1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/mutex.h>
25 #include <linux/log2.h>
26 #include <linux/sched.h>
27 #include <linux/sched/mm.h>
28 #include <linux/sched/task.h>
29 #include <linux/mmu_context.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38
39 struct mm_struct;
40
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_svm.h"
44 #include "kfd_smi_events.h"
45 #include "kfd_debug.h"
46
47 /*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 DEFINE_MUTEX(kfd_processes_mutex);
53
54 DEFINE_SRCU(kfd_processes_srcu);
55
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58
59 /* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65 static struct workqueue_struct *kfd_restore_wq;
66
67 static struct kfd_process *find_process(const struct task_struct *thread,
68 bool ref);
69 static void kfd_process_ref_release(struct kref *ref);
70 static struct kfd_process *create_process(const struct task_struct *thread);
71
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77 struct kfd_procfs_tree {
78 struct kobject *kobj;
79 };
80
81 static struct kfd_procfs_tree procfs;
82
83 /*
84 * Structure for SDMA activity tracking
85 */
86 struct kfd_sdma_activity_handler_workarea {
87 struct work_struct sdma_activity_work;
88 struct kfd_process_device *pdd;
89 uint64_t sdma_activity_counter;
90 };
91
92 struct temp_sdma_queue_list {
93 uint64_t __user *rptr;
94 uint64_t sdma_val;
95 unsigned int queue_id;
96 struct list_head list;
97 };
98
kfd_sdma_activity_worker(struct work_struct * work)99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 struct kfd_sdma_activity_handler_workarea *workarea;
102 struct kfd_process_device *pdd;
103 uint64_t val;
104 struct mm_struct *mm;
105 struct queue *q;
106 struct qcm_process_device *qpd;
107 struct device_queue_manager *dqm;
108 int ret = 0;
109 struct temp_sdma_queue_list sdma_q_list;
110 struct temp_sdma_queue_list *sdma_q, *next;
111
112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 sdma_activity_work);
114
115 pdd = workarea->pdd;
116 if (!pdd)
117 return;
118 dqm = pdd->dev->dqm;
119 qpd = &pdd->qpd;
120 if (!dqm || !qpd)
121 return;
122 /*
123 * Total SDMA activity is current SDMA activity + past SDMA activity
124 * Past SDMA count is stored in pdd.
125 * To get the current activity counters for all active SDMA queues,
126 * we loop over all SDMA queues and get their counts from user-space.
127 *
128 * We cannot call get_user() with dqm_lock held as it can cause
129 * a circular lock dependency situation. To read the SDMA stats,
130 * we need to do the following:
131 *
132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 * with dqm_lock/dqm_unlock().
134 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 * Save the SDMA count for each node and also add the count to the total
136 * SDMA count counter.
137 * Its possible, during this step, a few SDMA queue nodes got deleted
138 * from the qpd->queues_list.
139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 * If any node got deleted, its SDMA count would be captured in the sdma
141 * past activity counter. So subtract the SDMA counter stored in step 2
142 * for this node from the total SDMA count.
143 */
144 INIT_LIST_HEAD(&sdma_q_list.list);
145
146 /*
147 * Create the temp list of all SDMA queues
148 */
149 dqm_lock(dqm);
150
151 list_for_each_entry(q, &qpd->queues_list, list) {
152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 continue;
155
156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 if (!sdma_q) {
158 dqm_unlock(dqm);
159 goto cleanup;
160 }
161
162 INIT_LIST_HEAD(&sdma_q->list);
163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 sdma_q->queue_id = q->properties.queue_id;
165 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 }
167
168 /*
169 * If the temp list is empty, then no SDMA queues nodes were found in
170 * qpd->queues_list. Return the past activity count as the total sdma
171 * count
172 */
173 if (list_empty(&sdma_q_list.list)) {
174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 dqm_unlock(dqm);
176 return;
177 }
178
179 dqm_unlock(dqm);
180
181 /*
182 * Get the usage count for each SDMA queue in temp_list.
183 */
184 mm = get_task_mm(pdd->process->lead_thread);
185 if (!mm)
186 goto cleanup;
187
188 kthread_use_mm(mm);
189
190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 val = 0;
192 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 if (ret) {
194 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 sdma_q->queue_id);
196 } else {
197 sdma_q->sdma_val = val;
198 workarea->sdma_activity_counter += val;
199 }
200 }
201
202 kthread_unuse_mm(mm);
203 mmput(mm);
204
205 /*
206 * Do a second iteration over qpd_queues_list to check if any SDMA
207 * nodes got deleted while fetching SDMA counter.
208 */
209 dqm_lock(dqm);
210
211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213 list_for_each_entry(q, &qpd->queues_list, list) {
214 if (list_empty(&sdma_q_list.list))
215 break;
216
217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 continue;
220
221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 (sdma_q->queue_id == q->properties.queue_id)) {
224 list_del(&sdma_q->list);
225 kfree(sdma_q);
226 break;
227 }
228 }
229 }
230
231 dqm_unlock(dqm);
232
233 /*
234 * If temp list is not empty, it implies some queues got deleted
235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 * count for each node from the total SDMA count.
237 */
238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 list_del(&sdma_q->list);
241 kfree(sdma_q);
242 }
243
244 return;
245
246 cleanup:
247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 list_del(&sdma_q->list);
249 kfree(sdma_q);
250 }
251 }
252
253 /**
254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255 * by current process. Translates acquired wave count into number of compute units
256 * that are occupied.
257 *
258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
259 * handle encapsulates GPU device it is associated with, thereby allowing collection
260 * of waves in flight, etc
261 * @buffer: Handle of user provided buffer updated with wave count
262 *
263 * Return: Number of bytes written to user buffer or an error value
264 */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)265 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266 {
267 int cu_cnt;
268 int wave_cnt;
269 int max_waves_per_cu;
270 struct kfd_node *dev = NULL;
271 struct kfd_process *proc = NULL;
272 struct kfd_process_device *pdd = NULL;
273
274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 dev = pdd->dev;
276 if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 return -EINVAL;
278
279 cu_cnt = 0;
280 proc = pdd->process;
281 if (pdd->qpd.queue_count == 0) {
282 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 dev->id, proc->pasid);
284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 }
286
287 /* Collect wave count from device if it supports */
288 wave_cnt = 0;
289 max_waves_per_cu = 0;
290 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 &max_waves_per_cu, 0);
292
293 /* Translate wave count to number of compute units */
294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296 }
297
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)298 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 char *buffer)
300 {
301 if (strcmp(attr->name, "pasid") == 0) {
302 struct kfd_process *p = container_of(attr, struct kfd_process,
303 attr_pasid);
304
305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 } else if (strncmp(attr->name, "vram_", 5) == 0) {
307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 attr_vram);
309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 attr_sdma);
313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314
315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 kfd_sdma_activity_worker);
317
318 sdma_activity_work_handler.pdd = pdd;
319 sdma_activity_work_handler.sdma_activity_counter = 0;
320
321 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322
323 flush_work(&sdma_activity_work_handler.sdma_activity_work);
324
325 return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 (sdma_activity_work_handler.sdma_activity_counter)/
327 SDMA_ACTIVITY_DIVISOR);
328 } else {
329 pr_err("Invalid attribute");
330 return -EINVAL;
331 }
332
333 return 0;
334 }
335
kfd_procfs_kobj_release(struct kobject * kobj)336 static void kfd_procfs_kobj_release(struct kobject *kobj)
337 {
338 kfree(kobj);
339 }
340
341 static const struct sysfs_ops kfd_procfs_ops = {
342 .show = kfd_procfs_show,
343 };
344
345 static const struct kobj_type procfs_type = {
346 .release = kfd_procfs_kobj_release,
347 .sysfs_ops = &kfd_procfs_ops,
348 };
349
kfd_procfs_init(void)350 void kfd_procfs_init(void)
351 {
352 int ret = 0;
353
354 procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 if (!procfs.kobj)
356 return;
357
358 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 &kfd_device->kobj, "proc");
360 if (ret) {
361 pr_warn("Could not create procfs proc folder");
362 /* If we fail to create the procfs, clean up */
363 kfd_procfs_shutdown();
364 }
365 }
366
kfd_procfs_shutdown(void)367 void kfd_procfs_shutdown(void)
368 {
369 if (procfs.kobj) {
370 kobject_del(procfs.kobj);
371 kobject_put(procfs.kobj);
372 procfs.kobj = NULL;
373 }
374 }
375
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)376 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 struct attribute *attr, char *buffer)
378 {
379 struct queue *q = container_of(kobj, struct queue, kobj);
380
381 if (!strcmp(attr->name, "size"))
382 return snprintf(buffer, PAGE_SIZE, "%llu",
383 q->properties.queue_size);
384 else if (!strcmp(attr->name, "type"))
385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 else if (!strcmp(attr->name, "gpuid"))
387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 else
389 pr_err("Invalid attribute");
390
391 return 0;
392 }
393
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)394 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 struct attribute *attr, char *buffer)
396 {
397 if (strcmp(attr->name, "evicted_ms") == 0) {
398 struct kfd_process_device *pdd = container_of(attr,
399 struct kfd_process_device,
400 attr_evict);
401 uint64_t evict_jiffies;
402
403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404
405 return snprintf(buffer,
406 PAGE_SIZE,
407 "%llu\n",
408 jiffies64_to_msecs(evict_jiffies));
409
410 /* Sysfs handle that gets CU occupancy is per device */
411 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 return kfd_get_cu_occupancy(attr, buffer);
413 } else {
414 pr_err("Invalid attribute");
415 }
416
417 return 0;
418 }
419
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)420 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 struct attribute *attr, char *buf)
422 {
423 struct kfd_process_device *pdd;
424
425 if (!strcmp(attr->name, "faults")) {
426 pdd = container_of(attr, struct kfd_process_device,
427 attr_faults);
428 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 }
430 if (!strcmp(attr->name, "page_in")) {
431 pdd = container_of(attr, struct kfd_process_device,
432 attr_page_in);
433 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 }
435 if (!strcmp(attr->name, "page_out")) {
436 pdd = container_of(attr, struct kfd_process_device,
437 attr_page_out);
438 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 }
440 return 0;
441 }
442
443 static struct attribute attr_queue_size = {
444 .name = "size",
445 .mode = KFD_SYSFS_FILE_MODE
446 };
447
448 static struct attribute attr_queue_type = {
449 .name = "type",
450 .mode = KFD_SYSFS_FILE_MODE
451 };
452
453 static struct attribute attr_queue_gpuid = {
454 .name = "gpuid",
455 .mode = KFD_SYSFS_FILE_MODE
456 };
457
458 static struct attribute *procfs_queue_attrs[] = {
459 &attr_queue_size,
460 &attr_queue_type,
461 &attr_queue_gpuid,
462 NULL
463 };
464 ATTRIBUTE_GROUPS(procfs_queue);
465
466 static const struct sysfs_ops procfs_queue_ops = {
467 .show = kfd_procfs_queue_show,
468 };
469
470 static const struct kobj_type procfs_queue_type = {
471 .sysfs_ops = &procfs_queue_ops,
472 .default_groups = procfs_queue_groups,
473 };
474
475 static const struct sysfs_ops procfs_stats_ops = {
476 .show = kfd_procfs_stats_show,
477 };
478
479 static const struct kobj_type procfs_stats_type = {
480 .sysfs_ops = &procfs_stats_ops,
481 .release = kfd_procfs_kobj_release,
482 };
483
484 static const struct sysfs_ops sysfs_counters_ops = {
485 .show = kfd_sysfs_counters_show,
486 };
487
488 static const struct kobj_type sysfs_counters_type = {
489 .sysfs_ops = &sysfs_counters_ops,
490 .release = kfd_procfs_kobj_release,
491 };
492
kfd_procfs_add_queue(struct queue * q)493 int kfd_procfs_add_queue(struct queue *q)
494 {
495 struct kfd_process *proc;
496 int ret;
497
498 if (!q || !q->process)
499 return -EINVAL;
500 proc = q->process;
501
502 /* Create proc/<pid>/queues/<queue id> folder */
503 if (!proc->kobj_queues)
504 return -EFAULT;
505 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 proc->kobj_queues, "%u", q->properties.queue_id);
507 if (ret < 0) {
508 pr_warn("Creating proc/<pid>/queues/%u failed",
509 q->properties.queue_id);
510 kobject_put(&q->kobj);
511 return ret;
512 }
513
514 return 0;
515 }
516
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 char *name)
519 {
520 int ret;
521
522 if (!kobj || !attr || !name)
523 return;
524
525 attr->name = name;
526 attr->mode = KFD_SYSFS_FILE_MODE;
527 sysfs_attr_init(attr);
528
529 ret = sysfs_create_file(kobj, attr);
530 if (ret)
531 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533
kfd_procfs_add_sysfs_stats(struct kfd_process * p)534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536 int ret;
537 int i;
538 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540 if (!p || !p->kobj)
541 return;
542
543 /*
544 * Create sysfs files for each GPU:
545 * - proc/<pid>/stats_<gpuid>/
546 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 */
549 for (i = 0; i < p->n_pdds; i++) {
550 struct kfd_process_device *pdd = p->pdds[i];
551
552 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 "stats_%u", pdd->dev->id);
554 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 if (!pdd->kobj_stats)
556 return;
557
558 ret = kobject_init_and_add(pdd->kobj_stats,
559 &procfs_stats_type,
560 p->kobj,
561 stats_dir_filename);
562
563 if (ret) {
564 pr_warn("Creating KFD proc/stats_%s folder failed",
565 stats_dir_filename);
566 kobject_put(pdd->kobj_stats);
567 pdd->kobj_stats = NULL;
568 return;
569 }
570
571 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 "evicted_ms");
573 /* Add sysfs file to report compute unit occupancy */
574 if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 kfd_sysfs_create_file(pdd->kobj_stats,
576 &pdd->attr_cu_occupancy,
577 "cu_occupancy");
578 }
579 }
580
kfd_procfs_add_sysfs_counters(struct kfd_process * p)581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583 int ret = 0;
584 int i;
585 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587 if (!p || !p->kobj)
588 return;
589
590 /*
591 * Create sysfs files for each GPU which supports SVM
592 * - proc/<pid>/counters_<gpuid>/
593 * - proc/<pid>/counters_<gpuid>/faults
594 * - proc/<pid>/counters_<gpuid>/page_in
595 * - proc/<pid>/counters_<gpuid>/page_out
596 */
597 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 struct kfd_process_device *pdd = p->pdds[i];
599 struct kobject *kobj_counters;
600
601 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 "counters_%u", pdd->dev->id);
603 kobj_counters = kfd_alloc_struct(kobj_counters);
604 if (!kobj_counters)
605 return;
606
607 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 p->kobj, counters_dir_filename);
609 if (ret) {
610 pr_warn("Creating KFD proc/%s folder failed",
611 counters_dir_filename);
612 kobject_put(kobj_counters);
613 return;
614 }
615
616 pdd->kobj_counters = kobj_counters;
617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 "faults");
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 "page_in");
621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 "page_out");
623 }
624 }
625
kfd_procfs_add_sysfs_files(struct kfd_process * p)626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628 int i;
629
630 if (!p || !p->kobj)
631 return;
632
633 /*
634 * Create sysfs files for each GPU:
635 * - proc/<pid>/vram_<gpuid>
636 * - proc/<pid>/sdma_<gpuid>
637 */
638 for (i = 0; i < p->n_pdds; i++) {
639 struct kfd_process_device *pdd = p->pdds[i];
640
641 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 pdd->dev->id);
643 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 pdd->vram_filename);
645
646 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 pdd->dev->id);
648 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 pdd->sdma_filename);
650 }
651 }
652
kfd_procfs_del_queue(struct queue * q)653 void kfd_procfs_del_queue(struct queue *q)
654 {
655 if (!q)
656 return;
657
658 kobject_del(&q->kobj);
659 kobject_put(&q->kobj);
660 }
661
kfd_process_create_wq(void)662 int kfd_process_create_wq(void)
663 {
664 if (!kfd_process_wq)
665 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 if (!kfd_restore_wq)
667 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
668
669 if (!kfd_process_wq || !kfd_restore_wq) {
670 kfd_process_destroy_wq();
671 return -ENOMEM;
672 }
673
674 return 0;
675 }
676
kfd_process_destroy_wq(void)677 void kfd_process_destroy_wq(void)
678 {
679 if (kfd_process_wq) {
680 destroy_workqueue(kfd_process_wq);
681 kfd_process_wq = NULL;
682 }
683 if (kfd_restore_wq) {
684 destroy_workqueue(kfd_restore_wq);
685 kfd_restore_wq = NULL;
686 }
687 }
688
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void ** kptr)689 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
690 struct kfd_process_device *pdd, void **kptr)
691 {
692 struct kfd_node *dev = pdd->dev;
693
694 if (kptr && *kptr) {
695 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
696 *kptr = NULL;
697 }
698
699 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
700 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
701 NULL);
702 }
703
704 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
705 * This function should be only called right after the process
706 * is created and when kfd_processes_mutex is still being held
707 * to avoid concurrency. Because of that exclusiveness, we do
708 * not need to take p->mutex.
709 */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)710 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
711 uint64_t gpu_va, uint32_t size,
712 uint32_t flags, struct kgd_mem **mem, void **kptr)
713 {
714 struct kfd_node *kdev = pdd->dev;
715 int err;
716
717 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
718 pdd->drm_priv, mem, NULL,
719 flags, false);
720 if (err)
721 goto err_alloc_mem;
722
723 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
724 pdd->drm_priv);
725 if (err)
726 goto err_map_mem;
727
728 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
729 if (err) {
730 pr_debug("Sync memory failed, wait interrupted by user signal\n");
731 goto sync_memory_failed;
732 }
733
734 if (kptr) {
735 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
736 (struct kgd_mem *)*mem, kptr, NULL);
737 if (err) {
738 pr_debug("Map GTT BO to kernel failed\n");
739 goto sync_memory_failed;
740 }
741 }
742
743 return err;
744
745 sync_memory_failed:
746 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
747
748 err_map_mem:
749 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
750 NULL);
751 err_alloc_mem:
752 *mem = NULL;
753 *kptr = NULL;
754 return err;
755 }
756
757 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
758 * process for IB usage The memory reserved is for KFD to submit
759 * IB to AMDGPU from kernel. If the memory is reserved
760 * successfully, ib_kaddr will have the CPU/kernel
761 * address. Check ib_kaddr before accessing the memory.
762 */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)763 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
764 {
765 struct qcm_process_device *qpd = &pdd->qpd;
766 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
767 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
768 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
769 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
770 struct kgd_mem *mem;
771 void *kaddr;
772 int ret;
773
774 if (qpd->ib_kaddr || !qpd->ib_base)
775 return 0;
776
777 /* ib_base is only set for dGPU */
778 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
779 &mem, &kaddr);
780 if (ret)
781 return ret;
782
783 qpd->ib_mem = mem;
784 qpd->ib_kaddr = kaddr;
785
786 return 0;
787 }
788
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)789 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
790 {
791 struct qcm_process_device *qpd = &pdd->qpd;
792
793 if (!qpd->ib_kaddr || !qpd->ib_base)
794 return;
795
796 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
797 }
798
kfd_create_process(struct task_struct * thread)799 struct kfd_process *kfd_create_process(struct task_struct *thread)
800 {
801 struct kfd_process *process;
802 int ret;
803
804 if (!(thread->mm && mmget_not_zero(thread->mm)))
805 return ERR_PTR(-EINVAL);
806
807 /* Only the pthreads threading model is supported. */
808 if (thread->group_leader->mm != thread->mm) {
809 mmput(thread->mm);
810 return ERR_PTR(-EINVAL);
811 }
812
813 /*
814 * take kfd processes mutex before starting of process creation
815 * so there won't be a case where two threads of the same process
816 * create two kfd_process structures
817 */
818 mutex_lock(&kfd_processes_mutex);
819
820 if (kfd_is_locked()) {
821 pr_debug("KFD is locked! Cannot create process");
822 process = ERR_PTR(-EINVAL);
823 goto out;
824 }
825
826 /* A prior open of /dev/kfd could have already created the process. */
827 process = find_process(thread, false);
828 if (process) {
829 pr_debug("Process already found\n");
830 } else {
831 /* If the process just called exec(3), it is possible that the
832 * cleanup of the kfd_process (following the release of the mm
833 * of the old process image) is still in the cleanup work queue.
834 * Make sure to drain any job before trying to recreate any
835 * resource for this process.
836 */
837 flush_workqueue(kfd_process_wq);
838
839 process = create_process(thread);
840 if (IS_ERR(process))
841 goto out;
842
843 if (!procfs.kobj)
844 goto out;
845
846 process->kobj = kfd_alloc_struct(process->kobj);
847 if (!process->kobj) {
848 pr_warn("Creating procfs kobject failed");
849 goto out;
850 }
851 ret = kobject_init_and_add(process->kobj, &procfs_type,
852 procfs.kobj, "%d",
853 (int)process->lead_thread->pid);
854 if (ret) {
855 pr_warn("Creating procfs pid directory failed");
856 kobject_put(process->kobj);
857 goto out;
858 }
859
860 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
861 "pasid");
862
863 process->kobj_queues = kobject_create_and_add("queues",
864 process->kobj);
865 if (!process->kobj_queues)
866 pr_warn("Creating KFD proc/queues folder failed");
867
868 kfd_procfs_add_sysfs_stats(process);
869 kfd_procfs_add_sysfs_files(process);
870 kfd_procfs_add_sysfs_counters(process);
871
872 init_waitqueue_head(&process->wait_irq_drain);
873 }
874 out:
875 if (!IS_ERR(process))
876 kref_get(&process->ref);
877 mutex_unlock(&kfd_processes_mutex);
878 mmput(thread->mm);
879
880 return process;
881 }
882
kfd_get_process(const struct task_struct * thread)883 struct kfd_process *kfd_get_process(const struct task_struct *thread)
884 {
885 struct kfd_process *process;
886
887 if (!thread->mm)
888 return ERR_PTR(-EINVAL);
889
890 /* Only the pthreads threading model is supported. */
891 if (thread->group_leader->mm != thread->mm)
892 return ERR_PTR(-EINVAL);
893
894 process = find_process(thread, false);
895 if (!process)
896 return ERR_PTR(-EINVAL);
897
898 return process;
899 }
900
find_process_by_mm(const struct mm_struct * mm)901 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
902 {
903 struct kfd_process *process;
904
905 hash_for_each_possible_rcu(kfd_processes_table, process,
906 kfd_processes, (uintptr_t)mm)
907 if (process->mm == mm)
908 return process;
909
910 return NULL;
911 }
912
find_process(const struct task_struct * thread,bool ref)913 static struct kfd_process *find_process(const struct task_struct *thread,
914 bool ref)
915 {
916 struct kfd_process *p;
917 int idx;
918
919 idx = srcu_read_lock(&kfd_processes_srcu);
920 p = find_process_by_mm(thread->mm);
921 if (p && ref)
922 kref_get(&p->ref);
923 srcu_read_unlock(&kfd_processes_srcu, idx);
924
925 return p;
926 }
927
kfd_unref_process(struct kfd_process * p)928 void kfd_unref_process(struct kfd_process *p)
929 {
930 kref_put(&p->ref, kfd_process_ref_release);
931 }
932
933 /* This increments the process->ref counter. */
kfd_lookup_process_by_pid(struct pid * pid)934 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
935 {
936 struct task_struct *task = NULL;
937 struct kfd_process *p = NULL;
938
939 if (!pid) {
940 task = current;
941 get_task_struct(task);
942 } else {
943 task = get_pid_task(pid, PIDTYPE_PID);
944 }
945
946 if (task) {
947 p = find_process(task, true);
948 put_task_struct(task);
949 }
950
951 return p;
952 }
953
kfd_process_device_free_bos(struct kfd_process_device * pdd)954 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
955 {
956 struct kfd_process *p = pdd->process;
957 void *mem;
958 int id;
959 int i;
960
961 /*
962 * Remove all handles from idr and release appropriate
963 * local memory object
964 */
965 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
966
967 for (i = 0; i < p->n_pdds; i++) {
968 struct kfd_process_device *peer_pdd = p->pdds[i];
969
970 if (!peer_pdd->drm_priv)
971 continue;
972 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
973 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
974 }
975
976 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
977 pdd->drm_priv, NULL);
978 kfd_process_device_remove_obj_handle(pdd, id);
979 }
980 }
981
982 /*
983 * Just kunmap and unpin signal BO here. It will be freed in
984 * kfd_process_free_outstanding_kfd_bos()
985 */
kfd_process_kunmap_signal_bo(struct kfd_process * p)986 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
987 {
988 struct kfd_process_device *pdd;
989 struct kfd_node *kdev;
990 void *mem;
991
992 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
993 if (!kdev)
994 return;
995
996 mutex_lock(&p->mutex);
997
998 pdd = kfd_get_process_device_data(kdev, p);
999 if (!pdd)
1000 goto out;
1001
1002 mem = kfd_process_device_translate_handle(
1003 pdd, GET_IDR_HANDLE(p->signal_handle));
1004 if (!mem)
1005 goto out;
1006
1007 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1008
1009 out:
1010 mutex_unlock(&p->mutex);
1011 }
1012
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)1013 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1014 {
1015 int i;
1016
1017 for (i = 0; i < p->n_pdds; i++)
1018 kfd_process_device_free_bos(p->pdds[i]);
1019 }
1020
kfd_process_destroy_pdds(struct kfd_process * p)1021 static void kfd_process_destroy_pdds(struct kfd_process *p)
1022 {
1023 int i;
1024
1025 for (i = 0; i < p->n_pdds; i++) {
1026 struct kfd_process_device *pdd = p->pdds[i];
1027
1028 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1029 pdd->dev->id, p->pasid);
1030
1031 kfd_process_device_destroy_cwsr_dgpu(pdd);
1032 kfd_process_device_destroy_ib_mem(pdd);
1033
1034 if (pdd->drm_file) {
1035 amdgpu_amdkfd_gpuvm_release_process_vm(
1036 pdd->dev->adev, pdd->drm_priv);
1037 fput(pdd->drm_file);
1038 }
1039
1040 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1041 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1042 get_order(KFD_CWSR_TBA_TMA_SIZE));
1043
1044 idr_destroy(&pdd->alloc_idr);
1045
1046 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1047
1048 if (pdd->dev->kfd->shared_resources.enable_mes)
1049 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1050 pdd->proc_ctx_bo);
1051 /*
1052 * before destroying pdd, make sure to report availability
1053 * for auto suspend
1054 */
1055 if (pdd->runtime_inuse) {
1056 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1057 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1058 pdd->runtime_inuse = false;
1059 }
1060
1061 kfree(pdd);
1062 p->pdds[i] = NULL;
1063 }
1064 p->n_pdds = 0;
1065 }
1066
kfd_process_remove_sysfs(struct kfd_process * p)1067 static void kfd_process_remove_sysfs(struct kfd_process *p)
1068 {
1069 struct kfd_process_device *pdd;
1070 int i;
1071
1072 if (!p->kobj)
1073 return;
1074
1075 sysfs_remove_file(p->kobj, &p->attr_pasid);
1076 kobject_del(p->kobj_queues);
1077 kobject_put(p->kobj_queues);
1078 p->kobj_queues = NULL;
1079
1080 for (i = 0; i < p->n_pdds; i++) {
1081 pdd = p->pdds[i];
1082
1083 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1084 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1085
1086 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1087 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1088 sysfs_remove_file(pdd->kobj_stats,
1089 &pdd->attr_cu_occupancy);
1090 kobject_del(pdd->kobj_stats);
1091 kobject_put(pdd->kobj_stats);
1092 pdd->kobj_stats = NULL;
1093 }
1094
1095 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1096 pdd = p->pdds[i];
1097
1098 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1099 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1100 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1101 kobject_del(pdd->kobj_counters);
1102 kobject_put(pdd->kobj_counters);
1103 pdd->kobj_counters = NULL;
1104 }
1105
1106 kobject_del(p->kobj);
1107 kobject_put(p->kobj);
1108 p->kobj = NULL;
1109 }
1110
1111 /* No process locking is needed in this function, because the process
1112 * is not findable any more. We must assume that no other thread is
1113 * using it any more, otherwise we couldn't safely free the process
1114 * structure in the end.
1115 */
kfd_process_wq_release(struct work_struct * work)1116 static void kfd_process_wq_release(struct work_struct *work)
1117 {
1118 struct kfd_process *p = container_of(work, struct kfd_process,
1119 release_work);
1120
1121 kfd_process_dequeue_from_all_devices(p);
1122 pqm_uninit(&p->pqm);
1123
1124 /* Signal the eviction fence after user mode queues are
1125 * destroyed. This allows any BOs to be freed without
1126 * triggering pointless evictions or waiting for fences.
1127 */
1128 dma_fence_signal(p->ef);
1129
1130 kfd_process_remove_sysfs(p);
1131
1132 kfd_process_kunmap_signal_bo(p);
1133 kfd_process_free_outstanding_kfd_bos(p);
1134 svm_range_list_fini(p);
1135
1136 kfd_process_destroy_pdds(p);
1137 dma_fence_put(p->ef);
1138
1139 kfd_event_free_process(p);
1140
1141 kfd_pasid_free(p->pasid);
1142 mutex_destroy(&p->mutex);
1143
1144 put_task_struct(p->lead_thread);
1145
1146 kfree(p);
1147 }
1148
kfd_process_ref_release(struct kref * ref)1149 static void kfd_process_ref_release(struct kref *ref)
1150 {
1151 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1152
1153 INIT_WORK(&p->release_work, kfd_process_wq_release);
1154 queue_work(kfd_process_wq, &p->release_work);
1155 }
1156
kfd_process_alloc_notifier(struct mm_struct * mm)1157 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1158 {
1159 int idx = srcu_read_lock(&kfd_processes_srcu);
1160 struct kfd_process *p = find_process_by_mm(mm);
1161
1162 srcu_read_unlock(&kfd_processes_srcu, idx);
1163
1164 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1165 }
1166
kfd_process_free_notifier(struct mmu_notifier * mn)1167 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1168 {
1169 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1170 }
1171
kfd_process_notifier_release_internal(struct kfd_process * p)1172 static void kfd_process_notifier_release_internal(struct kfd_process *p)
1173 {
1174 int i;
1175
1176 cancel_delayed_work_sync(&p->eviction_work);
1177 cancel_delayed_work_sync(&p->restore_work);
1178
1179 for (i = 0; i < p->n_pdds; i++) {
1180 struct kfd_process_device *pdd = p->pdds[i];
1181
1182 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1183 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1184 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1185 }
1186
1187 /* Indicate to other users that MM is no longer valid */
1188 p->mm = NULL;
1189 kfd_dbg_trap_disable(p);
1190
1191 if (atomic_read(&p->debugged_process_count) > 0) {
1192 struct kfd_process *target;
1193 unsigned int temp;
1194 int idx = srcu_read_lock(&kfd_processes_srcu);
1195
1196 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1197 if (target->debugger_process && target->debugger_process == p) {
1198 mutex_lock_nested(&target->mutex, 1);
1199 kfd_dbg_trap_disable(target);
1200 mutex_unlock(&target->mutex);
1201 if (atomic_read(&p->debugged_process_count) == 0)
1202 break;
1203 }
1204 }
1205
1206 srcu_read_unlock(&kfd_processes_srcu, idx);
1207 }
1208
1209 mmu_notifier_put(&p->mmu_notifier);
1210 }
1211
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1212 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1213 struct mm_struct *mm)
1214 {
1215 struct kfd_process *p;
1216
1217 /*
1218 * The kfd_process structure can not be free because the
1219 * mmu_notifier srcu is read locked
1220 */
1221 p = container_of(mn, struct kfd_process, mmu_notifier);
1222 if (WARN_ON(p->mm != mm))
1223 return;
1224
1225 mutex_lock(&kfd_processes_mutex);
1226 /*
1227 * Do early return if table is empty.
1228 *
1229 * This could potentially happen if this function is called concurrently
1230 * by mmu_notifier and by kfd_cleanup_pocesses.
1231 *
1232 */
1233 if (hash_empty(kfd_processes_table)) {
1234 mutex_unlock(&kfd_processes_mutex);
1235 return;
1236 }
1237 hash_del_rcu(&p->kfd_processes);
1238 mutex_unlock(&kfd_processes_mutex);
1239 synchronize_srcu(&kfd_processes_srcu);
1240
1241 kfd_process_notifier_release_internal(p);
1242 }
1243
1244 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1245 .release = kfd_process_notifier_release,
1246 .alloc_notifier = kfd_process_alloc_notifier,
1247 .free_notifier = kfd_process_free_notifier,
1248 };
1249
1250 /*
1251 * This code handles the case when driver is being unloaded before all
1252 * mm_struct are released. We need to safely free the kfd_process and
1253 * avoid race conditions with mmu_notifier that might try to free them.
1254 *
1255 */
kfd_cleanup_processes(void)1256 void kfd_cleanup_processes(void)
1257 {
1258 struct kfd_process *p;
1259 struct hlist_node *p_temp;
1260 unsigned int temp;
1261 HLIST_HEAD(cleanup_list);
1262
1263 /*
1264 * Move all remaining kfd_process from the process table to a
1265 * temp list for processing. Once done, callback from mmu_notifier
1266 * release will not see the kfd_process in the table and do early return,
1267 * avoiding double free issues.
1268 */
1269 mutex_lock(&kfd_processes_mutex);
1270 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1271 hash_del_rcu(&p->kfd_processes);
1272 synchronize_srcu(&kfd_processes_srcu);
1273 hlist_add_head(&p->kfd_processes, &cleanup_list);
1274 }
1275 mutex_unlock(&kfd_processes_mutex);
1276
1277 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1278 kfd_process_notifier_release_internal(p);
1279
1280 /*
1281 * Ensures that all outstanding free_notifier get called, triggering
1282 * the release of the kfd_process struct.
1283 */
1284 mmu_notifier_synchronize();
1285 }
1286
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1287 int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1288 {
1289 unsigned long offset;
1290 int i;
1291
1292 if (p->has_cwsr)
1293 return 0;
1294
1295 for (i = 0; i < p->n_pdds; i++) {
1296 struct kfd_node *dev = p->pdds[i]->dev;
1297 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1298
1299 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1300 continue;
1301
1302 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1303 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1304 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1305 MAP_SHARED, offset);
1306
1307 if (IS_ERR_VALUE(qpd->tba_addr)) {
1308 int err = qpd->tba_addr;
1309
1310 pr_err("Failure to set tba address. error %d.\n", err);
1311 qpd->tba_addr = 0;
1312 qpd->cwsr_kaddr = NULL;
1313 return err;
1314 }
1315
1316 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1317
1318 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1319
1320 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1321 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1322 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1323 }
1324
1325 p->has_cwsr = true;
1326
1327 return 0;
1328 }
1329
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1330 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1331 {
1332 struct kfd_node *dev = pdd->dev;
1333 struct qcm_process_device *qpd = &pdd->qpd;
1334 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1335 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1336 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1337 struct kgd_mem *mem;
1338 void *kaddr;
1339 int ret;
1340
1341 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1342 return 0;
1343
1344 /* cwsr_base is only set for dGPU */
1345 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1346 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1347 if (ret)
1348 return ret;
1349
1350 qpd->cwsr_mem = mem;
1351 qpd->cwsr_kaddr = kaddr;
1352 qpd->tba_addr = qpd->cwsr_base;
1353
1354 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1355
1356 kfd_process_set_trap_debug_flag(&pdd->qpd,
1357 pdd->process->debug_trap_enabled);
1358
1359 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1360 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1361 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1362
1363 return 0;
1364 }
1365
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1366 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1367 {
1368 struct kfd_node *dev = pdd->dev;
1369 struct qcm_process_device *qpd = &pdd->qpd;
1370
1371 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1372 return;
1373
1374 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1375 }
1376
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1377 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1378 uint64_t tba_addr,
1379 uint64_t tma_addr)
1380 {
1381 if (qpd->cwsr_kaddr) {
1382 /* KFD trap handler is bound, record as second-level TBA/TMA
1383 * in first-level TMA. First-level trap will jump to second.
1384 */
1385 uint64_t *tma =
1386 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1387 tma[0] = tba_addr;
1388 tma[1] = tma_addr;
1389 } else {
1390 /* No trap handler bound, bind as first-level TBA/TMA. */
1391 qpd->tba_addr = tba_addr;
1392 qpd->tma_addr = tma_addr;
1393 }
1394 }
1395
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1396 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1397 {
1398 int i;
1399
1400 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1401 * boot time retry setting. Mixing processes with different
1402 * XNACK/retry settings can hang the GPU.
1403 *
1404 * Different GPUs can have different noretry settings depending
1405 * on HW bugs or limitations. We need to find at least one
1406 * XNACK mode for this process that's compatible with all GPUs.
1407 * Fortunately GPUs with retry enabled (noretry=0) can run code
1408 * built for XNACK-off. On GFXv9 it may perform slower.
1409 *
1410 * Therefore applications built for XNACK-off can always be
1411 * supported and will be our fallback if any GPU does not
1412 * support retry.
1413 */
1414 for (i = 0; i < p->n_pdds; i++) {
1415 struct kfd_node *dev = p->pdds[i]->dev;
1416
1417 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1418 * support the SVM APIs and don't need to be considered
1419 * for the XNACK mode selection.
1420 */
1421 if (!KFD_IS_SOC15(dev))
1422 continue;
1423 /* Aldebaran can always support XNACK because it can support
1424 * per-process XNACK mode selection. But let the dev->noretry
1425 * setting still influence the default XNACK mode.
1426 */
1427 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev))
1428 continue;
1429
1430 /* GFXv10 and later GPUs do not support shader preemption
1431 * during page faults. This can lead to poor QoS for queue
1432 * management and memory-manager-related preemptions or
1433 * even deadlocks.
1434 */
1435 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1436 return false;
1437
1438 if (dev->kfd->noretry)
1439 return false;
1440 }
1441
1442 return true;
1443 }
1444
kfd_process_set_trap_debug_flag(struct qcm_process_device * qpd,bool enabled)1445 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1446 bool enabled)
1447 {
1448 if (qpd->cwsr_kaddr) {
1449 uint64_t *tma =
1450 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1451 tma[2] = enabled;
1452 }
1453 }
1454
1455 /*
1456 * On return the kfd_process is fully operational and will be freed when the
1457 * mm is released
1458 */
create_process(const struct task_struct * thread)1459 static struct kfd_process *create_process(const struct task_struct *thread)
1460 {
1461 struct kfd_process *process;
1462 struct mmu_notifier *mn;
1463 int err = -ENOMEM;
1464
1465 process = kzalloc(sizeof(*process), GFP_KERNEL);
1466 if (!process)
1467 goto err_alloc_process;
1468
1469 kref_init(&process->ref);
1470 mutex_init(&process->mutex);
1471 process->mm = thread->mm;
1472 process->lead_thread = thread->group_leader;
1473 process->n_pdds = 0;
1474 process->queues_paused = false;
1475 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1476 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1477 process->last_restore_timestamp = get_jiffies_64();
1478 err = kfd_event_init_process(process);
1479 if (err)
1480 goto err_event_init;
1481 process->is_32bit_user_mode = in_compat_syscall();
1482 process->debug_trap_enabled = false;
1483 process->debugger_process = NULL;
1484 process->exception_enable_mask = 0;
1485 atomic_set(&process->debugged_process_count, 0);
1486 sema_init(&process->runtime_enable_sema, 0);
1487
1488 process->pasid = kfd_pasid_alloc();
1489 if (process->pasid == 0) {
1490 err = -ENOSPC;
1491 goto err_alloc_pasid;
1492 }
1493
1494 err = pqm_init(&process->pqm, process);
1495 if (err != 0)
1496 goto err_process_pqm_init;
1497
1498 /* init process apertures*/
1499 err = kfd_init_apertures(process);
1500 if (err != 0)
1501 goto err_init_apertures;
1502
1503 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1504 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1505
1506 err = svm_range_list_init(process);
1507 if (err)
1508 goto err_init_svm_range_list;
1509
1510 /* alloc_notifier needs to find the process in the hash table */
1511 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1512 (uintptr_t)process->mm);
1513
1514 /* Avoid free_notifier to start kfd_process_wq_release if
1515 * mmu_notifier_get failed because of pending signal.
1516 */
1517 kref_get(&process->ref);
1518
1519 /* MMU notifier registration must be the last call that can fail
1520 * because after this point we cannot unwind the process creation.
1521 * After this point, mmu_notifier_put will trigger the cleanup by
1522 * dropping the last process reference in the free_notifier.
1523 */
1524 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1525 if (IS_ERR(mn)) {
1526 err = PTR_ERR(mn);
1527 goto err_register_notifier;
1528 }
1529 BUG_ON(mn != &process->mmu_notifier);
1530
1531 kfd_unref_process(process);
1532 get_task_struct(process->lead_thread);
1533
1534 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1535
1536 return process;
1537
1538 err_register_notifier:
1539 hash_del_rcu(&process->kfd_processes);
1540 svm_range_list_fini(process);
1541 err_init_svm_range_list:
1542 kfd_process_free_outstanding_kfd_bos(process);
1543 kfd_process_destroy_pdds(process);
1544 err_init_apertures:
1545 pqm_uninit(&process->pqm);
1546 err_process_pqm_init:
1547 kfd_pasid_free(process->pasid);
1548 err_alloc_pasid:
1549 kfd_event_free_process(process);
1550 err_event_init:
1551 mutex_destroy(&process->mutex);
1552 kfree(process);
1553 err_alloc_process:
1554 return ERR_PTR(err);
1555 }
1556
kfd_get_process_device_data(struct kfd_node * dev,struct kfd_process * p)1557 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1558 struct kfd_process *p)
1559 {
1560 int i;
1561
1562 for (i = 0; i < p->n_pdds; i++)
1563 if (p->pdds[i]->dev == dev)
1564 return p->pdds[i];
1565
1566 return NULL;
1567 }
1568
kfd_create_process_device_data(struct kfd_node * dev,struct kfd_process * p)1569 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1570 struct kfd_process *p)
1571 {
1572 struct kfd_process_device *pdd = NULL;
1573 int retval = 0;
1574
1575 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1576 return NULL;
1577 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1578 if (!pdd)
1579 return NULL;
1580
1581 pdd->dev = dev;
1582 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1583 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1584 pdd->qpd.dqm = dev->dqm;
1585 pdd->qpd.pqm = &p->pqm;
1586 pdd->qpd.evicted = 0;
1587 pdd->qpd.mapped_gws_queue = false;
1588 pdd->process = p;
1589 pdd->bound = PDD_UNBOUND;
1590 pdd->already_dequeued = false;
1591 pdd->runtime_inuse = false;
1592 pdd->vram_usage = 0;
1593 pdd->sdma_past_activity_counter = 0;
1594 pdd->user_gpu_id = dev->id;
1595 atomic64_set(&pdd->evict_duration_counter, 0);
1596
1597 if (dev->kfd->shared_resources.enable_mes) {
1598 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1599 AMDGPU_MES_PROC_CTX_SIZE,
1600 &pdd->proc_ctx_bo,
1601 &pdd->proc_ctx_gpu_addr,
1602 &pdd->proc_ctx_cpu_ptr,
1603 false);
1604 if (retval) {
1605 pr_err("failed to allocate process context bo\n");
1606 goto err_free_pdd;
1607 }
1608 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1609 }
1610
1611 p->pdds[p->n_pdds++] = pdd;
1612 if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1613 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1614 pdd->dev->adev,
1615 false,
1616 0);
1617
1618 /* Init idr used for memory handle translation */
1619 idr_init(&pdd->alloc_idr);
1620
1621 return pdd;
1622
1623 err_free_pdd:
1624 kfree(pdd);
1625 return NULL;
1626 }
1627
1628 /**
1629 * kfd_process_device_init_vm - Initialize a VM for a process-device
1630 *
1631 * @pdd: The process-device
1632 * @drm_file: Optional pointer to a DRM file descriptor
1633 *
1634 * If @drm_file is specified, it will be used to acquire the VM from
1635 * that file descriptor. If successful, the @pdd takes ownership of
1636 * the file descriptor.
1637 *
1638 * If @drm_file is NULL, a new VM is created.
1639 *
1640 * Returns 0 on success, -errno on failure.
1641 */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1642 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1643 struct file *drm_file)
1644 {
1645 struct amdgpu_fpriv *drv_priv;
1646 struct amdgpu_vm *avm;
1647 struct kfd_process *p;
1648 struct kfd_node *dev;
1649 int ret;
1650
1651 if (!drm_file)
1652 return -EINVAL;
1653
1654 if (pdd->drm_priv)
1655 return -EBUSY;
1656
1657 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1658 if (ret)
1659 return ret;
1660 avm = &drv_priv->vm;
1661
1662 p = pdd->process;
1663 dev = pdd->dev;
1664
1665 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1666 &p->kgd_process_info,
1667 &p->ef);
1668 if (ret) {
1669 pr_err("Failed to create process VM object\n");
1670 return ret;
1671 }
1672 pdd->drm_priv = drm_file->private_data;
1673 atomic64_set(&pdd->tlb_seq, 0);
1674
1675 ret = kfd_process_device_reserve_ib_mem(pdd);
1676 if (ret)
1677 goto err_reserve_ib_mem;
1678 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1679 if (ret)
1680 goto err_init_cwsr;
1681
1682 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1683 if (ret)
1684 goto err_set_pasid;
1685
1686 pdd->drm_file = drm_file;
1687
1688 return 0;
1689
1690 err_set_pasid:
1691 kfd_process_device_destroy_cwsr_dgpu(pdd);
1692 err_init_cwsr:
1693 kfd_process_device_destroy_ib_mem(pdd);
1694 err_reserve_ib_mem:
1695 pdd->drm_priv = NULL;
1696 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1697
1698 return ret;
1699 }
1700
1701 /*
1702 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1703 * to the device.
1704 * Unbinding occurs when the process dies or the device is removed.
1705 *
1706 * Assumes that the process lock is held.
1707 */
kfd_bind_process_to_device(struct kfd_node * dev,struct kfd_process * p)1708 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1709 struct kfd_process *p)
1710 {
1711 struct kfd_process_device *pdd;
1712 int err;
1713
1714 pdd = kfd_get_process_device_data(dev, p);
1715 if (!pdd) {
1716 pr_err("Process device data doesn't exist\n");
1717 return ERR_PTR(-ENOMEM);
1718 }
1719
1720 if (!pdd->drm_priv)
1721 return ERR_PTR(-ENODEV);
1722
1723 /*
1724 * signal runtime-pm system to auto resume and prevent
1725 * further runtime suspend once device pdd is created until
1726 * pdd is destroyed.
1727 */
1728 if (!pdd->runtime_inuse) {
1729 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1730 if (err < 0) {
1731 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1732 return ERR_PTR(err);
1733 }
1734 }
1735
1736 /*
1737 * make sure that runtime_usage counter is incremented just once
1738 * per pdd
1739 */
1740 pdd->runtime_inuse = true;
1741
1742 return pdd;
1743 }
1744
1745 /* Create specific handle mapped to mem from process local memory idr
1746 * Assumes that the process lock is held.
1747 */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1748 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1749 void *mem)
1750 {
1751 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1752 }
1753
1754 /* Translate specific handle from process local memory idr
1755 * Assumes that the process lock is held.
1756 */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1757 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1758 int handle)
1759 {
1760 if (handle < 0)
1761 return NULL;
1762
1763 return idr_find(&pdd->alloc_idr, handle);
1764 }
1765
1766 /* Remove specific handle from process local memory idr
1767 * Assumes that the process lock is held.
1768 */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1769 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1770 int handle)
1771 {
1772 if (handle >= 0)
1773 idr_remove(&pdd->alloc_idr, handle);
1774 }
1775
1776 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid)1777 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1778 {
1779 struct kfd_process *p, *ret_p = NULL;
1780 unsigned int temp;
1781
1782 int idx = srcu_read_lock(&kfd_processes_srcu);
1783
1784 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1785 if (p->pasid == pasid) {
1786 kref_get(&p->ref);
1787 ret_p = p;
1788 break;
1789 }
1790 }
1791
1792 srcu_read_unlock(&kfd_processes_srcu, idx);
1793
1794 return ret_p;
1795 }
1796
1797 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1798 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1799 {
1800 struct kfd_process *p;
1801
1802 int idx = srcu_read_lock(&kfd_processes_srcu);
1803
1804 p = find_process_by_mm(mm);
1805 if (p)
1806 kref_get(&p->ref);
1807
1808 srcu_read_unlock(&kfd_processes_srcu, idx);
1809
1810 return p;
1811 }
1812
1813 /* kfd_process_evict_queues - Evict all user queues of a process
1814 *
1815 * Eviction is reference-counted per process-device. This means multiple
1816 * evictions from different sources can be nested safely.
1817 */
kfd_process_evict_queues(struct kfd_process * p,uint32_t trigger)1818 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1819 {
1820 int r = 0;
1821 int i;
1822 unsigned int n_evicted = 0;
1823
1824 for (i = 0; i < p->n_pdds; i++) {
1825 struct kfd_process_device *pdd = p->pdds[i];
1826
1827 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1828 trigger);
1829
1830 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1831 &pdd->qpd);
1832 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1833 * we would like to set all the queues to be in evicted state to prevent
1834 * them been add back since they actually not be saved right now.
1835 */
1836 if (r && r != -EIO) {
1837 pr_err("Failed to evict process queues\n");
1838 goto fail;
1839 }
1840 n_evicted++;
1841 }
1842
1843 return r;
1844
1845 fail:
1846 /* To keep state consistent, roll back partial eviction by
1847 * restoring queues
1848 */
1849 for (i = 0; i < p->n_pdds; i++) {
1850 struct kfd_process_device *pdd = p->pdds[i];
1851
1852 if (n_evicted == 0)
1853 break;
1854
1855 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1856
1857 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1858 &pdd->qpd))
1859 pr_err("Failed to restore queues\n");
1860
1861 n_evicted--;
1862 }
1863
1864 return r;
1865 }
1866
1867 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)1868 int kfd_process_restore_queues(struct kfd_process *p)
1869 {
1870 int r, ret = 0;
1871 int i;
1872
1873 for (i = 0; i < p->n_pdds; i++) {
1874 struct kfd_process_device *pdd = p->pdds[i];
1875
1876 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1877
1878 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1879 &pdd->qpd);
1880 if (r) {
1881 pr_err("Failed to restore process queues\n");
1882 if (!ret)
1883 ret = r;
1884 }
1885 }
1886
1887 return ret;
1888 }
1889
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)1890 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1891 {
1892 int i;
1893
1894 for (i = 0; i < p->n_pdds; i++)
1895 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1896 return i;
1897 return -EINVAL;
1898 }
1899
1900 int
kfd_process_gpuid_from_node(struct kfd_process * p,struct kfd_node * node,uint32_t * gpuid,uint32_t * gpuidx)1901 kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1902 uint32_t *gpuid, uint32_t *gpuidx)
1903 {
1904 int i;
1905
1906 for (i = 0; i < p->n_pdds; i++)
1907 if (p->pdds[i] && p->pdds[i]->dev == node) {
1908 *gpuid = p->pdds[i]->user_gpu_id;
1909 *gpuidx = i;
1910 return 0;
1911 }
1912 return -EINVAL;
1913 }
1914
evict_process_worker(struct work_struct * work)1915 static void evict_process_worker(struct work_struct *work)
1916 {
1917 int ret;
1918 struct kfd_process *p;
1919 struct delayed_work *dwork;
1920
1921 dwork = to_delayed_work(work);
1922
1923 /* Process termination destroys this worker thread. So during the
1924 * lifetime of this thread, kfd_process p will be valid
1925 */
1926 p = container_of(dwork, struct kfd_process, eviction_work);
1927 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1928 "Eviction fence mismatch\n");
1929
1930 /* Narrow window of overlap between restore and evict work
1931 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1932 * unreserves KFD BOs, it is possible to evicted again. But
1933 * restore has few more steps of finish. So lets wait for any
1934 * previous restore work to complete
1935 */
1936 flush_delayed_work(&p->restore_work);
1937
1938 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1939 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1940 if (!ret) {
1941 dma_fence_signal(p->ef);
1942 dma_fence_put(p->ef);
1943 p->ef = NULL;
1944 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1945 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1946
1947 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1948 } else
1949 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1950 }
1951
restore_process_worker(struct work_struct * work)1952 static void restore_process_worker(struct work_struct *work)
1953 {
1954 struct delayed_work *dwork;
1955 struct kfd_process *p;
1956 int ret = 0;
1957
1958 dwork = to_delayed_work(work);
1959
1960 /* Process termination destroys this worker thread. So during the
1961 * lifetime of this thread, kfd_process p will be valid
1962 */
1963 p = container_of(dwork, struct kfd_process, restore_work);
1964 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1965
1966 /* Setting last_restore_timestamp before successful restoration.
1967 * Otherwise this would have to be set by KGD (restore_process_bos)
1968 * before KFD BOs are unreserved. If not, the process can be evicted
1969 * again before the timestamp is set.
1970 * If restore fails, the timestamp will be set again in the next
1971 * attempt. This would mean that the minimum GPU quanta would be
1972 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1973 * functions)
1974 */
1975
1976 p->last_restore_timestamp = get_jiffies_64();
1977 /* VMs may not have been acquired yet during debugging. */
1978 if (p->kgd_process_info)
1979 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1980 &p->ef);
1981 if (ret) {
1982 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1983 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1984 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1985 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1986 WARN(!ret, "reschedule restore work failed\n");
1987 return;
1988 }
1989
1990 ret = kfd_process_restore_queues(p);
1991 if (!ret)
1992 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1993 else
1994 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1995 }
1996
kfd_suspend_all_processes(void)1997 void kfd_suspend_all_processes(void)
1998 {
1999 struct kfd_process *p;
2000 unsigned int temp;
2001 int idx = srcu_read_lock(&kfd_processes_srcu);
2002
2003 WARN(debug_evictions, "Evicting all processes");
2004 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2005 cancel_delayed_work_sync(&p->eviction_work);
2006 flush_delayed_work(&p->restore_work);
2007
2008 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2009 pr_err("Failed to suspend process 0x%x\n", p->pasid);
2010 dma_fence_signal(p->ef);
2011 dma_fence_put(p->ef);
2012 p->ef = NULL;
2013 }
2014 srcu_read_unlock(&kfd_processes_srcu, idx);
2015 }
2016
kfd_resume_all_processes(void)2017 int kfd_resume_all_processes(void)
2018 {
2019 struct kfd_process *p;
2020 unsigned int temp;
2021 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2022
2023 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2024 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
2025 pr_err("Restore process %d failed during resume\n",
2026 p->pasid);
2027 ret = -EFAULT;
2028 }
2029 }
2030 srcu_read_unlock(&kfd_processes_srcu, idx);
2031 return ret;
2032 }
2033
kfd_reserved_mem_mmap(struct kfd_node * dev,struct kfd_process * process,struct vm_area_struct * vma)2034 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2035 struct vm_area_struct *vma)
2036 {
2037 struct kfd_process_device *pdd;
2038 struct qcm_process_device *qpd;
2039
2040 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2041 pr_err("Incorrect CWSR mapping size.\n");
2042 return -EINVAL;
2043 }
2044
2045 pdd = kfd_get_process_device_data(dev, process);
2046 if (!pdd)
2047 return -EINVAL;
2048 qpd = &pdd->qpd;
2049
2050 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2051 get_order(KFD_CWSR_TBA_TMA_SIZE));
2052 if (!qpd->cwsr_kaddr) {
2053 pr_err("Error allocating per process CWSR buffer.\n");
2054 return -ENOMEM;
2055 }
2056
2057 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2058 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2059 /* Mapping pages to user process */
2060 return remap_pfn_range(vma, vma->vm_start,
2061 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2062 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2063 }
2064
kfd_flush_tlb(struct kfd_process_device * pdd,enum TLB_FLUSH_TYPE type)2065 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
2066 {
2067 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
2068 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
2069 struct kfd_node *dev = pdd->dev;
2070 uint32_t xcc_mask = dev->xcc_mask;
2071 int xcc = 0;
2072
2073 /*
2074 * It can be that we race and lose here, but that is extremely unlikely
2075 * and the worst thing which could happen is that we flush the changes
2076 * into the TLB once more which is harmless.
2077 */
2078 if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2079 return;
2080
2081 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2082 /* Nothing to flush until a VMID is assigned, which
2083 * only happens when the first queue is created.
2084 */
2085 if (pdd->qpd.vmid)
2086 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2087 pdd->qpd.vmid);
2088 } else {
2089 for_each_inst(xcc, xcc_mask)
2090 amdgpu_amdkfd_flush_gpu_tlb_pasid(
2091 dev->adev, pdd->process->pasid, type, xcc);
2092 }
2093 }
2094
2095 /* assumes caller holds process lock. */
kfd_process_drain_interrupts(struct kfd_process_device * pdd)2096 int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2097 {
2098 uint32_t irq_drain_fence[8];
2099 uint8_t node_id = 0;
2100 int r = 0;
2101
2102 if (!KFD_IS_SOC15(pdd->dev))
2103 return 0;
2104
2105 pdd->process->irq_drain_is_open = true;
2106
2107 memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2108 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2109 KFD_IRQ_FENCE_CLIENTID;
2110 irq_drain_fence[3] = pdd->process->pasid;
2111
2112 /*
2113 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2114 */
2115 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2116 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2117 irq_drain_fence[3] |= node_id << 16;
2118 }
2119
2120 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2121 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2122 irq_drain_fence)) {
2123 pdd->process->irq_drain_is_open = false;
2124 return 0;
2125 }
2126
2127 r = wait_event_interruptible(pdd->process->wait_irq_drain,
2128 !READ_ONCE(pdd->process->irq_drain_is_open));
2129 if (r)
2130 pdd->process->irq_drain_is_open = false;
2131
2132 return r;
2133 }
2134
kfd_process_close_interrupt_drain(unsigned int pasid)2135 void kfd_process_close_interrupt_drain(unsigned int pasid)
2136 {
2137 struct kfd_process *p;
2138
2139 p = kfd_lookup_process_by_pasid(pasid);
2140
2141 if (!p)
2142 return;
2143
2144 WRITE_ONCE(p->irq_drain_is_open, false);
2145 wake_up_all(&p->wait_irq_drain);
2146 kfd_unref_process(p);
2147 }
2148
2149 struct send_exception_work_handler_workarea {
2150 struct work_struct work;
2151 struct kfd_process *p;
2152 unsigned int queue_id;
2153 uint64_t error_reason;
2154 };
2155
send_exception_work_handler(struct work_struct * work)2156 static void send_exception_work_handler(struct work_struct *work)
2157 {
2158 struct send_exception_work_handler_workarea *workarea;
2159 struct kfd_process *p;
2160 struct queue *q;
2161 struct mm_struct *mm;
2162 struct kfd_context_save_area_header __user *csa_header;
2163 uint64_t __user *err_payload_ptr;
2164 uint64_t cur_err;
2165 uint32_t ev_id;
2166
2167 workarea = container_of(work,
2168 struct send_exception_work_handler_workarea,
2169 work);
2170 p = workarea->p;
2171
2172 mm = get_task_mm(p->lead_thread);
2173
2174 if (!mm)
2175 return;
2176
2177 kthread_use_mm(mm);
2178
2179 q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2180
2181 if (!q)
2182 goto out;
2183
2184 csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2185
2186 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2187 get_user(cur_err, err_payload_ptr);
2188 cur_err |= workarea->error_reason;
2189 put_user(cur_err, err_payload_ptr);
2190 get_user(ev_id, &csa_header->err_event_id);
2191
2192 kfd_set_event(p, ev_id);
2193
2194 out:
2195 kthread_unuse_mm(mm);
2196 mmput(mm);
2197 }
2198
kfd_send_exception_to_runtime(struct kfd_process * p,unsigned int queue_id,uint64_t error_reason)2199 int kfd_send_exception_to_runtime(struct kfd_process *p,
2200 unsigned int queue_id,
2201 uint64_t error_reason)
2202 {
2203 struct send_exception_work_handler_workarea worker;
2204
2205 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2206
2207 worker.p = p;
2208 worker.queue_id = queue_id;
2209 worker.error_reason = error_reason;
2210
2211 schedule_work(&worker.work);
2212 flush_work(&worker.work);
2213 destroy_work_on_stack(&worker.work);
2214
2215 return 0;
2216 }
2217
kfd_process_device_data_by_id(struct kfd_process * p,uint32_t gpu_id)2218 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2219 {
2220 int i;
2221
2222 if (gpu_id) {
2223 for (i = 0; i < p->n_pdds; i++) {
2224 struct kfd_process_device *pdd = p->pdds[i];
2225
2226 if (pdd->user_gpu_id == gpu_id)
2227 return pdd;
2228 }
2229 }
2230 return NULL;
2231 }
2232
kfd_process_get_user_gpu_id(struct kfd_process * p,uint32_t actual_gpu_id)2233 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2234 {
2235 int i;
2236
2237 if (!actual_gpu_id)
2238 return 0;
2239
2240 for (i = 0; i < p->n_pdds; i++) {
2241 struct kfd_process_device *pdd = p->pdds[i];
2242
2243 if (pdd->dev->id == actual_gpu_id)
2244 return pdd->user_gpu_id;
2245 }
2246 return -EINVAL;
2247 }
2248
2249 #if defined(CONFIG_DEBUG_FS)
2250
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)2251 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2252 {
2253 struct kfd_process *p;
2254 unsigned int temp;
2255 int r = 0;
2256
2257 int idx = srcu_read_lock(&kfd_processes_srcu);
2258
2259 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2260 seq_printf(m, "Process %d PASID 0x%x:\n",
2261 p->lead_thread->tgid, p->pasid);
2262
2263 mutex_lock(&p->mutex);
2264 r = pqm_debugfs_mqds(m, &p->pqm);
2265 mutex_unlock(&p->mutex);
2266
2267 if (r)
2268 break;
2269 }
2270
2271 srcu_read_unlock(&kfd_processes_srcu, idx);
2272
2273 return r;
2274 }
2275
2276 #endif
2277