1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/pci.h>
27 #include <linux/errno.h>
28 #include <linux/acpi.h>
29 #include <linux/hash.h>
30 #include <linux/cpufreq.h>
31 #include <linux/log2.h>
32 #include <linux/dmi.h>
33 #include <linux/atomic.h>
34
35 #include "kfd_priv.h"
36 #include "kfd_crat.h"
37 #include "kfd_topology.h"
38 #include "kfd_device_queue_manager.h"
39 #include "kfd_svm.h"
40 #include "kfd_debug.h"
41 #include "amdgpu_amdkfd.h"
42 #include "amdgpu_ras.h"
43 #include "amdgpu.h"
44
45 /* topology_device_list - Master list of all topology devices */
46 static struct list_head topology_device_list;
47 static struct kfd_system_properties sys_props;
48
49 static DECLARE_RWSEM(topology_lock);
50 static uint32_t topology_crat_proximity_domain;
51
kfd_topology_device_by_proximity_domain_no_lock(uint32_t proximity_domain)52 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
53 uint32_t proximity_domain)
54 {
55 struct kfd_topology_device *top_dev;
56 struct kfd_topology_device *device = NULL;
57
58 list_for_each_entry(top_dev, &topology_device_list, list)
59 if (top_dev->proximity_domain == proximity_domain) {
60 device = top_dev;
61 break;
62 }
63
64 return device;
65 }
66
kfd_topology_device_by_proximity_domain(uint32_t proximity_domain)67 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
68 uint32_t proximity_domain)
69 {
70 struct kfd_topology_device *device = NULL;
71
72 down_read(&topology_lock);
73
74 device = kfd_topology_device_by_proximity_domain_no_lock(
75 proximity_domain);
76 up_read(&topology_lock);
77
78 return device;
79 }
80
kfd_topology_device_by_id(uint32_t gpu_id)81 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id)
82 {
83 struct kfd_topology_device *top_dev = NULL;
84 struct kfd_topology_device *ret = NULL;
85
86 down_read(&topology_lock);
87
88 list_for_each_entry(top_dev, &topology_device_list, list)
89 if (top_dev->gpu_id == gpu_id) {
90 ret = top_dev;
91 break;
92 }
93
94 up_read(&topology_lock);
95
96 return ret;
97 }
98
kfd_device_by_id(uint32_t gpu_id)99 struct kfd_node *kfd_device_by_id(uint32_t gpu_id)
100 {
101 struct kfd_topology_device *top_dev;
102
103 top_dev = kfd_topology_device_by_id(gpu_id);
104 if (!top_dev)
105 return NULL;
106
107 return top_dev->gpu;
108 }
109
kfd_device_by_pci_dev(const struct pci_dev * pdev)110 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev)
111 {
112 struct kfd_topology_device *top_dev;
113 struct kfd_node *device = NULL;
114
115 down_read(&topology_lock);
116
117 list_for_each_entry(top_dev, &topology_device_list, list)
118 if (top_dev->gpu && top_dev->gpu->adev->pdev == pdev) {
119 device = top_dev->gpu;
120 break;
121 }
122
123 up_read(&topology_lock);
124
125 return device;
126 }
127
128 /* Called with write topology_lock acquired */
kfd_release_topology_device(struct kfd_topology_device * dev)129 static void kfd_release_topology_device(struct kfd_topology_device *dev)
130 {
131 struct kfd_mem_properties *mem;
132 struct kfd_cache_properties *cache;
133 struct kfd_iolink_properties *iolink;
134 struct kfd_iolink_properties *p2plink;
135 struct kfd_perf_properties *perf;
136
137 list_del(&dev->list);
138
139 while (dev->mem_props.next != &dev->mem_props) {
140 mem = container_of(dev->mem_props.next,
141 struct kfd_mem_properties, list);
142 list_del(&mem->list);
143 kfree(mem);
144 }
145
146 while (dev->cache_props.next != &dev->cache_props) {
147 cache = container_of(dev->cache_props.next,
148 struct kfd_cache_properties, list);
149 list_del(&cache->list);
150 kfree(cache);
151 }
152
153 while (dev->io_link_props.next != &dev->io_link_props) {
154 iolink = container_of(dev->io_link_props.next,
155 struct kfd_iolink_properties, list);
156 list_del(&iolink->list);
157 kfree(iolink);
158 }
159
160 while (dev->p2p_link_props.next != &dev->p2p_link_props) {
161 p2plink = container_of(dev->p2p_link_props.next,
162 struct kfd_iolink_properties, list);
163 list_del(&p2plink->list);
164 kfree(p2plink);
165 }
166
167 while (dev->perf_props.next != &dev->perf_props) {
168 perf = container_of(dev->perf_props.next,
169 struct kfd_perf_properties, list);
170 list_del(&perf->list);
171 kfree(perf);
172 }
173
174 kfree(dev);
175 }
176
kfd_release_topology_device_list(struct list_head * device_list)177 void kfd_release_topology_device_list(struct list_head *device_list)
178 {
179 struct kfd_topology_device *dev;
180
181 while (!list_empty(device_list)) {
182 dev = list_first_entry(device_list,
183 struct kfd_topology_device, list);
184 kfd_release_topology_device(dev);
185 }
186 }
187
kfd_release_live_view(void)188 static void kfd_release_live_view(void)
189 {
190 kfd_release_topology_device_list(&topology_device_list);
191 memset(&sys_props, 0, sizeof(sys_props));
192 }
193
kfd_create_topology_device(struct list_head * device_list)194 struct kfd_topology_device *kfd_create_topology_device(
195 struct list_head *device_list)
196 {
197 struct kfd_topology_device *dev;
198
199 dev = kfd_alloc_struct(dev);
200 if (!dev) {
201 pr_err("No memory to allocate a topology device");
202 return NULL;
203 }
204
205 INIT_LIST_HEAD(&dev->mem_props);
206 INIT_LIST_HEAD(&dev->cache_props);
207 INIT_LIST_HEAD(&dev->io_link_props);
208 INIT_LIST_HEAD(&dev->p2p_link_props);
209 INIT_LIST_HEAD(&dev->perf_props);
210
211 list_add_tail(&dev->list, device_list);
212
213 return dev;
214 }
215
216
217 #define sysfs_show_gen_prop(buffer, offs, fmt, ...) \
218 (offs += snprintf(buffer+offs, PAGE_SIZE-offs, \
219 fmt, __VA_ARGS__))
220 #define sysfs_show_32bit_prop(buffer, offs, name, value) \
221 sysfs_show_gen_prop(buffer, offs, "%s %u\n", name, value)
222 #define sysfs_show_64bit_prop(buffer, offs, name, value) \
223 sysfs_show_gen_prop(buffer, offs, "%s %llu\n", name, value)
224 #define sysfs_show_32bit_val(buffer, offs, value) \
225 sysfs_show_gen_prop(buffer, offs, "%u\n", value)
226 #define sysfs_show_str_val(buffer, offs, value) \
227 sysfs_show_gen_prop(buffer, offs, "%s\n", value)
228
sysprops_show(struct kobject * kobj,struct attribute * attr,char * buffer)229 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
230 char *buffer)
231 {
232 int offs = 0;
233
234 /* Making sure that the buffer is an empty string */
235 buffer[0] = 0;
236
237 if (attr == &sys_props.attr_genid) {
238 sysfs_show_32bit_val(buffer, offs,
239 sys_props.generation_count);
240 } else if (attr == &sys_props.attr_props) {
241 sysfs_show_64bit_prop(buffer, offs, "platform_oem",
242 sys_props.platform_oem);
243 sysfs_show_64bit_prop(buffer, offs, "platform_id",
244 sys_props.platform_id);
245 sysfs_show_64bit_prop(buffer, offs, "platform_rev",
246 sys_props.platform_rev);
247 } else {
248 offs = -EINVAL;
249 }
250
251 return offs;
252 }
253
kfd_topology_kobj_release(struct kobject * kobj)254 static void kfd_topology_kobj_release(struct kobject *kobj)
255 {
256 kfree(kobj);
257 }
258
259 static const struct sysfs_ops sysprops_ops = {
260 .show = sysprops_show,
261 };
262
263 static const struct kobj_type sysprops_type = {
264 .release = kfd_topology_kobj_release,
265 .sysfs_ops = &sysprops_ops,
266 };
267
iolink_show(struct kobject * kobj,struct attribute * attr,char * buffer)268 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
269 char *buffer)
270 {
271 int offs = 0;
272 struct kfd_iolink_properties *iolink;
273
274 /* Making sure that the buffer is an empty string */
275 buffer[0] = 0;
276
277 iolink = container_of(attr, struct kfd_iolink_properties, attr);
278 if (iolink->gpu && kfd_devcgroup_check_permission(iolink->gpu))
279 return -EPERM;
280 sysfs_show_32bit_prop(buffer, offs, "type", iolink->iolink_type);
281 sysfs_show_32bit_prop(buffer, offs, "version_major", iolink->ver_maj);
282 sysfs_show_32bit_prop(buffer, offs, "version_minor", iolink->ver_min);
283 sysfs_show_32bit_prop(buffer, offs, "node_from", iolink->node_from);
284 sysfs_show_32bit_prop(buffer, offs, "node_to", iolink->node_to);
285 sysfs_show_32bit_prop(buffer, offs, "weight", iolink->weight);
286 sysfs_show_32bit_prop(buffer, offs, "min_latency", iolink->min_latency);
287 sysfs_show_32bit_prop(buffer, offs, "max_latency", iolink->max_latency);
288 sysfs_show_32bit_prop(buffer, offs, "min_bandwidth",
289 iolink->min_bandwidth);
290 sysfs_show_32bit_prop(buffer, offs, "max_bandwidth",
291 iolink->max_bandwidth);
292 sysfs_show_32bit_prop(buffer, offs, "recommended_transfer_size",
293 iolink->rec_transfer_size);
294 sysfs_show_32bit_prop(buffer, offs, "flags", iolink->flags);
295
296 return offs;
297 }
298
299 static const struct sysfs_ops iolink_ops = {
300 .show = iolink_show,
301 };
302
303 static const struct kobj_type iolink_type = {
304 .release = kfd_topology_kobj_release,
305 .sysfs_ops = &iolink_ops,
306 };
307
mem_show(struct kobject * kobj,struct attribute * attr,char * buffer)308 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
309 char *buffer)
310 {
311 int offs = 0;
312 struct kfd_mem_properties *mem;
313
314 /* Making sure that the buffer is an empty string */
315 buffer[0] = 0;
316
317 mem = container_of(attr, struct kfd_mem_properties, attr);
318 if (mem->gpu && kfd_devcgroup_check_permission(mem->gpu))
319 return -EPERM;
320 sysfs_show_32bit_prop(buffer, offs, "heap_type", mem->heap_type);
321 sysfs_show_64bit_prop(buffer, offs, "size_in_bytes",
322 mem->size_in_bytes);
323 sysfs_show_32bit_prop(buffer, offs, "flags", mem->flags);
324 sysfs_show_32bit_prop(buffer, offs, "width", mem->width);
325 sysfs_show_32bit_prop(buffer, offs, "mem_clk_max",
326 mem->mem_clk_max);
327
328 return offs;
329 }
330
331 static const struct sysfs_ops mem_ops = {
332 .show = mem_show,
333 };
334
335 static const struct kobj_type mem_type = {
336 .release = kfd_topology_kobj_release,
337 .sysfs_ops = &mem_ops,
338 };
339
kfd_cache_show(struct kobject * kobj,struct attribute * attr,char * buffer)340 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
341 char *buffer)
342 {
343 int offs = 0;
344 uint32_t i, j;
345 struct kfd_cache_properties *cache;
346
347 /* Making sure that the buffer is an empty string */
348 buffer[0] = 0;
349 cache = container_of(attr, struct kfd_cache_properties, attr);
350 if (cache->gpu && kfd_devcgroup_check_permission(cache->gpu))
351 return -EPERM;
352 sysfs_show_32bit_prop(buffer, offs, "processor_id_low",
353 cache->processor_id_low);
354 sysfs_show_32bit_prop(buffer, offs, "level", cache->cache_level);
355 sysfs_show_32bit_prop(buffer, offs, "size", cache->cache_size);
356 sysfs_show_32bit_prop(buffer, offs, "cache_line_size",
357 cache->cacheline_size);
358 sysfs_show_32bit_prop(buffer, offs, "cache_lines_per_tag",
359 cache->cachelines_per_tag);
360 sysfs_show_32bit_prop(buffer, offs, "association", cache->cache_assoc);
361 sysfs_show_32bit_prop(buffer, offs, "latency", cache->cache_latency);
362 sysfs_show_32bit_prop(buffer, offs, "type", cache->cache_type);
363
364 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "sibling_map ");
365 for (i = 0; i < cache->sibling_map_size; i++)
366 for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++)
367 /* Check each bit */
368 offs += snprintf(buffer+offs, PAGE_SIZE-offs, "%d,",
369 (cache->sibling_map[i] >> j) & 1);
370
371 /* Replace the last "," with end of line */
372 buffer[offs-1] = '\n';
373 return offs;
374 }
375
376 static const struct sysfs_ops cache_ops = {
377 .show = kfd_cache_show,
378 };
379
380 static const struct kobj_type cache_type = {
381 .release = kfd_topology_kobj_release,
382 .sysfs_ops = &cache_ops,
383 };
384
385 /****** Sysfs of Performance Counters ******/
386
387 struct kfd_perf_attr {
388 struct kobj_attribute attr;
389 uint32_t data;
390 };
391
perf_show(struct kobject * kobj,struct kobj_attribute * attrs,char * buf)392 static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
393 char *buf)
394 {
395 int offs = 0;
396 struct kfd_perf_attr *attr;
397
398 buf[0] = 0;
399 attr = container_of(attrs, struct kfd_perf_attr, attr);
400 if (!attr->data) /* invalid data for PMC */
401 return 0;
402 else
403 return sysfs_show_32bit_val(buf, offs, attr->data);
404 }
405
406 #define KFD_PERF_DESC(_name, _data) \
407 { \
408 .attr = __ATTR(_name, 0444, perf_show, NULL), \
409 .data = _data, \
410 }
411
412 static struct kfd_perf_attr perf_attr_iommu[] = {
413 KFD_PERF_DESC(max_concurrent, 0),
414 KFD_PERF_DESC(num_counters, 0),
415 KFD_PERF_DESC(counter_ids, 0),
416 };
417 /****************************************/
418
node_show(struct kobject * kobj,struct attribute * attr,char * buffer)419 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
420 char *buffer)
421 {
422 int offs = 0;
423 struct kfd_topology_device *dev;
424 uint32_t log_max_watch_addr;
425
426 /* Making sure that the buffer is an empty string */
427 buffer[0] = 0;
428
429 if (strcmp(attr->name, "gpu_id") == 0) {
430 dev = container_of(attr, struct kfd_topology_device,
431 attr_gpuid);
432 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
433 return -EPERM;
434 return sysfs_show_32bit_val(buffer, offs, dev->gpu_id);
435 }
436
437 if (strcmp(attr->name, "name") == 0) {
438 dev = container_of(attr, struct kfd_topology_device,
439 attr_name);
440
441 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
442 return -EPERM;
443 return sysfs_show_str_val(buffer, offs, dev->node_props.name);
444 }
445
446 dev = container_of(attr, struct kfd_topology_device,
447 attr_props);
448 if (dev->gpu && kfd_devcgroup_check_permission(dev->gpu))
449 return -EPERM;
450 sysfs_show_32bit_prop(buffer, offs, "cpu_cores_count",
451 dev->node_props.cpu_cores_count);
452 sysfs_show_32bit_prop(buffer, offs, "simd_count",
453 dev->gpu ? dev->node_props.simd_count : 0);
454 sysfs_show_32bit_prop(buffer, offs, "mem_banks_count",
455 dev->node_props.mem_banks_count);
456 sysfs_show_32bit_prop(buffer, offs, "caches_count",
457 dev->node_props.caches_count);
458 sysfs_show_32bit_prop(buffer, offs, "io_links_count",
459 dev->node_props.io_links_count);
460 sysfs_show_32bit_prop(buffer, offs, "p2p_links_count",
461 dev->node_props.p2p_links_count);
462 sysfs_show_32bit_prop(buffer, offs, "cpu_core_id_base",
463 dev->node_props.cpu_core_id_base);
464 sysfs_show_32bit_prop(buffer, offs, "simd_id_base",
465 dev->node_props.simd_id_base);
466 sysfs_show_32bit_prop(buffer, offs, "max_waves_per_simd",
467 dev->node_props.max_waves_per_simd);
468 sysfs_show_32bit_prop(buffer, offs, "lds_size_in_kb",
469 dev->node_props.lds_size_in_kb);
470 sysfs_show_32bit_prop(buffer, offs, "gds_size_in_kb",
471 dev->node_props.gds_size_in_kb);
472 sysfs_show_32bit_prop(buffer, offs, "num_gws",
473 dev->node_props.num_gws);
474 sysfs_show_32bit_prop(buffer, offs, "wave_front_size",
475 dev->node_props.wave_front_size);
476 sysfs_show_32bit_prop(buffer, offs, "array_count",
477 dev->gpu ? (dev->node_props.array_count *
478 NUM_XCC(dev->gpu->xcc_mask)) : 0);
479 sysfs_show_32bit_prop(buffer, offs, "simd_arrays_per_engine",
480 dev->node_props.simd_arrays_per_engine);
481 sysfs_show_32bit_prop(buffer, offs, "cu_per_simd_array",
482 dev->node_props.cu_per_simd_array);
483 sysfs_show_32bit_prop(buffer, offs, "simd_per_cu",
484 dev->node_props.simd_per_cu);
485 sysfs_show_32bit_prop(buffer, offs, "max_slots_scratch_cu",
486 dev->node_props.max_slots_scratch_cu);
487 sysfs_show_32bit_prop(buffer, offs, "gfx_target_version",
488 dev->node_props.gfx_target_version);
489 sysfs_show_32bit_prop(buffer, offs, "vendor_id",
490 dev->node_props.vendor_id);
491 sysfs_show_32bit_prop(buffer, offs, "device_id",
492 dev->node_props.device_id);
493 sysfs_show_32bit_prop(buffer, offs, "location_id",
494 dev->node_props.location_id);
495 sysfs_show_32bit_prop(buffer, offs, "domain",
496 dev->node_props.domain);
497 sysfs_show_32bit_prop(buffer, offs, "drm_render_minor",
498 dev->node_props.drm_render_minor);
499 sysfs_show_64bit_prop(buffer, offs, "hive_id",
500 dev->node_props.hive_id);
501 sysfs_show_32bit_prop(buffer, offs, "num_sdma_engines",
502 dev->node_props.num_sdma_engines);
503 sysfs_show_32bit_prop(buffer, offs, "num_sdma_xgmi_engines",
504 dev->node_props.num_sdma_xgmi_engines);
505 sysfs_show_32bit_prop(buffer, offs, "num_sdma_queues_per_engine",
506 dev->node_props.num_sdma_queues_per_engine);
507 sysfs_show_32bit_prop(buffer, offs, "num_cp_queues",
508 dev->node_props.num_cp_queues);
509
510 if (dev->gpu) {
511 log_max_watch_addr =
512 __ilog2_u32(dev->gpu->kfd->device_info.num_of_watch_points);
513
514 if (log_max_watch_addr) {
515 dev->node_props.capability |=
516 HSA_CAP_WATCH_POINTS_SUPPORTED;
517
518 dev->node_props.capability |=
519 ((log_max_watch_addr <<
520 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
521 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
522 }
523
524 if (dev->gpu->adev->asic_type == CHIP_TONGA)
525 dev->node_props.capability |=
526 HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
527
528 sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_fcompute",
529 dev->node_props.max_engine_clk_fcompute);
530
531 sysfs_show_64bit_prop(buffer, offs, "local_mem_size", 0ULL);
532
533 sysfs_show_32bit_prop(buffer, offs, "fw_version",
534 dev->gpu->kfd->mec_fw_version);
535 sysfs_show_32bit_prop(buffer, offs, "capability",
536 dev->node_props.capability);
537 sysfs_show_64bit_prop(buffer, offs, "debug_prop",
538 dev->node_props.debug_prop);
539 sysfs_show_32bit_prop(buffer, offs, "sdma_fw_version",
540 dev->gpu->kfd->sdma_fw_version);
541 sysfs_show_64bit_prop(buffer, offs, "unique_id",
542 dev->gpu->adev->unique_id);
543 sysfs_show_32bit_prop(buffer, offs, "num_xcc",
544 NUM_XCC(dev->gpu->xcc_mask));
545 }
546
547 return sysfs_show_32bit_prop(buffer, offs, "max_engine_clk_ccompute",
548 cpufreq_quick_get_max(0)/1000);
549 }
550
551 static const struct sysfs_ops node_ops = {
552 .show = node_show,
553 };
554
555 static const struct kobj_type node_type = {
556 .release = kfd_topology_kobj_release,
557 .sysfs_ops = &node_ops,
558 };
559
kfd_remove_sysfs_file(struct kobject * kobj,struct attribute * attr)560 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
561 {
562 sysfs_remove_file(kobj, attr);
563 kobject_del(kobj);
564 kobject_put(kobj);
565 }
566
kfd_remove_sysfs_node_entry(struct kfd_topology_device * dev)567 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
568 {
569 struct kfd_iolink_properties *p2plink;
570 struct kfd_iolink_properties *iolink;
571 struct kfd_cache_properties *cache;
572 struct kfd_mem_properties *mem;
573 struct kfd_perf_properties *perf;
574
575 if (dev->kobj_iolink) {
576 list_for_each_entry(iolink, &dev->io_link_props, list)
577 if (iolink->kobj) {
578 kfd_remove_sysfs_file(iolink->kobj,
579 &iolink->attr);
580 iolink->kobj = NULL;
581 }
582 kobject_del(dev->kobj_iolink);
583 kobject_put(dev->kobj_iolink);
584 dev->kobj_iolink = NULL;
585 }
586
587 if (dev->kobj_p2plink) {
588 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
589 if (p2plink->kobj) {
590 kfd_remove_sysfs_file(p2plink->kobj,
591 &p2plink->attr);
592 p2plink->kobj = NULL;
593 }
594 kobject_del(dev->kobj_p2plink);
595 kobject_put(dev->kobj_p2plink);
596 dev->kobj_p2plink = NULL;
597 }
598
599 if (dev->kobj_cache) {
600 list_for_each_entry(cache, &dev->cache_props, list)
601 if (cache->kobj) {
602 kfd_remove_sysfs_file(cache->kobj,
603 &cache->attr);
604 cache->kobj = NULL;
605 }
606 kobject_del(dev->kobj_cache);
607 kobject_put(dev->kobj_cache);
608 dev->kobj_cache = NULL;
609 }
610
611 if (dev->kobj_mem) {
612 list_for_each_entry(mem, &dev->mem_props, list)
613 if (mem->kobj) {
614 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
615 mem->kobj = NULL;
616 }
617 kobject_del(dev->kobj_mem);
618 kobject_put(dev->kobj_mem);
619 dev->kobj_mem = NULL;
620 }
621
622 if (dev->kobj_perf) {
623 list_for_each_entry(perf, &dev->perf_props, list) {
624 kfree(perf->attr_group);
625 perf->attr_group = NULL;
626 }
627 kobject_del(dev->kobj_perf);
628 kobject_put(dev->kobj_perf);
629 dev->kobj_perf = NULL;
630 }
631
632 if (dev->kobj_node) {
633 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
634 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
635 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
636 kobject_del(dev->kobj_node);
637 kobject_put(dev->kobj_node);
638 dev->kobj_node = NULL;
639 }
640 }
641
kfd_build_sysfs_node_entry(struct kfd_topology_device * dev,uint32_t id)642 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
643 uint32_t id)
644 {
645 struct kfd_iolink_properties *p2plink;
646 struct kfd_iolink_properties *iolink;
647 struct kfd_cache_properties *cache;
648 struct kfd_mem_properties *mem;
649 struct kfd_perf_properties *perf;
650 int ret;
651 uint32_t i, num_attrs;
652 struct attribute **attrs;
653
654 if (WARN_ON(dev->kobj_node))
655 return -EEXIST;
656
657 /*
658 * Creating the sysfs folders
659 */
660 dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
661 if (!dev->kobj_node)
662 return -ENOMEM;
663
664 ret = kobject_init_and_add(dev->kobj_node, &node_type,
665 sys_props.kobj_nodes, "%d", id);
666 if (ret < 0) {
667 kobject_put(dev->kobj_node);
668 return ret;
669 }
670
671 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
672 if (!dev->kobj_mem)
673 return -ENOMEM;
674
675 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
676 if (!dev->kobj_cache)
677 return -ENOMEM;
678
679 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
680 if (!dev->kobj_iolink)
681 return -ENOMEM;
682
683 dev->kobj_p2plink = kobject_create_and_add("p2p_links", dev->kobj_node);
684 if (!dev->kobj_p2plink)
685 return -ENOMEM;
686
687 dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
688 if (!dev->kobj_perf)
689 return -ENOMEM;
690
691 /*
692 * Creating sysfs files for node properties
693 */
694 dev->attr_gpuid.name = "gpu_id";
695 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
696 sysfs_attr_init(&dev->attr_gpuid);
697 dev->attr_name.name = "name";
698 dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
699 sysfs_attr_init(&dev->attr_name);
700 dev->attr_props.name = "properties";
701 dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
702 sysfs_attr_init(&dev->attr_props);
703 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
704 if (ret < 0)
705 return ret;
706 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
707 if (ret < 0)
708 return ret;
709 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
710 if (ret < 0)
711 return ret;
712
713 i = 0;
714 list_for_each_entry(mem, &dev->mem_props, list) {
715 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
716 if (!mem->kobj)
717 return -ENOMEM;
718 ret = kobject_init_and_add(mem->kobj, &mem_type,
719 dev->kobj_mem, "%d", i);
720 if (ret < 0) {
721 kobject_put(mem->kobj);
722 return ret;
723 }
724
725 mem->attr.name = "properties";
726 mem->attr.mode = KFD_SYSFS_FILE_MODE;
727 sysfs_attr_init(&mem->attr);
728 ret = sysfs_create_file(mem->kobj, &mem->attr);
729 if (ret < 0)
730 return ret;
731 i++;
732 }
733
734 i = 0;
735 list_for_each_entry(cache, &dev->cache_props, list) {
736 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
737 if (!cache->kobj)
738 return -ENOMEM;
739 ret = kobject_init_and_add(cache->kobj, &cache_type,
740 dev->kobj_cache, "%d", i);
741 if (ret < 0) {
742 kobject_put(cache->kobj);
743 return ret;
744 }
745
746 cache->attr.name = "properties";
747 cache->attr.mode = KFD_SYSFS_FILE_MODE;
748 sysfs_attr_init(&cache->attr);
749 ret = sysfs_create_file(cache->kobj, &cache->attr);
750 if (ret < 0)
751 return ret;
752 i++;
753 }
754
755 i = 0;
756 list_for_each_entry(iolink, &dev->io_link_props, list) {
757 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
758 if (!iolink->kobj)
759 return -ENOMEM;
760 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
761 dev->kobj_iolink, "%d", i);
762 if (ret < 0) {
763 kobject_put(iolink->kobj);
764 return ret;
765 }
766
767 iolink->attr.name = "properties";
768 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
769 sysfs_attr_init(&iolink->attr);
770 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
771 if (ret < 0)
772 return ret;
773 i++;
774 }
775
776 i = 0;
777 list_for_each_entry(p2plink, &dev->p2p_link_props, list) {
778 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
779 if (!p2plink->kobj)
780 return -ENOMEM;
781 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
782 dev->kobj_p2plink, "%d", i);
783 if (ret < 0) {
784 kobject_put(p2plink->kobj);
785 return ret;
786 }
787
788 p2plink->attr.name = "properties";
789 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
790 sysfs_attr_init(&p2plink->attr);
791 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
792 if (ret < 0)
793 return ret;
794 i++;
795 }
796
797 /* All hardware blocks have the same number of attributes. */
798 num_attrs = ARRAY_SIZE(perf_attr_iommu);
799 list_for_each_entry(perf, &dev->perf_props, list) {
800 perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
801 * num_attrs + sizeof(struct attribute_group),
802 GFP_KERNEL);
803 if (!perf->attr_group)
804 return -ENOMEM;
805
806 attrs = (struct attribute **)(perf->attr_group + 1);
807 if (!strcmp(perf->block_name, "iommu")) {
808 /* Information of IOMMU's num_counters and counter_ids is shown
809 * under /sys/bus/event_source/devices/amd_iommu. We don't
810 * duplicate here.
811 */
812 perf_attr_iommu[0].data = perf->max_concurrent;
813 for (i = 0; i < num_attrs; i++)
814 attrs[i] = &perf_attr_iommu[i].attr.attr;
815 }
816 perf->attr_group->name = perf->block_name;
817 perf->attr_group->attrs = attrs;
818 ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
819 if (ret < 0)
820 return ret;
821 }
822
823 return 0;
824 }
825
826 /* Called with write topology lock acquired */
kfd_build_sysfs_node_tree(void)827 static int kfd_build_sysfs_node_tree(void)
828 {
829 struct kfd_topology_device *dev;
830 int ret;
831 uint32_t i = 0;
832
833 list_for_each_entry(dev, &topology_device_list, list) {
834 ret = kfd_build_sysfs_node_entry(dev, i);
835 if (ret < 0)
836 return ret;
837 i++;
838 }
839
840 return 0;
841 }
842
843 /* Called with write topology lock acquired */
kfd_remove_sysfs_node_tree(void)844 static void kfd_remove_sysfs_node_tree(void)
845 {
846 struct kfd_topology_device *dev;
847
848 list_for_each_entry(dev, &topology_device_list, list)
849 kfd_remove_sysfs_node_entry(dev);
850 }
851
kfd_topology_update_sysfs(void)852 static int kfd_topology_update_sysfs(void)
853 {
854 int ret;
855
856 if (!sys_props.kobj_topology) {
857 sys_props.kobj_topology =
858 kfd_alloc_struct(sys_props.kobj_topology);
859 if (!sys_props.kobj_topology)
860 return -ENOMEM;
861
862 ret = kobject_init_and_add(sys_props.kobj_topology,
863 &sysprops_type, &kfd_device->kobj,
864 "topology");
865 if (ret < 0) {
866 kobject_put(sys_props.kobj_topology);
867 return ret;
868 }
869
870 sys_props.kobj_nodes = kobject_create_and_add("nodes",
871 sys_props.kobj_topology);
872 if (!sys_props.kobj_nodes)
873 return -ENOMEM;
874
875 sys_props.attr_genid.name = "generation_id";
876 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
877 sysfs_attr_init(&sys_props.attr_genid);
878 ret = sysfs_create_file(sys_props.kobj_topology,
879 &sys_props.attr_genid);
880 if (ret < 0)
881 return ret;
882
883 sys_props.attr_props.name = "system_properties";
884 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
885 sysfs_attr_init(&sys_props.attr_props);
886 ret = sysfs_create_file(sys_props.kobj_topology,
887 &sys_props.attr_props);
888 if (ret < 0)
889 return ret;
890 }
891
892 kfd_remove_sysfs_node_tree();
893
894 return kfd_build_sysfs_node_tree();
895 }
896
kfd_topology_release_sysfs(void)897 static void kfd_topology_release_sysfs(void)
898 {
899 kfd_remove_sysfs_node_tree();
900 if (sys_props.kobj_topology) {
901 sysfs_remove_file(sys_props.kobj_topology,
902 &sys_props.attr_genid);
903 sysfs_remove_file(sys_props.kobj_topology,
904 &sys_props.attr_props);
905 if (sys_props.kobj_nodes) {
906 kobject_del(sys_props.kobj_nodes);
907 kobject_put(sys_props.kobj_nodes);
908 sys_props.kobj_nodes = NULL;
909 }
910 kobject_del(sys_props.kobj_topology);
911 kobject_put(sys_props.kobj_topology);
912 sys_props.kobj_topology = NULL;
913 }
914 }
915
916 /* Called with write topology_lock acquired */
kfd_topology_update_device_list(struct list_head * temp_list,struct list_head * master_list)917 static void kfd_topology_update_device_list(struct list_head *temp_list,
918 struct list_head *master_list)
919 {
920 while (!list_empty(temp_list)) {
921 list_move_tail(temp_list->next, master_list);
922 sys_props.num_devices++;
923 }
924 }
925
kfd_debug_print_topology(void)926 static void kfd_debug_print_topology(void)
927 {
928 struct kfd_topology_device *dev;
929
930 down_read(&topology_lock);
931
932 dev = list_last_entry(&topology_device_list,
933 struct kfd_topology_device, list);
934 if (dev) {
935 if (dev->node_props.cpu_cores_count &&
936 dev->node_props.simd_count) {
937 pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
938 dev->node_props.device_id,
939 dev->node_props.vendor_id);
940 } else if (dev->node_props.cpu_cores_count)
941 pr_info("Topology: Add CPU node\n");
942 else if (dev->node_props.simd_count)
943 pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
944 dev->node_props.device_id,
945 dev->node_props.vendor_id);
946 }
947 up_read(&topology_lock);
948 }
949
950 /* Helper function for intializing platform_xx members of
951 * kfd_system_properties. Uses OEM info from the last CPU/APU node.
952 */
kfd_update_system_properties(void)953 static void kfd_update_system_properties(void)
954 {
955 struct kfd_topology_device *dev;
956
957 down_read(&topology_lock);
958 dev = list_last_entry(&topology_device_list,
959 struct kfd_topology_device, list);
960 if (dev) {
961 sys_props.platform_id =
962 (*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
963 sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
964 sys_props.platform_rev = dev->oem_revision;
965 }
966 up_read(&topology_lock);
967 }
968
find_system_memory(const struct dmi_header * dm,void * private)969 static void find_system_memory(const struct dmi_header *dm,
970 void *private)
971 {
972 struct kfd_mem_properties *mem;
973 u16 mem_width, mem_clock;
974 struct kfd_topology_device *kdev =
975 (struct kfd_topology_device *)private;
976 const u8 *dmi_data = (const u8 *)(dm + 1);
977
978 if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
979 mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
980 mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
981 list_for_each_entry(mem, &kdev->mem_props, list) {
982 if (mem_width != 0xFFFF && mem_width != 0)
983 mem->width = mem_width;
984 if (mem_clock != 0)
985 mem->mem_clk_max = mem_clock;
986 }
987 }
988 }
989
990 /* kfd_add_non_crat_information - Add information that is not currently
991 * defined in CRAT but is necessary for KFD topology
992 * @dev - topology device to which addition info is added
993 */
kfd_add_non_crat_information(struct kfd_topology_device * kdev)994 static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
995 {
996 /* Check if CPU only node. */
997 if (!kdev->gpu) {
998 /* Add system memory information */
999 dmi_walk(find_system_memory, kdev);
1000 }
1001 /* TODO: For GPU node, rearrange code from kfd_topology_add_device */
1002 }
1003
kfd_topology_init(void)1004 int kfd_topology_init(void)
1005 {
1006 void *crat_image = NULL;
1007 size_t image_size = 0;
1008 int ret;
1009 struct list_head temp_topology_device_list;
1010 int cpu_only_node = 0;
1011 struct kfd_topology_device *kdev;
1012 int proximity_domain;
1013
1014 /* topology_device_list - Master list of all topology devices
1015 * temp_topology_device_list - temporary list created while parsing CRAT
1016 * or VCRAT. Once parsing is complete the contents of list is moved to
1017 * topology_device_list
1018 */
1019
1020 /* Initialize the head for the both the lists */
1021 INIT_LIST_HEAD(&topology_device_list);
1022 INIT_LIST_HEAD(&temp_topology_device_list);
1023 init_rwsem(&topology_lock);
1024
1025 memset(&sys_props, 0, sizeof(sys_props));
1026
1027 /* Proximity domains in ACPI CRAT tables start counting at
1028 * 0. The same should be true for virtual CRAT tables created
1029 * at this stage. GPUs added later in kfd_topology_add_device
1030 * use a counter.
1031 */
1032 proximity_domain = 0;
1033
1034 ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
1035 COMPUTE_UNIT_CPU, NULL,
1036 proximity_domain);
1037 cpu_only_node = 1;
1038 if (ret) {
1039 pr_err("Error creating VCRAT table for CPU\n");
1040 return ret;
1041 }
1042
1043 ret = kfd_parse_crat_table(crat_image,
1044 &temp_topology_device_list,
1045 proximity_domain);
1046 if (ret) {
1047 pr_err("Error parsing VCRAT table for CPU\n");
1048 goto err;
1049 }
1050
1051 kdev = list_first_entry(&temp_topology_device_list,
1052 struct kfd_topology_device, list);
1053
1054 down_write(&topology_lock);
1055 kfd_topology_update_device_list(&temp_topology_device_list,
1056 &topology_device_list);
1057 topology_crat_proximity_domain = sys_props.num_devices-1;
1058 ret = kfd_topology_update_sysfs();
1059 up_write(&topology_lock);
1060
1061 if (!ret) {
1062 sys_props.generation_count++;
1063 kfd_update_system_properties();
1064 kfd_debug_print_topology();
1065 } else
1066 pr_err("Failed to update topology in sysfs ret=%d\n", ret);
1067
1068 /* For nodes with GPU, this information gets added
1069 * when GPU is detected (kfd_topology_add_device).
1070 */
1071 if (cpu_only_node) {
1072 /* Add additional information to CPU only node created above */
1073 down_write(&topology_lock);
1074 kdev = list_first_entry(&topology_device_list,
1075 struct kfd_topology_device, list);
1076 up_write(&topology_lock);
1077 kfd_add_non_crat_information(kdev);
1078 }
1079
1080 err:
1081 kfd_destroy_crat_image(crat_image);
1082 return ret;
1083 }
1084
kfd_topology_shutdown(void)1085 void kfd_topology_shutdown(void)
1086 {
1087 down_write(&topology_lock);
1088 kfd_topology_release_sysfs();
1089 kfd_release_live_view();
1090 up_write(&topology_lock);
1091 }
1092
kfd_generate_gpu_id(struct kfd_node * gpu)1093 static uint32_t kfd_generate_gpu_id(struct kfd_node *gpu)
1094 {
1095 uint32_t hashout;
1096 uint32_t buf[8];
1097 uint64_t local_mem_size;
1098 int i;
1099
1100 if (!gpu)
1101 return 0;
1102
1103 local_mem_size = gpu->local_mem_info.local_mem_size_private +
1104 gpu->local_mem_info.local_mem_size_public;
1105 buf[0] = gpu->adev->pdev->devfn;
1106 buf[1] = gpu->adev->pdev->subsystem_vendor |
1107 (gpu->adev->pdev->subsystem_device << 16);
1108 buf[2] = pci_domain_nr(gpu->adev->pdev->bus);
1109 buf[3] = gpu->adev->pdev->device;
1110 buf[4] = gpu->adev->pdev->bus->number;
1111 buf[5] = lower_32_bits(local_mem_size);
1112 buf[6] = upper_32_bits(local_mem_size);
1113 buf[7] = (ffs(gpu->xcc_mask) - 1) | (NUM_XCC(gpu->xcc_mask) << 16);
1114
1115 for (i = 0, hashout = 0; i < 8; i++)
1116 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1117
1118 return hashout;
1119 }
1120 /* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
1121 * the GPU device is not already present in the topology device
1122 * list then return NULL. This means a new topology device has to
1123 * be created for this GPU.
1124 */
kfd_assign_gpu(struct kfd_node * gpu)1125 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_node *gpu)
1126 {
1127 struct kfd_topology_device *dev;
1128 struct kfd_topology_device *out_dev = NULL;
1129 struct kfd_mem_properties *mem;
1130 struct kfd_cache_properties *cache;
1131 struct kfd_iolink_properties *iolink;
1132 struct kfd_iolink_properties *p2plink;
1133
1134 list_for_each_entry(dev, &topology_device_list, list) {
1135 /* Discrete GPUs need their own topology device list
1136 * entries. Don't assign them to CPU/APU nodes.
1137 */
1138 if (dev->node_props.cpu_cores_count)
1139 continue;
1140
1141 if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1142 dev->gpu = gpu;
1143 out_dev = dev;
1144
1145 list_for_each_entry(mem, &dev->mem_props, list)
1146 mem->gpu = dev->gpu;
1147 list_for_each_entry(cache, &dev->cache_props, list)
1148 cache->gpu = dev->gpu;
1149 list_for_each_entry(iolink, &dev->io_link_props, list)
1150 iolink->gpu = dev->gpu;
1151 list_for_each_entry(p2plink, &dev->p2p_link_props, list)
1152 p2plink->gpu = dev->gpu;
1153 break;
1154 }
1155 }
1156 return out_dev;
1157 }
1158
kfd_notify_gpu_change(uint32_t gpu_id,int arrival)1159 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1160 {
1161 /*
1162 * TODO: Generate an event for thunk about the arrival/removal
1163 * of the GPU
1164 */
1165 }
1166
1167 /* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
1168 * patch this after CRAT parsing.
1169 */
kfd_fill_mem_clk_max_info(struct kfd_topology_device * dev)1170 static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
1171 {
1172 struct kfd_mem_properties *mem;
1173 struct kfd_local_mem_info local_mem_info;
1174
1175 if (!dev)
1176 return;
1177
1178 /* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
1179 * single bank of VRAM local memory.
1180 * for dGPUs - VCRAT reports only one bank of Local Memory
1181 * for APUs - If CRAT from ACPI reports more than one bank, then
1182 * all the banks will report the same mem_clk_max information
1183 */
1184 amdgpu_amdkfd_get_local_mem_info(dev->gpu->adev, &local_mem_info,
1185 dev->gpu->xcp);
1186
1187 list_for_each_entry(mem, &dev->mem_props, list)
1188 mem->mem_clk_max = local_mem_info.mem_clk_max;
1189 }
1190
kfd_set_iolink_no_atomics(struct kfd_topology_device * dev,struct kfd_topology_device * target_gpu_dev,struct kfd_iolink_properties * link)1191 static void kfd_set_iolink_no_atomics(struct kfd_topology_device *dev,
1192 struct kfd_topology_device *target_gpu_dev,
1193 struct kfd_iolink_properties *link)
1194 {
1195 /* xgmi always supports atomics between links. */
1196 if (link->iolink_type == CRAT_IOLINK_TYPE_XGMI)
1197 return;
1198
1199 /* check pcie support to set cpu(dev) flags for target_gpu_dev link. */
1200 if (target_gpu_dev) {
1201 uint32_t cap;
1202
1203 pcie_capability_read_dword(target_gpu_dev->gpu->adev->pdev,
1204 PCI_EXP_DEVCAP2, &cap);
1205
1206 if (!(cap & (PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
1207 PCI_EXP_DEVCAP2_ATOMIC_COMP64)))
1208 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1209 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1210 /* set gpu (dev) flags. */
1211 } else {
1212 if (!dev->gpu->kfd->pci_atomic_requested ||
1213 dev->gpu->adev->asic_type == CHIP_HAWAII)
1214 link->flags |= CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
1215 CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
1216 }
1217 }
1218
kfd_set_iolink_non_coherent(struct kfd_topology_device * to_dev,struct kfd_iolink_properties * outbound_link,struct kfd_iolink_properties * inbound_link)1219 static void kfd_set_iolink_non_coherent(struct kfd_topology_device *to_dev,
1220 struct kfd_iolink_properties *outbound_link,
1221 struct kfd_iolink_properties *inbound_link)
1222 {
1223 /* CPU -> GPU with PCIe */
1224 if (!to_dev->gpu &&
1225 inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
1226 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1227
1228 if (to_dev->gpu) {
1229 /* GPU <-> GPU with PCIe and
1230 * Vega20 with XGMI
1231 */
1232 if (inbound_link->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS ||
1233 (inbound_link->iolink_type == CRAT_IOLINK_TYPE_XGMI &&
1234 KFD_GC_VERSION(to_dev->gpu) == IP_VERSION(9, 4, 0))) {
1235 outbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1236 inbound_link->flags |= CRAT_IOLINK_FLAGS_NON_COHERENT;
1237 }
1238 }
1239 }
1240
kfd_fill_iolink_non_crat_info(struct kfd_topology_device * dev)1241 static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
1242 {
1243 struct kfd_iolink_properties *link, *inbound_link;
1244 struct kfd_topology_device *peer_dev;
1245
1246 if (!dev || !dev->gpu)
1247 return;
1248
1249 /* GPU only creates direct links so apply flags setting to all */
1250 list_for_each_entry(link, &dev->io_link_props, list) {
1251 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1252 kfd_set_iolink_no_atomics(dev, NULL, link);
1253 peer_dev = kfd_topology_device_by_proximity_domain(
1254 link->node_to);
1255
1256 if (!peer_dev)
1257 continue;
1258
1259 /* Include the CPU peer in GPU hive if connected over xGMI. */
1260 if (!peer_dev->gpu &&
1261 link->iolink_type == CRAT_IOLINK_TYPE_XGMI) {
1262 /*
1263 * If the GPU is not part of a GPU hive, use its pci
1264 * device location as the hive ID to bind with the CPU.
1265 */
1266 if (!dev->node_props.hive_id)
1267 dev->node_props.hive_id = pci_dev_id(dev->gpu->adev->pdev);
1268 peer_dev->node_props.hive_id = dev->node_props.hive_id;
1269 }
1270
1271 list_for_each_entry(inbound_link, &peer_dev->io_link_props,
1272 list) {
1273 if (inbound_link->node_to != link->node_from)
1274 continue;
1275
1276 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1277 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1278 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1279 }
1280 }
1281
1282 /* Create indirect links so apply flags setting to all */
1283 list_for_each_entry(link, &dev->p2p_link_props, list) {
1284 link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1285 kfd_set_iolink_no_atomics(dev, NULL, link);
1286 peer_dev = kfd_topology_device_by_proximity_domain(
1287 link->node_to);
1288
1289 if (!peer_dev)
1290 continue;
1291
1292 list_for_each_entry(inbound_link, &peer_dev->p2p_link_props,
1293 list) {
1294 if (inbound_link->node_to != link->node_from)
1295 continue;
1296
1297 inbound_link->flags = CRAT_IOLINK_FLAGS_ENABLED;
1298 kfd_set_iolink_no_atomics(peer_dev, dev, inbound_link);
1299 kfd_set_iolink_non_coherent(peer_dev, link, inbound_link);
1300 }
1301 }
1302 }
1303
kfd_build_p2p_node_entry(struct kfd_topology_device * dev,struct kfd_iolink_properties * p2plink)1304 static int kfd_build_p2p_node_entry(struct kfd_topology_device *dev,
1305 struct kfd_iolink_properties *p2plink)
1306 {
1307 int ret;
1308
1309 p2plink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
1310 if (!p2plink->kobj)
1311 return -ENOMEM;
1312
1313 ret = kobject_init_and_add(p2plink->kobj, &iolink_type,
1314 dev->kobj_p2plink, "%d", dev->node_props.p2p_links_count - 1);
1315 if (ret < 0) {
1316 kobject_put(p2plink->kobj);
1317 return ret;
1318 }
1319
1320 p2plink->attr.name = "properties";
1321 p2plink->attr.mode = KFD_SYSFS_FILE_MODE;
1322 sysfs_attr_init(&p2plink->attr);
1323 ret = sysfs_create_file(p2plink->kobj, &p2plink->attr);
1324 if (ret < 0)
1325 return ret;
1326
1327 return 0;
1328 }
1329
kfd_create_indirect_link_prop(struct kfd_topology_device * kdev,int gpu_node)1330 static int kfd_create_indirect_link_prop(struct kfd_topology_device *kdev, int gpu_node)
1331 {
1332 struct kfd_iolink_properties *gpu_link, *tmp_link, *cpu_link;
1333 struct kfd_iolink_properties *props = NULL, *props2 = NULL;
1334 struct kfd_topology_device *cpu_dev;
1335 int ret = 0;
1336 int i, num_cpu;
1337
1338 num_cpu = 0;
1339 list_for_each_entry(cpu_dev, &topology_device_list, list) {
1340 if (cpu_dev->gpu)
1341 break;
1342 num_cpu++;
1343 }
1344
1345 if (list_empty(&kdev->io_link_props))
1346 return -ENODATA;
1347
1348 gpu_link = list_first_entry(&kdev->io_link_props,
1349 struct kfd_iolink_properties, list);
1350
1351 for (i = 0; i < num_cpu; i++) {
1352 /* CPU <--> GPU */
1353 if (gpu_link->node_to == i)
1354 continue;
1355
1356 /* find CPU <--> CPU links */
1357 cpu_link = NULL;
1358 cpu_dev = kfd_topology_device_by_proximity_domain(i);
1359 if (cpu_dev) {
1360 list_for_each_entry(tmp_link,
1361 &cpu_dev->io_link_props, list) {
1362 if (tmp_link->node_to == gpu_link->node_to) {
1363 cpu_link = tmp_link;
1364 break;
1365 }
1366 }
1367 }
1368
1369 if (!cpu_link)
1370 return -ENOMEM;
1371
1372 /* CPU <--> CPU <--> GPU, GPU node*/
1373 props = kfd_alloc_struct(props);
1374 if (!props)
1375 return -ENOMEM;
1376
1377 memcpy(props, gpu_link, sizeof(struct kfd_iolink_properties));
1378 props->weight = gpu_link->weight + cpu_link->weight;
1379 props->min_latency = gpu_link->min_latency + cpu_link->min_latency;
1380 props->max_latency = gpu_link->max_latency + cpu_link->max_latency;
1381 props->min_bandwidth = min(gpu_link->min_bandwidth, cpu_link->min_bandwidth);
1382 props->max_bandwidth = min(gpu_link->max_bandwidth, cpu_link->max_bandwidth);
1383
1384 props->node_from = gpu_node;
1385 props->node_to = i;
1386 kdev->node_props.p2p_links_count++;
1387 list_add_tail(&props->list, &kdev->p2p_link_props);
1388 ret = kfd_build_p2p_node_entry(kdev, props);
1389 if (ret < 0)
1390 return ret;
1391
1392 /* for small Bar, no CPU --> GPU in-direct links */
1393 if (kfd_dev_is_large_bar(kdev->gpu)) {
1394 /* CPU <--> CPU <--> GPU, CPU node*/
1395 props2 = kfd_alloc_struct(props2);
1396 if (!props2)
1397 return -ENOMEM;
1398
1399 memcpy(props2, props, sizeof(struct kfd_iolink_properties));
1400 props2->node_from = i;
1401 props2->node_to = gpu_node;
1402 props2->kobj = NULL;
1403 cpu_dev->node_props.p2p_links_count++;
1404 list_add_tail(&props2->list, &cpu_dev->p2p_link_props);
1405 ret = kfd_build_p2p_node_entry(cpu_dev, props2);
1406 if (ret < 0)
1407 return ret;
1408 }
1409 }
1410 return ret;
1411 }
1412
1413 #if defined(CONFIG_HSA_AMD_P2P)
kfd_add_peer_prop(struct kfd_topology_device * kdev,struct kfd_topology_device * peer,int from,int to)1414 static int kfd_add_peer_prop(struct kfd_topology_device *kdev,
1415 struct kfd_topology_device *peer, int from, int to)
1416 {
1417 struct kfd_iolink_properties *props = NULL;
1418 struct kfd_iolink_properties *iolink1, *iolink2, *iolink3;
1419 struct kfd_topology_device *cpu_dev;
1420 int ret = 0;
1421
1422 if (!amdgpu_device_is_peer_accessible(
1423 kdev->gpu->adev,
1424 peer->gpu->adev))
1425 return ret;
1426
1427 if (list_empty(&kdev->io_link_props))
1428 return -ENODATA;
1429
1430 iolink1 = list_first_entry(&kdev->io_link_props,
1431 struct kfd_iolink_properties, list);
1432
1433 if (list_empty(&peer->io_link_props))
1434 return -ENODATA;
1435
1436 iolink2 = list_first_entry(&peer->io_link_props,
1437 struct kfd_iolink_properties, list);
1438
1439 props = kfd_alloc_struct(props);
1440 if (!props)
1441 return -ENOMEM;
1442
1443 memcpy(props, iolink1, sizeof(struct kfd_iolink_properties));
1444
1445 props->weight = iolink1->weight + iolink2->weight;
1446 props->min_latency = iolink1->min_latency + iolink2->min_latency;
1447 props->max_latency = iolink1->max_latency + iolink2->max_latency;
1448 props->min_bandwidth = min(iolink1->min_bandwidth, iolink2->min_bandwidth);
1449 props->max_bandwidth = min(iolink2->max_bandwidth, iolink2->max_bandwidth);
1450
1451 if (iolink1->node_to != iolink2->node_to) {
1452 /* CPU->CPU link*/
1453 cpu_dev = kfd_topology_device_by_proximity_domain(iolink1->node_to);
1454 if (cpu_dev) {
1455 list_for_each_entry(iolink3, &cpu_dev->io_link_props, list) {
1456 if (iolink3->node_to != iolink2->node_to)
1457 continue;
1458
1459 props->weight += iolink3->weight;
1460 props->min_latency += iolink3->min_latency;
1461 props->max_latency += iolink3->max_latency;
1462 props->min_bandwidth = min(props->min_bandwidth,
1463 iolink3->min_bandwidth);
1464 props->max_bandwidth = min(props->max_bandwidth,
1465 iolink3->max_bandwidth);
1466 break;
1467 }
1468 } else {
1469 WARN(1, "CPU node not found");
1470 }
1471 }
1472
1473 props->node_from = from;
1474 props->node_to = to;
1475 peer->node_props.p2p_links_count++;
1476 list_add_tail(&props->list, &peer->p2p_link_props);
1477 ret = kfd_build_p2p_node_entry(peer, props);
1478
1479 return ret;
1480 }
1481 #endif
1482
kfd_dev_create_p2p_links(void)1483 static int kfd_dev_create_p2p_links(void)
1484 {
1485 struct kfd_topology_device *dev;
1486 struct kfd_topology_device *new_dev;
1487 #if defined(CONFIG_HSA_AMD_P2P)
1488 uint32_t i;
1489 #endif
1490 uint32_t k;
1491 int ret = 0;
1492
1493 k = 0;
1494 list_for_each_entry(dev, &topology_device_list, list)
1495 k++;
1496 if (k < 2)
1497 return 0;
1498
1499 new_dev = list_last_entry(&topology_device_list, struct kfd_topology_device, list);
1500 if (WARN_ON(!new_dev->gpu))
1501 return 0;
1502
1503 k--;
1504
1505 /* create in-direct links */
1506 ret = kfd_create_indirect_link_prop(new_dev, k);
1507 if (ret < 0)
1508 goto out;
1509
1510 /* create p2p links */
1511 #if defined(CONFIG_HSA_AMD_P2P)
1512 i = 0;
1513 list_for_each_entry(dev, &topology_device_list, list) {
1514 if (dev == new_dev)
1515 break;
1516 if (!dev->gpu || !dev->gpu->adev ||
1517 (dev->gpu->kfd->hive_id &&
1518 dev->gpu->kfd->hive_id == new_dev->gpu->kfd->hive_id))
1519 goto next;
1520
1521 /* check if node(s) is/are peer accessible in one direction or bi-direction */
1522 ret = kfd_add_peer_prop(new_dev, dev, i, k);
1523 if (ret < 0)
1524 goto out;
1525
1526 ret = kfd_add_peer_prop(dev, new_dev, k, i);
1527 if (ret < 0)
1528 goto out;
1529 next:
1530 i++;
1531 }
1532 #endif
1533
1534 out:
1535 return ret;
1536 }
1537
1538 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l1_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,struct kfd_cu_info * cu_info,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)1539 static int fill_in_l1_pcache(struct kfd_cache_properties **props_ext,
1540 struct kfd_gpu_cache_info *pcache_info,
1541 struct kfd_cu_info *cu_info,
1542 int cu_bitmask,
1543 int cache_type, unsigned int cu_processor_id,
1544 int cu_block)
1545 {
1546 unsigned int cu_sibling_map_mask;
1547 int first_active_cu;
1548 struct kfd_cache_properties *pcache = NULL;
1549
1550 cu_sibling_map_mask = cu_bitmask;
1551 cu_sibling_map_mask >>= cu_block;
1552 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1553 first_active_cu = ffs(cu_sibling_map_mask);
1554
1555 /* CU could be inactive. In case of shared cache find the first active
1556 * CU. and incase of non-shared cache check if the CU is inactive. If
1557 * inactive active skip it
1558 */
1559 if (first_active_cu) {
1560 pcache = kfd_alloc_struct(pcache);
1561 if (!pcache)
1562 return -ENOMEM;
1563
1564 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1565 pcache->processor_id_low = cu_processor_id + (first_active_cu - 1);
1566 pcache->cache_level = pcache_info[cache_type].cache_level;
1567 pcache->cache_size = pcache_info[cache_type].cache_size;
1568
1569 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1570 pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1571 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1572 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1573 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1574 pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1575 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1576 pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1577
1578 /* Sibling map is w.r.t processor_id_low, so shift out
1579 * inactive CU
1580 */
1581 cu_sibling_map_mask =
1582 cu_sibling_map_mask >> (first_active_cu - 1);
1583
1584 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1585 pcache->sibling_map[1] =
1586 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1587 pcache->sibling_map[2] =
1588 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1589 pcache->sibling_map[3] =
1590 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1591
1592 pcache->sibling_map_size = 4;
1593 *props_ext = pcache;
1594
1595 return 0;
1596 }
1597 return 1;
1598 }
1599
1600 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_l2_l3_pcache(struct kfd_cache_properties ** props_ext,struct kfd_gpu_cache_info * pcache_info,struct kfd_cu_info * cu_info,int cache_type,unsigned int cu_processor_id,struct kfd_node * knode)1601 static int fill_in_l2_l3_pcache(struct kfd_cache_properties **props_ext,
1602 struct kfd_gpu_cache_info *pcache_info,
1603 struct kfd_cu_info *cu_info,
1604 int cache_type, unsigned int cu_processor_id,
1605 struct kfd_node *knode)
1606 {
1607 unsigned int cu_sibling_map_mask;
1608 int first_active_cu;
1609 int i, j, k, xcc, start, end;
1610 struct kfd_cache_properties *pcache = NULL;
1611
1612 start = ffs(knode->xcc_mask) - 1;
1613 end = start + NUM_XCC(knode->xcc_mask);
1614 cu_sibling_map_mask = cu_info->cu_bitmap[start][0][0];
1615 cu_sibling_map_mask &=
1616 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1617 first_active_cu = ffs(cu_sibling_map_mask);
1618
1619 /* CU could be inactive. In case of shared cache find the first active
1620 * CU. and incase of non-shared cache check if the CU is inactive. If
1621 * inactive active skip it
1622 */
1623 if (first_active_cu) {
1624 pcache = kfd_alloc_struct(pcache);
1625 if (!pcache)
1626 return -ENOMEM;
1627
1628 memset(pcache, 0, sizeof(struct kfd_cache_properties));
1629 pcache->processor_id_low = cu_processor_id
1630 + (first_active_cu - 1);
1631 pcache->cache_level = pcache_info[cache_type].cache_level;
1632 pcache->cache_size = pcache_info[cache_type].cache_size;
1633
1634 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_DATA_CACHE)
1635 pcache->cache_type |= HSA_CACHE_TYPE_DATA;
1636 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_INST_CACHE)
1637 pcache->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
1638 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_CPU_CACHE)
1639 pcache->cache_type |= HSA_CACHE_TYPE_CPU;
1640 if (pcache_info[cache_type].flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
1641 pcache->cache_type |= HSA_CACHE_TYPE_HSACU;
1642
1643 /* Sibling map is w.r.t processor_id_low, so shift out
1644 * inactive CU
1645 */
1646 cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1);
1647 k = 0;
1648
1649 for (xcc = start; xcc < end; xcc++) {
1650 for (i = 0; i < cu_info->num_shader_engines; i++) {
1651 for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) {
1652 pcache->sibling_map[k] = (uint8_t)(cu_sibling_map_mask & 0xFF);
1653 pcache->sibling_map[k+1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
1654 pcache->sibling_map[k+2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
1655 pcache->sibling_map[k+3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
1656 k += 4;
1657
1658 cu_sibling_map_mask = cu_info->cu_bitmap[xcc][i % 4][j + i / 4];
1659 cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1);
1660 }
1661 }
1662 }
1663 pcache->sibling_map_size = k;
1664 *props_ext = pcache;
1665 return 0;
1666 }
1667 return 1;
1668 }
1669
1670 #define KFD_MAX_CACHE_TYPES 6
1671
1672 /* kfd_fill_cache_non_crat_info - Fill GPU cache info using kfd_gpu_cache_info
1673 * tables
1674 */
kfd_fill_cache_non_crat_info(struct kfd_topology_device * dev,struct kfd_node * kdev)1675 static void kfd_fill_cache_non_crat_info(struct kfd_topology_device *dev, struct kfd_node *kdev)
1676 {
1677 struct kfd_gpu_cache_info *pcache_info = NULL;
1678 int i, j, k, xcc, start, end;
1679 int ct = 0;
1680 unsigned int cu_processor_id;
1681 int ret;
1682 unsigned int num_cu_shared;
1683 struct kfd_cu_info cu_info;
1684 struct kfd_cu_info *pcu_info;
1685 int gpu_processor_id;
1686 struct kfd_cache_properties *props_ext;
1687 int num_of_entries = 0;
1688 int num_of_cache_types = 0;
1689 struct kfd_gpu_cache_info cache_info[KFD_MAX_CACHE_TYPES];
1690
1691 amdgpu_amdkfd_get_cu_info(kdev->adev, &cu_info);
1692 pcu_info = &cu_info;
1693
1694 gpu_processor_id = dev->node_props.simd_id_base;
1695
1696 pcache_info = cache_info;
1697 num_of_cache_types = kfd_get_gpu_cache_info(kdev, &pcache_info);
1698 if (!num_of_cache_types) {
1699 pr_warn("no cache info found\n");
1700 return;
1701 }
1702
1703 /* For each type of cache listed in the kfd_gpu_cache_info table,
1704 * go through all available Compute Units.
1705 * The [i,j,k] loop will
1706 * if kfd_gpu_cache_info.num_cu_shared = 1
1707 * will parse through all available CU
1708 * If (kfd_gpu_cache_info.num_cu_shared != 1)
1709 * then it will consider only one CU from
1710 * the shared unit
1711 */
1712 start = ffs(kdev->xcc_mask) - 1;
1713 end = start + NUM_XCC(kdev->xcc_mask);
1714
1715 for (ct = 0; ct < num_of_cache_types; ct++) {
1716 cu_processor_id = gpu_processor_id;
1717 if (pcache_info[ct].cache_level == 1) {
1718 for (xcc = start; xcc < end; xcc++) {
1719 for (i = 0; i < pcu_info->num_shader_engines; i++) {
1720 for (j = 0; j < pcu_info->num_shader_arrays_per_engine; j++) {
1721 for (k = 0; k < pcu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) {
1722
1723 ret = fill_in_l1_pcache(&props_ext, pcache_info, pcu_info,
1724 pcu_info->cu_bitmap[xcc][i % 4][j + i / 4], ct,
1725 cu_processor_id, k);
1726
1727 if (ret < 0)
1728 break;
1729
1730 if (!ret) {
1731 num_of_entries++;
1732 list_add_tail(&props_ext->list, &dev->cache_props);
1733 }
1734
1735 /* Move to next CU block */
1736 num_cu_shared = ((k + pcache_info[ct].num_cu_shared) <=
1737 pcu_info->num_cu_per_sh) ?
1738 pcache_info[ct].num_cu_shared :
1739 (pcu_info->num_cu_per_sh - k);
1740 cu_processor_id += num_cu_shared;
1741 }
1742 }
1743 }
1744 }
1745 } else {
1746 ret = fill_in_l2_l3_pcache(&props_ext, pcache_info,
1747 pcu_info, ct, cu_processor_id, kdev);
1748
1749 if (ret < 0)
1750 break;
1751
1752 if (!ret) {
1753 num_of_entries++;
1754 list_add_tail(&props_ext->list, &dev->cache_props);
1755 }
1756 }
1757 }
1758 dev->node_props.caches_count += num_of_entries;
1759 pr_debug("Added [%d] GPU cache entries\n", num_of_entries);
1760 }
1761
kfd_topology_add_device_locked(struct kfd_node * gpu,uint32_t gpu_id,struct kfd_topology_device ** dev)1762 static int kfd_topology_add_device_locked(struct kfd_node *gpu, uint32_t gpu_id,
1763 struct kfd_topology_device **dev)
1764 {
1765 int proximity_domain = ++topology_crat_proximity_domain;
1766 struct list_head temp_topology_device_list;
1767 void *crat_image = NULL;
1768 size_t image_size = 0;
1769 int res;
1770
1771 res = kfd_create_crat_image_virtual(&crat_image, &image_size,
1772 COMPUTE_UNIT_GPU, gpu,
1773 proximity_domain);
1774 if (res) {
1775 pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
1776 gpu_id);
1777 topology_crat_proximity_domain--;
1778 goto err;
1779 }
1780
1781 INIT_LIST_HEAD(&temp_topology_device_list);
1782
1783 res = kfd_parse_crat_table(crat_image,
1784 &temp_topology_device_list,
1785 proximity_domain);
1786 if (res) {
1787 pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
1788 gpu_id);
1789 topology_crat_proximity_domain--;
1790 goto err;
1791 }
1792
1793 kfd_topology_update_device_list(&temp_topology_device_list,
1794 &topology_device_list);
1795
1796 *dev = kfd_assign_gpu(gpu);
1797 if (WARN_ON(!*dev)) {
1798 res = -ENODEV;
1799 goto err;
1800 }
1801
1802 /* Fill the cache affinity information here for the GPUs
1803 * using VCRAT
1804 */
1805 kfd_fill_cache_non_crat_info(*dev, gpu);
1806
1807 /* Update the SYSFS tree, since we added another topology
1808 * device
1809 */
1810 res = kfd_topology_update_sysfs();
1811 if (!res)
1812 sys_props.generation_count++;
1813 else
1814 pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
1815 gpu_id, res);
1816
1817 err:
1818 kfd_destroy_crat_image(crat_image);
1819 return res;
1820 }
1821
kfd_topology_set_dbg_firmware_support(struct kfd_topology_device * dev)1822 static void kfd_topology_set_dbg_firmware_support(struct kfd_topology_device *dev)
1823 {
1824 bool firmware_supported = true;
1825
1826 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0) &&
1827 KFD_GC_VERSION(dev->gpu) < IP_VERSION(12, 0, 0)) {
1828 uint32_t mes_api_rev = (dev->gpu->adev->mes.sched_version &
1829 AMDGPU_MES_API_VERSION_MASK) >>
1830 AMDGPU_MES_API_VERSION_SHIFT;
1831 uint32_t mes_rev = dev->gpu->adev->mes.sched_version &
1832 AMDGPU_MES_VERSION_MASK;
1833
1834 firmware_supported = (mes_api_rev >= 14) && (mes_rev >= 64);
1835 goto out;
1836 }
1837
1838 /*
1839 * Note: Any unlisted devices here are assumed to support exception handling.
1840 * Add additional checks here as needed.
1841 */
1842 switch (KFD_GC_VERSION(dev->gpu)) {
1843 case IP_VERSION(9, 0, 1):
1844 firmware_supported = dev->gpu->kfd->mec_fw_version >= 459 + 32768;
1845 break;
1846 case IP_VERSION(9, 1, 0):
1847 case IP_VERSION(9, 2, 1):
1848 case IP_VERSION(9, 2, 2):
1849 case IP_VERSION(9, 3, 0):
1850 case IP_VERSION(9, 4, 0):
1851 firmware_supported = dev->gpu->kfd->mec_fw_version >= 459;
1852 break;
1853 case IP_VERSION(9, 4, 1):
1854 firmware_supported = dev->gpu->kfd->mec_fw_version >= 60;
1855 break;
1856 case IP_VERSION(9, 4, 2):
1857 firmware_supported = dev->gpu->kfd->mec_fw_version >= 51;
1858 break;
1859 case IP_VERSION(10, 1, 10):
1860 case IP_VERSION(10, 1, 2):
1861 case IP_VERSION(10, 1, 1):
1862 firmware_supported = dev->gpu->kfd->mec_fw_version >= 144;
1863 break;
1864 case IP_VERSION(10, 3, 0):
1865 case IP_VERSION(10, 3, 2):
1866 case IP_VERSION(10, 3, 1):
1867 case IP_VERSION(10, 3, 4):
1868 case IP_VERSION(10, 3, 5):
1869 firmware_supported = dev->gpu->kfd->mec_fw_version >= 89;
1870 break;
1871 case IP_VERSION(10, 1, 3):
1872 case IP_VERSION(10, 3, 3):
1873 firmware_supported = false;
1874 break;
1875 default:
1876 break;
1877 }
1878
1879 out:
1880 if (firmware_supported)
1881 dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_FIRMWARE_SUPPORTED;
1882 }
1883
kfd_topology_set_capabilities(struct kfd_topology_device * dev)1884 static void kfd_topology_set_capabilities(struct kfd_topology_device *dev)
1885 {
1886 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_2_0 <<
1887 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
1888 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
1889
1890 dev->node_props.capability |= HSA_CAP_TRAP_DEBUG_SUPPORT |
1891 HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_TRAP_OVERRIDE_SUPPORTED |
1892 HSA_CAP_TRAP_DEBUG_WAVE_LAUNCH_MODE_SUPPORTED;
1893
1894 if (kfd_dbg_has_ttmps_always_setup(dev->gpu))
1895 dev->node_props.debug_prop |= HSA_DBG_DISPATCH_INFO_ALWAYS_VALID;
1896
1897 if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(10, 0, 0)) {
1898 if (KFD_GC_VERSION(dev->gpu) == IP_VERSION(9, 4, 3))
1899 dev->node_props.debug_prop |=
1900 HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9_4_3 |
1901 HSA_DBG_WATCH_ADDR_MASK_HI_BIT_GFX9_4_3;
1902 else
1903 dev->node_props.debug_prop |=
1904 HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX9 |
1905 HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1906
1907 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(9, 4, 2))
1908 dev->node_props.capability |=
1909 HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1910 } else {
1911 dev->node_props.debug_prop |= HSA_DBG_WATCH_ADDR_MASK_LO_BIT_GFX10 |
1912 HSA_DBG_WATCH_ADDR_MASK_HI_BIT;
1913
1914 if (KFD_GC_VERSION(dev->gpu) >= IP_VERSION(11, 0, 0))
1915 dev->node_props.capability |=
1916 HSA_CAP_TRAP_DEBUG_PRECISE_MEMORY_OPERATIONS_SUPPORTED;
1917 }
1918
1919 kfd_topology_set_dbg_firmware_support(dev);
1920 }
1921
kfd_topology_add_device(struct kfd_node * gpu)1922 int kfd_topology_add_device(struct kfd_node *gpu)
1923 {
1924 uint32_t gpu_id;
1925 struct kfd_topology_device *dev;
1926 struct kfd_cu_info cu_info;
1927 int res = 0;
1928 int i;
1929 const char *asic_name = amdgpu_asic_name[gpu->adev->asic_type];
1930
1931 gpu_id = kfd_generate_gpu_id(gpu);
1932 if (gpu->xcp && !gpu->xcp->ddev) {
1933 dev_warn(gpu->adev->dev,
1934 "Won't add GPU (ID: 0x%x) to topology since it has no drm node assigned.",
1935 gpu_id);
1936 return 0;
1937 } else {
1938 pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1939 }
1940
1941 /* Check to see if this gpu device exists in the topology_device_list.
1942 * If so, assign the gpu to that device,
1943 * else create a Virtual CRAT for this gpu device and then parse that
1944 * CRAT to create a new topology device. Once created assign the gpu to
1945 * that topology device
1946 */
1947 down_write(&topology_lock);
1948 dev = kfd_assign_gpu(gpu);
1949 if (!dev)
1950 res = kfd_topology_add_device_locked(gpu, gpu_id, &dev);
1951 up_write(&topology_lock);
1952 if (res)
1953 return res;
1954
1955 dev->gpu_id = gpu_id;
1956 gpu->id = gpu_id;
1957
1958 kfd_dev_create_p2p_links();
1959
1960 /* TODO: Move the following lines to function
1961 * kfd_add_non_crat_information
1962 */
1963
1964 /* Fill-in additional information that is not available in CRAT but
1965 * needed for the topology
1966 */
1967
1968 amdgpu_amdkfd_get_cu_info(dev->gpu->adev, &cu_info);
1969
1970 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1; i++) {
1971 dev->node_props.name[i] = __tolower(asic_name[i]);
1972 if (asic_name[i] == '\0')
1973 break;
1974 }
1975 dev->node_props.name[i] = '\0';
1976
1977 dev->node_props.simd_arrays_per_engine =
1978 cu_info.num_shader_arrays_per_engine;
1979
1980 dev->node_props.gfx_target_version =
1981 gpu->kfd->device_info.gfx_target_version;
1982 dev->node_props.vendor_id = gpu->adev->pdev->vendor;
1983 dev->node_props.device_id = gpu->adev->pdev->device;
1984 dev->node_props.capability |=
1985 ((dev->gpu->adev->rev_id << HSA_CAP_ASIC_REVISION_SHIFT) &
1986 HSA_CAP_ASIC_REVISION_MASK);
1987
1988 dev->node_props.location_id = pci_dev_id(gpu->adev->pdev);
1989 if (KFD_GC_VERSION(dev->gpu->kfd) == IP_VERSION(9, 4, 3))
1990 dev->node_props.location_id |= dev->gpu->node_id;
1991
1992 dev->node_props.domain = pci_domain_nr(gpu->adev->pdev->bus);
1993 dev->node_props.max_engine_clk_fcompute =
1994 amdgpu_amdkfd_get_max_engine_clock_in_mhz(dev->gpu->adev);
1995 dev->node_props.max_engine_clk_ccompute =
1996 cpufreq_quick_get_max(0) / 1000;
1997
1998 if (gpu->xcp)
1999 dev->node_props.drm_render_minor = gpu->xcp->ddev->render->index;
2000 else
2001 dev->node_props.drm_render_minor =
2002 gpu->kfd->shared_resources.drm_render_minor;
2003
2004 dev->node_props.hive_id = gpu->kfd->hive_id;
2005 dev->node_props.num_sdma_engines = kfd_get_num_sdma_engines(gpu);
2006 dev->node_props.num_sdma_xgmi_engines =
2007 kfd_get_num_xgmi_sdma_engines(gpu);
2008 dev->node_props.num_sdma_queues_per_engine =
2009 gpu->kfd->device_info.num_sdma_queues_per_engine -
2010 gpu->kfd->device_info.num_reserved_sdma_queues_per_engine;
2011 dev->node_props.num_gws = (dev->gpu->gws &&
2012 dev->gpu->dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) ?
2013 dev->gpu->adev->gds.gws_size : 0;
2014 dev->node_props.num_cp_queues = get_cp_queues_num(dev->gpu->dqm);
2015
2016 kfd_fill_mem_clk_max_info(dev);
2017 kfd_fill_iolink_non_crat_info(dev);
2018
2019 switch (dev->gpu->adev->asic_type) {
2020 case CHIP_KAVERI:
2021 case CHIP_HAWAII:
2022 case CHIP_TONGA:
2023 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
2024 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2025 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2026 break;
2027 case CHIP_CARRIZO:
2028 case CHIP_FIJI:
2029 case CHIP_POLARIS10:
2030 case CHIP_POLARIS11:
2031 case CHIP_POLARIS12:
2032 case CHIP_VEGAM:
2033 pr_debug("Adding doorbell packet type capability\n");
2034 dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
2035 HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
2036 HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
2037 break;
2038 default:
2039 if (KFD_GC_VERSION(dev->gpu) < IP_VERSION(9, 0, 1))
2040 WARN(1, "Unexpected ASIC family %u",
2041 dev->gpu->adev->asic_type);
2042 else
2043 kfd_topology_set_capabilities(dev);
2044 }
2045
2046 /*
2047 * Overwrite ATS capability according to needs_iommu_device to fix
2048 * potential missing corresponding bit in CRAT of BIOS.
2049 */
2050 dev->node_props.capability &= ~HSA_CAP_ATS_PRESENT;
2051
2052 /* Fix errors in CZ CRAT.
2053 * simd_count: Carrizo CRAT reports wrong simd_count, probably
2054 * because it doesn't consider masked out CUs
2055 * max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
2056 */
2057 if (dev->gpu->adev->asic_type == CHIP_CARRIZO) {
2058 dev->node_props.simd_count =
2059 cu_info.simd_per_cu * cu_info.cu_active_number;
2060 dev->node_props.max_waves_per_simd = 10;
2061 }
2062
2063 /* kfd only concerns sram ecc on GFX and HBM ecc on UMC */
2064 dev->node_props.capability |=
2065 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__GFX)) != 0) ?
2066 HSA_CAP_SRAM_EDCSUPPORTED : 0;
2067 dev->node_props.capability |=
2068 ((dev->gpu->adev->ras_enabled & BIT(AMDGPU_RAS_BLOCK__UMC)) != 0) ?
2069 HSA_CAP_MEM_EDCSUPPORTED : 0;
2070
2071 if (KFD_GC_VERSION(dev->gpu) != IP_VERSION(9, 0, 1))
2072 dev->node_props.capability |= (dev->gpu->adev->ras_enabled != 0) ?
2073 HSA_CAP_RASEVENTNOTIFY : 0;
2074
2075 if (KFD_IS_SVM_API_SUPPORTED(dev->gpu->adev))
2076 dev->node_props.capability |= HSA_CAP_SVMAPI_SUPPORTED;
2077
2078 if (dev->gpu->adev->gmc.is_app_apu ||
2079 dev->gpu->adev->gmc.xgmi.connected_to_cpu)
2080 dev->node_props.capability |= HSA_CAP_FLAGS_COHERENTHOSTACCESS;
2081
2082 kfd_debug_print_topology();
2083
2084 kfd_notify_gpu_change(gpu_id, 1);
2085
2086 return 0;
2087 }
2088
2089 /**
2090 * kfd_topology_update_io_links() - Update IO links after device removal.
2091 * @proximity_domain: Proximity domain value of the dev being removed.
2092 *
2093 * The topology list currently is arranged in increasing order of
2094 * proximity domain.
2095 *
2096 * Two things need to be done when a device is removed:
2097 * 1. All the IO links to this device need to be removed.
2098 * 2. All nodes after the current device node need to move
2099 * up once this device node is removed from the topology
2100 * list. As a result, the proximity domain values for
2101 * all nodes after the node being deleted reduce by 1.
2102 * This would also cause the proximity domain values for
2103 * io links to be updated based on new proximity domain
2104 * values.
2105 *
2106 * Context: The caller must hold write topology_lock.
2107 */
kfd_topology_update_io_links(int proximity_domain)2108 static void kfd_topology_update_io_links(int proximity_domain)
2109 {
2110 struct kfd_topology_device *dev;
2111 struct kfd_iolink_properties *iolink, *p2plink, *tmp;
2112
2113 list_for_each_entry(dev, &topology_device_list, list) {
2114 if (dev->proximity_domain > proximity_domain)
2115 dev->proximity_domain--;
2116
2117 list_for_each_entry_safe(iolink, tmp, &dev->io_link_props, list) {
2118 /*
2119 * If there is an io link to the dev being deleted
2120 * then remove that IO link also.
2121 */
2122 if (iolink->node_to == proximity_domain) {
2123 list_del(&iolink->list);
2124 dev->node_props.io_links_count--;
2125 } else {
2126 if (iolink->node_from > proximity_domain)
2127 iolink->node_from--;
2128 if (iolink->node_to > proximity_domain)
2129 iolink->node_to--;
2130 }
2131 }
2132
2133 list_for_each_entry_safe(p2plink, tmp, &dev->p2p_link_props, list) {
2134 /*
2135 * If there is a p2p link to the dev being deleted
2136 * then remove that p2p link also.
2137 */
2138 if (p2plink->node_to == proximity_domain) {
2139 list_del(&p2plink->list);
2140 dev->node_props.p2p_links_count--;
2141 } else {
2142 if (p2plink->node_from > proximity_domain)
2143 p2plink->node_from--;
2144 if (p2plink->node_to > proximity_domain)
2145 p2plink->node_to--;
2146 }
2147 }
2148 }
2149 }
2150
kfd_topology_remove_device(struct kfd_node * gpu)2151 int kfd_topology_remove_device(struct kfd_node *gpu)
2152 {
2153 struct kfd_topology_device *dev, *tmp;
2154 uint32_t gpu_id;
2155 int res = -ENODEV;
2156 int i = 0;
2157
2158 down_write(&topology_lock);
2159
2160 list_for_each_entry_safe(dev, tmp, &topology_device_list, list) {
2161 if (dev->gpu == gpu) {
2162 gpu_id = dev->gpu_id;
2163 kfd_remove_sysfs_node_entry(dev);
2164 kfd_release_topology_device(dev);
2165 sys_props.num_devices--;
2166 kfd_topology_update_io_links(i);
2167 topology_crat_proximity_domain = sys_props.num_devices-1;
2168 sys_props.generation_count++;
2169 res = 0;
2170 if (kfd_topology_update_sysfs() < 0)
2171 kfd_topology_release_sysfs();
2172 break;
2173 }
2174 i++;
2175 }
2176
2177 up_write(&topology_lock);
2178
2179 if (!res)
2180 kfd_notify_gpu_change(gpu_id, 0);
2181
2182 return res;
2183 }
2184
2185 /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
2186 * topology. If GPU device is found @idx, then valid kfd_dev pointer is
2187 * returned through @kdev
2188 * Return - 0: On success (@kdev will be NULL for non GPU nodes)
2189 * -1: If end of list
2190 */
kfd_topology_enum_kfd_devices(uint8_t idx,struct kfd_node ** kdev)2191 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev)
2192 {
2193
2194 struct kfd_topology_device *top_dev;
2195 uint8_t device_idx = 0;
2196
2197 *kdev = NULL;
2198 down_read(&topology_lock);
2199
2200 list_for_each_entry(top_dev, &topology_device_list, list) {
2201 if (device_idx == idx) {
2202 *kdev = top_dev->gpu;
2203 up_read(&topology_lock);
2204 return 0;
2205 }
2206
2207 device_idx++;
2208 }
2209
2210 up_read(&topology_lock);
2211
2212 return -1;
2213
2214 }
2215
kfd_cpumask_to_apic_id(const struct cpumask * cpumask)2216 static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
2217 {
2218 int first_cpu_of_numa_node;
2219
2220 if (!cpumask || cpumask == cpu_none_mask)
2221 return -1;
2222 first_cpu_of_numa_node = cpumask_first(cpumask);
2223 if (first_cpu_of_numa_node >= nr_cpu_ids)
2224 return -1;
2225 #ifdef CONFIG_X86_64
2226 return cpu_data(first_cpu_of_numa_node).apicid;
2227 #else
2228 return first_cpu_of_numa_node;
2229 #endif
2230 }
2231
2232 /* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
2233 * of the given NUMA node (numa_node_id)
2234 * Return -1 on failure
2235 */
kfd_numa_node_to_apic_id(int numa_node_id)2236 int kfd_numa_node_to_apic_id(int numa_node_id)
2237 {
2238 if (numa_node_id == -1) {
2239 pr_warn("Invalid NUMA Node. Use online CPU mask\n");
2240 return kfd_cpumask_to_apic_id(cpu_online_mask);
2241 }
2242 return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
2243 }
2244
2245 #if defined(CONFIG_DEBUG_FS)
2246
kfd_debugfs_hqds_by_device(struct seq_file * m,void * data)2247 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
2248 {
2249 struct kfd_topology_device *dev;
2250 unsigned int i = 0;
2251 int r = 0;
2252
2253 down_read(&topology_lock);
2254
2255 list_for_each_entry(dev, &topology_device_list, list) {
2256 if (!dev->gpu) {
2257 i++;
2258 continue;
2259 }
2260
2261 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2262 r = dqm_debugfs_hqds(m, dev->gpu->dqm);
2263 if (r)
2264 break;
2265 }
2266
2267 up_read(&topology_lock);
2268
2269 return r;
2270 }
2271
kfd_debugfs_rls_by_device(struct seq_file * m,void * data)2272 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
2273 {
2274 struct kfd_topology_device *dev;
2275 unsigned int i = 0;
2276 int r = 0;
2277
2278 down_read(&topology_lock);
2279
2280 list_for_each_entry(dev, &topology_device_list, list) {
2281 if (!dev->gpu) {
2282 i++;
2283 continue;
2284 }
2285
2286 seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
2287 r = pm_debugfs_runlist(m, &dev->gpu->dqm->packet_mgr);
2288 if (r)
2289 break;
2290 }
2291
2292 up_read(&topology_lock);
2293
2294 return r;
2295 }
2296
2297 #endif
2298