1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/backing-dev.h>
13 #include <linux/dax.h>
14 #include <linux/gfp.h>
15 #include <linux/mm.h>
16 #include <linux/swap.h>
17 #include <linux/export.h>
18 #include <linux/pagemap.h>
19 #include <linux/highmem.h>
20 #include <linux/pagevec.h>
21 #include <linux/task_io_accounting_ops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/cleancache.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26
27 #undef CREATE_TRACE_POINTS
28 #include <trace/hooks/vmscan.h>
29
30 /*
31 * Regular page slots are stabilized by the page lock even without the tree
32 * itself locked. These unlocked entries need verification under the tree
33 * lock.
34 */
__clear_shadow_entry(struct address_space * mapping,pgoff_t index,void * entry)35 static inline void __clear_shadow_entry(struct address_space *mapping,
36 pgoff_t index, void *entry)
37 {
38 XA_STATE(xas, &mapping->i_pages, index);
39
40 xas_set_update(&xas, workingset_update_node);
41 if (xas_load(&xas) != entry)
42 return;
43 xas_store(&xas, NULL);
44 }
45
clear_shadow_entry(struct address_space * mapping,pgoff_t index,void * entry)46 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
47 void *entry)
48 {
49 spin_lock(&mapping->host->i_lock);
50 xa_lock_irq(&mapping->i_pages);
51 __clear_shadow_entry(mapping, index, entry);
52 xa_unlock_irq(&mapping->i_pages);
53 if (mapping_shrinkable(mapping))
54 inode_add_lru(mapping->host);
55 spin_unlock(&mapping->host->i_lock);
56 }
57
58 /*
59 * Unconditionally remove exceptional entries. Usually called from truncate
60 * path. Note that the folio_batch may be altered by this function by removing
61 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
62 */
truncate_folio_batch_exceptionals(struct address_space * mapping,struct folio_batch * fbatch,pgoff_t * indices)63 static void truncate_folio_batch_exceptionals(struct address_space *mapping,
64 struct folio_batch *fbatch, pgoff_t *indices)
65 {
66 int i, j;
67 bool dax;
68
69 /* Handled by shmem itself */
70 if (shmem_mapping(mapping))
71 return;
72
73 for (j = 0; j < folio_batch_count(fbatch); j++)
74 if (xa_is_value(fbatch->folios[j]))
75 break;
76
77 if (j == folio_batch_count(fbatch))
78 return;
79
80 dax = dax_mapping(mapping);
81 if (!dax) {
82 spin_lock(&mapping->host->i_lock);
83 xa_lock_irq(&mapping->i_pages);
84 }
85
86 for (i = j; i < folio_batch_count(fbatch); i++) {
87 struct folio *folio = fbatch->folios[i];
88 pgoff_t index = indices[i];
89
90 if (!xa_is_value(folio)) {
91 fbatch->folios[j++] = folio;
92 continue;
93 }
94
95 if (unlikely(dax)) {
96 dax_delete_mapping_entry(mapping, index);
97 continue;
98 }
99
100 __clear_shadow_entry(mapping, index, folio);
101 }
102
103 if (!dax) {
104 xa_unlock_irq(&mapping->i_pages);
105 if (mapping_shrinkable(mapping))
106 inode_add_lru(mapping->host);
107 spin_unlock(&mapping->host->i_lock);
108 }
109 fbatch->nr = j;
110 }
111
112 /*
113 * Invalidate exceptional entry if easily possible. This handles exceptional
114 * entries for invalidate_inode_pages().
115 */
invalidate_exceptional_entry(struct address_space * mapping,pgoff_t index,void * entry)116 static int invalidate_exceptional_entry(struct address_space *mapping,
117 pgoff_t index, void *entry)
118 {
119 /* Handled by shmem itself, or for DAX we do nothing. */
120 if (shmem_mapping(mapping) || dax_mapping(mapping))
121 return 1;
122 clear_shadow_entry(mapping, index, entry);
123 return 1;
124 }
125
126 /*
127 * Invalidate exceptional entry if clean. This handles exceptional entries for
128 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
129 */
invalidate_exceptional_entry2(struct address_space * mapping,pgoff_t index,void * entry)130 static int invalidate_exceptional_entry2(struct address_space *mapping,
131 pgoff_t index, void *entry)
132 {
133 /* Handled by shmem itself */
134 if (shmem_mapping(mapping))
135 return 1;
136 if (dax_mapping(mapping))
137 return dax_invalidate_mapping_entry_sync(mapping, index);
138 clear_shadow_entry(mapping, index, entry);
139 return 1;
140 }
141
142 /**
143 * folio_invalidate - Invalidate part or all of a folio.
144 * @folio: The folio which is affected.
145 * @offset: start of the range to invalidate
146 * @length: length of the range to invalidate
147 *
148 * folio_invalidate() is called when all or part of the folio has become
149 * invalidated by a truncate operation.
150 *
151 * folio_invalidate() does not have to release all buffers, but it must
152 * ensure that no dirty buffer is left outside @offset and that no I/O
153 * is underway against any of the blocks which are outside the truncation
154 * point. Because the caller is about to free (and possibly reuse) those
155 * blocks on-disk.
156 */
folio_invalidate(struct folio * folio,size_t offset,size_t length)157 void folio_invalidate(struct folio *folio, size_t offset, size_t length)
158 {
159 const struct address_space_operations *aops = folio->mapping->a_ops;
160
161 if (aops->invalidate_folio)
162 aops->invalidate_folio(folio, offset, length);
163 }
164 EXPORT_SYMBOL_GPL(folio_invalidate);
165
166 /*
167 * If truncate cannot remove the fs-private metadata from the page, the page
168 * becomes orphaned. It will be left on the LRU and may even be mapped into
169 * user pagetables if we're racing with filemap_fault().
170 *
171 * We need to bail out if page->mapping is no longer equal to the original
172 * mapping. This happens a) when the VM reclaimed the page while we waited on
173 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
174 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
175 */
truncate_cleanup_folio(struct folio * folio)176 static void truncate_cleanup_folio(struct folio *folio)
177 {
178 if (folio_mapped(folio))
179 unmap_mapping_folio(folio);
180
181 if (folio_has_private(folio))
182 folio_invalidate(folio, 0, folio_size(folio));
183
184 /*
185 * Some filesystems seem to re-dirty the page even after
186 * the VM has canceled the dirty bit (eg ext3 journaling).
187 * Hence dirty accounting check is placed after invalidation.
188 */
189 folio_cancel_dirty(folio);
190 folio_clear_mappedtodisk(folio);
191 }
192
truncate_inode_folio(struct address_space * mapping,struct folio * folio)193 int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
194 {
195 if (folio->mapping != mapping)
196 return -EIO;
197
198 truncate_cleanup_folio(folio);
199 filemap_remove_folio(folio);
200 return 0;
201 }
202
203 /*
204 * Handle partial folios. The folio may be entirely within the
205 * range if a split has raced with us. If not, we zero the part of the
206 * folio that's within the [start, end] range, and then split the folio if
207 * it's large. split_page_range() will discard pages which now lie beyond
208 * i_size, and we rely on the caller to discard pages which lie within a
209 * newly created hole.
210 *
211 * Returns false if splitting failed so the caller can avoid
212 * discarding the entire folio which is stubbornly unsplit.
213 */
truncate_inode_partial_folio(struct folio * folio,loff_t start,loff_t end)214 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
215 {
216 int err;
217 loff_t pos = folio_pos(folio);
218 unsigned int offset, length;
219
220 if (pos < start)
221 offset = start - pos;
222 else
223 offset = 0;
224 length = folio_size(folio);
225 if (pos + length <= (u64)end)
226 length = length - offset;
227 else
228 length = end + 1 - pos - offset;
229
230 folio_wait_writeback(folio);
231 if (length == folio_size(folio)) {
232 truncate_inode_folio(folio->mapping, folio);
233 return true;
234 }
235
236 /*
237 * We may be zeroing pages we're about to discard, but it avoids
238 * doing a complex calculation here, and then doing the zeroing
239 * anyway if the page split fails.
240 */
241 folio_zero_range(folio, offset, length);
242
243 cleancache_invalidate_page(folio->mapping, &folio->page);
244 if (folio_has_private(folio))
245 folio_invalidate(folio, offset, length);
246 if (!folio_test_large(folio))
247 return true;
248 err = split_folio(folio);
249 if (!err)
250 return true;
251 if (err > 0)
252 return false;
253 if (folio_test_dirty(folio))
254 return false;
255 truncate_inode_folio(folio->mapping, folio);
256 return true;
257 }
258
259 /*
260 * Used to get rid of pages on hardware memory corruption.
261 */
generic_error_remove_page(struct address_space * mapping,struct page * page)262 int generic_error_remove_page(struct address_space *mapping, struct page *page)
263 {
264 VM_BUG_ON_PAGE(PageTail(page), page);
265
266 if (!mapping)
267 return -EINVAL;
268 /*
269 * Only punch for normal data pages for now.
270 * Handling other types like directories would need more auditing.
271 */
272 if (!S_ISREG(mapping->host->i_mode))
273 return -EIO;
274 return truncate_inode_folio(mapping, page_folio(page));
275 }
276 EXPORT_SYMBOL(generic_error_remove_page);
277
mapping_evict_folio(struct address_space * mapping,struct folio * folio)278 static long mapping_evict_folio(struct address_space *mapping,
279 struct folio *folio)
280 {
281 if (folio_test_dirty(folio) || folio_test_writeback(folio))
282 return 0;
283 /* The refcount will be elevated if any page in the folio is mapped */
284 if (folio_ref_count(folio) >
285 folio_nr_pages(folio) + folio_has_private(folio) + 1)
286 return 0;
287 if (!filemap_release_folio(folio, 0))
288 return 0;
289
290 return remove_mapping(mapping, folio);
291 }
292
293 /**
294 * invalidate_inode_page() - Remove an unused page from the pagecache.
295 * @page: The page to remove.
296 *
297 * Safely invalidate one page from its pagecache mapping.
298 * It only drops clean, unused pages.
299 *
300 * Context: Page must be locked.
301 * Return: The number of pages successfully removed.
302 */
invalidate_inode_page(struct page * page)303 long invalidate_inode_page(struct page *page)
304 {
305 struct folio *folio = page_folio(page);
306 struct address_space *mapping = folio_mapping(folio);
307
308 /* The page may have been truncated before it was locked */
309 if (!mapping)
310 return 0;
311 return mapping_evict_folio(mapping, folio);
312 }
313
314 /**
315 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
316 * @mapping: mapping to truncate
317 * @lstart: offset from which to truncate
318 * @lend: offset to which to truncate (inclusive)
319 *
320 * Truncate the page cache, removing the pages that are between
321 * specified offsets (and zeroing out partial pages
322 * if lstart or lend + 1 is not page aligned).
323 *
324 * Truncate takes two passes - the first pass is nonblocking. It will not
325 * block on page locks and it will not block on writeback. The second pass
326 * will wait. This is to prevent as much IO as possible in the affected region.
327 * The first pass will remove most pages, so the search cost of the second pass
328 * is low.
329 *
330 * We pass down the cache-hot hint to the page freeing code. Even if the
331 * mapping is large, it is probably the case that the final pages are the most
332 * recently touched, and freeing happens in ascending file offset order.
333 *
334 * Note that since ->invalidate_folio() accepts range to invalidate
335 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
336 * page aligned properly.
337 */
truncate_inode_pages_range(struct address_space * mapping,loff_t lstart,loff_t lend)338 void truncate_inode_pages_range(struct address_space *mapping,
339 loff_t lstart, loff_t lend)
340 {
341 pgoff_t start; /* inclusive */
342 pgoff_t end; /* exclusive */
343 struct folio_batch fbatch;
344 pgoff_t indices[PAGEVEC_SIZE];
345 pgoff_t index;
346 int i;
347 struct folio *folio;
348 bool same_folio;
349
350 if (mapping_empty(mapping))
351 goto out;
352
353 /*
354 * 'start' and 'end' always covers the range of pages to be fully
355 * truncated. Partial pages are covered with 'partial_start' at the
356 * start of the range and 'partial_end' at the end of the range.
357 * Note that 'end' is exclusive while 'lend' is inclusive.
358 */
359 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
360 if (lend == -1)
361 /*
362 * lend == -1 indicates end-of-file so we have to set 'end'
363 * to the highest possible pgoff_t and since the type is
364 * unsigned we're using -1.
365 */
366 end = -1;
367 else
368 end = (lend + 1) >> PAGE_SHIFT;
369
370 folio_batch_init(&fbatch);
371 index = start;
372 while (index < end && find_lock_entries(mapping, &index, end - 1,
373 &fbatch, indices)) {
374 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
375 for (i = 0; i < folio_batch_count(&fbatch); i++)
376 truncate_cleanup_folio(fbatch.folios[i]);
377 delete_from_page_cache_batch(mapping, &fbatch);
378 for (i = 0; i < folio_batch_count(&fbatch); i++)
379 folio_unlock(fbatch.folios[i]);
380 folio_batch_release(&fbatch);
381 cond_resched();
382 }
383
384 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
385 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
386 if (!IS_ERR(folio)) {
387 same_folio = lend < folio_pos(folio) + folio_size(folio);
388 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
389 start = folio_next_index(folio);
390 if (same_folio)
391 end = folio->index;
392 }
393 folio_unlock(folio);
394 folio_put(folio);
395 folio = NULL;
396 }
397
398 if (!same_folio) {
399 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
400 FGP_LOCK, 0);
401 if (!IS_ERR(folio)) {
402 if (!truncate_inode_partial_folio(folio, lstart, lend))
403 end = folio->index;
404 folio_unlock(folio);
405 folio_put(folio);
406 }
407 }
408
409 index = start;
410 while (index < end) {
411 cond_resched();
412 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
413 indices)) {
414 /* If all gone from start onwards, we're done */
415 if (index == start)
416 break;
417 /* Otherwise restart to make sure all gone */
418 index = start;
419 continue;
420 }
421
422 for (i = 0; i < folio_batch_count(&fbatch); i++) {
423 struct folio *folio = fbatch.folios[i];
424
425 /* We rely upon deletion not changing page->index */
426
427 if (xa_is_value(folio))
428 continue;
429
430 folio_lock(folio);
431 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
432 folio_wait_writeback(folio);
433 truncate_inode_folio(mapping, folio);
434 folio_unlock(folio);
435 }
436 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
437 folio_batch_release(&fbatch);
438 }
439
440 out:
441 cleancache_invalidate_inode(mapping);
442 }
443 EXPORT_SYMBOL(truncate_inode_pages_range);
444
445 /**
446 * truncate_inode_pages - truncate *all* the pages from an offset
447 * @mapping: mapping to truncate
448 * @lstart: offset from which to truncate
449 *
450 * Called under (and serialised by) inode->i_rwsem and
451 * mapping->invalidate_lock.
452 *
453 * Note: When this function returns, there can be a page in the process of
454 * deletion (inside __filemap_remove_folio()) in the specified range. Thus
455 * mapping->nrpages can be non-zero when this function returns even after
456 * truncation of the whole mapping.
457 */
truncate_inode_pages(struct address_space * mapping,loff_t lstart)458 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
459 {
460 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
461 }
462 EXPORT_SYMBOL(truncate_inode_pages);
463
464 /**
465 * truncate_inode_pages_final - truncate *all* pages before inode dies
466 * @mapping: mapping to truncate
467 *
468 * Called under (and serialized by) inode->i_rwsem.
469 *
470 * Filesystems have to use this in the .evict_inode path to inform the
471 * VM that this is the final truncate and the inode is going away.
472 */
truncate_inode_pages_final(struct address_space * mapping)473 void truncate_inode_pages_final(struct address_space *mapping)
474 {
475 /*
476 * Page reclaim can not participate in regular inode lifetime
477 * management (can't call iput()) and thus can race with the
478 * inode teardown. Tell it when the address space is exiting,
479 * so that it does not install eviction information after the
480 * final truncate has begun.
481 */
482 mapping_set_exiting(mapping);
483
484 if (!mapping_empty(mapping)) {
485 /*
486 * As truncation uses a lockless tree lookup, cycle
487 * the tree lock to make sure any ongoing tree
488 * modification that does not see AS_EXITING is
489 * completed before starting the final truncate.
490 */
491 xa_lock_irq(&mapping->i_pages);
492 xa_unlock_irq(&mapping->i_pages);
493 }
494
495 /*
496 * Cleancache needs notification even if there are no pages or shadow
497 * entries.
498 */
499 truncate_inode_pages(mapping, 0);
500 }
501 EXPORT_SYMBOL(truncate_inode_pages_final);
502
503 /**
504 * mapping_try_invalidate - Invalidate all the evictable folios of one inode
505 * @mapping: the address_space which holds the folios to invalidate
506 * @start: the offset 'from' which to invalidate
507 * @end: the offset 'to' which to invalidate (inclusive)
508 * @nr_failed: How many folio invalidations failed
509 *
510 * This function is similar to invalidate_mapping_pages(), except that it
511 * returns the number of folios which could not be evicted in @nr_failed.
512 */
mapping_try_invalidate(struct address_space * mapping,pgoff_t start,pgoff_t end,unsigned long * nr_failed)513 unsigned long mapping_try_invalidate(struct address_space *mapping,
514 pgoff_t start, pgoff_t end, unsigned long *nr_failed)
515 {
516 pgoff_t indices[PAGEVEC_SIZE];
517 struct folio_batch fbatch;
518 pgoff_t index = start;
519 unsigned long ret;
520 unsigned long count = 0;
521 int i;
522 bool skip = false;
523
524 trace_android_vh_invalidate_mapping_pagevec(mapping, &skip);
525 if (skip)
526 return count;
527
528 folio_batch_init(&fbatch);
529 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
530 for (i = 0; i < folio_batch_count(&fbatch); i++) {
531 struct folio *folio = fbatch.folios[i];
532
533 /* We rely upon deletion not changing folio->index */
534
535 if (xa_is_value(folio)) {
536 count += invalidate_exceptional_entry(mapping,
537 indices[i], folio);
538 continue;
539 }
540
541 ret = mapping_evict_folio(mapping, folio);
542 folio_unlock(folio);
543 /*
544 * Invalidation is a hint that the folio is no longer
545 * of interest and try to speed up its reclaim.
546 */
547 if (!ret) {
548 deactivate_file_folio(folio);
549 /* Likely in the lru cache of a remote CPU */
550 if (nr_failed)
551 (*nr_failed)++;
552 }
553 count += ret;
554 }
555 folio_batch_remove_exceptionals(&fbatch);
556 folio_batch_release(&fbatch);
557 cond_resched();
558 }
559 return count;
560 }
561
562 /**
563 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
564 * @mapping: the address_space which holds the cache to invalidate
565 * @start: the offset 'from' which to invalidate
566 * @end: the offset 'to' which to invalidate (inclusive)
567 *
568 * This function removes pages that are clean, unmapped and unlocked,
569 * as well as shadow entries. It will not block on IO activity.
570 *
571 * If you want to remove all the pages of one inode, regardless of
572 * their use and writeback state, use truncate_inode_pages().
573 *
574 * Return: The number of indices that had their contents invalidated
575 */
invalidate_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t end)576 unsigned long invalidate_mapping_pages(struct address_space *mapping,
577 pgoff_t start, pgoff_t end)
578 {
579 return mapping_try_invalidate(mapping, start, end, NULL);
580 }
581 EXPORT_SYMBOL(invalidate_mapping_pages);
582
583 /*
584 * This is like invalidate_inode_page(), except it ignores the page's
585 * refcount. We do this because invalidate_inode_pages2() needs stronger
586 * invalidation guarantees, and cannot afford to leave pages behind because
587 * shrink_page_list() has a temp ref on them, or because they're transiently
588 * sitting in the folio_add_lru() caches.
589 */
invalidate_complete_folio2(struct address_space * mapping,struct folio * folio)590 static int invalidate_complete_folio2(struct address_space *mapping,
591 struct folio *folio)
592 {
593 if (folio->mapping != mapping)
594 return 0;
595
596 if (!filemap_release_folio(folio, GFP_KERNEL))
597 return 0;
598
599 spin_lock(&mapping->host->i_lock);
600 xa_lock_irq(&mapping->i_pages);
601 if (folio_test_dirty(folio))
602 goto failed;
603
604 BUG_ON(folio_has_private(folio));
605 __filemap_remove_folio(folio, NULL);
606 xa_unlock_irq(&mapping->i_pages);
607 if (mapping_shrinkable(mapping))
608 inode_add_lru(mapping->host);
609 spin_unlock(&mapping->host->i_lock);
610
611 filemap_free_folio(mapping, folio);
612 return 1;
613 failed:
614 xa_unlock_irq(&mapping->i_pages);
615 spin_unlock(&mapping->host->i_lock);
616 return 0;
617 }
618
folio_launder(struct address_space * mapping,struct folio * folio)619 static int folio_launder(struct address_space *mapping, struct folio *folio)
620 {
621 if (!folio_test_dirty(folio))
622 return 0;
623 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
624 return 0;
625 return mapping->a_ops->launder_folio(folio);
626 }
627
628 /**
629 * invalidate_inode_pages2_range - remove range of pages from an address_space
630 * @mapping: the address_space
631 * @start: the page offset 'from' which to invalidate
632 * @end: the page offset 'to' which to invalidate (inclusive)
633 *
634 * Any pages which are found to be mapped into pagetables are unmapped prior to
635 * invalidation.
636 *
637 * Return: -EBUSY if any pages could not be invalidated.
638 */
invalidate_inode_pages2_range(struct address_space * mapping,pgoff_t start,pgoff_t end)639 int invalidate_inode_pages2_range(struct address_space *mapping,
640 pgoff_t start, pgoff_t end)
641 {
642 pgoff_t indices[PAGEVEC_SIZE];
643 struct folio_batch fbatch;
644 pgoff_t index;
645 int i;
646 int ret = 0;
647 int ret2 = 0;
648 int did_range_unmap = 0;
649
650 if (mapping_empty(mapping))
651 goto out;
652
653 folio_batch_init(&fbatch);
654 index = start;
655 while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
656 for (i = 0; i < folio_batch_count(&fbatch); i++) {
657 struct folio *folio = fbatch.folios[i];
658
659 /* We rely upon deletion not changing folio->index */
660
661 if (xa_is_value(folio)) {
662 if (!invalidate_exceptional_entry2(mapping,
663 indices[i], folio))
664 ret = -EBUSY;
665 continue;
666 }
667
668 if (!did_range_unmap && folio_mapped(folio)) {
669 /*
670 * If folio is mapped, before taking its lock,
671 * zap the rest of the file in one hit.
672 */
673 unmap_mapping_pages(mapping, indices[i],
674 (1 + end - indices[i]), false);
675 did_range_unmap = 1;
676 }
677
678 folio_lock(folio);
679 if (unlikely(folio->mapping != mapping)) {
680 folio_unlock(folio);
681 continue;
682 }
683 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
684 folio_wait_writeback(folio);
685
686 if (folio_mapped(folio))
687 unmap_mapping_folio(folio);
688 BUG_ON(folio_mapped(folio));
689
690 ret2 = folio_launder(mapping, folio);
691 if (ret2 == 0) {
692 if (!invalidate_complete_folio2(mapping, folio))
693 ret2 = -EBUSY;
694 }
695 if (ret2 < 0)
696 ret = ret2;
697 folio_unlock(folio);
698 }
699 folio_batch_remove_exceptionals(&fbatch);
700 folio_batch_release(&fbatch);
701 cond_resched();
702 }
703 /*
704 * For DAX we invalidate page tables after invalidating page cache. We
705 * could invalidate page tables while invalidating each entry however
706 * that would be expensive. And doing range unmapping before doesn't
707 * work as we have no cheap way to find whether page cache entry didn't
708 * get remapped later.
709 */
710 if (dax_mapping(mapping)) {
711 unmap_mapping_pages(mapping, start, end - start + 1, false);
712 }
713 out:
714 cleancache_invalidate_inode(mapping);
715 return ret;
716 }
717 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
718
719 /**
720 * invalidate_inode_pages2 - remove all pages from an address_space
721 * @mapping: the address_space
722 *
723 * Any pages which are found to be mapped into pagetables are unmapped prior to
724 * invalidation.
725 *
726 * Return: -EBUSY if any pages could not be invalidated.
727 */
invalidate_inode_pages2(struct address_space * mapping)728 int invalidate_inode_pages2(struct address_space *mapping)
729 {
730 return invalidate_inode_pages2_range(mapping, 0, -1);
731 }
732 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
733
734 /**
735 * truncate_pagecache - unmap and remove pagecache that has been truncated
736 * @inode: inode
737 * @newsize: new file size
738 *
739 * inode's new i_size must already be written before truncate_pagecache
740 * is called.
741 *
742 * This function should typically be called before the filesystem
743 * releases resources associated with the freed range (eg. deallocates
744 * blocks). This way, pagecache will always stay logically coherent
745 * with on-disk format, and the filesystem would not have to deal with
746 * situations such as writepage being called for a page that has already
747 * had its underlying blocks deallocated.
748 */
truncate_pagecache(struct inode * inode,loff_t newsize)749 void truncate_pagecache(struct inode *inode, loff_t newsize)
750 {
751 struct address_space *mapping = inode->i_mapping;
752 loff_t holebegin = round_up(newsize, PAGE_SIZE);
753
754 /*
755 * unmap_mapping_range is called twice, first simply for
756 * efficiency so that truncate_inode_pages does fewer
757 * single-page unmaps. However after this first call, and
758 * before truncate_inode_pages finishes, it is possible for
759 * private pages to be COWed, which remain after
760 * truncate_inode_pages finishes, hence the second
761 * unmap_mapping_range call must be made for correctness.
762 */
763 unmap_mapping_range(mapping, holebegin, 0, 1);
764 truncate_inode_pages(mapping, newsize);
765 unmap_mapping_range(mapping, holebegin, 0, 1);
766 }
767 EXPORT_SYMBOL(truncate_pagecache);
768
769 /**
770 * truncate_setsize - update inode and pagecache for a new file size
771 * @inode: inode
772 * @newsize: new file size
773 *
774 * truncate_setsize updates i_size and performs pagecache truncation (if
775 * necessary) to @newsize. It will be typically be called from the filesystem's
776 * setattr function when ATTR_SIZE is passed in.
777 *
778 * Must be called with a lock serializing truncates and writes (generally
779 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
780 * specific block truncation has been performed.
781 */
truncate_setsize(struct inode * inode,loff_t newsize)782 void truncate_setsize(struct inode *inode, loff_t newsize)
783 {
784 loff_t oldsize = inode->i_size;
785
786 i_size_write(inode, newsize);
787 if (newsize > oldsize)
788 pagecache_isize_extended(inode, oldsize, newsize);
789 truncate_pagecache(inode, newsize);
790 }
791 EXPORT_SYMBOL(truncate_setsize);
792
793 /**
794 * pagecache_isize_extended - update pagecache after extension of i_size
795 * @inode: inode for which i_size was extended
796 * @from: original inode size
797 * @to: new inode size
798 *
799 * Handle extension of inode size either caused by extending truncate or by
800 * write starting after current i_size. We mark the page straddling current
801 * i_size RO so that page_mkwrite() is called on the nearest write access to
802 * the page. This way filesystem can be sure that page_mkwrite() is called on
803 * the page before user writes to the page via mmap after the i_size has been
804 * changed.
805 *
806 * The function must be called after i_size is updated so that page fault
807 * coming after we unlock the page will already see the new i_size.
808 * The function must be called while we still hold i_rwsem - this not only
809 * makes sure i_size is stable but also that userspace cannot observe new
810 * i_size value before we are prepared to store mmap writes at new inode size.
811 */
pagecache_isize_extended(struct inode * inode,loff_t from,loff_t to)812 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
813 {
814 int bsize = i_blocksize(inode);
815 loff_t rounded_from;
816 struct page *page;
817 pgoff_t index;
818
819 WARN_ON(to > inode->i_size);
820
821 if (from >= to || bsize == PAGE_SIZE)
822 return;
823 /* Page straddling @from will not have any hole block created? */
824 rounded_from = round_up(from, bsize);
825 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
826 return;
827
828 index = from >> PAGE_SHIFT;
829 page = find_lock_page(inode->i_mapping, index);
830 /* Page not cached? Nothing to do */
831 if (!page)
832 return;
833 /*
834 * See clear_page_dirty_for_io() for details why set_page_dirty()
835 * is needed.
836 */
837 if (page_mkclean(page))
838 set_page_dirty(page);
839 unlock_page(page);
840 put_page(page);
841 }
842 EXPORT_SYMBOL(pagecache_isize_extended);
843
844 /**
845 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
846 * @inode: inode
847 * @lstart: offset of beginning of hole
848 * @lend: offset of last byte of hole
849 *
850 * This function should typically be called before the filesystem
851 * releases resources associated with the freed range (eg. deallocates
852 * blocks). This way, pagecache will always stay logically coherent
853 * with on-disk format, and the filesystem would not have to deal with
854 * situations such as writepage being called for a page that has already
855 * had its underlying blocks deallocated.
856 */
truncate_pagecache_range(struct inode * inode,loff_t lstart,loff_t lend)857 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
858 {
859 struct address_space *mapping = inode->i_mapping;
860 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
861 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
862 /*
863 * This rounding is currently just for example: unmap_mapping_range
864 * expands its hole outwards, whereas we want it to contract the hole
865 * inwards. However, existing callers of truncate_pagecache_range are
866 * doing their own page rounding first. Note that unmap_mapping_range
867 * allows holelen 0 for all, and we allow lend -1 for end of file.
868 */
869
870 /*
871 * Unlike in truncate_pagecache, unmap_mapping_range is called only
872 * once (before truncating pagecache), and without "even_cows" flag:
873 * hole-punching should not remove private COWed pages from the hole.
874 */
875 if ((u64)unmap_end > (u64)unmap_start)
876 unmap_mapping_range(mapping, unmap_start,
877 1 + unmap_end - unmap_start, 0);
878 truncate_inode_pages_range(mapping, lstart, lend);
879 }
880 EXPORT_SYMBOL(truncate_pagecache_range);
881