1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC 0xcafe4a11
60 #endif
61
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69 #define __printf(a, b) __attribute__((format(printf, a, b)))
70
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 static int map_set_def_max_entries(struct bpf_map *map);
74
75 static const char * const attach_type_name[] = {
76 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
77 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
78 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
79 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
80 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
81 [BPF_CGROUP_DEVICE] = "cgroup_device",
82 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
83 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
84 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
85 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
90 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
91 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
92 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
93 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
94 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
95 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
96 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
97 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
98 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
99 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
100 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
101 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
102 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
103 [BPF_LIRC_MODE2] = "lirc_mode2",
104 [BPF_FLOW_DISSECTOR] = "flow_dissector",
105 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
106 [BPF_TRACE_FENTRY] = "trace_fentry",
107 [BPF_TRACE_FEXIT] = "trace_fexit",
108 [BPF_MODIFY_RETURN] = "modify_return",
109 [BPF_LSM_MAC] = "lsm_mac",
110 [BPF_LSM_CGROUP] = "lsm_cgroup",
111 [BPF_SK_LOOKUP] = "sk_lookup",
112 [BPF_TRACE_ITER] = "trace_iter",
113 [BPF_XDP_DEVMAP] = "xdp_devmap",
114 [BPF_XDP_CPUMAP] = "xdp_cpumap",
115 [BPF_XDP] = "xdp",
116 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
117 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
118 [BPF_PERF_EVENT] = "perf_event",
119 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
120 [BPF_STRUCT_OPS] = "struct_ops",
121 [BPF_NETFILTER] = "netfilter",
122 [BPF_TCX_INGRESS] = "tcx_ingress",
123 [BPF_TCX_EGRESS] = "tcx_egress",
124 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
125 };
126
127 static const char * const link_type_name[] = {
128 [BPF_LINK_TYPE_UNSPEC] = "unspec",
129 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
130 [BPF_LINK_TYPE_TRACING] = "tracing",
131 [BPF_LINK_TYPE_CGROUP] = "cgroup",
132 [BPF_LINK_TYPE_ITER] = "iter",
133 [BPF_LINK_TYPE_NETNS] = "netns",
134 [BPF_LINK_TYPE_XDP] = "xdp",
135 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
136 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
137 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
138 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
139 [BPF_LINK_TYPE_TCX] = "tcx",
140 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
141 };
142
143 static const char * const map_type_name[] = {
144 [BPF_MAP_TYPE_UNSPEC] = "unspec",
145 [BPF_MAP_TYPE_HASH] = "hash",
146 [BPF_MAP_TYPE_ARRAY] = "array",
147 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
148 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
149 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
150 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
151 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
152 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
153 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
154 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
155 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
156 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
157 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
158 [BPF_MAP_TYPE_DEVMAP] = "devmap",
159 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
160 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
161 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
162 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
163 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
164 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
165 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
166 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
167 [BPF_MAP_TYPE_QUEUE] = "queue",
168 [BPF_MAP_TYPE_STACK] = "stack",
169 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
170 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
171 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
172 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
173 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
174 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
175 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
176 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
177 };
178
179 static const char * const prog_type_name[] = {
180 [BPF_PROG_TYPE_UNSPEC] = "unspec",
181 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
182 [BPF_PROG_TYPE_KPROBE] = "kprobe",
183 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
184 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
185 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
186 [BPF_PROG_TYPE_XDP] = "xdp",
187 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
188 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
189 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
190 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
191 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
192 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
193 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
194 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
195 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
196 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
197 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
198 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
199 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
200 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
201 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
202 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
203 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
204 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
205 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
206 [BPF_PROG_TYPE_TRACING] = "tracing",
207 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
208 [BPF_PROG_TYPE_EXT] = "ext",
209 [BPF_PROG_TYPE_LSM] = "lsm",
210 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
211 [BPF_PROG_TYPE_SYSCALL] = "syscall",
212 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
213 };
214
__base_pr(enum libbpf_print_level level,const char * format,va_list args)215 static int __base_pr(enum libbpf_print_level level, const char *format,
216 va_list args)
217 {
218 if (level == LIBBPF_DEBUG)
219 return 0;
220
221 return vfprintf(stderr, format, args);
222 }
223
224 static libbpf_print_fn_t __libbpf_pr = __base_pr;
225
libbpf_set_print(libbpf_print_fn_t fn)226 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
227 {
228 libbpf_print_fn_t old_print_fn;
229
230 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
231
232 return old_print_fn;
233 }
234
235 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)236 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
237 {
238 va_list args;
239 int old_errno;
240 libbpf_print_fn_t print_fn;
241
242 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
243 if (!print_fn)
244 return;
245
246 old_errno = errno;
247
248 va_start(args, format);
249 __libbpf_pr(level, format, args);
250 va_end(args);
251
252 errno = old_errno;
253 }
254
pr_perm_msg(int err)255 static void pr_perm_msg(int err)
256 {
257 struct rlimit limit;
258 char buf[100];
259
260 if (err != -EPERM || geteuid() != 0)
261 return;
262
263 err = getrlimit(RLIMIT_MEMLOCK, &limit);
264 if (err)
265 return;
266
267 if (limit.rlim_cur == RLIM_INFINITY)
268 return;
269
270 if (limit.rlim_cur < 1024)
271 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
272 else if (limit.rlim_cur < 1024*1024)
273 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
274 else
275 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
276
277 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
278 buf);
279 }
280
281 #define STRERR_BUFSIZE 128
282
283 /* Copied from tools/perf/util/util.h */
284 #ifndef zfree
285 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
286 #endif
287
288 #ifndef zclose
289 # define zclose(fd) ({ \
290 int ___err = 0; \
291 if ((fd) >= 0) \
292 ___err = close((fd)); \
293 fd = -1; \
294 ___err; })
295 #endif
296
ptr_to_u64(const void * ptr)297 static inline __u64 ptr_to_u64(const void *ptr)
298 {
299 return (__u64) (unsigned long) ptr;
300 }
301
libbpf_set_strict_mode(enum libbpf_strict_mode mode)302 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
303 {
304 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
305 return 0;
306 }
307
libbpf_major_version(void)308 __u32 libbpf_major_version(void)
309 {
310 return LIBBPF_MAJOR_VERSION;
311 }
312
libbpf_minor_version(void)313 __u32 libbpf_minor_version(void)
314 {
315 return LIBBPF_MINOR_VERSION;
316 }
317
libbpf_version_string(void)318 const char *libbpf_version_string(void)
319 {
320 #define __S(X) #X
321 #define _S(X) __S(X)
322 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
323 #undef _S
324 #undef __S
325 }
326
327 enum reloc_type {
328 RELO_LD64,
329 RELO_CALL,
330 RELO_DATA,
331 RELO_EXTERN_LD64,
332 RELO_EXTERN_CALL,
333 RELO_SUBPROG_ADDR,
334 RELO_CORE,
335 };
336
337 struct reloc_desc {
338 enum reloc_type type;
339 int insn_idx;
340 union {
341 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
342 struct {
343 int map_idx;
344 int sym_off;
345 int ext_idx;
346 };
347 };
348 };
349
350 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
351 enum sec_def_flags {
352 SEC_NONE = 0,
353 /* expected_attach_type is optional, if kernel doesn't support that */
354 SEC_EXP_ATTACH_OPT = 1,
355 /* legacy, only used by libbpf_get_type_names() and
356 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
357 * This used to be associated with cgroup (and few other) BPF programs
358 * that were attachable through BPF_PROG_ATTACH command. Pretty
359 * meaningless nowadays, though.
360 */
361 SEC_ATTACHABLE = 2,
362 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
363 /* attachment target is specified through BTF ID in either kernel or
364 * other BPF program's BTF object
365 */
366 SEC_ATTACH_BTF = 4,
367 /* BPF program type allows sleeping/blocking in kernel */
368 SEC_SLEEPABLE = 8,
369 /* BPF program support non-linear XDP buffer */
370 SEC_XDP_FRAGS = 16,
371 /* Setup proper attach type for usdt probes. */
372 SEC_USDT = 32,
373 };
374
375 struct bpf_sec_def {
376 char *sec;
377 enum bpf_prog_type prog_type;
378 enum bpf_attach_type expected_attach_type;
379 long cookie;
380 int handler_id;
381
382 libbpf_prog_setup_fn_t prog_setup_fn;
383 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
384 libbpf_prog_attach_fn_t prog_attach_fn;
385 };
386
387 /*
388 * bpf_prog should be a better name but it has been used in
389 * linux/filter.h.
390 */
391 struct bpf_program {
392 char *name;
393 char *sec_name;
394 size_t sec_idx;
395 const struct bpf_sec_def *sec_def;
396 /* this program's instruction offset (in number of instructions)
397 * within its containing ELF section
398 */
399 size_t sec_insn_off;
400 /* number of original instructions in ELF section belonging to this
401 * program, not taking into account subprogram instructions possible
402 * appended later during relocation
403 */
404 size_t sec_insn_cnt;
405 /* Offset (in number of instructions) of the start of instruction
406 * belonging to this BPF program within its containing main BPF
407 * program. For the entry-point (main) BPF program, this is always
408 * zero. For a sub-program, this gets reset before each of main BPF
409 * programs are processed and relocated and is used to determined
410 * whether sub-program was already appended to the main program, and
411 * if yes, at which instruction offset.
412 */
413 size_t sub_insn_off;
414
415 /* instructions that belong to BPF program; insns[0] is located at
416 * sec_insn_off instruction within its ELF section in ELF file, so
417 * when mapping ELF file instruction index to the local instruction,
418 * one needs to subtract sec_insn_off; and vice versa.
419 */
420 struct bpf_insn *insns;
421 /* actual number of instruction in this BPF program's image; for
422 * entry-point BPF programs this includes the size of main program
423 * itself plus all the used sub-programs, appended at the end
424 */
425 size_t insns_cnt;
426
427 struct reloc_desc *reloc_desc;
428 int nr_reloc;
429
430 /* BPF verifier log settings */
431 char *log_buf;
432 size_t log_size;
433 __u32 log_level;
434
435 struct bpf_object *obj;
436
437 int fd;
438 bool autoload;
439 bool autoattach;
440 bool mark_btf_static;
441 enum bpf_prog_type type;
442 enum bpf_attach_type expected_attach_type;
443
444 int prog_ifindex;
445 __u32 attach_btf_obj_fd;
446 __u32 attach_btf_id;
447 __u32 attach_prog_fd;
448
449 void *func_info;
450 __u32 func_info_rec_size;
451 __u32 func_info_cnt;
452
453 void *line_info;
454 __u32 line_info_rec_size;
455 __u32 line_info_cnt;
456 __u32 prog_flags;
457 };
458
459 struct bpf_struct_ops {
460 const char *tname;
461 const struct btf_type *type;
462 struct bpf_program **progs;
463 __u32 *kern_func_off;
464 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
465 void *data;
466 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
467 * btf_vmlinux's format.
468 * struct bpf_struct_ops_tcp_congestion_ops {
469 * [... some other kernel fields ...]
470 * struct tcp_congestion_ops data;
471 * }
472 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
473 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
474 * from "data".
475 */
476 void *kern_vdata;
477 __u32 type_id;
478 };
479
480 #define DATA_SEC ".data"
481 #define BSS_SEC ".bss"
482 #define RODATA_SEC ".rodata"
483 #define KCONFIG_SEC ".kconfig"
484 #define KSYMS_SEC ".ksyms"
485 #define STRUCT_OPS_SEC ".struct_ops"
486 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
487
488 enum libbpf_map_type {
489 LIBBPF_MAP_UNSPEC,
490 LIBBPF_MAP_DATA,
491 LIBBPF_MAP_BSS,
492 LIBBPF_MAP_RODATA,
493 LIBBPF_MAP_KCONFIG,
494 };
495
496 struct bpf_map_def {
497 unsigned int type;
498 unsigned int key_size;
499 unsigned int value_size;
500 unsigned int max_entries;
501 unsigned int map_flags;
502 };
503
504 struct bpf_map {
505 struct bpf_object *obj;
506 char *name;
507 /* real_name is defined for special internal maps (.rodata*,
508 * .data*, .bss, .kconfig) and preserves their original ELF section
509 * name. This is important to be able to find corresponding BTF
510 * DATASEC information.
511 */
512 char *real_name;
513 int fd;
514 int sec_idx;
515 size_t sec_offset;
516 int map_ifindex;
517 int inner_map_fd;
518 struct bpf_map_def def;
519 __u32 numa_node;
520 __u32 btf_var_idx;
521 __u32 btf_key_type_id;
522 __u32 btf_value_type_id;
523 __u32 btf_vmlinux_value_type_id;
524 enum libbpf_map_type libbpf_type;
525 void *mmaped;
526 struct bpf_struct_ops *st_ops;
527 struct bpf_map *inner_map;
528 void **init_slots;
529 int init_slots_sz;
530 char *pin_path;
531 bool pinned;
532 bool reused;
533 bool autocreate;
534 __u64 map_extra;
535 };
536
537 enum extern_type {
538 EXT_UNKNOWN,
539 EXT_KCFG,
540 EXT_KSYM,
541 };
542
543 enum kcfg_type {
544 KCFG_UNKNOWN,
545 KCFG_CHAR,
546 KCFG_BOOL,
547 KCFG_INT,
548 KCFG_TRISTATE,
549 KCFG_CHAR_ARR,
550 };
551
552 struct extern_desc {
553 enum extern_type type;
554 int sym_idx;
555 int btf_id;
556 int sec_btf_id;
557 const char *name;
558 char *essent_name;
559 bool is_set;
560 bool is_weak;
561 union {
562 struct {
563 enum kcfg_type type;
564 int sz;
565 int align;
566 int data_off;
567 bool is_signed;
568 } kcfg;
569 struct {
570 unsigned long long addr;
571
572 /* target btf_id of the corresponding kernel var. */
573 int kernel_btf_obj_fd;
574 int kernel_btf_id;
575
576 /* local btf_id of the ksym extern's type. */
577 __u32 type_id;
578 /* BTF fd index to be patched in for insn->off, this is
579 * 0 for vmlinux BTF, index in obj->fd_array for module
580 * BTF
581 */
582 __s16 btf_fd_idx;
583 } ksym;
584 };
585 };
586
587 struct module_btf {
588 struct btf *btf;
589 char *name;
590 __u32 id;
591 int fd;
592 int fd_array_idx;
593 };
594
595 enum sec_type {
596 SEC_UNUSED = 0,
597 SEC_RELO,
598 SEC_BSS,
599 SEC_DATA,
600 SEC_RODATA,
601 };
602
603 struct elf_sec_desc {
604 enum sec_type sec_type;
605 Elf64_Shdr *shdr;
606 Elf_Data *data;
607 };
608
609 struct elf_state {
610 int fd;
611 const void *obj_buf;
612 size_t obj_buf_sz;
613 Elf *elf;
614 Elf64_Ehdr *ehdr;
615 Elf_Data *symbols;
616 Elf_Data *st_ops_data;
617 Elf_Data *st_ops_link_data;
618 size_t shstrndx; /* section index for section name strings */
619 size_t strtabidx;
620 struct elf_sec_desc *secs;
621 size_t sec_cnt;
622 int btf_maps_shndx;
623 __u32 btf_maps_sec_btf_id;
624 int text_shndx;
625 int symbols_shndx;
626 int st_ops_shndx;
627 int st_ops_link_shndx;
628 };
629
630 struct usdt_manager;
631
632 struct bpf_object {
633 char name[BPF_OBJ_NAME_LEN];
634 char license[64];
635 __u32 kern_version;
636
637 struct bpf_program *programs;
638 size_t nr_programs;
639 struct bpf_map *maps;
640 size_t nr_maps;
641 size_t maps_cap;
642
643 char *kconfig;
644 struct extern_desc *externs;
645 int nr_extern;
646 int kconfig_map_idx;
647
648 bool loaded;
649 bool has_subcalls;
650 bool has_rodata;
651
652 struct bpf_gen *gen_loader;
653
654 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
655 struct elf_state efile;
656
657 struct btf *btf;
658 struct btf_ext *btf_ext;
659
660 /* Parse and load BTF vmlinux if any of the programs in the object need
661 * it at load time.
662 */
663 struct btf *btf_vmlinux;
664 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
665 * override for vmlinux BTF.
666 */
667 char *btf_custom_path;
668 /* vmlinux BTF override for CO-RE relocations */
669 struct btf *btf_vmlinux_override;
670 /* Lazily initialized kernel module BTFs */
671 struct module_btf *btf_modules;
672 bool btf_modules_loaded;
673 size_t btf_module_cnt;
674 size_t btf_module_cap;
675
676 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
677 char *log_buf;
678 size_t log_size;
679 __u32 log_level;
680
681 int *fd_array;
682 size_t fd_array_cap;
683 size_t fd_array_cnt;
684
685 struct usdt_manager *usdt_man;
686
687 char path[];
688 };
689
690 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
691 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
692 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
693 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
694 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
695 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
696 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
697 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
698 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
699
bpf_program__unload(struct bpf_program * prog)700 void bpf_program__unload(struct bpf_program *prog)
701 {
702 if (!prog)
703 return;
704
705 zclose(prog->fd);
706
707 zfree(&prog->func_info);
708 zfree(&prog->line_info);
709 }
710
bpf_program__exit(struct bpf_program * prog)711 static void bpf_program__exit(struct bpf_program *prog)
712 {
713 if (!prog)
714 return;
715
716 bpf_program__unload(prog);
717 zfree(&prog->name);
718 zfree(&prog->sec_name);
719 zfree(&prog->insns);
720 zfree(&prog->reloc_desc);
721
722 prog->nr_reloc = 0;
723 prog->insns_cnt = 0;
724 prog->sec_idx = -1;
725 }
726
insn_is_subprog_call(const struct bpf_insn * insn)727 static bool insn_is_subprog_call(const struct bpf_insn *insn)
728 {
729 return BPF_CLASS(insn->code) == BPF_JMP &&
730 BPF_OP(insn->code) == BPF_CALL &&
731 BPF_SRC(insn->code) == BPF_K &&
732 insn->src_reg == BPF_PSEUDO_CALL &&
733 insn->dst_reg == 0 &&
734 insn->off == 0;
735 }
736
is_call_insn(const struct bpf_insn * insn)737 static bool is_call_insn(const struct bpf_insn *insn)
738 {
739 return insn->code == (BPF_JMP | BPF_CALL);
740 }
741
insn_is_pseudo_func(struct bpf_insn * insn)742 static bool insn_is_pseudo_func(struct bpf_insn *insn)
743 {
744 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
745 }
746
747 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)748 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
749 const char *name, size_t sec_idx, const char *sec_name,
750 size_t sec_off, void *insn_data, size_t insn_data_sz)
751 {
752 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
753 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
754 sec_name, name, sec_off, insn_data_sz);
755 return -EINVAL;
756 }
757
758 memset(prog, 0, sizeof(*prog));
759 prog->obj = obj;
760
761 prog->sec_idx = sec_idx;
762 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
763 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
764 /* insns_cnt can later be increased by appending used subprograms */
765 prog->insns_cnt = prog->sec_insn_cnt;
766
767 prog->type = BPF_PROG_TYPE_UNSPEC;
768 prog->fd = -1;
769
770 /* libbpf's convention for SEC("?abc...") is that it's just like
771 * SEC("abc...") but the corresponding bpf_program starts out with
772 * autoload set to false.
773 */
774 if (sec_name[0] == '?') {
775 prog->autoload = false;
776 /* from now on forget there was ? in section name */
777 sec_name++;
778 } else {
779 prog->autoload = true;
780 }
781
782 prog->autoattach = true;
783
784 /* inherit object's log_level */
785 prog->log_level = obj->log_level;
786
787 prog->sec_name = strdup(sec_name);
788 if (!prog->sec_name)
789 goto errout;
790
791 prog->name = strdup(name);
792 if (!prog->name)
793 goto errout;
794
795 prog->insns = malloc(insn_data_sz);
796 if (!prog->insns)
797 goto errout;
798 memcpy(prog->insns, insn_data, insn_data_sz);
799
800 return 0;
801 errout:
802 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
803 bpf_program__exit(prog);
804 return -ENOMEM;
805 }
806
807 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)808 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
809 const char *sec_name, int sec_idx)
810 {
811 Elf_Data *symbols = obj->efile.symbols;
812 struct bpf_program *prog, *progs;
813 void *data = sec_data->d_buf;
814 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
815 int nr_progs, err, i;
816 const char *name;
817 Elf64_Sym *sym;
818
819 progs = obj->programs;
820 nr_progs = obj->nr_programs;
821 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
822
823 for (i = 0; i < nr_syms; i++) {
824 sym = elf_sym_by_idx(obj, i);
825
826 if (sym->st_shndx != sec_idx)
827 continue;
828 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
829 continue;
830
831 prog_sz = sym->st_size;
832 sec_off = sym->st_value;
833
834 name = elf_sym_str(obj, sym->st_name);
835 if (!name) {
836 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
837 sec_name, sec_off);
838 return -LIBBPF_ERRNO__FORMAT;
839 }
840
841 if (sec_off + prog_sz > sec_sz) {
842 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
843 sec_name, sec_off);
844 return -LIBBPF_ERRNO__FORMAT;
845 }
846
847 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
848 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
849 return -ENOTSUP;
850 }
851
852 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
853 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
854
855 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
856 if (!progs) {
857 /*
858 * In this case the original obj->programs
859 * is still valid, so don't need special treat for
860 * bpf_close_object().
861 */
862 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
863 sec_name, name);
864 return -ENOMEM;
865 }
866 obj->programs = progs;
867
868 prog = &progs[nr_progs];
869
870 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
871 sec_off, data + sec_off, prog_sz);
872 if (err)
873 return err;
874
875 /* if function is a global/weak symbol, but has restricted
876 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
877 * as static to enable more permissive BPF verification mode
878 * with more outside context available to BPF verifier
879 */
880 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
881 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
882 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
883 prog->mark_btf_static = true;
884
885 nr_progs++;
886 obj->nr_programs = nr_progs;
887 }
888
889 return 0;
890 }
891
892 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)893 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
894 {
895 struct btf_member *m;
896 int i;
897
898 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
899 if (btf_member_bit_offset(t, i) == bit_offset)
900 return m;
901 }
902
903 return NULL;
904 }
905
906 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)907 find_member_by_name(const struct btf *btf, const struct btf_type *t,
908 const char *name)
909 {
910 struct btf_member *m;
911 int i;
912
913 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
914 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
915 return m;
916 }
917
918 return NULL;
919 }
920
921 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
922 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
923 const char *name, __u32 kind);
924
925 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)926 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
927 const struct btf_type **type, __u32 *type_id,
928 const struct btf_type **vtype, __u32 *vtype_id,
929 const struct btf_member **data_member)
930 {
931 const struct btf_type *kern_type, *kern_vtype;
932 const struct btf_member *kern_data_member;
933 __s32 kern_vtype_id, kern_type_id;
934 __u32 i;
935
936 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
937 if (kern_type_id < 0) {
938 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
939 tname);
940 return kern_type_id;
941 }
942 kern_type = btf__type_by_id(btf, kern_type_id);
943
944 /* Find the corresponding "map_value" type that will be used
945 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
946 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
947 * btf_vmlinux.
948 */
949 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
950 tname, BTF_KIND_STRUCT);
951 if (kern_vtype_id < 0) {
952 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
953 STRUCT_OPS_VALUE_PREFIX, tname);
954 return kern_vtype_id;
955 }
956 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
957
958 /* Find "struct tcp_congestion_ops" from
959 * struct bpf_struct_ops_tcp_congestion_ops {
960 * [ ... ]
961 * struct tcp_congestion_ops data;
962 * }
963 */
964 kern_data_member = btf_members(kern_vtype);
965 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
966 if (kern_data_member->type == kern_type_id)
967 break;
968 }
969 if (i == btf_vlen(kern_vtype)) {
970 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
971 tname, STRUCT_OPS_VALUE_PREFIX, tname);
972 return -EINVAL;
973 }
974
975 *type = kern_type;
976 *type_id = kern_type_id;
977 *vtype = kern_vtype;
978 *vtype_id = kern_vtype_id;
979 *data_member = kern_data_member;
980
981 return 0;
982 }
983
bpf_map__is_struct_ops(const struct bpf_map * map)984 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
985 {
986 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
987 }
988
989 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)990 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
991 const struct btf *btf,
992 const struct btf *kern_btf)
993 {
994 const struct btf_member *member, *kern_member, *kern_data_member;
995 const struct btf_type *type, *kern_type, *kern_vtype;
996 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
997 struct bpf_struct_ops *st_ops;
998 void *data, *kern_data;
999 const char *tname;
1000 int err;
1001
1002 st_ops = map->st_ops;
1003 type = st_ops->type;
1004 tname = st_ops->tname;
1005 err = find_struct_ops_kern_types(kern_btf, tname,
1006 &kern_type, &kern_type_id,
1007 &kern_vtype, &kern_vtype_id,
1008 &kern_data_member);
1009 if (err)
1010 return err;
1011
1012 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1013 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1014
1015 map->def.value_size = kern_vtype->size;
1016 map->btf_vmlinux_value_type_id = kern_vtype_id;
1017
1018 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1019 if (!st_ops->kern_vdata)
1020 return -ENOMEM;
1021
1022 data = st_ops->data;
1023 kern_data_off = kern_data_member->offset / 8;
1024 kern_data = st_ops->kern_vdata + kern_data_off;
1025
1026 member = btf_members(type);
1027 for (i = 0; i < btf_vlen(type); i++, member++) {
1028 const struct btf_type *mtype, *kern_mtype;
1029 __u32 mtype_id, kern_mtype_id;
1030 void *mdata, *kern_mdata;
1031 __s64 msize, kern_msize;
1032 __u32 moff, kern_moff;
1033 __u32 kern_member_idx;
1034 const char *mname;
1035
1036 mname = btf__name_by_offset(btf, member->name_off);
1037 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1038 if (!kern_member) {
1039 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1040 map->name, mname);
1041 return -ENOTSUP;
1042 }
1043
1044 kern_member_idx = kern_member - btf_members(kern_type);
1045 if (btf_member_bitfield_size(type, i) ||
1046 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1047 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1048 map->name, mname);
1049 return -ENOTSUP;
1050 }
1051
1052 moff = member->offset / 8;
1053 kern_moff = kern_member->offset / 8;
1054
1055 mdata = data + moff;
1056 kern_mdata = kern_data + kern_moff;
1057
1058 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1059 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1060 &kern_mtype_id);
1061 if (BTF_INFO_KIND(mtype->info) !=
1062 BTF_INFO_KIND(kern_mtype->info)) {
1063 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1064 map->name, mname, BTF_INFO_KIND(mtype->info),
1065 BTF_INFO_KIND(kern_mtype->info));
1066 return -ENOTSUP;
1067 }
1068
1069 if (btf_is_ptr(mtype)) {
1070 struct bpf_program *prog;
1071
1072 prog = st_ops->progs[i];
1073 if (!prog)
1074 continue;
1075
1076 kern_mtype = skip_mods_and_typedefs(kern_btf,
1077 kern_mtype->type,
1078 &kern_mtype_id);
1079
1080 /* mtype->type must be a func_proto which was
1081 * guaranteed in bpf_object__collect_st_ops_relos(),
1082 * so only check kern_mtype for func_proto here.
1083 */
1084 if (!btf_is_func_proto(kern_mtype)) {
1085 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1086 map->name, mname);
1087 return -ENOTSUP;
1088 }
1089
1090 prog->attach_btf_id = kern_type_id;
1091 prog->expected_attach_type = kern_member_idx;
1092
1093 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1094
1095 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1096 map->name, mname, prog->name, moff,
1097 kern_moff);
1098
1099 continue;
1100 }
1101
1102 msize = btf__resolve_size(btf, mtype_id);
1103 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1104 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1105 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1106 map->name, mname, (ssize_t)msize,
1107 (ssize_t)kern_msize);
1108 return -ENOTSUP;
1109 }
1110
1111 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1112 map->name, mname, (unsigned int)msize,
1113 moff, kern_moff);
1114 memcpy(kern_mdata, mdata, msize);
1115 }
1116
1117 return 0;
1118 }
1119
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1120 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1121 {
1122 struct bpf_map *map;
1123 size_t i;
1124 int err;
1125
1126 for (i = 0; i < obj->nr_maps; i++) {
1127 map = &obj->maps[i];
1128
1129 if (!bpf_map__is_struct_ops(map))
1130 continue;
1131
1132 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1133 obj->btf_vmlinux);
1134 if (err)
1135 return err;
1136 }
1137
1138 return 0;
1139 }
1140
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data,__u32 map_flags)1141 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1142 int shndx, Elf_Data *data, __u32 map_flags)
1143 {
1144 const struct btf_type *type, *datasec;
1145 const struct btf_var_secinfo *vsi;
1146 struct bpf_struct_ops *st_ops;
1147 const char *tname, *var_name;
1148 __s32 type_id, datasec_id;
1149 const struct btf *btf;
1150 struct bpf_map *map;
1151 __u32 i;
1152
1153 if (shndx == -1)
1154 return 0;
1155
1156 btf = obj->btf;
1157 datasec_id = btf__find_by_name_kind(btf, sec_name,
1158 BTF_KIND_DATASEC);
1159 if (datasec_id < 0) {
1160 pr_warn("struct_ops init: DATASEC %s not found\n",
1161 sec_name);
1162 return -EINVAL;
1163 }
1164
1165 datasec = btf__type_by_id(btf, datasec_id);
1166 vsi = btf_var_secinfos(datasec);
1167 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1168 type = btf__type_by_id(obj->btf, vsi->type);
1169 var_name = btf__name_by_offset(obj->btf, type->name_off);
1170
1171 type_id = btf__resolve_type(obj->btf, vsi->type);
1172 if (type_id < 0) {
1173 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1174 vsi->type, sec_name);
1175 return -EINVAL;
1176 }
1177
1178 type = btf__type_by_id(obj->btf, type_id);
1179 tname = btf__name_by_offset(obj->btf, type->name_off);
1180 if (!tname[0]) {
1181 pr_warn("struct_ops init: anonymous type is not supported\n");
1182 return -ENOTSUP;
1183 }
1184 if (!btf_is_struct(type)) {
1185 pr_warn("struct_ops init: %s is not a struct\n", tname);
1186 return -EINVAL;
1187 }
1188
1189 map = bpf_object__add_map(obj);
1190 if (IS_ERR(map))
1191 return PTR_ERR(map);
1192
1193 map->sec_idx = shndx;
1194 map->sec_offset = vsi->offset;
1195 map->name = strdup(var_name);
1196 if (!map->name)
1197 return -ENOMEM;
1198
1199 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1200 map->def.key_size = sizeof(int);
1201 map->def.value_size = type->size;
1202 map->def.max_entries = 1;
1203 map->def.map_flags = map_flags;
1204
1205 map->st_ops = calloc(1, sizeof(*map->st_ops));
1206 if (!map->st_ops)
1207 return -ENOMEM;
1208 st_ops = map->st_ops;
1209 st_ops->data = malloc(type->size);
1210 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1211 st_ops->kern_func_off = malloc(btf_vlen(type) *
1212 sizeof(*st_ops->kern_func_off));
1213 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1214 return -ENOMEM;
1215
1216 if (vsi->offset + type->size > data->d_size) {
1217 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1218 var_name, sec_name);
1219 return -EINVAL;
1220 }
1221
1222 memcpy(st_ops->data,
1223 data->d_buf + vsi->offset,
1224 type->size);
1225 st_ops->tname = tname;
1226 st_ops->type = type;
1227 st_ops->type_id = type_id;
1228
1229 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1230 tname, type_id, var_name, vsi->offset);
1231 }
1232
1233 return 0;
1234 }
1235
bpf_object_init_struct_ops(struct bpf_object * obj)1236 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1237 {
1238 int err;
1239
1240 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1241 obj->efile.st_ops_data, 0);
1242 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1243 obj->efile.st_ops_link_shndx,
1244 obj->efile.st_ops_link_data,
1245 BPF_F_LINK);
1246 return err;
1247 }
1248
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1249 static struct bpf_object *bpf_object__new(const char *path,
1250 const void *obj_buf,
1251 size_t obj_buf_sz,
1252 const char *obj_name)
1253 {
1254 struct bpf_object *obj;
1255 char *end;
1256
1257 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1258 if (!obj) {
1259 pr_warn("alloc memory failed for %s\n", path);
1260 return ERR_PTR(-ENOMEM);
1261 }
1262
1263 strcpy(obj->path, path);
1264 if (obj_name) {
1265 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1266 } else {
1267 /* Using basename() GNU version which doesn't modify arg. */
1268 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1269 end = strchr(obj->name, '.');
1270 if (end)
1271 *end = 0;
1272 }
1273
1274 obj->efile.fd = -1;
1275 /*
1276 * Caller of this function should also call
1277 * bpf_object__elf_finish() after data collection to return
1278 * obj_buf to user. If not, we should duplicate the buffer to
1279 * avoid user freeing them before elf finish.
1280 */
1281 obj->efile.obj_buf = obj_buf;
1282 obj->efile.obj_buf_sz = obj_buf_sz;
1283 obj->efile.btf_maps_shndx = -1;
1284 obj->efile.st_ops_shndx = -1;
1285 obj->efile.st_ops_link_shndx = -1;
1286 obj->kconfig_map_idx = -1;
1287
1288 obj->kern_version = get_kernel_version();
1289 obj->loaded = false;
1290
1291 return obj;
1292 }
1293
bpf_object__elf_finish(struct bpf_object * obj)1294 static void bpf_object__elf_finish(struct bpf_object *obj)
1295 {
1296 if (!obj->efile.elf)
1297 return;
1298
1299 elf_end(obj->efile.elf);
1300 obj->efile.elf = NULL;
1301 obj->efile.symbols = NULL;
1302 obj->efile.st_ops_data = NULL;
1303 obj->efile.st_ops_link_data = NULL;
1304
1305 zfree(&obj->efile.secs);
1306 obj->efile.sec_cnt = 0;
1307 zclose(obj->efile.fd);
1308 obj->efile.obj_buf = NULL;
1309 obj->efile.obj_buf_sz = 0;
1310 }
1311
bpf_object__elf_init(struct bpf_object * obj)1312 static int bpf_object__elf_init(struct bpf_object *obj)
1313 {
1314 Elf64_Ehdr *ehdr;
1315 int err = 0;
1316 Elf *elf;
1317
1318 if (obj->efile.elf) {
1319 pr_warn("elf: init internal error\n");
1320 return -LIBBPF_ERRNO__LIBELF;
1321 }
1322
1323 if (obj->efile.obj_buf_sz > 0) {
1324 /* obj_buf should have been validated by bpf_object__open_mem(). */
1325 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1326 } else {
1327 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1328 if (obj->efile.fd < 0) {
1329 char errmsg[STRERR_BUFSIZE], *cp;
1330
1331 err = -errno;
1332 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1333 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1334 return err;
1335 }
1336
1337 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1338 }
1339
1340 if (!elf) {
1341 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1342 err = -LIBBPF_ERRNO__LIBELF;
1343 goto errout;
1344 }
1345
1346 obj->efile.elf = elf;
1347
1348 if (elf_kind(elf) != ELF_K_ELF) {
1349 err = -LIBBPF_ERRNO__FORMAT;
1350 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1351 goto errout;
1352 }
1353
1354 if (gelf_getclass(elf) != ELFCLASS64) {
1355 err = -LIBBPF_ERRNO__FORMAT;
1356 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1357 goto errout;
1358 }
1359
1360 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1361 if (!obj->efile.ehdr) {
1362 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1363 err = -LIBBPF_ERRNO__FORMAT;
1364 goto errout;
1365 }
1366
1367 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1368 pr_warn("elf: failed to get section names section index for %s: %s\n",
1369 obj->path, elf_errmsg(-1));
1370 err = -LIBBPF_ERRNO__FORMAT;
1371 goto errout;
1372 }
1373
1374 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1375 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1376 pr_warn("elf: failed to get section names strings from %s: %s\n",
1377 obj->path, elf_errmsg(-1));
1378 err = -LIBBPF_ERRNO__FORMAT;
1379 goto errout;
1380 }
1381
1382 /* Old LLVM set e_machine to EM_NONE */
1383 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1384 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1385 err = -LIBBPF_ERRNO__FORMAT;
1386 goto errout;
1387 }
1388
1389 return 0;
1390 errout:
1391 bpf_object__elf_finish(obj);
1392 return err;
1393 }
1394
bpf_object__check_endianness(struct bpf_object * obj)1395 static int bpf_object__check_endianness(struct bpf_object *obj)
1396 {
1397 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1398 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1399 return 0;
1400 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1401 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1402 return 0;
1403 #else
1404 # error "Unrecognized __BYTE_ORDER__"
1405 #endif
1406 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1407 return -LIBBPF_ERRNO__ENDIAN;
1408 }
1409
1410 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1411 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1412 {
1413 if (!data) {
1414 pr_warn("invalid license section in %s\n", obj->path);
1415 return -LIBBPF_ERRNO__FORMAT;
1416 }
1417 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1418 * go over allowed ELF data section buffer
1419 */
1420 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1421 pr_debug("license of %s is %s\n", obj->path, obj->license);
1422 return 0;
1423 }
1424
1425 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1426 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1427 {
1428 __u32 kver;
1429
1430 if (!data || size != sizeof(kver)) {
1431 pr_warn("invalid kver section in %s\n", obj->path);
1432 return -LIBBPF_ERRNO__FORMAT;
1433 }
1434 memcpy(&kver, data, sizeof(kver));
1435 obj->kern_version = kver;
1436 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1437 return 0;
1438 }
1439
bpf_map_type__is_map_in_map(enum bpf_map_type type)1440 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1441 {
1442 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1443 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1444 return true;
1445 return false;
1446 }
1447
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1448 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1449 {
1450 Elf_Data *data;
1451 Elf_Scn *scn;
1452
1453 if (!name)
1454 return -EINVAL;
1455
1456 scn = elf_sec_by_name(obj, name);
1457 data = elf_sec_data(obj, scn);
1458 if (data) {
1459 *size = data->d_size;
1460 return 0; /* found it */
1461 }
1462
1463 return -ENOENT;
1464 }
1465
find_elf_var_sym(const struct bpf_object * obj,const char * name)1466 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1467 {
1468 Elf_Data *symbols = obj->efile.symbols;
1469 const char *sname;
1470 size_t si;
1471
1472 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1473 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1474
1475 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1476 continue;
1477
1478 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1479 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1480 continue;
1481
1482 sname = elf_sym_str(obj, sym->st_name);
1483 if (!sname) {
1484 pr_warn("failed to get sym name string for var %s\n", name);
1485 return ERR_PTR(-EIO);
1486 }
1487 if (strcmp(name, sname) == 0)
1488 return sym;
1489 }
1490
1491 return ERR_PTR(-ENOENT);
1492 }
1493
bpf_object__add_map(struct bpf_object * obj)1494 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1495 {
1496 struct bpf_map *map;
1497 int err;
1498
1499 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1500 sizeof(*obj->maps), obj->nr_maps + 1);
1501 if (err)
1502 return ERR_PTR(err);
1503
1504 map = &obj->maps[obj->nr_maps++];
1505 map->obj = obj;
1506 map->fd = -1;
1507 map->inner_map_fd = -1;
1508 map->autocreate = true;
1509
1510 return map;
1511 }
1512
bpf_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1513 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1514 {
1515 const long page_sz = sysconf(_SC_PAGE_SIZE);
1516 size_t map_sz;
1517
1518 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1519 map_sz = roundup(map_sz, page_sz);
1520 return map_sz;
1521 }
1522
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1523 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1524 {
1525 void *mmaped;
1526
1527 if (!map->mmaped)
1528 return -EINVAL;
1529
1530 if (old_sz == new_sz)
1531 return 0;
1532
1533 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1534 if (mmaped == MAP_FAILED)
1535 return -errno;
1536
1537 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1538 munmap(map->mmaped, old_sz);
1539 map->mmaped = mmaped;
1540 return 0;
1541 }
1542
internal_map_name(struct bpf_object * obj,const char * real_name)1543 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1544 {
1545 char map_name[BPF_OBJ_NAME_LEN], *p;
1546 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1547
1548 /* This is one of the more confusing parts of libbpf for various
1549 * reasons, some of which are historical. The original idea for naming
1550 * internal names was to include as much of BPF object name prefix as
1551 * possible, so that it can be distinguished from similar internal
1552 * maps of a different BPF object.
1553 * As an example, let's say we have bpf_object named 'my_object_name'
1554 * and internal map corresponding to '.rodata' ELF section. The final
1555 * map name advertised to user and to the kernel will be
1556 * 'my_objec.rodata', taking first 8 characters of object name and
1557 * entire 7 characters of '.rodata'.
1558 * Somewhat confusingly, if internal map ELF section name is shorter
1559 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1560 * for the suffix, even though we only have 4 actual characters, and
1561 * resulting map will be called 'my_objec.bss', not even using all 15
1562 * characters allowed by the kernel. Oh well, at least the truncated
1563 * object name is somewhat consistent in this case. But if the map
1564 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1565 * (8 chars) and thus will be left with only first 7 characters of the
1566 * object name ('my_obje'). Happy guessing, user, that the final map
1567 * name will be "my_obje.kconfig".
1568 * Now, with libbpf starting to support arbitrarily named .rodata.*
1569 * and .data.* data sections, it's possible that ELF section name is
1570 * longer than allowed 15 chars, so we now need to be careful to take
1571 * only up to 15 first characters of ELF name, taking no BPF object
1572 * name characters at all. So '.rodata.abracadabra' will result in
1573 * '.rodata.abracad' kernel and user-visible name.
1574 * We need to keep this convoluted logic intact for .data, .bss and
1575 * .rodata maps, but for new custom .data.custom and .rodata.custom
1576 * maps we use their ELF names as is, not prepending bpf_object name
1577 * in front. We still need to truncate them to 15 characters for the
1578 * kernel. Full name can be recovered for such maps by using DATASEC
1579 * BTF type associated with such map's value type, though.
1580 */
1581 if (sfx_len >= BPF_OBJ_NAME_LEN)
1582 sfx_len = BPF_OBJ_NAME_LEN - 1;
1583
1584 /* if there are two or more dots in map name, it's a custom dot map */
1585 if (strchr(real_name + 1, '.') != NULL)
1586 pfx_len = 0;
1587 else
1588 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1589
1590 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1591 sfx_len, real_name);
1592
1593 /* sanitise map name to characters allowed by kernel */
1594 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1595 if (!isalnum(*p) && *p != '_' && *p != '.')
1596 *p = '_';
1597
1598 return strdup(map_name);
1599 }
1600
1601 static int
1602 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1603
1604 /* Internal BPF map is mmap()'able only if at least one of corresponding
1605 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1606 * variable and it's not marked as __hidden (which turns it into, effectively,
1607 * a STATIC variable).
1608 */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1609 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1610 {
1611 const struct btf_type *t, *vt;
1612 struct btf_var_secinfo *vsi;
1613 int i, n;
1614
1615 if (!map->btf_value_type_id)
1616 return false;
1617
1618 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1619 if (!btf_is_datasec(t))
1620 return false;
1621
1622 vsi = btf_var_secinfos(t);
1623 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1624 vt = btf__type_by_id(obj->btf, vsi->type);
1625 if (!btf_is_var(vt))
1626 continue;
1627
1628 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1629 return true;
1630 }
1631
1632 return false;
1633 }
1634
1635 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1636 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1637 const char *real_name, int sec_idx, void *data, size_t data_sz)
1638 {
1639 struct bpf_map_def *def;
1640 struct bpf_map *map;
1641 size_t mmap_sz;
1642 int err;
1643
1644 map = bpf_object__add_map(obj);
1645 if (IS_ERR(map))
1646 return PTR_ERR(map);
1647
1648 map->libbpf_type = type;
1649 map->sec_idx = sec_idx;
1650 map->sec_offset = 0;
1651 map->real_name = strdup(real_name);
1652 map->name = internal_map_name(obj, real_name);
1653 if (!map->real_name || !map->name) {
1654 zfree(&map->real_name);
1655 zfree(&map->name);
1656 return -ENOMEM;
1657 }
1658
1659 def = &map->def;
1660 def->type = BPF_MAP_TYPE_ARRAY;
1661 def->key_size = sizeof(int);
1662 def->value_size = data_sz;
1663 def->max_entries = 1;
1664 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1665 ? BPF_F_RDONLY_PROG : 0;
1666
1667 /* failures are fine because of maps like .rodata.str1.1 */
1668 (void) map_fill_btf_type_info(obj, map);
1669
1670 if (map_is_mmapable(obj, map))
1671 def->map_flags |= BPF_F_MMAPABLE;
1672
1673 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1674 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1675
1676 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1677 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1678 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1679 if (map->mmaped == MAP_FAILED) {
1680 err = -errno;
1681 map->mmaped = NULL;
1682 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1683 map->name, err);
1684 zfree(&map->real_name);
1685 zfree(&map->name);
1686 return err;
1687 }
1688
1689 if (data)
1690 memcpy(map->mmaped, data, data_sz);
1691
1692 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1693 return 0;
1694 }
1695
bpf_object__init_global_data_maps(struct bpf_object * obj)1696 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1697 {
1698 struct elf_sec_desc *sec_desc;
1699 const char *sec_name;
1700 int err = 0, sec_idx;
1701
1702 /*
1703 * Populate obj->maps with libbpf internal maps.
1704 */
1705 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1706 sec_desc = &obj->efile.secs[sec_idx];
1707
1708 /* Skip recognized sections with size 0. */
1709 if (!sec_desc->data || sec_desc->data->d_size == 0)
1710 continue;
1711
1712 switch (sec_desc->sec_type) {
1713 case SEC_DATA:
1714 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1715 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1716 sec_name, sec_idx,
1717 sec_desc->data->d_buf,
1718 sec_desc->data->d_size);
1719 break;
1720 case SEC_RODATA:
1721 obj->has_rodata = true;
1722 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1723 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1724 sec_name, sec_idx,
1725 sec_desc->data->d_buf,
1726 sec_desc->data->d_size);
1727 break;
1728 case SEC_BSS:
1729 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1730 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1731 sec_name, sec_idx,
1732 NULL,
1733 sec_desc->data->d_size);
1734 break;
1735 default:
1736 /* skip */
1737 break;
1738 }
1739 if (err)
1740 return err;
1741 }
1742 return 0;
1743 }
1744
1745
find_extern_by_name(const struct bpf_object * obj,const void * name)1746 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1747 const void *name)
1748 {
1749 int i;
1750
1751 for (i = 0; i < obj->nr_extern; i++) {
1752 if (strcmp(obj->externs[i].name, name) == 0)
1753 return &obj->externs[i];
1754 }
1755 return NULL;
1756 }
1757
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1758 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1759 char value)
1760 {
1761 switch (ext->kcfg.type) {
1762 case KCFG_BOOL:
1763 if (value == 'm') {
1764 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1765 ext->name, value);
1766 return -EINVAL;
1767 }
1768 *(bool *)ext_val = value == 'y' ? true : false;
1769 break;
1770 case KCFG_TRISTATE:
1771 if (value == 'y')
1772 *(enum libbpf_tristate *)ext_val = TRI_YES;
1773 else if (value == 'm')
1774 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1775 else /* value == 'n' */
1776 *(enum libbpf_tristate *)ext_val = TRI_NO;
1777 break;
1778 case KCFG_CHAR:
1779 *(char *)ext_val = value;
1780 break;
1781 case KCFG_UNKNOWN:
1782 case KCFG_INT:
1783 case KCFG_CHAR_ARR:
1784 default:
1785 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1786 ext->name, value);
1787 return -EINVAL;
1788 }
1789 ext->is_set = true;
1790 return 0;
1791 }
1792
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1793 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1794 const char *value)
1795 {
1796 size_t len;
1797
1798 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1799 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1800 ext->name, value);
1801 return -EINVAL;
1802 }
1803
1804 len = strlen(value);
1805 if (value[len - 1] != '"') {
1806 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1807 ext->name, value);
1808 return -EINVAL;
1809 }
1810
1811 /* strip quotes */
1812 len -= 2;
1813 if (len >= ext->kcfg.sz) {
1814 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1815 ext->name, value, len, ext->kcfg.sz - 1);
1816 len = ext->kcfg.sz - 1;
1817 }
1818 memcpy(ext_val, value + 1, len);
1819 ext_val[len] = '\0';
1820 ext->is_set = true;
1821 return 0;
1822 }
1823
parse_u64(const char * value,__u64 * res)1824 static int parse_u64(const char *value, __u64 *res)
1825 {
1826 char *value_end;
1827 int err;
1828
1829 errno = 0;
1830 *res = strtoull(value, &value_end, 0);
1831 if (errno) {
1832 err = -errno;
1833 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1834 return err;
1835 }
1836 if (*value_end) {
1837 pr_warn("failed to parse '%s' as integer completely\n", value);
1838 return -EINVAL;
1839 }
1840 return 0;
1841 }
1842
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1843 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1844 {
1845 int bit_sz = ext->kcfg.sz * 8;
1846
1847 if (ext->kcfg.sz == 8)
1848 return true;
1849
1850 /* Validate that value stored in u64 fits in integer of `ext->sz`
1851 * bytes size without any loss of information. If the target integer
1852 * is signed, we rely on the following limits of integer type of
1853 * Y bits and subsequent transformation:
1854 *
1855 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1856 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1857 * 0 <= X + 2^(Y-1) < 2^Y
1858 *
1859 * For unsigned target integer, check that all the (64 - Y) bits are
1860 * zero.
1861 */
1862 if (ext->kcfg.is_signed)
1863 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1864 else
1865 return (v >> bit_sz) == 0;
1866 }
1867
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1868 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1869 __u64 value)
1870 {
1871 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1872 ext->kcfg.type != KCFG_BOOL) {
1873 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1874 ext->name, (unsigned long long)value);
1875 return -EINVAL;
1876 }
1877 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1878 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1879 ext->name, (unsigned long long)value);
1880 return -EINVAL;
1881
1882 }
1883 if (!is_kcfg_value_in_range(ext, value)) {
1884 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1885 ext->name, (unsigned long long)value, ext->kcfg.sz);
1886 return -ERANGE;
1887 }
1888 switch (ext->kcfg.sz) {
1889 case 1:
1890 *(__u8 *)ext_val = value;
1891 break;
1892 case 2:
1893 *(__u16 *)ext_val = value;
1894 break;
1895 case 4:
1896 *(__u32 *)ext_val = value;
1897 break;
1898 case 8:
1899 *(__u64 *)ext_val = value;
1900 break;
1901 default:
1902 return -EINVAL;
1903 }
1904 ext->is_set = true;
1905 return 0;
1906 }
1907
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1908 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1909 char *buf, void *data)
1910 {
1911 struct extern_desc *ext;
1912 char *sep, *value;
1913 int len, err = 0;
1914 void *ext_val;
1915 __u64 num;
1916
1917 if (!str_has_pfx(buf, "CONFIG_"))
1918 return 0;
1919
1920 sep = strchr(buf, '=');
1921 if (!sep) {
1922 pr_warn("failed to parse '%s': no separator\n", buf);
1923 return -EINVAL;
1924 }
1925
1926 /* Trim ending '\n' */
1927 len = strlen(buf);
1928 if (buf[len - 1] == '\n')
1929 buf[len - 1] = '\0';
1930 /* Split on '=' and ensure that a value is present. */
1931 *sep = '\0';
1932 if (!sep[1]) {
1933 *sep = '=';
1934 pr_warn("failed to parse '%s': no value\n", buf);
1935 return -EINVAL;
1936 }
1937
1938 ext = find_extern_by_name(obj, buf);
1939 if (!ext || ext->is_set)
1940 return 0;
1941
1942 ext_val = data + ext->kcfg.data_off;
1943 value = sep + 1;
1944
1945 switch (*value) {
1946 case 'y': case 'n': case 'm':
1947 err = set_kcfg_value_tri(ext, ext_val, *value);
1948 break;
1949 case '"':
1950 err = set_kcfg_value_str(ext, ext_val, value);
1951 break;
1952 default:
1953 /* assume integer */
1954 err = parse_u64(value, &num);
1955 if (err) {
1956 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1957 return err;
1958 }
1959 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1960 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1961 return -EINVAL;
1962 }
1963 err = set_kcfg_value_num(ext, ext_val, num);
1964 break;
1965 }
1966 if (err)
1967 return err;
1968 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1969 return 0;
1970 }
1971
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1972 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1973 {
1974 char buf[PATH_MAX];
1975 struct utsname uts;
1976 int len, err = 0;
1977 gzFile file;
1978
1979 uname(&uts);
1980 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1981 if (len < 0)
1982 return -EINVAL;
1983 else if (len >= PATH_MAX)
1984 return -ENAMETOOLONG;
1985
1986 /* gzopen also accepts uncompressed files. */
1987 file = gzopen(buf, "re");
1988 if (!file)
1989 file = gzopen("/proc/config.gz", "re");
1990
1991 if (!file) {
1992 pr_warn("failed to open system Kconfig\n");
1993 return -ENOENT;
1994 }
1995
1996 while (gzgets(file, buf, sizeof(buf))) {
1997 err = bpf_object__process_kconfig_line(obj, buf, data);
1998 if (err) {
1999 pr_warn("error parsing system Kconfig line '%s': %d\n",
2000 buf, err);
2001 goto out;
2002 }
2003 }
2004
2005 out:
2006 gzclose(file);
2007 return err;
2008 }
2009
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2010 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2011 const char *config, void *data)
2012 {
2013 char buf[PATH_MAX];
2014 int err = 0;
2015 FILE *file;
2016
2017 file = fmemopen((void *)config, strlen(config), "r");
2018 if (!file) {
2019 err = -errno;
2020 pr_warn("failed to open in-memory Kconfig: %d\n", err);
2021 return err;
2022 }
2023
2024 while (fgets(buf, sizeof(buf), file)) {
2025 err = bpf_object__process_kconfig_line(obj, buf, data);
2026 if (err) {
2027 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2028 buf, err);
2029 break;
2030 }
2031 }
2032
2033 fclose(file);
2034 return err;
2035 }
2036
bpf_object__init_kconfig_map(struct bpf_object * obj)2037 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2038 {
2039 struct extern_desc *last_ext = NULL, *ext;
2040 size_t map_sz;
2041 int i, err;
2042
2043 for (i = 0; i < obj->nr_extern; i++) {
2044 ext = &obj->externs[i];
2045 if (ext->type == EXT_KCFG)
2046 last_ext = ext;
2047 }
2048
2049 if (!last_ext)
2050 return 0;
2051
2052 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2053 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2054 ".kconfig", obj->efile.symbols_shndx,
2055 NULL, map_sz);
2056 if (err)
2057 return err;
2058
2059 obj->kconfig_map_idx = obj->nr_maps - 1;
2060
2061 return 0;
2062 }
2063
2064 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2065 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2066 {
2067 const struct btf_type *t = btf__type_by_id(btf, id);
2068
2069 if (res_id)
2070 *res_id = id;
2071
2072 while (btf_is_mod(t) || btf_is_typedef(t)) {
2073 if (res_id)
2074 *res_id = t->type;
2075 t = btf__type_by_id(btf, t->type);
2076 }
2077
2078 return t;
2079 }
2080
2081 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2082 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2083 {
2084 const struct btf_type *t;
2085
2086 t = skip_mods_and_typedefs(btf, id, NULL);
2087 if (!btf_is_ptr(t))
2088 return NULL;
2089
2090 t = skip_mods_and_typedefs(btf, t->type, res_id);
2091
2092 return btf_is_func_proto(t) ? t : NULL;
2093 }
2094
__btf_kind_str(__u16 kind)2095 static const char *__btf_kind_str(__u16 kind)
2096 {
2097 switch (kind) {
2098 case BTF_KIND_UNKN: return "void";
2099 case BTF_KIND_INT: return "int";
2100 case BTF_KIND_PTR: return "ptr";
2101 case BTF_KIND_ARRAY: return "array";
2102 case BTF_KIND_STRUCT: return "struct";
2103 case BTF_KIND_UNION: return "union";
2104 case BTF_KIND_ENUM: return "enum";
2105 case BTF_KIND_FWD: return "fwd";
2106 case BTF_KIND_TYPEDEF: return "typedef";
2107 case BTF_KIND_VOLATILE: return "volatile";
2108 case BTF_KIND_CONST: return "const";
2109 case BTF_KIND_RESTRICT: return "restrict";
2110 case BTF_KIND_FUNC: return "func";
2111 case BTF_KIND_FUNC_PROTO: return "func_proto";
2112 case BTF_KIND_VAR: return "var";
2113 case BTF_KIND_DATASEC: return "datasec";
2114 case BTF_KIND_FLOAT: return "float";
2115 case BTF_KIND_DECL_TAG: return "decl_tag";
2116 case BTF_KIND_TYPE_TAG: return "type_tag";
2117 case BTF_KIND_ENUM64: return "enum64";
2118 default: return "unknown";
2119 }
2120 }
2121
btf_kind_str(const struct btf_type * t)2122 const char *btf_kind_str(const struct btf_type *t)
2123 {
2124 return __btf_kind_str(btf_kind(t));
2125 }
2126
2127 /*
2128 * Fetch integer attribute of BTF map definition. Such attributes are
2129 * represented using a pointer to an array, in which dimensionality of array
2130 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2131 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2132 * type definition, while using only sizeof(void *) space in ELF data section.
2133 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2134 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2135 const struct btf_member *m, __u32 *res)
2136 {
2137 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2138 const char *name = btf__name_by_offset(btf, m->name_off);
2139 const struct btf_array *arr_info;
2140 const struct btf_type *arr_t;
2141
2142 if (!btf_is_ptr(t)) {
2143 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2144 map_name, name, btf_kind_str(t));
2145 return false;
2146 }
2147
2148 arr_t = btf__type_by_id(btf, t->type);
2149 if (!arr_t) {
2150 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2151 map_name, name, t->type);
2152 return false;
2153 }
2154 if (!btf_is_array(arr_t)) {
2155 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2156 map_name, name, btf_kind_str(arr_t));
2157 return false;
2158 }
2159 arr_info = btf_array(arr_t);
2160 *res = arr_info->nelems;
2161 return true;
2162 }
2163
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2164 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2165 {
2166 int len;
2167
2168 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2169 if (len < 0)
2170 return -EINVAL;
2171 if (len >= buf_sz)
2172 return -ENAMETOOLONG;
2173
2174 return 0;
2175 }
2176
build_map_pin_path(struct bpf_map * map,const char * path)2177 static int build_map_pin_path(struct bpf_map *map, const char *path)
2178 {
2179 char buf[PATH_MAX];
2180 int err;
2181
2182 if (!path)
2183 path = "/sys/fs/bpf";
2184
2185 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2186 if (err)
2187 return err;
2188
2189 return bpf_map__set_pin_path(map, buf);
2190 }
2191
2192 /* should match definition in bpf_helpers.h */
2193 enum libbpf_pin_type {
2194 LIBBPF_PIN_NONE,
2195 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2196 LIBBPF_PIN_BY_NAME,
2197 };
2198
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2199 int parse_btf_map_def(const char *map_name, struct btf *btf,
2200 const struct btf_type *def_t, bool strict,
2201 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2202 {
2203 const struct btf_type *t;
2204 const struct btf_member *m;
2205 bool is_inner = inner_def == NULL;
2206 int vlen, i;
2207
2208 vlen = btf_vlen(def_t);
2209 m = btf_members(def_t);
2210 for (i = 0; i < vlen; i++, m++) {
2211 const char *name = btf__name_by_offset(btf, m->name_off);
2212
2213 if (!name) {
2214 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2215 return -EINVAL;
2216 }
2217 if (strcmp(name, "type") == 0) {
2218 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2219 return -EINVAL;
2220 map_def->parts |= MAP_DEF_MAP_TYPE;
2221 } else if (strcmp(name, "max_entries") == 0) {
2222 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2223 return -EINVAL;
2224 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2225 } else if (strcmp(name, "map_flags") == 0) {
2226 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2227 return -EINVAL;
2228 map_def->parts |= MAP_DEF_MAP_FLAGS;
2229 } else if (strcmp(name, "numa_node") == 0) {
2230 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2231 return -EINVAL;
2232 map_def->parts |= MAP_DEF_NUMA_NODE;
2233 } else if (strcmp(name, "key_size") == 0) {
2234 __u32 sz;
2235
2236 if (!get_map_field_int(map_name, btf, m, &sz))
2237 return -EINVAL;
2238 if (map_def->key_size && map_def->key_size != sz) {
2239 pr_warn("map '%s': conflicting key size %u != %u.\n",
2240 map_name, map_def->key_size, sz);
2241 return -EINVAL;
2242 }
2243 map_def->key_size = sz;
2244 map_def->parts |= MAP_DEF_KEY_SIZE;
2245 } else if (strcmp(name, "key") == 0) {
2246 __s64 sz;
2247
2248 t = btf__type_by_id(btf, m->type);
2249 if (!t) {
2250 pr_warn("map '%s': key type [%d] not found.\n",
2251 map_name, m->type);
2252 return -EINVAL;
2253 }
2254 if (!btf_is_ptr(t)) {
2255 pr_warn("map '%s': key spec is not PTR: %s.\n",
2256 map_name, btf_kind_str(t));
2257 return -EINVAL;
2258 }
2259 sz = btf__resolve_size(btf, t->type);
2260 if (sz < 0) {
2261 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2262 map_name, t->type, (ssize_t)sz);
2263 return sz;
2264 }
2265 if (map_def->key_size && map_def->key_size != sz) {
2266 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2267 map_name, map_def->key_size, (ssize_t)sz);
2268 return -EINVAL;
2269 }
2270 map_def->key_size = sz;
2271 map_def->key_type_id = t->type;
2272 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2273 } else if (strcmp(name, "value_size") == 0) {
2274 __u32 sz;
2275
2276 if (!get_map_field_int(map_name, btf, m, &sz))
2277 return -EINVAL;
2278 if (map_def->value_size && map_def->value_size != sz) {
2279 pr_warn("map '%s': conflicting value size %u != %u.\n",
2280 map_name, map_def->value_size, sz);
2281 return -EINVAL;
2282 }
2283 map_def->value_size = sz;
2284 map_def->parts |= MAP_DEF_VALUE_SIZE;
2285 } else if (strcmp(name, "value") == 0) {
2286 __s64 sz;
2287
2288 t = btf__type_by_id(btf, m->type);
2289 if (!t) {
2290 pr_warn("map '%s': value type [%d] not found.\n",
2291 map_name, m->type);
2292 return -EINVAL;
2293 }
2294 if (!btf_is_ptr(t)) {
2295 pr_warn("map '%s': value spec is not PTR: %s.\n",
2296 map_name, btf_kind_str(t));
2297 return -EINVAL;
2298 }
2299 sz = btf__resolve_size(btf, t->type);
2300 if (sz < 0) {
2301 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2302 map_name, t->type, (ssize_t)sz);
2303 return sz;
2304 }
2305 if (map_def->value_size && map_def->value_size != sz) {
2306 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2307 map_name, map_def->value_size, (ssize_t)sz);
2308 return -EINVAL;
2309 }
2310 map_def->value_size = sz;
2311 map_def->value_type_id = t->type;
2312 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2313 }
2314 else if (strcmp(name, "values") == 0) {
2315 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2316 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2317 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2318 char inner_map_name[128];
2319 int err;
2320
2321 if (is_inner) {
2322 pr_warn("map '%s': multi-level inner maps not supported.\n",
2323 map_name);
2324 return -ENOTSUP;
2325 }
2326 if (i != vlen - 1) {
2327 pr_warn("map '%s': '%s' member should be last.\n",
2328 map_name, name);
2329 return -EINVAL;
2330 }
2331 if (!is_map_in_map && !is_prog_array) {
2332 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2333 map_name);
2334 return -ENOTSUP;
2335 }
2336 if (map_def->value_size && map_def->value_size != 4) {
2337 pr_warn("map '%s': conflicting value size %u != 4.\n",
2338 map_name, map_def->value_size);
2339 return -EINVAL;
2340 }
2341 map_def->value_size = 4;
2342 t = btf__type_by_id(btf, m->type);
2343 if (!t) {
2344 pr_warn("map '%s': %s type [%d] not found.\n",
2345 map_name, desc, m->type);
2346 return -EINVAL;
2347 }
2348 if (!btf_is_array(t) || btf_array(t)->nelems) {
2349 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2350 map_name, desc);
2351 return -EINVAL;
2352 }
2353 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2354 if (!btf_is_ptr(t)) {
2355 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2356 map_name, desc, btf_kind_str(t));
2357 return -EINVAL;
2358 }
2359 t = skip_mods_and_typedefs(btf, t->type, NULL);
2360 if (is_prog_array) {
2361 if (!btf_is_func_proto(t)) {
2362 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2363 map_name, btf_kind_str(t));
2364 return -EINVAL;
2365 }
2366 continue;
2367 }
2368 if (!btf_is_struct(t)) {
2369 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2370 map_name, btf_kind_str(t));
2371 return -EINVAL;
2372 }
2373
2374 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2375 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2376 if (err)
2377 return err;
2378
2379 map_def->parts |= MAP_DEF_INNER_MAP;
2380 } else if (strcmp(name, "pinning") == 0) {
2381 __u32 val;
2382
2383 if (is_inner) {
2384 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2385 return -EINVAL;
2386 }
2387 if (!get_map_field_int(map_name, btf, m, &val))
2388 return -EINVAL;
2389 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2390 pr_warn("map '%s': invalid pinning value %u.\n",
2391 map_name, val);
2392 return -EINVAL;
2393 }
2394 map_def->pinning = val;
2395 map_def->parts |= MAP_DEF_PINNING;
2396 } else if (strcmp(name, "map_extra") == 0) {
2397 __u32 map_extra;
2398
2399 if (!get_map_field_int(map_name, btf, m, &map_extra))
2400 return -EINVAL;
2401 map_def->map_extra = map_extra;
2402 map_def->parts |= MAP_DEF_MAP_EXTRA;
2403 } else {
2404 if (strict) {
2405 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2406 return -ENOTSUP;
2407 }
2408 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2409 }
2410 }
2411
2412 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2413 pr_warn("map '%s': map type isn't specified.\n", map_name);
2414 return -EINVAL;
2415 }
2416
2417 return 0;
2418 }
2419
adjust_ringbuf_sz(size_t sz)2420 static size_t adjust_ringbuf_sz(size_t sz)
2421 {
2422 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2423 __u32 mul;
2424
2425 /* if user forgot to set any size, make sure they see error */
2426 if (sz == 0)
2427 return 0;
2428 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2429 * a power-of-2 multiple of kernel's page size. If user diligently
2430 * satisified these conditions, pass the size through.
2431 */
2432 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2433 return sz;
2434
2435 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2436 * user-set size to satisfy both user size request and kernel
2437 * requirements and substitute correct max_entries for map creation.
2438 */
2439 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2440 if (mul * page_sz > sz)
2441 return mul * page_sz;
2442 }
2443
2444 /* if it's impossible to satisfy the conditions (i.e., user size is
2445 * very close to UINT_MAX but is not a power-of-2 multiple of
2446 * page_size) then just return original size and let kernel reject it
2447 */
2448 return sz;
2449 }
2450
map_is_ringbuf(const struct bpf_map * map)2451 static bool map_is_ringbuf(const struct bpf_map *map)
2452 {
2453 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2454 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2455 }
2456
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2457 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2458 {
2459 map->def.type = def->map_type;
2460 map->def.key_size = def->key_size;
2461 map->def.value_size = def->value_size;
2462 map->def.max_entries = def->max_entries;
2463 map->def.map_flags = def->map_flags;
2464 map->map_extra = def->map_extra;
2465
2466 map->numa_node = def->numa_node;
2467 map->btf_key_type_id = def->key_type_id;
2468 map->btf_value_type_id = def->value_type_id;
2469
2470 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2471 if (map_is_ringbuf(map))
2472 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2473
2474 if (def->parts & MAP_DEF_MAP_TYPE)
2475 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2476
2477 if (def->parts & MAP_DEF_KEY_TYPE)
2478 pr_debug("map '%s': found key [%u], sz = %u.\n",
2479 map->name, def->key_type_id, def->key_size);
2480 else if (def->parts & MAP_DEF_KEY_SIZE)
2481 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2482
2483 if (def->parts & MAP_DEF_VALUE_TYPE)
2484 pr_debug("map '%s': found value [%u], sz = %u.\n",
2485 map->name, def->value_type_id, def->value_size);
2486 else if (def->parts & MAP_DEF_VALUE_SIZE)
2487 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2488
2489 if (def->parts & MAP_DEF_MAX_ENTRIES)
2490 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2491 if (def->parts & MAP_DEF_MAP_FLAGS)
2492 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2493 if (def->parts & MAP_DEF_MAP_EXTRA)
2494 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2495 (unsigned long long)def->map_extra);
2496 if (def->parts & MAP_DEF_PINNING)
2497 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2498 if (def->parts & MAP_DEF_NUMA_NODE)
2499 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2500
2501 if (def->parts & MAP_DEF_INNER_MAP)
2502 pr_debug("map '%s': found inner map definition.\n", map->name);
2503 }
2504
btf_var_linkage_str(__u32 linkage)2505 static const char *btf_var_linkage_str(__u32 linkage)
2506 {
2507 switch (linkage) {
2508 case BTF_VAR_STATIC: return "static";
2509 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2510 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2511 default: return "unknown";
2512 }
2513 }
2514
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2515 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2516 const struct btf_type *sec,
2517 int var_idx, int sec_idx,
2518 const Elf_Data *data, bool strict,
2519 const char *pin_root_path)
2520 {
2521 struct btf_map_def map_def = {}, inner_def = {};
2522 const struct btf_type *var, *def;
2523 const struct btf_var_secinfo *vi;
2524 const struct btf_var *var_extra;
2525 const char *map_name;
2526 struct bpf_map *map;
2527 int err;
2528
2529 vi = btf_var_secinfos(sec) + var_idx;
2530 var = btf__type_by_id(obj->btf, vi->type);
2531 var_extra = btf_var(var);
2532 map_name = btf__name_by_offset(obj->btf, var->name_off);
2533
2534 if (map_name == NULL || map_name[0] == '\0') {
2535 pr_warn("map #%d: empty name.\n", var_idx);
2536 return -EINVAL;
2537 }
2538 if ((__u64)vi->offset + vi->size > data->d_size) {
2539 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2540 return -EINVAL;
2541 }
2542 if (!btf_is_var(var)) {
2543 pr_warn("map '%s': unexpected var kind %s.\n",
2544 map_name, btf_kind_str(var));
2545 return -EINVAL;
2546 }
2547 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2548 pr_warn("map '%s': unsupported map linkage %s.\n",
2549 map_name, btf_var_linkage_str(var_extra->linkage));
2550 return -EOPNOTSUPP;
2551 }
2552
2553 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2554 if (!btf_is_struct(def)) {
2555 pr_warn("map '%s': unexpected def kind %s.\n",
2556 map_name, btf_kind_str(var));
2557 return -EINVAL;
2558 }
2559 if (def->size > vi->size) {
2560 pr_warn("map '%s': invalid def size.\n", map_name);
2561 return -EINVAL;
2562 }
2563
2564 map = bpf_object__add_map(obj);
2565 if (IS_ERR(map))
2566 return PTR_ERR(map);
2567 map->name = strdup(map_name);
2568 if (!map->name) {
2569 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2570 return -ENOMEM;
2571 }
2572 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2573 map->def.type = BPF_MAP_TYPE_UNSPEC;
2574 map->sec_idx = sec_idx;
2575 map->sec_offset = vi->offset;
2576 map->btf_var_idx = var_idx;
2577 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2578 map_name, map->sec_idx, map->sec_offset);
2579
2580 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2581 if (err)
2582 return err;
2583
2584 fill_map_from_def(map, &map_def);
2585
2586 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2587 err = build_map_pin_path(map, pin_root_path);
2588 if (err) {
2589 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2590 return err;
2591 }
2592 }
2593
2594 if (map_def.parts & MAP_DEF_INNER_MAP) {
2595 map->inner_map = calloc(1, sizeof(*map->inner_map));
2596 if (!map->inner_map)
2597 return -ENOMEM;
2598 map->inner_map->fd = -1;
2599 map->inner_map->sec_idx = sec_idx;
2600 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2601 if (!map->inner_map->name)
2602 return -ENOMEM;
2603 sprintf(map->inner_map->name, "%s.inner", map_name);
2604
2605 fill_map_from_def(map->inner_map, &inner_def);
2606 }
2607
2608 err = map_fill_btf_type_info(obj, map);
2609 if (err)
2610 return err;
2611
2612 return 0;
2613 }
2614
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2615 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2616 const char *pin_root_path)
2617 {
2618 const struct btf_type *sec = NULL;
2619 int nr_types, i, vlen, err;
2620 const struct btf_type *t;
2621 const char *name;
2622 Elf_Data *data;
2623 Elf_Scn *scn;
2624
2625 if (obj->efile.btf_maps_shndx < 0)
2626 return 0;
2627
2628 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2629 data = elf_sec_data(obj, scn);
2630 if (!scn || !data) {
2631 pr_warn("elf: failed to get %s map definitions for %s\n",
2632 MAPS_ELF_SEC, obj->path);
2633 return -EINVAL;
2634 }
2635
2636 nr_types = btf__type_cnt(obj->btf);
2637 for (i = 1; i < nr_types; i++) {
2638 t = btf__type_by_id(obj->btf, i);
2639 if (!btf_is_datasec(t))
2640 continue;
2641 name = btf__name_by_offset(obj->btf, t->name_off);
2642 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2643 sec = t;
2644 obj->efile.btf_maps_sec_btf_id = i;
2645 break;
2646 }
2647 }
2648
2649 if (!sec) {
2650 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2651 return -ENOENT;
2652 }
2653
2654 vlen = btf_vlen(sec);
2655 for (i = 0; i < vlen; i++) {
2656 err = bpf_object__init_user_btf_map(obj, sec, i,
2657 obj->efile.btf_maps_shndx,
2658 data, strict,
2659 pin_root_path);
2660 if (err)
2661 return err;
2662 }
2663
2664 return 0;
2665 }
2666
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2667 static int bpf_object__init_maps(struct bpf_object *obj,
2668 const struct bpf_object_open_opts *opts)
2669 {
2670 const char *pin_root_path;
2671 bool strict;
2672 int err = 0;
2673
2674 strict = !OPTS_GET(opts, relaxed_maps, false);
2675 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2676
2677 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2678 err = err ?: bpf_object__init_global_data_maps(obj);
2679 err = err ?: bpf_object__init_kconfig_map(obj);
2680 err = err ?: bpf_object_init_struct_ops(obj);
2681
2682 return err;
2683 }
2684
section_have_execinstr(struct bpf_object * obj,int idx)2685 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2686 {
2687 Elf64_Shdr *sh;
2688
2689 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2690 if (!sh)
2691 return false;
2692
2693 return sh->sh_flags & SHF_EXECINSTR;
2694 }
2695
btf_needs_sanitization(struct bpf_object * obj)2696 static bool btf_needs_sanitization(struct bpf_object *obj)
2697 {
2698 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2699 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2700 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2701 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2702 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2703 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2704 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2705
2706 return !has_func || !has_datasec || !has_func_global || !has_float ||
2707 !has_decl_tag || !has_type_tag || !has_enum64;
2708 }
2709
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2710 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2711 {
2712 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2713 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2714 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2715 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2716 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2717 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2718 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2719 int enum64_placeholder_id = 0;
2720 struct btf_type *t;
2721 int i, j, vlen;
2722
2723 for (i = 1; i < btf__type_cnt(btf); i++) {
2724 t = (struct btf_type *)btf__type_by_id(btf, i);
2725
2726 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2727 /* replace VAR/DECL_TAG with INT */
2728 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2729 /*
2730 * using size = 1 is the safest choice, 4 will be too
2731 * big and cause kernel BTF validation failure if
2732 * original variable took less than 4 bytes
2733 */
2734 t->size = 1;
2735 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2736 } else if (!has_datasec && btf_is_datasec(t)) {
2737 /* replace DATASEC with STRUCT */
2738 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2739 struct btf_member *m = btf_members(t);
2740 struct btf_type *vt;
2741 char *name;
2742
2743 name = (char *)btf__name_by_offset(btf, t->name_off);
2744 while (*name) {
2745 if (*name == '.')
2746 *name = '_';
2747 name++;
2748 }
2749
2750 vlen = btf_vlen(t);
2751 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2752 for (j = 0; j < vlen; j++, v++, m++) {
2753 /* order of field assignments is important */
2754 m->offset = v->offset * 8;
2755 m->type = v->type;
2756 /* preserve variable name as member name */
2757 vt = (void *)btf__type_by_id(btf, v->type);
2758 m->name_off = vt->name_off;
2759 }
2760 } else if (!has_func && btf_is_func_proto(t)) {
2761 /* replace FUNC_PROTO with ENUM */
2762 vlen = btf_vlen(t);
2763 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2764 t->size = sizeof(__u32); /* kernel enforced */
2765 } else if (!has_func && btf_is_func(t)) {
2766 /* replace FUNC with TYPEDEF */
2767 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2768 } else if (!has_func_global && btf_is_func(t)) {
2769 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2770 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2771 } else if (!has_float && btf_is_float(t)) {
2772 /* replace FLOAT with an equally-sized empty STRUCT;
2773 * since C compilers do not accept e.g. "float" as a
2774 * valid struct name, make it anonymous
2775 */
2776 t->name_off = 0;
2777 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2778 } else if (!has_type_tag && btf_is_type_tag(t)) {
2779 /* replace TYPE_TAG with a CONST */
2780 t->name_off = 0;
2781 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2782 } else if (!has_enum64 && btf_is_enum(t)) {
2783 /* clear the kflag */
2784 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2785 } else if (!has_enum64 && btf_is_enum64(t)) {
2786 /* replace ENUM64 with a union */
2787 struct btf_member *m;
2788
2789 if (enum64_placeholder_id == 0) {
2790 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2791 if (enum64_placeholder_id < 0)
2792 return enum64_placeholder_id;
2793
2794 t = (struct btf_type *)btf__type_by_id(btf, i);
2795 }
2796
2797 m = btf_members(t);
2798 vlen = btf_vlen(t);
2799 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2800 for (j = 0; j < vlen; j++, m++) {
2801 m->type = enum64_placeholder_id;
2802 m->offset = 0;
2803 }
2804 }
2805 }
2806
2807 return 0;
2808 }
2809
libbpf_needs_btf(const struct bpf_object * obj)2810 static bool libbpf_needs_btf(const struct bpf_object *obj)
2811 {
2812 return obj->efile.btf_maps_shndx >= 0 ||
2813 obj->efile.st_ops_shndx >= 0 ||
2814 obj->efile.st_ops_link_shndx >= 0 ||
2815 obj->nr_extern > 0;
2816 }
2817
kernel_needs_btf(const struct bpf_object * obj)2818 static bool kernel_needs_btf(const struct bpf_object *obj)
2819 {
2820 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2821 }
2822
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2823 static int bpf_object__init_btf(struct bpf_object *obj,
2824 Elf_Data *btf_data,
2825 Elf_Data *btf_ext_data)
2826 {
2827 int err = -ENOENT;
2828
2829 if (btf_data) {
2830 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2831 err = libbpf_get_error(obj->btf);
2832 if (err) {
2833 obj->btf = NULL;
2834 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2835 goto out;
2836 }
2837 /* enforce 8-byte pointers for BPF-targeted BTFs */
2838 btf__set_pointer_size(obj->btf, 8);
2839 }
2840 if (btf_ext_data) {
2841 struct btf_ext_info *ext_segs[3];
2842 int seg_num, sec_num;
2843
2844 if (!obj->btf) {
2845 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2846 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2847 goto out;
2848 }
2849 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2850 err = libbpf_get_error(obj->btf_ext);
2851 if (err) {
2852 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2853 BTF_EXT_ELF_SEC, err);
2854 obj->btf_ext = NULL;
2855 goto out;
2856 }
2857
2858 /* setup .BTF.ext to ELF section mapping */
2859 ext_segs[0] = &obj->btf_ext->func_info;
2860 ext_segs[1] = &obj->btf_ext->line_info;
2861 ext_segs[2] = &obj->btf_ext->core_relo_info;
2862 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2863 struct btf_ext_info *seg = ext_segs[seg_num];
2864 const struct btf_ext_info_sec *sec;
2865 const char *sec_name;
2866 Elf_Scn *scn;
2867
2868 if (seg->sec_cnt == 0)
2869 continue;
2870
2871 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2872 if (!seg->sec_idxs) {
2873 err = -ENOMEM;
2874 goto out;
2875 }
2876
2877 sec_num = 0;
2878 for_each_btf_ext_sec(seg, sec) {
2879 /* preventively increment index to avoid doing
2880 * this before every continue below
2881 */
2882 sec_num++;
2883
2884 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2885 if (str_is_empty(sec_name))
2886 continue;
2887 scn = elf_sec_by_name(obj, sec_name);
2888 if (!scn)
2889 continue;
2890
2891 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2892 }
2893 }
2894 }
2895 out:
2896 if (err && libbpf_needs_btf(obj)) {
2897 pr_warn("BTF is required, but is missing or corrupted.\n");
2898 return err;
2899 }
2900 return 0;
2901 }
2902
compare_vsi_off(const void * _a,const void * _b)2903 static int compare_vsi_off(const void *_a, const void *_b)
2904 {
2905 const struct btf_var_secinfo *a = _a;
2906 const struct btf_var_secinfo *b = _b;
2907
2908 return a->offset - b->offset;
2909 }
2910
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)2911 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2912 struct btf_type *t)
2913 {
2914 __u32 size = 0, i, vars = btf_vlen(t);
2915 const char *sec_name = btf__name_by_offset(btf, t->name_off);
2916 struct btf_var_secinfo *vsi;
2917 bool fixup_offsets = false;
2918 int err;
2919
2920 if (!sec_name) {
2921 pr_debug("No name found in string section for DATASEC kind.\n");
2922 return -ENOENT;
2923 }
2924
2925 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2926 * variable offsets set at the previous step. Further, not every
2927 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2928 * all fixups altogether for such sections and go straight to sorting
2929 * VARs within their DATASEC.
2930 */
2931 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2932 goto sort_vars;
2933
2934 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2935 * fix this up. But BPF static linker already fixes this up and fills
2936 * all the sizes and offsets during static linking. So this step has
2937 * to be optional. But the STV_HIDDEN handling is non-optional for any
2938 * non-extern DATASEC, so the variable fixup loop below handles both
2939 * functions at the same time, paying the cost of BTF VAR <-> ELF
2940 * symbol matching just once.
2941 */
2942 if (t->size == 0) {
2943 err = find_elf_sec_sz(obj, sec_name, &size);
2944 if (err || !size) {
2945 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2946 sec_name, size, err);
2947 return -ENOENT;
2948 }
2949
2950 t->size = size;
2951 fixup_offsets = true;
2952 }
2953
2954 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2955 const struct btf_type *t_var;
2956 struct btf_var *var;
2957 const char *var_name;
2958 Elf64_Sym *sym;
2959
2960 t_var = btf__type_by_id(btf, vsi->type);
2961 if (!t_var || !btf_is_var(t_var)) {
2962 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2963 return -EINVAL;
2964 }
2965
2966 var = btf_var(t_var);
2967 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2968 continue;
2969
2970 var_name = btf__name_by_offset(btf, t_var->name_off);
2971 if (!var_name) {
2972 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2973 sec_name, i);
2974 return -ENOENT;
2975 }
2976
2977 sym = find_elf_var_sym(obj, var_name);
2978 if (IS_ERR(sym)) {
2979 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2980 sec_name, var_name);
2981 return -ENOENT;
2982 }
2983
2984 if (fixup_offsets)
2985 vsi->offset = sym->st_value;
2986
2987 /* if variable is a global/weak symbol, but has restricted
2988 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2989 * as static. This follows similar logic for functions (BPF
2990 * subprogs) and influences libbpf's further decisions about
2991 * whether to make global data BPF array maps as
2992 * BPF_F_MMAPABLE.
2993 */
2994 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2995 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2996 var->linkage = BTF_VAR_STATIC;
2997 }
2998
2999 sort_vars:
3000 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3001 return 0;
3002 }
3003
bpf_object_fixup_btf(struct bpf_object * obj)3004 static int bpf_object_fixup_btf(struct bpf_object *obj)
3005 {
3006 int i, n, err = 0;
3007
3008 if (!obj->btf)
3009 return 0;
3010
3011 n = btf__type_cnt(obj->btf);
3012 for (i = 1; i < n; i++) {
3013 struct btf_type *t = btf_type_by_id(obj->btf, i);
3014
3015 /* Loader needs to fix up some of the things compiler
3016 * couldn't get its hands on while emitting BTF. This
3017 * is section size and global variable offset. We use
3018 * the info from the ELF itself for this purpose.
3019 */
3020 if (btf_is_datasec(t)) {
3021 err = btf_fixup_datasec(obj, obj->btf, t);
3022 if (err)
3023 return err;
3024 }
3025 }
3026
3027 return 0;
3028 }
3029
prog_needs_vmlinux_btf(struct bpf_program * prog)3030 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3031 {
3032 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3033 prog->type == BPF_PROG_TYPE_LSM)
3034 return true;
3035
3036 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3037 * also need vmlinux BTF
3038 */
3039 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3040 return true;
3041
3042 return false;
3043 }
3044
obj_needs_vmlinux_btf(const struct bpf_object * obj)3045 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3046 {
3047 struct bpf_program *prog;
3048 int i;
3049
3050 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3051 * is not specified
3052 */
3053 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3054 return true;
3055
3056 /* Support for typed ksyms needs kernel BTF */
3057 for (i = 0; i < obj->nr_extern; i++) {
3058 const struct extern_desc *ext;
3059
3060 ext = &obj->externs[i];
3061 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3062 return true;
3063 }
3064
3065 bpf_object__for_each_program(prog, obj) {
3066 if (!prog->autoload)
3067 continue;
3068 if (prog_needs_vmlinux_btf(prog))
3069 return true;
3070 }
3071
3072 return false;
3073 }
3074
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3075 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3076 {
3077 int err;
3078
3079 /* btf_vmlinux could be loaded earlier */
3080 if (obj->btf_vmlinux || obj->gen_loader)
3081 return 0;
3082
3083 if (!force && !obj_needs_vmlinux_btf(obj))
3084 return 0;
3085
3086 obj->btf_vmlinux = btf__load_vmlinux_btf();
3087 err = libbpf_get_error(obj->btf_vmlinux);
3088 if (err) {
3089 pr_warn("Error loading vmlinux BTF: %d\n", err);
3090 obj->btf_vmlinux = NULL;
3091 return err;
3092 }
3093 return 0;
3094 }
3095
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3096 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3097 {
3098 struct btf *kern_btf = obj->btf;
3099 bool btf_mandatory, sanitize;
3100 int i, err = 0;
3101
3102 if (!obj->btf)
3103 return 0;
3104
3105 if (!kernel_supports(obj, FEAT_BTF)) {
3106 if (kernel_needs_btf(obj)) {
3107 err = -EOPNOTSUPP;
3108 goto report;
3109 }
3110 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3111 return 0;
3112 }
3113
3114 /* Even though some subprogs are global/weak, user might prefer more
3115 * permissive BPF verification process that BPF verifier performs for
3116 * static functions, taking into account more context from the caller
3117 * functions. In such case, they need to mark such subprogs with
3118 * __attribute__((visibility("hidden"))) and libbpf will adjust
3119 * corresponding FUNC BTF type to be marked as static and trigger more
3120 * involved BPF verification process.
3121 */
3122 for (i = 0; i < obj->nr_programs; i++) {
3123 struct bpf_program *prog = &obj->programs[i];
3124 struct btf_type *t;
3125 const char *name;
3126 int j, n;
3127
3128 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3129 continue;
3130
3131 n = btf__type_cnt(obj->btf);
3132 for (j = 1; j < n; j++) {
3133 t = btf_type_by_id(obj->btf, j);
3134 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3135 continue;
3136
3137 name = btf__str_by_offset(obj->btf, t->name_off);
3138 if (strcmp(name, prog->name) != 0)
3139 continue;
3140
3141 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3142 break;
3143 }
3144 }
3145
3146 sanitize = btf_needs_sanitization(obj);
3147 if (sanitize) {
3148 const void *raw_data;
3149 __u32 sz;
3150
3151 /* clone BTF to sanitize a copy and leave the original intact */
3152 raw_data = btf__raw_data(obj->btf, &sz);
3153 kern_btf = btf__new(raw_data, sz);
3154 err = libbpf_get_error(kern_btf);
3155 if (err)
3156 return err;
3157
3158 /* enforce 8-byte pointers for BPF-targeted BTFs */
3159 btf__set_pointer_size(obj->btf, 8);
3160 err = bpf_object__sanitize_btf(obj, kern_btf);
3161 if (err)
3162 return err;
3163 }
3164
3165 if (obj->gen_loader) {
3166 __u32 raw_size = 0;
3167 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3168
3169 if (!raw_data)
3170 return -ENOMEM;
3171 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3172 /* Pretend to have valid FD to pass various fd >= 0 checks.
3173 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3174 */
3175 btf__set_fd(kern_btf, 0);
3176 } else {
3177 /* currently BPF_BTF_LOAD only supports log_level 1 */
3178 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3179 obj->log_level ? 1 : 0);
3180 }
3181 if (sanitize) {
3182 if (!err) {
3183 /* move fd to libbpf's BTF */
3184 btf__set_fd(obj->btf, btf__fd(kern_btf));
3185 btf__set_fd(kern_btf, -1);
3186 }
3187 btf__free(kern_btf);
3188 }
3189 report:
3190 if (err) {
3191 btf_mandatory = kernel_needs_btf(obj);
3192 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3193 btf_mandatory ? "BTF is mandatory, can't proceed."
3194 : "BTF is optional, ignoring.");
3195 if (!btf_mandatory)
3196 err = 0;
3197 }
3198 return err;
3199 }
3200
elf_sym_str(const struct bpf_object * obj,size_t off)3201 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3202 {
3203 const char *name;
3204
3205 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3206 if (!name) {
3207 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3208 off, obj->path, elf_errmsg(-1));
3209 return NULL;
3210 }
3211
3212 return name;
3213 }
3214
elf_sec_str(const struct bpf_object * obj,size_t off)3215 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3216 {
3217 const char *name;
3218
3219 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3220 if (!name) {
3221 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3222 off, obj->path, elf_errmsg(-1));
3223 return NULL;
3224 }
3225
3226 return name;
3227 }
3228
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3229 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3230 {
3231 Elf_Scn *scn;
3232
3233 scn = elf_getscn(obj->efile.elf, idx);
3234 if (!scn) {
3235 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3236 idx, obj->path, elf_errmsg(-1));
3237 return NULL;
3238 }
3239 return scn;
3240 }
3241
elf_sec_by_name(const struct bpf_object * obj,const char * name)3242 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3243 {
3244 Elf_Scn *scn = NULL;
3245 Elf *elf = obj->efile.elf;
3246 const char *sec_name;
3247
3248 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3249 sec_name = elf_sec_name(obj, scn);
3250 if (!sec_name)
3251 return NULL;
3252
3253 if (strcmp(sec_name, name) != 0)
3254 continue;
3255
3256 return scn;
3257 }
3258 return NULL;
3259 }
3260
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3261 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3262 {
3263 Elf64_Shdr *shdr;
3264
3265 if (!scn)
3266 return NULL;
3267
3268 shdr = elf64_getshdr(scn);
3269 if (!shdr) {
3270 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3271 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3272 return NULL;
3273 }
3274
3275 return shdr;
3276 }
3277
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3278 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3279 {
3280 const char *name;
3281 Elf64_Shdr *sh;
3282
3283 if (!scn)
3284 return NULL;
3285
3286 sh = elf_sec_hdr(obj, scn);
3287 if (!sh)
3288 return NULL;
3289
3290 name = elf_sec_str(obj, sh->sh_name);
3291 if (!name) {
3292 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3293 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3294 return NULL;
3295 }
3296
3297 return name;
3298 }
3299
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3300 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3301 {
3302 Elf_Data *data;
3303
3304 if (!scn)
3305 return NULL;
3306
3307 data = elf_getdata(scn, 0);
3308 if (!data) {
3309 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3310 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3311 obj->path, elf_errmsg(-1));
3312 return NULL;
3313 }
3314
3315 return data;
3316 }
3317
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3318 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3319 {
3320 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3321 return NULL;
3322
3323 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3324 }
3325
elf_rel_by_idx(Elf_Data * data,size_t idx)3326 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3327 {
3328 if (idx >= data->d_size / sizeof(Elf64_Rel))
3329 return NULL;
3330
3331 return (Elf64_Rel *)data->d_buf + idx;
3332 }
3333
is_sec_name_dwarf(const char * name)3334 static bool is_sec_name_dwarf(const char *name)
3335 {
3336 /* approximation, but the actual list is too long */
3337 return str_has_pfx(name, ".debug_");
3338 }
3339
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3340 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3341 {
3342 /* no special handling of .strtab */
3343 if (hdr->sh_type == SHT_STRTAB)
3344 return true;
3345
3346 /* ignore .llvm_addrsig section as well */
3347 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3348 return true;
3349
3350 /* no subprograms will lead to an empty .text section, ignore it */
3351 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3352 strcmp(name, ".text") == 0)
3353 return true;
3354
3355 /* DWARF sections */
3356 if (is_sec_name_dwarf(name))
3357 return true;
3358
3359 if (str_has_pfx(name, ".rel")) {
3360 name += sizeof(".rel") - 1;
3361 /* DWARF section relocations */
3362 if (is_sec_name_dwarf(name))
3363 return true;
3364
3365 /* .BTF and .BTF.ext don't need relocations */
3366 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3367 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3368 return true;
3369 }
3370
3371 return false;
3372 }
3373
cmp_progs(const void * _a,const void * _b)3374 static int cmp_progs(const void *_a, const void *_b)
3375 {
3376 const struct bpf_program *a = _a;
3377 const struct bpf_program *b = _b;
3378
3379 if (a->sec_idx != b->sec_idx)
3380 return a->sec_idx < b->sec_idx ? -1 : 1;
3381
3382 /* sec_insn_off can't be the same within the section */
3383 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3384 }
3385
bpf_object__elf_collect(struct bpf_object * obj)3386 static int bpf_object__elf_collect(struct bpf_object *obj)
3387 {
3388 struct elf_sec_desc *sec_desc;
3389 Elf *elf = obj->efile.elf;
3390 Elf_Data *btf_ext_data = NULL;
3391 Elf_Data *btf_data = NULL;
3392 int idx = 0, err = 0;
3393 const char *name;
3394 Elf_Data *data;
3395 Elf_Scn *scn;
3396 Elf64_Shdr *sh;
3397
3398 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3399 * section. Since section count retrieved by elf_getshdrnum() does
3400 * include sec #0, it is already the necessary size of an array to keep
3401 * all the sections.
3402 */
3403 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3404 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3405 obj->path, elf_errmsg(-1));
3406 return -LIBBPF_ERRNO__FORMAT;
3407 }
3408 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3409 if (!obj->efile.secs)
3410 return -ENOMEM;
3411
3412 /* a bunch of ELF parsing functionality depends on processing symbols,
3413 * so do the first pass and find the symbol table
3414 */
3415 scn = NULL;
3416 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3417 sh = elf_sec_hdr(obj, scn);
3418 if (!sh)
3419 return -LIBBPF_ERRNO__FORMAT;
3420
3421 if (sh->sh_type == SHT_SYMTAB) {
3422 if (obj->efile.symbols) {
3423 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3424 return -LIBBPF_ERRNO__FORMAT;
3425 }
3426
3427 data = elf_sec_data(obj, scn);
3428 if (!data)
3429 return -LIBBPF_ERRNO__FORMAT;
3430
3431 idx = elf_ndxscn(scn);
3432
3433 obj->efile.symbols = data;
3434 obj->efile.symbols_shndx = idx;
3435 obj->efile.strtabidx = sh->sh_link;
3436 }
3437 }
3438
3439 if (!obj->efile.symbols) {
3440 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3441 obj->path);
3442 return -ENOENT;
3443 }
3444
3445 scn = NULL;
3446 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3447 idx = elf_ndxscn(scn);
3448 sec_desc = &obj->efile.secs[idx];
3449
3450 sh = elf_sec_hdr(obj, scn);
3451 if (!sh)
3452 return -LIBBPF_ERRNO__FORMAT;
3453
3454 name = elf_sec_str(obj, sh->sh_name);
3455 if (!name)
3456 return -LIBBPF_ERRNO__FORMAT;
3457
3458 if (ignore_elf_section(sh, name))
3459 continue;
3460
3461 data = elf_sec_data(obj, scn);
3462 if (!data)
3463 return -LIBBPF_ERRNO__FORMAT;
3464
3465 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3466 idx, name, (unsigned long)data->d_size,
3467 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3468 (int)sh->sh_type);
3469
3470 if (strcmp(name, "license") == 0) {
3471 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3472 if (err)
3473 return err;
3474 } else if (strcmp(name, "version") == 0) {
3475 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3476 if (err)
3477 return err;
3478 } else if (strcmp(name, "maps") == 0) {
3479 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3480 return -ENOTSUP;
3481 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3482 obj->efile.btf_maps_shndx = idx;
3483 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3484 if (sh->sh_type != SHT_PROGBITS)
3485 return -LIBBPF_ERRNO__FORMAT;
3486 btf_data = data;
3487 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3488 if (sh->sh_type != SHT_PROGBITS)
3489 return -LIBBPF_ERRNO__FORMAT;
3490 btf_ext_data = data;
3491 } else if (sh->sh_type == SHT_SYMTAB) {
3492 /* already processed during the first pass above */
3493 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3494 if (sh->sh_flags & SHF_EXECINSTR) {
3495 if (strcmp(name, ".text") == 0)
3496 obj->efile.text_shndx = idx;
3497 err = bpf_object__add_programs(obj, data, name, idx);
3498 if (err)
3499 return err;
3500 } else if (strcmp(name, DATA_SEC) == 0 ||
3501 str_has_pfx(name, DATA_SEC ".")) {
3502 sec_desc->sec_type = SEC_DATA;
3503 sec_desc->shdr = sh;
3504 sec_desc->data = data;
3505 } else if (strcmp(name, RODATA_SEC) == 0 ||
3506 str_has_pfx(name, RODATA_SEC ".")) {
3507 sec_desc->sec_type = SEC_RODATA;
3508 sec_desc->shdr = sh;
3509 sec_desc->data = data;
3510 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3511 obj->efile.st_ops_data = data;
3512 obj->efile.st_ops_shndx = idx;
3513 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3514 obj->efile.st_ops_link_data = data;
3515 obj->efile.st_ops_link_shndx = idx;
3516 } else {
3517 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3518 idx, name);
3519 }
3520 } else if (sh->sh_type == SHT_REL) {
3521 int targ_sec_idx = sh->sh_info; /* points to other section */
3522
3523 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3524 targ_sec_idx >= obj->efile.sec_cnt)
3525 return -LIBBPF_ERRNO__FORMAT;
3526
3527 /* Only do relo for section with exec instructions */
3528 if (!section_have_execinstr(obj, targ_sec_idx) &&
3529 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3530 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3531 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3532 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3533 idx, name, targ_sec_idx,
3534 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3535 continue;
3536 }
3537
3538 sec_desc->sec_type = SEC_RELO;
3539 sec_desc->shdr = sh;
3540 sec_desc->data = data;
3541 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3542 str_has_pfx(name, BSS_SEC "."))) {
3543 sec_desc->sec_type = SEC_BSS;
3544 sec_desc->shdr = sh;
3545 sec_desc->data = data;
3546 } else {
3547 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3548 (size_t)sh->sh_size);
3549 }
3550 }
3551
3552 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3553 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3554 return -LIBBPF_ERRNO__FORMAT;
3555 }
3556
3557 /* sort BPF programs by section name and in-section instruction offset
3558 * for faster search
3559 */
3560 if (obj->nr_programs)
3561 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3562
3563 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3564 }
3565
sym_is_extern(const Elf64_Sym * sym)3566 static bool sym_is_extern(const Elf64_Sym *sym)
3567 {
3568 int bind = ELF64_ST_BIND(sym->st_info);
3569 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3570 return sym->st_shndx == SHN_UNDEF &&
3571 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3572 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3573 }
3574
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)3575 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3576 {
3577 int bind = ELF64_ST_BIND(sym->st_info);
3578 int type = ELF64_ST_TYPE(sym->st_info);
3579
3580 /* in .text section */
3581 if (sym->st_shndx != text_shndx)
3582 return false;
3583
3584 /* local function */
3585 if (bind == STB_LOCAL && type == STT_SECTION)
3586 return true;
3587
3588 /* global function */
3589 return bind == STB_GLOBAL && type == STT_FUNC;
3590 }
3591
find_extern_btf_id(const struct btf * btf,const char * ext_name)3592 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3593 {
3594 const struct btf_type *t;
3595 const char *tname;
3596 int i, n;
3597
3598 if (!btf)
3599 return -ESRCH;
3600
3601 n = btf__type_cnt(btf);
3602 for (i = 1; i < n; i++) {
3603 t = btf__type_by_id(btf, i);
3604
3605 if (!btf_is_var(t) && !btf_is_func(t))
3606 continue;
3607
3608 tname = btf__name_by_offset(btf, t->name_off);
3609 if (strcmp(tname, ext_name))
3610 continue;
3611
3612 if (btf_is_var(t) &&
3613 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3614 return -EINVAL;
3615
3616 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3617 return -EINVAL;
3618
3619 return i;
3620 }
3621
3622 return -ENOENT;
3623 }
3624
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)3625 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3626 const struct btf_var_secinfo *vs;
3627 const struct btf_type *t;
3628 int i, j, n;
3629
3630 if (!btf)
3631 return -ESRCH;
3632
3633 n = btf__type_cnt(btf);
3634 for (i = 1; i < n; i++) {
3635 t = btf__type_by_id(btf, i);
3636
3637 if (!btf_is_datasec(t))
3638 continue;
3639
3640 vs = btf_var_secinfos(t);
3641 for (j = 0; j < btf_vlen(t); j++, vs++) {
3642 if (vs->type == ext_btf_id)
3643 return i;
3644 }
3645 }
3646
3647 return -ENOENT;
3648 }
3649
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3650 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3651 bool *is_signed)
3652 {
3653 const struct btf_type *t;
3654 const char *name;
3655
3656 t = skip_mods_and_typedefs(btf, id, NULL);
3657 name = btf__name_by_offset(btf, t->name_off);
3658
3659 if (is_signed)
3660 *is_signed = false;
3661 switch (btf_kind(t)) {
3662 case BTF_KIND_INT: {
3663 int enc = btf_int_encoding(t);
3664
3665 if (enc & BTF_INT_BOOL)
3666 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3667 if (is_signed)
3668 *is_signed = enc & BTF_INT_SIGNED;
3669 if (t->size == 1)
3670 return KCFG_CHAR;
3671 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3672 return KCFG_UNKNOWN;
3673 return KCFG_INT;
3674 }
3675 case BTF_KIND_ENUM:
3676 if (t->size != 4)
3677 return KCFG_UNKNOWN;
3678 if (strcmp(name, "libbpf_tristate"))
3679 return KCFG_UNKNOWN;
3680 return KCFG_TRISTATE;
3681 case BTF_KIND_ENUM64:
3682 if (strcmp(name, "libbpf_tristate"))
3683 return KCFG_UNKNOWN;
3684 return KCFG_TRISTATE;
3685 case BTF_KIND_ARRAY:
3686 if (btf_array(t)->nelems == 0)
3687 return KCFG_UNKNOWN;
3688 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3689 return KCFG_UNKNOWN;
3690 return KCFG_CHAR_ARR;
3691 default:
3692 return KCFG_UNKNOWN;
3693 }
3694 }
3695
cmp_externs(const void * _a,const void * _b)3696 static int cmp_externs(const void *_a, const void *_b)
3697 {
3698 const struct extern_desc *a = _a;
3699 const struct extern_desc *b = _b;
3700
3701 if (a->type != b->type)
3702 return a->type < b->type ? -1 : 1;
3703
3704 if (a->type == EXT_KCFG) {
3705 /* descending order by alignment requirements */
3706 if (a->kcfg.align != b->kcfg.align)
3707 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3708 /* ascending order by size, within same alignment class */
3709 if (a->kcfg.sz != b->kcfg.sz)
3710 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3711 }
3712
3713 /* resolve ties by name */
3714 return strcmp(a->name, b->name);
3715 }
3716
find_int_btf_id(const struct btf * btf)3717 static int find_int_btf_id(const struct btf *btf)
3718 {
3719 const struct btf_type *t;
3720 int i, n;
3721
3722 n = btf__type_cnt(btf);
3723 for (i = 1; i < n; i++) {
3724 t = btf__type_by_id(btf, i);
3725
3726 if (btf_is_int(t) && btf_int_bits(t) == 32)
3727 return i;
3728 }
3729
3730 return 0;
3731 }
3732
add_dummy_ksym_var(struct btf * btf)3733 static int add_dummy_ksym_var(struct btf *btf)
3734 {
3735 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3736 const struct btf_var_secinfo *vs;
3737 const struct btf_type *sec;
3738
3739 if (!btf)
3740 return 0;
3741
3742 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3743 BTF_KIND_DATASEC);
3744 if (sec_btf_id < 0)
3745 return 0;
3746
3747 sec = btf__type_by_id(btf, sec_btf_id);
3748 vs = btf_var_secinfos(sec);
3749 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3750 const struct btf_type *vt;
3751
3752 vt = btf__type_by_id(btf, vs->type);
3753 if (btf_is_func(vt))
3754 break;
3755 }
3756
3757 /* No func in ksyms sec. No need to add dummy var. */
3758 if (i == btf_vlen(sec))
3759 return 0;
3760
3761 int_btf_id = find_int_btf_id(btf);
3762 dummy_var_btf_id = btf__add_var(btf,
3763 "dummy_ksym",
3764 BTF_VAR_GLOBAL_ALLOCATED,
3765 int_btf_id);
3766 if (dummy_var_btf_id < 0)
3767 pr_warn("cannot create a dummy_ksym var\n");
3768
3769 return dummy_var_btf_id;
3770 }
3771
bpf_object__collect_externs(struct bpf_object * obj)3772 static int bpf_object__collect_externs(struct bpf_object *obj)
3773 {
3774 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3775 const struct btf_type *t;
3776 struct extern_desc *ext;
3777 int i, n, off, dummy_var_btf_id;
3778 const char *ext_name, *sec_name;
3779 size_t ext_essent_len;
3780 Elf_Scn *scn;
3781 Elf64_Shdr *sh;
3782
3783 if (!obj->efile.symbols)
3784 return 0;
3785
3786 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3787 sh = elf_sec_hdr(obj, scn);
3788 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3789 return -LIBBPF_ERRNO__FORMAT;
3790
3791 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3792 if (dummy_var_btf_id < 0)
3793 return dummy_var_btf_id;
3794
3795 n = sh->sh_size / sh->sh_entsize;
3796 pr_debug("looking for externs among %d symbols...\n", n);
3797
3798 for (i = 0; i < n; i++) {
3799 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3800
3801 if (!sym)
3802 return -LIBBPF_ERRNO__FORMAT;
3803 if (!sym_is_extern(sym))
3804 continue;
3805 ext_name = elf_sym_str(obj, sym->st_name);
3806 if (!ext_name || !ext_name[0])
3807 continue;
3808
3809 ext = obj->externs;
3810 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3811 if (!ext)
3812 return -ENOMEM;
3813 obj->externs = ext;
3814 ext = &ext[obj->nr_extern];
3815 memset(ext, 0, sizeof(*ext));
3816 obj->nr_extern++;
3817
3818 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3819 if (ext->btf_id <= 0) {
3820 pr_warn("failed to find BTF for extern '%s': %d\n",
3821 ext_name, ext->btf_id);
3822 return ext->btf_id;
3823 }
3824 t = btf__type_by_id(obj->btf, ext->btf_id);
3825 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3826 ext->sym_idx = i;
3827 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3828
3829 ext_essent_len = bpf_core_essential_name_len(ext->name);
3830 ext->essent_name = NULL;
3831 if (ext_essent_len != strlen(ext->name)) {
3832 ext->essent_name = strndup(ext->name, ext_essent_len);
3833 if (!ext->essent_name)
3834 return -ENOMEM;
3835 }
3836
3837 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3838 if (ext->sec_btf_id <= 0) {
3839 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3840 ext_name, ext->btf_id, ext->sec_btf_id);
3841 return ext->sec_btf_id;
3842 }
3843 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3844 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3845
3846 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3847 if (btf_is_func(t)) {
3848 pr_warn("extern function %s is unsupported under %s section\n",
3849 ext->name, KCONFIG_SEC);
3850 return -ENOTSUP;
3851 }
3852 kcfg_sec = sec;
3853 ext->type = EXT_KCFG;
3854 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3855 if (ext->kcfg.sz <= 0) {
3856 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3857 ext_name, ext->kcfg.sz);
3858 return ext->kcfg.sz;
3859 }
3860 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3861 if (ext->kcfg.align <= 0) {
3862 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3863 ext_name, ext->kcfg.align);
3864 return -EINVAL;
3865 }
3866 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3867 &ext->kcfg.is_signed);
3868 if (ext->kcfg.type == KCFG_UNKNOWN) {
3869 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3870 return -ENOTSUP;
3871 }
3872 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3873 ksym_sec = sec;
3874 ext->type = EXT_KSYM;
3875 skip_mods_and_typedefs(obj->btf, t->type,
3876 &ext->ksym.type_id);
3877 } else {
3878 pr_warn("unrecognized extern section '%s'\n", sec_name);
3879 return -ENOTSUP;
3880 }
3881 }
3882 pr_debug("collected %d externs total\n", obj->nr_extern);
3883
3884 if (!obj->nr_extern)
3885 return 0;
3886
3887 /* sort externs by type, for kcfg ones also by (align, size, name) */
3888 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3889
3890 /* for .ksyms section, we need to turn all externs into allocated
3891 * variables in BTF to pass kernel verification; we do this by
3892 * pretending that each extern is a 8-byte variable
3893 */
3894 if (ksym_sec) {
3895 /* find existing 4-byte integer type in BTF to use for fake
3896 * extern variables in DATASEC
3897 */
3898 int int_btf_id = find_int_btf_id(obj->btf);
3899 /* For extern function, a dummy_var added earlier
3900 * will be used to replace the vs->type and
3901 * its name string will be used to refill
3902 * the missing param's name.
3903 */
3904 const struct btf_type *dummy_var;
3905
3906 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3907 for (i = 0; i < obj->nr_extern; i++) {
3908 ext = &obj->externs[i];
3909 if (ext->type != EXT_KSYM)
3910 continue;
3911 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3912 i, ext->sym_idx, ext->name);
3913 }
3914
3915 sec = ksym_sec;
3916 n = btf_vlen(sec);
3917 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3918 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3919 struct btf_type *vt;
3920
3921 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3922 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3923 ext = find_extern_by_name(obj, ext_name);
3924 if (!ext) {
3925 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3926 btf_kind_str(vt), ext_name);
3927 return -ESRCH;
3928 }
3929 if (btf_is_func(vt)) {
3930 const struct btf_type *func_proto;
3931 struct btf_param *param;
3932 int j;
3933
3934 func_proto = btf__type_by_id(obj->btf,
3935 vt->type);
3936 param = btf_params(func_proto);
3937 /* Reuse the dummy_var string if the
3938 * func proto does not have param name.
3939 */
3940 for (j = 0; j < btf_vlen(func_proto); j++)
3941 if (param[j].type && !param[j].name_off)
3942 param[j].name_off =
3943 dummy_var->name_off;
3944 vs->type = dummy_var_btf_id;
3945 vt->info &= ~0xffff;
3946 vt->info |= BTF_FUNC_GLOBAL;
3947 } else {
3948 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3949 vt->type = int_btf_id;
3950 }
3951 vs->offset = off;
3952 vs->size = sizeof(int);
3953 }
3954 sec->size = off;
3955 }
3956
3957 if (kcfg_sec) {
3958 sec = kcfg_sec;
3959 /* for kcfg externs calculate their offsets within a .kconfig map */
3960 off = 0;
3961 for (i = 0; i < obj->nr_extern; i++) {
3962 ext = &obj->externs[i];
3963 if (ext->type != EXT_KCFG)
3964 continue;
3965
3966 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3967 off = ext->kcfg.data_off + ext->kcfg.sz;
3968 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3969 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3970 }
3971 sec->size = off;
3972 n = btf_vlen(sec);
3973 for (i = 0; i < n; i++) {
3974 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3975
3976 t = btf__type_by_id(obj->btf, vs->type);
3977 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3978 ext = find_extern_by_name(obj, ext_name);
3979 if (!ext) {
3980 pr_warn("failed to find extern definition for BTF var '%s'\n",
3981 ext_name);
3982 return -ESRCH;
3983 }
3984 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3985 vs->offset = ext->kcfg.data_off;
3986 }
3987 }
3988 return 0;
3989 }
3990
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3991 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3992 {
3993 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3994 }
3995
3996 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3997 bpf_object__find_program_by_name(const struct bpf_object *obj,
3998 const char *name)
3999 {
4000 struct bpf_program *prog;
4001
4002 bpf_object__for_each_program(prog, obj) {
4003 if (prog_is_subprog(obj, prog))
4004 continue;
4005 if (!strcmp(prog->name, name))
4006 return prog;
4007 }
4008 return errno = ENOENT, NULL;
4009 }
4010
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4011 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4012 int shndx)
4013 {
4014 switch (obj->efile.secs[shndx].sec_type) {
4015 case SEC_BSS:
4016 case SEC_DATA:
4017 case SEC_RODATA:
4018 return true;
4019 default:
4020 return false;
4021 }
4022 }
4023
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4024 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4025 int shndx)
4026 {
4027 return shndx == obj->efile.btf_maps_shndx;
4028 }
4029
4030 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4031 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4032 {
4033 if (shndx == obj->efile.symbols_shndx)
4034 return LIBBPF_MAP_KCONFIG;
4035
4036 switch (obj->efile.secs[shndx].sec_type) {
4037 case SEC_BSS:
4038 return LIBBPF_MAP_BSS;
4039 case SEC_DATA:
4040 return LIBBPF_MAP_DATA;
4041 case SEC_RODATA:
4042 return LIBBPF_MAP_RODATA;
4043 default:
4044 return LIBBPF_MAP_UNSPEC;
4045 }
4046 }
4047
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4048 static int bpf_program__record_reloc(struct bpf_program *prog,
4049 struct reloc_desc *reloc_desc,
4050 __u32 insn_idx, const char *sym_name,
4051 const Elf64_Sym *sym, const Elf64_Rel *rel)
4052 {
4053 struct bpf_insn *insn = &prog->insns[insn_idx];
4054 size_t map_idx, nr_maps = prog->obj->nr_maps;
4055 struct bpf_object *obj = prog->obj;
4056 __u32 shdr_idx = sym->st_shndx;
4057 enum libbpf_map_type type;
4058 const char *sym_sec_name;
4059 struct bpf_map *map;
4060
4061 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4062 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4063 prog->name, sym_name, insn_idx, insn->code);
4064 return -LIBBPF_ERRNO__RELOC;
4065 }
4066
4067 if (sym_is_extern(sym)) {
4068 int sym_idx = ELF64_R_SYM(rel->r_info);
4069 int i, n = obj->nr_extern;
4070 struct extern_desc *ext;
4071
4072 for (i = 0; i < n; i++) {
4073 ext = &obj->externs[i];
4074 if (ext->sym_idx == sym_idx)
4075 break;
4076 }
4077 if (i >= n) {
4078 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4079 prog->name, sym_name, sym_idx);
4080 return -LIBBPF_ERRNO__RELOC;
4081 }
4082 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4083 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4084 if (insn->code == (BPF_JMP | BPF_CALL))
4085 reloc_desc->type = RELO_EXTERN_CALL;
4086 else
4087 reloc_desc->type = RELO_EXTERN_LD64;
4088 reloc_desc->insn_idx = insn_idx;
4089 reloc_desc->ext_idx = i;
4090 return 0;
4091 }
4092
4093 /* sub-program call relocation */
4094 if (is_call_insn(insn)) {
4095 if (insn->src_reg != BPF_PSEUDO_CALL) {
4096 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4097 return -LIBBPF_ERRNO__RELOC;
4098 }
4099 /* text_shndx can be 0, if no default "main" program exists */
4100 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4101 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4102 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4103 prog->name, sym_name, sym_sec_name);
4104 return -LIBBPF_ERRNO__RELOC;
4105 }
4106 if (sym->st_value % BPF_INSN_SZ) {
4107 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4108 prog->name, sym_name, (size_t)sym->st_value);
4109 return -LIBBPF_ERRNO__RELOC;
4110 }
4111 reloc_desc->type = RELO_CALL;
4112 reloc_desc->insn_idx = insn_idx;
4113 reloc_desc->sym_off = sym->st_value;
4114 return 0;
4115 }
4116
4117 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4118 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4119 prog->name, sym_name, shdr_idx);
4120 return -LIBBPF_ERRNO__RELOC;
4121 }
4122
4123 /* loading subprog addresses */
4124 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4125 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4126 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4127 */
4128 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4129 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4130 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4131 return -LIBBPF_ERRNO__RELOC;
4132 }
4133
4134 reloc_desc->type = RELO_SUBPROG_ADDR;
4135 reloc_desc->insn_idx = insn_idx;
4136 reloc_desc->sym_off = sym->st_value;
4137 return 0;
4138 }
4139
4140 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4141 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4142
4143 /* generic map reference relocation */
4144 if (type == LIBBPF_MAP_UNSPEC) {
4145 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4146 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4147 prog->name, sym_name, sym_sec_name);
4148 return -LIBBPF_ERRNO__RELOC;
4149 }
4150 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4151 map = &obj->maps[map_idx];
4152 if (map->libbpf_type != type ||
4153 map->sec_idx != sym->st_shndx ||
4154 map->sec_offset != sym->st_value)
4155 continue;
4156 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4157 prog->name, map_idx, map->name, map->sec_idx,
4158 map->sec_offset, insn_idx);
4159 break;
4160 }
4161 if (map_idx >= nr_maps) {
4162 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4163 prog->name, sym_sec_name, (size_t)sym->st_value);
4164 return -LIBBPF_ERRNO__RELOC;
4165 }
4166 reloc_desc->type = RELO_LD64;
4167 reloc_desc->insn_idx = insn_idx;
4168 reloc_desc->map_idx = map_idx;
4169 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4170 return 0;
4171 }
4172
4173 /* global data map relocation */
4174 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4175 pr_warn("prog '%s': bad data relo against section '%s'\n",
4176 prog->name, sym_sec_name);
4177 return -LIBBPF_ERRNO__RELOC;
4178 }
4179 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4180 map = &obj->maps[map_idx];
4181 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4182 continue;
4183 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4184 prog->name, map_idx, map->name, map->sec_idx,
4185 map->sec_offset, insn_idx);
4186 break;
4187 }
4188 if (map_idx >= nr_maps) {
4189 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4190 prog->name, sym_sec_name);
4191 return -LIBBPF_ERRNO__RELOC;
4192 }
4193
4194 reloc_desc->type = RELO_DATA;
4195 reloc_desc->insn_idx = insn_idx;
4196 reloc_desc->map_idx = map_idx;
4197 reloc_desc->sym_off = sym->st_value;
4198 return 0;
4199 }
4200
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4201 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4202 {
4203 return insn_idx >= prog->sec_insn_off &&
4204 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4205 }
4206
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4207 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4208 size_t sec_idx, size_t insn_idx)
4209 {
4210 int l = 0, r = obj->nr_programs - 1, m;
4211 struct bpf_program *prog;
4212
4213 if (!obj->nr_programs)
4214 return NULL;
4215
4216 while (l < r) {
4217 m = l + (r - l + 1) / 2;
4218 prog = &obj->programs[m];
4219
4220 if (prog->sec_idx < sec_idx ||
4221 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4222 l = m;
4223 else
4224 r = m - 1;
4225 }
4226 /* matching program could be at index l, but it still might be the
4227 * wrong one, so we need to double check conditions for the last time
4228 */
4229 prog = &obj->programs[l];
4230 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4231 return prog;
4232 return NULL;
4233 }
4234
4235 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4236 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4237 {
4238 const char *relo_sec_name, *sec_name;
4239 size_t sec_idx = shdr->sh_info, sym_idx;
4240 struct bpf_program *prog;
4241 struct reloc_desc *relos;
4242 int err, i, nrels;
4243 const char *sym_name;
4244 __u32 insn_idx;
4245 Elf_Scn *scn;
4246 Elf_Data *scn_data;
4247 Elf64_Sym *sym;
4248 Elf64_Rel *rel;
4249
4250 if (sec_idx >= obj->efile.sec_cnt)
4251 return -EINVAL;
4252
4253 scn = elf_sec_by_idx(obj, sec_idx);
4254 scn_data = elf_sec_data(obj, scn);
4255 if (!scn_data)
4256 return -LIBBPF_ERRNO__FORMAT;
4257
4258 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4259 sec_name = elf_sec_name(obj, scn);
4260 if (!relo_sec_name || !sec_name)
4261 return -EINVAL;
4262
4263 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4264 relo_sec_name, sec_idx, sec_name);
4265 nrels = shdr->sh_size / shdr->sh_entsize;
4266
4267 for (i = 0; i < nrels; i++) {
4268 rel = elf_rel_by_idx(data, i);
4269 if (!rel) {
4270 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4271 return -LIBBPF_ERRNO__FORMAT;
4272 }
4273
4274 sym_idx = ELF64_R_SYM(rel->r_info);
4275 sym = elf_sym_by_idx(obj, sym_idx);
4276 if (!sym) {
4277 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4278 relo_sec_name, sym_idx, i);
4279 return -LIBBPF_ERRNO__FORMAT;
4280 }
4281
4282 if (sym->st_shndx >= obj->efile.sec_cnt) {
4283 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4284 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4285 return -LIBBPF_ERRNO__FORMAT;
4286 }
4287
4288 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4289 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4290 relo_sec_name, (size_t)rel->r_offset, i);
4291 return -LIBBPF_ERRNO__FORMAT;
4292 }
4293
4294 insn_idx = rel->r_offset / BPF_INSN_SZ;
4295 /* relocations against static functions are recorded as
4296 * relocations against the section that contains a function;
4297 * in such case, symbol will be STT_SECTION and sym.st_name
4298 * will point to empty string (0), so fetch section name
4299 * instead
4300 */
4301 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4302 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4303 else
4304 sym_name = elf_sym_str(obj, sym->st_name);
4305 sym_name = sym_name ?: "<?";
4306
4307 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4308 relo_sec_name, i, insn_idx, sym_name);
4309
4310 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4311 if (!prog) {
4312 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4313 relo_sec_name, i, sec_name, insn_idx);
4314 continue;
4315 }
4316
4317 relos = libbpf_reallocarray(prog->reloc_desc,
4318 prog->nr_reloc + 1, sizeof(*relos));
4319 if (!relos)
4320 return -ENOMEM;
4321 prog->reloc_desc = relos;
4322
4323 /* adjust insn_idx to local BPF program frame of reference */
4324 insn_idx -= prog->sec_insn_off;
4325 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4326 insn_idx, sym_name, sym, rel);
4327 if (err)
4328 return err;
4329
4330 prog->nr_reloc++;
4331 }
4332 return 0;
4333 }
4334
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4335 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4336 {
4337 int id;
4338
4339 if (!obj->btf)
4340 return -ENOENT;
4341
4342 /* if it's BTF-defined map, we don't need to search for type IDs.
4343 * For struct_ops map, it does not need btf_key_type_id and
4344 * btf_value_type_id.
4345 */
4346 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4347 return 0;
4348
4349 /*
4350 * LLVM annotates global data differently in BTF, that is,
4351 * only as '.data', '.bss' or '.rodata'.
4352 */
4353 if (!bpf_map__is_internal(map))
4354 return -ENOENT;
4355
4356 id = btf__find_by_name(obj->btf, map->real_name);
4357 if (id < 0)
4358 return id;
4359
4360 map->btf_key_type_id = 0;
4361 map->btf_value_type_id = id;
4362 return 0;
4363 }
4364
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4365 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4366 {
4367 char file[PATH_MAX], buff[4096];
4368 FILE *fp;
4369 __u32 val;
4370 int err;
4371
4372 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4373 memset(info, 0, sizeof(*info));
4374
4375 fp = fopen(file, "re");
4376 if (!fp) {
4377 err = -errno;
4378 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4379 err);
4380 return err;
4381 }
4382
4383 while (fgets(buff, sizeof(buff), fp)) {
4384 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4385 info->type = val;
4386 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4387 info->key_size = val;
4388 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4389 info->value_size = val;
4390 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4391 info->max_entries = val;
4392 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4393 info->map_flags = val;
4394 }
4395
4396 fclose(fp);
4397
4398 return 0;
4399 }
4400
bpf_map__autocreate(const struct bpf_map * map)4401 bool bpf_map__autocreate(const struct bpf_map *map)
4402 {
4403 return map->autocreate;
4404 }
4405
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4406 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4407 {
4408 if (map->obj->loaded)
4409 return libbpf_err(-EBUSY);
4410
4411 map->autocreate = autocreate;
4412 return 0;
4413 }
4414
bpf_map__reuse_fd(struct bpf_map * map,int fd)4415 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4416 {
4417 struct bpf_map_info info;
4418 __u32 len = sizeof(info), name_len;
4419 int new_fd, err;
4420 char *new_name;
4421
4422 memset(&info, 0, len);
4423 err = bpf_map_get_info_by_fd(fd, &info, &len);
4424 if (err && errno == EINVAL)
4425 err = bpf_get_map_info_from_fdinfo(fd, &info);
4426 if (err)
4427 return libbpf_err(err);
4428
4429 name_len = strlen(info.name);
4430 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4431 new_name = strdup(map->name);
4432 else
4433 new_name = strdup(info.name);
4434
4435 if (!new_name)
4436 return libbpf_err(-errno);
4437
4438 /*
4439 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4440 * This is similar to what we do in ensure_good_fd(), but without
4441 * closing original FD.
4442 */
4443 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4444 if (new_fd < 0) {
4445 err = -errno;
4446 goto err_free_new_name;
4447 }
4448
4449 err = zclose(map->fd);
4450 if (err) {
4451 err = -errno;
4452 goto err_close_new_fd;
4453 }
4454 free(map->name);
4455
4456 map->fd = new_fd;
4457 map->name = new_name;
4458 map->def.type = info.type;
4459 map->def.key_size = info.key_size;
4460 map->def.value_size = info.value_size;
4461 map->def.max_entries = info.max_entries;
4462 map->def.map_flags = info.map_flags;
4463 map->btf_key_type_id = info.btf_key_type_id;
4464 map->btf_value_type_id = info.btf_value_type_id;
4465 map->reused = true;
4466 map->map_extra = info.map_extra;
4467
4468 return 0;
4469
4470 err_close_new_fd:
4471 close(new_fd);
4472 err_free_new_name:
4473 free(new_name);
4474 return libbpf_err(err);
4475 }
4476
bpf_map__max_entries(const struct bpf_map * map)4477 __u32 bpf_map__max_entries(const struct bpf_map *map)
4478 {
4479 return map->def.max_entries;
4480 }
4481
bpf_map__inner_map(struct bpf_map * map)4482 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4483 {
4484 if (!bpf_map_type__is_map_in_map(map->def.type))
4485 return errno = EINVAL, NULL;
4486
4487 return map->inner_map;
4488 }
4489
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4490 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4491 {
4492 if (map->obj->loaded)
4493 return libbpf_err(-EBUSY);
4494
4495 map->def.max_entries = max_entries;
4496
4497 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4498 if (map_is_ringbuf(map))
4499 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4500
4501 return 0;
4502 }
4503
4504 static int
bpf_object__probe_loading(struct bpf_object * obj)4505 bpf_object__probe_loading(struct bpf_object *obj)
4506 {
4507 char *cp, errmsg[STRERR_BUFSIZE];
4508 struct bpf_insn insns[] = {
4509 BPF_MOV64_IMM(BPF_REG_0, 0),
4510 BPF_EXIT_INSN(),
4511 };
4512 int ret, insn_cnt = ARRAY_SIZE(insns);
4513
4514 if (obj->gen_loader)
4515 return 0;
4516
4517 ret = bump_rlimit_memlock();
4518 if (ret)
4519 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4520
4521 /* make sure basic loading works */
4522 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4523 if (ret < 0)
4524 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4525 if (ret < 0) {
4526 ret = errno;
4527 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4528 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4529 "program. Make sure your kernel supports BPF "
4530 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4531 "set to big enough value.\n", __func__, cp, ret);
4532 return -ret;
4533 }
4534 close(ret);
4535
4536 return 0;
4537 }
4538
probe_fd(int fd)4539 static int probe_fd(int fd)
4540 {
4541 if (fd >= 0)
4542 close(fd);
4543 return fd >= 0;
4544 }
4545
probe_kern_prog_name(void)4546 static int probe_kern_prog_name(void)
4547 {
4548 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4549 struct bpf_insn insns[] = {
4550 BPF_MOV64_IMM(BPF_REG_0, 0),
4551 BPF_EXIT_INSN(),
4552 };
4553 union bpf_attr attr;
4554 int ret;
4555
4556 memset(&attr, 0, attr_sz);
4557 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4558 attr.license = ptr_to_u64("GPL");
4559 attr.insns = ptr_to_u64(insns);
4560 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4561 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4562
4563 /* make sure loading with name works */
4564 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4565 return probe_fd(ret);
4566 }
4567
probe_kern_global_data(void)4568 static int probe_kern_global_data(void)
4569 {
4570 char *cp, errmsg[STRERR_BUFSIZE];
4571 struct bpf_insn insns[] = {
4572 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4573 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4574 BPF_MOV64_IMM(BPF_REG_0, 0),
4575 BPF_EXIT_INSN(),
4576 };
4577 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4578
4579 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4580 if (map < 0) {
4581 ret = -errno;
4582 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4583 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4584 __func__, cp, -ret);
4585 return ret;
4586 }
4587
4588 insns[0].imm = map;
4589
4590 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4591 close(map);
4592 return probe_fd(ret);
4593 }
4594
probe_kern_btf(void)4595 static int probe_kern_btf(void)
4596 {
4597 static const char strs[] = "\0int";
4598 __u32 types[] = {
4599 /* int */
4600 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4601 };
4602
4603 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4604 strs, sizeof(strs)));
4605 }
4606
probe_kern_btf_func(void)4607 static int probe_kern_btf_func(void)
4608 {
4609 static const char strs[] = "\0int\0x\0a";
4610 /* void x(int a) {} */
4611 __u32 types[] = {
4612 /* int */
4613 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4614 /* FUNC_PROTO */ /* [2] */
4615 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4616 BTF_PARAM_ENC(7, 1),
4617 /* FUNC x */ /* [3] */
4618 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4619 };
4620
4621 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4622 strs, sizeof(strs)));
4623 }
4624
probe_kern_btf_func_global(void)4625 static int probe_kern_btf_func_global(void)
4626 {
4627 static const char strs[] = "\0int\0x\0a";
4628 /* static void x(int a) {} */
4629 __u32 types[] = {
4630 /* int */
4631 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4632 /* FUNC_PROTO */ /* [2] */
4633 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4634 BTF_PARAM_ENC(7, 1),
4635 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4636 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4637 };
4638
4639 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4640 strs, sizeof(strs)));
4641 }
4642
probe_kern_btf_datasec(void)4643 static int probe_kern_btf_datasec(void)
4644 {
4645 static const char strs[] = "\0x\0.data";
4646 /* static int a; */
4647 __u32 types[] = {
4648 /* int */
4649 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4650 /* VAR x */ /* [2] */
4651 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4652 BTF_VAR_STATIC,
4653 /* DATASEC val */ /* [3] */
4654 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4655 BTF_VAR_SECINFO_ENC(2, 0, 4),
4656 };
4657
4658 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4659 strs, sizeof(strs)));
4660 }
4661
probe_kern_btf_float(void)4662 static int probe_kern_btf_float(void)
4663 {
4664 static const char strs[] = "\0float";
4665 __u32 types[] = {
4666 /* float */
4667 BTF_TYPE_FLOAT_ENC(1, 4),
4668 };
4669
4670 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4671 strs, sizeof(strs)));
4672 }
4673
probe_kern_btf_decl_tag(void)4674 static int probe_kern_btf_decl_tag(void)
4675 {
4676 static const char strs[] = "\0tag";
4677 __u32 types[] = {
4678 /* int */
4679 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4680 /* VAR x */ /* [2] */
4681 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4682 BTF_VAR_STATIC,
4683 /* attr */
4684 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4685 };
4686
4687 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4688 strs, sizeof(strs)));
4689 }
4690
probe_kern_btf_type_tag(void)4691 static int probe_kern_btf_type_tag(void)
4692 {
4693 static const char strs[] = "\0tag";
4694 __u32 types[] = {
4695 /* int */
4696 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4697 /* attr */
4698 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4699 /* ptr */
4700 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4701 };
4702
4703 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4704 strs, sizeof(strs)));
4705 }
4706
probe_kern_array_mmap(void)4707 static int probe_kern_array_mmap(void)
4708 {
4709 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4710 int fd;
4711
4712 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4713 return probe_fd(fd);
4714 }
4715
probe_kern_exp_attach_type(void)4716 static int probe_kern_exp_attach_type(void)
4717 {
4718 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4719 struct bpf_insn insns[] = {
4720 BPF_MOV64_IMM(BPF_REG_0, 0),
4721 BPF_EXIT_INSN(),
4722 };
4723 int fd, insn_cnt = ARRAY_SIZE(insns);
4724
4725 /* use any valid combination of program type and (optional)
4726 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4727 * to see if kernel supports expected_attach_type field for
4728 * BPF_PROG_LOAD command
4729 */
4730 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4731 return probe_fd(fd);
4732 }
4733
probe_kern_probe_read_kernel(void)4734 static int probe_kern_probe_read_kernel(void)
4735 {
4736 struct bpf_insn insns[] = {
4737 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4738 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4739 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4740 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4741 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4742 BPF_EXIT_INSN(),
4743 };
4744 int fd, insn_cnt = ARRAY_SIZE(insns);
4745
4746 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4747 return probe_fd(fd);
4748 }
4749
probe_prog_bind_map(void)4750 static int probe_prog_bind_map(void)
4751 {
4752 char *cp, errmsg[STRERR_BUFSIZE];
4753 struct bpf_insn insns[] = {
4754 BPF_MOV64_IMM(BPF_REG_0, 0),
4755 BPF_EXIT_INSN(),
4756 };
4757 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4758
4759 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4760 if (map < 0) {
4761 ret = -errno;
4762 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4763 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4764 __func__, cp, -ret);
4765 return ret;
4766 }
4767
4768 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4769 if (prog < 0) {
4770 close(map);
4771 return 0;
4772 }
4773
4774 ret = bpf_prog_bind_map(prog, map, NULL);
4775
4776 close(map);
4777 close(prog);
4778
4779 return ret >= 0;
4780 }
4781
probe_module_btf(void)4782 static int probe_module_btf(void)
4783 {
4784 static const char strs[] = "\0int";
4785 __u32 types[] = {
4786 /* int */
4787 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4788 };
4789 struct bpf_btf_info info;
4790 __u32 len = sizeof(info);
4791 char name[16];
4792 int fd, err;
4793
4794 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4795 if (fd < 0)
4796 return 0; /* BTF not supported at all */
4797
4798 memset(&info, 0, sizeof(info));
4799 info.name = ptr_to_u64(name);
4800 info.name_len = sizeof(name);
4801
4802 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4803 * kernel's module BTF support coincides with support for
4804 * name/name_len fields in struct bpf_btf_info.
4805 */
4806 err = bpf_btf_get_info_by_fd(fd, &info, &len);
4807 close(fd);
4808 return !err;
4809 }
4810
probe_perf_link(void)4811 static int probe_perf_link(void)
4812 {
4813 struct bpf_insn insns[] = {
4814 BPF_MOV64_IMM(BPF_REG_0, 0),
4815 BPF_EXIT_INSN(),
4816 };
4817 int prog_fd, link_fd, err;
4818
4819 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4820 insns, ARRAY_SIZE(insns), NULL);
4821 if (prog_fd < 0)
4822 return -errno;
4823
4824 /* use invalid perf_event FD to get EBADF, if link is supported;
4825 * otherwise EINVAL should be returned
4826 */
4827 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4828 err = -errno; /* close() can clobber errno */
4829
4830 if (link_fd >= 0)
4831 close(link_fd);
4832 close(prog_fd);
4833
4834 return link_fd < 0 && err == -EBADF;
4835 }
4836
probe_uprobe_multi_link(void)4837 static int probe_uprobe_multi_link(void)
4838 {
4839 LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4840 .expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4841 );
4842 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4843 struct bpf_insn insns[] = {
4844 BPF_MOV64_IMM(BPF_REG_0, 0),
4845 BPF_EXIT_INSN(),
4846 };
4847 int prog_fd, link_fd, err;
4848 unsigned long offset = 0;
4849
4850 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4851 insns, ARRAY_SIZE(insns), &load_opts);
4852 if (prog_fd < 0)
4853 return -errno;
4854
4855 /* Creating uprobe in '/' binary should fail with -EBADF. */
4856 link_opts.uprobe_multi.path = "/";
4857 link_opts.uprobe_multi.offsets = &offset;
4858 link_opts.uprobe_multi.cnt = 1;
4859
4860 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4861 err = -errno; /* close() can clobber errno */
4862
4863 if (link_fd >= 0)
4864 close(link_fd);
4865 close(prog_fd);
4866
4867 return link_fd < 0 && err == -EBADF;
4868 }
4869
probe_kern_bpf_cookie(void)4870 static int probe_kern_bpf_cookie(void)
4871 {
4872 struct bpf_insn insns[] = {
4873 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4874 BPF_EXIT_INSN(),
4875 };
4876 int ret, insn_cnt = ARRAY_SIZE(insns);
4877
4878 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4879 return probe_fd(ret);
4880 }
4881
probe_kern_btf_enum64(void)4882 static int probe_kern_btf_enum64(void)
4883 {
4884 static const char strs[] = "\0enum64";
4885 __u32 types[] = {
4886 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4887 };
4888
4889 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4890 strs, sizeof(strs)));
4891 }
4892
4893 static int probe_kern_syscall_wrapper(void);
4894
4895 enum kern_feature_result {
4896 FEAT_UNKNOWN = 0,
4897 FEAT_SUPPORTED = 1,
4898 FEAT_MISSING = 2,
4899 };
4900
4901 typedef int (*feature_probe_fn)(void);
4902
4903 static struct kern_feature_desc {
4904 const char *desc;
4905 feature_probe_fn probe;
4906 enum kern_feature_result res;
4907 } feature_probes[__FEAT_CNT] = {
4908 [FEAT_PROG_NAME] = {
4909 "BPF program name", probe_kern_prog_name,
4910 },
4911 [FEAT_GLOBAL_DATA] = {
4912 "global variables", probe_kern_global_data,
4913 },
4914 [FEAT_BTF] = {
4915 "minimal BTF", probe_kern_btf,
4916 },
4917 [FEAT_BTF_FUNC] = {
4918 "BTF functions", probe_kern_btf_func,
4919 },
4920 [FEAT_BTF_GLOBAL_FUNC] = {
4921 "BTF global function", probe_kern_btf_func_global,
4922 },
4923 [FEAT_BTF_DATASEC] = {
4924 "BTF data section and variable", probe_kern_btf_datasec,
4925 },
4926 [FEAT_ARRAY_MMAP] = {
4927 "ARRAY map mmap()", probe_kern_array_mmap,
4928 },
4929 [FEAT_EXP_ATTACH_TYPE] = {
4930 "BPF_PROG_LOAD expected_attach_type attribute",
4931 probe_kern_exp_attach_type,
4932 },
4933 [FEAT_PROBE_READ_KERN] = {
4934 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4935 },
4936 [FEAT_PROG_BIND_MAP] = {
4937 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4938 },
4939 [FEAT_MODULE_BTF] = {
4940 "module BTF support", probe_module_btf,
4941 },
4942 [FEAT_BTF_FLOAT] = {
4943 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4944 },
4945 [FEAT_PERF_LINK] = {
4946 "BPF perf link support", probe_perf_link,
4947 },
4948 [FEAT_BTF_DECL_TAG] = {
4949 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4950 },
4951 [FEAT_BTF_TYPE_TAG] = {
4952 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4953 },
4954 [FEAT_MEMCG_ACCOUNT] = {
4955 "memcg-based memory accounting", probe_memcg_account,
4956 },
4957 [FEAT_BPF_COOKIE] = {
4958 "BPF cookie support", probe_kern_bpf_cookie,
4959 },
4960 [FEAT_BTF_ENUM64] = {
4961 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4962 },
4963 [FEAT_SYSCALL_WRAPPER] = {
4964 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4965 },
4966 [FEAT_UPROBE_MULTI_LINK] = {
4967 "BPF multi-uprobe link support", probe_uprobe_multi_link,
4968 },
4969 };
4970
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)4971 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4972 {
4973 struct kern_feature_desc *feat = &feature_probes[feat_id];
4974 int ret;
4975
4976 if (obj && obj->gen_loader)
4977 /* To generate loader program assume the latest kernel
4978 * to avoid doing extra prog_load, map_create syscalls.
4979 */
4980 return true;
4981
4982 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4983 ret = feat->probe();
4984 if (ret > 0) {
4985 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4986 } else if (ret == 0) {
4987 WRITE_ONCE(feat->res, FEAT_MISSING);
4988 } else {
4989 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4990 WRITE_ONCE(feat->res, FEAT_MISSING);
4991 }
4992 }
4993
4994 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4995 }
4996
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4997 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4998 {
4999 struct bpf_map_info map_info;
5000 char msg[STRERR_BUFSIZE];
5001 __u32 map_info_len = sizeof(map_info);
5002 int err;
5003
5004 memset(&map_info, 0, map_info_len);
5005 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5006 if (err && errno == EINVAL)
5007 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5008 if (err) {
5009 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5010 libbpf_strerror_r(errno, msg, sizeof(msg)));
5011 return false;
5012 }
5013
5014 return (map_info.type == map->def.type &&
5015 map_info.key_size == map->def.key_size &&
5016 map_info.value_size == map->def.value_size &&
5017 map_info.max_entries == map->def.max_entries &&
5018 map_info.map_flags == map->def.map_flags &&
5019 map_info.map_extra == map->map_extra);
5020 }
5021
5022 static int
bpf_object__reuse_map(struct bpf_map * map)5023 bpf_object__reuse_map(struct bpf_map *map)
5024 {
5025 char *cp, errmsg[STRERR_BUFSIZE];
5026 int err, pin_fd;
5027
5028 pin_fd = bpf_obj_get(map->pin_path);
5029 if (pin_fd < 0) {
5030 err = -errno;
5031 if (err == -ENOENT) {
5032 pr_debug("found no pinned map to reuse at '%s'\n",
5033 map->pin_path);
5034 return 0;
5035 }
5036
5037 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5038 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5039 map->pin_path, cp);
5040 return err;
5041 }
5042
5043 if (!map_is_reuse_compat(map, pin_fd)) {
5044 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5045 map->pin_path);
5046 close(pin_fd);
5047 return -EINVAL;
5048 }
5049
5050 err = bpf_map__reuse_fd(map, pin_fd);
5051 close(pin_fd);
5052 if (err)
5053 return err;
5054
5055 map->pinned = true;
5056 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5057
5058 return 0;
5059 }
5060
5061 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5062 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5063 {
5064 enum libbpf_map_type map_type = map->libbpf_type;
5065 char *cp, errmsg[STRERR_BUFSIZE];
5066 int err, zero = 0;
5067
5068 if (obj->gen_loader) {
5069 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5070 map->mmaped, map->def.value_size);
5071 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5072 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5073 return 0;
5074 }
5075 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5076 if (err) {
5077 err = -errno;
5078 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5079 pr_warn("Error setting initial map(%s) contents: %s\n",
5080 map->name, cp);
5081 return err;
5082 }
5083
5084 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5085 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5086 err = bpf_map_freeze(map->fd);
5087 if (err) {
5088 err = -errno;
5089 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5090 pr_warn("Error freezing map(%s) as read-only: %s\n",
5091 map->name, cp);
5092 return err;
5093 }
5094 }
5095 return 0;
5096 }
5097
5098 static void bpf_map__destroy(struct bpf_map *map);
5099
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5100 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5101 {
5102 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5103 struct bpf_map_def *def = &map->def;
5104 const char *map_name = NULL;
5105 int err = 0;
5106
5107 if (kernel_supports(obj, FEAT_PROG_NAME))
5108 map_name = map->name;
5109 create_attr.map_ifindex = map->map_ifindex;
5110 create_attr.map_flags = def->map_flags;
5111 create_attr.numa_node = map->numa_node;
5112 create_attr.map_extra = map->map_extra;
5113
5114 if (bpf_map__is_struct_ops(map))
5115 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5116
5117 if (obj->btf && btf__fd(obj->btf) >= 0) {
5118 create_attr.btf_fd = btf__fd(obj->btf);
5119 create_attr.btf_key_type_id = map->btf_key_type_id;
5120 create_attr.btf_value_type_id = map->btf_value_type_id;
5121 }
5122
5123 if (bpf_map_type__is_map_in_map(def->type)) {
5124 if (map->inner_map) {
5125 err = map_set_def_max_entries(map->inner_map);
5126 if (err)
5127 return err;
5128 err = bpf_object__create_map(obj, map->inner_map, true);
5129 if (err) {
5130 pr_warn("map '%s': failed to create inner map: %d\n",
5131 map->name, err);
5132 return err;
5133 }
5134 map->inner_map_fd = bpf_map__fd(map->inner_map);
5135 }
5136 if (map->inner_map_fd >= 0)
5137 create_attr.inner_map_fd = map->inner_map_fd;
5138 }
5139
5140 switch (def->type) {
5141 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5142 case BPF_MAP_TYPE_CGROUP_ARRAY:
5143 case BPF_MAP_TYPE_STACK_TRACE:
5144 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5145 case BPF_MAP_TYPE_HASH_OF_MAPS:
5146 case BPF_MAP_TYPE_DEVMAP:
5147 case BPF_MAP_TYPE_DEVMAP_HASH:
5148 case BPF_MAP_TYPE_CPUMAP:
5149 case BPF_MAP_TYPE_XSKMAP:
5150 case BPF_MAP_TYPE_SOCKMAP:
5151 case BPF_MAP_TYPE_SOCKHASH:
5152 case BPF_MAP_TYPE_QUEUE:
5153 case BPF_MAP_TYPE_STACK:
5154 create_attr.btf_fd = 0;
5155 create_attr.btf_key_type_id = 0;
5156 create_attr.btf_value_type_id = 0;
5157 map->btf_key_type_id = 0;
5158 map->btf_value_type_id = 0;
5159 default:
5160 break;
5161 }
5162
5163 if (obj->gen_loader) {
5164 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5165 def->key_size, def->value_size, def->max_entries,
5166 &create_attr, is_inner ? -1 : map - obj->maps);
5167 /* Pretend to have valid FD to pass various fd >= 0 checks.
5168 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5169 */
5170 map->fd = 0;
5171 } else {
5172 map->fd = bpf_map_create(def->type, map_name,
5173 def->key_size, def->value_size,
5174 def->max_entries, &create_attr);
5175 }
5176 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5177 create_attr.btf_value_type_id)) {
5178 char *cp, errmsg[STRERR_BUFSIZE];
5179
5180 err = -errno;
5181 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5182 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5183 map->name, cp, err);
5184 create_attr.btf_fd = 0;
5185 create_attr.btf_key_type_id = 0;
5186 create_attr.btf_value_type_id = 0;
5187 map->btf_key_type_id = 0;
5188 map->btf_value_type_id = 0;
5189 map->fd = bpf_map_create(def->type, map_name,
5190 def->key_size, def->value_size,
5191 def->max_entries, &create_attr);
5192 }
5193
5194 err = map->fd < 0 ? -errno : 0;
5195
5196 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5197 if (obj->gen_loader)
5198 map->inner_map->fd = -1;
5199 bpf_map__destroy(map->inner_map);
5200 zfree(&map->inner_map);
5201 }
5202
5203 return err;
5204 }
5205
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5206 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5207 {
5208 const struct bpf_map *targ_map;
5209 unsigned int i;
5210 int fd, err = 0;
5211
5212 for (i = 0; i < map->init_slots_sz; i++) {
5213 if (!map->init_slots[i])
5214 continue;
5215
5216 targ_map = map->init_slots[i];
5217 fd = bpf_map__fd(targ_map);
5218
5219 if (obj->gen_loader) {
5220 bpf_gen__populate_outer_map(obj->gen_loader,
5221 map - obj->maps, i,
5222 targ_map - obj->maps);
5223 } else {
5224 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5225 }
5226 if (err) {
5227 err = -errno;
5228 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5229 map->name, i, targ_map->name, fd, err);
5230 return err;
5231 }
5232 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5233 map->name, i, targ_map->name, fd);
5234 }
5235
5236 zfree(&map->init_slots);
5237 map->init_slots_sz = 0;
5238
5239 return 0;
5240 }
5241
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5242 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5243 {
5244 const struct bpf_program *targ_prog;
5245 unsigned int i;
5246 int fd, err;
5247
5248 if (obj->gen_loader)
5249 return -ENOTSUP;
5250
5251 for (i = 0; i < map->init_slots_sz; i++) {
5252 if (!map->init_slots[i])
5253 continue;
5254
5255 targ_prog = map->init_slots[i];
5256 fd = bpf_program__fd(targ_prog);
5257
5258 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5259 if (err) {
5260 err = -errno;
5261 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5262 map->name, i, targ_prog->name, fd, err);
5263 return err;
5264 }
5265 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5266 map->name, i, targ_prog->name, fd);
5267 }
5268
5269 zfree(&map->init_slots);
5270 map->init_slots_sz = 0;
5271
5272 return 0;
5273 }
5274
bpf_object_init_prog_arrays(struct bpf_object * obj)5275 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5276 {
5277 struct bpf_map *map;
5278 int i, err;
5279
5280 for (i = 0; i < obj->nr_maps; i++) {
5281 map = &obj->maps[i];
5282
5283 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5284 continue;
5285
5286 err = init_prog_array_slots(obj, map);
5287 if (err < 0) {
5288 zclose(map->fd);
5289 return err;
5290 }
5291 }
5292 return 0;
5293 }
5294
map_set_def_max_entries(struct bpf_map * map)5295 static int map_set_def_max_entries(struct bpf_map *map)
5296 {
5297 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5298 int nr_cpus;
5299
5300 nr_cpus = libbpf_num_possible_cpus();
5301 if (nr_cpus < 0) {
5302 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5303 map->name, nr_cpus);
5304 return nr_cpus;
5305 }
5306 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5307 map->def.max_entries = nr_cpus;
5308 }
5309
5310 return 0;
5311 }
5312
5313 static int
bpf_object__create_maps(struct bpf_object * obj)5314 bpf_object__create_maps(struct bpf_object *obj)
5315 {
5316 struct bpf_map *map;
5317 char *cp, errmsg[STRERR_BUFSIZE];
5318 unsigned int i, j;
5319 int err;
5320 bool retried;
5321
5322 for (i = 0; i < obj->nr_maps; i++) {
5323 map = &obj->maps[i];
5324
5325 /* To support old kernels, we skip creating global data maps
5326 * (.rodata, .data, .kconfig, etc); later on, during program
5327 * loading, if we detect that at least one of the to-be-loaded
5328 * programs is referencing any global data map, we'll error
5329 * out with program name and relocation index logged.
5330 * This approach allows to accommodate Clang emitting
5331 * unnecessary .rodata.str1.1 sections for string literals,
5332 * but also it allows to have CO-RE applications that use
5333 * global variables in some of BPF programs, but not others.
5334 * If those global variable-using programs are not loaded at
5335 * runtime due to bpf_program__set_autoload(prog, false),
5336 * bpf_object loading will succeed just fine even on old
5337 * kernels.
5338 */
5339 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5340 map->autocreate = false;
5341
5342 if (!map->autocreate) {
5343 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5344 continue;
5345 }
5346
5347 err = map_set_def_max_entries(map);
5348 if (err)
5349 goto err_out;
5350
5351 retried = false;
5352 retry:
5353 if (map->pin_path) {
5354 err = bpf_object__reuse_map(map);
5355 if (err) {
5356 pr_warn("map '%s': error reusing pinned map\n",
5357 map->name);
5358 goto err_out;
5359 }
5360 if (retried && map->fd < 0) {
5361 pr_warn("map '%s': cannot find pinned map\n",
5362 map->name);
5363 err = -ENOENT;
5364 goto err_out;
5365 }
5366 }
5367
5368 if (map->fd >= 0) {
5369 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5370 map->name, map->fd);
5371 } else {
5372 err = bpf_object__create_map(obj, map, false);
5373 if (err)
5374 goto err_out;
5375
5376 pr_debug("map '%s': created successfully, fd=%d\n",
5377 map->name, map->fd);
5378
5379 if (bpf_map__is_internal(map)) {
5380 err = bpf_object__populate_internal_map(obj, map);
5381 if (err < 0) {
5382 zclose(map->fd);
5383 goto err_out;
5384 }
5385 }
5386
5387 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5388 err = init_map_in_map_slots(obj, map);
5389 if (err < 0) {
5390 zclose(map->fd);
5391 goto err_out;
5392 }
5393 }
5394 }
5395
5396 if (map->pin_path && !map->pinned) {
5397 err = bpf_map__pin(map, NULL);
5398 if (err) {
5399 zclose(map->fd);
5400 if (!retried && err == -EEXIST) {
5401 retried = true;
5402 goto retry;
5403 }
5404 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5405 map->name, map->pin_path, err);
5406 goto err_out;
5407 }
5408 }
5409 }
5410
5411 return 0;
5412
5413 err_out:
5414 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5415 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5416 pr_perm_msg(err);
5417 for (j = 0; j < i; j++)
5418 zclose(obj->maps[j].fd);
5419 return err;
5420 }
5421
bpf_core_is_flavor_sep(const char * s)5422 static bool bpf_core_is_flavor_sep(const char *s)
5423 {
5424 /* check X___Y name pattern, where X and Y are not underscores */
5425 return s[0] != '_' && /* X */
5426 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5427 s[4] != '_'; /* Y */
5428 }
5429
5430 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5431 * before last triple underscore. Struct name part after last triple
5432 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5433 */
bpf_core_essential_name_len(const char * name)5434 size_t bpf_core_essential_name_len(const char *name)
5435 {
5436 size_t n = strlen(name);
5437 int i;
5438
5439 for (i = n - 5; i >= 0; i--) {
5440 if (bpf_core_is_flavor_sep(name + i))
5441 return i + 1;
5442 }
5443 return n;
5444 }
5445
bpf_core_free_cands(struct bpf_core_cand_list * cands)5446 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5447 {
5448 if (!cands)
5449 return;
5450
5451 free(cands->cands);
5452 free(cands);
5453 }
5454
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5455 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5456 size_t local_essent_len,
5457 const struct btf *targ_btf,
5458 const char *targ_btf_name,
5459 int targ_start_id,
5460 struct bpf_core_cand_list *cands)
5461 {
5462 struct bpf_core_cand *new_cands, *cand;
5463 const struct btf_type *t, *local_t;
5464 const char *targ_name, *local_name;
5465 size_t targ_essent_len;
5466 int n, i;
5467
5468 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5469 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5470
5471 n = btf__type_cnt(targ_btf);
5472 for (i = targ_start_id; i < n; i++) {
5473 t = btf__type_by_id(targ_btf, i);
5474 if (!btf_kind_core_compat(t, local_t))
5475 continue;
5476
5477 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5478 if (str_is_empty(targ_name))
5479 continue;
5480
5481 targ_essent_len = bpf_core_essential_name_len(targ_name);
5482 if (targ_essent_len != local_essent_len)
5483 continue;
5484
5485 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5486 continue;
5487
5488 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5489 local_cand->id, btf_kind_str(local_t),
5490 local_name, i, btf_kind_str(t), targ_name,
5491 targ_btf_name);
5492 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5493 sizeof(*cands->cands));
5494 if (!new_cands)
5495 return -ENOMEM;
5496
5497 cand = &new_cands[cands->len];
5498 cand->btf = targ_btf;
5499 cand->id = i;
5500
5501 cands->cands = new_cands;
5502 cands->len++;
5503 }
5504 return 0;
5505 }
5506
load_module_btfs(struct bpf_object * obj)5507 static int load_module_btfs(struct bpf_object *obj)
5508 {
5509 struct bpf_btf_info info;
5510 struct module_btf *mod_btf;
5511 struct btf *btf;
5512 char name[64];
5513 __u32 id = 0, len;
5514 int err, fd;
5515
5516 if (obj->btf_modules_loaded)
5517 return 0;
5518
5519 if (obj->gen_loader)
5520 return 0;
5521
5522 /* don't do this again, even if we find no module BTFs */
5523 obj->btf_modules_loaded = true;
5524
5525 /* kernel too old to support module BTFs */
5526 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5527 return 0;
5528
5529 while (true) {
5530 err = bpf_btf_get_next_id(id, &id);
5531 if (err && errno == ENOENT)
5532 return 0;
5533 if (err && errno == EPERM) {
5534 pr_debug("skipping module BTFs loading, missing privileges\n");
5535 return 0;
5536 }
5537 if (err) {
5538 err = -errno;
5539 pr_warn("failed to iterate BTF objects: %d\n", err);
5540 return err;
5541 }
5542
5543 fd = bpf_btf_get_fd_by_id(id);
5544 if (fd < 0) {
5545 if (errno == ENOENT)
5546 continue; /* expected race: BTF was unloaded */
5547 err = -errno;
5548 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5549 return err;
5550 }
5551
5552 len = sizeof(info);
5553 memset(&info, 0, sizeof(info));
5554 info.name = ptr_to_u64(name);
5555 info.name_len = sizeof(name);
5556
5557 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5558 if (err) {
5559 err = -errno;
5560 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5561 goto err_out;
5562 }
5563
5564 /* ignore non-module BTFs */
5565 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5566 close(fd);
5567 continue;
5568 }
5569
5570 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5571 err = libbpf_get_error(btf);
5572 if (err) {
5573 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5574 name, id, err);
5575 goto err_out;
5576 }
5577
5578 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5579 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5580 if (err)
5581 goto err_out;
5582
5583 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5584
5585 mod_btf->btf = btf;
5586 mod_btf->id = id;
5587 mod_btf->fd = fd;
5588 mod_btf->name = strdup(name);
5589 if (!mod_btf->name) {
5590 err = -ENOMEM;
5591 goto err_out;
5592 }
5593 continue;
5594
5595 err_out:
5596 close(fd);
5597 return err;
5598 }
5599
5600 return 0;
5601 }
5602
5603 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5604 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5605 {
5606 struct bpf_core_cand local_cand = {};
5607 struct bpf_core_cand_list *cands;
5608 const struct btf *main_btf;
5609 const struct btf_type *local_t;
5610 const char *local_name;
5611 size_t local_essent_len;
5612 int err, i;
5613
5614 local_cand.btf = local_btf;
5615 local_cand.id = local_type_id;
5616 local_t = btf__type_by_id(local_btf, local_type_id);
5617 if (!local_t)
5618 return ERR_PTR(-EINVAL);
5619
5620 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5621 if (str_is_empty(local_name))
5622 return ERR_PTR(-EINVAL);
5623 local_essent_len = bpf_core_essential_name_len(local_name);
5624
5625 cands = calloc(1, sizeof(*cands));
5626 if (!cands)
5627 return ERR_PTR(-ENOMEM);
5628
5629 /* Attempt to find target candidates in vmlinux BTF first */
5630 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5631 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5632 if (err)
5633 goto err_out;
5634
5635 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5636 if (cands->len)
5637 return cands;
5638
5639 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5640 if (obj->btf_vmlinux_override)
5641 return cands;
5642
5643 /* now look through module BTFs, trying to still find candidates */
5644 err = load_module_btfs(obj);
5645 if (err)
5646 goto err_out;
5647
5648 for (i = 0; i < obj->btf_module_cnt; i++) {
5649 err = bpf_core_add_cands(&local_cand, local_essent_len,
5650 obj->btf_modules[i].btf,
5651 obj->btf_modules[i].name,
5652 btf__type_cnt(obj->btf_vmlinux),
5653 cands);
5654 if (err)
5655 goto err_out;
5656 }
5657
5658 return cands;
5659 err_out:
5660 bpf_core_free_cands(cands);
5661 return ERR_PTR(err);
5662 }
5663
5664 /* Check local and target types for compatibility. This check is used for
5665 * type-based CO-RE relocations and follow slightly different rules than
5666 * field-based relocations. This function assumes that root types were already
5667 * checked for name match. Beyond that initial root-level name check, names
5668 * are completely ignored. Compatibility rules are as follows:
5669 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5670 * kind should match for local and target types (i.e., STRUCT is not
5671 * compatible with UNION);
5672 * - for ENUMs, the size is ignored;
5673 * - for INT, size and signedness are ignored;
5674 * - for ARRAY, dimensionality is ignored, element types are checked for
5675 * compatibility recursively;
5676 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5677 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5678 * - FUNC_PROTOs are compatible if they have compatible signature: same
5679 * number of input args and compatible return and argument types.
5680 * These rules are not set in stone and probably will be adjusted as we get
5681 * more experience with using BPF CO-RE relocations.
5682 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5683 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5684 const struct btf *targ_btf, __u32 targ_id)
5685 {
5686 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5687 }
5688
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5689 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5690 const struct btf *targ_btf, __u32 targ_id)
5691 {
5692 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5693 }
5694
bpf_core_hash_fn(const long key,void * ctx)5695 static size_t bpf_core_hash_fn(const long key, void *ctx)
5696 {
5697 return key;
5698 }
5699
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5700 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5701 {
5702 return k1 == k2;
5703 }
5704
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5705 static int record_relo_core(struct bpf_program *prog,
5706 const struct bpf_core_relo *core_relo, int insn_idx)
5707 {
5708 struct reloc_desc *relos, *relo;
5709
5710 relos = libbpf_reallocarray(prog->reloc_desc,
5711 prog->nr_reloc + 1, sizeof(*relos));
5712 if (!relos)
5713 return -ENOMEM;
5714 relo = &relos[prog->nr_reloc];
5715 relo->type = RELO_CORE;
5716 relo->insn_idx = insn_idx;
5717 relo->core_relo = core_relo;
5718 prog->reloc_desc = relos;
5719 prog->nr_reloc++;
5720 return 0;
5721 }
5722
find_relo_core(struct bpf_program * prog,int insn_idx)5723 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5724 {
5725 struct reloc_desc *relo;
5726 int i;
5727
5728 for (i = 0; i < prog->nr_reloc; i++) {
5729 relo = &prog->reloc_desc[i];
5730 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5731 continue;
5732
5733 return relo->core_relo;
5734 }
5735
5736 return NULL;
5737 }
5738
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5739 static int bpf_core_resolve_relo(struct bpf_program *prog,
5740 const struct bpf_core_relo *relo,
5741 int relo_idx,
5742 const struct btf *local_btf,
5743 struct hashmap *cand_cache,
5744 struct bpf_core_relo_res *targ_res)
5745 {
5746 struct bpf_core_spec specs_scratch[3] = {};
5747 struct bpf_core_cand_list *cands = NULL;
5748 const char *prog_name = prog->name;
5749 const struct btf_type *local_type;
5750 const char *local_name;
5751 __u32 local_id = relo->type_id;
5752 int err;
5753
5754 local_type = btf__type_by_id(local_btf, local_id);
5755 if (!local_type)
5756 return -EINVAL;
5757
5758 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5759 if (!local_name)
5760 return -EINVAL;
5761
5762 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5763 !hashmap__find(cand_cache, local_id, &cands)) {
5764 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5765 if (IS_ERR(cands)) {
5766 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5767 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5768 local_name, PTR_ERR(cands));
5769 return PTR_ERR(cands);
5770 }
5771 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5772 if (err) {
5773 bpf_core_free_cands(cands);
5774 return err;
5775 }
5776 }
5777
5778 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5779 targ_res);
5780 }
5781
5782 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5783 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5784 {
5785 const struct btf_ext_info_sec *sec;
5786 struct bpf_core_relo_res targ_res;
5787 const struct bpf_core_relo *rec;
5788 const struct btf_ext_info *seg;
5789 struct hashmap_entry *entry;
5790 struct hashmap *cand_cache = NULL;
5791 struct bpf_program *prog;
5792 struct bpf_insn *insn;
5793 const char *sec_name;
5794 int i, err = 0, insn_idx, sec_idx, sec_num;
5795
5796 if (obj->btf_ext->core_relo_info.len == 0)
5797 return 0;
5798
5799 if (targ_btf_path) {
5800 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5801 err = libbpf_get_error(obj->btf_vmlinux_override);
5802 if (err) {
5803 pr_warn("failed to parse target BTF: %d\n", err);
5804 return err;
5805 }
5806 }
5807
5808 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5809 if (IS_ERR(cand_cache)) {
5810 err = PTR_ERR(cand_cache);
5811 goto out;
5812 }
5813
5814 seg = &obj->btf_ext->core_relo_info;
5815 sec_num = 0;
5816 for_each_btf_ext_sec(seg, sec) {
5817 sec_idx = seg->sec_idxs[sec_num];
5818 sec_num++;
5819
5820 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5821 if (str_is_empty(sec_name)) {
5822 err = -EINVAL;
5823 goto out;
5824 }
5825
5826 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5827
5828 for_each_btf_ext_rec(seg, sec, i, rec) {
5829 if (rec->insn_off % BPF_INSN_SZ)
5830 return -EINVAL;
5831 insn_idx = rec->insn_off / BPF_INSN_SZ;
5832 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5833 if (!prog) {
5834 /* When __weak subprog is "overridden" by another instance
5835 * of the subprog from a different object file, linker still
5836 * appends all the .BTF.ext info that used to belong to that
5837 * eliminated subprogram.
5838 * This is similar to what x86-64 linker does for relocations.
5839 * So just ignore such relocations just like we ignore
5840 * subprog instructions when discovering subprograms.
5841 */
5842 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5843 sec_name, i, insn_idx);
5844 continue;
5845 }
5846 /* no need to apply CO-RE relocation if the program is
5847 * not going to be loaded
5848 */
5849 if (!prog->autoload)
5850 continue;
5851
5852 /* adjust insn_idx from section frame of reference to the local
5853 * program's frame of reference; (sub-)program code is not yet
5854 * relocated, so it's enough to just subtract in-section offset
5855 */
5856 insn_idx = insn_idx - prog->sec_insn_off;
5857 if (insn_idx >= prog->insns_cnt)
5858 return -EINVAL;
5859 insn = &prog->insns[insn_idx];
5860
5861 err = record_relo_core(prog, rec, insn_idx);
5862 if (err) {
5863 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5864 prog->name, i, err);
5865 goto out;
5866 }
5867
5868 if (prog->obj->gen_loader)
5869 continue;
5870
5871 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5872 if (err) {
5873 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5874 prog->name, i, err);
5875 goto out;
5876 }
5877
5878 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5879 if (err) {
5880 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5881 prog->name, i, insn_idx, err);
5882 goto out;
5883 }
5884 }
5885 }
5886
5887 out:
5888 /* obj->btf_vmlinux and module BTFs are freed after object load */
5889 btf__free(obj->btf_vmlinux_override);
5890 obj->btf_vmlinux_override = NULL;
5891
5892 if (!IS_ERR_OR_NULL(cand_cache)) {
5893 hashmap__for_each_entry(cand_cache, entry, i) {
5894 bpf_core_free_cands(entry->pvalue);
5895 }
5896 hashmap__free(cand_cache);
5897 }
5898 return err;
5899 }
5900
5901 /* base map load ldimm64 special constant, used also for log fixup logic */
5902 #define POISON_LDIMM64_MAP_BASE 2001000000
5903 #define POISON_LDIMM64_MAP_PFX "200100"
5904
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)5905 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5906 int insn_idx, struct bpf_insn *insn,
5907 int map_idx, const struct bpf_map *map)
5908 {
5909 int i;
5910
5911 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5912 prog->name, relo_idx, insn_idx, map_idx, map->name);
5913
5914 /* we turn single ldimm64 into two identical invalid calls */
5915 for (i = 0; i < 2; i++) {
5916 insn->code = BPF_JMP | BPF_CALL;
5917 insn->dst_reg = 0;
5918 insn->src_reg = 0;
5919 insn->off = 0;
5920 /* if this instruction is reachable (not a dead code),
5921 * verifier will complain with something like:
5922 * invalid func unknown#2001000123
5923 * where lower 123 is map index into obj->maps[] array
5924 */
5925 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5926
5927 insn++;
5928 }
5929 }
5930
5931 /* unresolved kfunc call special constant, used also for log fixup logic */
5932 #define POISON_CALL_KFUNC_BASE 2002000000
5933 #define POISON_CALL_KFUNC_PFX "2002"
5934
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)5935 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5936 int insn_idx, struct bpf_insn *insn,
5937 int ext_idx, const struct extern_desc *ext)
5938 {
5939 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5940 prog->name, relo_idx, insn_idx, ext->name);
5941
5942 /* we turn kfunc call into invalid helper call with identifiable constant */
5943 insn->code = BPF_JMP | BPF_CALL;
5944 insn->dst_reg = 0;
5945 insn->src_reg = 0;
5946 insn->off = 0;
5947 /* if this instruction is reachable (not a dead code),
5948 * verifier will complain with something like:
5949 * invalid func unknown#2001000123
5950 * where lower 123 is extern index into obj->externs[] array
5951 */
5952 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5953 }
5954
5955 /* Relocate data references within program code:
5956 * - map references;
5957 * - global variable references;
5958 * - extern references.
5959 */
5960 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)5961 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5962 {
5963 int i;
5964
5965 for (i = 0; i < prog->nr_reloc; i++) {
5966 struct reloc_desc *relo = &prog->reloc_desc[i];
5967 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5968 const struct bpf_map *map;
5969 struct extern_desc *ext;
5970
5971 switch (relo->type) {
5972 case RELO_LD64:
5973 map = &obj->maps[relo->map_idx];
5974 if (obj->gen_loader) {
5975 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5976 insn[0].imm = relo->map_idx;
5977 } else if (map->autocreate) {
5978 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5979 insn[0].imm = map->fd;
5980 } else {
5981 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5982 relo->map_idx, map);
5983 }
5984 break;
5985 case RELO_DATA:
5986 map = &obj->maps[relo->map_idx];
5987 insn[1].imm = insn[0].imm + relo->sym_off;
5988 if (obj->gen_loader) {
5989 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5990 insn[0].imm = relo->map_idx;
5991 } else if (map->autocreate) {
5992 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5993 insn[0].imm = map->fd;
5994 } else {
5995 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5996 relo->map_idx, map);
5997 }
5998 break;
5999 case RELO_EXTERN_LD64:
6000 ext = &obj->externs[relo->ext_idx];
6001 if (ext->type == EXT_KCFG) {
6002 if (obj->gen_loader) {
6003 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6004 insn[0].imm = obj->kconfig_map_idx;
6005 } else {
6006 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6007 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6008 }
6009 insn[1].imm = ext->kcfg.data_off;
6010 } else /* EXT_KSYM */ {
6011 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6012 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6013 insn[0].imm = ext->ksym.kernel_btf_id;
6014 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6015 } else { /* typeless ksyms or unresolved typed ksyms */
6016 insn[0].imm = (__u32)ext->ksym.addr;
6017 insn[1].imm = ext->ksym.addr >> 32;
6018 }
6019 }
6020 break;
6021 case RELO_EXTERN_CALL:
6022 ext = &obj->externs[relo->ext_idx];
6023 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6024 if (ext->is_set) {
6025 insn[0].imm = ext->ksym.kernel_btf_id;
6026 insn[0].off = ext->ksym.btf_fd_idx;
6027 } else { /* unresolved weak kfunc call */
6028 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6029 relo->ext_idx, ext);
6030 }
6031 break;
6032 case RELO_SUBPROG_ADDR:
6033 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6034 pr_warn("prog '%s': relo #%d: bad insn\n",
6035 prog->name, i);
6036 return -EINVAL;
6037 }
6038 /* handled already */
6039 break;
6040 case RELO_CALL:
6041 /* handled already */
6042 break;
6043 case RELO_CORE:
6044 /* will be handled by bpf_program_record_relos() */
6045 break;
6046 default:
6047 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6048 prog->name, i, relo->type);
6049 return -EINVAL;
6050 }
6051 }
6052
6053 return 0;
6054 }
6055
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6056 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6057 const struct bpf_program *prog,
6058 const struct btf_ext_info *ext_info,
6059 void **prog_info, __u32 *prog_rec_cnt,
6060 __u32 *prog_rec_sz)
6061 {
6062 void *copy_start = NULL, *copy_end = NULL;
6063 void *rec, *rec_end, *new_prog_info;
6064 const struct btf_ext_info_sec *sec;
6065 size_t old_sz, new_sz;
6066 int i, sec_num, sec_idx, off_adj;
6067
6068 sec_num = 0;
6069 for_each_btf_ext_sec(ext_info, sec) {
6070 sec_idx = ext_info->sec_idxs[sec_num];
6071 sec_num++;
6072 if (prog->sec_idx != sec_idx)
6073 continue;
6074
6075 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6076 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6077
6078 if (insn_off < prog->sec_insn_off)
6079 continue;
6080 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6081 break;
6082
6083 if (!copy_start)
6084 copy_start = rec;
6085 copy_end = rec + ext_info->rec_size;
6086 }
6087
6088 if (!copy_start)
6089 return -ENOENT;
6090
6091 /* append func/line info of a given (sub-)program to the main
6092 * program func/line info
6093 */
6094 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6095 new_sz = old_sz + (copy_end - copy_start);
6096 new_prog_info = realloc(*prog_info, new_sz);
6097 if (!new_prog_info)
6098 return -ENOMEM;
6099 *prog_info = new_prog_info;
6100 *prog_rec_cnt = new_sz / ext_info->rec_size;
6101 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6102
6103 /* Kernel instruction offsets are in units of 8-byte
6104 * instructions, while .BTF.ext instruction offsets generated
6105 * by Clang are in units of bytes. So convert Clang offsets
6106 * into kernel offsets and adjust offset according to program
6107 * relocated position.
6108 */
6109 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6110 rec = new_prog_info + old_sz;
6111 rec_end = new_prog_info + new_sz;
6112 for (; rec < rec_end; rec += ext_info->rec_size) {
6113 __u32 *insn_off = rec;
6114
6115 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6116 }
6117 *prog_rec_sz = ext_info->rec_size;
6118 return 0;
6119 }
6120
6121 return -ENOENT;
6122 }
6123
6124 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6125 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6126 struct bpf_program *main_prog,
6127 const struct bpf_program *prog)
6128 {
6129 int err;
6130
6131 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6132 * supprot func/line info
6133 */
6134 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6135 return 0;
6136
6137 /* only attempt func info relocation if main program's func_info
6138 * relocation was successful
6139 */
6140 if (main_prog != prog && !main_prog->func_info)
6141 goto line_info;
6142
6143 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6144 &main_prog->func_info,
6145 &main_prog->func_info_cnt,
6146 &main_prog->func_info_rec_size);
6147 if (err) {
6148 if (err != -ENOENT) {
6149 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6150 prog->name, err);
6151 return err;
6152 }
6153 if (main_prog->func_info) {
6154 /*
6155 * Some info has already been found but has problem
6156 * in the last btf_ext reloc. Must have to error out.
6157 */
6158 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6159 return err;
6160 }
6161 /* Have problem loading the very first info. Ignore the rest. */
6162 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6163 prog->name);
6164 }
6165
6166 line_info:
6167 /* don't relocate line info if main program's relocation failed */
6168 if (main_prog != prog && !main_prog->line_info)
6169 return 0;
6170
6171 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6172 &main_prog->line_info,
6173 &main_prog->line_info_cnt,
6174 &main_prog->line_info_rec_size);
6175 if (err) {
6176 if (err != -ENOENT) {
6177 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6178 prog->name, err);
6179 return err;
6180 }
6181 if (main_prog->line_info) {
6182 /*
6183 * Some info has already been found but has problem
6184 * in the last btf_ext reloc. Must have to error out.
6185 */
6186 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6187 return err;
6188 }
6189 /* Have problem loading the very first info. Ignore the rest. */
6190 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6191 prog->name);
6192 }
6193 return 0;
6194 }
6195
cmp_relo_by_insn_idx(const void * key,const void * elem)6196 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6197 {
6198 size_t insn_idx = *(const size_t *)key;
6199 const struct reloc_desc *relo = elem;
6200
6201 if (insn_idx == relo->insn_idx)
6202 return 0;
6203 return insn_idx < relo->insn_idx ? -1 : 1;
6204 }
6205
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6206 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6207 {
6208 if (!prog->nr_reloc)
6209 return NULL;
6210 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6211 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6212 }
6213
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6214 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6215 {
6216 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6217 struct reloc_desc *relos;
6218 int i;
6219
6220 if (main_prog == subprog)
6221 return 0;
6222 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6223 /* if new count is zero, reallocarray can return a valid NULL result;
6224 * in this case the previous pointer will be freed, so we *have to*
6225 * reassign old pointer to the new value (even if it's NULL)
6226 */
6227 if (!relos && new_cnt)
6228 return -ENOMEM;
6229 if (subprog->nr_reloc)
6230 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6231 sizeof(*relos) * subprog->nr_reloc);
6232
6233 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6234 relos[i].insn_idx += subprog->sub_insn_off;
6235 /* After insn_idx adjustment the 'relos' array is still sorted
6236 * by insn_idx and doesn't break bsearch.
6237 */
6238 main_prog->reloc_desc = relos;
6239 main_prog->nr_reloc = new_cnt;
6240 return 0;
6241 }
6242
6243 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6244 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6245 struct bpf_program *prog)
6246 {
6247 size_t sub_insn_idx, insn_idx, new_cnt;
6248 struct bpf_program *subprog;
6249 struct bpf_insn *insns, *insn;
6250 struct reloc_desc *relo;
6251 int err;
6252
6253 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6254 if (err)
6255 return err;
6256
6257 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6258 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6259 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6260 continue;
6261
6262 relo = find_prog_insn_relo(prog, insn_idx);
6263 if (relo && relo->type == RELO_EXTERN_CALL)
6264 /* kfunc relocations will be handled later
6265 * in bpf_object__relocate_data()
6266 */
6267 continue;
6268 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6269 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6270 prog->name, insn_idx, relo->type);
6271 return -LIBBPF_ERRNO__RELOC;
6272 }
6273 if (relo) {
6274 /* sub-program instruction index is a combination of
6275 * an offset of a symbol pointed to by relocation and
6276 * call instruction's imm field; for global functions,
6277 * call always has imm = -1, but for static functions
6278 * relocation is against STT_SECTION and insn->imm
6279 * points to a start of a static function
6280 *
6281 * for subprog addr relocation, the relo->sym_off + insn->imm is
6282 * the byte offset in the corresponding section.
6283 */
6284 if (relo->type == RELO_CALL)
6285 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6286 else
6287 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6288 } else if (insn_is_pseudo_func(insn)) {
6289 /*
6290 * RELO_SUBPROG_ADDR relo is always emitted even if both
6291 * functions are in the same section, so it shouldn't reach here.
6292 */
6293 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6294 prog->name, insn_idx);
6295 return -LIBBPF_ERRNO__RELOC;
6296 } else {
6297 /* if subprogram call is to a static function within
6298 * the same ELF section, there won't be any relocation
6299 * emitted, but it also means there is no additional
6300 * offset necessary, insns->imm is relative to
6301 * instruction's original position within the section
6302 */
6303 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6304 }
6305
6306 /* we enforce that sub-programs should be in .text section */
6307 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6308 if (!subprog) {
6309 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6310 prog->name);
6311 return -LIBBPF_ERRNO__RELOC;
6312 }
6313
6314 /* if it's the first call instruction calling into this
6315 * subprogram (meaning this subprog hasn't been processed
6316 * yet) within the context of current main program:
6317 * - append it at the end of main program's instructions blog;
6318 * - process is recursively, while current program is put on hold;
6319 * - if that subprogram calls some other not yet processes
6320 * subprogram, same thing will happen recursively until
6321 * there are no more unprocesses subprograms left to append
6322 * and relocate.
6323 */
6324 if (subprog->sub_insn_off == 0) {
6325 subprog->sub_insn_off = main_prog->insns_cnt;
6326
6327 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6328 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6329 if (!insns) {
6330 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6331 return -ENOMEM;
6332 }
6333 main_prog->insns = insns;
6334 main_prog->insns_cnt = new_cnt;
6335
6336 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6337 subprog->insns_cnt * sizeof(*insns));
6338
6339 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6340 main_prog->name, subprog->insns_cnt, subprog->name);
6341
6342 /* The subprog insns are now appended. Append its relos too. */
6343 err = append_subprog_relos(main_prog, subprog);
6344 if (err)
6345 return err;
6346 err = bpf_object__reloc_code(obj, main_prog, subprog);
6347 if (err)
6348 return err;
6349 }
6350
6351 /* main_prog->insns memory could have been re-allocated, so
6352 * calculate pointer again
6353 */
6354 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6355 /* calculate correct instruction position within current main
6356 * prog; each main prog can have a different set of
6357 * subprograms appended (potentially in different order as
6358 * well), so position of any subprog can be different for
6359 * different main programs
6360 */
6361 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6362
6363 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6364 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6365 }
6366
6367 return 0;
6368 }
6369
6370 /*
6371 * Relocate sub-program calls.
6372 *
6373 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6374 * main prog) is processed separately. For each subprog (non-entry functions,
6375 * that can be called from either entry progs or other subprogs) gets their
6376 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6377 * hasn't been yet appended and relocated within current main prog. Once its
6378 * relocated, sub_insn_off will point at the position within current main prog
6379 * where given subprog was appended. This will further be used to relocate all
6380 * the call instructions jumping into this subprog.
6381 *
6382 * We start with main program and process all call instructions. If the call
6383 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6384 * is zero), subprog instructions are appended at the end of main program's
6385 * instruction array. Then main program is "put on hold" while we recursively
6386 * process newly appended subprogram. If that subprogram calls into another
6387 * subprogram that hasn't been appended, new subprogram is appended again to
6388 * the *main* prog's instructions (subprog's instructions are always left
6389 * untouched, as they need to be in unmodified state for subsequent main progs
6390 * and subprog instructions are always sent only as part of a main prog) and
6391 * the process continues recursively. Once all the subprogs called from a main
6392 * prog or any of its subprogs are appended (and relocated), all their
6393 * positions within finalized instructions array are known, so it's easy to
6394 * rewrite call instructions with correct relative offsets, corresponding to
6395 * desired target subprog.
6396 *
6397 * Its important to realize that some subprogs might not be called from some
6398 * main prog and any of its called/used subprogs. Those will keep their
6399 * subprog->sub_insn_off as zero at all times and won't be appended to current
6400 * main prog and won't be relocated within the context of current main prog.
6401 * They might still be used from other main progs later.
6402 *
6403 * Visually this process can be shown as below. Suppose we have two main
6404 * programs mainA and mainB and BPF object contains three subprogs: subA,
6405 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6406 * subC both call subB:
6407 *
6408 * +--------+ +-------+
6409 * | v v |
6410 * +--+---+ +--+-+-+ +---+--+
6411 * | subA | | subB | | subC |
6412 * +--+---+ +------+ +---+--+
6413 * ^ ^
6414 * | |
6415 * +---+-------+ +------+----+
6416 * | mainA | | mainB |
6417 * +-----------+ +-----------+
6418 *
6419 * We'll start relocating mainA, will find subA, append it and start
6420 * processing sub A recursively:
6421 *
6422 * +-----------+------+
6423 * | mainA | subA |
6424 * +-----------+------+
6425 *
6426 * At this point we notice that subB is used from subA, so we append it and
6427 * relocate (there are no further subcalls from subB):
6428 *
6429 * +-----------+------+------+
6430 * | mainA | subA | subB |
6431 * +-----------+------+------+
6432 *
6433 * At this point, we relocate subA calls, then go one level up and finish with
6434 * relocatin mainA calls. mainA is done.
6435 *
6436 * For mainB process is similar but results in different order. We start with
6437 * mainB and skip subA and subB, as mainB never calls them (at least
6438 * directly), but we see subC is needed, so we append and start processing it:
6439 *
6440 * +-----------+------+
6441 * | mainB | subC |
6442 * +-----------+------+
6443 * Now we see subC needs subB, so we go back to it, append and relocate it:
6444 *
6445 * +-----------+------+------+
6446 * | mainB | subC | subB |
6447 * +-----------+------+------+
6448 *
6449 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6450 */
6451 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6452 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6453 {
6454 struct bpf_program *subprog;
6455 int i, err;
6456
6457 /* mark all subprogs as not relocated (yet) within the context of
6458 * current main program
6459 */
6460 for (i = 0; i < obj->nr_programs; i++) {
6461 subprog = &obj->programs[i];
6462 if (!prog_is_subprog(obj, subprog))
6463 continue;
6464
6465 subprog->sub_insn_off = 0;
6466 }
6467
6468 err = bpf_object__reloc_code(obj, prog, prog);
6469 if (err)
6470 return err;
6471
6472 return 0;
6473 }
6474
6475 static void
bpf_object__free_relocs(struct bpf_object * obj)6476 bpf_object__free_relocs(struct bpf_object *obj)
6477 {
6478 struct bpf_program *prog;
6479 int i;
6480
6481 /* free up relocation descriptors */
6482 for (i = 0; i < obj->nr_programs; i++) {
6483 prog = &obj->programs[i];
6484 zfree(&prog->reloc_desc);
6485 prog->nr_reloc = 0;
6486 }
6487 }
6488
cmp_relocs(const void * _a,const void * _b)6489 static int cmp_relocs(const void *_a, const void *_b)
6490 {
6491 const struct reloc_desc *a = _a;
6492 const struct reloc_desc *b = _b;
6493
6494 if (a->insn_idx != b->insn_idx)
6495 return a->insn_idx < b->insn_idx ? -1 : 1;
6496
6497 /* no two relocations should have the same insn_idx, but ... */
6498 if (a->type != b->type)
6499 return a->type < b->type ? -1 : 1;
6500
6501 return 0;
6502 }
6503
bpf_object__sort_relos(struct bpf_object * obj)6504 static void bpf_object__sort_relos(struct bpf_object *obj)
6505 {
6506 int i;
6507
6508 for (i = 0; i < obj->nr_programs; i++) {
6509 struct bpf_program *p = &obj->programs[i];
6510
6511 if (!p->nr_reloc)
6512 continue;
6513
6514 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6515 }
6516 }
6517
6518 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6519 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6520 {
6521 struct bpf_program *prog;
6522 size_t i, j;
6523 int err;
6524
6525 if (obj->btf_ext) {
6526 err = bpf_object__relocate_core(obj, targ_btf_path);
6527 if (err) {
6528 pr_warn("failed to perform CO-RE relocations: %d\n",
6529 err);
6530 return err;
6531 }
6532 bpf_object__sort_relos(obj);
6533 }
6534
6535 /* Before relocating calls pre-process relocations and mark
6536 * few ld_imm64 instructions that points to subprogs.
6537 * Otherwise bpf_object__reloc_code() later would have to consider
6538 * all ld_imm64 insns as relocation candidates. That would
6539 * reduce relocation speed, since amount of find_prog_insn_relo()
6540 * would increase and most of them will fail to find a relo.
6541 */
6542 for (i = 0; i < obj->nr_programs; i++) {
6543 prog = &obj->programs[i];
6544 for (j = 0; j < prog->nr_reloc; j++) {
6545 struct reloc_desc *relo = &prog->reloc_desc[j];
6546 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6547
6548 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6549 if (relo->type == RELO_SUBPROG_ADDR)
6550 insn[0].src_reg = BPF_PSEUDO_FUNC;
6551 }
6552 }
6553
6554 /* relocate subprogram calls and append used subprograms to main
6555 * programs; each copy of subprogram code needs to be relocated
6556 * differently for each main program, because its code location might
6557 * have changed.
6558 * Append subprog relos to main programs to allow data relos to be
6559 * processed after text is completely relocated.
6560 */
6561 for (i = 0; i < obj->nr_programs; i++) {
6562 prog = &obj->programs[i];
6563 /* sub-program's sub-calls are relocated within the context of
6564 * its main program only
6565 */
6566 if (prog_is_subprog(obj, prog))
6567 continue;
6568 if (!prog->autoload)
6569 continue;
6570
6571 err = bpf_object__relocate_calls(obj, prog);
6572 if (err) {
6573 pr_warn("prog '%s': failed to relocate calls: %d\n",
6574 prog->name, err);
6575 return err;
6576 }
6577 }
6578 /* Process data relos for main programs */
6579 for (i = 0; i < obj->nr_programs; i++) {
6580 prog = &obj->programs[i];
6581 if (prog_is_subprog(obj, prog))
6582 continue;
6583 if (!prog->autoload)
6584 continue;
6585 err = bpf_object__relocate_data(obj, prog);
6586 if (err) {
6587 pr_warn("prog '%s': failed to relocate data references: %d\n",
6588 prog->name, err);
6589 return err;
6590 }
6591 }
6592
6593 return 0;
6594 }
6595
6596 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6597 Elf64_Shdr *shdr, Elf_Data *data);
6598
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)6599 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6600 Elf64_Shdr *shdr, Elf_Data *data)
6601 {
6602 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6603 int i, j, nrels, new_sz;
6604 const struct btf_var_secinfo *vi = NULL;
6605 const struct btf_type *sec, *var, *def;
6606 struct bpf_map *map = NULL, *targ_map = NULL;
6607 struct bpf_program *targ_prog = NULL;
6608 bool is_prog_array, is_map_in_map;
6609 const struct btf_member *member;
6610 const char *name, *mname, *type;
6611 unsigned int moff;
6612 Elf64_Sym *sym;
6613 Elf64_Rel *rel;
6614 void *tmp;
6615
6616 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6617 return -EINVAL;
6618 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6619 if (!sec)
6620 return -EINVAL;
6621
6622 nrels = shdr->sh_size / shdr->sh_entsize;
6623 for (i = 0; i < nrels; i++) {
6624 rel = elf_rel_by_idx(data, i);
6625 if (!rel) {
6626 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6627 return -LIBBPF_ERRNO__FORMAT;
6628 }
6629
6630 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6631 if (!sym) {
6632 pr_warn(".maps relo #%d: symbol %zx not found\n",
6633 i, (size_t)ELF64_R_SYM(rel->r_info));
6634 return -LIBBPF_ERRNO__FORMAT;
6635 }
6636 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6637
6638 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6639 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6640 (size_t)rel->r_offset, sym->st_name, name);
6641
6642 for (j = 0; j < obj->nr_maps; j++) {
6643 map = &obj->maps[j];
6644 if (map->sec_idx != obj->efile.btf_maps_shndx)
6645 continue;
6646
6647 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6648 if (vi->offset <= rel->r_offset &&
6649 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6650 break;
6651 }
6652 if (j == obj->nr_maps) {
6653 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6654 i, name, (size_t)rel->r_offset);
6655 return -EINVAL;
6656 }
6657
6658 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6659 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6660 type = is_map_in_map ? "map" : "prog";
6661 if (is_map_in_map) {
6662 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6663 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6664 i, name);
6665 return -LIBBPF_ERRNO__RELOC;
6666 }
6667 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6668 map->def.key_size != sizeof(int)) {
6669 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6670 i, map->name, sizeof(int));
6671 return -EINVAL;
6672 }
6673 targ_map = bpf_object__find_map_by_name(obj, name);
6674 if (!targ_map) {
6675 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6676 i, name);
6677 return -ESRCH;
6678 }
6679 } else if (is_prog_array) {
6680 targ_prog = bpf_object__find_program_by_name(obj, name);
6681 if (!targ_prog) {
6682 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6683 i, name);
6684 return -ESRCH;
6685 }
6686 if (targ_prog->sec_idx != sym->st_shndx ||
6687 targ_prog->sec_insn_off * 8 != sym->st_value ||
6688 prog_is_subprog(obj, targ_prog)) {
6689 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6690 i, name);
6691 return -LIBBPF_ERRNO__RELOC;
6692 }
6693 } else {
6694 return -EINVAL;
6695 }
6696
6697 var = btf__type_by_id(obj->btf, vi->type);
6698 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6699 if (btf_vlen(def) == 0)
6700 return -EINVAL;
6701 member = btf_members(def) + btf_vlen(def) - 1;
6702 mname = btf__name_by_offset(obj->btf, member->name_off);
6703 if (strcmp(mname, "values"))
6704 return -EINVAL;
6705
6706 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6707 if (rel->r_offset - vi->offset < moff)
6708 return -EINVAL;
6709
6710 moff = rel->r_offset - vi->offset - moff;
6711 /* here we use BPF pointer size, which is always 64 bit, as we
6712 * are parsing ELF that was built for BPF target
6713 */
6714 if (moff % bpf_ptr_sz)
6715 return -EINVAL;
6716 moff /= bpf_ptr_sz;
6717 if (moff >= map->init_slots_sz) {
6718 new_sz = moff + 1;
6719 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6720 if (!tmp)
6721 return -ENOMEM;
6722 map->init_slots = tmp;
6723 memset(map->init_slots + map->init_slots_sz, 0,
6724 (new_sz - map->init_slots_sz) * host_ptr_sz);
6725 map->init_slots_sz = new_sz;
6726 }
6727 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6728
6729 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6730 i, map->name, moff, type, name);
6731 }
6732
6733 return 0;
6734 }
6735
bpf_object__collect_relos(struct bpf_object * obj)6736 static int bpf_object__collect_relos(struct bpf_object *obj)
6737 {
6738 int i, err;
6739
6740 for (i = 0; i < obj->efile.sec_cnt; i++) {
6741 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6742 Elf64_Shdr *shdr;
6743 Elf_Data *data;
6744 int idx;
6745
6746 if (sec_desc->sec_type != SEC_RELO)
6747 continue;
6748
6749 shdr = sec_desc->shdr;
6750 data = sec_desc->data;
6751 idx = shdr->sh_info;
6752
6753 if (shdr->sh_type != SHT_REL) {
6754 pr_warn("internal error at %d\n", __LINE__);
6755 return -LIBBPF_ERRNO__INTERNAL;
6756 }
6757
6758 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6759 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6760 else if (idx == obj->efile.btf_maps_shndx)
6761 err = bpf_object__collect_map_relos(obj, shdr, data);
6762 else
6763 err = bpf_object__collect_prog_relos(obj, shdr, data);
6764 if (err)
6765 return err;
6766 }
6767
6768 bpf_object__sort_relos(obj);
6769 return 0;
6770 }
6771
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6772 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6773 {
6774 if (BPF_CLASS(insn->code) == BPF_JMP &&
6775 BPF_OP(insn->code) == BPF_CALL &&
6776 BPF_SRC(insn->code) == BPF_K &&
6777 insn->src_reg == 0 &&
6778 insn->dst_reg == 0) {
6779 *func_id = insn->imm;
6780 return true;
6781 }
6782 return false;
6783 }
6784
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6785 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6786 {
6787 struct bpf_insn *insn = prog->insns;
6788 enum bpf_func_id func_id;
6789 int i;
6790
6791 if (obj->gen_loader)
6792 return 0;
6793
6794 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6795 if (!insn_is_helper_call(insn, &func_id))
6796 continue;
6797
6798 /* on kernels that don't yet support
6799 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6800 * to bpf_probe_read() which works well for old kernels
6801 */
6802 switch (func_id) {
6803 case BPF_FUNC_probe_read_kernel:
6804 case BPF_FUNC_probe_read_user:
6805 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6806 insn->imm = BPF_FUNC_probe_read;
6807 break;
6808 case BPF_FUNC_probe_read_kernel_str:
6809 case BPF_FUNC_probe_read_user_str:
6810 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6811 insn->imm = BPF_FUNC_probe_read_str;
6812 break;
6813 default:
6814 break;
6815 }
6816 }
6817 return 0;
6818 }
6819
6820 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6821 int *btf_obj_fd, int *btf_type_id);
6822
6823 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)6824 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6825 struct bpf_prog_load_opts *opts, long cookie)
6826 {
6827 enum sec_def_flags def = cookie;
6828
6829 /* old kernels might not support specifying expected_attach_type */
6830 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6831 opts->expected_attach_type = 0;
6832
6833 if (def & SEC_SLEEPABLE)
6834 opts->prog_flags |= BPF_F_SLEEPABLE;
6835
6836 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6837 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6838
6839 /* special check for usdt to use uprobe_multi link */
6840 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
6841 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6842
6843 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6844 int btf_obj_fd = 0, btf_type_id = 0, err;
6845 const char *attach_name;
6846
6847 attach_name = strchr(prog->sec_name, '/');
6848 if (!attach_name) {
6849 /* if BPF program is annotated with just SEC("fentry")
6850 * (or similar) without declaratively specifying
6851 * target, then it is expected that target will be
6852 * specified with bpf_program__set_attach_target() at
6853 * runtime before BPF object load step. If not, then
6854 * there is nothing to load into the kernel as BPF
6855 * verifier won't be able to validate BPF program
6856 * correctness anyways.
6857 */
6858 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6859 prog->name);
6860 return -EINVAL;
6861 }
6862 attach_name++; /* skip over / */
6863
6864 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6865 if (err)
6866 return err;
6867
6868 /* cache resolved BTF FD and BTF type ID in the prog */
6869 prog->attach_btf_obj_fd = btf_obj_fd;
6870 prog->attach_btf_id = btf_type_id;
6871
6872 /* but by now libbpf common logic is not utilizing
6873 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6874 * this callback is called after opts were populated by
6875 * libbpf, so this callback has to update opts explicitly here
6876 */
6877 opts->attach_btf_obj_fd = btf_obj_fd;
6878 opts->attach_btf_id = btf_type_id;
6879 }
6880 return 0;
6881 }
6882
6883 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6884
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)6885 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6886 struct bpf_insn *insns, int insns_cnt,
6887 const char *license, __u32 kern_version, int *prog_fd)
6888 {
6889 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6890 const char *prog_name = NULL;
6891 char *cp, errmsg[STRERR_BUFSIZE];
6892 size_t log_buf_size = 0;
6893 char *log_buf = NULL, *tmp;
6894 int btf_fd, ret, err;
6895 bool own_log_buf = true;
6896 __u32 log_level = prog->log_level;
6897
6898 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6899 /*
6900 * The program type must be set. Most likely we couldn't find a proper
6901 * section definition at load time, and thus we didn't infer the type.
6902 */
6903 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6904 prog->name, prog->sec_name);
6905 return -EINVAL;
6906 }
6907
6908 if (!insns || !insns_cnt)
6909 return -EINVAL;
6910
6911 if (kernel_supports(obj, FEAT_PROG_NAME))
6912 prog_name = prog->name;
6913 load_attr.attach_prog_fd = prog->attach_prog_fd;
6914 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6915 load_attr.attach_btf_id = prog->attach_btf_id;
6916 load_attr.kern_version = kern_version;
6917 load_attr.prog_ifindex = prog->prog_ifindex;
6918
6919 /* specify func_info/line_info only if kernel supports them */
6920 btf_fd = bpf_object__btf_fd(obj);
6921 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6922 load_attr.prog_btf_fd = btf_fd;
6923 load_attr.func_info = prog->func_info;
6924 load_attr.func_info_rec_size = prog->func_info_rec_size;
6925 load_attr.func_info_cnt = prog->func_info_cnt;
6926 load_attr.line_info = prog->line_info;
6927 load_attr.line_info_rec_size = prog->line_info_rec_size;
6928 load_attr.line_info_cnt = prog->line_info_cnt;
6929 }
6930 load_attr.log_level = log_level;
6931 load_attr.prog_flags = prog->prog_flags;
6932 load_attr.fd_array = obj->fd_array;
6933
6934 /* adjust load_attr if sec_def provides custom preload callback */
6935 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6936 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6937 if (err < 0) {
6938 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6939 prog->name, err);
6940 return err;
6941 }
6942 insns = prog->insns;
6943 insns_cnt = prog->insns_cnt;
6944 }
6945
6946 /* allow prog_prepare_load_fn to change expected_attach_type */
6947 load_attr.expected_attach_type = prog->expected_attach_type;
6948
6949 if (obj->gen_loader) {
6950 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6951 license, insns, insns_cnt, &load_attr,
6952 prog - obj->programs);
6953 *prog_fd = -1;
6954 return 0;
6955 }
6956
6957 retry_load:
6958 /* if log_level is zero, we don't request logs initially even if
6959 * custom log_buf is specified; if the program load fails, then we'll
6960 * bump log_level to 1 and use either custom log_buf or we'll allocate
6961 * our own and retry the load to get details on what failed
6962 */
6963 if (log_level) {
6964 if (prog->log_buf) {
6965 log_buf = prog->log_buf;
6966 log_buf_size = prog->log_size;
6967 own_log_buf = false;
6968 } else if (obj->log_buf) {
6969 log_buf = obj->log_buf;
6970 log_buf_size = obj->log_size;
6971 own_log_buf = false;
6972 } else {
6973 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6974 tmp = realloc(log_buf, log_buf_size);
6975 if (!tmp) {
6976 ret = -ENOMEM;
6977 goto out;
6978 }
6979 log_buf = tmp;
6980 log_buf[0] = '\0';
6981 own_log_buf = true;
6982 }
6983 }
6984
6985 load_attr.log_buf = log_buf;
6986 load_attr.log_size = log_buf_size;
6987 load_attr.log_level = log_level;
6988
6989 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6990 if (ret >= 0) {
6991 if (log_level && own_log_buf) {
6992 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6993 prog->name, log_buf);
6994 }
6995
6996 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6997 struct bpf_map *map;
6998 int i;
6999
7000 for (i = 0; i < obj->nr_maps; i++) {
7001 map = &prog->obj->maps[i];
7002 if (map->libbpf_type != LIBBPF_MAP_RODATA)
7003 continue;
7004
7005 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7006 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7007 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7008 prog->name, map->real_name, cp);
7009 /* Don't fail hard if can't bind rodata. */
7010 }
7011 }
7012 }
7013
7014 *prog_fd = ret;
7015 ret = 0;
7016 goto out;
7017 }
7018
7019 if (log_level == 0) {
7020 log_level = 1;
7021 goto retry_load;
7022 }
7023 /* On ENOSPC, increase log buffer size and retry, unless custom
7024 * log_buf is specified.
7025 * Be careful to not overflow u32, though. Kernel's log buf size limit
7026 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7027 * multiply by 2 unless we are sure we'll fit within 32 bits.
7028 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7029 */
7030 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7031 goto retry_load;
7032
7033 ret = -errno;
7034
7035 /* post-process verifier log to improve error descriptions */
7036 fixup_verifier_log(prog, log_buf, log_buf_size);
7037
7038 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7039 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7040 pr_perm_msg(ret);
7041
7042 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7043 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7044 prog->name, log_buf);
7045 }
7046
7047 out:
7048 if (own_log_buf)
7049 free(log_buf);
7050 return ret;
7051 }
7052
find_prev_line(char * buf,char * cur)7053 static char *find_prev_line(char *buf, char *cur)
7054 {
7055 char *p;
7056
7057 if (cur == buf) /* end of a log buf */
7058 return NULL;
7059
7060 p = cur - 1;
7061 while (p - 1 >= buf && *(p - 1) != '\n')
7062 p--;
7063
7064 return p;
7065 }
7066
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7067 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7068 char *orig, size_t orig_sz, const char *patch)
7069 {
7070 /* size of the remaining log content to the right from the to-be-replaced part */
7071 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7072 size_t patch_sz = strlen(patch);
7073
7074 if (patch_sz != orig_sz) {
7075 /* If patch line(s) are longer than original piece of verifier log,
7076 * shift log contents by (patch_sz - orig_sz) bytes to the right
7077 * starting from after to-be-replaced part of the log.
7078 *
7079 * If patch line(s) are shorter than original piece of verifier log,
7080 * shift log contents by (orig_sz - patch_sz) bytes to the left
7081 * starting from after to-be-replaced part of the log
7082 *
7083 * We need to be careful about not overflowing available
7084 * buf_sz capacity. If that's the case, we'll truncate the end
7085 * of the original log, as necessary.
7086 */
7087 if (patch_sz > orig_sz) {
7088 if (orig + patch_sz >= buf + buf_sz) {
7089 /* patch is big enough to cover remaining space completely */
7090 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7091 rem_sz = 0;
7092 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7093 /* patch causes part of remaining log to be truncated */
7094 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7095 }
7096 }
7097 /* shift remaining log to the right by calculated amount */
7098 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7099 }
7100
7101 memcpy(orig, patch, patch_sz);
7102 }
7103
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7104 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7105 char *buf, size_t buf_sz, size_t log_sz,
7106 char *line1, char *line2, char *line3)
7107 {
7108 /* Expected log for failed and not properly guarded CO-RE relocation:
7109 * line1 -> 123: (85) call unknown#195896080
7110 * line2 -> invalid func unknown#195896080
7111 * line3 -> <anything else or end of buffer>
7112 *
7113 * "123" is the index of the instruction that was poisoned. We extract
7114 * instruction index to find corresponding CO-RE relocation and
7115 * replace this part of the log with more relevant information about
7116 * failed CO-RE relocation.
7117 */
7118 const struct bpf_core_relo *relo;
7119 struct bpf_core_spec spec;
7120 char patch[512], spec_buf[256];
7121 int insn_idx, err, spec_len;
7122
7123 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7124 return;
7125
7126 relo = find_relo_core(prog, insn_idx);
7127 if (!relo)
7128 return;
7129
7130 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7131 if (err)
7132 return;
7133
7134 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7135 snprintf(patch, sizeof(patch),
7136 "%d: <invalid CO-RE relocation>\n"
7137 "failed to resolve CO-RE relocation %s%s\n",
7138 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7139
7140 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7141 }
7142
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7143 static void fixup_log_missing_map_load(struct bpf_program *prog,
7144 char *buf, size_t buf_sz, size_t log_sz,
7145 char *line1, char *line2, char *line3)
7146 {
7147 /* Expected log for failed and not properly guarded map reference:
7148 * line1 -> 123: (85) call unknown#2001000345
7149 * line2 -> invalid func unknown#2001000345
7150 * line3 -> <anything else or end of buffer>
7151 *
7152 * "123" is the index of the instruction that was poisoned.
7153 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7154 */
7155 struct bpf_object *obj = prog->obj;
7156 const struct bpf_map *map;
7157 int insn_idx, map_idx;
7158 char patch[128];
7159
7160 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7161 return;
7162
7163 map_idx -= POISON_LDIMM64_MAP_BASE;
7164 if (map_idx < 0 || map_idx >= obj->nr_maps)
7165 return;
7166 map = &obj->maps[map_idx];
7167
7168 snprintf(patch, sizeof(patch),
7169 "%d: <invalid BPF map reference>\n"
7170 "BPF map '%s' is referenced but wasn't created\n",
7171 insn_idx, map->name);
7172
7173 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7174 }
7175
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7176 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7177 char *buf, size_t buf_sz, size_t log_sz,
7178 char *line1, char *line2, char *line3)
7179 {
7180 /* Expected log for failed and not properly guarded kfunc call:
7181 * line1 -> 123: (85) call unknown#2002000345
7182 * line2 -> invalid func unknown#2002000345
7183 * line3 -> <anything else or end of buffer>
7184 *
7185 * "123" is the index of the instruction that was poisoned.
7186 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7187 */
7188 struct bpf_object *obj = prog->obj;
7189 const struct extern_desc *ext;
7190 int insn_idx, ext_idx;
7191 char patch[128];
7192
7193 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7194 return;
7195
7196 ext_idx -= POISON_CALL_KFUNC_BASE;
7197 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7198 return;
7199 ext = &obj->externs[ext_idx];
7200
7201 snprintf(patch, sizeof(patch),
7202 "%d: <invalid kfunc call>\n"
7203 "kfunc '%s' is referenced but wasn't resolved\n",
7204 insn_idx, ext->name);
7205
7206 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7207 }
7208
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7209 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7210 {
7211 /* look for familiar error patterns in last N lines of the log */
7212 const size_t max_last_line_cnt = 10;
7213 char *prev_line, *cur_line, *next_line;
7214 size_t log_sz;
7215 int i;
7216
7217 if (!buf)
7218 return;
7219
7220 log_sz = strlen(buf) + 1;
7221 next_line = buf + log_sz - 1;
7222
7223 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7224 cur_line = find_prev_line(buf, next_line);
7225 if (!cur_line)
7226 return;
7227
7228 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7229 prev_line = find_prev_line(buf, cur_line);
7230 if (!prev_line)
7231 continue;
7232
7233 /* failed CO-RE relocation case */
7234 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7235 prev_line, cur_line, next_line);
7236 return;
7237 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7238 prev_line = find_prev_line(buf, cur_line);
7239 if (!prev_line)
7240 continue;
7241
7242 /* reference to uncreated BPF map */
7243 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7244 prev_line, cur_line, next_line);
7245 return;
7246 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7247 prev_line = find_prev_line(buf, cur_line);
7248 if (!prev_line)
7249 continue;
7250
7251 /* reference to unresolved kfunc */
7252 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7253 prev_line, cur_line, next_line);
7254 return;
7255 }
7256 }
7257 }
7258
bpf_program_record_relos(struct bpf_program * prog)7259 static int bpf_program_record_relos(struct bpf_program *prog)
7260 {
7261 struct bpf_object *obj = prog->obj;
7262 int i;
7263
7264 for (i = 0; i < prog->nr_reloc; i++) {
7265 struct reloc_desc *relo = &prog->reloc_desc[i];
7266 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7267 int kind;
7268
7269 switch (relo->type) {
7270 case RELO_EXTERN_LD64:
7271 if (ext->type != EXT_KSYM)
7272 continue;
7273 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7274 BTF_KIND_VAR : BTF_KIND_FUNC;
7275 bpf_gen__record_extern(obj->gen_loader, ext->name,
7276 ext->is_weak, !ext->ksym.type_id,
7277 true, kind, relo->insn_idx);
7278 break;
7279 case RELO_EXTERN_CALL:
7280 bpf_gen__record_extern(obj->gen_loader, ext->name,
7281 ext->is_weak, false, false, BTF_KIND_FUNC,
7282 relo->insn_idx);
7283 break;
7284 case RELO_CORE: {
7285 struct bpf_core_relo cr = {
7286 .insn_off = relo->insn_idx * 8,
7287 .type_id = relo->core_relo->type_id,
7288 .access_str_off = relo->core_relo->access_str_off,
7289 .kind = relo->core_relo->kind,
7290 };
7291
7292 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7293 break;
7294 }
7295 default:
7296 continue;
7297 }
7298 }
7299 return 0;
7300 }
7301
7302 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7303 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7304 {
7305 struct bpf_program *prog;
7306 size_t i;
7307 int err;
7308
7309 for (i = 0; i < obj->nr_programs; i++) {
7310 prog = &obj->programs[i];
7311 err = bpf_object__sanitize_prog(obj, prog);
7312 if (err)
7313 return err;
7314 }
7315
7316 for (i = 0; i < obj->nr_programs; i++) {
7317 prog = &obj->programs[i];
7318 if (prog_is_subprog(obj, prog))
7319 continue;
7320 if (!prog->autoload) {
7321 pr_debug("prog '%s': skipped loading\n", prog->name);
7322 continue;
7323 }
7324 prog->log_level |= log_level;
7325
7326 if (obj->gen_loader)
7327 bpf_program_record_relos(prog);
7328
7329 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7330 obj->license, obj->kern_version, &prog->fd);
7331 if (err) {
7332 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7333 return err;
7334 }
7335 }
7336
7337 bpf_object__free_relocs(obj);
7338 return 0;
7339 }
7340
7341 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7342
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7343 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7344 {
7345 struct bpf_program *prog;
7346 int err;
7347
7348 bpf_object__for_each_program(prog, obj) {
7349 prog->sec_def = find_sec_def(prog->sec_name);
7350 if (!prog->sec_def) {
7351 /* couldn't guess, but user might manually specify */
7352 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7353 prog->name, prog->sec_name);
7354 continue;
7355 }
7356
7357 prog->type = prog->sec_def->prog_type;
7358 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7359
7360 /* sec_def can have custom callback which should be called
7361 * after bpf_program is initialized to adjust its properties
7362 */
7363 if (prog->sec_def->prog_setup_fn) {
7364 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7365 if (err < 0) {
7366 pr_warn("prog '%s': failed to initialize: %d\n",
7367 prog->name, err);
7368 return err;
7369 }
7370 }
7371 }
7372
7373 return 0;
7374 }
7375
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7376 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7377 const struct bpf_object_open_opts *opts)
7378 {
7379 const char *obj_name, *kconfig, *btf_tmp_path;
7380 struct bpf_object *obj;
7381 char tmp_name[64];
7382 int err;
7383 char *log_buf;
7384 size_t log_size;
7385 __u32 log_level;
7386
7387 if (elf_version(EV_CURRENT) == EV_NONE) {
7388 pr_warn("failed to init libelf for %s\n",
7389 path ? : "(mem buf)");
7390 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7391 }
7392
7393 if (!OPTS_VALID(opts, bpf_object_open_opts))
7394 return ERR_PTR(-EINVAL);
7395
7396 obj_name = OPTS_GET(opts, object_name, NULL);
7397 if (obj_buf) {
7398 if (!obj_name) {
7399 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7400 (unsigned long)obj_buf,
7401 (unsigned long)obj_buf_sz);
7402 obj_name = tmp_name;
7403 }
7404 path = obj_name;
7405 pr_debug("loading object '%s' from buffer\n", obj_name);
7406 }
7407
7408 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7409 log_size = OPTS_GET(opts, kernel_log_size, 0);
7410 log_level = OPTS_GET(opts, kernel_log_level, 0);
7411 if (log_size > UINT_MAX)
7412 return ERR_PTR(-EINVAL);
7413 if (log_size && !log_buf)
7414 return ERR_PTR(-EINVAL);
7415
7416 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7417 if (IS_ERR(obj))
7418 return obj;
7419
7420 obj->log_buf = log_buf;
7421 obj->log_size = log_size;
7422 obj->log_level = log_level;
7423
7424 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7425 if (btf_tmp_path) {
7426 if (strlen(btf_tmp_path) >= PATH_MAX) {
7427 err = -ENAMETOOLONG;
7428 goto out;
7429 }
7430 obj->btf_custom_path = strdup(btf_tmp_path);
7431 if (!obj->btf_custom_path) {
7432 err = -ENOMEM;
7433 goto out;
7434 }
7435 }
7436
7437 kconfig = OPTS_GET(opts, kconfig, NULL);
7438 if (kconfig) {
7439 obj->kconfig = strdup(kconfig);
7440 if (!obj->kconfig) {
7441 err = -ENOMEM;
7442 goto out;
7443 }
7444 }
7445
7446 err = bpf_object__elf_init(obj);
7447 err = err ? : bpf_object__check_endianness(obj);
7448 err = err ? : bpf_object__elf_collect(obj);
7449 err = err ? : bpf_object__collect_externs(obj);
7450 err = err ? : bpf_object_fixup_btf(obj);
7451 err = err ? : bpf_object__init_maps(obj, opts);
7452 err = err ? : bpf_object_init_progs(obj, opts);
7453 err = err ? : bpf_object__collect_relos(obj);
7454 if (err)
7455 goto out;
7456
7457 bpf_object__elf_finish(obj);
7458
7459 return obj;
7460 out:
7461 bpf_object__close(obj);
7462 return ERR_PTR(err);
7463 }
7464
7465 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7466 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7467 {
7468 if (!path)
7469 return libbpf_err_ptr(-EINVAL);
7470
7471 pr_debug("loading %s\n", path);
7472
7473 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7474 }
7475
bpf_object__open(const char * path)7476 struct bpf_object *bpf_object__open(const char *path)
7477 {
7478 return bpf_object__open_file(path, NULL);
7479 }
7480
7481 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7482 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7483 const struct bpf_object_open_opts *opts)
7484 {
7485 if (!obj_buf || obj_buf_sz == 0)
7486 return libbpf_err_ptr(-EINVAL);
7487
7488 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7489 }
7490
bpf_object_unload(struct bpf_object * obj)7491 static int bpf_object_unload(struct bpf_object *obj)
7492 {
7493 size_t i;
7494
7495 if (!obj)
7496 return libbpf_err(-EINVAL);
7497
7498 for (i = 0; i < obj->nr_maps; i++) {
7499 zclose(obj->maps[i].fd);
7500 if (obj->maps[i].st_ops)
7501 zfree(&obj->maps[i].st_ops->kern_vdata);
7502 }
7503
7504 for (i = 0; i < obj->nr_programs; i++)
7505 bpf_program__unload(&obj->programs[i]);
7506
7507 return 0;
7508 }
7509
bpf_object__sanitize_maps(struct bpf_object * obj)7510 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7511 {
7512 struct bpf_map *m;
7513
7514 bpf_object__for_each_map(m, obj) {
7515 if (!bpf_map__is_internal(m))
7516 continue;
7517 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7518 m->def.map_flags &= ~BPF_F_MMAPABLE;
7519 }
7520
7521 return 0;
7522 }
7523
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)7524 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7525 {
7526 char sym_type, sym_name[500];
7527 unsigned long long sym_addr;
7528 int ret, err = 0;
7529 FILE *f;
7530
7531 f = fopen("/proc/kallsyms", "re");
7532 if (!f) {
7533 err = -errno;
7534 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7535 return err;
7536 }
7537
7538 while (true) {
7539 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7540 &sym_addr, &sym_type, sym_name);
7541 if (ret == EOF && feof(f))
7542 break;
7543 if (ret != 3) {
7544 pr_warn("failed to read kallsyms entry: %d\n", ret);
7545 err = -EINVAL;
7546 break;
7547 }
7548
7549 err = cb(sym_addr, sym_type, sym_name, ctx);
7550 if (err)
7551 break;
7552 }
7553
7554 fclose(f);
7555 return err;
7556 }
7557
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)7558 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7559 const char *sym_name, void *ctx)
7560 {
7561 struct bpf_object *obj = ctx;
7562 const struct btf_type *t;
7563 struct extern_desc *ext;
7564
7565 ext = find_extern_by_name(obj, sym_name);
7566 if (!ext || ext->type != EXT_KSYM)
7567 return 0;
7568
7569 t = btf__type_by_id(obj->btf, ext->btf_id);
7570 if (!btf_is_var(t))
7571 return 0;
7572
7573 if (ext->is_set && ext->ksym.addr != sym_addr) {
7574 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7575 sym_name, ext->ksym.addr, sym_addr);
7576 return -EINVAL;
7577 }
7578 if (!ext->is_set) {
7579 ext->is_set = true;
7580 ext->ksym.addr = sym_addr;
7581 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7582 }
7583 return 0;
7584 }
7585
bpf_object__read_kallsyms_file(struct bpf_object * obj)7586 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7587 {
7588 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7589 }
7590
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)7591 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7592 __u16 kind, struct btf **res_btf,
7593 struct module_btf **res_mod_btf)
7594 {
7595 struct module_btf *mod_btf;
7596 struct btf *btf;
7597 int i, id, err;
7598
7599 btf = obj->btf_vmlinux;
7600 mod_btf = NULL;
7601 id = btf__find_by_name_kind(btf, ksym_name, kind);
7602
7603 if (id == -ENOENT) {
7604 err = load_module_btfs(obj);
7605 if (err)
7606 return err;
7607
7608 for (i = 0; i < obj->btf_module_cnt; i++) {
7609 /* we assume module_btf's BTF FD is always >0 */
7610 mod_btf = &obj->btf_modules[i];
7611 btf = mod_btf->btf;
7612 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7613 if (id != -ENOENT)
7614 break;
7615 }
7616 }
7617 if (id <= 0)
7618 return -ESRCH;
7619
7620 *res_btf = btf;
7621 *res_mod_btf = mod_btf;
7622 return id;
7623 }
7624
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)7625 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7626 struct extern_desc *ext)
7627 {
7628 const struct btf_type *targ_var, *targ_type;
7629 __u32 targ_type_id, local_type_id;
7630 struct module_btf *mod_btf = NULL;
7631 const char *targ_var_name;
7632 struct btf *btf = NULL;
7633 int id, err;
7634
7635 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7636 if (id < 0) {
7637 if (id == -ESRCH && ext->is_weak)
7638 return 0;
7639 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7640 ext->name);
7641 return id;
7642 }
7643
7644 /* find local type_id */
7645 local_type_id = ext->ksym.type_id;
7646
7647 /* find target type_id */
7648 targ_var = btf__type_by_id(btf, id);
7649 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7650 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7651
7652 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7653 btf, targ_type_id);
7654 if (err <= 0) {
7655 const struct btf_type *local_type;
7656 const char *targ_name, *local_name;
7657
7658 local_type = btf__type_by_id(obj->btf, local_type_id);
7659 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7660 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7661
7662 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7663 ext->name, local_type_id,
7664 btf_kind_str(local_type), local_name, targ_type_id,
7665 btf_kind_str(targ_type), targ_name);
7666 return -EINVAL;
7667 }
7668
7669 ext->is_set = true;
7670 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7671 ext->ksym.kernel_btf_id = id;
7672 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7673 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7674
7675 return 0;
7676 }
7677
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)7678 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7679 struct extern_desc *ext)
7680 {
7681 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7682 struct module_btf *mod_btf = NULL;
7683 const struct btf_type *kern_func;
7684 struct btf *kern_btf = NULL;
7685 int ret;
7686
7687 local_func_proto_id = ext->ksym.type_id;
7688
7689 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
7690 &mod_btf);
7691 if (kfunc_id < 0) {
7692 if (kfunc_id == -ESRCH && ext->is_weak)
7693 return 0;
7694 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7695 ext->name);
7696 return kfunc_id;
7697 }
7698
7699 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7700 kfunc_proto_id = kern_func->type;
7701
7702 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7703 kern_btf, kfunc_proto_id);
7704 if (ret <= 0) {
7705 if (ext->is_weak)
7706 return 0;
7707
7708 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7709 ext->name, local_func_proto_id,
7710 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7711 return -EINVAL;
7712 }
7713
7714 /* set index for module BTF fd in fd_array, if unset */
7715 if (mod_btf && !mod_btf->fd_array_idx) {
7716 /* insn->off is s16 */
7717 if (obj->fd_array_cnt == INT16_MAX) {
7718 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7719 ext->name, mod_btf->fd_array_idx);
7720 return -E2BIG;
7721 }
7722 /* Cannot use index 0 for module BTF fd */
7723 if (!obj->fd_array_cnt)
7724 obj->fd_array_cnt = 1;
7725
7726 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7727 obj->fd_array_cnt + 1);
7728 if (ret)
7729 return ret;
7730 mod_btf->fd_array_idx = obj->fd_array_cnt;
7731 /* we assume module BTF FD is always >0 */
7732 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7733 }
7734
7735 ext->is_set = true;
7736 ext->ksym.kernel_btf_id = kfunc_id;
7737 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7738 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7739 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7740 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7741 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7742 */
7743 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7744 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7745 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7746
7747 return 0;
7748 }
7749
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7750 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7751 {
7752 const struct btf_type *t;
7753 struct extern_desc *ext;
7754 int i, err;
7755
7756 for (i = 0; i < obj->nr_extern; i++) {
7757 ext = &obj->externs[i];
7758 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7759 continue;
7760
7761 if (obj->gen_loader) {
7762 ext->is_set = true;
7763 ext->ksym.kernel_btf_obj_fd = 0;
7764 ext->ksym.kernel_btf_id = 0;
7765 continue;
7766 }
7767 t = btf__type_by_id(obj->btf, ext->btf_id);
7768 if (btf_is_var(t))
7769 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7770 else
7771 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7772 if (err)
7773 return err;
7774 }
7775 return 0;
7776 }
7777
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7778 static int bpf_object__resolve_externs(struct bpf_object *obj,
7779 const char *extra_kconfig)
7780 {
7781 bool need_config = false, need_kallsyms = false;
7782 bool need_vmlinux_btf = false;
7783 struct extern_desc *ext;
7784 void *kcfg_data = NULL;
7785 int err, i;
7786
7787 if (obj->nr_extern == 0)
7788 return 0;
7789
7790 if (obj->kconfig_map_idx >= 0)
7791 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7792
7793 for (i = 0; i < obj->nr_extern; i++) {
7794 ext = &obj->externs[i];
7795
7796 if (ext->type == EXT_KSYM) {
7797 if (ext->ksym.type_id)
7798 need_vmlinux_btf = true;
7799 else
7800 need_kallsyms = true;
7801 continue;
7802 } else if (ext->type == EXT_KCFG) {
7803 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7804 __u64 value = 0;
7805
7806 /* Kconfig externs need actual /proc/config.gz */
7807 if (str_has_pfx(ext->name, "CONFIG_")) {
7808 need_config = true;
7809 continue;
7810 }
7811
7812 /* Virtual kcfg externs are customly handled by libbpf */
7813 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7814 value = get_kernel_version();
7815 if (!value) {
7816 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7817 return -EINVAL;
7818 }
7819 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7820 value = kernel_supports(obj, FEAT_BPF_COOKIE);
7821 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7822 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7823 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7824 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7825 * __kconfig externs, where LINUX_ ones are virtual and filled out
7826 * customly by libbpf (their values don't come from Kconfig).
7827 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7828 * __weak, it defaults to zero value, just like for CONFIG_xxx
7829 * externs.
7830 */
7831 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7832 return -EINVAL;
7833 }
7834
7835 err = set_kcfg_value_num(ext, ext_ptr, value);
7836 if (err)
7837 return err;
7838 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7839 ext->name, (long long)value);
7840 } else {
7841 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7842 return -EINVAL;
7843 }
7844 }
7845 if (need_config && extra_kconfig) {
7846 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7847 if (err)
7848 return -EINVAL;
7849 need_config = false;
7850 for (i = 0; i < obj->nr_extern; i++) {
7851 ext = &obj->externs[i];
7852 if (ext->type == EXT_KCFG && !ext->is_set) {
7853 need_config = true;
7854 break;
7855 }
7856 }
7857 }
7858 if (need_config) {
7859 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7860 if (err)
7861 return -EINVAL;
7862 }
7863 if (need_kallsyms) {
7864 err = bpf_object__read_kallsyms_file(obj);
7865 if (err)
7866 return -EINVAL;
7867 }
7868 if (need_vmlinux_btf) {
7869 err = bpf_object__resolve_ksyms_btf_id(obj);
7870 if (err)
7871 return -EINVAL;
7872 }
7873 for (i = 0; i < obj->nr_extern; i++) {
7874 ext = &obj->externs[i];
7875
7876 if (!ext->is_set && !ext->is_weak) {
7877 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7878 return -ESRCH;
7879 } else if (!ext->is_set) {
7880 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7881 ext->name);
7882 }
7883 }
7884
7885 return 0;
7886 }
7887
bpf_map_prepare_vdata(const struct bpf_map * map)7888 static void bpf_map_prepare_vdata(const struct bpf_map *map)
7889 {
7890 struct bpf_struct_ops *st_ops;
7891 __u32 i;
7892
7893 st_ops = map->st_ops;
7894 for (i = 0; i < btf_vlen(st_ops->type); i++) {
7895 struct bpf_program *prog = st_ops->progs[i];
7896 void *kern_data;
7897 int prog_fd;
7898
7899 if (!prog)
7900 continue;
7901
7902 prog_fd = bpf_program__fd(prog);
7903 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
7904 *(unsigned long *)kern_data = prog_fd;
7905 }
7906 }
7907
bpf_object_prepare_struct_ops(struct bpf_object * obj)7908 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
7909 {
7910 int i;
7911
7912 for (i = 0; i < obj->nr_maps; i++)
7913 if (bpf_map__is_struct_ops(&obj->maps[i]))
7914 bpf_map_prepare_vdata(&obj->maps[i]);
7915
7916 return 0;
7917 }
7918
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)7919 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7920 {
7921 int err, i;
7922
7923 if (!obj)
7924 return libbpf_err(-EINVAL);
7925
7926 if (obj->loaded) {
7927 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7928 return libbpf_err(-EINVAL);
7929 }
7930
7931 if (obj->gen_loader)
7932 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7933
7934 err = bpf_object__probe_loading(obj);
7935 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7936 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7937 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7938 err = err ? : bpf_object__sanitize_maps(obj);
7939 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7940 err = err ? : bpf_object__create_maps(obj);
7941 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7942 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7943 err = err ? : bpf_object_init_prog_arrays(obj);
7944 err = err ? : bpf_object_prepare_struct_ops(obj);
7945
7946 if (obj->gen_loader) {
7947 /* reset FDs */
7948 if (obj->btf)
7949 btf__set_fd(obj->btf, -1);
7950 for (i = 0; i < obj->nr_maps; i++)
7951 obj->maps[i].fd = -1;
7952 if (!err)
7953 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7954 }
7955
7956 /* clean up fd_array */
7957 zfree(&obj->fd_array);
7958
7959 /* clean up module BTFs */
7960 for (i = 0; i < obj->btf_module_cnt; i++) {
7961 close(obj->btf_modules[i].fd);
7962 btf__free(obj->btf_modules[i].btf);
7963 free(obj->btf_modules[i].name);
7964 }
7965 free(obj->btf_modules);
7966
7967 /* clean up vmlinux BTF */
7968 btf__free(obj->btf_vmlinux);
7969 obj->btf_vmlinux = NULL;
7970
7971 obj->loaded = true; /* doesn't matter if successfully or not */
7972
7973 if (err)
7974 goto out;
7975
7976 return 0;
7977 out:
7978 /* unpin any maps that were auto-pinned during load */
7979 for (i = 0; i < obj->nr_maps; i++)
7980 if (obj->maps[i].pinned && !obj->maps[i].reused)
7981 bpf_map__unpin(&obj->maps[i], NULL);
7982
7983 bpf_object_unload(obj);
7984 pr_warn("failed to load object '%s'\n", obj->path);
7985 return libbpf_err(err);
7986 }
7987
bpf_object__load(struct bpf_object * obj)7988 int bpf_object__load(struct bpf_object *obj)
7989 {
7990 return bpf_object_load(obj, 0, NULL);
7991 }
7992
make_parent_dir(const char * path)7993 static int make_parent_dir(const char *path)
7994 {
7995 char *cp, errmsg[STRERR_BUFSIZE];
7996 char *dname, *dir;
7997 int err = 0;
7998
7999 dname = strdup(path);
8000 if (dname == NULL)
8001 return -ENOMEM;
8002
8003 dir = dirname(dname);
8004 if (mkdir(dir, 0700) && errno != EEXIST)
8005 err = -errno;
8006
8007 free(dname);
8008 if (err) {
8009 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8010 pr_warn("failed to mkdir %s: %s\n", path, cp);
8011 }
8012 return err;
8013 }
8014
check_path(const char * path)8015 static int check_path(const char *path)
8016 {
8017 char *cp, errmsg[STRERR_BUFSIZE];
8018 struct statfs st_fs;
8019 char *dname, *dir;
8020 int err = 0;
8021
8022 if (path == NULL)
8023 return -EINVAL;
8024
8025 dname = strdup(path);
8026 if (dname == NULL)
8027 return -ENOMEM;
8028
8029 dir = dirname(dname);
8030 if (statfs(dir, &st_fs)) {
8031 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8032 pr_warn("failed to statfs %s: %s\n", dir, cp);
8033 err = -errno;
8034 }
8035 free(dname);
8036
8037 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8038 pr_warn("specified path %s is not on BPF FS\n", path);
8039 err = -EINVAL;
8040 }
8041
8042 return err;
8043 }
8044
bpf_program__pin(struct bpf_program * prog,const char * path)8045 int bpf_program__pin(struct bpf_program *prog, const char *path)
8046 {
8047 char *cp, errmsg[STRERR_BUFSIZE];
8048 int err;
8049
8050 if (prog->fd < 0) {
8051 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8052 return libbpf_err(-EINVAL);
8053 }
8054
8055 err = make_parent_dir(path);
8056 if (err)
8057 return libbpf_err(err);
8058
8059 err = check_path(path);
8060 if (err)
8061 return libbpf_err(err);
8062
8063 if (bpf_obj_pin(prog->fd, path)) {
8064 err = -errno;
8065 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8066 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8067 return libbpf_err(err);
8068 }
8069
8070 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8071 return 0;
8072 }
8073
bpf_program__unpin(struct bpf_program * prog,const char * path)8074 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8075 {
8076 int err;
8077
8078 if (prog->fd < 0) {
8079 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8080 return libbpf_err(-EINVAL);
8081 }
8082
8083 err = check_path(path);
8084 if (err)
8085 return libbpf_err(err);
8086
8087 err = unlink(path);
8088 if (err)
8089 return libbpf_err(-errno);
8090
8091 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8092 return 0;
8093 }
8094
bpf_map__pin(struct bpf_map * map,const char * path)8095 int bpf_map__pin(struct bpf_map *map, const char *path)
8096 {
8097 char *cp, errmsg[STRERR_BUFSIZE];
8098 int err;
8099
8100 if (map == NULL) {
8101 pr_warn("invalid map pointer\n");
8102 return libbpf_err(-EINVAL);
8103 }
8104
8105 if (map->pin_path) {
8106 if (path && strcmp(path, map->pin_path)) {
8107 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8108 bpf_map__name(map), map->pin_path, path);
8109 return libbpf_err(-EINVAL);
8110 } else if (map->pinned) {
8111 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8112 bpf_map__name(map), map->pin_path);
8113 return 0;
8114 }
8115 } else {
8116 if (!path) {
8117 pr_warn("missing a path to pin map '%s' at\n",
8118 bpf_map__name(map));
8119 return libbpf_err(-EINVAL);
8120 } else if (map->pinned) {
8121 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8122 return libbpf_err(-EEXIST);
8123 }
8124
8125 map->pin_path = strdup(path);
8126 if (!map->pin_path) {
8127 err = -errno;
8128 goto out_err;
8129 }
8130 }
8131
8132 err = make_parent_dir(map->pin_path);
8133 if (err)
8134 return libbpf_err(err);
8135
8136 err = check_path(map->pin_path);
8137 if (err)
8138 return libbpf_err(err);
8139
8140 if (bpf_obj_pin(map->fd, map->pin_path)) {
8141 err = -errno;
8142 goto out_err;
8143 }
8144
8145 map->pinned = true;
8146 pr_debug("pinned map '%s'\n", map->pin_path);
8147
8148 return 0;
8149
8150 out_err:
8151 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8152 pr_warn("failed to pin map: %s\n", cp);
8153 return libbpf_err(err);
8154 }
8155
bpf_map__unpin(struct bpf_map * map,const char * path)8156 int bpf_map__unpin(struct bpf_map *map, const char *path)
8157 {
8158 int err;
8159
8160 if (map == NULL) {
8161 pr_warn("invalid map pointer\n");
8162 return libbpf_err(-EINVAL);
8163 }
8164
8165 if (map->pin_path) {
8166 if (path && strcmp(path, map->pin_path)) {
8167 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8168 bpf_map__name(map), map->pin_path, path);
8169 return libbpf_err(-EINVAL);
8170 }
8171 path = map->pin_path;
8172 } else if (!path) {
8173 pr_warn("no path to unpin map '%s' from\n",
8174 bpf_map__name(map));
8175 return libbpf_err(-EINVAL);
8176 }
8177
8178 err = check_path(path);
8179 if (err)
8180 return libbpf_err(err);
8181
8182 err = unlink(path);
8183 if (err != 0)
8184 return libbpf_err(-errno);
8185
8186 map->pinned = false;
8187 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8188
8189 return 0;
8190 }
8191
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8192 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8193 {
8194 char *new = NULL;
8195
8196 if (path) {
8197 new = strdup(path);
8198 if (!new)
8199 return libbpf_err(-errno);
8200 }
8201
8202 free(map->pin_path);
8203 map->pin_path = new;
8204 return 0;
8205 }
8206
8207 __alias(bpf_map__pin_path)
8208 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8209
bpf_map__pin_path(const struct bpf_map * map)8210 const char *bpf_map__pin_path(const struct bpf_map *map)
8211 {
8212 return map->pin_path;
8213 }
8214
bpf_map__is_pinned(const struct bpf_map * map)8215 bool bpf_map__is_pinned(const struct bpf_map *map)
8216 {
8217 return map->pinned;
8218 }
8219
sanitize_pin_path(char * s)8220 static void sanitize_pin_path(char *s)
8221 {
8222 /* bpffs disallows periods in path names */
8223 while (*s) {
8224 if (*s == '.')
8225 *s = '_';
8226 s++;
8227 }
8228 }
8229
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8230 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8231 {
8232 struct bpf_map *map;
8233 int err;
8234
8235 if (!obj)
8236 return libbpf_err(-ENOENT);
8237
8238 if (!obj->loaded) {
8239 pr_warn("object not yet loaded; load it first\n");
8240 return libbpf_err(-ENOENT);
8241 }
8242
8243 bpf_object__for_each_map(map, obj) {
8244 char *pin_path = NULL;
8245 char buf[PATH_MAX];
8246
8247 if (!map->autocreate)
8248 continue;
8249
8250 if (path) {
8251 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8252 if (err)
8253 goto err_unpin_maps;
8254 sanitize_pin_path(buf);
8255 pin_path = buf;
8256 } else if (!map->pin_path) {
8257 continue;
8258 }
8259
8260 err = bpf_map__pin(map, pin_path);
8261 if (err)
8262 goto err_unpin_maps;
8263 }
8264
8265 return 0;
8266
8267 err_unpin_maps:
8268 while ((map = bpf_object__prev_map(obj, map))) {
8269 if (!map->pin_path)
8270 continue;
8271
8272 bpf_map__unpin(map, NULL);
8273 }
8274
8275 return libbpf_err(err);
8276 }
8277
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8278 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8279 {
8280 struct bpf_map *map;
8281 int err;
8282
8283 if (!obj)
8284 return libbpf_err(-ENOENT);
8285
8286 bpf_object__for_each_map(map, obj) {
8287 char *pin_path = NULL;
8288 char buf[PATH_MAX];
8289
8290 if (path) {
8291 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8292 if (err)
8293 return libbpf_err(err);
8294 sanitize_pin_path(buf);
8295 pin_path = buf;
8296 } else if (!map->pin_path) {
8297 continue;
8298 }
8299
8300 err = bpf_map__unpin(map, pin_path);
8301 if (err)
8302 return libbpf_err(err);
8303 }
8304
8305 return 0;
8306 }
8307
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8308 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8309 {
8310 struct bpf_program *prog;
8311 char buf[PATH_MAX];
8312 int err;
8313
8314 if (!obj)
8315 return libbpf_err(-ENOENT);
8316
8317 if (!obj->loaded) {
8318 pr_warn("object not yet loaded; load it first\n");
8319 return libbpf_err(-ENOENT);
8320 }
8321
8322 bpf_object__for_each_program(prog, obj) {
8323 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8324 if (err)
8325 goto err_unpin_programs;
8326
8327 err = bpf_program__pin(prog, buf);
8328 if (err)
8329 goto err_unpin_programs;
8330 }
8331
8332 return 0;
8333
8334 err_unpin_programs:
8335 while ((prog = bpf_object__prev_program(obj, prog))) {
8336 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8337 continue;
8338
8339 bpf_program__unpin(prog, buf);
8340 }
8341
8342 return libbpf_err(err);
8343 }
8344
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)8345 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8346 {
8347 struct bpf_program *prog;
8348 int err;
8349
8350 if (!obj)
8351 return libbpf_err(-ENOENT);
8352
8353 bpf_object__for_each_program(prog, obj) {
8354 char buf[PATH_MAX];
8355
8356 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8357 if (err)
8358 return libbpf_err(err);
8359
8360 err = bpf_program__unpin(prog, buf);
8361 if (err)
8362 return libbpf_err(err);
8363 }
8364
8365 return 0;
8366 }
8367
bpf_object__pin(struct bpf_object * obj,const char * path)8368 int bpf_object__pin(struct bpf_object *obj, const char *path)
8369 {
8370 int err;
8371
8372 err = bpf_object__pin_maps(obj, path);
8373 if (err)
8374 return libbpf_err(err);
8375
8376 err = bpf_object__pin_programs(obj, path);
8377 if (err) {
8378 bpf_object__unpin_maps(obj, path);
8379 return libbpf_err(err);
8380 }
8381
8382 return 0;
8383 }
8384
bpf_object__unpin(struct bpf_object * obj,const char * path)8385 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8386 {
8387 int err;
8388
8389 err = bpf_object__unpin_programs(obj, path);
8390 if (err)
8391 return libbpf_err(err);
8392
8393 err = bpf_object__unpin_maps(obj, path);
8394 if (err)
8395 return libbpf_err(err);
8396
8397 return 0;
8398 }
8399
bpf_map__destroy(struct bpf_map * map)8400 static void bpf_map__destroy(struct bpf_map *map)
8401 {
8402 if (map->inner_map) {
8403 bpf_map__destroy(map->inner_map);
8404 zfree(&map->inner_map);
8405 }
8406
8407 zfree(&map->init_slots);
8408 map->init_slots_sz = 0;
8409
8410 if (map->mmaped) {
8411 size_t mmap_sz;
8412
8413 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8414 munmap(map->mmaped, mmap_sz);
8415 map->mmaped = NULL;
8416 }
8417
8418 if (map->st_ops) {
8419 zfree(&map->st_ops->data);
8420 zfree(&map->st_ops->progs);
8421 zfree(&map->st_ops->kern_func_off);
8422 zfree(&map->st_ops);
8423 }
8424
8425 zfree(&map->name);
8426 zfree(&map->real_name);
8427 zfree(&map->pin_path);
8428
8429 if (map->fd >= 0)
8430 zclose(map->fd);
8431 }
8432
bpf_object__close(struct bpf_object * obj)8433 void bpf_object__close(struct bpf_object *obj)
8434 {
8435 size_t i;
8436
8437 if (IS_ERR_OR_NULL(obj))
8438 return;
8439
8440 usdt_manager_free(obj->usdt_man);
8441 obj->usdt_man = NULL;
8442
8443 bpf_gen__free(obj->gen_loader);
8444 bpf_object__elf_finish(obj);
8445 bpf_object_unload(obj);
8446 btf__free(obj->btf);
8447 btf__free(obj->btf_vmlinux);
8448 btf_ext__free(obj->btf_ext);
8449
8450 for (i = 0; i < obj->nr_maps; i++)
8451 bpf_map__destroy(&obj->maps[i]);
8452
8453 zfree(&obj->btf_custom_path);
8454 zfree(&obj->kconfig);
8455
8456 for (i = 0; i < obj->nr_extern; i++)
8457 zfree(&obj->externs[i].essent_name);
8458
8459 zfree(&obj->externs);
8460 obj->nr_extern = 0;
8461
8462 zfree(&obj->maps);
8463 obj->nr_maps = 0;
8464
8465 if (obj->programs && obj->nr_programs) {
8466 for (i = 0; i < obj->nr_programs; i++)
8467 bpf_program__exit(&obj->programs[i]);
8468 }
8469 zfree(&obj->programs);
8470
8471 free(obj);
8472 }
8473
bpf_object__name(const struct bpf_object * obj)8474 const char *bpf_object__name(const struct bpf_object *obj)
8475 {
8476 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8477 }
8478
bpf_object__kversion(const struct bpf_object * obj)8479 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8480 {
8481 return obj ? obj->kern_version : 0;
8482 }
8483
bpf_object__btf(const struct bpf_object * obj)8484 struct btf *bpf_object__btf(const struct bpf_object *obj)
8485 {
8486 return obj ? obj->btf : NULL;
8487 }
8488
bpf_object__btf_fd(const struct bpf_object * obj)8489 int bpf_object__btf_fd(const struct bpf_object *obj)
8490 {
8491 return obj->btf ? btf__fd(obj->btf) : -1;
8492 }
8493
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)8494 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8495 {
8496 if (obj->loaded)
8497 return libbpf_err(-EINVAL);
8498
8499 obj->kern_version = kern_version;
8500
8501 return 0;
8502 }
8503
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)8504 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8505 {
8506 struct bpf_gen *gen;
8507
8508 if (!opts)
8509 return -EFAULT;
8510 if (!OPTS_VALID(opts, gen_loader_opts))
8511 return -EINVAL;
8512 gen = calloc(sizeof(*gen), 1);
8513 if (!gen)
8514 return -ENOMEM;
8515 gen->opts = opts;
8516 obj->gen_loader = gen;
8517 return 0;
8518 }
8519
8520 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8521 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8522 bool forward)
8523 {
8524 size_t nr_programs = obj->nr_programs;
8525 ssize_t idx;
8526
8527 if (!nr_programs)
8528 return NULL;
8529
8530 if (!p)
8531 /* Iter from the beginning */
8532 return forward ? &obj->programs[0] :
8533 &obj->programs[nr_programs - 1];
8534
8535 if (p->obj != obj) {
8536 pr_warn("error: program handler doesn't match object\n");
8537 return errno = EINVAL, NULL;
8538 }
8539
8540 idx = (p - obj->programs) + (forward ? 1 : -1);
8541 if (idx >= obj->nr_programs || idx < 0)
8542 return NULL;
8543 return &obj->programs[idx];
8544 }
8545
8546 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)8547 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8548 {
8549 struct bpf_program *prog = prev;
8550
8551 do {
8552 prog = __bpf_program__iter(prog, obj, true);
8553 } while (prog && prog_is_subprog(obj, prog));
8554
8555 return prog;
8556 }
8557
8558 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)8559 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8560 {
8561 struct bpf_program *prog = next;
8562
8563 do {
8564 prog = __bpf_program__iter(prog, obj, false);
8565 } while (prog && prog_is_subprog(obj, prog));
8566
8567 return prog;
8568 }
8569
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8570 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8571 {
8572 prog->prog_ifindex = ifindex;
8573 }
8574
bpf_program__name(const struct bpf_program * prog)8575 const char *bpf_program__name(const struct bpf_program *prog)
8576 {
8577 return prog->name;
8578 }
8579
bpf_program__section_name(const struct bpf_program * prog)8580 const char *bpf_program__section_name(const struct bpf_program *prog)
8581 {
8582 return prog->sec_name;
8583 }
8584
bpf_program__autoload(const struct bpf_program * prog)8585 bool bpf_program__autoload(const struct bpf_program *prog)
8586 {
8587 return prog->autoload;
8588 }
8589
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8590 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8591 {
8592 if (prog->obj->loaded)
8593 return libbpf_err(-EINVAL);
8594
8595 prog->autoload = autoload;
8596 return 0;
8597 }
8598
bpf_program__autoattach(const struct bpf_program * prog)8599 bool bpf_program__autoattach(const struct bpf_program *prog)
8600 {
8601 return prog->autoattach;
8602 }
8603
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)8604 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8605 {
8606 prog->autoattach = autoattach;
8607 }
8608
bpf_program__insns(const struct bpf_program * prog)8609 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8610 {
8611 return prog->insns;
8612 }
8613
bpf_program__insn_cnt(const struct bpf_program * prog)8614 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8615 {
8616 return prog->insns_cnt;
8617 }
8618
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)8619 int bpf_program__set_insns(struct bpf_program *prog,
8620 struct bpf_insn *new_insns, size_t new_insn_cnt)
8621 {
8622 struct bpf_insn *insns;
8623
8624 if (prog->obj->loaded)
8625 return -EBUSY;
8626
8627 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8628 /* NULL is a valid return from reallocarray if the new count is zero */
8629 if (!insns && new_insn_cnt) {
8630 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8631 return -ENOMEM;
8632 }
8633 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8634
8635 prog->insns = insns;
8636 prog->insns_cnt = new_insn_cnt;
8637 return 0;
8638 }
8639
bpf_program__fd(const struct bpf_program * prog)8640 int bpf_program__fd(const struct bpf_program *prog)
8641 {
8642 if (!prog)
8643 return libbpf_err(-EINVAL);
8644
8645 if (prog->fd < 0)
8646 return libbpf_err(-ENOENT);
8647
8648 return prog->fd;
8649 }
8650
8651 __alias(bpf_program__type)
8652 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8653
bpf_program__type(const struct bpf_program * prog)8654 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8655 {
8656 return prog->type;
8657 }
8658
8659 static size_t custom_sec_def_cnt;
8660 static struct bpf_sec_def *custom_sec_defs;
8661 static struct bpf_sec_def custom_fallback_def;
8662 static bool has_custom_fallback_def;
8663 static int last_custom_sec_def_handler_id;
8664
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8665 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8666 {
8667 if (prog->obj->loaded)
8668 return libbpf_err(-EBUSY);
8669
8670 /* if type is not changed, do nothing */
8671 if (prog->type == type)
8672 return 0;
8673
8674 prog->type = type;
8675
8676 /* If a program type was changed, we need to reset associated SEC()
8677 * handler, as it will be invalid now. The only exception is a generic
8678 * fallback handler, which by definition is program type-agnostic and
8679 * is a catch-all custom handler, optionally set by the application,
8680 * so should be able to handle any type of BPF program.
8681 */
8682 if (prog->sec_def != &custom_fallback_def)
8683 prog->sec_def = NULL;
8684 return 0;
8685 }
8686
8687 __alias(bpf_program__expected_attach_type)
8688 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8689
bpf_program__expected_attach_type(const struct bpf_program * prog)8690 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8691 {
8692 return prog->expected_attach_type;
8693 }
8694
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8695 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8696 enum bpf_attach_type type)
8697 {
8698 if (prog->obj->loaded)
8699 return libbpf_err(-EBUSY);
8700
8701 prog->expected_attach_type = type;
8702 return 0;
8703 }
8704
bpf_program__flags(const struct bpf_program * prog)8705 __u32 bpf_program__flags(const struct bpf_program *prog)
8706 {
8707 return prog->prog_flags;
8708 }
8709
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)8710 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8711 {
8712 if (prog->obj->loaded)
8713 return libbpf_err(-EBUSY);
8714
8715 prog->prog_flags = flags;
8716 return 0;
8717 }
8718
bpf_program__log_level(const struct bpf_program * prog)8719 __u32 bpf_program__log_level(const struct bpf_program *prog)
8720 {
8721 return prog->log_level;
8722 }
8723
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)8724 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8725 {
8726 if (prog->obj->loaded)
8727 return libbpf_err(-EBUSY);
8728
8729 prog->log_level = log_level;
8730 return 0;
8731 }
8732
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)8733 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8734 {
8735 *log_size = prog->log_size;
8736 return prog->log_buf;
8737 }
8738
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)8739 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8740 {
8741 if (log_size && !log_buf)
8742 return -EINVAL;
8743 if (prog->log_size > UINT_MAX)
8744 return -EINVAL;
8745 if (prog->obj->loaded)
8746 return -EBUSY;
8747
8748 prog->log_buf = log_buf;
8749 prog->log_size = log_size;
8750 return 0;
8751 }
8752
8753 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8754 .sec = (char *)sec_pfx, \
8755 .prog_type = BPF_PROG_TYPE_##ptype, \
8756 .expected_attach_type = atype, \
8757 .cookie = (long)(flags), \
8758 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8759 __VA_ARGS__ \
8760 }
8761
8762 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8763 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8764 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8765 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8766 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8767 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8768 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8769 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8770 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8771 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8772 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8773
8774 static const struct bpf_sec_def section_defs[] = {
8775 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
8776 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8777 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8778 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8779 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8780 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8781 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8782 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8783 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8784 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8785 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8786 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8787 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8788 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8789 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8790 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8791 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8792 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
8793 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
8794 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
8795 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
8796 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
8797 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
8798 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8799 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8800 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8801 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8802 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8803 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8804 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8805 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8806 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8807 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8808 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8809 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8810 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8811 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8812 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8813 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8814 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8815 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8816 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8817 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8818 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8819 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8820 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8821 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8822 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8823 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8824 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8825 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8826 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8827 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
8828 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
8829 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
8830 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
8831 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
8832 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8833 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8834 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8835 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
8836 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8837 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8838 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8839 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8840 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8841 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
8842 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8843 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8844 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8845 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8846 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8847 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8848 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8849 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8850 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8851 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8852 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8853 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8854 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8855 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8856 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8857 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8858 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8859 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8860 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8861 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8862 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8863 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8864 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
8865 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8866 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
8867 };
8868
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)8869 int libbpf_register_prog_handler(const char *sec,
8870 enum bpf_prog_type prog_type,
8871 enum bpf_attach_type exp_attach_type,
8872 const struct libbpf_prog_handler_opts *opts)
8873 {
8874 struct bpf_sec_def *sec_def;
8875
8876 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8877 return libbpf_err(-EINVAL);
8878
8879 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8880 return libbpf_err(-E2BIG);
8881
8882 if (sec) {
8883 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8884 sizeof(*sec_def));
8885 if (!sec_def)
8886 return libbpf_err(-ENOMEM);
8887
8888 custom_sec_defs = sec_def;
8889 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8890 } else {
8891 if (has_custom_fallback_def)
8892 return libbpf_err(-EBUSY);
8893
8894 sec_def = &custom_fallback_def;
8895 }
8896
8897 sec_def->sec = sec ? strdup(sec) : NULL;
8898 if (sec && !sec_def->sec)
8899 return libbpf_err(-ENOMEM);
8900
8901 sec_def->prog_type = prog_type;
8902 sec_def->expected_attach_type = exp_attach_type;
8903 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8904
8905 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8906 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8907 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8908
8909 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8910
8911 if (sec)
8912 custom_sec_def_cnt++;
8913 else
8914 has_custom_fallback_def = true;
8915
8916 return sec_def->handler_id;
8917 }
8918
libbpf_unregister_prog_handler(int handler_id)8919 int libbpf_unregister_prog_handler(int handler_id)
8920 {
8921 struct bpf_sec_def *sec_defs;
8922 int i;
8923
8924 if (handler_id <= 0)
8925 return libbpf_err(-EINVAL);
8926
8927 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8928 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8929 has_custom_fallback_def = false;
8930 return 0;
8931 }
8932
8933 for (i = 0; i < custom_sec_def_cnt; i++) {
8934 if (custom_sec_defs[i].handler_id == handler_id)
8935 break;
8936 }
8937
8938 if (i == custom_sec_def_cnt)
8939 return libbpf_err(-ENOENT);
8940
8941 free(custom_sec_defs[i].sec);
8942 for (i = i + 1; i < custom_sec_def_cnt; i++)
8943 custom_sec_defs[i - 1] = custom_sec_defs[i];
8944 custom_sec_def_cnt--;
8945
8946 /* try to shrink the array, but it's ok if we couldn't */
8947 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8948 /* if new count is zero, reallocarray can return a valid NULL result;
8949 * in this case the previous pointer will be freed, so we *have to*
8950 * reassign old pointer to the new value (even if it's NULL)
8951 */
8952 if (sec_defs || custom_sec_def_cnt == 0)
8953 custom_sec_defs = sec_defs;
8954
8955 return 0;
8956 }
8957
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)8958 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8959 {
8960 size_t len = strlen(sec_def->sec);
8961
8962 /* "type/" always has to have proper SEC("type/extras") form */
8963 if (sec_def->sec[len - 1] == '/') {
8964 if (str_has_pfx(sec_name, sec_def->sec))
8965 return true;
8966 return false;
8967 }
8968
8969 /* "type+" means it can be either exact SEC("type") or
8970 * well-formed SEC("type/extras") with proper '/' separator
8971 */
8972 if (sec_def->sec[len - 1] == '+') {
8973 len--;
8974 /* not even a prefix */
8975 if (strncmp(sec_name, sec_def->sec, len) != 0)
8976 return false;
8977 /* exact match or has '/' separator */
8978 if (sec_name[len] == '\0' || sec_name[len] == '/')
8979 return true;
8980 return false;
8981 }
8982
8983 return strcmp(sec_name, sec_def->sec) == 0;
8984 }
8985
find_sec_def(const char * sec_name)8986 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8987 {
8988 const struct bpf_sec_def *sec_def;
8989 int i, n;
8990
8991 n = custom_sec_def_cnt;
8992 for (i = 0; i < n; i++) {
8993 sec_def = &custom_sec_defs[i];
8994 if (sec_def_matches(sec_def, sec_name))
8995 return sec_def;
8996 }
8997
8998 n = ARRAY_SIZE(section_defs);
8999 for (i = 0; i < n; i++) {
9000 sec_def = §ion_defs[i];
9001 if (sec_def_matches(sec_def, sec_name))
9002 return sec_def;
9003 }
9004
9005 if (has_custom_fallback_def)
9006 return &custom_fallback_def;
9007
9008 return NULL;
9009 }
9010
9011 #define MAX_TYPE_NAME_SIZE 32
9012
libbpf_get_type_names(bool attach_type)9013 static char *libbpf_get_type_names(bool attach_type)
9014 {
9015 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9016 char *buf;
9017
9018 buf = malloc(len);
9019 if (!buf)
9020 return NULL;
9021
9022 buf[0] = '\0';
9023 /* Forge string buf with all available names */
9024 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9025 const struct bpf_sec_def *sec_def = §ion_defs[i];
9026
9027 if (attach_type) {
9028 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9029 continue;
9030
9031 if (!(sec_def->cookie & SEC_ATTACHABLE))
9032 continue;
9033 }
9034
9035 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9036 free(buf);
9037 return NULL;
9038 }
9039 strcat(buf, " ");
9040 strcat(buf, section_defs[i].sec);
9041 }
9042
9043 return buf;
9044 }
9045
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9046 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9047 enum bpf_attach_type *expected_attach_type)
9048 {
9049 const struct bpf_sec_def *sec_def;
9050 char *type_names;
9051
9052 if (!name)
9053 return libbpf_err(-EINVAL);
9054
9055 sec_def = find_sec_def(name);
9056 if (sec_def) {
9057 *prog_type = sec_def->prog_type;
9058 *expected_attach_type = sec_def->expected_attach_type;
9059 return 0;
9060 }
9061
9062 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9063 type_names = libbpf_get_type_names(false);
9064 if (type_names != NULL) {
9065 pr_debug("supported section(type) names are:%s\n", type_names);
9066 free(type_names);
9067 }
9068
9069 return libbpf_err(-ESRCH);
9070 }
9071
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9072 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9073 {
9074 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9075 return NULL;
9076
9077 return attach_type_name[t];
9078 }
9079
libbpf_bpf_link_type_str(enum bpf_link_type t)9080 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9081 {
9082 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9083 return NULL;
9084
9085 return link_type_name[t];
9086 }
9087
libbpf_bpf_map_type_str(enum bpf_map_type t)9088 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9089 {
9090 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9091 return NULL;
9092
9093 return map_type_name[t];
9094 }
9095
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9096 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9097 {
9098 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9099 return NULL;
9100
9101 return prog_type_name[t];
9102 }
9103
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9104 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9105 int sec_idx,
9106 size_t offset)
9107 {
9108 struct bpf_map *map;
9109 size_t i;
9110
9111 for (i = 0; i < obj->nr_maps; i++) {
9112 map = &obj->maps[i];
9113 if (!bpf_map__is_struct_ops(map))
9114 continue;
9115 if (map->sec_idx == sec_idx &&
9116 map->sec_offset <= offset &&
9117 offset - map->sec_offset < map->def.value_size)
9118 return map;
9119 }
9120
9121 return NULL;
9122 }
9123
9124 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9125 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9126 Elf64_Shdr *shdr, Elf_Data *data)
9127 {
9128 const struct btf_member *member;
9129 struct bpf_struct_ops *st_ops;
9130 struct bpf_program *prog;
9131 unsigned int shdr_idx;
9132 const struct btf *btf;
9133 struct bpf_map *map;
9134 unsigned int moff, insn_idx;
9135 const char *name;
9136 __u32 member_idx;
9137 Elf64_Sym *sym;
9138 Elf64_Rel *rel;
9139 int i, nrels;
9140
9141 btf = obj->btf;
9142 nrels = shdr->sh_size / shdr->sh_entsize;
9143 for (i = 0; i < nrels; i++) {
9144 rel = elf_rel_by_idx(data, i);
9145 if (!rel) {
9146 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9147 return -LIBBPF_ERRNO__FORMAT;
9148 }
9149
9150 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9151 if (!sym) {
9152 pr_warn("struct_ops reloc: symbol %zx not found\n",
9153 (size_t)ELF64_R_SYM(rel->r_info));
9154 return -LIBBPF_ERRNO__FORMAT;
9155 }
9156
9157 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9158 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9159 if (!map) {
9160 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9161 (size_t)rel->r_offset);
9162 return -EINVAL;
9163 }
9164
9165 moff = rel->r_offset - map->sec_offset;
9166 shdr_idx = sym->st_shndx;
9167 st_ops = map->st_ops;
9168 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9169 map->name,
9170 (long long)(rel->r_info >> 32),
9171 (long long)sym->st_value,
9172 shdr_idx, (size_t)rel->r_offset,
9173 map->sec_offset, sym->st_name, name);
9174
9175 if (shdr_idx >= SHN_LORESERVE) {
9176 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9177 map->name, (size_t)rel->r_offset, shdr_idx);
9178 return -LIBBPF_ERRNO__RELOC;
9179 }
9180 if (sym->st_value % BPF_INSN_SZ) {
9181 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9182 map->name, (unsigned long long)sym->st_value);
9183 return -LIBBPF_ERRNO__FORMAT;
9184 }
9185 insn_idx = sym->st_value / BPF_INSN_SZ;
9186
9187 member = find_member_by_offset(st_ops->type, moff * 8);
9188 if (!member) {
9189 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9190 map->name, moff);
9191 return -EINVAL;
9192 }
9193 member_idx = member - btf_members(st_ops->type);
9194 name = btf__name_by_offset(btf, member->name_off);
9195
9196 if (!resolve_func_ptr(btf, member->type, NULL)) {
9197 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9198 map->name, name);
9199 return -EINVAL;
9200 }
9201
9202 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9203 if (!prog) {
9204 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9205 map->name, shdr_idx, name);
9206 return -EINVAL;
9207 }
9208
9209 /* prevent the use of BPF prog with invalid type */
9210 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9211 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9212 map->name, prog->name);
9213 return -EINVAL;
9214 }
9215
9216 /* if we haven't yet processed this BPF program, record proper
9217 * attach_btf_id and member_idx
9218 */
9219 if (!prog->attach_btf_id) {
9220 prog->attach_btf_id = st_ops->type_id;
9221 prog->expected_attach_type = member_idx;
9222 }
9223
9224 /* struct_ops BPF prog can be re-used between multiple
9225 * .struct_ops & .struct_ops.link as long as it's the
9226 * same struct_ops struct definition and the same
9227 * function pointer field
9228 */
9229 if (prog->attach_btf_id != st_ops->type_id ||
9230 prog->expected_attach_type != member_idx) {
9231 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9232 map->name, prog->name, prog->sec_name, prog->type,
9233 prog->attach_btf_id, prog->expected_attach_type, name);
9234 return -EINVAL;
9235 }
9236
9237 st_ops->progs[member_idx] = prog;
9238 }
9239
9240 return 0;
9241 }
9242
9243 #define BTF_TRACE_PREFIX "btf_trace_"
9244 #define BTF_LSM_PREFIX "bpf_lsm_"
9245 #define BTF_ITER_PREFIX "bpf_iter_"
9246 #define BTF_MAX_NAME_SIZE 128
9247
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9248 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9249 const char **prefix, int *kind)
9250 {
9251 switch (attach_type) {
9252 case BPF_TRACE_RAW_TP:
9253 *prefix = BTF_TRACE_PREFIX;
9254 *kind = BTF_KIND_TYPEDEF;
9255 break;
9256 case BPF_LSM_MAC:
9257 case BPF_LSM_CGROUP:
9258 *prefix = BTF_LSM_PREFIX;
9259 *kind = BTF_KIND_FUNC;
9260 break;
9261 case BPF_TRACE_ITER:
9262 *prefix = BTF_ITER_PREFIX;
9263 *kind = BTF_KIND_FUNC;
9264 break;
9265 default:
9266 *prefix = "";
9267 *kind = BTF_KIND_FUNC;
9268 }
9269 }
9270
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9271 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9272 const char *name, __u32 kind)
9273 {
9274 char btf_type_name[BTF_MAX_NAME_SIZE];
9275 int ret;
9276
9277 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9278 "%s%s", prefix, name);
9279 /* snprintf returns the number of characters written excluding the
9280 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9281 * indicates truncation.
9282 */
9283 if (ret < 0 || ret >= sizeof(btf_type_name))
9284 return -ENAMETOOLONG;
9285 return btf__find_by_name_kind(btf, btf_type_name, kind);
9286 }
9287
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9288 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9289 enum bpf_attach_type attach_type)
9290 {
9291 const char *prefix;
9292 int kind;
9293
9294 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9295 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9296 }
9297
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)9298 int libbpf_find_vmlinux_btf_id(const char *name,
9299 enum bpf_attach_type attach_type)
9300 {
9301 struct btf *btf;
9302 int err;
9303
9304 btf = btf__load_vmlinux_btf();
9305 err = libbpf_get_error(btf);
9306 if (err) {
9307 pr_warn("vmlinux BTF is not found\n");
9308 return libbpf_err(err);
9309 }
9310
9311 err = find_attach_btf_id(btf, name, attach_type);
9312 if (err <= 0)
9313 pr_warn("%s is not found in vmlinux BTF\n", name);
9314
9315 btf__free(btf);
9316 return libbpf_err(err);
9317 }
9318
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)9319 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9320 {
9321 struct bpf_prog_info info;
9322 __u32 info_len = sizeof(info);
9323 struct btf *btf;
9324 int err;
9325
9326 memset(&info, 0, info_len);
9327 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9328 if (err) {
9329 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9330 attach_prog_fd, err);
9331 return err;
9332 }
9333
9334 err = -EINVAL;
9335 if (!info.btf_id) {
9336 pr_warn("The target program doesn't have BTF\n");
9337 goto out;
9338 }
9339 btf = btf__load_from_kernel_by_id(info.btf_id);
9340 err = libbpf_get_error(btf);
9341 if (err) {
9342 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9343 goto out;
9344 }
9345 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9346 btf__free(btf);
9347 if (err <= 0) {
9348 pr_warn("%s is not found in prog's BTF\n", name);
9349 goto out;
9350 }
9351 out:
9352 return err;
9353 }
9354
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)9355 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9356 enum bpf_attach_type attach_type,
9357 int *btf_obj_fd, int *btf_type_id)
9358 {
9359 int ret, i;
9360
9361 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9362 if (ret > 0) {
9363 *btf_obj_fd = 0; /* vmlinux BTF */
9364 *btf_type_id = ret;
9365 return 0;
9366 }
9367 if (ret != -ENOENT)
9368 return ret;
9369
9370 ret = load_module_btfs(obj);
9371 if (ret)
9372 return ret;
9373
9374 for (i = 0; i < obj->btf_module_cnt; i++) {
9375 const struct module_btf *mod = &obj->btf_modules[i];
9376
9377 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9378 if (ret > 0) {
9379 *btf_obj_fd = mod->fd;
9380 *btf_type_id = ret;
9381 return 0;
9382 }
9383 if (ret == -ENOENT)
9384 continue;
9385
9386 return ret;
9387 }
9388
9389 return -ESRCH;
9390 }
9391
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)9392 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9393 int *btf_obj_fd, int *btf_type_id)
9394 {
9395 enum bpf_attach_type attach_type = prog->expected_attach_type;
9396 __u32 attach_prog_fd = prog->attach_prog_fd;
9397 int err = 0;
9398
9399 /* BPF program's BTF ID */
9400 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9401 if (!attach_prog_fd) {
9402 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9403 return -EINVAL;
9404 }
9405 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9406 if (err < 0) {
9407 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9408 prog->name, attach_prog_fd, attach_name, err);
9409 return err;
9410 }
9411 *btf_obj_fd = 0;
9412 *btf_type_id = err;
9413 return 0;
9414 }
9415
9416 /* kernel/module BTF ID */
9417 if (prog->obj->gen_loader) {
9418 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9419 *btf_obj_fd = 0;
9420 *btf_type_id = 1;
9421 } else {
9422 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9423 }
9424 if (err) {
9425 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9426 prog->name, attach_name, err);
9427 return err;
9428 }
9429 return 0;
9430 }
9431
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)9432 int libbpf_attach_type_by_name(const char *name,
9433 enum bpf_attach_type *attach_type)
9434 {
9435 char *type_names;
9436 const struct bpf_sec_def *sec_def;
9437
9438 if (!name)
9439 return libbpf_err(-EINVAL);
9440
9441 sec_def = find_sec_def(name);
9442 if (!sec_def) {
9443 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9444 type_names = libbpf_get_type_names(true);
9445 if (type_names != NULL) {
9446 pr_debug("attachable section(type) names are:%s\n", type_names);
9447 free(type_names);
9448 }
9449
9450 return libbpf_err(-EINVAL);
9451 }
9452
9453 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9454 return libbpf_err(-EINVAL);
9455 if (!(sec_def->cookie & SEC_ATTACHABLE))
9456 return libbpf_err(-EINVAL);
9457
9458 *attach_type = sec_def->expected_attach_type;
9459 return 0;
9460 }
9461
bpf_map__fd(const struct bpf_map * map)9462 int bpf_map__fd(const struct bpf_map *map)
9463 {
9464 return map ? map->fd : libbpf_err(-EINVAL);
9465 }
9466
map_uses_real_name(const struct bpf_map * map)9467 static bool map_uses_real_name(const struct bpf_map *map)
9468 {
9469 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9470 * their user-visible name differs from kernel-visible name. Users see
9471 * such map's corresponding ELF section name as a map name.
9472 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9473 * maps to know which name has to be returned to the user.
9474 */
9475 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9476 return true;
9477 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9478 return true;
9479 return false;
9480 }
9481
bpf_map__name(const struct bpf_map * map)9482 const char *bpf_map__name(const struct bpf_map *map)
9483 {
9484 if (!map)
9485 return NULL;
9486
9487 if (map_uses_real_name(map))
9488 return map->real_name;
9489
9490 return map->name;
9491 }
9492
bpf_map__type(const struct bpf_map * map)9493 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9494 {
9495 return map->def.type;
9496 }
9497
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)9498 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9499 {
9500 if (map->fd >= 0)
9501 return libbpf_err(-EBUSY);
9502 map->def.type = type;
9503 return 0;
9504 }
9505
bpf_map__map_flags(const struct bpf_map * map)9506 __u32 bpf_map__map_flags(const struct bpf_map *map)
9507 {
9508 return map->def.map_flags;
9509 }
9510
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)9511 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9512 {
9513 if (map->fd >= 0)
9514 return libbpf_err(-EBUSY);
9515 map->def.map_flags = flags;
9516 return 0;
9517 }
9518
bpf_map__map_extra(const struct bpf_map * map)9519 __u64 bpf_map__map_extra(const struct bpf_map *map)
9520 {
9521 return map->map_extra;
9522 }
9523
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)9524 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9525 {
9526 if (map->fd >= 0)
9527 return libbpf_err(-EBUSY);
9528 map->map_extra = map_extra;
9529 return 0;
9530 }
9531
bpf_map__numa_node(const struct bpf_map * map)9532 __u32 bpf_map__numa_node(const struct bpf_map *map)
9533 {
9534 return map->numa_node;
9535 }
9536
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)9537 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9538 {
9539 if (map->fd >= 0)
9540 return libbpf_err(-EBUSY);
9541 map->numa_node = numa_node;
9542 return 0;
9543 }
9544
bpf_map__key_size(const struct bpf_map * map)9545 __u32 bpf_map__key_size(const struct bpf_map *map)
9546 {
9547 return map->def.key_size;
9548 }
9549
bpf_map__set_key_size(struct bpf_map * map,__u32 size)9550 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9551 {
9552 if (map->fd >= 0)
9553 return libbpf_err(-EBUSY);
9554 map->def.key_size = size;
9555 return 0;
9556 }
9557
bpf_map__value_size(const struct bpf_map * map)9558 __u32 bpf_map__value_size(const struct bpf_map *map)
9559 {
9560 return map->def.value_size;
9561 }
9562
map_btf_datasec_resize(struct bpf_map * map,__u32 size)9563 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
9564 {
9565 struct btf *btf;
9566 struct btf_type *datasec_type, *var_type;
9567 struct btf_var_secinfo *var;
9568 const struct btf_type *array_type;
9569 const struct btf_array *array;
9570 int vlen, element_sz, new_array_id;
9571 __u32 nr_elements;
9572
9573 /* check btf existence */
9574 btf = bpf_object__btf(map->obj);
9575 if (!btf)
9576 return -ENOENT;
9577
9578 /* verify map is datasec */
9579 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
9580 if (!btf_is_datasec(datasec_type)) {
9581 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
9582 bpf_map__name(map));
9583 return -EINVAL;
9584 }
9585
9586 /* verify datasec has at least one var */
9587 vlen = btf_vlen(datasec_type);
9588 if (vlen == 0) {
9589 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
9590 bpf_map__name(map));
9591 return -EINVAL;
9592 }
9593
9594 /* verify last var in the datasec is an array */
9595 var = &btf_var_secinfos(datasec_type)[vlen - 1];
9596 var_type = btf_type_by_id(btf, var->type);
9597 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
9598 if (!btf_is_array(array_type)) {
9599 pr_warn("map '%s': cannot be resized, last var must be an array\n",
9600 bpf_map__name(map));
9601 return -EINVAL;
9602 }
9603
9604 /* verify request size aligns with array */
9605 array = btf_array(array_type);
9606 element_sz = btf__resolve_size(btf, array->type);
9607 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
9608 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
9609 bpf_map__name(map), element_sz, size);
9610 return -EINVAL;
9611 }
9612
9613 /* create a new array based on the existing array, but with new length */
9614 nr_elements = (size - var->offset) / element_sz;
9615 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
9616 if (new_array_id < 0)
9617 return new_array_id;
9618
9619 /* adding a new btf type invalidates existing pointers to btf objects,
9620 * so refresh pointers before proceeding
9621 */
9622 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
9623 var = &btf_var_secinfos(datasec_type)[vlen - 1];
9624 var_type = btf_type_by_id(btf, var->type);
9625
9626 /* finally update btf info */
9627 datasec_type->size = size;
9628 var->size = size - var->offset;
9629 var_type->type = new_array_id;
9630
9631 return 0;
9632 }
9633
bpf_map__set_value_size(struct bpf_map * map,__u32 size)9634 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9635 {
9636 if (map->fd >= 0)
9637 return libbpf_err(-EBUSY);
9638
9639 if (map->mmaped) {
9640 int err;
9641 size_t mmap_old_sz, mmap_new_sz;
9642
9643 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
9644 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
9645 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
9646 if (err) {
9647 pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
9648 bpf_map__name(map), err);
9649 return err;
9650 }
9651 err = map_btf_datasec_resize(map, size);
9652 if (err && err != -ENOENT) {
9653 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
9654 bpf_map__name(map), err);
9655 map->btf_value_type_id = 0;
9656 map->btf_key_type_id = 0;
9657 }
9658 }
9659
9660 map->def.value_size = size;
9661 return 0;
9662 }
9663
bpf_map__btf_key_type_id(const struct bpf_map * map)9664 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9665 {
9666 return map ? map->btf_key_type_id : 0;
9667 }
9668
bpf_map__btf_value_type_id(const struct bpf_map * map)9669 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9670 {
9671 return map ? map->btf_value_type_id : 0;
9672 }
9673
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)9674 int bpf_map__set_initial_value(struct bpf_map *map,
9675 const void *data, size_t size)
9676 {
9677 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9678 size != map->def.value_size || map->fd >= 0)
9679 return libbpf_err(-EINVAL);
9680
9681 memcpy(map->mmaped, data, size);
9682 return 0;
9683 }
9684
bpf_map__initial_value(struct bpf_map * map,size_t * psize)9685 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9686 {
9687 if (!map->mmaped)
9688 return NULL;
9689 *psize = map->def.value_size;
9690 return map->mmaped;
9691 }
9692
bpf_map__is_internal(const struct bpf_map * map)9693 bool bpf_map__is_internal(const struct bpf_map *map)
9694 {
9695 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9696 }
9697
bpf_map__ifindex(const struct bpf_map * map)9698 __u32 bpf_map__ifindex(const struct bpf_map *map)
9699 {
9700 return map->map_ifindex;
9701 }
9702
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)9703 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9704 {
9705 if (map->fd >= 0)
9706 return libbpf_err(-EBUSY);
9707 map->map_ifindex = ifindex;
9708 return 0;
9709 }
9710
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)9711 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9712 {
9713 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9714 pr_warn("error: unsupported map type\n");
9715 return libbpf_err(-EINVAL);
9716 }
9717 if (map->inner_map_fd != -1) {
9718 pr_warn("error: inner_map_fd already specified\n");
9719 return libbpf_err(-EINVAL);
9720 }
9721 if (map->inner_map) {
9722 bpf_map__destroy(map->inner_map);
9723 zfree(&map->inner_map);
9724 }
9725 map->inner_map_fd = fd;
9726 return 0;
9727 }
9728
9729 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)9730 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9731 {
9732 ssize_t idx;
9733 struct bpf_map *s, *e;
9734
9735 if (!obj || !obj->maps)
9736 return errno = EINVAL, NULL;
9737
9738 s = obj->maps;
9739 e = obj->maps + obj->nr_maps;
9740
9741 if ((m < s) || (m >= e)) {
9742 pr_warn("error in %s: map handler doesn't belong to object\n",
9743 __func__);
9744 return errno = EINVAL, NULL;
9745 }
9746
9747 idx = (m - obj->maps) + i;
9748 if (idx >= obj->nr_maps || idx < 0)
9749 return NULL;
9750 return &obj->maps[idx];
9751 }
9752
9753 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)9754 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9755 {
9756 if (prev == NULL)
9757 return obj->maps;
9758
9759 return __bpf_map__iter(prev, obj, 1);
9760 }
9761
9762 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)9763 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9764 {
9765 if (next == NULL) {
9766 if (!obj->nr_maps)
9767 return NULL;
9768 return obj->maps + obj->nr_maps - 1;
9769 }
9770
9771 return __bpf_map__iter(next, obj, -1);
9772 }
9773
9774 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9775 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9776 {
9777 struct bpf_map *pos;
9778
9779 bpf_object__for_each_map(pos, obj) {
9780 /* if it's a special internal map name (which always starts
9781 * with dot) then check if that special name matches the
9782 * real map name (ELF section name)
9783 */
9784 if (name[0] == '.') {
9785 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9786 return pos;
9787 continue;
9788 }
9789 /* otherwise map name has to be an exact match */
9790 if (map_uses_real_name(pos)) {
9791 if (strcmp(pos->real_name, name) == 0)
9792 return pos;
9793 continue;
9794 }
9795 if (strcmp(pos->name, name) == 0)
9796 return pos;
9797 }
9798 return errno = ENOENT, NULL;
9799 }
9800
9801 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9802 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9803 {
9804 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9805 }
9806
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)9807 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9808 size_t value_sz, bool check_value_sz)
9809 {
9810 if (map->fd <= 0)
9811 return -ENOENT;
9812
9813 if (map->def.key_size != key_sz) {
9814 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9815 map->name, key_sz, map->def.key_size);
9816 return -EINVAL;
9817 }
9818
9819 if (!check_value_sz)
9820 return 0;
9821
9822 switch (map->def.type) {
9823 case BPF_MAP_TYPE_PERCPU_ARRAY:
9824 case BPF_MAP_TYPE_PERCPU_HASH:
9825 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9826 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9827 int num_cpu = libbpf_num_possible_cpus();
9828 size_t elem_sz = roundup(map->def.value_size, 8);
9829
9830 if (value_sz != num_cpu * elem_sz) {
9831 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9832 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9833 return -EINVAL;
9834 }
9835 break;
9836 }
9837 default:
9838 if (map->def.value_size != value_sz) {
9839 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9840 map->name, value_sz, map->def.value_size);
9841 return -EINVAL;
9842 }
9843 break;
9844 }
9845 return 0;
9846 }
9847
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9848 int bpf_map__lookup_elem(const struct bpf_map *map,
9849 const void *key, size_t key_sz,
9850 void *value, size_t value_sz, __u64 flags)
9851 {
9852 int err;
9853
9854 err = validate_map_op(map, key_sz, value_sz, true);
9855 if (err)
9856 return libbpf_err(err);
9857
9858 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9859 }
9860
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)9861 int bpf_map__update_elem(const struct bpf_map *map,
9862 const void *key, size_t key_sz,
9863 const void *value, size_t value_sz, __u64 flags)
9864 {
9865 int err;
9866
9867 err = validate_map_op(map, key_sz, value_sz, true);
9868 if (err)
9869 return libbpf_err(err);
9870
9871 return bpf_map_update_elem(map->fd, key, value, flags);
9872 }
9873
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)9874 int bpf_map__delete_elem(const struct bpf_map *map,
9875 const void *key, size_t key_sz, __u64 flags)
9876 {
9877 int err;
9878
9879 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9880 if (err)
9881 return libbpf_err(err);
9882
9883 return bpf_map_delete_elem_flags(map->fd, key, flags);
9884 }
9885
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)9886 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9887 const void *key, size_t key_sz,
9888 void *value, size_t value_sz, __u64 flags)
9889 {
9890 int err;
9891
9892 err = validate_map_op(map, key_sz, value_sz, true);
9893 if (err)
9894 return libbpf_err(err);
9895
9896 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9897 }
9898
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)9899 int bpf_map__get_next_key(const struct bpf_map *map,
9900 const void *cur_key, void *next_key, size_t key_sz)
9901 {
9902 int err;
9903
9904 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9905 if (err)
9906 return libbpf_err(err);
9907
9908 return bpf_map_get_next_key(map->fd, cur_key, next_key);
9909 }
9910
libbpf_get_error(const void * ptr)9911 long libbpf_get_error(const void *ptr)
9912 {
9913 if (!IS_ERR_OR_NULL(ptr))
9914 return 0;
9915
9916 if (IS_ERR(ptr))
9917 errno = -PTR_ERR(ptr);
9918
9919 /* If ptr == NULL, then errno should be already set by the failing
9920 * API, because libbpf never returns NULL on success and it now always
9921 * sets errno on error. So no extra errno handling for ptr == NULL
9922 * case.
9923 */
9924 return -errno;
9925 }
9926
9927 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)9928 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9929 {
9930 int ret;
9931
9932 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9933 return libbpf_err_errno(ret);
9934 }
9935
9936 /* Release "ownership" of underlying BPF resource (typically, BPF program
9937 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9938 * link, when destructed through bpf_link__destroy() call won't attempt to
9939 * detach/unregisted that BPF resource. This is useful in situations where,
9940 * say, attached BPF program has to outlive userspace program that attached it
9941 * in the system. Depending on type of BPF program, though, there might be
9942 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9943 * exit of userspace program doesn't trigger automatic detachment and clean up
9944 * inside the kernel.
9945 */
bpf_link__disconnect(struct bpf_link * link)9946 void bpf_link__disconnect(struct bpf_link *link)
9947 {
9948 link->disconnected = true;
9949 }
9950
bpf_link__destroy(struct bpf_link * link)9951 int bpf_link__destroy(struct bpf_link *link)
9952 {
9953 int err = 0;
9954
9955 if (IS_ERR_OR_NULL(link))
9956 return 0;
9957
9958 if (!link->disconnected && link->detach)
9959 err = link->detach(link);
9960 if (link->pin_path)
9961 free(link->pin_path);
9962 if (link->dealloc)
9963 link->dealloc(link);
9964 else
9965 free(link);
9966
9967 return libbpf_err(err);
9968 }
9969
bpf_link__fd(const struct bpf_link * link)9970 int bpf_link__fd(const struct bpf_link *link)
9971 {
9972 return link->fd;
9973 }
9974
bpf_link__pin_path(const struct bpf_link * link)9975 const char *bpf_link__pin_path(const struct bpf_link *link)
9976 {
9977 return link->pin_path;
9978 }
9979
bpf_link__detach_fd(struct bpf_link * link)9980 static int bpf_link__detach_fd(struct bpf_link *link)
9981 {
9982 return libbpf_err_errno(close(link->fd));
9983 }
9984
bpf_link__open(const char * path)9985 struct bpf_link *bpf_link__open(const char *path)
9986 {
9987 struct bpf_link *link;
9988 int fd;
9989
9990 fd = bpf_obj_get(path);
9991 if (fd < 0) {
9992 fd = -errno;
9993 pr_warn("failed to open link at %s: %d\n", path, fd);
9994 return libbpf_err_ptr(fd);
9995 }
9996
9997 link = calloc(1, sizeof(*link));
9998 if (!link) {
9999 close(fd);
10000 return libbpf_err_ptr(-ENOMEM);
10001 }
10002 link->detach = &bpf_link__detach_fd;
10003 link->fd = fd;
10004
10005 link->pin_path = strdup(path);
10006 if (!link->pin_path) {
10007 bpf_link__destroy(link);
10008 return libbpf_err_ptr(-ENOMEM);
10009 }
10010
10011 return link;
10012 }
10013
bpf_link__detach(struct bpf_link * link)10014 int bpf_link__detach(struct bpf_link *link)
10015 {
10016 return bpf_link_detach(link->fd) ? -errno : 0;
10017 }
10018
bpf_link__pin(struct bpf_link * link,const char * path)10019 int bpf_link__pin(struct bpf_link *link, const char *path)
10020 {
10021 int err;
10022
10023 if (link->pin_path)
10024 return libbpf_err(-EBUSY);
10025 err = make_parent_dir(path);
10026 if (err)
10027 return libbpf_err(err);
10028 err = check_path(path);
10029 if (err)
10030 return libbpf_err(err);
10031
10032 link->pin_path = strdup(path);
10033 if (!link->pin_path)
10034 return libbpf_err(-ENOMEM);
10035
10036 if (bpf_obj_pin(link->fd, link->pin_path)) {
10037 err = -errno;
10038 zfree(&link->pin_path);
10039 return libbpf_err(err);
10040 }
10041
10042 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10043 return 0;
10044 }
10045
bpf_link__unpin(struct bpf_link * link)10046 int bpf_link__unpin(struct bpf_link *link)
10047 {
10048 int err;
10049
10050 if (!link->pin_path)
10051 return libbpf_err(-EINVAL);
10052
10053 err = unlink(link->pin_path);
10054 if (err != 0)
10055 return -errno;
10056
10057 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10058 zfree(&link->pin_path);
10059 return 0;
10060 }
10061
10062 struct bpf_link_perf {
10063 struct bpf_link link;
10064 int perf_event_fd;
10065 /* legacy kprobe support: keep track of probe identifier and type */
10066 char *legacy_probe_name;
10067 bool legacy_is_kprobe;
10068 bool legacy_is_retprobe;
10069 };
10070
10071 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10072 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10073
bpf_link_perf_detach(struct bpf_link * link)10074 static int bpf_link_perf_detach(struct bpf_link *link)
10075 {
10076 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10077 int err = 0;
10078
10079 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10080 err = -errno;
10081
10082 if (perf_link->perf_event_fd != link->fd)
10083 close(perf_link->perf_event_fd);
10084 close(link->fd);
10085
10086 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10087 if (perf_link->legacy_probe_name) {
10088 if (perf_link->legacy_is_kprobe) {
10089 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10090 perf_link->legacy_is_retprobe);
10091 } else {
10092 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10093 perf_link->legacy_is_retprobe);
10094 }
10095 }
10096
10097 return err;
10098 }
10099
bpf_link_perf_dealloc(struct bpf_link * link)10100 static void bpf_link_perf_dealloc(struct bpf_link *link)
10101 {
10102 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10103
10104 free(perf_link->legacy_probe_name);
10105 free(perf_link);
10106 }
10107
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10108 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10109 const struct bpf_perf_event_opts *opts)
10110 {
10111 char errmsg[STRERR_BUFSIZE];
10112 struct bpf_link_perf *link;
10113 int prog_fd, link_fd = -1, err;
10114 bool force_ioctl_attach;
10115
10116 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10117 return libbpf_err_ptr(-EINVAL);
10118
10119 if (pfd < 0) {
10120 pr_warn("prog '%s': invalid perf event FD %d\n",
10121 prog->name, pfd);
10122 return libbpf_err_ptr(-EINVAL);
10123 }
10124 prog_fd = bpf_program__fd(prog);
10125 if (prog_fd < 0) {
10126 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10127 prog->name);
10128 return libbpf_err_ptr(-EINVAL);
10129 }
10130
10131 link = calloc(1, sizeof(*link));
10132 if (!link)
10133 return libbpf_err_ptr(-ENOMEM);
10134 link->link.detach = &bpf_link_perf_detach;
10135 link->link.dealloc = &bpf_link_perf_dealloc;
10136 link->perf_event_fd = pfd;
10137
10138 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10139 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10140 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10141 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10142
10143 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10144 if (link_fd < 0) {
10145 err = -errno;
10146 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10147 prog->name, pfd,
10148 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10149 goto err_out;
10150 }
10151 link->link.fd = link_fd;
10152 } else {
10153 if (OPTS_GET(opts, bpf_cookie, 0)) {
10154 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10155 err = -EOPNOTSUPP;
10156 goto err_out;
10157 }
10158
10159 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10160 err = -errno;
10161 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10162 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10163 if (err == -EPROTO)
10164 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10165 prog->name, pfd);
10166 goto err_out;
10167 }
10168 link->link.fd = pfd;
10169 }
10170 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10171 err = -errno;
10172 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10173 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10174 goto err_out;
10175 }
10176
10177 return &link->link;
10178 err_out:
10179 if (link_fd >= 0)
10180 close(link_fd);
10181 free(link);
10182 return libbpf_err_ptr(err);
10183 }
10184
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10185 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10186 {
10187 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10188 }
10189
10190 /*
10191 * this function is expected to parse integer in the range of [0, 2^31-1] from
10192 * given file using scanf format string fmt. If actual parsed value is
10193 * negative, the result might be indistinguishable from error
10194 */
parse_uint_from_file(const char * file,const char * fmt)10195 static int parse_uint_from_file(const char *file, const char *fmt)
10196 {
10197 char buf[STRERR_BUFSIZE];
10198 int err, ret;
10199 FILE *f;
10200
10201 f = fopen(file, "re");
10202 if (!f) {
10203 err = -errno;
10204 pr_debug("failed to open '%s': %s\n", file,
10205 libbpf_strerror_r(err, buf, sizeof(buf)));
10206 return err;
10207 }
10208 err = fscanf(f, fmt, &ret);
10209 if (err != 1) {
10210 err = err == EOF ? -EIO : -errno;
10211 pr_debug("failed to parse '%s': %s\n", file,
10212 libbpf_strerror_r(err, buf, sizeof(buf)));
10213 fclose(f);
10214 return err;
10215 }
10216 fclose(f);
10217 return ret;
10218 }
10219
determine_kprobe_perf_type(void)10220 static int determine_kprobe_perf_type(void)
10221 {
10222 const char *file = "/sys/bus/event_source/devices/kprobe/type";
10223
10224 return parse_uint_from_file(file, "%d\n");
10225 }
10226
determine_uprobe_perf_type(void)10227 static int determine_uprobe_perf_type(void)
10228 {
10229 const char *file = "/sys/bus/event_source/devices/uprobe/type";
10230
10231 return parse_uint_from_file(file, "%d\n");
10232 }
10233
determine_kprobe_retprobe_bit(void)10234 static int determine_kprobe_retprobe_bit(void)
10235 {
10236 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10237
10238 return parse_uint_from_file(file, "config:%d\n");
10239 }
10240
determine_uprobe_retprobe_bit(void)10241 static int determine_uprobe_retprobe_bit(void)
10242 {
10243 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10244
10245 return parse_uint_from_file(file, "config:%d\n");
10246 }
10247
10248 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10249 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10250
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)10251 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10252 uint64_t offset, int pid, size_t ref_ctr_off)
10253 {
10254 const size_t attr_sz = sizeof(struct perf_event_attr);
10255 struct perf_event_attr attr;
10256 char errmsg[STRERR_BUFSIZE];
10257 int type, pfd;
10258
10259 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10260 return -EINVAL;
10261
10262 memset(&attr, 0, attr_sz);
10263
10264 type = uprobe ? determine_uprobe_perf_type()
10265 : determine_kprobe_perf_type();
10266 if (type < 0) {
10267 pr_warn("failed to determine %s perf type: %s\n",
10268 uprobe ? "uprobe" : "kprobe",
10269 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10270 return type;
10271 }
10272 if (retprobe) {
10273 int bit = uprobe ? determine_uprobe_retprobe_bit()
10274 : determine_kprobe_retprobe_bit();
10275
10276 if (bit < 0) {
10277 pr_warn("failed to determine %s retprobe bit: %s\n",
10278 uprobe ? "uprobe" : "kprobe",
10279 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10280 return bit;
10281 }
10282 attr.config |= 1 << bit;
10283 }
10284 attr.size = attr_sz;
10285 attr.type = type;
10286 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10287 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10288 attr.config2 = offset; /* kprobe_addr or probe_offset */
10289
10290 /* pid filter is meaningful only for uprobes */
10291 pfd = syscall(__NR_perf_event_open, &attr,
10292 pid < 0 ? -1 : pid /* pid */,
10293 pid == -1 ? 0 : -1 /* cpu */,
10294 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10295 return pfd >= 0 ? pfd : -errno;
10296 }
10297
append_to_file(const char * file,const char * fmt,...)10298 static int append_to_file(const char *file, const char *fmt, ...)
10299 {
10300 int fd, n, err = 0;
10301 va_list ap;
10302 char buf[1024];
10303
10304 va_start(ap, fmt);
10305 n = vsnprintf(buf, sizeof(buf), fmt, ap);
10306 va_end(ap);
10307
10308 if (n < 0 || n >= sizeof(buf))
10309 return -EINVAL;
10310
10311 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10312 if (fd < 0)
10313 return -errno;
10314
10315 if (write(fd, buf, n) < 0)
10316 err = -errno;
10317
10318 close(fd);
10319 return err;
10320 }
10321
10322 #define DEBUGFS "/sys/kernel/debug/tracing"
10323 #define TRACEFS "/sys/kernel/tracing"
10324
use_debugfs(void)10325 static bool use_debugfs(void)
10326 {
10327 static int has_debugfs = -1;
10328
10329 if (has_debugfs < 0)
10330 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10331
10332 return has_debugfs == 1;
10333 }
10334
tracefs_path(void)10335 static const char *tracefs_path(void)
10336 {
10337 return use_debugfs() ? DEBUGFS : TRACEFS;
10338 }
10339
tracefs_kprobe_events(void)10340 static const char *tracefs_kprobe_events(void)
10341 {
10342 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10343 }
10344
tracefs_uprobe_events(void)10345 static const char *tracefs_uprobe_events(void)
10346 {
10347 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10348 }
10349
tracefs_available_filter_functions(void)10350 static const char *tracefs_available_filter_functions(void)
10351 {
10352 return use_debugfs() ? DEBUGFS"/available_filter_functions"
10353 : TRACEFS"/available_filter_functions";
10354 }
10355
tracefs_available_filter_functions_addrs(void)10356 static const char *tracefs_available_filter_functions_addrs(void)
10357 {
10358 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10359 : TRACEFS"/available_filter_functions_addrs";
10360 }
10361
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)10362 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10363 const char *kfunc_name, size_t offset)
10364 {
10365 static int index = 0;
10366 int i;
10367
10368 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10369 __sync_fetch_and_add(&index, 1));
10370
10371 /* sanitize binary_path in the probe name */
10372 for (i = 0; buf[i]; i++) {
10373 if (!isalnum(buf[i]))
10374 buf[i] = '_';
10375 }
10376 }
10377
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)10378 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10379 const char *kfunc_name, size_t offset)
10380 {
10381 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10382 retprobe ? 'r' : 'p',
10383 retprobe ? "kretprobes" : "kprobes",
10384 probe_name, kfunc_name, offset);
10385 }
10386
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)10387 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10388 {
10389 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10390 retprobe ? "kretprobes" : "kprobes", probe_name);
10391 }
10392
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)10393 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10394 {
10395 char file[256];
10396
10397 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10398 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10399
10400 return parse_uint_from_file(file, "%d\n");
10401 }
10402
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)10403 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10404 const char *kfunc_name, size_t offset, int pid)
10405 {
10406 const size_t attr_sz = sizeof(struct perf_event_attr);
10407 struct perf_event_attr attr;
10408 char errmsg[STRERR_BUFSIZE];
10409 int type, pfd, err;
10410
10411 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10412 if (err < 0) {
10413 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10414 kfunc_name, offset,
10415 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10416 return err;
10417 }
10418 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10419 if (type < 0) {
10420 err = type;
10421 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10422 kfunc_name, offset,
10423 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10424 goto err_clean_legacy;
10425 }
10426
10427 memset(&attr, 0, attr_sz);
10428 attr.size = attr_sz;
10429 attr.config = type;
10430 attr.type = PERF_TYPE_TRACEPOINT;
10431
10432 pfd = syscall(__NR_perf_event_open, &attr,
10433 pid < 0 ? -1 : pid, /* pid */
10434 pid == -1 ? 0 : -1, /* cpu */
10435 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10436 if (pfd < 0) {
10437 err = -errno;
10438 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10439 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10440 goto err_clean_legacy;
10441 }
10442 return pfd;
10443
10444 err_clean_legacy:
10445 /* Clear the newly added legacy kprobe_event */
10446 remove_kprobe_event_legacy(probe_name, retprobe);
10447 return err;
10448 }
10449
arch_specific_syscall_pfx(void)10450 static const char *arch_specific_syscall_pfx(void)
10451 {
10452 #if defined(__x86_64__)
10453 return "x64";
10454 #elif defined(__i386__)
10455 return "ia32";
10456 #elif defined(__s390x__)
10457 return "s390x";
10458 #elif defined(__s390__)
10459 return "s390";
10460 #elif defined(__arm__)
10461 return "arm";
10462 #elif defined(__aarch64__)
10463 return "arm64";
10464 #elif defined(__mips__)
10465 return "mips";
10466 #elif defined(__riscv)
10467 return "riscv";
10468 #elif defined(__powerpc__)
10469 return "powerpc";
10470 #elif defined(__powerpc64__)
10471 return "powerpc64";
10472 #else
10473 return NULL;
10474 #endif
10475 }
10476
probe_kern_syscall_wrapper(void)10477 static int probe_kern_syscall_wrapper(void)
10478 {
10479 char syscall_name[64];
10480 const char *ksys_pfx;
10481
10482 ksys_pfx = arch_specific_syscall_pfx();
10483 if (!ksys_pfx)
10484 return 0;
10485
10486 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10487
10488 if (determine_kprobe_perf_type() >= 0) {
10489 int pfd;
10490
10491 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10492 if (pfd >= 0)
10493 close(pfd);
10494
10495 return pfd >= 0 ? 1 : 0;
10496 } else { /* legacy mode */
10497 char probe_name[128];
10498
10499 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10500 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10501 return 0;
10502
10503 (void)remove_kprobe_event_legacy(probe_name, false);
10504 return 1;
10505 }
10506 }
10507
10508 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)10509 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10510 const char *func_name,
10511 const struct bpf_kprobe_opts *opts)
10512 {
10513 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10514 enum probe_attach_mode attach_mode;
10515 char errmsg[STRERR_BUFSIZE];
10516 char *legacy_probe = NULL;
10517 struct bpf_link *link;
10518 size_t offset;
10519 bool retprobe, legacy;
10520 int pfd, err;
10521
10522 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10523 return libbpf_err_ptr(-EINVAL);
10524
10525 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10526 retprobe = OPTS_GET(opts, retprobe, false);
10527 offset = OPTS_GET(opts, offset, 0);
10528 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10529
10530 legacy = determine_kprobe_perf_type() < 0;
10531 switch (attach_mode) {
10532 case PROBE_ATTACH_MODE_LEGACY:
10533 legacy = true;
10534 pe_opts.force_ioctl_attach = true;
10535 break;
10536 case PROBE_ATTACH_MODE_PERF:
10537 if (legacy)
10538 return libbpf_err_ptr(-ENOTSUP);
10539 pe_opts.force_ioctl_attach = true;
10540 break;
10541 case PROBE_ATTACH_MODE_LINK:
10542 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10543 return libbpf_err_ptr(-ENOTSUP);
10544 break;
10545 case PROBE_ATTACH_MODE_DEFAULT:
10546 break;
10547 default:
10548 return libbpf_err_ptr(-EINVAL);
10549 }
10550
10551 if (!legacy) {
10552 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10553 func_name, offset,
10554 -1 /* pid */, 0 /* ref_ctr_off */);
10555 } else {
10556 char probe_name[256];
10557
10558 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10559 func_name, offset);
10560
10561 legacy_probe = strdup(probe_name);
10562 if (!legacy_probe)
10563 return libbpf_err_ptr(-ENOMEM);
10564
10565 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10566 offset, -1 /* pid */);
10567 }
10568 if (pfd < 0) {
10569 err = -errno;
10570 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10571 prog->name, retprobe ? "kretprobe" : "kprobe",
10572 func_name, offset,
10573 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10574 goto err_out;
10575 }
10576 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10577 err = libbpf_get_error(link);
10578 if (err) {
10579 close(pfd);
10580 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10581 prog->name, retprobe ? "kretprobe" : "kprobe",
10582 func_name, offset,
10583 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10584 goto err_clean_legacy;
10585 }
10586 if (legacy) {
10587 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10588
10589 perf_link->legacy_probe_name = legacy_probe;
10590 perf_link->legacy_is_kprobe = true;
10591 perf_link->legacy_is_retprobe = retprobe;
10592 }
10593
10594 return link;
10595
10596 err_clean_legacy:
10597 if (legacy)
10598 remove_kprobe_event_legacy(legacy_probe, retprobe);
10599 err_out:
10600 free(legacy_probe);
10601 return libbpf_err_ptr(err);
10602 }
10603
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)10604 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10605 bool retprobe,
10606 const char *func_name)
10607 {
10608 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10609 .retprobe = retprobe,
10610 );
10611
10612 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10613 }
10614
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)10615 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10616 const char *syscall_name,
10617 const struct bpf_ksyscall_opts *opts)
10618 {
10619 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10620 char func_name[128];
10621
10622 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10623 return libbpf_err_ptr(-EINVAL);
10624
10625 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10626 /* arch_specific_syscall_pfx() should never return NULL here
10627 * because it is guarded by kernel_supports(). However, since
10628 * compiler does not know that we have an explicit conditional
10629 * as well.
10630 */
10631 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10632 arch_specific_syscall_pfx() ? : "", syscall_name);
10633 } else {
10634 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10635 }
10636
10637 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10638 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10639
10640 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10641 }
10642
10643 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)10644 bool glob_match(const char *str, const char *pat)
10645 {
10646 while (*str && *pat && *pat != '*') {
10647 if (*pat == '?') { /* Matches any single character */
10648 str++;
10649 pat++;
10650 continue;
10651 }
10652 if (*str != *pat)
10653 return false;
10654 str++;
10655 pat++;
10656 }
10657 /* Check wild card */
10658 if (*pat == '*') {
10659 while (*pat == '*')
10660 pat++;
10661 if (!*pat) /* Tail wild card matches all */
10662 return true;
10663 while (*str)
10664 if (glob_match(str++, pat))
10665 return true;
10666 }
10667 return !*str && !*pat;
10668 }
10669
10670 struct kprobe_multi_resolve {
10671 const char *pattern;
10672 unsigned long *addrs;
10673 size_t cap;
10674 size_t cnt;
10675 };
10676
10677 struct avail_kallsyms_data {
10678 char **syms;
10679 size_t cnt;
10680 struct kprobe_multi_resolve *res;
10681 };
10682
avail_func_cmp(const void * a,const void * b)10683 static int avail_func_cmp(const void *a, const void *b)
10684 {
10685 return strcmp(*(const char **)a, *(const char **)b);
10686 }
10687
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)10688 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
10689 const char *sym_name, void *ctx)
10690 {
10691 struct avail_kallsyms_data *data = ctx;
10692 struct kprobe_multi_resolve *res = data->res;
10693 int err;
10694
10695 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
10696 return 0;
10697
10698 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
10699 if (err)
10700 return err;
10701
10702 res->addrs[res->cnt++] = (unsigned long)sym_addr;
10703 return 0;
10704 }
10705
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)10706 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
10707 {
10708 const char *available_functions_file = tracefs_available_filter_functions();
10709 struct avail_kallsyms_data data;
10710 char sym_name[500];
10711 FILE *f;
10712 int err = 0, ret, i;
10713 char **syms = NULL;
10714 size_t cap = 0, cnt = 0;
10715
10716 f = fopen(available_functions_file, "re");
10717 if (!f) {
10718 err = -errno;
10719 pr_warn("failed to open %s: %d\n", available_functions_file, err);
10720 return err;
10721 }
10722
10723 while (true) {
10724 char *name;
10725
10726 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
10727 if (ret == EOF && feof(f))
10728 break;
10729
10730 if (ret != 1) {
10731 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
10732 err = -EINVAL;
10733 goto cleanup;
10734 }
10735
10736 if (!glob_match(sym_name, res->pattern))
10737 continue;
10738
10739 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
10740 if (err)
10741 goto cleanup;
10742
10743 name = strdup(sym_name);
10744 if (!name) {
10745 err = -errno;
10746 goto cleanup;
10747 }
10748
10749 syms[cnt++] = name;
10750 }
10751
10752 /* no entries found, bail out */
10753 if (cnt == 0) {
10754 err = -ENOENT;
10755 goto cleanup;
10756 }
10757
10758 /* sort available functions */
10759 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
10760
10761 data.syms = syms;
10762 data.res = res;
10763 data.cnt = cnt;
10764 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
10765
10766 if (res->cnt == 0)
10767 err = -ENOENT;
10768
10769 cleanup:
10770 for (i = 0; i < cnt; i++)
10771 free((char *)syms[i]);
10772 free(syms);
10773
10774 fclose(f);
10775 return err;
10776 }
10777
has_available_filter_functions_addrs(void)10778 static bool has_available_filter_functions_addrs(void)
10779 {
10780 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
10781 }
10782
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)10783 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
10784 {
10785 const char *available_path = tracefs_available_filter_functions_addrs();
10786 char sym_name[500];
10787 FILE *f;
10788 int ret, err = 0;
10789 unsigned long long sym_addr;
10790
10791 f = fopen(available_path, "re");
10792 if (!f) {
10793 err = -errno;
10794 pr_warn("failed to open %s: %d\n", available_path, err);
10795 return err;
10796 }
10797
10798 while (true) {
10799 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
10800 if (ret == EOF && feof(f))
10801 break;
10802
10803 if (ret != 2) {
10804 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
10805 ret);
10806 err = -EINVAL;
10807 goto cleanup;
10808 }
10809
10810 if (!glob_match(sym_name, res->pattern))
10811 continue;
10812
10813 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
10814 sizeof(*res->addrs), res->cnt + 1);
10815 if (err)
10816 goto cleanup;
10817
10818 res->addrs[res->cnt++] = (unsigned long)sym_addr;
10819 }
10820
10821 if (res->cnt == 0)
10822 err = -ENOENT;
10823
10824 cleanup:
10825 fclose(f);
10826 return err;
10827 }
10828
10829 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)10830 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10831 const char *pattern,
10832 const struct bpf_kprobe_multi_opts *opts)
10833 {
10834 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10835 struct kprobe_multi_resolve res = {
10836 .pattern = pattern,
10837 };
10838 struct bpf_link *link = NULL;
10839 char errmsg[STRERR_BUFSIZE];
10840 const unsigned long *addrs;
10841 int err, link_fd, prog_fd;
10842 const __u64 *cookies;
10843 const char **syms;
10844 bool retprobe;
10845 size_t cnt;
10846
10847 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10848 return libbpf_err_ptr(-EINVAL);
10849
10850 syms = OPTS_GET(opts, syms, false);
10851 addrs = OPTS_GET(opts, addrs, false);
10852 cnt = OPTS_GET(opts, cnt, false);
10853 cookies = OPTS_GET(opts, cookies, false);
10854
10855 if (!pattern && !addrs && !syms)
10856 return libbpf_err_ptr(-EINVAL);
10857 if (pattern && (addrs || syms || cookies || cnt))
10858 return libbpf_err_ptr(-EINVAL);
10859 if (!pattern && !cnt)
10860 return libbpf_err_ptr(-EINVAL);
10861 if (addrs && syms)
10862 return libbpf_err_ptr(-EINVAL);
10863
10864 if (pattern) {
10865 if (has_available_filter_functions_addrs())
10866 err = libbpf_available_kprobes_parse(&res);
10867 else
10868 err = libbpf_available_kallsyms_parse(&res);
10869 if (err)
10870 goto error;
10871 addrs = res.addrs;
10872 cnt = res.cnt;
10873 }
10874
10875 retprobe = OPTS_GET(opts, retprobe, false);
10876
10877 lopts.kprobe_multi.syms = syms;
10878 lopts.kprobe_multi.addrs = addrs;
10879 lopts.kprobe_multi.cookies = cookies;
10880 lopts.kprobe_multi.cnt = cnt;
10881 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10882
10883 link = calloc(1, sizeof(*link));
10884 if (!link) {
10885 err = -ENOMEM;
10886 goto error;
10887 }
10888 link->detach = &bpf_link__detach_fd;
10889
10890 prog_fd = bpf_program__fd(prog);
10891 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10892 if (link_fd < 0) {
10893 err = -errno;
10894 pr_warn("prog '%s': failed to attach: %s\n",
10895 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10896 goto error;
10897 }
10898 link->fd = link_fd;
10899 free(res.addrs);
10900 return link;
10901
10902 error:
10903 free(link);
10904 free(res.addrs);
10905 return libbpf_err_ptr(err);
10906 }
10907
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10908 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10909 {
10910 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10911 unsigned long offset = 0;
10912 const char *func_name;
10913 char *func;
10914 int n;
10915
10916 *link = NULL;
10917
10918 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10919 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10920 return 0;
10921
10922 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10923 if (opts.retprobe)
10924 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10925 else
10926 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10927
10928 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10929 if (n < 1) {
10930 pr_warn("kprobe name is invalid: %s\n", func_name);
10931 return -EINVAL;
10932 }
10933 if (opts.retprobe && offset != 0) {
10934 free(func);
10935 pr_warn("kretprobes do not support offset specification\n");
10936 return -EINVAL;
10937 }
10938
10939 opts.offset = offset;
10940 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10941 free(func);
10942 return libbpf_get_error(*link);
10943 }
10944
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10945 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10946 {
10947 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10948 const char *syscall_name;
10949
10950 *link = NULL;
10951
10952 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10953 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10954 return 0;
10955
10956 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10957 if (opts.retprobe)
10958 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10959 else
10960 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10961
10962 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10963 return *link ? 0 : -errno;
10964 }
10965
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10966 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10967 {
10968 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10969 const char *spec;
10970 char *pattern;
10971 int n;
10972
10973 *link = NULL;
10974
10975 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10976 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10977 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10978 return 0;
10979
10980 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10981 if (opts.retprobe)
10982 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10983 else
10984 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10985
10986 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10987 if (n < 1) {
10988 pr_warn("kprobe multi pattern is invalid: %s\n", spec);
10989 return -EINVAL;
10990 }
10991
10992 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10993 free(pattern);
10994 return libbpf_get_error(*link);
10995 }
10996
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)10997 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10998 {
10999 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11000 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11001 int n, ret = -EINVAL;
11002
11003 *link = NULL;
11004
11005 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%ms",
11006 &probe_type, &binary_path, &func_name);
11007 switch (n) {
11008 case 1:
11009 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11010 ret = 0;
11011 break;
11012 case 3:
11013 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11014 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11015 ret = libbpf_get_error(*link);
11016 break;
11017 default:
11018 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11019 prog->sec_name);
11020 break;
11021 }
11022 free(probe_type);
11023 free(binary_path);
11024 free(func_name);
11025 return ret;
11026 }
11027
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)11028 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11029 const char *binary_path, uint64_t offset)
11030 {
11031 int i;
11032
11033 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11034
11035 /* sanitize binary_path in the probe name */
11036 for (i = 0; buf[i]; i++) {
11037 if (!isalnum(buf[i]))
11038 buf[i] = '_';
11039 }
11040 }
11041
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11042 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11043 const char *binary_path, size_t offset)
11044 {
11045 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11046 retprobe ? 'r' : 'p',
11047 retprobe ? "uretprobes" : "uprobes",
11048 probe_name, binary_path, offset);
11049 }
11050
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11051 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11052 {
11053 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11054 retprobe ? "uretprobes" : "uprobes", probe_name);
11055 }
11056
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11057 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11058 {
11059 char file[512];
11060
11061 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11062 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11063
11064 return parse_uint_from_file(file, "%d\n");
11065 }
11066
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11067 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11068 const char *binary_path, size_t offset, int pid)
11069 {
11070 const size_t attr_sz = sizeof(struct perf_event_attr);
11071 struct perf_event_attr attr;
11072 int type, pfd, err;
11073
11074 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11075 if (err < 0) {
11076 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11077 binary_path, (size_t)offset, err);
11078 return err;
11079 }
11080 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11081 if (type < 0) {
11082 err = type;
11083 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11084 binary_path, offset, err);
11085 goto err_clean_legacy;
11086 }
11087
11088 memset(&attr, 0, attr_sz);
11089 attr.size = attr_sz;
11090 attr.config = type;
11091 attr.type = PERF_TYPE_TRACEPOINT;
11092
11093 pfd = syscall(__NR_perf_event_open, &attr,
11094 pid < 0 ? -1 : pid, /* pid */
11095 pid == -1 ? 0 : -1, /* cpu */
11096 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11097 if (pfd < 0) {
11098 err = -errno;
11099 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11100 goto err_clean_legacy;
11101 }
11102 return pfd;
11103
11104 err_clean_legacy:
11105 /* Clear the newly added legacy uprobe_event */
11106 remove_uprobe_event_legacy(probe_name, retprobe);
11107 return err;
11108 }
11109
11110 /* Find offset of function name in archive specified by path. Currently
11111 * supported are .zip files that do not compress their contents, as used on
11112 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11113 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11114 * library functions.
11115 *
11116 * An overview of the APK format specifically provided here:
11117 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11118 */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11119 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11120 const char *func_name)
11121 {
11122 struct zip_archive *archive;
11123 struct zip_entry entry;
11124 long ret;
11125 Elf *elf;
11126
11127 archive = zip_archive_open(archive_path);
11128 if (IS_ERR(archive)) {
11129 ret = PTR_ERR(archive);
11130 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11131 return ret;
11132 }
11133
11134 ret = zip_archive_find_entry(archive, file_name, &entry);
11135 if (ret) {
11136 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11137 archive_path, ret);
11138 goto out;
11139 }
11140 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11141 (unsigned long)entry.data_offset);
11142
11143 if (entry.compression) {
11144 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11145 archive_path);
11146 ret = -LIBBPF_ERRNO__FORMAT;
11147 goto out;
11148 }
11149
11150 elf = elf_memory((void *)entry.data, entry.data_length);
11151 if (!elf) {
11152 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11153 elf_errmsg(-1));
11154 ret = -LIBBPF_ERRNO__LIBELF;
11155 goto out;
11156 }
11157
11158 ret = elf_find_func_offset(elf, file_name, func_name);
11159 if (ret > 0) {
11160 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11161 func_name, file_name, archive_path, entry.data_offset, ret,
11162 ret + entry.data_offset);
11163 ret += entry.data_offset;
11164 }
11165 elf_end(elf);
11166
11167 out:
11168 zip_archive_close(archive);
11169 return ret;
11170 }
11171
arch_specific_lib_paths(void)11172 static const char *arch_specific_lib_paths(void)
11173 {
11174 /*
11175 * Based on https://packages.debian.org/sid/libc6.
11176 *
11177 * Assume that the traced program is built for the same architecture
11178 * as libbpf, which should cover the vast majority of cases.
11179 */
11180 #if defined(__x86_64__)
11181 return "/lib/x86_64-linux-gnu";
11182 #elif defined(__i386__)
11183 return "/lib/i386-linux-gnu";
11184 #elif defined(__s390x__)
11185 return "/lib/s390x-linux-gnu";
11186 #elif defined(__s390__)
11187 return "/lib/s390-linux-gnu";
11188 #elif defined(__arm__) && defined(__SOFTFP__)
11189 return "/lib/arm-linux-gnueabi";
11190 #elif defined(__arm__) && !defined(__SOFTFP__)
11191 return "/lib/arm-linux-gnueabihf";
11192 #elif defined(__aarch64__)
11193 return "/lib/aarch64-linux-gnu";
11194 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11195 return "/lib/mips64el-linux-gnuabi64";
11196 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11197 return "/lib/mipsel-linux-gnu";
11198 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11199 return "/lib/powerpc64le-linux-gnu";
11200 #elif defined(__sparc__) && defined(__arch64__)
11201 return "/lib/sparc64-linux-gnu";
11202 #elif defined(__riscv) && __riscv_xlen == 64
11203 return "/lib/riscv64-linux-gnu";
11204 #else
11205 return NULL;
11206 #endif
11207 }
11208
11209 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)11210 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11211 {
11212 const char *search_paths[3] = {};
11213 int i, perm;
11214
11215 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11216 search_paths[0] = getenv("LD_LIBRARY_PATH");
11217 search_paths[1] = "/usr/lib64:/usr/lib";
11218 search_paths[2] = arch_specific_lib_paths();
11219 perm = R_OK;
11220 } else {
11221 search_paths[0] = getenv("PATH");
11222 search_paths[1] = "/usr/bin:/usr/sbin";
11223 perm = R_OK | X_OK;
11224 }
11225
11226 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11227 const char *s;
11228
11229 if (!search_paths[i])
11230 continue;
11231 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11232 char *next_path;
11233 int seg_len;
11234
11235 if (s[0] == ':')
11236 s++;
11237 next_path = strchr(s, ':');
11238 seg_len = next_path ? next_path - s : strlen(s);
11239 if (!seg_len)
11240 continue;
11241 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11242 /* ensure it has required permissions */
11243 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11244 continue;
11245 pr_debug("resolved '%s' to '%s'\n", file, result);
11246 return 0;
11247 }
11248 }
11249 return -ENOENT;
11250 }
11251
11252 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)11253 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11254 pid_t pid,
11255 const char *path,
11256 const char *func_pattern,
11257 const struct bpf_uprobe_multi_opts *opts)
11258 {
11259 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11260 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11261 unsigned long *resolved_offsets = NULL;
11262 int err = 0, link_fd, prog_fd;
11263 struct bpf_link *link = NULL;
11264 char errmsg[STRERR_BUFSIZE];
11265 char full_path[PATH_MAX];
11266 const __u64 *cookies;
11267 const char **syms;
11268 size_t cnt;
11269
11270 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11271 return libbpf_err_ptr(-EINVAL);
11272
11273 syms = OPTS_GET(opts, syms, NULL);
11274 offsets = OPTS_GET(opts, offsets, NULL);
11275 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11276 cookies = OPTS_GET(opts, cookies, NULL);
11277 cnt = OPTS_GET(opts, cnt, 0);
11278
11279 /*
11280 * User can specify 2 mutually exclusive set of inputs:
11281 *
11282 * 1) use only path/func_pattern/pid arguments
11283 *
11284 * 2) use path/pid with allowed combinations of:
11285 * syms/offsets/ref_ctr_offsets/cookies/cnt
11286 *
11287 * - syms and offsets are mutually exclusive
11288 * - ref_ctr_offsets and cookies are optional
11289 *
11290 * Any other usage results in error.
11291 */
11292
11293 if (!path)
11294 return libbpf_err_ptr(-EINVAL);
11295 if (!func_pattern && cnt == 0)
11296 return libbpf_err_ptr(-EINVAL);
11297
11298 if (func_pattern) {
11299 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11300 return libbpf_err_ptr(-EINVAL);
11301 } else {
11302 if (!!syms == !!offsets)
11303 return libbpf_err_ptr(-EINVAL);
11304 }
11305
11306 if (func_pattern) {
11307 if (!strchr(path, '/')) {
11308 err = resolve_full_path(path, full_path, sizeof(full_path));
11309 if (err) {
11310 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11311 prog->name, path, err);
11312 return libbpf_err_ptr(err);
11313 }
11314 path = full_path;
11315 }
11316
11317 err = elf_resolve_pattern_offsets(path, func_pattern,
11318 &resolved_offsets, &cnt);
11319 if (err < 0)
11320 return libbpf_err_ptr(err);
11321 offsets = resolved_offsets;
11322 } else if (syms) {
11323 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets);
11324 if (err < 0)
11325 return libbpf_err_ptr(err);
11326 offsets = resolved_offsets;
11327 }
11328
11329 lopts.uprobe_multi.path = path;
11330 lopts.uprobe_multi.offsets = offsets;
11331 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11332 lopts.uprobe_multi.cookies = cookies;
11333 lopts.uprobe_multi.cnt = cnt;
11334 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11335
11336 if (pid == 0)
11337 pid = getpid();
11338 if (pid > 0)
11339 lopts.uprobe_multi.pid = pid;
11340
11341 link = calloc(1, sizeof(*link));
11342 if (!link) {
11343 err = -ENOMEM;
11344 goto error;
11345 }
11346 link->detach = &bpf_link__detach_fd;
11347
11348 prog_fd = bpf_program__fd(prog);
11349 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11350 if (link_fd < 0) {
11351 err = -errno;
11352 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11353 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11354 goto error;
11355 }
11356 link->fd = link_fd;
11357 free(resolved_offsets);
11358 return link;
11359
11360 error:
11361 free(resolved_offsets);
11362 free(link);
11363 return libbpf_err_ptr(err);
11364 }
11365
11366 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)11367 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11368 const char *binary_path, size_t func_offset,
11369 const struct bpf_uprobe_opts *opts)
11370 {
11371 const char *archive_path = NULL, *archive_sep = NULL;
11372 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11373 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11374 enum probe_attach_mode attach_mode;
11375 char full_path[PATH_MAX];
11376 struct bpf_link *link;
11377 size_t ref_ctr_off;
11378 int pfd, err;
11379 bool retprobe, legacy;
11380 const char *func_name;
11381
11382 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11383 return libbpf_err_ptr(-EINVAL);
11384
11385 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11386 retprobe = OPTS_GET(opts, retprobe, false);
11387 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11388 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11389
11390 if (!binary_path)
11391 return libbpf_err_ptr(-EINVAL);
11392
11393 /* Check if "binary_path" refers to an archive. */
11394 archive_sep = strstr(binary_path, "!/");
11395 if (archive_sep) {
11396 full_path[0] = '\0';
11397 libbpf_strlcpy(full_path, binary_path,
11398 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11399 archive_path = full_path;
11400 binary_path = archive_sep + 2;
11401 } else if (!strchr(binary_path, '/')) {
11402 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11403 if (err) {
11404 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11405 prog->name, binary_path, err);
11406 return libbpf_err_ptr(err);
11407 }
11408 binary_path = full_path;
11409 }
11410 func_name = OPTS_GET(opts, func_name, NULL);
11411 if (func_name) {
11412 long sym_off;
11413
11414 if (archive_path) {
11415 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11416 func_name);
11417 binary_path = archive_path;
11418 } else {
11419 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11420 }
11421 if (sym_off < 0)
11422 return libbpf_err_ptr(sym_off);
11423 func_offset += sym_off;
11424 }
11425
11426 legacy = determine_uprobe_perf_type() < 0;
11427 switch (attach_mode) {
11428 case PROBE_ATTACH_MODE_LEGACY:
11429 legacy = true;
11430 pe_opts.force_ioctl_attach = true;
11431 break;
11432 case PROBE_ATTACH_MODE_PERF:
11433 if (legacy)
11434 return libbpf_err_ptr(-ENOTSUP);
11435 pe_opts.force_ioctl_attach = true;
11436 break;
11437 case PROBE_ATTACH_MODE_LINK:
11438 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11439 return libbpf_err_ptr(-ENOTSUP);
11440 break;
11441 case PROBE_ATTACH_MODE_DEFAULT:
11442 break;
11443 default:
11444 return libbpf_err_ptr(-EINVAL);
11445 }
11446
11447 if (!legacy) {
11448 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11449 func_offset, pid, ref_ctr_off);
11450 } else {
11451 char probe_name[PATH_MAX + 64];
11452
11453 if (ref_ctr_off)
11454 return libbpf_err_ptr(-EINVAL);
11455
11456 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11457 binary_path, func_offset);
11458
11459 legacy_probe = strdup(probe_name);
11460 if (!legacy_probe)
11461 return libbpf_err_ptr(-ENOMEM);
11462
11463 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11464 binary_path, func_offset, pid);
11465 }
11466 if (pfd < 0) {
11467 err = -errno;
11468 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11469 prog->name, retprobe ? "uretprobe" : "uprobe",
11470 binary_path, func_offset,
11471 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11472 goto err_out;
11473 }
11474
11475 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11476 err = libbpf_get_error(link);
11477 if (err) {
11478 close(pfd);
11479 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11480 prog->name, retprobe ? "uretprobe" : "uprobe",
11481 binary_path, func_offset,
11482 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11483 goto err_clean_legacy;
11484 }
11485 if (legacy) {
11486 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11487
11488 perf_link->legacy_probe_name = legacy_probe;
11489 perf_link->legacy_is_kprobe = false;
11490 perf_link->legacy_is_retprobe = retprobe;
11491 }
11492 return link;
11493
11494 err_clean_legacy:
11495 if (legacy)
11496 remove_uprobe_event_legacy(legacy_probe, retprobe);
11497 err_out:
11498 free(legacy_probe);
11499 return libbpf_err_ptr(err);
11500 }
11501
11502 /* Format of u[ret]probe section definition supporting auto-attach:
11503 * u[ret]probe/binary:function[+offset]
11504 *
11505 * binary can be an absolute/relative path or a filename; the latter is resolved to a
11506 * full binary path via bpf_program__attach_uprobe_opts.
11507 *
11508 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11509 * specified (and auto-attach is not possible) or the above format is specified for
11510 * auto-attach.
11511 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11512 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11513 {
11514 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11515 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11516 int n, ret = -EINVAL;
11517 long offset = 0;
11518
11519 *link = NULL;
11520
11521 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11522 &probe_type, &binary_path, &func_name, &offset);
11523 switch (n) {
11524 case 1:
11525 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11526 ret = 0;
11527 break;
11528 case 2:
11529 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11530 prog->name, prog->sec_name);
11531 break;
11532 case 3:
11533 case 4:
11534 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11535 strcmp(probe_type, "uretprobe.s") == 0;
11536 if (opts.retprobe && offset != 0) {
11537 pr_warn("prog '%s': uretprobes do not support offset specification\n",
11538 prog->name);
11539 break;
11540 }
11541 opts.func_name = func_name;
11542 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11543 ret = libbpf_get_error(*link);
11544 break;
11545 default:
11546 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11547 prog->sec_name);
11548 break;
11549 }
11550 free(probe_type);
11551 free(binary_path);
11552 free(func_name);
11553
11554 return ret;
11555 }
11556
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)11557 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11558 bool retprobe, pid_t pid,
11559 const char *binary_path,
11560 size_t func_offset)
11561 {
11562 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11563
11564 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11565 }
11566
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)11567 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11568 pid_t pid, const char *binary_path,
11569 const char *usdt_provider, const char *usdt_name,
11570 const struct bpf_usdt_opts *opts)
11571 {
11572 char resolved_path[512];
11573 struct bpf_object *obj = prog->obj;
11574 struct bpf_link *link;
11575 __u64 usdt_cookie;
11576 int err;
11577
11578 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11579 return libbpf_err_ptr(-EINVAL);
11580
11581 if (bpf_program__fd(prog) < 0) {
11582 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11583 prog->name);
11584 return libbpf_err_ptr(-EINVAL);
11585 }
11586
11587 if (!binary_path)
11588 return libbpf_err_ptr(-EINVAL);
11589
11590 if (!strchr(binary_path, '/')) {
11591 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11592 if (err) {
11593 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11594 prog->name, binary_path, err);
11595 return libbpf_err_ptr(err);
11596 }
11597 binary_path = resolved_path;
11598 }
11599
11600 /* USDT manager is instantiated lazily on first USDT attach. It will
11601 * be destroyed together with BPF object in bpf_object__close().
11602 */
11603 if (IS_ERR(obj->usdt_man))
11604 return libbpf_ptr(obj->usdt_man);
11605 if (!obj->usdt_man) {
11606 obj->usdt_man = usdt_manager_new(obj);
11607 if (IS_ERR(obj->usdt_man))
11608 return libbpf_ptr(obj->usdt_man);
11609 }
11610
11611 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11612 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11613 usdt_provider, usdt_name, usdt_cookie);
11614 err = libbpf_get_error(link);
11615 if (err)
11616 return libbpf_err_ptr(err);
11617 return link;
11618 }
11619
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11620 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11621 {
11622 char *path = NULL, *provider = NULL, *name = NULL;
11623 const char *sec_name;
11624 int n, err;
11625
11626 sec_name = bpf_program__section_name(prog);
11627 if (strcmp(sec_name, "usdt") == 0) {
11628 /* no auto-attach for just SEC("usdt") */
11629 *link = NULL;
11630 return 0;
11631 }
11632
11633 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11634 if (n != 3) {
11635 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11636 sec_name);
11637 err = -EINVAL;
11638 } else {
11639 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11640 provider, name, NULL);
11641 err = libbpf_get_error(*link);
11642 }
11643 free(path);
11644 free(provider);
11645 free(name);
11646 return err;
11647 }
11648
determine_tracepoint_id(const char * tp_category,const char * tp_name)11649 static int determine_tracepoint_id(const char *tp_category,
11650 const char *tp_name)
11651 {
11652 char file[PATH_MAX];
11653 int ret;
11654
11655 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11656 tracefs_path(), tp_category, tp_name);
11657 if (ret < 0)
11658 return -errno;
11659 if (ret >= sizeof(file)) {
11660 pr_debug("tracepoint %s/%s path is too long\n",
11661 tp_category, tp_name);
11662 return -E2BIG;
11663 }
11664 return parse_uint_from_file(file, "%d\n");
11665 }
11666
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)11667 static int perf_event_open_tracepoint(const char *tp_category,
11668 const char *tp_name)
11669 {
11670 const size_t attr_sz = sizeof(struct perf_event_attr);
11671 struct perf_event_attr attr;
11672 char errmsg[STRERR_BUFSIZE];
11673 int tp_id, pfd, err;
11674
11675 tp_id = determine_tracepoint_id(tp_category, tp_name);
11676 if (tp_id < 0) {
11677 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11678 tp_category, tp_name,
11679 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11680 return tp_id;
11681 }
11682
11683 memset(&attr, 0, attr_sz);
11684 attr.type = PERF_TYPE_TRACEPOINT;
11685 attr.size = attr_sz;
11686 attr.config = tp_id;
11687
11688 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11689 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11690 if (pfd < 0) {
11691 err = -errno;
11692 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11693 tp_category, tp_name,
11694 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11695 return err;
11696 }
11697 return pfd;
11698 }
11699
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)11700 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11701 const char *tp_category,
11702 const char *tp_name,
11703 const struct bpf_tracepoint_opts *opts)
11704 {
11705 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11706 char errmsg[STRERR_BUFSIZE];
11707 struct bpf_link *link;
11708 int pfd, err;
11709
11710 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11711 return libbpf_err_ptr(-EINVAL);
11712
11713 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11714
11715 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11716 if (pfd < 0) {
11717 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11718 prog->name, tp_category, tp_name,
11719 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11720 return libbpf_err_ptr(pfd);
11721 }
11722 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11723 err = libbpf_get_error(link);
11724 if (err) {
11725 close(pfd);
11726 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11727 prog->name, tp_category, tp_name,
11728 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11729 return libbpf_err_ptr(err);
11730 }
11731 return link;
11732 }
11733
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)11734 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11735 const char *tp_category,
11736 const char *tp_name)
11737 {
11738 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11739 }
11740
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11741 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11742 {
11743 char *sec_name, *tp_cat, *tp_name;
11744
11745 *link = NULL;
11746
11747 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11748 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11749 return 0;
11750
11751 sec_name = strdup(prog->sec_name);
11752 if (!sec_name)
11753 return -ENOMEM;
11754
11755 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11756 if (str_has_pfx(prog->sec_name, "tp/"))
11757 tp_cat = sec_name + sizeof("tp/") - 1;
11758 else
11759 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11760 tp_name = strchr(tp_cat, '/');
11761 if (!tp_name) {
11762 free(sec_name);
11763 return -EINVAL;
11764 }
11765 *tp_name = '\0';
11766 tp_name++;
11767
11768 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11769 free(sec_name);
11770 return libbpf_get_error(*link);
11771 }
11772
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)11773 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11774 const char *tp_name)
11775 {
11776 char errmsg[STRERR_BUFSIZE];
11777 struct bpf_link *link;
11778 int prog_fd, pfd;
11779
11780 prog_fd = bpf_program__fd(prog);
11781 if (prog_fd < 0) {
11782 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11783 return libbpf_err_ptr(-EINVAL);
11784 }
11785
11786 link = calloc(1, sizeof(*link));
11787 if (!link)
11788 return libbpf_err_ptr(-ENOMEM);
11789 link->detach = &bpf_link__detach_fd;
11790
11791 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11792 if (pfd < 0) {
11793 pfd = -errno;
11794 free(link);
11795 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11796 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11797 return libbpf_err_ptr(pfd);
11798 }
11799 link->fd = pfd;
11800 return link;
11801 }
11802
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11803 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11804 {
11805 static const char *const prefixes[] = {
11806 "raw_tp",
11807 "raw_tracepoint",
11808 "raw_tp.w",
11809 "raw_tracepoint.w",
11810 };
11811 size_t i;
11812 const char *tp_name = NULL;
11813
11814 *link = NULL;
11815
11816 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11817 size_t pfx_len;
11818
11819 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11820 continue;
11821
11822 pfx_len = strlen(prefixes[i]);
11823 /* no auto-attach case of, e.g., SEC("raw_tp") */
11824 if (prog->sec_name[pfx_len] == '\0')
11825 return 0;
11826
11827 if (prog->sec_name[pfx_len] != '/')
11828 continue;
11829
11830 tp_name = prog->sec_name + pfx_len + 1;
11831 break;
11832 }
11833
11834 if (!tp_name) {
11835 pr_warn("prog '%s': invalid section name '%s'\n",
11836 prog->name, prog->sec_name);
11837 return -EINVAL;
11838 }
11839
11840 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11841 return libbpf_get_error(*link);
11842 }
11843
11844 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11845 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11846 const struct bpf_trace_opts *opts)
11847 {
11848 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11849 char errmsg[STRERR_BUFSIZE];
11850 struct bpf_link *link;
11851 int prog_fd, pfd;
11852
11853 if (!OPTS_VALID(opts, bpf_trace_opts))
11854 return libbpf_err_ptr(-EINVAL);
11855
11856 prog_fd = bpf_program__fd(prog);
11857 if (prog_fd < 0) {
11858 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11859 return libbpf_err_ptr(-EINVAL);
11860 }
11861
11862 link = calloc(1, sizeof(*link));
11863 if (!link)
11864 return libbpf_err_ptr(-ENOMEM);
11865 link->detach = &bpf_link__detach_fd;
11866
11867 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11868 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11869 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11870 if (pfd < 0) {
11871 pfd = -errno;
11872 free(link);
11873 pr_warn("prog '%s': failed to attach: %s\n",
11874 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11875 return libbpf_err_ptr(pfd);
11876 }
11877 link->fd = pfd;
11878 return link;
11879 }
11880
bpf_program__attach_trace(const struct bpf_program * prog)11881 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11882 {
11883 return bpf_program__attach_btf_id(prog, NULL);
11884 }
11885
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)11886 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11887 const struct bpf_trace_opts *opts)
11888 {
11889 return bpf_program__attach_btf_id(prog, opts);
11890 }
11891
bpf_program__attach_lsm(const struct bpf_program * prog)11892 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11893 {
11894 return bpf_program__attach_btf_id(prog, NULL);
11895 }
11896
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11897 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11898 {
11899 *link = bpf_program__attach_trace(prog);
11900 return libbpf_get_error(*link);
11901 }
11902
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11903 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11904 {
11905 *link = bpf_program__attach_lsm(prog);
11906 return libbpf_get_error(*link);
11907 }
11908
11909 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)11910 bpf_program_attach_fd(const struct bpf_program *prog,
11911 int target_fd, const char *target_name,
11912 const struct bpf_link_create_opts *opts)
11913 {
11914 enum bpf_attach_type attach_type;
11915 char errmsg[STRERR_BUFSIZE];
11916 struct bpf_link *link;
11917 int prog_fd, link_fd;
11918
11919 prog_fd = bpf_program__fd(prog);
11920 if (prog_fd < 0) {
11921 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11922 return libbpf_err_ptr(-EINVAL);
11923 }
11924
11925 link = calloc(1, sizeof(*link));
11926 if (!link)
11927 return libbpf_err_ptr(-ENOMEM);
11928 link->detach = &bpf_link__detach_fd;
11929
11930 attach_type = bpf_program__expected_attach_type(prog);
11931 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
11932 if (link_fd < 0) {
11933 link_fd = -errno;
11934 free(link);
11935 pr_warn("prog '%s': failed to attach to %s: %s\n",
11936 prog->name, target_name,
11937 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11938 return libbpf_err_ptr(link_fd);
11939 }
11940 link->fd = link_fd;
11941 return link;
11942 }
11943
11944 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)11945 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11946 {
11947 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
11948 }
11949
11950 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)11951 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11952 {
11953 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
11954 }
11955
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)11956 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11957 {
11958 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11959 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
11960 }
11961
11962 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)11963 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
11964 const struct bpf_tcx_opts *opts)
11965 {
11966 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11967 __u32 relative_id;
11968 int relative_fd;
11969
11970 if (!OPTS_VALID(opts, bpf_tcx_opts))
11971 return libbpf_err_ptr(-EINVAL);
11972
11973 relative_id = OPTS_GET(opts, relative_id, 0);
11974 relative_fd = OPTS_GET(opts, relative_fd, 0);
11975
11976 /* validate we don't have unexpected combinations of non-zero fields */
11977 if (!ifindex) {
11978 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
11979 prog->name);
11980 return libbpf_err_ptr(-EINVAL);
11981 }
11982 if (relative_fd && relative_id) {
11983 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
11984 prog->name);
11985 return libbpf_err_ptr(-EINVAL);
11986 }
11987
11988 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
11989 link_create_opts.tcx.relative_fd = relative_fd;
11990 link_create_opts.tcx.relative_id = relative_id;
11991 link_create_opts.flags = OPTS_GET(opts, flags, 0);
11992
11993 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11994 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
11995 }
11996
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)11997 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11998 int target_fd,
11999 const char *attach_func_name)
12000 {
12001 int btf_id;
12002
12003 if (!!target_fd != !!attach_func_name) {
12004 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12005 prog->name);
12006 return libbpf_err_ptr(-EINVAL);
12007 }
12008
12009 if (prog->type != BPF_PROG_TYPE_EXT) {
12010 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12011 prog->name);
12012 return libbpf_err_ptr(-EINVAL);
12013 }
12014
12015 if (target_fd) {
12016 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12017
12018 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12019 if (btf_id < 0)
12020 return libbpf_err_ptr(btf_id);
12021
12022 target_opts.target_btf_id = btf_id;
12023
12024 return bpf_program_attach_fd(prog, target_fd, "freplace",
12025 &target_opts);
12026 } else {
12027 /* no target, so use raw_tracepoint_open for compatibility
12028 * with old kernels
12029 */
12030 return bpf_program__attach_trace(prog);
12031 }
12032 }
12033
12034 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12035 bpf_program__attach_iter(const struct bpf_program *prog,
12036 const struct bpf_iter_attach_opts *opts)
12037 {
12038 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12039 char errmsg[STRERR_BUFSIZE];
12040 struct bpf_link *link;
12041 int prog_fd, link_fd;
12042 __u32 target_fd = 0;
12043
12044 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12045 return libbpf_err_ptr(-EINVAL);
12046
12047 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12048 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12049
12050 prog_fd = bpf_program__fd(prog);
12051 if (prog_fd < 0) {
12052 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12053 return libbpf_err_ptr(-EINVAL);
12054 }
12055
12056 link = calloc(1, sizeof(*link));
12057 if (!link)
12058 return libbpf_err_ptr(-ENOMEM);
12059 link->detach = &bpf_link__detach_fd;
12060
12061 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12062 &link_create_opts);
12063 if (link_fd < 0) {
12064 link_fd = -errno;
12065 free(link);
12066 pr_warn("prog '%s': failed to attach to iterator: %s\n",
12067 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12068 return libbpf_err_ptr(link_fd);
12069 }
12070 link->fd = link_fd;
12071 return link;
12072 }
12073
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12074 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12075 {
12076 *link = bpf_program__attach_iter(prog, NULL);
12077 return libbpf_get_error(*link);
12078 }
12079
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12080 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12081 const struct bpf_netfilter_opts *opts)
12082 {
12083 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12084 struct bpf_link *link;
12085 int prog_fd, link_fd;
12086
12087 if (!OPTS_VALID(opts, bpf_netfilter_opts))
12088 return libbpf_err_ptr(-EINVAL);
12089
12090 prog_fd = bpf_program__fd(prog);
12091 if (prog_fd < 0) {
12092 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12093 return libbpf_err_ptr(-EINVAL);
12094 }
12095
12096 link = calloc(1, sizeof(*link));
12097 if (!link)
12098 return libbpf_err_ptr(-ENOMEM);
12099
12100 link->detach = &bpf_link__detach_fd;
12101
12102 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12103 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12104 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12105 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12106
12107 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12108 if (link_fd < 0) {
12109 char errmsg[STRERR_BUFSIZE];
12110
12111 link_fd = -errno;
12112 free(link);
12113 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12114 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12115 return libbpf_err_ptr(link_fd);
12116 }
12117 link->fd = link_fd;
12118
12119 return link;
12120 }
12121
bpf_program__attach(const struct bpf_program * prog)12122 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12123 {
12124 struct bpf_link *link = NULL;
12125 int err;
12126
12127 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12128 return libbpf_err_ptr(-EOPNOTSUPP);
12129
12130 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12131 if (err)
12132 return libbpf_err_ptr(err);
12133
12134 /* When calling bpf_program__attach() explicitly, auto-attach support
12135 * is expected to work, so NULL returned link is considered an error.
12136 * This is different for skeleton's attach, see comment in
12137 * bpf_object__attach_skeleton().
12138 */
12139 if (!link)
12140 return libbpf_err_ptr(-EOPNOTSUPP);
12141
12142 return link;
12143 }
12144
12145 struct bpf_link_struct_ops {
12146 struct bpf_link link;
12147 int map_fd;
12148 };
12149
bpf_link__detach_struct_ops(struct bpf_link * link)12150 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12151 {
12152 struct bpf_link_struct_ops *st_link;
12153 __u32 zero = 0;
12154
12155 st_link = container_of(link, struct bpf_link_struct_ops, link);
12156
12157 if (st_link->map_fd < 0)
12158 /* w/o a real link */
12159 return bpf_map_delete_elem(link->fd, &zero);
12160
12161 return close(link->fd);
12162 }
12163
bpf_map__attach_struct_ops(const struct bpf_map * map)12164 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12165 {
12166 struct bpf_link_struct_ops *link;
12167 __u32 zero = 0;
12168 int err, fd;
12169
12170 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12171 return libbpf_err_ptr(-EINVAL);
12172
12173 link = calloc(1, sizeof(*link));
12174 if (!link)
12175 return libbpf_err_ptr(-EINVAL);
12176
12177 /* kern_vdata should be prepared during the loading phase. */
12178 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12179 /* It can be EBUSY if the map has been used to create or
12180 * update a link before. We don't allow updating the value of
12181 * a struct_ops once it is set. That ensures that the value
12182 * never changed. So, it is safe to skip EBUSY.
12183 */
12184 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12185 free(link);
12186 return libbpf_err_ptr(err);
12187 }
12188
12189 link->link.detach = bpf_link__detach_struct_ops;
12190
12191 if (!(map->def.map_flags & BPF_F_LINK)) {
12192 /* w/o a real link */
12193 link->link.fd = map->fd;
12194 link->map_fd = -1;
12195 return &link->link;
12196 }
12197
12198 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12199 if (fd < 0) {
12200 free(link);
12201 return libbpf_err_ptr(fd);
12202 }
12203
12204 link->link.fd = fd;
12205 link->map_fd = map->fd;
12206
12207 return &link->link;
12208 }
12209
12210 /*
12211 * Swap the back struct_ops of a link with a new struct_ops map.
12212 */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)12213 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12214 {
12215 struct bpf_link_struct_ops *st_ops_link;
12216 __u32 zero = 0;
12217 int err;
12218
12219 if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12220 return -EINVAL;
12221
12222 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12223 /* Ensure the type of a link is correct */
12224 if (st_ops_link->map_fd < 0)
12225 return -EINVAL;
12226
12227 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12228 /* It can be EBUSY if the map has been used to create or
12229 * update a link before. We don't allow updating the value of
12230 * a struct_ops once it is set. That ensures that the value
12231 * never changed. So, it is safe to skip EBUSY.
12232 */
12233 if (err && err != -EBUSY)
12234 return err;
12235
12236 err = bpf_link_update(link->fd, map->fd, NULL);
12237 if (err < 0)
12238 return err;
12239
12240 st_ops_link->map_fd = map->fd;
12241
12242 return 0;
12243 }
12244
12245 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12246 void *private_data);
12247
12248 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)12249 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12250 void **copy_mem, size_t *copy_size,
12251 bpf_perf_event_print_t fn, void *private_data)
12252 {
12253 struct perf_event_mmap_page *header = mmap_mem;
12254 __u64 data_head = ring_buffer_read_head(header);
12255 __u64 data_tail = header->data_tail;
12256 void *base = ((__u8 *)header) + page_size;
12257 int ret = LIBBPF_PERF_EVENT_CONT;
12258 struct perf_event_header *ehdr;
12259 size_t ehdr_size;
12260
12261 while (data_head != data_tail) {
12262 ehdr = base + (data_tail & (mmap_size - 1));
12263 ehdr_size = ehdr->size;
12264
12265 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12266 void *copy_start = ehdr;
12267 size_t len_first = base + mmap_size - copy_start;
12268 size_t len_secnd = ehdr_size - len_first;
12269
12270 if (*copy_size < ehdr_size) {
12271 free(*copy_mem);
12272 *copy_mem = malloc(ehdr_size);
12273 if (!*copy_mem) {
12274 *copy_size = 0;
12275 ret = LIBBPF_PERF_EVENT_ERROR;
12276 break;
12277 }
12278 *copy_size = ehdr_size;
12279 }
12280
12281 memcpy(*copy_mem, copy_start, len_first);
12282 memcpy(*copy_mem + len_first, base, len_secnd);
12283 ehdr = *copy_mem;
12284 }
12285
12286 ret = fn(ehdr, private_data);
12287 data_tail += ehdr_size;
12288 if (ret != LIBBPF_PERF_EVENT_CONT)
12289 break;
12290 }
12291
12292 ring_buffer_write_tail(header, data_tail);
12293 return libbpf_err(ret);
12294 }
12295
12296 struct perf_buffer;
12297
12298 struct perf_buffer_params {
12299 struct perf_event_attr *attr;
12300 /* if event_cb is specified, it takes precendence */
12301 perf_buffer_event_fn event_cb;
12302 /* sample_cb and lost_cb are higher-level common-case callbacks */
12303 perf_buffer_sample_fn sample_cb;
12304 perf_buffer_lost_fn lost_cb;
12305 void *ctx;
12306 int cpu_cnt;
12307 int *cpus;
12308 int *map_keys;
12309 };
12310
12311 struct perf_cpu_buf {
12312 struct perf_buffer *pb;
12313 void *base; /* mmap()'ed memory */
12314 void *buf; /* for reconstructing segmented data */
12315 size_t buf_size;
12316 int fd;
12317 int cpu;
12318 int map_key;
12319 };
12320
12321 struct perf_buffer {
12322 perf_buffer_event_fn event_cb;
12323 perf_buffer_sample_fn sample_cb;
12324 perf_buffer_lost_fn lost_cb;
12325 void *ctx; /* passed into callbacks */
12326
12327 size_t page_size;
12328 size_t mmap_size;
12329 struct perf_cpu_buf **cpu_bufs;
12330 struct epoll_event *events;
12331 int cpu_cnt; /* number of allocated CPU buffers */
12332 int epoll_fd; /* perf event FD */
12333 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12334 };
12335
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12336 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12337 struct perf_cpu_buf *cpu_buf)
12338 {
12339 if (!cpu_buf)
12340 return;
12341 if (cpu_buf->base &&
12342 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12343 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12344 if (cpu_buf->fd >= 0) {
12345 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12346 close(cpu_buf->fd);
12347 }
12348 free(cpu_buf->buf);
12349 free(cpu_buf);
12350 }
12351
perf_buffer__free(struct perf_buffer * pb)12352 void perf_buffer__free(struct perf_buffer *pb)
12353 {
12354 int i;
12355
12356 if (IS_ERR_OR_NULL(pb))
12357 return;
12358 if (pb->cpu_bufs) {
12359 for (i = 0; i < pb->cpu_cnt; i++) {
12360 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12361
12362 if (!cpu_buf)
12363 continue;
12364
12365 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12366 perf_buffer__free_cpu_buf(pb, cpu_buf);
12367 }
12368 free(pb->cpu_bufs);
12369 }
12370 if (pb->epoll_fd >= 0)
12371 close(pb->epoll_fd);
12372 free(pb->events);
12373 free(pb);
12374 }
12375
12376 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)12377 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12378 int cpu, int map_key)
12379 {
12380 struct perf_cpu_buf *cpu_buf;
12381 char msg[STRERR_BUFSIZE];
12382 int err;
12383
12384 cpu_buf = calloc(1, sizeof(*cpu_buf));
12385 if (!cpu_buf)
12386 return ERR_PTR(-ENOMEM);
12387
12388 cpu_buf->pb = pb;
12389 cpu_buf->cpu = cpu;
12390 cpu_buf->map_key = map_key;
12391
12392 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12393 -1, PERF_FLAG_FD_CLOEXEC);
12394 if (cpu_buf->fd < 0) {
12395 err = -errno;
12396 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12397 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12398 goto error;
12399 }
12400
12401 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12402 PROT_READ | PROT_WRITE, MAP_SHARED,
12403 cpu_buf->fd, 0);
12404 if (cpu_buf->base == MAP_FAILED) {
12405 cpu_buf->base = NULL;
12406 err = -errno;
12407 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12408 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12409 goto error;
12410 }
12411
12412 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12413 err = -errno;
12414 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12415 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12416 goto error;
12417 }
12418
12419 return cpu_buf;
12420
12421 error:
12422 perf_buffer__free_cpu_buf(pb, cpu_buf);
12423 return (struct perf_cpu_buf *)ERR_PTR(err);
12424 }
12425
12426 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12427 struct perf_buffer_params *p);
12428
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)12429 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12430 perf_buffer_sample_fn sample_cb,
12431 perf_buffer_lost_fn lost_cb,
12432 void *ctx,
12433 const struct perf_buffer_opts *opts)
12434 {
12435 const size_t attr_sz = sizeof(struct perf_event_attr);
12436 struct perf_buffer_params p = {};
12437 struct perf_event_attr attr;
12438 __u32 sample_period;
12439
12440 if (!OPTS_VALID(opts, perf_buffer_opts))
12441 return libbpf_err_ptr(-EINVAL);
12442
12443 sample_period = OPTS_GET(opts, sample_period, 1);
12444 if (!sample_period)
12445 sample_period = 1;
12446
12447 memset(&attr, 0, attr_sz);
12448 attr.size = attr_sz;
12449 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12450 attr.type = PERF_TYPE_SOFTWARE;
12451 attr.sample_type = PERF_SAMPLE_RAW;
12452 attr.sample_period = sample_period;
12453 attr.wakeup_events = sample_period;
12454
12455 p.attr = &attr;
12456 p.sample_cb = sample_cb;
12457 p.lost_cb = lost_cb;
12458 p.ctx = ctx;
12459
12460 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12461 }
12462
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)12463 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12464 struct perf_event_attr *attr,
12465 perf_buffer_event_fn event_cb, void *ctx,
12466 const struct perf_buffer_raw_opts *opts)
12467 {
12468 struct perf_buffer_params p = {};
12469
12470 if (!attr)
12471 return libbpf_err_ptr(-EINVAL);
12472
12473 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12474 return libbpf_err_ptr(-EINVAL);
12475
12476 p.attr = attr;
12477 p.event_cb = event_cb;
12478 p.ctx = ctx;
12479 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12480 p.cpus = OPTS_GET(opts, cpus, NULL);
12481 p.map_keys = OPTS_GET(opts, map_keys, NULL);
12482
12483 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12484 }
12485
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)12486 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12487 struct perf_buffer_params *p)
12488 {
12489 const char *online_cpus_file = "/sys/devices/system/cpu/online";
12490 struct bpf_map_info map;
12491 char msg[STRERR_BUFSIZE];
12492 struct perf_buffer *pb;
12493 bool *online = NULL;
12494 __u32 map_info_len;
12495 int err, i, j, n;
12496
12497 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12498 pr_warn("page count should be power of two, but is %zu\n",
12499 page_cnt);
12500 return ERR_PTR(-EINVAL);
12501 }
12502
12503 /* best-effort sanity checks */
12504 memset(&map, 0, sizeof(map));
12505 map_info_len = sizeof(map);
12506 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12507 if (err) {
12508 err = -errno;
12509 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12510 * -EBADFD, -EFAULT, or -E2BIG on real error
12511 */
12512 if (err != -EINVAL) {
12513 pr_warn("failed to get map info for map FD %d: %s\n",
12514 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12515 return ERR_PTR(err);
12516 }
12517 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12518 map_fd);
12519 } else {
12520 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12521 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12522 map.name);
12523 return ERR_PTR(-EINVAL);
12524 }
12525 }
12526
12527 pb = calloc(1, sizeof(*pb));
12528 if (!pb)
12529 return ERR_PTR(-ENOMEM);
12530
12531 pb->event_cb = p->event_cb;
12532 pb->sample_cb = p->sample_cb;
12533 pb->lost_cb = p->lost_cb;
12534 pb->ctx = p->ctx;
12535
12536 pb->page_size = getpagesize();
12537 pb->mmap_size = pb->page_size * page_cnt;
12538 pb->map_fd = map_fd;
12539
12540 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12541 if (pb->epoll_fd < 0) {
12542 err = -errno;
12543 pr_warn("failed to create epoll instance: %s\n",
12544 libbpf_strerror_r(err, msg, sizeof(msg)));
12545 goto error;
12546 }
12547
12548 if (p->cpu_cnt > 0) {
12549 pb->cpu_cnt = p->cpu_cnt;
12550 } else {
12551 pb->cpu_cnt = libbpf_num_possible_cpus();
12552 if (pb->cpu_cnt < 0) {
12553 err = pb->cpu_cnt;
12554 goto error;
12555 }
12556 if (map.max_entries && map.max_entries < pb->cpu_cnt)
12557 pb->cpu_cnt = map.max_entries;
12558 }
12559
12560 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12561 if (!pb->events) {
12562 err = -ENOMEM;
12563 pr_warn("failed to allocate events: out of memory\n");
12564 goto error;
12565 }
12566 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12567 if (!pb->cpu_bufs) {
12568 err = -ENOMEM;
12569 pr_warn("failed to allocate buffers: out of memory\n");
12570 goto error;
12571 }
12572
12573 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12574 if (err) {
12575 pr_warn("failed to get online CPU mask: %d\n", err);
12576 goto error;
12577 }
12578
12579 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12580 struct perf_cpu_buf *cpu_buf;
12581 int cpu, map_key;
12582
12583 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12584 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12585
12586 /* in case user didn't explicitly requested particular CPUs to
12587 * be attached to, skip offline/not present CPUs
12588 */
12589 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12590 continue;
12591
12592 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12593 if (IS_ERR(cpu_buf)) {
12594 err = PTR_ERR(cpu_buf);
12595 goto error;
12596 }
12597
12598 pb->cpu_bufs[j] = cpu_buf;
12599
12600 err = bpf_map_update_elem(pb->map_fd, &map_key,
12601 &cpu_buf->fd, 0);
12602 if (err) {
12603 err = -errno;
12604 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12605 cpu, map_key, cpu_buf->fd,
12606 libbpf_strerror_r(err, msg, sizeof(msg)));
12607 goto error;
12608 }
12609
12610 pb->events[j].events = EPOLLIN;
12611 pb->events[j].data.ptr = cpu_buf;
12612 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12613 &pb->events[j]) < 0) {
12614 err = -errno;
12615 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12616 cpu, cpu_buf->fd,
12617 libbpf_strerror_r(err, msg, sizeof(msg)));
12618 goto error;
12619 }
12620 j++;
12621 }
12622 pb->cpu_cnt = j;
12623 free(online);
12624
12625 return pb;
12626
12627 error:
12628 free(online);
12629 if (pb)
12630 perf_buffer__free(pb);
12631 return ERR_PTR(err);
12632 }
12633
12634 struct perf_sample_raw {
12635 struct perf_event_header header;
12636 uint32_t size;
12637 char data[];
12638 };
12639
12640 struct perf_sample_lost {
12641 struct perf_event_header header;
12642 uint64_t id;
12643 uint64_t lost;
12644 uint64_t sample_id;
12645 };
12646
12647 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)12648 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12649 {
12650 struct perf_cpu_buf *cpu_buf = ctx;
12651 struct perf_buffer *pb = cpu_buf->pb;
12652 void *data = e;
12653
12654 /* user wants full control over parsing perf event */
12655 if (pb->event_cb)
12656 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12657
12658 switch (e->type) {
12659 case PERF_RECORD_SAMPLE: {
12660 struct perf_sample_raw *s = data;
12661
12662 if (pb->sample_cb)
12663 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12664 break;
12665 }
12666 case PERF_RECORD_LOST: {
12667 struct perf_sample_lost *s = data;
12668
12669 if (pb->lost_cb)
12670 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12671 break;
12672 }
12673 default:
12674 pr_warn("unknown perf sample type %d\n", e->type);
12675 return LIBBPF_PERF_EVENT_ERROR;
12676 }
12677 return LIBBPF_PERF_EVENT_CONT;
12678 }
12679
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)12680 static int perf_buffer__process_records(struct perf_buffer *pb,
12681 struct perf_cpu_buf *cpu_buf)
12682 {
12683 enum bpf_perf_event_ret ret;
12684
12685 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12686 pb->page_size, &cpu_buf->buf,
12687 &cpu_buf->buf_size,
12688 perf_buffer__process_record, cpu_buf);
12689 if (ret != LIBBPF_PERF_EVENT_CONT)
12690 return ret;
12691 return 0;
12692 }
12693
perf_buffer__epoll_fd(const struct perf_buffer * pb)12694 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12695 {
12696 return pb->epoll_fd;
12697 }
12698
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)12699 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12700 {
12701 int i, cnt, err;
12702
12703 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12704 if (cnt < 0)
12705 return -errno;
12706
12707 for (i = 0; i < cnt; i++) {
12708 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12709
12710 err = perf_buffer__process_records(pb, cpu_buf);
12711 if (err) {
12712 pr_warn("error while processing records: %d\n", err);
12713 return libbpf_err(err);
12714 }
12715 }
12716 return cnt;
12717 }
12718
12719 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12720 * manager.
12721 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)12722 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12723 {
12724 return pb->cpu_cnt;
12725 }
12726
12727 /*
12728 * Return perf_event FD of a ring buffer in *buf_idx* slot of
12729 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12730 * select()/poll()/epoll() Linux syscalls.
12731 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)12732 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12733 {
12734 struct perf_cpu_buf *cpu_buf;
12735
12736 if (buf_idx >= pb->cpu_cnt)
12737 return libbpf_err(-EINVAL);
12738
12739 cpu_buf = pb->cpu_bufs[buf_idx];
12740 if (!cpu_buf)
12741 return libbpf_err(-ENOENT);
12742
12743 return cpu_buf->fd;
12744 }
12745
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)12746 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12747 {
12748 struct perf_cpu_buf *cpu_buf;
12749
12750 if (buf_idx >= pb->cpu_cnt)
12751 return libbpf_err(-EINVAL);
12752
12753 cpu_buf = pb->cpu_bufs[buf_idx];
12754 if (!cpu_buf)
12755 return libbpf_err(-ENOENT);
12756
12757 *buf = cpu_buf->base;
12758 *buf_size = pb->mmap_size;
12759 return 0;
12760 }
12761
12762 /*
12763 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12764 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12765 * consume, do nothing and return success.
12766 * Returns:
12767 * - 0 on success;
12768 * - <0 on failure.
12769 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)12770 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12771 {
12772 struct perf_cpu_buf *cpu_buf;
12773
12774 if (buf_idx >= pb->cpu_cnt)
12775 return libbpf_err(-EINVAL);
12776
12777 cpu_buf = pb->cpu_bufs[buf_idx];
12778 if (!cpu_buf)
12779 return libbpf_err(-ENOENT);
12780
12781 return perf_buffer__process_records(pb, cpu_buf);
12782 }
12783
perf_buffer__consume(struct perf_buffer * pb)12784 int perf_buffer__consume(struct perf_buffer *pb)
12785 {
12786 int i, err;
12787
12788 for (i = 0; i < pb->cpu_cnt; i++) {
12789 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12790
12791 if (!cpu_buf)
12792 continue;
12793
12794 err = perf_buffer__process_records(pb, cpu_buf);
12795 if (err) {
12796 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12797 return libbpf_err(err);
12798 }
12799 }
12800 return 0;
12801 }
12802
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)12803 int bpf_program__set_attach_target(struct bpf_program *prog,
12804 int attach_prog_fd,
12805 const char *attach_func_name)
12806 {
12807 int btf_obj_fd = 0, btf_id = 0, err;
12808
12809 if (!prog || attach_prog_fd < 0)
12810 return libbpf_err(-EINVAL);
12811
12812 if (prog->obj->loaded)
12813 return libbpf_err(-EINVAL);
12814
12815 if (attach_prog_fd && !attach_func_name) {
12816 /* remember attach_prog_fd and let bpf_program__load() find
12817 * BTF ID during the program load
12818 */
12819 prog->attach_prog_fd = attach_prog_fd;
12820 return 0;
12821 }
12822
12823 if (attach_prog_fd) {
12824 btf_id = libbpf_find_prog_btf_id(attach_func_name,
12825 attach_prog_fd);
12826 if (btf_id < 0)
12827 return libbpf_err(btf_id);
12828 } else {
12829 if (!attach_func_name)
12830 return libbpf_err(-EINVAL);
12831
12832 /* load btf_vmlinux, if not yet */
12833 err = bpf_object__load_vmlinux_btf(prog->obj, true);
12834 if (err)
12835 return libbpf_err(err);
12836 err = find_kernel_btf_id(prog->obj, attach_func_name,
12837 prog->expected_attach_type,
12838 &btf_obj_fd, &btf_id);
12839 if (err)
12840 return libbpf_err(err);
12841 }
12842
12843 prog->attach_btf_id = btf_id;
12844 prog->attach_btf_obj_fd = btf_obj_fd;
12845 prog->attach_prog_fd = attach_prog_fd;
12846 return 0;
12847 }
12848
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)12849 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12850 {
12851 int err = 0, n, len, start, end = -1;
12852 bool *tmp;
12853
12854 *mask = NULL;
12855 *mask_sz = 0;
12856
12857 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12858 while (*s) {
12859 if (*s == ',' || *s == '\n') {
12860 s++;
12861 continue;
12862 }
12863 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12864 if (n <= 0 || n > 2) {
12865 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12866 err = -EINVAL;
12867 goto cleanup;
12868 } else if (n == 1) {
12869 end = start;
12870 }
12871 if (start < 0 || start > end) {
12872 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12873 start, end, s);
12874 err = -EINVAL;
12875 goto cleanup;
12876 }
12877 tmp = realloc(*mask, end + 1);
12878 if (!tmp) {
12879 err = -ENOMEM;
12880 goto cleanup;
12881 }
12882 *mask = tmp;
12883 memset(tmp + *mask_sz, 0, start - *mask_sz);
12884 memset(tmp + start, 1, end - start + 1);
12885 *mask_sz = end + 1;
12886 s += len;
12887 }
12888 if (!*mask_sz) {
12889 pr_warn("Empty CPU range\n");
12890 return -EINVAL;
12891 }
12892 return 0;
12893 cleanup:
12894 free(*mask);
12895 *mask = NULL;
12896 return err;
12897 }
12898
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)12899 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12900 {
12901 int fd, err = 0, len;
12902 char buf[128];
12903
12904 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12905 if (fd < 0) {
12906 err = -errno;
12907 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12908 return err;
12909 }
12910 len = read(fd, buf, sizeof(buf));
12911 close(fd);
12912 if (len <= 0) {
12913 err = len ? -errno : -EINVAL;
12914 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12915 return err;
12916 }
12917 if (len >= sizeof(buf)) {
12918 pr_warn("CPU mask is too big in file %s\n", fcpu);
12919 return -E2BIG;
12920 }
12921 buf[len] = '\0';
12922
12923 return parse_cpu_mask_str(buf, mask, mask_sz);
12924 }
12925
libbpf_num_possible_cpus(void)12926 int libbpf_num_possible_cpus(void)
12927 {
12928 static const char *fcpu = "/sys/devices/system/cpu/possible";
12929 static int cpus;
12930 int err, n, i, tmp_cpus;
12931 bool *mask;
12932
12933 tmp_cpus = READ_ONCE(cpus);
12934 if (tmp_cpus > 0)
12935 return tmp_cpus;
12936
12937 err = parse_cpu_mask_file(fcpu, &mask, &n);
12938 if (err)
12939 return libbpf_err(err);
12940
12941 tmp_cpus = 0;
12942 for (i = 0; i < n; i++) {
12943 if (mask[i])
12944 tmp_cpus++;
12945 }
12946 free(mask);
12947
12948 WRITE_ONCE(cpus, tmp_cpus);
12949 return tmp_cpus;
12950 }
12951
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt)12952 static int populate_skeleton_maps(const struct bpf_object *obj,
12953 struct bpf_map_skeleton *maps,
12954 size_t map_cnt)
12955 {
12956 int i;
12957
12958 for (i = 0; i < map_cnt; i++) {
12959 struct bpf_map **map = maps[i].map;
12960 const char *name = maps[i].name;
12961 void **mmaped = maps[i].mmaped;
12962
12963 *map = bpf_object__find_map_by_name(obj, name);
12964 if (!*map) {
12965 pr_warn("failed to find skeleton map '%s'\n", name);
12966 return -ESRCH;
12967 }
12968
12969 /* externs shouldn't be pre-setup from user code */
12970 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12971 *mmaped = (*map)->mmaped;
12972 }
12973 return 0;
12974 }
12975
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt)12976 static int populate_skeleton_progs(const struct bpf_object *obj,
12977 struct bpf_prog_skeleton *progs,
12978 size_t prog_cnt)
12979 {
12980 int i;
12981
12982 for (i = 0; i < prog_cnt; i++) {
12983 struct bpf_program **prog = progs[i].prog;
12984 const char *name = progs[i].name;
12985
12986 *prog = bpf_object__find_program_by_name(obj, name);
12987 if (!*prog) {
12988 pr_warn("failed to find skeleton program '%s'\n", name);
12989 return -ESRCH;
12990 }
12991 }
12992 return 0;
12993 }
12994
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)12995 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12996 const struct bpf_object_open_opts *opts)
12997 {
12998 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12999 .object_name = s->name,
13000 );
13001 struct bpf_object *obj;
13002 int err;
13003
13004 /* Attempt to preserve opts->object_name, unless overriden by user
13005 * explicitly. Overwriting object name for skeletons is discouraged,
13006 * as it breaks global data maps, because they contain object name
13007 * prefix as their own map name prefix. When skeleton is generated,
13008 * bpftool is making an assumption that this name will stay the same.
13009 */
13010 if (opts) {
13011 memcpy(&skel_opts, opts, sizeof(*opts));
13012 if (!opts->object_name)
13013 skel_opts.object_name = s->name;
13014 }
13015
13016 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13017 err = libbpf_get_error(obj);
13018 if (err) {
13019 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13020 s->name, err);
13021 return libbpf_err(err);
13022 }
13023
13024 *s->obj = obj;
13025 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13026 if (err) {
13027 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13028 return libbpf_err(err);
13029 }
13030
13031 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13032 if (err) {
13033 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13034 return libbpf_err(err);
13035 }
13036
13037 return 0;
13038 }
13039
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13040 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13041 {
13042 int err, len, var_idx, i;
13043 const char *var_name;
13044 const struct bpf_map *map;
13045 struct btf *btf;
13046 __u32 map_type_id;
13047 const struct btf_type *map_type, *var_type;
13048 const struct bpf_var_skeleton *var_skel;
13049 struct btf_var_secinfo *var;
13050
13051 if (!s->obj)
13052 return libbpf_err(-EINVAL);
13053
13054 btf = bpf_object__btf(s->obj);
13055 if (!btf) {
13056 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13057 bpf_object__name(s->obj));
13058 return libbpf_err(-errno);
13059 }
13060
13061 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13062 if (err) {
13063 pr_warn("failed to populate subskeleton maps: %d\n", err);
13064 return libbpf_err(err);
13065 }
13066
13067 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13068 if (err) {
13069 pr_warn("failed to populate subskeleton maps: %d\n", err);
13070 return libbpf_err(err);
13071 }
13072
13073 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13074 var_skel = &s->vars[var_idx];
13075 map = *var_skel->map;
13076 map_type_id = bpf_map__btf_value_type_id(map);
13077 map_type = btf__type_by_id(btf, map_type_id);
13078
13079 if (!btf_is_datasec(map_type)) {
13080 pr_warn("type for map '%1$s' is not a datasec: %2$s",
13081 bpf_map__name(map),
13082 __btf_kind_str(btf_kind(map_type)));
13083 return libbpf_err(-EINVAL);
13084 }
13085
13086 len = btf_vlen(map_type);
13087 var = btf_var_secinfos(map_type);
13088 for (i = 0; i < len; i++, var++) {
13089 var_type = btf__type_by_id(btf, var->type);
13090 var_name = btf__name_by_offset(btf, var_type->name_off);
13091 if (strcmp(var_name, var_skel->name) == 0) {
13092 *var_skel->addr = map->mmaped + var->offset;
13093 break;
13094 }
13095 }
13096 }
13097 return 0;
13098 }
13099
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)13100 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13101 {
13102 if (!s)
13103 return;
13104 free(s->maps);
13105 free(s->progs);
13106 free(s->vars);
13107 free(s);
13108 }
13109
bpf_object__load_skeleton(struct bpf_object_skeleton * s)13110 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13111 {
13112 int i, err;
13113
13114 err = bpf_object__load(*s->obj);
13115 if (err) {
13116 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13117 return libbpf_err(err);
13118 }
13119
13120 for (i = 0; i < s->map_cnt; i++) {
13121 struct bpf_map *map = *s->maps[i].map;
13122 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13123 int prot, map_fd = bpf_map__fd(map);
13124 void **mmaped = s->maps[i].mmaped;
13125
13126 if (!mmaped)
13127 continue;
13128
13129 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13130 *mmaped = NULL;
13131 continue;
13132 }
13133
13134 if (map->def.map_flags & BPF_F_RDONLY_PROG)
13135 prot = PROT_READ;
13136 else
13137 prot = PROT_READ | PROT_WRITE;
13138
13139 /* Remap anonymous mmap()-ed "map initialization image" as
13140 * a BPF map-backed mmap()-ed memory, but preserving the same
13141 * memory address. This will cause kernel to change process'
13142 * page table to point to a different piece of kernel memory,
13143 * but from userspace point of view memory address (and its
13144 * contents, being identical at this point) will stay the
13145 * same. This mapping will be released by bpf_object__close()
13146 * as per normal clean up procedure, so we don't need to worry
13147 * about it from skeleton's clean up perspective.
13148 */
13149 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13150 if (*mmaped == MAP_FAILED) {
13151 err = -errno;
13152 *mmaped = NULL;
13153 pr_warn("failed to re-mmap() map '%s': %d\n",
13154 bpf_map__name(map), err);
13155 return libbpf_err(err);
13156 }
13157 }
13158
13159 return 0;
13160 }
13161
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)13162 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13163 {
13164 int i, err;
13165
13166 for (i = 0; i < s->prog_cnt; i++) {
13167 struct bpf_program *prog = *s->progs[i].prog;
13168 struct bpf_link **link = s->progs[i].link;
13169
13170 if (!prog->autoload || !prog->autoattach)
13171 continue;
13172
13173 /* auto-attaching not supported for this program */
13174 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13175 continue;
13176
13177 /* if user already set the link manually, don't attempt auto-attach */
13178 if (*link)
13179 continue;
13180
13181 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13182 if (err) {
13183 pr_warn("prog '%s': failed to auto-attach: %d\n",
13184 bpf_program__name(prog), err);
13185 return libbpf_err(err);
13186 }
13187
13188 /* It's possible that for some SEC() definitions auto-attach
13189 * is supported in some cases (e.g., if definition completely
13190 * specifies target information), but is not in other cases.
13191 * SEC("uprobe") is one such case. If user specified target
13192 * binary and function name, such BPF program can be
13193 * auto-attached. But if not, it shouldn't trigger skeleton's
13194 * attach to fail. It should just be skipped.
13195 * attach_fn signals such case with returning 0 (no error) and
13196 * setting link to NULL.
13197 */
13198 }
13199
13200 return 0;
13201 }
13202
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)13203 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13204 {
13205 int i;
13206
13207 for (i = 0; i < s->prog_cnt; i++) {
13208 struct bpf_link **link = s->progs[i].link;
13209
13210 bpf_link__destroy(*link);
13211 *link = NULL;
13212 }
13213 }
13214
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)13215 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13216 {
13217 if (!s)
13218 return;
13219
13220 if (s->progs)
13221 bpf_object__detach_skeleton(s);
13222 if (s->obj)
13223 bpf_object__close(*s->obj);
13224 free(s->maps);
13225 free(s->progs);
13226 free(s);
13227 }
13228