1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015, 2016 ARM Ltd.
4 */
5
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12
13 #include <asm/kvm_hyp.h>
14
15 #include "vgic.h"
16
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23
24 /*
25 * Locking order is always:
26 * kvm->lock (mutex)
27 * vcpu->mutex (mutex)
28 * kvm->arch.config_lock (mutex)
29 * its->cmd_lock (mutex)
30 * its->its_lock (mutex)
31 * vgic_cpu->ap_list_lock must be taken with IRQs disabled
32 * kvm->lpi_list_lock must be taken with IRQs disabled
33 * vgic_irq->irq_lock must be taken with IRQs disabled
34 *
35 * As the ap_list_lock might be taken from the timer interrupt handler,
36 * we have to disable IRQs before taking this lock and everything lower
37 * than it.
38 *
39 * If you need to take multiple locks, always take the upper lock first,
40 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
41 * If you are already holding a lock and need to take a higher one, you
42 * have to drop the lower ranking lock first and re-acquire it after having
43 * taken the upper one.
44 *
45 * When taking more than one ap_list_lock at the same time, always take the
46 * lowest numbered VCPU's ap_list_lock first, so:
47 * vcpuX->vcpu_id < vcpuY->vcpu_id:
48 * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
49 * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
50 *
51 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
52 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
53 * spinlocks for any lock that may be taken while injecting an interrupt.
54 */
55
56 /*
57 * Iterate over the VM's list of mapped LPIs to find the one with a
58 * matching interrupt ID and return a reference to the IRQ structure.
59 */
vgic_get_lpi(struct kvm * kvm,u32 intid)60 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
61 {
62 struct vgic_dist *dist = &kvm->arch.vgic;
63 struct vgic_irq *irq = NULL;
64 unsigned long flags;
65
66 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
67
68 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
69 if (irq->intid != intid)
70 continue;
71
72 /*
73 * This increases the refcount, the caller is expected to
74 * call vgic_put_irq() later once it's finished with the IRQ.
75 */
76 vgic_get_irq_kref(irq);
77 goto out_unlock;
78 }
79 irq = NULL;
80
81 out_unlock:
82 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
83
84 return irq;
85 }
86
87 /*
88 * This looks up the virtual interrupt ID to get the corresponding
89 * struct vgic_irq. It also increases the refcount, so any caller is expected
90 * to call vgic_put_irq() once it's finished with this IRQ.
91 */
vgic_get_irq(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 intid)92 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
93 u32 intid)
94 {
95 /* SGIs and PPIs */
96 if (intid <= VGIC_MAX_PRIVATE) {
97 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
98 return &vcpu->arch.vgic_cpu.private_irqs[intid];
99 }
100
101 /* SPIs */
102 if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
103 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
104 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
105 }
106
107 /* LPIs */
108 if (intid >= VGIC_MIN_LPI)
109 return vgic_get_lpi(kvm, intid);
110
111 return NULL;
112 }
113
114 /*
115 * We can't do anything in here, because we lack the kvm pointer to
116 * lock and remove the item from the lpi_list. So we keep this function
117 * empty and use the return value of kref_put() to trigger the freeing.
118 */
vgic_irq_release(struct kref * ref)119 static void vgic_irq_release(struct kref *ref)
120 {
121 }
122
123 /*
124 * Drop the refcount on the LPI. Must be called with lpi_list_lock held.
125 */
__vgic_put_lpi_locked(struct kvm * kvm,struct vgic_irq * irq)126 void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq)
127 {
128 struct vgic_dist *dist = &kvm->arch.vgic;
129
130 if (!kref_put(&irq->refcount, vgic_irq_release))
131 return;
132
133 list_del(&irq->lpi_list);
134 dist->lpi_list_count--;
135
136 kfree(irq);
137 }
138
vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)139 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
140 {
141 struct vgic_dist *dist = &kvm->arch.vgic;
142 unsigned long flags;
143
144 if (irq->intid < VGIC_MIN_LPI)
145 return;
146
147 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
148 __vgic_put_lpi_locked(kvm, irq);
149 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
150 }
151
vgic_flush_pending_lpis(struct kvm_vcpu * vcpu)152 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
153 {
154 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
155 struct vgic_irq *irq, *tmp;
156 unsigned long flags;
157
158 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
159
160 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
161 if (irq->intid >= VGIC_MIN_LPI) {
162 raw_spin_lock(&irq->irq_lock);
163 list_del(&irq->ap_list);
164 irq->vcpu = NULL;
165 raw_spin_unlock(&irq->irq_lock);
166 vgic_put_irq(vcpu->kvm, irq);
167 }
168 }
169
170 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
171 }
172
vgic_irq_set_phys_pending(struct vgic_irq * irq,bool pending)173 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
174 {
175 WARN_ON(irq_set_irqchip_state(irq->host_irq,
176 IRQCHIP_STATE_PENDING,
177 pending));
178 }
179
vgic_get_phys_line_level(struct vgic_irq * irq)180 bool vgic_get_phys_line_level(struct vgic_irq *irq)
181 {
182 bool line_level;
183
184 BUG_ON(!irq->hw);
185
186 if (irq->ops && irq->ops->get_input_level)
187 return irq->ops->get_input_level(irq->intid);
188
189 WARN_ON(irq_get_irqchip_state(irq->host_irq,
190 IRQCHIP_STATE_PENDING,
191 &line_level));
192 return line_level;
193 }
194
195 /* Set/Clear the physical active state */
vgic_irq_set_phys_active(struct vgic_irq * irq,bool active)196 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
197 {
198
199 BUG_ON(!irq->hw);
200 WARN_ON(irq_set_irqchip_state(irq->host_irq,
201 IRQCHIP_STATE_ACTIVE,
202 active));
203 }
204
205 /**
206 * kvm_vgic_target_oracle - compute the target vcpu for an irq
207 *
208 * @irq: The irq to route. Must be already locked.
209 *
210 * Based on the current state of the interrupt (enabled, pending,
211 * active, vcpu and target_vcpu), compute the next vcpu this should be
212 * given to. Return NULL if this shouldn't be injected at all.
213 *
214 * Requires the IRQ lock to be held.
215 */
vgic_target_oracle(struct vgic_irq * irq)216 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
217 {
218 lockdep_assert_held(&irq->irq_lock);
219
220 /* If the interrupt is active, it must stay on the current vcpu */
221 if (irq->active)
222 return irq->vcpu ? : irq->target_vcpu;
223
224 /*
225 * If the IRQ is not active but enabled and pending, we should direct
226 * it to its configured target VCPU.
227 * If the distributor is disabled, pending interrupts shouldn't be
228 * forwarded.
229 */
230 if (irq->enabled && irq_is_pending(irq)) {
231 if (unlikely(irq->target_vcpu &&
232 !irq->target_vcpu->kvm->arch.vgic.enabled))
233 return NULL;
234
235 return irq->target_vcpu;
236 }
237
238 /* If neither active nor pending and enabled, then this IRQ should not
239 * be queued to any VCPU.
240 */
241 return NULL;
242 }
243
244 /*
245 * The order of items in the ap_lists defines how we'll pack things in LRs as
246 * well, the first items in the list being the first things populated in the
247 * LRs.
248 *
249 * A hard rule is that active interrupts can never be pushed out of the LRs
250 * (and therefore take priority) since we cannot reliably trap on deactivation
251 * of IRQs and therefore they have to be present in the LRs.
252 *
253 * Otherwise things should be sorted by the priority field and the GIC
254 * hardware support will take care of preemption of priority groups etc.
255 *
256 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
257 * to sort "b" before "a".
258 */
vgic_irq_cmp(void * priv,const struct list_head * a,const struct list_head * b)259 static int vgic_irq_cmp(void *priv, const struct list_head *a,
260 const struct list_head *b)
261 {
262 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
263 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
264 bool penda, pendb;
265 int ret;
266
267 /*
268 * list_sort may call this function with the same element when
269 * the list is fairly long.
270 */
271 if (unlikely(irqa == irqb))
272 return 0;
273
274 raw_spin_lock(&irqa->irq_lock);
275 raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
276
277 if (irqa->active || irqb->active) {
278 ret = (int)irqb->active - (int)irqa->active;
279 goto out;
280 }
281
282 penda = irqa->enabled && irq_is_pending(irqa);
283 pendb = irqb->enabled && irq_is_pending(irqb);
284
285 if (!penda || !pendb) {
286 ret = (int)pendb - (int)penda;
287 goto out;
288 }
289
290 /* Both pending and enabled, sort by priority */
291 ret = irqa->priority - irqb->priority;
292 out:
293 raw_spin_unlock(&irqb->irq_lock);
294 raw_spin_unlock(&irqa->irq_lock);
295 return ret;
296 }
297
298 /* Must be called with the ap_list_lock held */
vgic_sort_ap_list(struct kvm_vcpu * vcpu)299 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
300 {
301 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
302
303 lockdep_assert_held(&vgic_cpu->ap_list_lock);
304
305 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
306 }
307
308 /*
309 * Only valid injection if changing level for level-triggered IRQs or for a
310 * rising edge, and in-kernel connected IRQ lines can only be controlled by
311 * their owner.
312 */
vgic_validate_injection(struct vgic_irq * irq,bool level,void * owner)313 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
314 {
315 if (irq->owner != owner)
316 return false;
317
318 switch (irq->config) {
319 case VGIC_CONFIG_LEVEL:
320 return irq->line_level != level;
321 case VGIC_CONFIG_EDGE:
322 return level;
323 }
324
325 return false;
326 }
327
328 /*
329 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
330 * Do the queuing if necessary, taking the right locks in the right order.
331 * Returns true when the IRQ was queued, false otherwise.
332 *
333 * Needs to be entered with the IRQ lock already held, but will return
334 * with all locks dropped.
335 */
vgic_queue_irq_unlock(struct kvm * kvm,struct vgic_irq * irq,unsigned long flags)336 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
337 unsigned long flags)
338 {
339 struct kvm_vcpu *vcpu;
340
341 lockdep_assert_held(&irq->irq_lock);
342
343 retry:
344 vcpu = vgic_target_oracle(irq);
345 if (irq->vcpu || !vcpu) {
346 /*
347 * If this IRQ is already on a VCPU's ap_list, then it
348 * cannot be moved or modified and there is no more work for
349 * us to do.
350 *
351 * Otherwise, if the irq is not pending and enabled, it does
352 * not need to be inserted into an ap_list and there is also
353 * no more work for us to do.
354 */
355 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
356
357 /*
358 * We have to kick the VCPU here, because we could be
359 * queueing an edge-triggered interrupt for which we
360 * get no EOI maintenance interrupt. In that case,
361 * while the IRQ is already on the VCPU's AP list, the
362 * VCPU could have EOI'ed the original interrupt and
363 * won't see this one until it exits for some other
364 * reason.
365 */
366 if (vcpu) {
367 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
368 kvm_vcpu_kick(vcpu);
369 }
370 return false;
371 }
372
373 /*
374 * We must unlock the irq lock to take the ap_list_lock where
375 * we are going to insert this new pending interrupt.
376 */
377 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
378
379 /* someone can do stuff here, which we re-check below */
380
381 raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
382 raw_spin_lock(&irq->irq_lock);
383
384 /*
385 * Did something change behind our backs?
386 *
387 * There are two cases:
388 * 1) The irq lost its pending state or was disabled behind our
389 * backs and/or it was queued to another VCPU's ap_list.
390 * 2) Someone changed the affinity on this irq behind our
391 * backs and we are now holding the wrong ap_list_lock.
392 *
393 * In both cases, drop the locks and retry.
394 */
395
396 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
397 raw_spin_unlock(&irq->irq_lock);
398 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
399 flags);
400
401 raw_spin_lock_irqsave(&irq->irq_lock, flags);
402 goto retry;
403 }
404
405 /*
406 * Grab a reference to the irq to reflect the fact that it is
407 * now in the ap_list.
408 */
409 vgic_get_irq_kref(irq);
410 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
411 irq->vcpu = vcpu;
412
413 raw_spin_unlock(&irq->irq_lock);
414 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
415
416 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
417 kvm_vcpu_kick(vcpu);
418
419 return true;
420 }
421
422 /**
423 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
424 * @kvm: The VM structure pointer
425 * @cpuid: The CPU for PPIs
426 * @intid: The INTID to inject a new state to.
427 * @level: Edge-triggered: true: to trigger the interrupt
428 * false: to ignore the call
429 * Level-sensitive true: raise the input signal
430 * false: lower the input signal
431 * @owner: The opaque pointer to the owner of the IRQ being raised to verify
432 * that the caller is allowed to inject this IRQ. Userspace
433 * injections will have owner == NULL.
434 *
435 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
436 * level-sensitive interrupts. You can think of the level parameter as 1
437 * being HIGH and 0 being LOW and all devices being active-HIGH.
438 */
kvm_vgic_inject_irq(struct kvm * kvm,int cpuid,unsigned int intid,bool level,void * owner)439 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
440 bool level, void *owner)
441 {
442 struct kvm_vcpu *vcpu;
443 struct vgic_irq *irq;
444 unsigned long flags;
445 int ret;
446
447 trace_vgic_update_irq_pending(cpuid, intid, level);
448
449 ret = vgic_lazy_init(kvm);
450 if (ret)
451 return ret;
452
453 vcpu = kvm_get_vcpu(kvm, cpuid);
454 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
455 return -EINVAL;
456
457 irq = vgic_get_irq(kvm, vcpu, intid);
458 if (!irq)
459 return -EINVAL;
460
461 raw_spin_lock_irqsave(&irq->irq_lock, flags);
462
463 if (!vgic_validate_injection(irq, level, owner)) {
464 /* Nothing to see here, move along... */
465 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
466 vgic_put_irq(kvm, irq);
467 return 0;
468 }
469
470 if (irq->config == VGIC_CONFIG_LEVEL)
471 irq->line_level = level;
472 else
473 irq->pending_latch = true;
474
475 vgic_queue_irq_unlock(kvm, irq, flags);
476 vgic_put_irq(kvm, irq);
477
478 return 0;
479 }
480
481 /* @irq->irq_lock must be held */
kvm_vgic_map_irq(struct kvm_vcpu * vcpu,struct vgic_irq * irq,unsigned int host_irq,struct irq_ops * ops)482 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
483 unsigned int host_irq,
484 struct irq_ops *ops)
485 {
486 struct irq_desc *desc;
487 struct irq_data *data;
488
489 /*
490 * Find the physical IRQ number corresponding to @host_irq
491 */
492 desc = irq_to_desc(host_irq);
493 if (!desc) {
494 kvm_err("%s: no interrupt descriptor\n", __func__);
495 return -EINVAL;
496 }
497 data = irq_desc_get_irq_data(desc);
498 while (data->parent_data)
499 data = data->parent_data;
500
501 irq->hw = true;
502 irq->host_irq = host_irq;
503 irq->hwintid = data->hwirq;
504 irq->ops = ops;
505 return 0;
506 }
507
508 /* @irq->irq_lock must be held */
kvm_vgic_unmap_irq(struct vgic_irq * irq)509 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
510 {
511 irq->hw = false;
512 irq->hwintid = 0;
513 irq->ops = NULL;
514 }
515
kvm_vgic_map_phys_irq(struct kvm_vcpu * vcpu,unsigned int host_irq,u32 vintid,struct irq_ops * ops)516 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
517 u32 vintid, struct irq_ops *ops)
518 {
519 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
520 unsigned long flags;
521 int ret;
522
523 BUG_ON(!irq);
524
525 raw_spin_lock_irqsave(&irq->irq_lock, flags);
526 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
527 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
528 vgic_put_irq(vcpu->kvm, irq);
529
530 return ret;
531 }
532
533 /**
534 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
535 * @vcpu: The VCPU pointer
536 * @vintid: The INTID of the interrupt
537 *
538 * Reset the active and pending states of a mapped interrupt. Kernel
539 * subsystems injecting mapped interrupts should reset their interrupt lines
540 * when we are doing a reset of the VM.
541 */
kvm_vgic_reset_mapped_irq(struct kvm_vcpu * vcpu,u32 vintid)542 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
543 {
544 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
545 unsigned long flags;
546
547 if (!irq->hw)
548 goto out;
549
550 raw_spin_lock_irqsave(&irq->irq_lock, flags);
551 irq->active = false;
552 irq->pending_latch = false;
553 irq->line_level = false;
554 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
555 out:
556 vgic_put_irq(vcpu->kvm, irq);
557 }
558
kvm_vgic_unmap_phys_irq(struct kvm_vcpu * vcpu,unsigned int vintid)559 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
560 {
561 struct vgic_irq *irq;
562 unsigned long flags;
563
564 if (!vgic_initialized(vcpu->kvm))
565 return -EAGAIN;
566
567 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
568 BUG_ON(!irq);
569
570 raw_spin_lock_irqsave(&irq->irq_lock, flags);
571 kvm_vgic_unmap_irq(irq);
572 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
573 vgic_put_irq(vcpu->kvm, irq);
574
575 return 0;
576 }
577
kvm_vgic_get_map(struct kvm_vcpu * vcpu,unsigned int vintid)578 int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
579 {
580 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
581 unsigned long flags;
582 int ret = -1;
583
584 raw_spin_lock_irqsave(&irq->irq_lock, flags);
585 if (irq->hw)
586 ret = irq->hwintid;
587 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
588
589 vgic_put_irq(vcpu->kvm, irq);
590 return ret;
591 }
592
593 /**
594 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
595 *
596 * @vcpu: Pointer to the VCPU (used for PPIs)
597 * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
598 * @owner: Opaque pointer to the owner
599 *
600 * Returns 0 if intid is not already used by another in-kernel device and the
601 * owner is set, otherwise returns an error code.
602 */
kvm_vgic_set_owner(struct kvm_vcpu * vcpu,unsigned int intid,void * owner)603 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
604 {
605 struct vgic_irq *irq;
606 unsigned long flags;
607 int ret = 0;
608
609 if (!vgic_initialized(vcpu->kvm))
610 return -EAGAIN;
611
612 /* SGIs and LPIs cannot be wired up to any device */
613 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
614 return -EINVAL;
615
616 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
617 raw_spin_lock_irqsave(&irq->irq_lock, flags);
618 if (irq->owner && irq->owner != owner)
619 ret = -EEXIST;
620 else
621 irq->owner = owner;
622 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
623
624 return ret;
625 }
626
627 /**
628 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
629 *
630 * @vcpu: The VCPU pointer
631 *
632 * Go over the list of "interesting" interrupts, and prune those that we
633 * won't have to consider in the near future.
634 */
vgic_prune_ap_list(struct kvm_vcpu * vcpu)635 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
636 {
637 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
638 struct vgic_irq *irq, *tmp;
639
640 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
641
642 retry:
643 raw_spin_lock(&vgic_cpu->ap_list_lock);
644
645 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
646 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
647 bool target_vcpu_needs_kick = false;
648
649 raw_spin_lock(&irq->irq_lock);
650
651 BUG_ON(vcpu != irq->vcpu);
652
653 target_vcpu = vgic_target_oracle(irq);
654
655 if (!target_vcpu) {
656 /*
657 * We don't need to process this interrupt any
658 * further, move it off the list.
659 */
660 list_del(&irq->ap_list);
661 irq->vcpu = NULL;
662 raw_spin_unlock(&irq->irq_lock);
663
664 /*
665 * This vgic_put_irq call matches the
666 * vgic_get_irq_kref in vgic_queue_irq_unlock,
667 * where we added the LPI to the ap_list. As
668 * we remove the irq from the list, we drop
669 * also drop the refcount.
670 */
671 vgic_put_irq(vcpu->kvm, irq);
672 continue;
673 }
674
675 if (target_vcpu == vcpu) {
676 /* We're on the right CPU */
677 raw_spin_unlock(&irq->irq_lock);
678 continue;
679 }
680
681 /* This interrupt looks like it has to be migrated. */
682
683 raw_spin_unlock(&irq->irq_lock);
684 raw_spin_unlock(&vgic_cpu->ap_list_lock);
685
686 /*
687 * Ensure locking order by always locking the smallest
688 * ID first.
689 */
690 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
691 vcpuA = vcpu;
692 vcpuB = target_vcpu;
693 } else {
694 vcpuA = target_vcpu;
695 vcpuB = vcpu;
696 }
697
698 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
699 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
700 SINGLE_DEPTH_NESTING);
701 raw_spin_lock(&irq->irq_lock);
702
703 /*
704 * If the affinity has been preserved, move the
705 * interrupt around. Otherwise, it means things have
706 * changed while the interrupt was unlocked, and we
707 * need to replay this.
708 *
709 * In all cases, we cannot trust the list not to have
710 * changed, so we restart from the beginning.
711 */
712 if (target_vcpu == vgic_target_oracle(irq)) {
713 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
714
715 list_del(&irq->ap_list);
716 irq->vcpu = target_vcpu;
717 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
718 target_vcpu_needs_kick = true;
719 }
720
721 raw_spin_unlock(&irq->irq_lock);
722 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
723 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
724
725 if (target_vcpu_needs_kick) {
726 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
727 kvm_vcpu_kick(target_vcpu);
728 }
729
730 goto retry;
731 }
732
733 raw_spin_unlock(&vgic_cpu->ap_list_lock);
734 }
735
vgic_fold_lr_state(struct kvm_vcpu * vcpu)736 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
737 {
738 if (kvm_vgic_global_state.type == VGIC_V2)
739 vgic_v2_fold_lr_state(vcpu);
740 else
741 vgic_v3_fold_lr_state(vcpu);
742 }
743
744 /* Requires the irq_lock to be held. */
vgic_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)745 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
746 struct vgic_irq *irq, int lr)
747 {
748 lockdep_assert_held(&irq->irq_lock);
749
750 if (kvm_vgic_global_state.type == VGIC_V2)
751 vgic_v2_populate_lr(vcpu, irq, lr);
752 else
753 vgic_v3_populate_lr(vcpu, irq, lr);
754 }
755
vgic_clear_lr(struct kvm_vcpu * vcpu,int lr)756 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
757 {
758 if (kvm_vgic_global_state.type == VGIC_V2)
759 vgic_v2_clear_lr(vcpu, lr);
760 else
761 vgic_v3_clear_lr(vcpu, lr);
762 }
763
vgic_set_underflow(struct kvm_vcpu * vcpu)764 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
765 {
766 if (kvm_vgic_global_state.type == VGIC_V2)
767 vgic_v2_set_underflow(vcpu);
768 else
769 vgic_v3_set_underflow(vcpu);
770 }
771
772 /* Requires the ap_list_lock to be held. */
compute_ap_list_depth(struct kvm_vcpu * vcpu,bool * multi_sgi)773 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
774 bool *multi_sgi)
775 {
776 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
777 struct vgic_irq *irq;
778 int count = 0;
779
780 *multi_sgi = false;
781
782 lockdep_assert_held(&vgic_cpu->ap_list_lock);
783
784 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
785 int w;
786
787 raw_spin_lock(&irq->irq_lock);
788 /* GICv2 SGIs can count for more than one... */
789 w = vgic_irq_get_lr_count(irq);
790 raw_spin_unlock(&irq->irq_lock);
791
792 count += w;
793 *multi_sgi |= (w > 1);
794 }
795 return count;
796 }
797
798 /* Requires the VCPU's ap_list_lock to be held. */
vgic_flush_lr_state(struct kvm_vcpu * vcpu)799 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
800 {
801 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
802 struct vgic_irq *irq;
803 int count;
804 bool multi_sgi;
805 u8 prio = 0xff;
806 int i = 0;
807
808 lockdep_assert_held(&vgic_cpu->ap_list_lock);
809
810 count = compute_ap_list_depth(vcpu, &multi_sgi);
811 if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
812 vgic_sort_ap_list(vcpu);
813
814 count = 0;
815
816 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
817 raw_spin_lock(&irq->irq_lock);
818
819 /*
820 * If we have multi-SGIs in the pipeline, we need to
821 * guarantee that they are all seen before any IRQ of
822 * lower priority. In that case, we need to filter out
823 * these interrupts by exiting early. This is easy as
824 * the AP list has been sorted already.
825 */
826 if (multi_sgi && irq->priority > prio) {
827 _raw_spin_unlock(&irq->irq_lock);
828 break;
829 }
830
831 if (likely(vgic_target_oracle(irq) == vcpu)) {
832 vgic_populate_lr(vcpu, irq, count++);
833
834 if (irq->source)
835 prio = irq->priority;
836 }
837
838 raw_spin_unlock(&irq->irq_lock);
839
840 if (count == kvm_vgic_global_state.nr_lr) {
841 if (!list_is_last(&irq->ap_list,
842 &vgic_cpu->ap_list_head))
843 vgic_set_underflow(vcpu);
844 break;
845 }
846 }
847
848 /* Nuke remaining LRs */
849 for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
850 vgic_clear_lr(vcpu, i);
851
852 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
853 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
854 else
855 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
856 }
857
can_access_vgic_from_kernel(void)858 static inline bool can_access_vgic_from_kernel(void)
859 {
860 /*
861 * GICv2 can always be accessed from the kernel because it is
862 * memory-mapped, and VHE systems can access GICv3 EL2 system
863 * registers.
864 */
865 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
866 }
867
vgic_save_state(struct kvm_vcpu * vcpu)868 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
869 {
870 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
871 vgic_v2_save_state(vcpu);
872 else
873 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
874 }
875
876 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
kvm_vgic_sync_hwstate(struct kvm_vcpu * vcpu)877 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
878 {
879 int used_lrs;
880
881 /* An empty ap_list_head implies used_lrs == 0 */
882 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
883 return;
884
885 if (can_access_vgic_from_kernel())
886 vgic_save_state(vcpu);
887
888 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
889 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
890 else
891 used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
892
893 if (used_lrs)
894 vgic_fold_lr_state(vcpu);
895 vgic_prune_ap_list(vcpu);
896 }
897
vgic_restore_state(struct kvm_vcpu * vcpu)898 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
899 {
900 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
901 vgic_v2_restore_state(vcpu);
902 else
903 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
904 }
905
906 /* Flush our emulation state into the GIC hardware before entering the guest. */
kvm_vgic_flush_hwstate(struct kvm_vcpu * vcpu)907 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
908 {
909 /*
910 * If there are no virtual interrupts active or pending for this
911 * VCPU, then there is no work to do and we can bail out without
912 * taking any lock. There is a potential race with someone injecting
913 * interrupts to the VCPU, but it is a benign race as the VCPU will
914 * either observe the new interrupt before or after doing this check,
915 * and introducing additional synchronization mechanism doesn't change
916 * this.
917 *
918 * Note that we still need to go through the whole thing if anything
919 * can be directly injected (GICv4).
920 */
921 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
922 !vgic_supports_direct_msis(vcpu->kvm))
923 return;
924
925 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
926
927 if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
928 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
929 vgic_flush_lr_state(vcpu);
930 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
931 }
932
933 if (can_access_vgic_from_kernel())
934 vgic_restore_state(vcpu);
935
936 if (vgic_supports_direct_msis(vcpu->kvm))
937 vgic_v4_commit(vcpu);
938 }
939
kvm_vgic_load(struct kvm_vcpu * vcpu)940 void kvm_vgic_load(struct kvm_vcpu *vcpu)
941 {
942 if (unlikely(!vgic_initialized(vcpu->kvm)))
943 return;
944
945 if (kvm_vgic_global_state.type == VGIC_V2)
946 vgic_v2_load(vcpu);
947 else
948 vgic_v3_load(vcpu);
949 }
950
kvm_vgic_put(struct kvm_vcpu * vcpu)951 void kvm_vgic_put(struct kvm_vcpu *vcpu)
952 {
953 if (unlikely(!vgic_initialized(vcpu->kvm)))
954 return;
955
956 if (kvm_vgic_global_state.type == VGIC_V2)
957 vgic_v2_put(vcpu);
958 else
959 vgic_v3_put(vcpu);
960 }
961
kvm_vgic_vcpu_pending_irq(struct kvm_vcpu * vcpu)962 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
963 {
964 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
965 struct vgic_irq *irq;
966 bool pending = false;
967 unsigned long flags;
968 struct vgic_vmcr vmcr;
969
970 if (!vcpu->kvm->arch.vgic.enabled)
971 return false;
972
973 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
974 return true;
975
976 vgic_get_vmcr(vcpu, &vmcr);
977
978 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
979
980 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
981 raw_spin_lock(&irq->irq_lock);
982 pending = irq_is_pending(irq) && irq->enabled &&
983 !irq->active &&
984 irq->priority < vmcr.pmr;
985 raw_spin_unlock(&irq->irq_lock);
986
987 if (pending)
988 break;
989 }
990
991 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
992
993 return pending;
994 }
995
vgic_kick_vcpus(struct kvm * kvm)996 void vgic_kick_vcpus(struct kvm *kvm)
997 {
998 struct kvm_vcpu *vcpu;
999 unsigned long c;
1000
1001 /*
1002 * We've injected an interrupt, time to find out who deserves
1003 * a good kick...
1004 */
1005 kvm_for_each_vcpu(c, vcpu, kvm) {
1006 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
1007 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1008 kvm_vcpu_kick(vcpu);
1009 }
1010 }
1011 }
1012
kvm_vgic_map_is_active(struct kvm_vcpu * vcpu,unsigned int vintid)1013 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1014 {
1015 struct vgic_irq *irq;
1016 bool map_is_active;
1017 unsigned long flags;
1018
1019 if (!vgic_initialized(vcpu->kvm))
1020 return false;
1021
1022 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
1023 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1024 map_is_active = irq->hw && irq->active;
1025 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1026 vgic_put_irq(vcpu->kvm, irq);
1027
1028 return map_is_active;
1029 }
1030
1031 /*
1032 * Level-triggered mapped IRQs are special because we only observe rising
1033 * edges as input to the VGIC.
1034 *
1035 * If the guest never acked the interrupt we have to sample the physical
1036 * line and set the line level, because the device state could have changed
1037 * or we simply need to process the still pending interrupt later.
1038 *
1039 * We could also have entered the guest with the interrupt active+pending.
1040 * On the next exit, we need to re-evaluate the pending state, as it could
1041 * otherwise result in a spurious interrupt by injecting a now potentially
1042 * stale pending state.
1043 *
1044 * If this causes us to lower the level, we have to also clear the physical
1045 * active state, since we will otherwise never be told when the interrupt
1046 * becomes asserted again.
1047 *
1048 * Another case is when the interrupt requires a helping hand on
1049 * deactivation (no HW deactivation, for example).
1050 */
vgic_irq_handle_resampling(struct vgic_irq * irq,bool lr_deactivated,bool lr_pending)1051 void vgic_irq_handle_resampling(struct vgic_irq *irq,
1052 bool lr_deactivated, bool lr_pending)
1053 {
1054 if (vgic_irq_is_mapped_level(irq)) {
1055 bool resample = false;
1056
1057 if (unlikely(vgic_irq_needs_resampling(irq))) {
1058 resample = !(irq->active || irq->pending_latch);
1059 } else if (lr_pending || (lr_deactivated && irq->line_level)) {
1060 irq->line_level = vgic_get_phys_line_level(irq);
1061 resample = !irq->line_level;
1062 }
1063
1064 if (resample)
1065 vgic_irq_set_phys_active(irq, false);
1066 }
1067 }
1068