1);
1760 return fd2;
1761 }
1762
1763 err = put_user(fd1, &usockvec[0]);
1764 if (err)
1765 goto out;
1766
1767 err = put_user(fd2, &usockvec[1]);
1768 if (err)
1769 goto out;
1770
1771 /*
1772 * Obtain the first socket and check if the underlying protocol
1773 * supports the socketpair call.
1774 */
1775
1776 err = sock_create(family, type, protocol, &sock1);
1777 if (unlikely(err < 0))
1778 goto out;
1779
1780 err = sock_create(family, type, protocol, &sock2);
1781 if (unlikely(err < 0)) {
1782 sock_release(sock1);
1783 goto out;
1784 }
1785
1786 err = security_socket_socketpair(sock1, sock2);
1787 if (unlikely(err)) {
1788 sock_release(sock2);
1789 sock_release(sock1);
1790 goto out;
1791 }
1792
1793 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1794 if (unlikely(err < 0)) {
1795 sock_release(sock2);
1796 sock_release(sock1);
1797 goto out;
1798 }
1799
1800 newfile1 = sock_alloc_file(sock1, flags, NULL);
1801 if (IS_ERR(newfile1)) {
1802 err = PTR_ERR(newfile1);
1803 sock_release(sock2);
1804 goto out;
1805 }
1806
1807 newfile2 = sock_alloc_file(sock2, flags, NULL);
1808 if (IS_ERR(newfile2)) {
1809 err = PTR_ERR(newfile2);
1810 fput(newfile1);
1811 goto out;
1812 }
1813
1814 audit_fd_pair(fd1, fd2);
1815
1816 fd_install(fd1, newfile1);
1817 fd_install(fd2, newfile2);
1818 return 0;
1819
1820 out:
1821 put_unused_fd(fd2);
1822 put_unused_fd(fd1);
1823 return err;
1824 }
1825
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1826 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1827 int __user *, usockvec)
1828 {
1829 return __sys_socketpair(family, type, protocol, usockvec);
1830 }
1831
1832 /*
1833 * Bind a name to a socket. Nothing much to do here since it's
1834 * the protocol's responsibility to handle the local address.
1835 *
1836 * We move the socket address to kernel space before we call
1837 * the protocol layer (having also checked the address is ok).
1838 */
1839
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1840 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1841 {
1842 struct socket *sock;
1843 struct sockaddr_storage address;
1844 int err, fput_needed;
1845
1846 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1847 if (sock) {
1848 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1849 if (!err) {
1850 err = security_socket_bind(sock,
1851 (struct sockaddr *)&address,
1852 addrlen);
1853 if (!err)
1854 err = READ_ONCE(sock->ops)->bind(sock,
1855 (struct sockaddr *)
1856 &address, addrlen);
1857 }
1858 fput_light(sock->file, fput_needed);
1859 }
1860 return err;
1861 }
1862
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1863 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1864 {
1865 return __sys_bind(fd, umyaddr, addrlen);
1866 }
1867
1868 /*
1869 * Perform a listen. Basically, we allow the protocol to do anything
1870 * necessary for a listen, and if that works, we mark the socket as
1871 * ready for listening.
1872 */
1873
__sys_listen(int fd,int backlog)1874 int __sys_listen(int fd, int backlog)
1875 {
1876 struct socket *sock;
1877 int err, fput_needed;
1878 int somaxconn;
1879
1880 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1881 if (sock) {
1882 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1883 if ((unsigned int)backlog > somaxconn)
1884 backlog = somaxconn;
1885
1886 err = security_socket_listen(sock, backlog);
1887 if (!err)
1888 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1889
1890 fput_light(sock->file, fput_needed);
1891 }
1892 return err;
1893 }
1894
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1895 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1896 {
1897 return __sys_listen(fd, backlog);
1898 }
1899
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1900 struct file *do_accept(struct file *file, unsigned file_flags,
1901 struct sockaddr __user *upeer_sockaddr,
1902 int __user *upeer_addrlen, int flags)
1903 {
1904 struct socket *sock, *newsock;
1905 struct file *newfile;
1906 int err, len;
1907 struct sockaddr_storage address;
1908 const struct proto_ops *ops;
1909
1910 sock = sock_from_file(file);
1911 if (!sock)
1912 return ERR_PTR(-ENOTSOCK);
1913
1914 newsock = sock_alloc();
1915 if (!newsock)
1916 return ERR_PTR(-ENFILE);
1917 ops = READ_ONCE(sock->ops);
1918
1919 newsock->type = sock->type;
1920 newsock->ops = ops;
1921
1922 /*
1923 * We don't need try_module_get here, as the listening socket (sock)
1924 * has the protocol module (sock->ops->owner) held.
1925 */
1926 __module_get(ops->owner);
1927
1928 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1929 if (IS_ERR(newfile))
1930 return newfile;
1931
1932 err = security_socket_accept(sock, newsock);
1933 if (err)
1934 goto out_fd;
1935
1936 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1937 false);
1938 if (err < 0)
1939 goto out_fd;
1940
1941 if (upeer_sockaddr) {
1942 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1943 if (len < 0) {
1944 err = -ECONNABORTED;
1945 goto out_fd;
1946 }
1947 err = move_addr_to_user(&address,
1948 len, upeer_sockaddr, upeer_addrlen);
1949 if (err < 0)
1950 goto out_fd;
1951 }
1952
1953 /* File flags are not inherited via accept() unlike another OSes. */
1954 return newfile;
1955 out_fd:
1956 fput(newfile);
1957 return ERR_PTR(err);
1958 }
1959
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1960 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1961 int __user *upeer_addrlen, int flags)
1962 {
1963 struct file *newfile;
1964 int newfd;
1965
1966 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1967 return -EINVAL;
1968
1969 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1970 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1971
1972 newfd = get_unused_fd_flags(flags);
1973 if (unlikely(newfd < 0))
1974 return newfd;
1975
1976 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1977 flags);
1978 if (IS_ERR(newfile)) {
1979 put_unused_fd(newfd);
1980 return PTR_ERR(newfile);
1981 }
1982 fd_install(newfd, newfile);
1983 return newfd;
1984 }
1985
1986 /*
1987 * For accept, we attempt to create a new socket, set up the link
1988 * with the client, wake up the client, then return the new
1989 * connected fd. We collect the address of the connector in kernel
1990 * space and move it to user at the very end. This is unclean because
1991 * we open the socket then return an error.
1992 *
1993 * 1003.1g adds the ability to recvmsg() to query connection pending
1994 * status to recvmsg. We need to add that support in a way thats
1995 * clean when we restructure accept also.
1996 */
1997
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1998 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1999 int __user *upeer_addrlen, int flags)
2000 {
2001 int ret = -EBADF;
2002 struct fd f;
2003
2004 f = fdget(fd);
2005 if (f.file) {
2006 ret = __sys_accept4_file(f.file, upeer_sockaddr,
2007 upeer_addrlen, flags);
2008 fdput(f);
2009 }
2010
2011 return ret;
2012 }
2013
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2014 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2015 int __user *, upeer_addrlen, int, flags)
2016 {
2017 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2018 }
2019
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2020 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2021 int __user *, upeer_addrlen)
2022 {
2023 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2024 }
2025
2026 /*
2027 * Attempt to connect to a socket with the server address. The address
2028 * is in user space so we verify it is OK and move it to kernel space.
2029 *
2030 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2031 * break bindings
2032 *
2033 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2034 * other SEQPACKET protocols that take time to connect() as it doesn't
2035 * include the -EINPROGRESS status for such sockets.
2036 */
2037
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2038 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2039 int addrlen, int file_flags)
2040 {
2041 struct socket *sock;
2042 int err;
2043
2044 sock = sock_from_file(file);
2045 if (!sock) {
2046 err = -ENOTSOCK;
2047 goto out;
2048 }
2049
2050 err =
2051 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2052 if (err)
2053 goto out;
2054
2055 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2056 addrlen, sock->file->f_flags | file_flags);
2057 out:
2058 return err;
2059 }
2060
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2061 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2062 {
2063 int ret = -EBADF;
2064 struct fd f;
2065
2066 f = fdget(fd);
2067 if (f.file) {
2068 struct sockaddr_storage address;
2069
2070 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2071 if (!ret)
2072 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2073 fdput(f);
2074 }
2075
2076 return ret;
2077 }
2078
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2079 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2080 int, addrlen)
2081 {
2082 return __sys_connect(fd, uservaddr, addrlen);
2083 }
2084
2085 /*
2086 * Get the local address ('name') of a socket object. Move the obtained
2087 * name to user space.
2088 */
2089
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2090 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2091 int __user *usockaddr_len)
2092 {
2093 struct socket *sock;
2094 struct sockaddr_storage address;
2095 int err, fput_needed;
2096
2097 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2098 if (!sock)
2099 goto out;
2100
2101 err = security_socket_getsockname(sock);
2102 if (err)
2103 goto out_put;
2104
2105 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2106 if (err < 0)
2107 goto out_put;
2108 /* "err" is actually length in this case */
2109 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2110
2111 out_put:
2112 fput_light(sock->file, fput_needed);
2113 out:
2114 return err;
2115 }
2116
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2117 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2118 int __user *, usockaddr_len)
2119 {
2120 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2121 }
2122
2123 /*
2124 * Get the remote address ('name') of a socket object. Move the obtained
2125 * name to user space.
2126 */
2127
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2128 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2129 int __user *usockaddr_len)
2130 {
2131 struct socket *sock;
2132 struct sockaddr_storage address;
2133 int err, fput_needed;
2134
2135 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136 if (sock != NULL) {
2137 const struct proto_ops *ops = READ_ONCE(sock->ops);
2138
2139 err = security_socket_getpeername(sock);
2140 if (err) {
2141 fput_light(sock->file, fput_needed);
2142 return err;
2143 }
2144
2145 err = ops->getname(sock, (struct sockaddr *)&address, 1);
2146 if (err >= 0)
2147 /* "err" is actually length in this case */
2148 err = move_addr_to_user(&address, err, usockaddr,
2149 usockaddr_len);
2150 fput_light(sock->file, fput_needed);
2151 }
2152 return err;
2153 }
2154
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2155 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2156 int __user *, usockaddr_len)
2157 {
2158 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2159 }
2160
2161 /*
2162 * Send a datagram to a given address. We move the address into kernel
2163 * space and check the user space data area is readable before invoking
2164 * the protocol.
2165 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2166 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2167 struct sockaddr __user *addr, int addr_len)
2168 {
2169 struct socket *sock;
2170 struct sockaddr_storage address;
2171 int err;
2172 struct msghdr msg;
2173 struct iovec iov;
2174 int fput_needed;
2175
2176 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2177 if (unlikely(err))
2178 return err;
2179 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2180 if (!sock)
2181 goto out;
2182
2183 msg.msg_name = NULL;
2184 msg.msg_control = NULL;
2185 msg.msg_controllen = 0;
2186 msg.msg_namelen = 0;
2187 msg.msg_ubuf = NULL;
2188 if (addr) {
2189 err = move_addr_to_kernel(addr, addr_len, &address);
2190 if (err < 0)
2191 goto out_put;
2192 msg.msg_name = (struct sockaddr *)&address;
2193 msg.msg_namelen = addr_len;
2194 }
2195 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2196 if (sock->file->f_flags & O_NONBLOCK)
2197 flags |= MSG_DONTWAIT;
2198 msg.msg_flags = flags;
2199 err = __sock_sendmsg(sock, &msg);
2200
2201 out_put:
2202 fput_light(sock->file, fput_needed);
2203 out:
2204 return err;
2205 }
2206
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2207 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2208 unsigned int, flags, struct sockaddr __user *, addr,
2209 int, addr_len)
2210 {
2211 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2212 }
2213
2214 /*
2215 * Send a datagram down a socket.
2216 */
2217
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2218 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2219 unsigned int, flags)
2220 {
2221 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2222 }
2223
2224 /*
2225 * Receive a frame from the socket and optionally record the address of the
2226 * sender. We verify the buffers are writable and if needed move the
2227 * sender address from kernel to user space.
2228 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2229 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2230 struct sockaddr __user *addr, int __user *addr_len)
2231 {
2232 struct sockaddr_storage address;
2233 struct msghdr msg = {
2234 /* Save some cycles and don't copy the address if not needed */
2235 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2236 };
2237 struct socket *sock;
2238 struct iovec iov;
2239 int err, err2;
2240 int fput_needed;
2241
2242 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2243 if (unlikely(err))
2244 return err;
2245 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2246 if (!sock)
2247 goto out;
2248
2249 if (sock->file->f_flags & O_NONBLOCK)
2250 flags |= MSG_DONTWAIT;
2251 err = sock_recvmsg(sock, &msg, flags);
2252
2253 if (err >= 0 && addr != NULL) {
2254 err2 = move_addr_to_user(&address,
2255 msg.msg_namelen, addr, addr_len);
2256 if (err2 < 0)
2257 err = err2;
2258 }
2259
2260 fput_light(sock->file, fput_needed);
2261 out:
2262 return err;
2263 }
2264
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2265 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2266 unsigned int, flags, struct sockaddr __user *, addr,
2267 int __user *, addr_len)
2268 {
2269 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2270 }
2271
2272 /*
2273 * Receive a datagram from a socket.
2274 */
2275
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2276 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2277 unsigned int, flags)
2278 {
2279 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2280 }
2281
sock_use_custom_sol_socket(const struct socket * sock)2282 static bool sock_use_custom_sol_socket(const struct socket *sock)
2283 {
2284 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2285 }
2286
2287 /*
2288 * Set a socket option. Because we don't know the option lengths we have
2289 * to pass the user mode parameter for the protocols to sort out.
2290 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2291 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2292 int optlen)
2293 {
2294 sockptr_t optval = USER_SOCKPTR(user_optval);
2295 const struct proto_ops *ops;
2296 char *kernel_optval = NULL;
2297 int err, fput_needed;
2298 struct socket *sock;
2299
2300 if (optlen < 0)
2301 return -EINVAL;
2302
2303 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2304 if (!sock)
2305 return err;
2306
2307 err = security_socket_setsockopt(sock, level, optname);
2308 if (err)
2309 goto out_put;
2310
2311 if (!in_compat_syscall())
2312 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2313 user_optval, &optlen,
2314 &kernel_optval);
2315 if (err < 0)
2316 goto out_put;
2317 if (err > 0) {
2318 err = 0;
2319 goto out_put;
2320 }
2321
2322 if (kernel_optval)
2323 optval = KERNEL_SOCKPTR(kernel_optval);
2324 ops = READ_ONCE(sock->ops);
2325 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2326 err = sock_setsockopt(sock, level, optname, optval, optlen);
2327 else if (unlikely(!ops->setsockopt))
2328 err = -EOPNOTSUPP;
2329 else
2330 err = ops->setsockopt(sock, level, optname, optval,
2331 optlen);
2332 kfree(kernel_optval);
2333 out_put:
2334 fput_light(sock->file, fput_needed);
2335 return err;
2336 }
2337
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2338 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2339 char __user *, optval, int, optlen)
2340 {
2341 return __sys_setsockopt(fd, level, optname, optval, optlen);
2342 }
2343
2344 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2345 int optname));
2346
2347 /*
2348 * Get a socket option. Because we don't know the option lengths we have
2349 * to pass a user mode parameter for the protocols to sort out.
2350 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2351 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2352 int __user *optlen)
2353 {
2354 int max_optlen __maybe_unused;
2355 const struct proto_ops *ops;
2356 int err, fput_needed;
2357 struct socket *sock;
2358
2359 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2360 if (!sock)
2361 return err;
2362
2363 err = security_socket_getsockopt(sock, level, optname);
2364 if (err)
2365 goto out_put;
2366
2367 if (!in_compat_syscall())
2368 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2369
2370 ops = READ_ONCE(sock->ops);
2371 if (level == SOL_SOCKET)
2372 err = sock_getsockopt(sock, level, optname, optval, optlen);
2373 else if (unlikely(!ops->getsockopt))
2374 err = -EOPNOTSUPP;
2375 else
2376 err = ops->getsockopt(sock, level, optname, optval,
2377 optlen);
2378
2379 if (!in_compat_syscall())
2380 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2381 optval, optlen, max_optlen,
2382 err);
2383 out_put:
2384 fput_light(sock->file, fput_needed);
2385 return err;
2386 }
2387
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2388 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2389 char __user *, optval, int __user *, optlen)
2390 {
2391 return __sys_getsockopt(fd, level, optname, optval, optlen);
2392 }
2393
2394 /*
2395 * Shutdown a socket.
2396 */
2397
__sys_shutdown_sock(struct socket * sock,int how)2398 int __sys_shutdown_sock(struct socket *sock, int how)
2399 {
2400 int err;
2401
2402 err = security_socket_shutdown(sock, how);
2403 if (!err)
2404 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2405
2406 return err;
2407 }
2408
__sys_shutdown(int fd,int how)2409 int __sys_shutdown(int fd, int how)
2410 {
2411 int err, fput_needed;
2412 struct socket *sock;
2413
2414 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2415 if (sock != NULL) {
2416 err = __sys_shutdown_sock(sock, how);
2417 fput_light(sock->file, fput_needed);
2418 }
2419 return err;
2420 }
2421
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2422 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2423 {
2424 return __sys_shutdown(fd, how);
2425 }
2426
2427 /* A couple of helpful macros for getting the address of the 32/64 bit
2428 * fields which are the same type (int / unsigned) on our platforms.
2429 */
2430 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2431 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2432 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2433
2434 struct used_address {
2435 struct sockaddr_storage name;
2436 unsigned int name_len;
2437 };
2438
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2439 int __copy_msghdr(struct msghdr *kmsg,
2440 struct user_msghdr *msg,
2441 struct sockaddr __user **save_addr)
2442 {
2443 ssize_t err;
2444
2445 kmsg->msg_control_is_user = true;
2446 kmsg->msg_get_inq = 0;
2447 kmsg->msg_control_user = msg->msg_control;
2448 kmsg->msg_controllen = msg->msg_controllen;
2449 kmsg->msg_flags = msg->msg_flags;
2450
2451 kmsg->msg_namelen = msg->msg_namelen;
2452 if (!msg->msg_name)
2453 kmsg->msg_namelen = 0;
2454
2455 if (kmsg->msg_namelen < 0)
2456 return -EINVAL;
2457
2458 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2459 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2460
2461 if (save_addr)
2462 *save_addr = msg->msg_name;
2463
2464 if (msg->msg_name && kmsg->msg_namelen) {
2465 if (!save_addr) {
2466 err = move_addr_to_kernel(msg->msg_name,
2467 kmsg->msg_namelen,
2468 kmsg->msg_name);
2469 if (err < 0)
2470 return err;
2471 }
2472 } else {
2473 kmsg->msg_name = NULL;
2474 kmsg->msg_namelen = 0;
2475 }
2476
2477 if (msg->msg_iovlen > UIO_MAXIOV)
2478 return -EMSGSIZE;
2479
2480 kmsg->msg_iocb = NULL;
2481 kmsg->msg_ubuf = NULL;
2482 return 0;
2483 }
2484
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2485 static int copy_msghdr_from_user(struct msghdr *kmsg,
2486 struct user_msghdr __user *umsg,
2487 struct sockaddr __user **save_addr,
2488 struct iovec **iov)
2489 {
2490 struct user_msghdr msg;
2491 ssize_t err;
2492
2493 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2494 return -EFAULT;
2495
2496 err = __copy_msghdr(kmsg, &msg, save_addr);
2497 if (err)
2498 return err;
2499
2500 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2501 msg.msg_iov, msg.msg_iovlen,
2502 UIO_FASTIOV, iov, &kmsg->msg_iter);
2503 return err < 0 ? err : 0;
2504 }
2505
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2506 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2507 unsigned int flags, struct used_address *used_address,
2508 unsigned int allowed_msghdr_flags)
2509 {
2510 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2511 __aligned(sizeof(__kernel_size_t));
2512 /* 20 is size of ipv6_pktinfo */
2513 unsigned char *ctl_buf = ctl;
2514 int ctl_len;
2515 ssize_t err;
2516
2517 err = -ENOBUFS;
2518
2519 if (msg_sys->msg_controllen > INT_MAX)
2520 goto out;
2521 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2522 ctl_len = msg_sys->msg_controllen;
2523 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2524 err =
2525 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2526 sizeof(ctl));
2527 if (err)
2528 goto out;
2529 ctl_buf = msg_sys->msg_control;
2530 ctl_len = msg_sys->msg_controllen;
2531 } else if (ctl_len) {
2532 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2533 CMSG_ALIGN(sizeof(struct cmsghdr)));
2534 if (ctl_len > sizeof(ctl)) {
2535 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2536 if (ctl_buf == NULL)
2537 goto out;
2538 }
2539 err = -EFAULT;
2540 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2541 goto out_freectl;
2542 msg_sys->msg_control = ctl_buf;
2543 msg_sys->msg_control_is_user = false;
2544 }
2545 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2546 msg_sys->msg_flags = flags;
2547
2548 if (sock->file->f_flags & O_NONBLOCK)
2549 msg_sys->msg_flags |= MSG_DONTWAIT;
2550 /*
2551 * If this is sendmmsg() and current destination address is same as
2552 * previously succeeded address, omit asking LSM's decision.
2553 * used_address->name_len is initialized to UINT_MAX so that the first
2554 * destination address never matches.
2555 */
2556 if (used_address && msg_sys->msg_name &&
2557 used_address->name_len == msg_sys->msg_namelen &&
2558 !memcmp(&used_address->name, msg_sys->msg_name,
2559 used_address->name_len)) {
2560 err = sock_sendmsg_nosec(sock, msg_sys);
2561 goto out_freectl;
2562 }
2563 err = __sock_sendmsg(sock, msg_sys);
2564 /*
2565 * If this is sendmmsg() and sending to current destination address was
2566 * successful, remember it.
2567 */
2568 if (used_address && err >= 0) {
2569 used_address->name_len = msg_sys->msg_namelen;
2570 if (msg_sys->msg_name)
2571 memcpy(&used_address->name, msg_sys->msg_name,
2572 used_address->name_len);
2573 }
2574
2575 out_freectl:
2576 if (ctl_buf != ctl)
2577 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2578 out:
2579 return err;
2580 }
2581
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2582 int sendmsg_copy_msghdr(struct msghdr *msg,
2583 struct user_msghdr __user *umsg, unsigned flags,
2584 struct iovec **iov)
2585 {
2586 int err;
2587
2588 if (flags & MSG_CMSG_COMPAT) {
2589 struct compat_msghdr __user *msg_compat;
2590
2591 msg_compat = (struct compat_msghdr __user *) umsg;
2592 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2593 } else {
2594 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2595 }
2596 if (err < 0)
2597 return err;
2598
2599 return 0;
2600 }
2601
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2602 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2603 struct msghdr *msg_sys, unsigned int flags,
2604 struct used_address *used_address,
2605 unsigned int allowed_msghdr_flags)
2606 {
2607 struct sockaddr_storage address;
2608 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2609 ssize_t err;
2610
2611 msg_sys->msg_name = &address;
2612
2613 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2614 if (err < 0)
2615 return err;
2616
2617 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2618 allowed_msghdr_flags);
2619 kfree(iov);
2620 return err;
2621 }
2622
2623 /*
2624 * BSD sendmsg interface
2625 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2626 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2627 unsigned int flags)
2628 {
2629 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2630 }
2631
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2632 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2633 bool forbid_cmsg_compat)
2634 {
2635 int fput_needed, err;
2636 struct msghdr msg_sys;
2637 struct socket *sock;
2638
2639 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2640 return -EINVAL;
2641
2642 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2643 if (!sock)
2644 goto out;
2645
2646 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2647
2648 fput_light(sock->file, fput_needed);
2649 out:
2650 return err;
2651 }
2652
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2653 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2654 {
2655 return __sys_sendmsg(fd, msg, flags, true);
2656 }
2657
2658 /*
2659 * Linux sendmmsg interface
2660 */
2661
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2662 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2663 unsigned int flags, bool forbid_cmsg_compat)
2664 {
2665 int fput_needed, err, datagrams;
2666 struct socket *sock;
2667 struct mmsghdr __user *entry;
2668 struct compat_mmsghdr __user *compat_entry;
2669 struct msghdr msg_sys;
2670 struct used_address used_address;
2671 unsigned int oflags = flags;
2672
2673 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2674 return -EINVAL;
2675
2676 if (vlen > UIO_MAXIOV)
2677 vlen = UIO_MAXIOV;
2678
2679 datagrams = 0;
2680
2681 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682 if (!sock)
2683 return err;
2684
2685 used_address.name_len = UINT_MAX;
2686 entry = mmsg;
2687 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2688 err = 0;
2689 flags |= MSG_BATCH;
2690
2691 while (datagrams < vlen) {
2692 if (datagrams == vlen - 1)
2693 flags = oflags;
2694
2695 if (MSG_CMSG_COMPAT & flags) {
2696 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2697 &msg_sys, flags, &used_address, MSG_EOR);
2698 if (err < 0)
2699 break;
2700 err = __put_user(err, &compat_entry->msg_len);
2701 ++compat_entry;
2702 } else {
2703 err = ___sys_sendmsg(sock,
2704 (struct user_msghdr __user *)entry,
2705 &msg_sys, flags, &used_address, MSG_EOR);
2706 if (err < 0)
2707 break;
2708 err = put_user(err, &entry->msg_len);
2709 ++entry;
2710 }
2711
2712 if (err)
2713 break;
2714 ++datagrams;
2715 if (msg_data_left(&msg_sys))
2716 break;
2717 cond_resched();
2718 }
2719
2720 fput_light(sock->file, fput_needed);
2721
2722 /* We only return an error if no datagrams were able to be sent */
2723 if (datagrams != 0)
2724 return datagrams;
2725
2726 return err;
2727 }
2728
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2729 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2730 unsigned int, vlen, unsigned int, flags)
2731 {
2732 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2733 }
2734
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2735 int recvmsg_copy_msghdr(struct msghdr *msg,
2736 struct user_msghdr __user *umsg, unsigned flags,
2737 struct sockaddr __user **uaddr,
2738 struct iovec **iov)
2739 {
2740 ssize_t err;
2741
2742 if (MSG_CMSG_COMPAT & flags) {
2743 struct compat_msghdr __user *msg_compat;
2744
2745 msg_compat = (struct compat_msghdr __user *) umsg;
2746 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2747 } else {
2748 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2749 }
2750 if (err < 0)
2751 return err;
2752
2753 return 0;
2754 }
2755
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2756 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2757 struct user_msghdr __user *msg,
2758 struct sockaddr __user *uaddr,
2759 unsigned int flags, int nosec)
2760 {
2761 struct compat_msghdr __user *msg_compat =
2762 (struct compat_msghdr __user *) msg;
2763 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2764 struct sockaddr_storage addr;
2765 unsigned long cmsg_ptr;
2766 int len;
2767 ssize_t err;
2768
2769 msg_sys->msg_name = &addr;
2770 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2771 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2772
2773 /* We assume all kernel code knows the size of sockaddr_storage */
2774 msg_sys->msg_namelen = 0;
2775
2776 if (sock->file->f_flags & O_NONBLOCK)
2777 flags |= MSG_DONTWAIT;
2778
2779 if (unlikely(nosec))
2780 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2781 else
2782 err = sock_recvmsg(sock, msg_sys, flags);
2783
2784 if (err < 0)
2785 goto out;
2786 len = err;
2787
2788 if (uaddr != NULL) {
2789 err = move_addr_to_user(&addr,
2790 msg_sys->msg_namelen, uaddr,
2791 uaddr_len);
2792 if (err < 0)
2793 goto out;
2794 }
2795 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2796 COMPAT_FLAGS(msg));
2797 if (err)
2798 goto out;
2799 if (MSG_CMSG_COMPAT & flags)
2800 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2801 &msg_compat->msg_controllen);
2802 else
2803 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2804 &msg->msg_controllen);
2805 if (err)
2806 goto out;
2807 err = len;
2808 out:
2809 return err;
2810 }
2811
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2812 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2813 struct msghdr *msg_sys, unsigned int flags, int nosec)
2814 {
2815 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2816 /* user mode address pointers */
2817 struct sockaddr __user *uaddr;
2818 ssize_t err;
2819
2820 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2821 if (err < 0)
2822 return err;
2823
2824 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2825 kfree(iov);
2826 return err;
2827 }
2828
2829 /*
2830 * BSD recvmsg interface
2831 */
2832
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2833 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2834 struct user_msghdr __user *umsg,
2835 struct sockaddr __user *uaddr, unsigned int flags)
2836 {
2837 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2838 }
2839
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2840 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2841 bool forbid_cmsg_compat)
2842 {
2843 int fput_needed, err;
2844 struct msghdr msg_sys;
2845 struct socket *sock;
2846
2847 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2848 return -EINVAL;
2849
2850 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2851 if (!sock)
2852 goto out;
2853
2854 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2855
2856 fput_light(sock->file, fput_needed);
2857 out:
2858 return err;
2859 }
2860
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2861 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2862 unsigned int, flags)
2863 {
2864 return __sys_recvmsg(fd, msg, flags, true);
2865 }
2866
2867 /*
2868 * Linux recvmmsg interface
2869 */
2870
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2871 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2872 unsigned int vlen, unsigned int flags,
2873 struct timespec64 *timeout)
2874 {
2875 int fput_needed, err, datagrams;
2876 struct socket *sock;
2877 struct mmsghdr __user *entry;
2878 struct compat_mmsghdr __user *compat_entry;
2879 struct msghdr msg_sys;
2880 struct timespec64 end_time;
2881 struct timespec64 timeout64;
2882
2883 if (timeout &&
2884 poll_select_set_timeout(&end_time, timeout->tv_sec,
2885 timeout->tv_nsec))
2886 return -EINVAL;
2887
2888 datagrams = 0;
2889
2890 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2891 if (!sock)
2892 return err;
2893
2894 if (likely(!(flags & MSG_ERRQUEUE))) {
2895 err = sock_error(sock->sk);
2896 if (err) {
2897 datagrams = err;
2898 goto out_put;
2899 }
2900 }
2901
2902 entry = mmsg;
2903 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2904
2905 while (datagrams < vlen) {
2906 /*
2907 * No need to ask LSM for more than the first datagram.
2908 */
2909 if (MSG_CMSG_COMPAT & flags) {
2910 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2911 &msg_sys, flags & ~MSG_WAITFORONE,
2912 datagrams);
2913 if (err < 0)
2914 break;
2915 err = __put_user(err, &compat_entry->msg_len);
2916 ++compat_entry;
2917 } else {
2918 err = ___sys_recvmsg(sock,
2919 (struct user_msghdr __user *)entry,
2920 &msg_sys, flags & ~MSG_WAITFORONE,
2921 datagrams);
2922 if (err < 0)
2923 break;
2924 err = put_user(err, &entry->msg_len);
2925 ++entry;
2926 }
2927
2928 if (err)
2929 break;
2930 ++datagrams;
2931
2932 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2933 if (flags & MSG_WAITFORONE)
2934 flags |= MSG_DONTWAIT;
2935
2936 if (timeout) {
2937 ktime_get_ts64(&timeout64);
2938 *timeout = timespec64_sub(end_time, timeout64);
2939 if (timeout->tv_sec < 0) {
2940 timeout->tv_sec = timeout->tv_nsec = 0;
2941 break;
2942 }
2943
2944 /* Timeout, return less than vlen datagrams */
2945 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2946 break;
2947 }
2948
2949 /* Out of band data, return right away */
2950 if (msg_sys.msg_flags & MSG_OOB)
2951 break;
2952 cond_resched();
2953 }
2954
2955 if (err == 0)
2956 goto out_put;
2957
2958 if (datagrams == 0) {
2959 datagrams = err;
2960 goto out_put;
2961 }
2962
2963 /*
2964 * We may return less entries than requested (vlen) if the
2965 * sock is non block and there aren't enough datagrams...
2966 */
2967 if (err != -EAGAIN) {
2968 /*
2969 * ... or if recvmsg returns an error after we
2970 * received some datagrams, where we record the
2971 * error to return on the next call or if the
2972 * app asks about it using getsockopt(SO_ERROR).
2973 */
2974 WRITE_ONCE(sock->sk->sk_err, -err);
2975 }
2976 out_put:
2977 fput_light(sock->file, fput_needed);
2978
2979 return datagrams;
2980 }
2981
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2982 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2983 unsigned int vlen, unsigned int flags,
2984 struct __kernel_timespec __user *timeout,
2985 struct old_timespec32 __user *timeout32)
2986 {
2987 int datagrams;
2988 struct timespec64 timeout_sys;
2989
2990 if (timeout && get_timespec64(&timeout_sys, timeout))
2991 return -EFAULT;
2992
2993 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2994 return -EFAULT;
2995
2996 if (!timeout && !timeout32)
2997 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2998
2999 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3000
3001 if (datagrams <= 0)
3002 return datagrams;
3003
3004 if (timeout && put_timespec64(&timeout_sys, timeout))
3005 datagrams = -EFAULT;
3006
3007 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3008 datagrams = -EFAULT;
3009
3010 return datagrams;
3011 }
3012
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3013 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3014 unsigned int, vlen, unsigned int, flags,
3015 struct __kernel_timespec __user *, timeout)
3016 {
3017 if (flags & MSG_CMSG_COMPAT)
3018 return -EINVAL;
3019
3020 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3021 }
3022
3023 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3024 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3025 unsigned int, vlen, unsigned int, flags,
3026 struct old_timespec32 __user *, timeout)
3027 {
3028 if (flags & MSG_CMSG_COMPAT)
3029 return -EINVAL;
3030
3031 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3032 }
3033 #endif
3034
3035 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3036 /* Argument list sizes for sys_socketcall */
3037 #define AL(x) ((x) * sizeof(unsigned long))
3038 static const unsigned char nargs[21] = {
3039 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3040 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3041 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3042 AL(4), AL(5), AL(4)
3043 };
3044
3045 #undef AL
3046
3047 /*
3048 * System call vectors.
3049 *
3050 * Argument checking cleaned up. Saved 20% in size.
3051 * This function doesn't need to set the kernel lock because
3052 * it is set by the callees.
3053 */
3054
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3055 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3056 {
3057 unsigned long a[AUDITSC_ARGS];
3058 unsigned long a0, a1;
3059 int err;
3060 unsigned int len;
3061
3062 if (call < 1 || call > SYS_SENDMMSG)
3063 return -EINVAL;
3064 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3065
3066 len = nargs[call];
3067 if (len > sizeof(a))
3068 return -EINVAL;
3069
3070 /* copy_from_user should be SMP safe. */
3071 if (copy_from_user(a, args, len))
3072 return -EFAULT;
3073
3074 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3075 if (err)
3076 return err;
3077
3078 a0 = a[0];
3079 a1 = a[1];
3080
3081 switch (call) {
3082 case SYS_SOCKET:
3083 err = __sys_socket(a0, a1, a[2]);
3084 break;
3085 case SYS_BIND:
3086 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3087 break;
3088 case SYS_CONNECT:
3089 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3090 break;
3091 case SYS_LISTEN:
3092 err = __sys_listen(a0, a1);
3093 break;
3094 case SYS_ACCEPT:
3095 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3096 (int __user *)a[2], 0);
3097 break;
3098 case SYS_GETSOCKNAME:
3099 err =
3100 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3101 (int __user *)a[2]);
3102 break;
3103 case SYS_GETPEERNAME:
3104 err =
3105 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3106 (int __user *)a[2]);
3107 break;
3108 case SYS_SOCKETPAIR:
3109 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3110 break;
3111 case SYS_SEND:
3112 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3113 NULL, 0);
3114 break;
3115 case SYS_SENDTO:
3116 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3117 (struct sockaddr __user *)a[4], a[5]);
3118 break;
3119 case SYS_RECV:
3120 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3121 NULL, NULL);
3122 break;
3123 case SYS_RECVFROM:
3124 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3125 (struct sockaddr __user *)a[4],
3126 (int __user *)a[5]);
3127 break;
3128 case SYS_SHUTDOWN:
3129 err = __sys_shutdown(a0, a1);
3130 break;
3131 case SYS_SETSOCKOPT:
3132 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3133 a[4]);
3134 break;
3135 case SYS_GETSOCKOPT:
3136 err =
3137 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3138 (int __user *)a[4]);
3139 break;
3140 case SYS_SENDMSG:
3141 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3142 a[2], true);
3143 break;
3144 case SYS_SENDMMSG:
3145 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3146 a[3], true);
3147 break;
3148 case SYS_RECVMSG:
3149 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3150 a[2], true);
3151 break;
3152 case SYS_RECVMMSG:
3153 if (IS_ENABLED(CONFIG_64BIT))
3154 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3155 a[2], a[3],
3156 (struct __kernel_timespec __user *)a[4],
3157 NULL);
3158 else
3159 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3160 a[2], a[3], NULL,
3161 (struct old_timespec32 __user *)a[4]);
3162 break;
3163 case SYS_ACCEPT4:
3164 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3165 (int __user *)a[2], a[3]);
3166 break;
3167 default:
3168 err = -EINVAL;
3169 break;
3170 }
3171 return err;
3172 }
3173
3174 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3175
3176 /**
3177 * sock_register - add a socket protocol handler
3178 * @ops: description of protocol
3179 *
3180 * This function is called by a protocol handler that wants to
3181 * advertise its address family, and have it linked into the
3182 * socket interface. The value ops->family corresponds to the
3183 * socket system call protocol family.
3184 */
sock_register(const struct net_proto_family * ops)3185 int sock_register(const struct net_proto_family *ops)
3186 {
3187 int err;
3188
3189 if (ops->family >= NPROTO) {
3190 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3191 return -ENOBUFS;
3192 }
3193
3194 spin_lock(&net_family_lock);
3195 if (rcu_dereference_protected(net_families[ops->family],
3196 lockdep_is_held(&net_family_lock)))
3197 err = -EEXIST;
3198 else {
3199 rcu_assign_pointer(net_families[ops->family], ops);
3200 err = 0;
3201 }
3202 spin_unlock(&net_family_lock);
3203
3204 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3205 return err;
3206 }
3207 EXPORT_SYMBOL(sock_register);
3208
3209 /**
3210 * sock_unregister - remove a protocol handler
3211 * @family: protocol family to remove
3212 *
3213 * This function is called by a protocol handler that wants to
3214 * remove its address family, and have it unlinked from the
3215 * new socket creation.
3216 *
3217 * If protocol handler is a module, then it can use module reference
3218 * counts to protect against new references. If protocol handler is not
3219 * a module then it needs to provide its own protection in
3220 * the ops->create routine.
3221 */
sock_unregister(int family)3222 void sock_unregister(int family)
3223 {
3224 BUG_ON(family < 0 || family >= NPROTO);
3225
3226 spin_lock(&net_family_lock);
3227 RCU_INIT_POINTER(net_families[family], NULL);
3228 spin_unlock(&net_family_lock);
3229
3230 synchronize_rcu();
3231
3232 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3233 }
3234 EXPORT_SYMBOL(sock_unregister);
3235
sock_is_registered(int family)3236 bool sock_is_registered(int family)
3237 {
3238 return family < NPROTO && rcu_access_pointer(net_families[family]);
3239 }
3240
sock_init(void)3241 static int __init sock_init(void)
3242 {
3243 int err;
3244 /*
3245 * Initialize the network sysctl infrastructure.
3246 */
3247 err = net_sysctl_init();
3248 if (err)
3249 goto out;
3250
3251 /*
3252 * Initialize skbuff SLAB cache
3253 */
3254 skb_init();
3255
3256 /*
3257 * Initialize the protocols module.
3258 */
3259
3260 init_inodecache();
3261
3262 err = register_filesystem(&sock_fs_type);
3263 if (err)
3264 goto out;
3265 sock_mnt = kern_mount(&sock_fs_type);
3266 if (IS_ERR(sock_mnt)) {
3267 err = PTR_ERR(sock_mnt);
3268 goto out_mount;
3269 }
3270
3271 /* The real protocol initialization is performed in later initcalls.
3272 */
3273
3274 #ifdef CONFIG_NETFILTER
3275 err = netfilter_init();
3276 if (err)
3277 goto out;
3278 #endif
3279
3280 ptp_classifier_init();
3281
3282 out:
3283 return err;
3284
3285 out_mount:
3286 unregister_filesystem(&sock_fs_type);
3287 goto out;
3288 }
3289
3290 core_initcall(sock_init); /* early initcall */
3291
3292 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3293 void socket_seq_show(struct seq_file *seq)
3294 {
3295 seq_printf(seq, "sockets: used %d\n",
3296 sock_inuse_get(seq->private));
3297 }
3298 #endif /* CONFIG_PROC_FS */
3299
3300 /* Handle the fact that while struct ifreq has the same *layout* on
3301 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3302 * which are handled elsewhere, it still has different *size* due to
3303 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3304 * resulting in struct ifreq being 32 and 40 bytes respectively).
3305 * As a result, if the struct happens to be at the end of a page and
3306 * the next page isn't readable/writable, we get a fault. To prevent
3307 * that, copy back and forth to the full size.
3308 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3309 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3310 {
3311 if (in_compat_syscall()) {
3312 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3313
3314 memset(ifr, 0, sizeof(*ifr));
3315 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3316 return -EFAULT;
3317
3318 if (ifrdata)
3319 *ifrdata = compat_ptr(ifr32->ifr_data);
3320
3321 return 0;
3322 }
3323
3324 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3325 return -EFAULT;
3326
3327 if (ifrdata)
3328 *ifrdata = ifr->ifr_data;
3329
3330 return 0;
3331 }
3332 EXPORT_SYMBOL(get_user_ifreq);
3333
put_user_ifreq(struct ifreq * ifr,void __user * arg)3334 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3335 {
3336 size_t size = sizeof(*ifr);
3337
3338 if (in_compat_syscall())
3339 size = sizeof(struct compat_ifreq);
3340
3341 if (copy_to_user(arg, ifr, size))
3342 return -EFAULT;
3343
3344 return 0;
3345 }
3346 EXPORT_SYMBOL(put_user_ifreq);
3347
3348 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3349 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3350 {
3351 compat_uptr_t uptr32;
3352 struct ifreq ifr;
3353 void __user *saved;
3354 int err;
3355
3356 if (get_user_ifreq(&ifr, NULL, uifr32))
3357 return -EFAULT;
3358
3359 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3360 return -EFAULT;
3361
3362 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3363 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3364
3365 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3366 if (!err) {
3367 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3368 if (put_user_ifreq(&ifr, uifr32))
3369 err = -EFAULT;
3370 }
3371 return err;
3372 }
3373
3374 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3375 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3376 struct compat_ifreq __user *u_ifreq32)
3377 {
3378 struct ifreq ifreq;
3379 void __user *data;
3380
3381 if (!is_socket_ioctl_cmd(cmd))
3382 return -ENOTTY;
3383 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3384 return -EFAULT;
3385 ifreq.ifr_data = data;
3386
3387 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3388 }
3389
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3390 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3391 unsigned int cmd, unsigned long arg)
3392 {
3393 void __user *argp = compat_ptr(arg);
3394 struct sock *sk = sock->sk;
3395 struct net *net = sock_net(sk);
3396 const struct proto_ops *ops;
3397
3398 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3399 return sock_ioctl(file, cmd, (unsigned long)argp);
3400
3401 switch (cmd) {
3402 case SIOCWANDEV:
3403 return compat_siocwandev(net, argp);
3404 case SIOCGSTAMP_OLD:
3405 case SIOCGSTAMPNS_OLD:
3406 ops = READ_ONCE(sock->ops);
3407 if (!ops->gettstamp)
3408 return -ENOIOCTLCMD;
3409 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3410 !COMPAT_USE_64BIT_TIME);
3411
3412 case SIOCETHTOOL:
3413 case SIOCBONDSLAVEINFOQUERY:
3414 case SIOCBONDINFOQUERY:
3415 case SIOCSHWTSTAMP:
3416 case SIOCGHWTSTAMP:
3417 return compat_ifr_data_ioctl(net, cmd, argp);
3418
3419 case FIOSETOWN:
3420 case SIOCSPGRP:
3421 case FIOGETOWN:
3422 case SIOCGPGRP:
3423 case SIOCBRADDBR:
3424 case SIOCBRDELBR:
3425 case SIOCGIFVLAN:
3426 case SIOCSIFVLAN:
3427 case SIOCGSKNS:
3428 case SIOCGSTAMP_NEW:
3429 case SIOCGSTAMPNS_NEW:
3430 case SIOCGIFCONF:
3431 case SIOCSIFBR:
3432 case SIOCGIFBR:
3433 return sock_ioctl(file, cmd, arg);
3434
3435 case SIOCGIFFLAGS:
3436 case SIOCSIFFLAGS:
3437 case SIOCGIFMAP:
3438 case SIOCSIFMAP:
3439 case SIOCGIFMETRIC:
3440 case SIOCSIFMETRIC:
3441 case SIOCGIFMTU:
3442 case SIOCSIFMTU:
3443 case SIOCGIFMEM:
3444 case SIOCSIFMEM:
3445 case SIOCGIFHWADDR:
3446 case SIOCSIFHWADDR:
3447 case SIOCADDMULTI:
3448 case SIOCDELMULTI:
3449 case SIOCGIFINDEX:
3450 case SIOCGIFADDR:
3451 case SIOCSIFADDR:
3452 case SIOCSIFHWBROADCAST:
3453 case SIOCDIFADDR:
3454 case SIOCGIFBRDADDR:
3455 case SIOCSIFBRDADDR:
3456 case SIOCGIFDSTADDR:
3457 case SIOCSIFDSTADDR:
3458 case SIOCGIFNETMASK:
3459 case SIOCSIFNETMASK:
3460 case SIOCSIFPFLAGS:
3461 case SIOCGIFPFLAGS:
3462 case SIOCGIFTXQLEN:
3463 case SIOCSIFTXQLEN:
3464 case SIOCBRADDIF:
3465 case SIOCBRDELIF:
3466 case SIOCGIFNAME:
3467 case SIOCSIFNAME:
3468 case SIOCGMIIPHY:
3469 case SIOCGMIIREG:
3470 case SIOCSMIIREG:
3471 case SIOCBONDENSLAVE:
3472 case SIOCBONDRELEASE:
3473 case SIOCBONDSETHWADDR:
3474 case SIOCBONDCHANGEACTIVE:
3475 case SIOCSARP:
3476 case SIOCGARP:
3477 case SIOCDARP:
3478 case SIOCOUTQ:
3479 case SIOCOUTQNSD:
3480 case SIOCATMARK:
3481 return sock_do_ioctl(net, sock, cmd, arg);
3482 }
3483
3484 return -ENOIOCTLCMD;
3485 }
3486
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3487 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3488 unsigned long arg)
3489 {
3490 struct socket *sock = file->private_data;
3491 const struct proto_ops *ops = READ_ONCE(sock->ops);
3492 int ret = -ENOIOCTLCMD;
3493 struct sock *sk;
3494 struct net *net;
3495
3496 sk = sock->sk;
3497 net = sock_net(sk);
3498
3499 if (ops->compat_ioctl)
3500 ret = ops->compat_ioctl(sock, cmd, arg);
3501
3502 if (ret == -ENOIOCTLCMD &&
3503 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3504 ret = compat_wext_handle_ioctl(net, cmd, arg);
3505
3506 if (ret == -ENOIOCTLCMD)
3507 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3508
3509 return ret;
3510 }
3511 #endif
3512
3513 /**
3514 * kernel_bind - bind an address to a socket (kernel space)
3515 * @sock: socket
3516 * @addr: address
3517 * @addrlen: length of address
3518 *
3519 * Returns 0 or an error.
3520 */
3521
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3522 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3523 {
3524 struct sockaddr_storage address;
3525
3526 memcpy(&address, addr, addrlen);
3527
3528 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3529 addrlen);
3530 }
3531 EXPORT_SYMBOL(kernel_bind);
3532
3533 /**
3534 * kernel_listen - move socket to listening state (kernel space)
3535 * @sock: socket
3536 * @backlog: pending connections queue size
3537 *
3538 * Returns 0 or an error.
3539 */
3540
kernel_listen(struct socket * sock,int backlog)3541 int kernel_listen(struct socket *sock, int backlog)
3542 {
3543 return READ_ONCE(sock->ops)->listen(sock, backlog);
3544 }
3545 EXPORT_SYMBOL(kernel_listen);
3546
3547 /**
3548 * kernel_accept - accept a connection (kernel space)
3549 * @sock: listening socket
3550 * @newsock: new connected socket
3551 * @flags: flags
3552 *
3553 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3554 * If it fails, @newsock is guaranteed to be %NULL.
3555 * Returns 0 or an error.
3556 */
3557
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3558 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3559 {
3560 struct sock *sk = sock->sk;
3561 const struct proto_ops *ops = READ_ONCE(sock->ops);
3562 int err;
3563
3564 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3565 newsock);
3566 if (err < 0)
3567 goto done;
3568
3569 err = ops->accept(sock, *newsock, flags, true);
3570 if (err < 0) {
3571 sock_release(*newsock);
3572 *newsock = NULL;
3573 goto done;
3574 }
3575
3576 (*newsock)->ops = ops;
3577 __module_get(ops->owner);
3578
3579 done:
3580 return err;
3581 }
3582 EXPORT_SYMBOL(kernel_accept);
3583
3584 /**
3585 * kernel_connect - connect a socket (kernel space)
3586 * @sock: socket
3587 * @addr: address
3588 * @addrlen: address length
3589 * @flags: flags (O_NONBLOCK, ...)
3590 *
3591 * For datagram sockets, @addr is the address to which datagrams are sent
3592 * by default, and the only address from which datagrams are received.
3593 * For stream sockets, attempts to connect to @addr.
3594 * Returns 0 or an error code.
3595 */
3596
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3597 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3598 int flags)
3599 {
3600 struct sockaddr_storage address;
3601
3602 memcpy(&address, addr, addrlen);
3603
3604 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3605 addrlen, flags);
3606 }
3607 EXPORT_SYMBOL(kernel_connect);
3608
3609 /**
3610 * kernel_getsockname - get the address which the socket is bound (kernel space)
3611 * @sock: socket
3612 * @addr: address holder
3613 *
3614 * Fills the @addr pointer with the address which the socket is bound.
3615 * Returns the length of the address in bytes or an error code.
3616 */
3617
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3618 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3619 {
3620 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3621 }
3622 EXPORT_SYMBOL(kernel_getsockname);
3623
3624 /**
3625 * kernel_getpeername - get the address which the socket is connected (kernel space)
3626 * @sock: socket
3627 * @addr: address holder
3628 *
3629 * Fills the @addr pointer with the address which the socket is connected.
3630 * Returns the length of the address in bytes or an error code.
3631 */
3632
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3633 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3634 {
3635 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3636 }
3637 EXPORT_SYMBOL(kernel_getpeername);
3638
3639 /**
3640 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3641 * @sock: socket
3642 * @how: connection part
3643 *
3644 * Returns 0 or an error.
3645 */
3646
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3647 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3648 {
3649 return READ_ONCE(sock->ops)->shutdown(sock, how);
3650 }
3651 EXPORT_SYMBOL(kernel_sock_shutdown);
3652
3653 /**
3654 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3655 * @sk: socket
3656 *
3657 * This routine returns the IP overhead imposed by a socket i.e.
3658 * the length of the underlying IP header, depending on whether
3659 * this is an IPv4 or IPv6 socket and the length from IP options turned
3660 * on at the socket. Assumes that the caller has a lock on the socket.
3661 */
3662
kernel_sock_ip_overhead(struct sock * sk)3663 u32 kernel_sock_ip_overhead(struct sock *sk)
3664 {
3665 struct inet_sock *inet;
3666 struct ip_options_rcu *opt;
3667 u32 overhead = 0;
3668 #if IS_ENABLED(CONFIG_IPV6)
3669 struct ipv6_pinfo *np;
3670 struct ipv6_txoptions *optv6 = NULL;
3671 #endif /* IS_ENABLED(CONFIG_IPV6) */
3672
3673 if (!sk)
3674 return overhead;
3675
3676 switch (sk->sk_family) {
3677 case AF_INET:
3678 inet = inet_sk(sk);
3679 overhead += sizeof(struct iphdr);
3680 opt = rcu_dereference_protected(inet->inet_opt,
3681 sock_owned_by_user(sk));
3682 if (opt)
3683 overhead += opt->opt.optlen;
3684 return overhead;
3685 #if IS_ENABLED(CONFIG_IPV6)
3686 case AF_INET6:
3687 np = inet6_sk(sk);
3688 overhead += sizeof(struct ipv6hdr);
3689 if (np)
3690 optv6 = rcu_dereference_protected(np->opt,
3691 sock_owned_by_user(sk));
3692 if (optv6)
3693 overhead += (optv6->opt_flen + optv6->opt_nflen);
3694 return overhead;
3695 #endif /* IS_ENABLED(CONFIG_IPV6) */
3696 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3697 return overhead;
3698 }
3699 }
3700 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3701