1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/irqdomain.h>
13 #include <linux/uaccess.h>
14
15 #include <clocksource/arm_arch_timer.h>
16 #include <asm/arch_timer.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_hyp.h>
19 #include <asm/kvm_nested.h>
20
21 #include <kvm/arm_vgic.h>
22 #include <kvm/arm_arch_timer.h>
23
24 #include "trace.h"
25
26 static struct timecounter *timecounter;
27 static unsigned int host_vtimer_irq;
28 static unsigned int host_ptimer_irq;
29 static u32 host_vtimer_irq_flags;
30 static u32 host_ptimer_irq_flags;
31
32 static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
33
34 static const u8 default_ppi[] = {
35 [TIMER_PTIMER] = 30,
36 [TIMER_VTIMER] = 27,
37 [TIMER_HPTIMER] = 26,
38 [TIMER_HVTIMER] = 28,
39 };
40
41 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
42 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
43 struct arch_timer_context *timer_ctx);
44 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
45 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
46 struct arch_timer_context *timer,
47 enum kvm_arch_timer_regs treg,
48 u64 val);
49 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
50 struct arch_timer_context *timer,
51 enum kvm_arch_timer_regs treg);
52 static bool kvm_arch_timer_get_input_level(int vintid);
53
54 static struct irq_ops arch_timer_irq_ops = {
55 .get_input_level = kvm_arch_timer_get_input_level,
56 };
57
nr_timers(struct kvm_vcpu * vcpu)58 static int nr_timers(struct kvm_vcpu *vcpu)
59 {
60 if (!vcpu_has_nv(vcpu))
61 return NR_KVM_EL0_TIMERS;
62
63 return NR_KVM_TIMERS;
64 }
65
timer_get_ctl(struct arch_timer_context * ctxt)66 u32 timer_get_ctl(struct arch_timer_context *ctxt)
67 {
68 struct kvm_vcpu *vcpu = ctxt->vcpu;
69
70 switch(arch_timer_ctx_index(ctxt)) {
71 case TIMER_VTIMER:
72 return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
73 case TIMER_PTIMER:
74 return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
75 case TIMER_HVTIMER:
76 return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2);
77 case TIMER_HPTIMER:
78 return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2);
79 default:
80 WARN_ON(1);
81 return 0;
82 }
83 }
84
timer_get_cval(struct arch_timer_context * ctxt)85 u64 timer_get_cval(struct arch_timer_context *ctxt)
86 {
87 struct kvm_vcpu *vcpu = ctxt->vcpu;
88
89 switch(arch_timer_ctx_index(ctxt)) {
90 case TIMER_VTIMER:
91 return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
92 case TIMER_PTIMER:
93 return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
94 case TIMER_HVTIMER:
95 return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2);
96 case TIMER_HPTIMER:
97 return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2);
98 default:
99 WARN_ON(1);
100 return 0;
101 }
102 }
103
timer_get_offset(struct arch_timer_context * ctxt)104 static u64 timer_get_offset(struct arch_timer_context *ctxt)
105 {
106 u64 offset = 0;
107
108 if (!ctxt)
109 return 0;
110
111 if (ctxt->offset.vm_offset)
112 offset += *ctxt->offset.vm_offset;
113 if (ctxt->offset.vcpu_offset)
114 offset += *ctxt->offset.vcpu_offset;
115
116 return offset;
117 }
118
timer_set_ctl(struct arch_timer_context * ctxt,u32 ctl)119 static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
120 {
121 struct kvm_vcpu *vcpu = ctxt->vcpu;
122
123 switch(arch_timer_ctx_index(ctxt)) {
124 case TIMER_VTIMER:
125 __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
126 break;
127 case TIMER_PTIMER:
128 __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
129 break;
130 case TIMER_HVTIMER:
131 __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl;
132 break;
133 case TIMER_HPTIMER:
134 __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl;
135 break;
136 default:
137 WARN_ON(1);
138 }
139 }
140
timer_set_cval(struct arch_timer_context * ctxt,u64 cval)141 static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
142 {
143 struct kvm_vcpu *vcpu = ctxt->vcpu;
144
145 switch(arch_timer_ctx_index(ctxt)) {
146 case TIMER_VTIMER:
147 __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
148 break;
149 case TIMER_PTIMER:
150 __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
151 break;
152 case TIMER_HVTIMER:
153 __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval;
154 break;
155 case TIMER_HPTIMER:
156 __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval;
157 break;
158 default:
159 WARN_ON(1);
160 }
161 }
162
timer_set_offset(struct arch_timer_context * ctxt,u64 offset)163 static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
164 {
165 if (unlikely(!ctxt->offset.vm_offset)) {
166 WARN(offset && !kvm_vm_is_protected(ctxt->vcpu->kvm),
167 "timer %ld\n", arch_timer_ctx_index(ctxt));
168 return;
169 }
170
171 WRITE_ONCE(*ctxt->offset.vm_offset, offset);
172 }
173
kvm_phys_timer_read(void)174 u64 kvm_phys_timer_read(void)
175 {
176 return timecounter->cc->read(timecounter->cc);
177 }
178
get_timer_map(struct kvm_vcpu * vcpu,struct timer_map * map)179 void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
180 {
181 if (vcpu_has_nv(vcpu)) {
182 if (is_hyp_ctxt(vcpu)) {
183 map->direct_vtimer = vcpu_hvtimer(vcpu);
184 map->direct_ptimer = vcpu_hptimer(vcpu);
185 map->emul_vtimer = vcpu_vtimer(vcpu);
186 map->emul_ptimer = vcpu_ptimer(vcpu);
187 } else {
188 map->direct_vtimer = vcpu_vtimer(vcpu);
189 map->direct_ptimer = vcpu_ptimer(vcpu);
190 map->emul_vtimer = vcpu_hvtimer(vcpu);
191 map->emul_ptimer = vcpu_hptimer(vcpu);
192 }
193 } else if (has_vhe()) {
194 map->direct_vtimer = vcpu_vtimer(vcpu);
195 map->direct_ptimer = vcpu_ptimer(vcpu);
196 map->emul_vtimer = NULL;
197 map->emul_ptimer = NULL;
198 } else {
199 map->direct_vtimer = vcpu_vtimer(vcpu);
200 map->direct_ptimer = NULL;
201 map->emul_vtimer = NULL;
202 map->emul_ptimer = vcpu_ptimer(vcpu);
203 }
204
205 trace_kvm_get_timer_map(vcpu->vcpu_id, map);
206 }
207
userspace_irqchip(struct kvm * kvm)208 static inline bool userspace_irqchip(struct kvm *kvm)
209 {
210 return static_branch_unlikely(&userspace_irqchip_in_use) &&
211 unlikely(!irqchip_in_kernel(kvm));
212 }
213
soft_timer_start(struct hrtimer * hrt,u64 ns)214 static void soft_timer_start(struct hrtimer *hrt, u64 ns)
215 {
216 hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
217 HRTIMER_MODE_ABS_HARD);
218 }
219
soft_timer_cancel(struct hrtimer * hrt)220 static void soft_timer_cancel(struct hrtimer *hrt)
221 {
222 hrtimer_cancel(hrt);
223 }
224
kvm_arch_timer_handler(int irq,void * dev_id)225 static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
226 {
227 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
228 struct arch_timer_context *ctx;
229 struct timer_map map;
230
231 /*
232 * We may see a timer interrupt after vcpu_put() has been called which
233 * sets the CPU's vcpu pointer to NULL, because even though the timer
234 * has been disabled in timer_save_state(), the hardware interrupt
235 * signal may not have been retired from the interrupt controller yet.
236 */
237 if (!vcpu)
238 return IRQ_HANDLED;
239
240 get_timer_map(vcpu, &map);
241
242 if (irq == host_vtimer_irq)
243 ctx = map.direct_vtimer;
244 else
245 ctx = map.direct_ptimer;
246
247 if (kvm_timer_should_fire(ctx))
248 kvm_timer_update_irq(vcpu, true, ctx);
249
250 if (userspace_irqchip(vcpu->kvm) &&
251 !static_branch_unlikely(&has_gic_active_state))
252 disable_percpu_irq(host_vtimer_irq);
253
254 return IRQ_HANDLED;
255 }
256
kvm_counter_compute_delta(struct arch_timer_context * timer_ctx,u64 val)257 static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
258 u64 val)
259 {
260 u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
261
262 if (now < val) {
263 u64 ns;
264
265 ns = cyclecounter_cyc2ns(timecounter->cc,
266 val - now,
267 timecounter->mask,
268 &timer_ctx->ns_frac);
269 return ns;
270 }
271
272 return 0;
273 }
274
kvm_timer_compute_delta(struct arch_timer_context * timer_ctx)275 static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
276 {
277 return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
278 }
279
kvm_timer_irq_can_fire(struct arch_timer_context * timer_ctx)280 static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
281 {
282 WARN_ON(timer_ctx && timer_ctx->loaded);
283 return timer_ctx &&
284 ((timer_get_ctl(timer_ctx) &
285 (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
286 }
287
vcpu_has_wfit_active(struct kvm_vcpu * vcpu)288 static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
289 {
290 return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
291 vcpu_get_flag(vcpu, IN_WFIT));
292 }
293
wfit_delay_ns(struct kvm_vcpu * vcpu)294 static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
295 {
296 u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
297 struct arch_timer_context *ctx;
298
299 ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu)
300 : vcpu_vtimer(vcpu);
301
302 return kvm_counter_compute_delta(ctx, val);
303 }
304
305 /*
306 * Returns the earliest expiration time in ns among guest timers.
307 * Note that it will return 0 if none of timers can fire.
308 */
kvm_timer_earliest_exp(struct kvm_vcpu * vcpu)309 static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
310 {
311 u64 min_delta = ULLONG_MAX;
312 int i;
313
314 for (i = 0; i < nr_timers(vcpu); i++) {
315 struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
316
317 WARN(ctx->loaded, "timer %d loaded\n", i);
318 if (kvm_timer_irq_can_fire(ctx))
319 min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
320 }
321
322 if (vcpu_has_wfit_active(vcpu))
323 min_delta = min(min_delta, wfit_delay_ns(vcpu));
324
325 /* If none of timers can fire, then return 0 */
326 if (min_delta == ULLONG_MAX)
327 return 0;
328
329 return min_delta;
330 }
331
kvm_bg_timer_expire(struct hrtimer * hrt)332 static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
333 {
334 struct arch_timer_cpu *timer;
335 struct kvm_vcpu *vcpu;
336 u64 ns;
337
338 timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
339 vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
340
341 /*
342 * Check that the timer has really expired from the guest's
343 * PoV (NTP on the host may have forced it to expire
344 * early). If we should have slept longer, restart it.
345 */
346 ns = kvm_timer_earliest_exp(vcpu);
347 if (unlikely(ns)) {
348 hrtimer_forward_now(hrt, ns_to_ktime(ns));
349 return HRTIMER_RESTART;
350 }
351
352 kvm_vcpu_wake_up(vcpu);
353 return HRTIMER_NORESTART;
354 }
355
kvm_hrtimer_expire(struct hrtimer * hrt)356 static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
357 {
358 struct arch_timer_context *ctx;
359 struct kvm_vcpu *vcpu;
360 u64 ns;
361
362 ctx = container_of(hrt, struct arch_timer_context, hrtimer);
363 vcpu = ctx->vcpu;
364
365 trace_kvm_timer_hrtimer_expire(ctx);
366
367 /*
368 * Check that the timer has really expired from the guest's
369 * PoV (NTP on the host may have forced it to expire
370 * early). If not ready, schedule for a later time.
371 */
372 ns = kvm_timer_compute_delta(ctx);
373 if (unlikely(ns)) {
374 hrtimer_forward_now(hrt, ns_to_ktime(ns));
375 return HRTIMER_RESTART;
376 }
377
378 kvm_timer_update_irq(vcpu, true, ctx);
379 return HRTIMER_NORESTART;
380 }
381
kvm_timer_should_fire(struct arch_timer_context * timer_ctx)382 static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
383 {
384 enum kvm_arch_timers index;
385 u64 cval, now;
386
387 if (!timer_ctx)
388 return false;
389
390 index = arch_timer_ctx_index(timer_ctx);
391
392 if (timer_ctx->loaded) {
393 u32 cnt_ctl = 0;
394
395 switch (index) {
396 case TIMER_VTIMER:
397 case TIMER_HVTIMER:
398 cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
399 break;
400 case TIMER_PTIMER:
401 case TIMER_HPTIMER:
402 cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
403 break;
404 case NR_KVM_TIMERS:
405 /* GCC is braindead */
406 cnt_ctl = 0;
407 break;
408 }
409
410 return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
411 (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
412 !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
413 }
414
415 if (!kvm_timer_irq_can_fire(timer_ctx))
416 return false;
417
418 cval = timer_get_cval(timer_ctx);
419 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
420
421 return cval <= now;
422 }
423
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)424 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
425 {
426 return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
427 }
428
429 /*
430 * Reflect the timer output level into the kvm_run structure
431 */
kvm_timer_update_run(struct kvm_vcpu * vcpu)432 void kvm_timer_update_run(struct kvm_vcpu *vcpu)
433 {
434 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
435 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
436 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
437
438 /* Populate the device bitmap with the timer states */
439 regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
440 KVM_ARM_DEV_EL1_PTIMER);
441 if (kvm_timer_should_fire(vtimer))
442 regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
443 if (kvm_timer_should_fire(ptimer))
444 regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
445 }
446
kvm_timer_update_irq(struct kvm_vcpu * vcpu,bool new_level,struct arch_timer_context * timer_ctx)447 static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
448 struct arch_timer_context *timer_ctx)
449 {
450 int ret;
451
452 timer_ctx->irq.level = new_level;
453 trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx),
454 timer_ctx->irq.level);
455
456 if (!userspace_irqchip(vcpu->kvm)) {
457 ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
458 timer_irq(timer_ctx),
459 timer_ctx->irq.level,
460 timer_ctx);
461 WARN_ON(ret);
462 }
463 }
464
465 /* Only called for a fully emulated timer */
timer_emulate(struct arch_timer_context * ctx)466 static void timer_emulate(struct arch_timer_context *ctx)
467 {
468 bool should_fire = kvm_timer_should_fire(ctx);
469
470 trace_kvm_timer_emulate(ctx, should_fire);
471
472 if (should_fire != ctx->irq.level) {
473 kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
474 return;
475 }
476
477 /*
478 * If the timer can fire now, we don't need to have a soft timer
479 * scheduled for the future. If the timer cannot fire at all,
480 * then we also don't need a soft timer.
481 */
482 if (should_fire || !kvm_timer_irq_can_fire(ctx))
483 return;
484
485 soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
486 }
487
set_cntvoff(u64 cntvoff)488 static void set_cntvoff(u64 cntvoff)
489 {
490 kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
491 }
492
set_cntpoff(u64 cntpoff)493 static void set_cntpoff(u64 cntpoff)
494 {
495 if (has_cntpoff())
496 write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2);
497 }
498
timer_save_state(struct arch_timer_context * ctx)499 static void timer_save_state(struct arch_timer_context *ctx)
500 {
501 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
502 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
503 unsigned long flags;
504
505 if (!timer->enabled)
506 return;
507
508 local_irq_save(flags);
509
510 if (!ctx->loaded)
511 goto out;
512
513 switch (index) {
514 u64 cval;
515
516 case TIMER_VTIMER:
517 case TIMER_HVTIMER:
518 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
519 timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
520
521 /* Disable the timer */
522 write_sysreg_el0(0, SYS_CNTV_CTL);
523 isb();
524
525 /*
526 * The kernel may decide to run userspace after
527 * calling vcpu_put, so we reset cntvoff to 0 to
528 * ensure a consistent read between user accesses to
529 * the virtual counter and kernel access to the
530 * physical counter of non-VHE case.
531 *
532 * For VHE, the virtual counter uses a fixed virtual
533 * offset of zero, so no need to zero CNTVOFF_EL2
534 * register, but this is actually useful when switching
535 * between EL1/vEL2 with NV.
536 *
537 * Do it unconditionally, as this is either unavoidable
538 * or dirt cheap.
539 */
540 set_cntvoff(0);
541 break;
542 case TIMER_PTIMER:
543 case TIMER_HPTIMER:
544 timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
545 cval = read_sysreg_el0(SYS_CNTP_CVAL);
546
547 cval -= timer_get_offset(ctx);
548
549 timer_set_cval(ctx, cval);
550
551 /* Disable the timer */
552 write_sysreg_el0(0, SYS_CNTP_CTL);
553 isb();
554
555 set_cntpoff(0);
556 break;
557 case NR_KVM_TIMERS:
558 BUG();
559 }
560
561 trace_kvm_timer_save_state(ctx);
562
563 ctx->loaded = false;
564 out:
565 local_irq_restore(flags);
566 }
567
568 /*
569 * Schedule the background timer before calling kvm_vcpu_halt, so that this
570 * thread is removed from its waitqueue and made runnable when there's a timer
571 * interrupt to handle.
572 */
kvm_timer_blocking(struct kvm_vcpu * vcpu)573 static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
574 {
575 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
576 struct timer_map map;
577
578 get_timer_map(vcpu, &map);
579
580 /*
581 * If no timers are capable of raising interrupts (disabled or
582 * masked), then there's no more work for us to do.
583 */
584 if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
585 !kvm_timer_irq_can_fire(map.direct_ptimer) &&
586 !kvm_timer_irq_can_fire(map.emul_vtimer) &&
587 !kvm_timer_irq_can_fire(map.emul_ptimer) &&
588 !vcpu_has_wfit_active(vcpu))
589 return;
590
591 /*
592 * At least one guest time will expire. Schedule a background timer.
593 * Set the earliest expiration time among the guest timers.
594 */
595 soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
596 }
597
kvm_timer_unblocking(struct kvm_vcpu * vcpu)598 static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
599 {
600 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
601
602 soft_timer_cancel(&timer->bg_timer);
603 }
604
timer_restore_state(struct arch_timer_context * ctx)605 static void timer_restore_state(struct arch_timer_context *ctx)
606 {
607 struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
608 enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
609 unsigned long flags;
610
611 if (!timer->enabled)
612 return;
613
614 local_irq_save(flags);
615
616 if (ctx->loaded)
617 goto out;
618
619 switch (index) {
620 u64 cval, offset;
621
622 case TIMER_VTIMER:
623 case TIMER_HVTIMER:
624 set_cntvoff(timer_get_offset(ctx));
625 write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
626 isb();
627 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
628 break;
629 case TIMER_PTIMER:
630 case TIMER_HPTIMER:
631 cval = timer_get_cval(ctx);
632 offset = timer_get_offset(ctx);
633 set_cntpoff(offset);
634 cval += offset;
635 write_sysreg_el0(cval, SYS_CNTP_CVAL);
636 isb();
637 write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
638 break;
639 case NR_KVM_TIMERS:
640 BUG();
641 }
642
643 trace_kvm_timer_restore_state(ctx);
644
645 ctx->loaded = true;
646 out:
647 local_irq_restore(flags);
648 }
649
set_timer_irq_phys_active(struct arch_timer_context * ctx,bool active)650 static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
651 {
652 int r;
653 r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
654 WARN_ON(r);
655 }
656
kvm_timer_vcpu_load_gic(struct arch_timer_context * ctx)657 static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
658 {
659 struct kvm_vcpu *vcpu = ctx->vcpu;
660 bool phys_active = false;
661
662 /*
663 * Update the timer output so that it is likely to match the
664 * state we're about to restore. If the timer expires between
665 * this point and the register restoration, we'll take the
666 * interrupt anyway.
667 */
668 kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
669
670 if (irqchip_in_kernel(vcpu->kvm))
671 phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx));
672
673 phys_active |= ctx->irq.level;
674
675 set_timer_irq_phys_active(ctx, phys_active);
676 }
677
kvm_timer_vcpu_load_nogic(struct kvm_vcpu * vcpu)678 static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
679 {
680 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
681
682 /*
683 * Update the timer output so that it is likely to match the
684 * state we're about to restore. If the timer expires between
685 * this point and the register restoration, we'll take the
686 * interrupt anyway.
687 */
688 kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
689
690 /*
691 * When using a userspace irqchip with the architected timers and a
692 * host interrupt controller that doesn't support an active state, we
693 * must still prevent continuously exiting from the guest, and
694 * therefore mask the physical interrupt by disabling it on the host
695 * interrupt controller when the virtual level is high, such that the
696 * guest can make forward progress. Once we detect the output level
697 * being de-asserted, we unmask the interrupt again so that we exit
698 * from the guest when the timer fires.
699 */
700 if (vtimer->irq.level)
701 disable_percpu_irq(host_vtimer_irq);
702 else
703 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
704 }
705
706 /* If _pred is true, set bit in _set, otherwise set it in _clr */
707 #define assign_clear_set_bit(_pred, _bit, _clr, _set) \
708 do { \
709 if (_pred) \
710 (_set) |= (_bit); \
711 else \
712 (_clr) |= (_bit); \
713 } while (0)
714
kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu * vcpu,struct timer_map * map)715 static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu,
716 struct timer_map *map)
717 {
718 int hw, ret;
719
720 if (!irqchip_in_kernel(vcpu->kvm))
721 return;
722
723 /*
724 * We only ever unmap the vtimer irq on a VHE system that runs nested
725 * virtualization, in which case we have both a valid emul_vtimer,
726 * emul_ptimer, direct_vtimer, and direct_ptimer.
727 *
728 * Since this is called from kvm_timer_vcpu_load(), a change between
729 * vEL2 and vEL1/0 will have just happened, and the timer_map will
730 * represent this, and therefore we switch the emul/direct mappings
731 * below.
732 */
733 hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer));
734 if (hw < 0) {
735 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer));
736 kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer));
737
738 ret = kvm_vgic_map_phys_irq(vcpu,
739 map->direct_vtimer->host_timer_irq,
740 timer_irq(map->direct_vtimer),
741 &arch_timer_irq_ops);
742 WARN_ON_ONCE(ret);
743 ret = kvm_vgic_map_phys_irq(vcpu,
744 map->direct_ptimer->host_timer_irq,
745 timer_irq(map->direct_ptimer),
746 &arch_timer_irq_ops);
747 WARN_ON_ONCE(ret);
748
749 /*
750 * The virtual offset behaviour is "interresting", as it
751 * always applies when HCR_EL2.E2H==0, but only when
752 * accessed from EL1 when HCR_EL2.E2H==1. So make sure we
753 * track E2H when putting the HV timer in "direct" mode.
754 */
755 if (map->direct_vtimer == vcpu_hvtimer(vcpu)) {
756 struct arch_timer_offset *offs = &map->direct_vtimer->offset;
757
758 if (vcpu_el2_e2h_is_set(vcpu))
759 offs->vcpu_offset = NULL;
760 else
761 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
762 }
763 }
764 }
765
timer_set_traps(struct kvm_vcpu * vcpu,struct timer_map * map)766 static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map)
767 {
768 bool tpt, tpc;
769 u64 clr, set;
770
771 /*
772 * No trapping gets configured here with nVHE. See
773 * __timer_enable_traps(), which is where the stuff happens.
774 */
775 if (!has_vhe())
776 return;
777
778 /*
779 * Our default policy is not to trap anything. As we progress
780 * within this function, reality kicks in and we start adding
781 * traps based on emulation requirements.
782 */
783 tpt = tpc = false;
784
785 /*
786 * We have two possibility to deal with a physical offset:
787 *
788 * - Either we have CNTPOFF (yay!) or the offset is 0:
789 * we let the guest freely access the HW
790 *
791 * - or neither of these condition apply:
792 * we trap accesses to the HW, but still use it
793 * after correcting the physical offset
794 */
795 if (!has_cntpoff() && timer_get_offset(map->direct_ptimer))
796 tpt = tpc = true;
797
798 /*
799 * Apply the enable bits that the guest hypervisor has requested for
800 * its own guest. We can only add traps that wouldn't have been set
801 * above.
802 */
803 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
804 u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
805
806 /* Use the VHE format for mental sanity */
807 if (!vcpu_el2_e2h_is_set(vcpu))
808 val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10;
809
810 tpt |= !(val & (CNTHCTL_EL1PCEN << 10));
811 tpc |= !(val & (CNTHCTL_EL1PCTEN << 10));
812 }
813
814 /*
815 * Now that we have collected our requirements, compute the
816 * trap and enable bits.
817 */
818 set = 0;
819 clr = 0;
820
821 assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr);
822 assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr);
823
824 /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */
825 sysreg_clear_set(cnthctl_el2, clr, set);
826 }
827
kvm_timer_vcpu_load(struct kvm_vcpu * vcpu)828 void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
829 {
830 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
831 struct timer_map map;
832
833 if (unlikely(!timer->enabled))
834 return;
835
836 get_timer_map(vcpu, &map);
837
838 if (static_branch_likely(&has_gic_active_state)) {
839 if (vcpu_has_nv(vcpu))
840 kvm_timer_vcpu_load_nested_switch(vcpu, &map);
841
842 kvm_timer_vcpu_load_gic(map.direct_vtimer);
843 if (map.direct_ptimer)
844 kvm_timer_vcpu_load_gic(map.direct_ptimer);
845 } else {
846 kvm_timer_vcpu_load_nogic(vcpu);
847 }
848
849 kvm_timer_unblocking(vcpu);
850
851 timer_restore_state(map.direct_vtimer);
852 if (map.direct_ptimer)
853 timer_restore_state(map.direct_ptimer);
854 if (map.emul_vtimer)
855 timer_emulate(map.emul_vtimer);
856 if (map.emul_ptimer)
857 timer_emulate(map.emul_ptimer);
858
859 timer_set_traps(vcpu, &map);
860 }
861
kvm_timer_should_notify_user(struct kvm_vcpu * vcpu)862 bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
863 {
864 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
865 struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
866 struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
867 bool vlevel, plevel;
868
869 if (likely(irqchip_in_kernel(vcpu->kvm)))
870 return false;
871
872 vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
873 plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
874
875 return kvm_timer_should_fire(vtimer) != vlevel ||
876 kvm_timer_should_fire(ptimer) != plevel;
877 }
878
kvm_timer_vcpu_put(struct kvm_vcpu * vcpu)879 void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
880 {
881 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
882 struct timer_map map;
883
884 if (unlikely(!timer->enabled))
885 return;
886
887 get_timer_map(vcpu, &map);
888
889 timer_save_state(map.direct_vtimer);
890 if (map.direct_ptimer)
891 timer_save_state(map.direct_ptimer);
892
893 /*
894 * Cancel soft timer emulation, because the only case where we
895 * need it after a vcpu_put is in the context of a sleeping VCPU, and
896 * in that case we already factor in the deadline for the physical
897 * timer when scheduling the bg_timer.
898 *
899 * In any case, we re-schedule the hrtimer for the physical timer when
900 * coming back to the VCPU thread in kvm_timer_vcpu_load().
901 */
902 if (map.emul_vtimer)
903 soft_timer_cancel(&map.emul_vtimer->hrtimer);
904 if (map.emul_ptimer)
905 soft_timer_cancel(&map.emul_ptimer->hrtimer);
906
907 if (kvm_vcpu_is_blocking(vcpu))
908 kvm_timer_blocking(vcpu);
909 }
910
911 /*
912 * With a userspace irqchip we have to check if the guest de-asserted the
913 * timer and if so, unmask the timer irq signal on the host interrupt
914 * controller to ensure that we see future timer signals.
915 */
unmask_vtimer_irq_user(struct kvm_vcpu * vcpu)916 static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
917 {
918 struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
919
920 if (!kvm_timer_should_fire(vtimer)) {
921 kvm_timer_update_irq(vcpu, false, vtimer);
922 if (static_branch_likely(&has_gic_active_state))
923 set_timer_irq_phys_active(vtimer, false);
924 else
925 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
926 }
927 }
928
kvm_timer_sync_user(struct kvm_vcpu * vcpu)929 void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
930 {
931 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
932
933 if (unlikely(!timer->enabled))
934 return;
935
936 if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
937 unmask_vtimer_irq_user(vcpu);
938 }
939
kvm_timer_vcpu_reset(struct kvm_vcpu * vcpu)940 int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
941 {
942 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
943 struct timer_map map;
944
945 get_timer_map(vcpu, &map);
946
947 /*
948 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
949 * and to 0 for ARMv7. We provide an implementation that always
950 * resets the timer to be disabled and unmasked and is compliant with
951 * the ARMv7 architecture.
952 */
953 for (int i = 0; i < nr_timers(vcpu); i++)
954 timer_set_ctl(vcpu_get_timer(vcpu, i), 0);
955
956 /*
957 * A vcpu running at EL2 is in charge of the offset applied to
958 * the virtual timer, so use the physical VM offset, and point
959 * the vcpu offset to CNTVOFF_EL2.
960 */
961 if (vcpu_has_nv(vcpu)) {
962 struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset;
963
964 offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2);
965 offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset;
966 }
967
968 if (timer->enabled) {
969 for (int i = 0; i < nr_timers(vcpu); i++)
970 kvm_timer_update_irq(vcpu, false,
971 vcpu_get_timer(vcpu, i));
972
973 if (irqchip_in_kernel(vcpu->kvm)) {
974 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer));
975 if (map.direct_ptimer)
976 kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer));
977 }
978 }
979
980 if (map.emul_vtimer)
981 soft_timer_cancel(&map.emul_vtimer->hrtimer);
982 if (map.emul_ptimer)
983 soft_timer_cancel(&map.emul_ptimer->hrtimer);
984
985 return 0;
986 }
987
timer_context_init(struct kvm_vcpu * vcpu,int timerid)988 static void timer_context_init(struct kvm_vcpu *vcpu, int timerid)
989 {
990 struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid);
991 struct kvm *kvm = vcpu->kvm;
992
993 ctxt->vcpu = vcpu;
994
995 if (!kvm_vm_is_protected(vcpu->kvm)) {
996 if (timerid == TIMER_VTIMER)
997 ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset;
998 else
999 ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset;
1000 } else {
1001 ctxt->offset.vm_offset = NULL;
1002 }
1003
1004 hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1005 ctxt->hrtimer.function = kvm_hrtimer_expire;
1006
1007 switch (timerid) {
1008 case TIMER_PTIMER:
1009 case TIMER_HPTIMER:
1010 ctxt->host_timer_irq = host_ptimer_irq;
1011 break;
1012 case TIMER_VTIMER:
1013 case TIMER_HVTIMER:
1014 ctxt->host_timer_irq = host_vtimer_irq;
1015 break;
1016 }
1017 }
1018
kvm_timer_vcpu_init(struct kvm_vcpu * vcpu)1019 void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
1020 {
1021 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1022
1023 for (int i = 0; i < NR_KVM_TIMERS; i++)
1024 timer_context_init(vcpu, i);
1025
1026 /* Synchronize offsets across timers of a VM if not already provided */
1027 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) {
1028 timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read());
1029 timer_set_offset(vcpu_ptimer(vcpu), 0);
1030 }
1031
1032 hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1033 timer->bg_timer.function = kvm_bg_timer_expire;
1034 }
1035
kvm_timer_init_vm(struct kvm * kvm)1036 void kvm_timer_init_vm(struct kvm *kvm)
1037 {
1038 for (int i = 0; i < NR_KVM_TIMERS; i++)
1039 kvm->arch.timer_data.ppi[i] = default_ppi[i];
1040 }
1041
kvm_timer_cpu_up(void)1042 void kvm_timer_cpu_up(void)
1043 {
1044 enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
1045 if (host_ptimer_irq)
1046 enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
1047 }
1048
kvm_timer_cpu_down(void)1049 void kvm_timer_cpu_down(void)
1050 {
1051 disable_percpu_irq(host_vtimer_irq);
1052 if (host_ptimer_irq)
1053 disable_percpu_irq(host_ptimer_irq);
1054 }
1055
kvm_arm_timer_set_reg(struct kvm_vcpu * vcpu,u64 regid,u64 value)1056 int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
1057 {
1058 struct arch_timer_context *timer;
1059
1060 switch (regid) {
1061 case KVM_REG_ARM_TIMER_CTL:
1062 timer = vcpu_vtimer(vcpu);
1063 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1064 break;
1065 case KVM_REG_ARM_TIMER_CNT:
1066 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1067 &vcpu->kvm->arch.flags)) {
1068 timer = vcpu_vtimer(vcpu);
1069 timer_set_offset(timer, kvm_phys_timer_read() - value);
1070 }
1071 break;
1072 case KVM_REG_ARM_TIMER_CVAL:
1073 timer = vcpu_vtimer(vcpu);
1074 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1075 break;
1076 case KVM_REG_ARM_PTIMER_CTL:
1077 timer = vcpu_ptimer(vcpu);
1078 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
1079 break;
1080 case KVM_REG_ARM_PTIMER_CNT:
1081 if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET,
1082 &vcpu->kvm->arch.flags)) {
1083 timer = vcpu_ptimer(vcpu);
1084 timer_set_offset(timer, kvm_phys_timer_read() - value);
1085 }
1086 break;
1087 case KVM_REG_ARM_PTIMER_CVAL:
1088 timer = vcpu_ptimer(vcpu);
1089 kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
1090 break;
1091
1092 default:
1093 return -1;
1094 }
1095
1096 return 0;
1097 }
1098
read_timer_ctl(struct arch_timer_context * timer)1099 static u64 read_timer_ctl(struct arch_timer_context *timer)
1100 {
1101 /*
1102 * Set ISTATUS bit if it's expired.
1103 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
1104 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
1105 * regardless of ENABLE bit for our implementation convenience.
1106 */
1107 u32 ctl = timer_get_ctl(timer);
1108
1109 if (!kvm_timer_compute_delta(timer))
1110 ctl |= ARCH_TIMER_CTRL_IT_STAT;
1111
1112 return ctl;
1113 }
1114
kvm_arm_timer_get_reg(struct kvm_vcpu * vcpu,u64 regid)1115 u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
1116 {
1117 switch (regid) {
1118 case KVM_REG_ARM_TIMER_CTL:
1119 return kvm_arm_timer_read(vcpu,
1120 vcpu_vtimer(vcpu), TIMER_REG_CTL);
1121 case KVM_REG_ARM_TIMER_CNT:
1122 return kvm_arm_timer_read(vcpu,
1123 vcpu_vtimer(vcpu), TIMER_REG_CNT);
1124 case KVM_REG_ARM_TIMER_CVAL:
1125 return kvm_arm_timer_read(vcpu,
1126 vcpu_vtimer(vcpu), TIMER_REG_CVAL);
1127 case KVM_REG_ARM_PTIMER_CTL:
1128 return kvm_arm_timer_read(vcpu,
1129 vcpu_ptimer(vcpu), TIMER_REG_CTL);
1130 case KVM_REG_ARM_PTIMER_CNT:
1131 return kvm_arm_timer_read(vcpu,
1132 vcpu_ptimer(vcpu), TIMER_REG_CNT);
1133 case KVM_REG_ARM_PTIMER_CVAL:
1134 return kvm_arm_timer_read(vcpu,
1135 vcpu_ptimer(vcpu), TIMER_REG_CVAL);
1136 }
1137 return (u64)-1;
1138 }
1139
kvm_arm_timer_read(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg)1140 static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
1141 struct arch_timer_context *timer,
1142 enum kvm_arch_timer_regs treg)
1143 {
1144 u64 val;
1145
1146 switch (treg) {
1147 case TIMER_REG_TVAL:
1148 val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
1149 val = lower_32_bits(val);
1150 break;
1151
1152 case TIMER_REG_CTL:
1153 val = read_timer_ctl(timer);
1154 break;
1155
1156 case TIMER_REG_CVAL:
1157 val = timer_get_cval(timer);
1158 break;
1159
1160 case TIMER_REG_CNT:
1161 val = kvm_phys_timer_read() - timer_get_offset(timer);
1162 break;
1163
1164 case TIMER_REG_VOFF:
1165 val = *timer->offset.vcpu_offset;
1166 break;
1167
1168 default:
1169 BUG();
1170 }
1171
1172 return val;
1173 }
1174
kvm_arm_timer_read_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg)1175 u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
1176 enum kvm_arch_timers tmr,
1177 enum kvm_arch_timer_regs treg)
1178 {
1179 struct arch_timer_context *timer;
1180 struct timer_map map;
1181 u64 val;
1182
1183 get_timer_map(vcpu, &map);
1184 timer = vcpu_get_timer(vcpu, tmr);
1185
1186 if (timer == map.emul_vtimer || timer == map.emul_ptimer)
1187 return kvm_arm_timer_read(vcpu, timer, treg);
1188
1189 preempt_disable();
1190 timer_save_state(timer);
1191
1192 val = kvm_arm_timer_read(vcpu, timer, treg);
1193
1194 timer_restore_state(timer);
1195 preempt_enable();
1196
1197 return val;
1198 }
1199
kvm_arm_timer_write(struct kvm_vcpu * vcpu,struct arch_timer_context * timer,enum kvm_arch_timer_regs treg,u64 val)1200 static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
1201 struct arch_timer_context *timer,
1202 enum kvm_arch_timer_regs treg,
1203 u64 val)
1204 {
1205 switch (treg) {
1206 case TIMER_REG_TVAL:
1207 timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
1208 break;
1209
1210 case TIMER_REG_CTL:
1211 timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
1212 break;
1213
1214 case TIMER_REG_CVAL:
1215 timer_set_cval(timer, val);
1216 break;
1217
1218 case TIMER_REG_VOFF:
1219 *timer->offset.vcpu_offset = val;
1220 break;
1221
1222 default:
1223 BUG();
1224 }
1225 }
1226
kvm_arm_timer_write_sysreg(struct kvm_vcpu * vcpu,enum kvm_arch_timers tmr,enum kvm_arch_timer_regs treg,u64 val)1227 void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
1228 enum kvm_arch_timers tmr,
1229 enum kvm_arch_timer_regs treg,
1230 u64 val)
1231 {
1232 struct arch_timer_context *timer;
1233 struct timer_map map;
1234
1235 get_timer_map(vcpu, &map);
1236 timer = vcpu_get_timer(vcpu, tmr);
1237 if (timer == map.emul_vtimer || timer == map.emul_ptimer) {
1238 soft_timer_cancel(&timer->hrtimer);
1239 kvm_arm_timer_write(vcpu, timer, treg, val);
1240 timer_emulate(timer);
1241 } else {
1242 preempt_disable();
1243 timer_save_state(timer);
1244 kvm_arm_timer_write(vcpu, timer, treg, val);
1245 timer_restore_state(timer);
1246 preempt_enable();
1247 }
1248 }
1249
timer_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)1250 static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
1251 {
1252 if (vcpu)
1253 irqd_set_forwarded_to_vcpu(d);
1254 else
1255 irqd_clr_forwarded_to_vcpu(d);
1256
1257 return 0;
1258 }
1259
timer_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)1260 static int timer_irq_set_irqchip_state(struct irq_data *d,
1261 enum irqchip_irq_state which, bool val)
1262 {
1263 if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
1264 return irq_chip_set_parent_state(d, which, val);
1265
1266 if (val)
1267 irq_chip_mask_parent(d);
1268 else
1269 irq_chip_unmask_parent(d);
1270
1271 return 0;
1272 }
1273
timer_irq_eoi(struct irq_data * d)1274 static void timer_irq_eoi(struct irq_data *d)
1275 {
1276 if (!irqd_is_forwarded_to_vcpu(d))
1277 irq_chip_eoi_parent(d);
1278 }
1279
timer_irq_ack(struct irq_data * d)1280 static void timer_irq_ack(struct irq_data *d)
1281 {
1282 d = d->parent_data;
1283 if (d->chip->irq_ack)
1284 d->chip->irq_ack(d);
1285 }
1286
1287 static struct irq_chip timer_chip = {
1288 .name = "KVM",
1289 .irq_ack = timer_irq_ack,
1290 .irq_mask = irq_chip_mask_parent,
1291 .irq_unmask = irq_chip_unmask_parent,
1292 .irq_eoi = timer_irq_eoi,
1293 .irq_set_type = irq_chip_set_type_parent,
1294 .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity,
1295 .irq_set_irqchip_state = timer_irq_set_irqchip_state,
1296 };
1297
timer_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1298 static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1299 unsigned int nr_irqs, void *arg)
1300 {
1301 irq_hw_number_t hwirq = (uintptr_t)arg;
1302
1303 return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
1304 &timer_chip, NULL);
1305 }
1306
timer_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1307 static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1308 unsigned int nr_irqs)
1309 {
1310 }
1311
1312 static const struct irq_domain_ops timer_domain_ops = {
1313 .alloc = timer_irq_domain_alloc,
1314 .free = timer_irq_domain_free,
1315 };
1316
kvm_irq_fixup_flags(unsigned int virq,u32 * flags)1317 static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
1318 {
1319 *flags = irq_get_trigger_type(virq);
1320 if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
1321 kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
1322 virq);
1323 *flags = IRQF_TRIGGER_LOW;
1324 }
1325 }
1326
kvm_irq_init(struct arch_timer_kvm_info * info)1327 static int kvm_irq_init(struct arch_timer_kvm_info *info)
1328 {
1329 struct irq_domain *domain = NULL;
1330
1331 if (info->virtual_irq <= 0) {
1332 kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
1333 info->virtual_irq);
1334 return -ENODEV;
1335 }
1336
1337 host_vtimer_irq = info->virtual_irq;
1338 kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
1339
1340 if (kvm_vgic_global_state.no_hw_deactivation) {
1341 struct fwnode_handle *fwnode;
1342 struct irq_data *data;
1343
1344 fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
1345 if (!fwnode)
1346 return -ENOMEM;
1347
1348 /* Assume both vtimer and ptimer in the same parent */
1349 data = irq_get_irq_data(host_vtimer_irq);
1350 domain = irq_domain_create_hierarchy(data->domain, 0,
1351 NR_KVM_TIMERS, fwnode,
1352 &timer_domain_ops, NULL);
1353 if (!domain) {
1354 irq_domain_free_fwnode(fwnode);
1355 return -ENOMEM;
1356 }
1357
1358 arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
1359 WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
1360 (void *)TIMER_VTIMER));
1361 }
1362
1363 if (info->physical_irq > 0) {
1364 host_ptimer_irq = info->physical_irq;
1365 kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
1366
1367 if (domain)
1368 WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
1369 (void *)TIMER_PTIMER));
1370 }
1371
1372 return 0;
1373 }
1374
kvm_timer_hyp_init(bool has_gic)1375 int __init kvm_timer_hyp_init(bool has_gic)
1376 {
1377 struct arch_timer_kvm_info *info;
1378 int err;
1379
1380 info = arch_timer_get_kvm_info();
1381 timecounter = &info->timecounter;
1382
1383 if (!timecounter->cc) {
1384 kvm_err("kvm_arch_timer: uninitialized timecounter\n");
1385 return -ENODEV;
1386 }
1387
1388 err = kvm_irq_init(info);
1389 if (err)
1390 return err;
1391
1392 /* First, do the virtual EL1 timer irq */
1393
1394 err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
1395 "kvm guest vtimer", kvm_get_running_vcpus());
1396 if (err) {
1397 kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
1398 host_vtimer_irq, err);
1399 return err;
1400 }
1401
1402 if (has_gic) {
1403 err = irq_set_vcpu_affinity(host_vtimer_irq,
1404 kvm_get_running_vcpus());
1405 if (err) {
1406 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1407 goto out_free_vtimer_irq;
1408 }
1409
1410 static_branch_enable(&has_gic_active_state);
1411 }
1412
1413 kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
1414
1415 /* Now let's do the physical EL1 timer irq */
1416
1417 if (info->physical_irq > 0) {
1418 err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
1419 "kvm guest ptimer", kvm_get_running_vcpus());
1420 if (err) {
1421 kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
1422 host_ptimer_irq, err);
1423 goto out_free_vtimer_irq;
1424 }
1425
1426 if (has_gic) {
1427 err = irq_set_vcpu_affinity(host_ptimer_irq,
1428 kvm_get_running_vcpus());
1429 if (err) {
1430 kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
1431 goto out_free_ptimer_irq;
1432 }
1433 }
1434
1435 kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
1436 } else if (has_vhe()) {
1437 kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
1438 info->physical_irq);
1439 err = -ENODEV;
1440 goto out_free_vtimer_irq;
1441 }
1442
1443 return 0;
1444
1445 out_free_ptimer_irq:
1446 if (info->physical_irq > 0)
1447 free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus());
1448 out_free_vtimer_irq:
1449 free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
1450 return err;
1451 }
1452
kvm_timer_vcpu_terminate(struct kvm_vcpu * vcpu)1453 void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
1454 {
1455 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1456
1457 soft_timer_cancel(&timer->bg_timer);
1458 }
1459
timer_irqs_are_valid(struct kvm_vcpu * vcpu)1460 static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
1461 {
1462 u32 ppis = 0;
1463 bool valid;
1464
1465 mutex_lock(&vcpu->kvm->arch.config_lock);
1466
1467 for (int i = 0; i < nr_timers(vcpu); i++) {
1468 struct arch_timer_context *ctx;
1469 int irq;
1470
1471 ctx = vcpu_get_timer(vcpu, i);
1472 irq = timer_irq(ctx);
1473 if (kvm_vgic_set_owner(vcpu, irq, ctx))
1474 break;
1475
1476 /*
1477 * We know by construction that we only have PPIs, so
1478 * all values are less than 32.
1479 */
1480 ppis |= BIT(irq);
1481 }
1482
1483 valid = hweight32(ppis) == nr_timers(vcpu);
1484
1485 if (valid)
1486 set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags);
1487
1488 mutex_unlock(&vcpu->kvm->arch.config_lock);
1489
1490 return valid;
1491 }
1492
kvm_arch_timer_get_input_level(int vintid)1493 static bool kvm_arch_timer_get_input_level(int vintid)
1494 {
1495 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
1496
1497 if (WARN(!vcpu, "No vcpu context!\n"))
1498 return false;
1499
1500 for (int i = 0; i < nr_timers(vcpu); i++) {
1501 struct arch_timer_context *ctx;
1502
1503 ctx = vcpu_get_timer(vcpu, i);
1504 if (timer_irq(ctx) == vintid)
1505 return kvm_timer_should_fire(ctx);
1506 }
1507
1508 /* A timer IRQ has fired, but no matching timer was found? */
1509 WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid);
1510
1511 return false;
1512 }
1513
kvm_timer_enable(struct kvm_vcpu * vcpu)1514 int kvm_timer_enable(struct kvm_vcpu *vcpu)
1515 {
1516 struct arch_timer_cpu *timer = vcpu_timer(vcpu);
1517 struct timer_map map;
1518 int ret;
1519
1520 if (timer->enabled)
1521 return 0;
1522
1523 /* Without a VGIC we do not map virtual IRQs to physical IRQs */
1524 if (!irqchip_in_kernel(vcpu->kvm))
1525 goto no_vgic;
1526
1527 /*
1528 * At this stage, we have the guarantee that the vgic is both
1529 * available and initialized.
1530 */
1531 if (!timer_irqs_are_valid(vcpu)) {
1532 kvm_debug("incorrectly configured timer irqs\n");
1533 return -EINVAL;
1534 }
1535
1536 get_timer_map(vcpu, &map);
1537
1538 ret = kvm_vgic_map_phys_irq(vcpu,
1539 map.direct_vtimer->host_timer_irq,
1540 timer_irq(map.direct_vtimer),
1541 &arch_timer_irq_ops);
1542 if (ret)
1543 return ret;
1544
1545 if (map.direct_ptimer) {
1546 ret = kvm_vgic_map_phys_irq(vcpu,
1547 map.direct_ptimer->host_timer_irq,
1548 timer_irq(map.direct_ptimer),
1549 &arch_timer_irq_ops);
1550 }
1551
1552 if (ret)
1553 return ret;
1554
1555 no_vgic:
1556 timer->enabled = 1;
1557 return 0;
1558 }
1559
1560 /* If we have CNTPOFF, permanently set ECV to enable it */
kvm_timer_init_vhe(void)1561 void kvm_timer_init_vhe(void)
1562 {
1563 if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF))
1564 sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV);
1565 }
1566
kvm_arm_timer_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1567 int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1568 {
1569 int __user *uaddr = (int __user *)(long)attr->addr;
1570 int irq, idx, ret = 0;
1571
1572 if (!irqchip_in_kernel(vcpu->kvm))
1573 return -EINVAL;
1574
1575 if (get_user(irq, uaddr))
1576 return -EFAULT;
1577
1578 if (!(irq_is_ppi(irq)))
1579 return -EINVAL;
1580
1581 mutex_lock(&vcpu->kvm->arch.config_lock);
1582
1583 if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE,
1584 &vcpu->kvm->arch.flags)) {
1585 ret = -EBUSY;
1586 goto out;
1587 }
1588
1589 switch (attr->attr) {
1590 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1591 idx = TIMER_VTIMER;
1592 break;
1593 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1594 idx = TIMER_PTIMER;
1595 break;
1596 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1597 idx = TIMER_HVTIMER;
1598 break;
1599 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1600 idx = TIMER_HPTIMER;
1601 break;
1602 default:
1603 ret = -ENXIO;
1604 goto out;
1605 }
1606
1607 /*
1608 * We cannot validate the IRQ unicity before we run, so take it at
1609 * face value. The verdict will be given on first vcpu run, for each
1610 * vcpu. Yes this is late. Blame it on the stupid API.
1611 */
1612 vcpu->kvm->arch.timer_data.ppi[idx] = irq;
1613
1614 out:
1615 mutex_unlock(&vcpu->kvm->arch.config_lock);
1616 return ret;
1617 }
1618
kvm_arm_timer_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1619 int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1620 {
1621 int __user *uaddr = (int __user *)(long)attr->addr;
1622 struct arch_timer_context *timer;
1623 int irq;
1624
1625 switch (attr->attr) {
1626 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1627 timer = vcpu_vtimer(vcpu);
1628 break;
1629 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1630 timer = vcpu_ptimer(vcpu);
1631 break;
1632 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1633 timer = vcpu_hvtimer(vcpu);
1634 break;
1635 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1636 timer = vcpu_hptimer(vcpu);
1637 break;
1638 default:
1639 return -ENXIO;
1640 }
1641
1642 irq = timer_irq(timer);
1643 return put_user(irq, uaddr);
1644 }
1645
kvm_arm_timer_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1646 int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1647 {
1648 switch (attr->attr) {
1649 case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
1650 case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
1651 case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER:
1652 case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER:
1653 return 0;
1654 }
1655
1656 return -ENXIO;
1657 }
1658
kvm_vm_ioctl_set_counter_offset(struct kvm * kvm,struct kvm_arm_counter_offset * offset)1659 int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1660 struct kvm_arm_counter_offset *offset)
1661 {
1662 int ret = 0;
1663
1664 if (offset->reserved)
1665 return -EINVAL;
1666
1667 if (kvm_vm_is_protected(kvm))
1668 return -EBUSY;
1669
1670 mutex_lock(&kvm->lock);
1671
1672 if (lock_all_vcpus(kvm)) {
1673 set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags);
1674
1675 /*
1676 * If userspace decides to set the offset using this
1677 * API rather than merely restoring the counter
1678 * values, the offset applies to both the virtual and
1679 * physical views.
1680 */
1681 kvm->arch.timer_data.voffset = offset->counter_offset;
1682 kvm->arch.timer_data.poffset = offset->counter_offset;
1683
1684 unlock_all_vcpus(kvm);
1685 } else {
1686 ret = -EBUSY;
1687 }
1688
1689 mutex_unlock(&kvm->lock);
1690
1691 return ret;
1692 }
1693