• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Maple Tree implementation
4  * Copyright (c) 2018-2022 Oracle Corporation
5  * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6  *	    Matthew Wilcox <willy@infradead.org>
7  * Copyright (c) 2023 ByteDance
8  * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9  */
10 
11 /*
12  * DOC: Interesting implementation details of the Maple Tree
13  *
14  * Each node type has a number of slots for entries and a number of slots for
15  * pivots.  In the case of dense nodes, the pivots are implied by the position
16  * and are simply the slot index + the minimum of the node.
17  *
18  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
19  * indicate that the tree is specifying ranges,  Pivots may appear in the
20  * subtree with an entry attached to the value where as keys are unique to a
21  * specific position of a B-tree.  Pivot values are inclusive of the slot with
22  * the same index.
23  *
24  *
25  * The following illustrates the layout of a range64 nodes slots and pivots.
26  *
27  *
28  *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29  *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
30  *           │   │   │   │     │    │    │    │    └─ Implied maximum
31  *           │   │   │   │     │    │    │    └─ Pivot 14
32  *           │   │   │   │     │    │    └─ Pivot 13
33  *           │   │   │   │     │    └─ Pivot 12
34  *           │   │   │   │     └─ Pivot 11
35  *           │   │   │   └─ Pivot 2
36  *           │   │   └─ Pivot 1
37  *           │   └─ Pivot 0
38  *           └─  Implied minimum
39  *
40  * Slot contents:
41  *  Internal (non-leaf) nodes contain pointers to other nodes.
42  *  Leaf nodes contain entries.
43  *
44  * The location of interest is often referred to as an offset.  All offsets have
45  * a slot, but the last offset has an implied pivot from the node above (or
46  * UINT_MAX for the root node.
47  *
48  * Ranges complicate certain write activities.  When modifying any of
49  * the B-tree variants, it is known that one entry will either be added or
50  * deleted.  When modifying the Maple Tree, one store operation may overwrite
51  * the entire data set, or one half of the tree, or the middle half of the tree.
52  *
53  */
54 
55 
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66 
67 #define MA_ROOT_PARENT 1
68 
69 /*
70  * Maple state flags
71  * * MA_STATE_BULK		- Bulk insert mode
72  * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
73  * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
74  */
75 #define MA_STATE_BULK		1
76 #define MA_STATE_REBALANCE	2
77 #define MA_STATE_PREALLOC	4
78 
79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
81 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
82 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
83 static struct kmem_cache *maple_node_cache;
84 
85 #ifdef CONFIG_DEBUG_MAPLE_TREE
86 static const unsigned long mt_max[] = {
87 	[maple_dense]		= MAPLE_NODE_SLOTS,
88 	[maple_leaf_64]		= ULONG_MAX,
89 	[maple_range_64]	= ULONG_MAX,
90 	[maple_arange_64]	= ULONG_MAX,
91 };
92 #define mt_node_max(x) mt_max[mte_node_type(x)]
93 #endif
94 
95 static const unsigned char mt_slots[] = {
96 	[maple_dense]		= MAPLE_NODE_SLOTS,
97 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS,
98 	[maple_range_64]	= MAPLE_RANGE64_SLOTS,
99 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS,
100 };
101 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
102 
103 static const unsigned char mt_pivots[] = {
104 	[maple_dense]		= 0,
105 	[maple_leaf_64]		= MAPLE_RANGE64_SLOTS - 1,
106 	[maple_range_64]	= MAPLE_RANGE64_SLOTS - 1,
107 	[maple_arange_64]	= MAPLE_ARANGE64_SLOTS - 1,
108 };
109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
110 
111 static const unsigned char mt_min_slots[] = {
112 	[maple_dense]		= MAPLE_NODE_SLOTS / 2,
113 	[maple_leaf_64]		= (MAPLE_RANGE64_SLOTS / 2) - 2,
114 	[maple_range_64]	= (MAPLE_RANGE64_SLOTS / 2) - 2,
115 	[maple_arange_64]	= (MAPLE_ARANGE64_SLOTS / 2) - 1,
116 };
117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
118 
119 #define MAPLE_BIG_NODE_SLOTS	(MAPLE_RANGE64_SLOTS * 2 + 2)
120 #define MAPLE_BIG_NODE_GAPS	(MAPLE_ARANGE64_SLOTS * 2 + 1)
121 
122 struct maple_big_node {
123 	struct maple_pnode *parent;
124 	unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
125 	union {
126 		struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
127 		struct {
128 			unsigned long padding[MAPLE_BIG_NODE_GAPS];
129 			unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 		};
131 	};
132 	unsigned char b_end;
133 	enum maple_type type;
134 };
135 
136 /*
137  * The maple_subtree_state is used to build a tree to replace a segment of an
138  * existing tree in a more atomic way.  Any walkers of the older tree will hit a
139  * dead node and restart on updates.
140  */
141 struct maple_subtree_state {
142 	struct ma_state *orig_l;	/* Original left side of subtree */
143 	struct ma_state *orig_r;	/* Original right side of subtree */
144 	struct ma_state *l;		/* New left side of subtree */
145 	struct ma_state *m;		/* New middle of subtree (rare) */
146 	struct ma_state *r;		/* New right side of subtree */
147 	struct ma_topiary *free;	/* nodes to be freed */
148 	struct ma_topiary *destroy;	/* Nodes to be destroyed (walked and freed) */
149 	struct maple_big_node *bn;
150 };
151 
152 #ifdef CONFIG_KASAN_STACK
153 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
154 #define noinline_for_kasan noinline_for_stack
155 #else
156 #define noinline_for_kasan inline
157 #endif
158 
159 /* Functions */
mt_alloc_one(gfp_t gfp)160 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
161 {
162 	return kmem_cache_alloc(maple_node_cache, gfp);
163 }
164 
mt_alloc_bulk(gfp_t gfp,size_t size,void ** nodes)165 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
166 {
167 	return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
168 }
169 
mt_free_one(struct maple_node * node)170 static inline void mt_free_one(struct maple_node *node)
171 {
172 	kmem_cache_free(maple_node_cache, node);
173 }
174 
mt_free_bulk(size_t size,void __rcu ** nodes)175 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
176 {
177 	kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
178 }
179 
mt_free_rcu(struct rcu_head * head)180 static void mt_free_rcu(struct rcu_head *head)
181 {
182 	struct maple_node *node = container_of(head, struct maple_node, rcu);
183 
184 	kmem_cache_free(maple_node_cache, node);
185 }
186 
187 /*
188  * ma_free_rcu() - Use rcu callback to free a maple node
189  * @node: The node to free
190  *
191  * The maple tree uses the parent pointer to indicate this node is no longer in
192  * use and will be freed.
193  */
ma_free_rcu(struct maple_node * node)194 static void ma_free_rcu(struct maple_node *node)
195 {
196 	WARN_ON(node->parent != ma_parent_ptr(node));
197 	call_rcu(&node->rcu, mt_free_rcu);
198 }
199 
mas_set_height(struct ma_state * mas)200 static void mas_set_height(struct ma_state *mas)
201 {
202 	unsigned int new_flags = mas->tree->ma_flags;
203 
204 	new_flags &= ~MT_FLAGS_HEIGHT_MASK;
205 	MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
206 	new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
207 	mas->tree->ma_flags = new_flags;
208 }
209 
mas_mt_height(struct ma_state * mas)210 static unsigned int mas_mt_height(struct ma_state *mas)
211 {
212 	return mt_height(mas->tree);
213 }
214 
mt_attr(struct maple_tree * mt)215 static inline unsigned int mt_attr(struct maple_tree *mt)
216 {
217 	return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
218 }
219 
mte_node_type(const struct maple_enode * entry)220 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
221 {
222 	return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
223 		MAPLE_NODE_TYPE_MASK;
224 }
225 
ma_is_dense(const enum maple_type type)226 static inline bool ma_is_dense(const enum maple_type type)
227 {
228 	return type < maple_leaf_64;
229 }
230 
ma_is_leaf(const enum maple_type type)231 static inline bool ma_is_leaf(const enum maple_type type)
232 {
233 	return type < maple_range_64;
234 }
235 
mte_is_leaf(const struct maple_enode * entry)236 static inline bool mte_is_leaf(const struct maple_enode *entry)
237 {
238 	return ma_is_leaf(mte_node_type(entry));
239 }
240 
241 /*
242  * We also reserve values with the bottom two bits set to '10' which are
243  * below 4096
244  */
mt_is_reserved(const void * entry)245 static inline bool mt_is_reserved(const void *entry)
246 {
247 	return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
248 		xa_is_internal(entry);
249 }
250 
mas_set_err(struct ma_state * mas,long err)251 static inline void mas_set_err(struct ma_state *mas, long err)
252 {
253 	mas->node = MA_ERROR(err);
254 }
255 
mas_is_ptr(const struct ma_state * mas)256 static inline bool mas_is_ptr(const struct ma_state *mas)
257 {
258 	return mas->node == MAS_ROOT;
259 }
260 
mas_is_start(const struct ma_state * mas)261 static inline bool mas_is_start(const struct ma_state *mas)
262 {
263 	return mas->node == MAS_START;
264 }
265 
mas_is_err(struct ma_state * mas)266 bool mas_is_err(struct ma_state *mas)
267 {
268 	return xa_is_err(mas->node);
269 }
270 
mas_is_overflow(struct ma_state * mas)271 static __always_inline bool mas_is_overflow(struct ma_state *mas)
272 {
273 	if (unlikely(mas->node == MAS_OVERFLOW))
274 		return true;
275 
276 	return false;
277 }
278 
mas_is_underflow(struct ma_state * mas)279 static __always_inline bool mas_is_underflow(struct ma_state *mas)
280 {
281 	if (unlikely(mas->node == MAS_UNDERFLOW))
282 		return true;
283 
284 	return false;
285 }
286 
mas_searchable(struct ma_state * mas)287 static inline bool mas_searchable(struct ma_state *mas)
288 {
289 	if (mas_is_none(mas))
290 		return false;
291 
292 	if (mas_is_ptr(mas))
293 		return false;
294 
295 	return true;
296 }
297 
mte_to_node(const struct maple_enode * entry)298 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
299 {
300 	return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
301 }
302 
303 /*
304  * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
305  * @entry: The maple encoded node
306  *
307  * Return: a maple topiary pointer
308  */
mte_to_mat(const struct maple_enode * entry)309 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
310 {
311 	return (struct maple_topiary *)
312 		((unsigned long)entry & ~MAPLE_NODE_MASK);
313 }
314 
315 /*
316  * mas_mn() - Get the maple state node.
317  * @mas: The maple state
318  *
319  * Return: the maple node (not encoded - bare pointer).
320  */
mas_mn(const struct ma_state * mas)321 static inline struct maple_node *mas_mn(const struct ma_state *mas)
322 {
323 	return mte_to_node(mas->node);
324 }
325 
326 /*
327  * mte_set_node_dead() - Set a maple encoded node as dead.
328  * @mn: The maple encoded node.
329  */
mte_set_node_dead(struct maple_enode * mn)330 static inline void mte_set_node_dead(struct maple_enode *mn)
331 {
332 	mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
333 	smp_wmb(); /* Needed for RCU */
334 }
335 
336 /* Bit 1 indicates the root is a node */
337 #define MAPLE_ROOT_NODE			0x02
338 /* maple_type stored bit 3-6 */
339 #define MAPLE_ENODE_TYPE_SHIFT		0x03
340 /* Bit 2 means a NULL somewhere below */
341 #define MAPLE_ENODE_NULL		0x04
342 
mt_mk_node(const struct maple_node * node,enum maple_type type)343 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
344 					     enum maple_type type)
345 {
346 	return (void *)((unsigned long)node |
347 			(type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
348 }
349 
mte_mk_root(const struct maple_enode * node)350 static inline void *mte_mk_root(const struct maple_enode *node)
351 {
352 	return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
353 }
354 
mte_safe_root(const struct maple_enode * node)355 static inline void *mte_safe_root(const struct maple_enode *node)
356 {
357 	return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
358 }
359 
mte_set_full(const struct maple_enode * node)360 static inline void *mte_set_full(const struct maple_enode *node)
361 {
362 	return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
363 }
364 
mte_clear_full(const struct maple_enode * node)365 static inline void *mte_clear_full(const struct maple_enode *node)
366 {
367 	return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
368 }
369 
mte_has_null(const struct maple_enode * node)370 static inline bool mte_has_null(const struct maple_enode *node)
371 {
372 	return (unsigned long)node & MAPLE_ENODE_NULL;
373 }
374 
ma_is_root(struct maple_node * node)375 static inline bool ma_is_root(struct maple_node *node)
376 {
377 	return ((unsigned long)node->parent & MA_ROOT_PARENT);
378 }
379 
mte_is_root(const struct maple_enode * node)380 static inline bool mte_is_root(const struct maple_enode *node)
381 {
382 	return ma_is_root(mte_to_node(node));
383 }
384 
mas_is_root_limits(const struct ma_state * mas)385 static inline bool mas_is_root_limits(const struct ma_state *mas)
386 {
387 	return !mas->min && mas->max == ULONG_MAX;
388 }
389 
mt_is_alloc(struct maple_tree * mt)390 static inline bool mt_is_alloc(struct maple_tree *mt)
391 {
392 	return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
393 }
394 
395 /*
396  * The Parent Pointer
397  * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
398  * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
399  * bit values need an extra bit to store the offset.  This extra bit comes from
400  * a reuse of the last bit in the node type.  This is possible by using bit 1 to
401  * indicate if bit 2 is part of the type or the slot.
402  *
403  * Note types:
404  *  0x??1 = Root
405  *  0x?00 = 16 bit nodes
406  *  0x010 = 32 bit nodes
407  *  0x110 = 64 bit nodes
408  *
409  * Slot size and alignment
410  *  0b??1 : Root
411  *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
412  *  0b010 : 32 bit values, type in 0-2, slot in 3-7
413  *  0b110 : 64 bit values, type in 0-2, slot in 3-7
414  */
415 
416 #define MAPLE_PARENT_ROOT		0x01
417 
418 #define MAPLE_PARENT_SLOT_SHIFT		0x03
419 #define MAPLE_PARENT_SLOT_MASK		0xF8
420 
421 #define MAPLE_PARENT_16B_SLOT_SHIFT	0x02
422 #define MAPLE_PARENT_16B_SLOT_MASK	0xFC
423 
424 #define MAPLE_PARENT_RANGE64		0x06
425 #define MAPLE_PARENT_RANGE32		0x04
426 #define MAPLE_PARENT_NOT_RANGE16	0x02
427 
428 /*
429  * mte_parent_shift() - Get the parent shift for the slot storage.
430  * @parent: The parent pointer cast as an unsigned long
431  * Return: The shift into that pointer to the star to of the slot
432  */
mte_parent_shift(unsigned long parent)433 static inline unsigned long mte_parent_shift(unsigned long parent)
434 {
435 	/* Note bit 1 == 0 means 16B */
436 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
437 		return MAPLE_PARENT_SLOT_SHIFT;
438 
439 	return MAPLE_PARENT_16B_SLOT_SHIFT;
440 }
441 
442 /*
443  * mte_parent_slot_mask() - Get the slot mask for the parent.
444  * @parent: The parent pointer cast as an unsigned long.
445  * Return: The slot mask for that parent.
446  */
mte_parent_slot_mask(unsigned long parent)447 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
448 {
449 	/* Note bit 1 == 0 means 16B */
450 	if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
451 		return MAPLE_PARENT_SLOT_MASK;
452 
453 	return MAPLE_PARENT_16B_SLOT_MASK;
454 }
455 
456 /*
457  * mas_parent_type() - Return the maple_type of the parent from the stored
458  * parent type.
459  * @mas: The maple state
460  * @enode: The maple_enode to extract the parent's enum
461  * Return: The node->parent maple_type
462  */
463 static inline
mas_parent_type(struct ma_state * mas,struct maple_enode * enode)464 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
465 {
466 	unsigned long p_type;
467 
468 	p_type = (unsigned long)mte_to_node(enode)->parent;
469 	if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
470 		return 0;
471 
472 	p_type &= MAPLE_NODE_MASK;
473 	p_type &= ~mte_parent_slot_mask(p_type);
474 	switch (p_type) {
475 	case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
476 		if (mt_is_alloc(mas->tree))
477 			return maple_arange_64;
478 		return maple_range_64;
479 	}
480 
481 	return 0;
482 }
483 
484 /*
485  * mas_set_parent() - Set the parent node and encode the slot
486  * @enode: The encoded maple node.
487  * @parent: The encoded maple node that is the parent of @enode.
488  * @slot: The slot that @enode resides in @parent.
489  *
490  * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
491  * parent type.
492  */
493 static inline
mas_set_parent(struct ma_state * mas,struct maple_enode * enode,const struct maple_enode * parent,unsigned char slot)494 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
495 		    const struct maple_enode *parent, unsigned char slot)
496 {
497 	unsigned long val = (unsigned long)parent;
498 	unsigned long shift;
499 	unsigned long type;
500 	enum maple_type p_type = mte_node_type(parent);
501 
502 	MAS_BUG_ON(mas, p_type == maple_dense);
503 	MAS_BUG_ON(mas, p_type == maple_leaf_64);
504 
505 	switch (p_type) {
506 	case maple_range_64:
507 	case maple_arange_64:
508 		shift = MAPLE_PARENT_SLOT_SHIFT;
509 		type = MAPLE_PARENT_RANGE64;
510 		break;
511 	default:
512 	case maple_dense:
513 	case maple_leaf_64:
514 		shift = type = 0;
515 		break;
516 	}
517 
518 	val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
519 	val |= (slot << shift) | type;
520 	mte_to_node(enode)->parent = ma_parent_ptr(val);
521 }
522 
523 /*
524  * mte_parent_slot() - get the parent slot of @enode.
525  * @enode: The encoded maple node.
526  *
527  * Return: The slot in the parent node where @enode resides.
528  */
mte_parent_slot(const struct maple_enode * enode)529 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
530 {
531 	unsigned long val = (unsigned long)mte_to_node(enode)->parent;
532 
533 	if (val & MA_ROOT_PARENT)
534 		return 0;
535 
536 	/*
537 	 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
538 	 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
539 	 */
540 	return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
541 }
542 
543 /*
544  * mte_parent() - Get the parent of @node.
545  * @node: The encoded maple node.
546  *
547  * Return: The parent maple node.
548  */
mte_parent(const struct maple_enode * enode)549 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
550 {
551 	return (void *)((unsigned long)
552 			(mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
553 }
554 
555 /*
556  * ma_dead_node() - check if the @enode is dead.
557  * @enode: The encoded maple node
558  *
559  * Return: true if dead, false otherwise.
560  */
ma_dead_node(const struct maple_node * node)561 static inline bool ma_dead_node(const struct maple_node *node)
562 {
563 	struct maple_node *parent;
564 
565 	/* Do not reorder reads from the node prior to the parent check */
566 	smp_rmb();
567 	parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
568 	return (parent == node);
569 }
570 
571 /*
572  * mte_dead_node() - check if the @enode is dead.
573  * @enode: The encoded maple node
574  *
575  * Return: true if dead, false otherwise.
576  */
mte_dead_node(const struct maple_enode * enode)577 static inline bool mte_dead_node(const struct maple_enode *enode)
578 {
579 	struct maple_node *parent, *node;
580 
581 	node = mte_to_node(enode);
582 	/* Do not reorder reads from the node prior to the parent check */
583 	smp_rmb();
584 	parent = mte_parent(enode);
585 	return (parent == node);
586 }
587 
588 /*
589  * mas_allocated() - Get the number of nodes allocated in a maple state.
590  * @mas: The maple state
591  *
592  * The ma_state alloc member is overloaded to hold a pointer to the first
593  * allocated node or to the number of requested nodes to allocate.  If bit 0 is
594  * set, then the alloc contains the number of requested nodes.  If there is an
595  * allocated node, then the total allocated nodes is in that node.
596  *
597  * Return: The total number of nodes allocated
598  */
mas_allocated(const struct ma_state * mas)599 static inline unsigned long mas_allocated(const struct ma_state *mas)
600 {
601 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
602 		return 0;
603 
604 	return mas->alloc->total;
605 }
606 
607 /*
608  * mas_set_alloc_req() - Set the requested number of allocations.
609  * @mas: the maple state
610  * @count: the number of allocations.
611  *
612  * The requested number of allocations is either in the first allocated node,
613  * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
614  * no allocated node.  Set the request either in the node or do the necessary
615  * encoding to store in @mas->alloc directly.
616  */
mas_set_alloc_req(struct ma_state * mas,unsigned long count)617 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
618 {
619 	if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
620 		if (!count)
621 			mas->alloc = NULL;
622 		else
623 			mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
624 		return;
625 	}
626 
627 	mas->alloc->request_count = count;
628 }
629 
630 /*
631  * mas_alloc_req() - get the requested number of allocations.
632  * @mas: The maple state
633  *
634  * The alloc count is either stored directly in @mas, or in
635  * @mas->alloc->request_count if there is at least one node allocated.  Decode
636  * the request count if it's stored directly in @mas->alloc.
637  *
638  * Return: The allocation request count.
639  */
mas_alloc_req(const struct ma_state * mas)640 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
641 {
642 	if ((unsigned long)mas->alloc & 0x1)
643 		return (unsigned long)(mas->alloc) >> 1;
644 	else if (mas->alloc)
645 		return mas->alloc->request_count;
646 	return 0;
647 }
648 
649 /*
650  * ma_pivots() - Get a pointer to the maple node pivots.
651  * @node - the maple node
652  * @type - the node type
653  *
654  * In the event of a dead node, this array may be %NULL
655  *
656  * Return: A pointer to the maple node pivots
657  */
ma_pivots(struct maple_node * node,enum maple_type type)658 static inline unsigned long *ma_pivots(struct maple_node *node,
659 					   enum maple_type type)
660 {
661 	switch (type) {
662 	case maple_arange_64:
663 		return node->ma64.pivot;
664 	case maple_range_64:
665 	case maple_leaf_64:
666 		return node->mr64.pivot;
667 	case maple_dense:
668 		return NULL;
669 	}
670 	return NULL;
671 }
672 
673 /*
674  * ma_gaps() - Get a pointer to the maple node gaps.
675  * @node - the maple node
676  * @type - the node type
677  *
678  * Return: A pointer to the maple node gaps
679  */
ma_gaps(struct maple_node * node,enum maple_type type)680 static inline unsigned long *ma_gaps(struct maple_node *node,
681 				     enum maple_type type)
682 {
683 	switch (type) {
684 	case maple_arange_64:
685 		return node->ma64.gap;
686 	case maple_range_64:
687 	case maple_leaf_64:
688 	case maple_dense:
689 		return NULL;
690 	}
691 	return NULL;
692 }
693 
694 /*
695  * mas_pivot() - Get the pivot at @piv of the maple encoded node.
696  * @mas: The maple state.
697  * @piv: The pivot.
698  *
699  * Return: the pivot at @piv of @mn.
700  */
mas_pivot(struct ma_state * mas,unsigned char piv)701 static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv)
702 {
703 	struct maple_node *node = mas_mn(mas);
704 	enum maple_type type = mte_node_type(mas->node);
705 
706 	if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) {
707 		mas_set_err(mas, -EIO);
708 		return 0;
709 	}
710 
711 	switch (type) {
712 	case maple_arange_64:
713 		return node->ma64.pivot[piv];
714 	case maple_range_64:
715 	case maple_leaf_64:
716 		return node->mr64.pivot[piv];
717 	case maple_dense:
718 		return 0;
719 	}
720 	return 0;
721 }
722 
723 /*
724  * mas_safe_pivot() - get the pivot at @piv or mas->max.
725  * @mas: The maple state
726  * @pivots: The pointer to the maple node pivots
727  * @piv: The pivot to fetch
728  * @type: The maple node type
729  *
730  * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
731  * otherwise.
732  */
733 static inline unsigned long
mas_safe_pivot(const struct ma_state * mas,unsigned long * pivots,unsigned char piv,enum maple_type type)734 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
735 	       unsigned char piv, enum maple_type type)
736 {
737 	if (piv >= mt_pivots[type])
738 		return mas->max;
739 
740 	return pivots[piv];
741 }
742 
743 /*
744  * mas_safe_min() - Return the minimum for a given offset.
745  * @mas: The maple state
746  * @pivots: The pointer to the maple node pivots
747  * @offset: The offset into the pivot array
748  *
749  * Return: The minimum range value that is contained in @offset.
750  */
751 static inline unsigned long
mas_safe_min(struct ma_state * mas,unsigned long * pivots,unsigned char offset)752 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
753 {
754 	if (likely(offset))
755 		return pivots[offset - 1] + 1;
756 
757 	return mas->min;
758 }
759 
760 /*
761  * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
762  * @mn: The encoded maple node
763  * @piv: The pivot offset
764  * @val: The value of the pivot
765  */
mte_set_pivot(struct maple_enode * mn,unsigned char piv,unsigned long val)766 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
767 				unsigned long val)
768 {
769 	struct maple_node *node = mte_to_node(mn);
770 	enum maple_type type = mte_node_type(mn);
771 
772 	BUG_ON(piv >= mt_pivots[type]);
773 	switch (type) {
774 	default:
775 	case maple_range_64:
776 	case maple_leaf_64:
777 		node->mr64.pivot[piv] = val;
778 		break;
779 	case maple_arange_64:
780 		node->ma64.pivot[piv] = val;
781 		break;
782 	case maple_dense:
783 		break;
784 	}
785 
786 }
787 
788 /*
789  * ma_slots() - Get a pointer to the maple node slots.
790  * @mn: The maple node
791  * @mt: The maple node type
792  *
793  * Return: A pointer to the maple node slots
794  */
ma_slots(struct maple_node * mn,enum maple_type mt)795 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
796 {
797 	switch (mt) {
798 	default:
799 	case maple_arange_64:
800 		return mn->ma64.slot;
801 	case maple_range_64:
802 	case maple_leaf_64:
803 		return mn->mr64.slot;
804 	case maple_dense:
805 		return mn->slot;
806 	}
807 }
808 
mt_write_locked(const struct maple_tree * mt)809 static inline bool mt_write_locked(const struct maple_tree *mt)
810 {
811 	return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
812 		lockdep_is_held(&mt->ma_lock);
813 }
814 
mt_locked(const struct maple_tree * mt)815 static inline bool mt_locked(const struct maple_tree *mt)
816 {
817 	return mt_external_lock(mt) ? mt_lock_is_held(mt) :
818 		lockdep_is_held(&mt->ma_lock);
819 }
820 
mt_slot(const struct maple_tree * mt,void __rcu ** slots,unsigned char offset)821 static inline void *mt_slot(const struct maple_tree *mt,
822 		void __rcu **slots, unsigned char offset)
823 {
824 	return rcu_dereference_check(slots[offset], mt_locked(mt));
825 }
826 
mt_slot_locked(struct maple_tree * mt,void __rcu ** slots,unsigned char offset)827 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
828 				   unsigned char offset)
829 {
830 	return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
831 }
832 /*
833  * mas_slot_locked() - Get the slot value when holding the maple tree lock.
834  * @mas: The maple state
835  * @slots: The pointer to the slots
836  * @offset: The offset into the slots array to fetch
837  *
838  * Return: The entry stored in @slots at the @offset.
839  */
mas_slot_locked(struct ma_state * mas,void __rcu ** slots,unsigned char offset)840 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
841 				       unsigned char offset)
842 {
843 	return mt_slot_locked(mas->tree, slots, offset);
844 }
845 
846 /*
847  * mas_slot() - Get the slot value when not holding the maple tree lock.
848  * @mas: The maple state
849  * @slots: The pointer to the slots
850  * @offset: The offset into the slots array to fetch
851  *
852  * Return: The entry stored in @slots at the @offset
853  */
mas_slot(struct ma_state * mas,void __rcu ** slots,unsigned char offset)854 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
855 			     unsigned char offset)
856 {
857 	return mt_slot(mas->tree, slots, offset);
858 }
859 
860 /*
861  * mas_root() - Get the maple tree root.
862  * @mas: The maple state.
863  *
864  * Return: The pointer to the root of the tree
865  */
mas_root(struct ma_state * mas)866 static inline void *mas_root(struct ma_state *mas)
867 {
868 	return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
869 }
870 
mt_root_locked(struct maple_tree * mt)871 static inline void *mt_root_locked(struct maple_tree *mt)
872 {
873 	return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
874 }
875 
876 /*
877  * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
878  * @mas: The maple state.
879  *
880  * Return: The pointer to the root of the tree
881  */
mas_root_locked(struct ma_state * mas)882 static inline void *mas_root_locked(struct ma_state *mas)
883 {
884 	return mt_root_locked(mas->tree);
885 }
886 
ma_meta(struct maple_node * mn,enum maple_type mt)887 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
888 					     enum maple_type mt)
889 {
890 	switch (mt) {
891 	case maple_arange_64:
892 		return &mn->ma64.meta;
893 	default:
894 		return &mn->mr64.meta;
895 	}
896 }
897 
898 /*
899  * ma_set_meta() - Set the metadata information of a node.
900  * @mn: The maple node
901  * @mt: The maple node type
902  * @offset: The offset of the highest sub-gap in this node.
903  * @end: The end of the data in this node.
904  */
ma_set_meta(struct maple_node * mn,enum maple_type mt,unsigned char offset,unsigned char end)905 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
906 			       unsigned char offset, unsigned char end)
907 {
908 	struct maple_metadata *meta = ma_meta(mn, mt);
909 
910 	meta->gap = offset;
911 	meta->end = end;
912 }
913 
914 /*
915  * mt_clear_meta() - clear the metadata information of a node, if it exists
916  * @mt: The maple tree
917  * @mn: The maple node
918  * @type: The maple node type
919  * @offset: The offset of the highest sub-gap in this node.
920  * @end: The end of the data in this node.
921  */
mt_clear_meta(struct maple_tree * mt,struct maple_node * mn,enum maple_type type)922 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
923 				  enum maple_type type)
924 {
925 	struct maple_metadata *meta;
926 	unsigned long *pivots;
927 	void __rcu **slots;
928 	void *next;
929 
930 	switch (type) {
931 	case maple_range_64:
932 		pivots = mn->mr64.pivot;
933 		if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
934 			slots = mn->mr64.slot;
935 			next = mt_slot_locked(mt, slots,
936 					      MAPLE_RANGE64_SLOTS - 1);
937 			if (unlikely((mte_to_node(next) &&
938 				      mte_node_type(next))))
939 				return; /* no metadata, could be node */
940 		}
941 		fallthrough;
942 	case maple_arange_64:
943 		meta = ma_meta(mn, type);
944 		break;
945 	default:
946 		return;
947 	}
948 
949 	meta->gap = 0;
950 	meta->end = 0;
951 }
952 
953 /*
954  * ma_meta_end() - Get the data end of a node from the metadata
955  * @mn: The maple node
956  * @mt: The maple node type
957  */
ma_meta_end(struct maple_node * mn,enum maple_type mt)958 static inline unsigned char ma_meta_end(struct maple_node *mn,
959 					enum maple_type mt)
960 {
961 	struct maple_metadata *meta = ma_meta(mn, mt);
962 
963 	return meta->end;
964 }
965 
966 /*
967  * ma_meta_gap() - Get the largest gap location of a node from the metadata
968  * @mn: The maple node
969  * @mt: The maple node type
970  */
ma_meta_gap(struct maple_node * mn,enum maple_type mt)971 static inline unsigned char ma_meta_gap(struct maple_node *mn,
972 					enum maple_type mt)
973 {
974 	return mn->ma64.meta.gap;
975 }
976 
977 /*
978  * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
979  * @mn: The maple node
980  * @mn: The maple node type
981  * @offset: The location of the largest gap.
982  */
ma_set_meta_gap(struct maple_node * mn,enum maple_type mt,unsigned char offset)983 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
984 				   unsigned char offset)
985 {
986 
987 	struct maple_metadata *meta = ma_meta(mn, mt);
988 
989 	meta->gap = offset;
990 }
991 
992 /*
993  * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
994  * @mat - the ma_topiary, a linked list of dead nodes.
995  * @dead_enode - the node to be marked as dead and added to the tail of the list
996  *
997  * Add the @dead_enode to the linked list in @mat.
998  */
mat_add(struct ma_topiary * mat,struct maple_enode * dead_enode)999 static inline void mat_add(struct ma_topiary *mat,
1000 			   struct maple_enode *dead_enode)
1001 {
1002 	mte_set_node_dead(dead_enode);
1003 	mte_to_mat(dead_enode)->next = NULL;
1004 	if (!mat->tail) {
1005 		mat->tail = mat->head = dead_enode;
1006 		return;
1007 	}
1008 
1009 	mte_to_mat(mat->tail)->next = dead_enode;
1010 	mat->tail = dead_enode;
1011 }
1012 
1013 static void mt_free_walk(struct rcu_head *head);
1014 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
1015 			    bool free);
1016 /*
1017  * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1018  * @mas - the maple state
1019  * @mat - the ma_topiary linked list of dead nodes to free.
1020  *
1021  * Destroy walk a dead list.
1022  */
mas_mat_destroy(struct ma_state * mas,struct ma_topiary * mat)1023 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1024 {
1025 	struct maple_enode *next;
1026 	struct maple_node *node;
1027 	bool in_rcu = mt_in_rcu(mas->tree);
1028 
1029 	while (mat->head) {
1030 		next = mte_to_mat(mat->head)->next;
1031 		node = mte_to_node(mat->head);
1032 		mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1033 		if (in_rcu)
1034 			call_rcu(&node->rcu, mt_free_walk);
1035 		mat->head = next;
1036 	}
1037 }
1038 /*
1039  * mas_descend() - Descend into the slot stored in the ma_state.
1040  * @mas - the maple state.
1041  *
1042  * Note: Not RCU safe, only use in write side or debug code.
1043  */
mas_descend(struct ma_state * mas)1044 static inline void mas_descend(struct ma_state *mas)
1045 {
1046 	enum maple_type type;
1047 	unsigned long *pivots;
1048 	struct maple_node *node;
1049 	void __rcu **slots;
1050 
1051 	node = mas_mn(mas);
1052 	type = mte_node_type(mas->node);
1053 	pivots = ma_pivots(node, type);
1054 	slots = ma_slots(node, type);
1055 
1056 	if (mas->offset)
1057 		mas->min = pivots[mas->offset - 1] + 1;
1058 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1059 	mas->node = mas_slot(mas, slots, mas->offset);
1060 }
1061 
1062 /*
1063  * mte_set_gap() - Set a maple node gap.
1064  * @mn: The encoded maple node
1065  * @gap: The offset of the gap to set
1066  * @val: The gap value
1067  */
mte_set_gap(const struct maple_enode * mn,unsigned char gap,unsigned long val)1068 static inline void mte_set_gap(const struct maple_enode *mn,
1069 				 unsigned char gap, unsigned long val)
1070 {
1071 	switch (mte_node_type(mn)) {
1072 	default:
1073 		break;
1074 	case maple_arange_64:
1075 		mte_to_node(mn)->ma64.gap[gap] = val;
1076 		break;
1077 	}
1078 }
1079 
1080 /*
1081  * mas_ascend() - Walk up a level of the tree.
1082  * @mas: The maple state
1083  *
1084  * Sets the @mas->max and @mas->min to the correct values when walking up.  This
1085  * may cause several levels of walking up to find the correct min and max.
1086  * May find a dead node which will cause a premature return.
1087  * Return: 1 on dead node, 0 otherwise
1088  */
mas_ascend(struct ma_state * mas)1089 static int mas_ascend(struct ma_state *mas)
1090 {
1091 	struct maple_enode *p_enode; /* parent enode. */
1092 	struct maple_enode *a_enode; /* ancestor enode. */
1093 	struct maple_node *a_node; /* ancestor node. */
1094 	struct maple_node *p_node; /* parent node. */
1095 	unsigned char a_slot;
1096 	enum maple_type a_type;
1097 	unsigned long min, max;
1098 	unsigned long *pivots;
1099 	bool set_max = false, set_min = false;
1100 
1101 	a_node = mas_mn(mas);
1102 	if (ma_is_root(a_node)) {
1103 		mas->offset = 0;
1104 		return 0;
1105 	}
1106 
1107 	p_node = mte_parent(mas->node);
1108 	if (unlikely(a_node == p_node))
1109 		return 1;
1110 
1111 	a_type = mas_parent_type(mas, mas->node);
1112 	mas->offset = mte_parent_slot(mas->node);
1113 	a_enode = mt_mk_node(p_node, a_type);
1114 
1115 	/* Check to make sure all parent information is still accurate */
1116 	if (p_node != mte_parent(mas->node))
1117 		return 1;
1118 
1119 	mas->node = a_enode;
1120 
1121 	if (mte_is_root(a_enode)) {
1122 		mas->max = ULONG_MAX;
1123 		mas->min = 0;
1124 		return 0;
1125 	}
1126 
1127 	if (!mas->min)
1128 		set_min = true;
1129 
1130 	if (mas->max == ULONG_MAX)
1131 		set_max = true;
1132 
1133 	min = 0;
1134 	max = ULONG_MAX;
1135 	do {
1136 		p_enode = a_enode;
1137 		a_type = mas_parent_type(mas, p_enode);
1138 		a_node = mte_parent(p_enode);
1139 		a_slot = mte_parent_slot(p_enode);
1140 		a_enode = mt_mk_node(a_node, a_type);
1141 		pivots = ma_pivots(a_node, a_type);
1142 
1143 		if (unlikely(ma_dead_node(a_node)))
1144 			return 1;
1145 
1146 		if (!set_min && a_slot) {
1147 			set_min = true;
1148 			min = pivots[a_slot - 1] + 1;
1149 		}
1150 
1151 		if (!set_max && a_slot < mt_pivots[a_type]) {
1152 			set_max = true;
1153 			max = pivots[a_slot];
1154 		}
1155 
1156 		if (unlikely(ma_dead_node(a_node)))
1157 			return 1;
1158 
1159 		if (unlikely(ma_is_root(a_node)))
1160 			break;
1161 
1162 	} while (!set_min || !set_max);
1163 
1164 	mas->max = max;
1165 	mas->min = min;
1166 	return 0;
1167 }
1168 
1169 /*
1170  * mas_pop_node() - Get a previously allocated maple node from the maple state.
1171  * @mas: The maple state
1172  *
1173  * Return: A pointer to a maple node.
1174  */
mas_pop_node(struct ma_state * mas)1175 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1176 {
1177 	struct maple_alloc *ret, *node = mas->alloc;
1178 	unsigned long total = mas_allocated(mas);
1179 	unsigned int req = mas_alloc_req(mas);
1180 
1181 	/* nothing or a request pending. */
1182 	if (WARN_ON(!total))
1183 		return NULL;
1184 
1185 	if (total == 1) {
1186 		/* single allocation in this ma_state */
1187 		mas->alloc = NULL;
1188 		ret = node;
1189 		goto single_node;
1190 	}
1191 
1192 	if (node->node_count == 1) {
1193 		/* Single allocation in this node. */
1194 		mas->alloc = node->slot[0];
1195 		mas->alloc->total = node->total - 1;
1196 		ret = node;
1197 		goto new_head;
1198 	}
1199 	node->total--;
1200 	ret = node->slot[--node->node_count];
1201 	node->slot[node->node_count] = NULL;
1202 
1203 single_node:
1204 new_head:
1205 	if (req) {
1206 		req++;
1207 		mas_set_alloc_req(mas, req);
1208 	}
1209 
1210 	memset(ret, 0, sizeof(*ret));
1211 	return (struct maple_node *)ret;
1212 }
1213 
1214 /*
1215  * mas_push_node() - Push a node back on the maple state allocation.
1216  * @mas: The maple state
1217  * @used: The used maple node
1218  *
1219  * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
1220  * requested node count as necessary.
1221  */
mas_push_node(struct ma_state * mas,struct maple_node * used)1222 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1223 {
1224 	struct maple_alloc *reuse = (struct maple_alloc *)used;
1225 	struct maple_alloc *head = mas->alloc;
1226 	unsigned long count;
1227 	unsigned int requested = mas_alloc_req(mas);
1228 
1229 	count = mas_allocated(mas);
1230 
1231 	reuse->request_count = 0;
1232 	reuse->node_count = 0;
1233 	if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1234 		head->slot[head->node_count++] = reuse;
1235 		head->total++;
1236 		goto done;
1237 	}
1238 
1239 	reuse->total = 1;
1240 	if ((head) && !((unsigned long)head & 0x1)) {
1241 		reuse->slot[0] = head;
1242 		reuse->node_count = 1;
1243 		reuse->total += head->total;
1244 	}
1245 
1246 	mas->alloc = reuse;
1247 done:
1248 	if (requested > 1)
1249 		mas_set_alloc_req(mas, requested - 1);
1250 }
1251 
1252 /*
1253  * mas_alloc_nodes() - Allocate nodes into a maple state
1254  * @mas: The maple state
1255  * @gfp: The GFP Flags
1256  */
mas_alloc_nodes(struct ma_state * mas,gfp_t gfp)1257 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1258 {
1259 	struct maple_alloc *node;
1260 	unsigned long allocated = mas_allocated(mas);
1261 	unsigned int requested = mas_alloc_req(mas);
1262 	unsigned int count;
1263 	void **slots = NULL;
1264 	unsigned int max_req = 0;
1265 
1266 	if (!requested)
1267 		return;
1268 
1269 	mas_set_alloc_req(mas, 0);
1270 	if (mas->mas_flags & MA_STATE_PREALLOC) {
1271 		if (allocated)
1272 			return;
1273 		WARN_ON(!allocated);
1274 	}
1275 
1276 	if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1277 		node = (struct maple_alloc *)mt_alloc_one(gfp);
1278 		if (!node)
1279 			goto nomem_one;
1280 
1281 		if (allocated) {
1282 			node->slot[0] = mas->alloc;
1283 			node->node_count = 1;
1284 		} else {
1285 			node->node_count = 0;
1286 		}
1287 
1288 		mas->alloc = node;
1289 		node->total = ++allocated;
1290 		requested--;
1291 	}
1292 
1293 	node = mas->alloc;
1294 	node->request_count = 0;
1295 	while (requested) {
1296 		max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1297 		slots = (void **)&node->slot[node->node_count];
1298 		max_req = min(requested, max_req);
1299 		count = mt_alloc_bulk(gfp, max_req, slots);
1300 		if (!count)
1301 			goto nomem_bulk;
1302 
1303 		if (node->node_count == 0) {
1304 			node->slot[0]->node_count = 0;
1305 			node->slot[0]->request_count = 0;
1306 		}
1307 
1308 		node->node_count += count;
1309 		allocated += count;
1310 		node = node->slot[0];
1311 		requested -= count;
1312 	}
1313 	mas->alloc->total = allocated;
1314 	return;
1315 
1316 nomem_bulk:
1317 	/* Clean up potential freed allocations on bulk failure */
1318 	memset(slots, 0, max_req * sizeof(unsigned long));
1319 nomem_one:
1320 	mas_set_alloc_req(mas, requested);
1321 	if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1322 		mas->alloc->total = allocated;
1323 	mas_set_err(mas, -ENOMEM);
1324 }
1325 
1326 /*
1327  * mas_free() - Free an encoded maple node
1328  * @mas: The maple state
1329  * @used: The encoded maple node to free.
1330  *
1331  * Uses rcu free if necessary, pushes @used back on the maple state allocations
1332  * otherwise.
1333  */
mas_free(struct ma_state * mas,struct maple_enode * used)1334 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1335 {
1336 	struct maple_node *tmp = mte_to_node(used);
1337 
1338 	if (mt_in_rcu(mas->tree))
1339 		ma_free_rcu(tmp);
1340 	else
1341 		mas_push_node(mas, tmp);
1342 }
1343 
1344 /*
1345  * mas_node_count() - Check if enough nodes are allocated and request more if
1346  * there is not enough nodes.
1347  * @mas: The maple state
1348  * @count: The number of nodes needed
1349  * @gfp: the gfp flags
1350  */
mas_node_count_gfp(struct ma_state * mas,int count,gfp_t gfp)1351 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1352 {
1353 	unsigned long allocated = mas_allocated(mas);
1354 
1355 	if (allocated < count) {
1356 		mas_set_alloc_req(mas, count - allocated);
1357 		mas_alloc_nodes(mas, gfp);
1358 	}
1359 }
1360 
1361 /*
1362  * mas_node_count() - Check if enough nodes are allocated and request more if
1363  * there is not enough nodes.
1364  * @mas: The maple state
1365  * @count: The number of nodes needed
1366  *
1367  * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1368  */
mas_node_count(struct ma_state * mas,int count)1369 static void mas_node_count(struct ma_state *mas, int count)
1370 {
1371 	return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1372 }
1373 
1374 /*
1375  * mas_start() - Sets up maple state for operations.
1376  * @mas: The maple state.
1377  *
1378  * If mas->node == MAS_START, then set the min, max and depth to
1379  * defaults.
1380  *
1381  * Return:
1382  * - If mas->node is an error or not MAS_START, return NULL.
1383  * - If it's an empty tree:     NULL & mas->node == MAS_NONE
1384  * - If it's a single entry:    The entry & mas->node == MAS_ROOT
1385  * - If it's a tree:            NULL & mas->node == safe root node.
1386  */
mas_start(struct ma_state * mas)1387 static inline struct maple_enode *mas_start(struct ma_state *mas)
1388 {
1389 	if (likely(mas_is_start(mas))) {
1390 		struct maple_enode *root;
1391 
1392 		mas->min = 0;
1393 		mas->max = ULONG_MAX;
1394 
1395 retry:
1396 		mas->depth = 0;
1397 		root = mas_root(mas);
1398 		/* Tree with nodes */
1399 		if (likely(xa_is_node(root))) {
1400 			mas->depth = 1;
1401 			mas->node = mte_safe_root(root);
1402 			mas->offset = 0;
1403 			if (mte_dead_node(mas->node))
1404 				goto retry;
1405 
1406 			return NULL;
1407 		}
1408 
1409 		/* empty tree */
1410 		if (unlikely(!root)) {
1411 			mas->node = MAS_NONE;
1412 			mas->offset = MAPLE_NODE_SLOTS;
1413 			return NULL;
1414 		}
1415 
1416 		/* Single entry tree */
1417 		mas->node = MAS_ROOT;
1418 		mas->offset = MAPLE_NODE_SLOTS;
1419 
1420 		/* Single entry tree. */
1421 		if (mas->index > 0)
1422 			return NULL;
1423 
1424 		return root;
1425 	}
1426 
1427 	return NULL;
1428 }
1429 
1430 /*
1431  * ma_data_end() - Find the end of the data in a node.
1432  * @node: The maple node
1433  * @type: The maple node type
1434  * @pivots: The array of pivots in the node
1435  * @max: The maximum value in the node
1436  *
1437  * Uses metadata to find the end of the data when possible.
1438  * Return: The zero indexed last slot with data (may be null).
1439  */
ma_data_end(struct maple_node * node,enum maple_type type,unsigned long * pivots,unsigned long max)1440 static inline unsigned char ma_data_end(struct maple_node *node,
1441 					enum maple_type type,
1442 					unsigned long *pivots,
1443 					unsigned long max)
1444 {
1445 	unsigned char offset;
1446 
1447 	if (!pivots)
1448 		return 0;
1449 
1450 	if (type == maple_arange_64)
1451 		return ma_meta_end(node, type);
1452 
1453 	offset = mt_pivots[type] - 1;
1454 	if (likely(!pivots[offset]))
1455 		return ma_meta_end(node, type);
1456 
1457 	if (likely(pivots[offset] == max))
1458 		return offset;
1459 
1460 	return mt_pivots[type];
1461 }
1462 
1463 /*
1464  * mas_data_end() - Find the end of the data (slot).
1465  * @mas: the maple state
1466  *
1467  * This method is optimized to check the metadata of a node if the node type
1468  * supports data end metadata.
1469  *
1470  * Return: The zero indexed last slot with data (may be null).
1471  */
mas_data_end(struct ma_state * mas)1472 static inline unsigned char mas_data_end(struct ma_state *mas)
1473 {
1474 	enum maple_type type;
1475 	struct maple_node *node;
1476 	unsigned char offset;
1477 	unsigned long *pivots;
1478 
1479 	type = mte_node_type(mas->node);
1480 	node = mas_mn(mas);
1481 	if (type == maple_arange_64)
1482 		return ma_meta_end(node, type);
1483 
1484 	pivots = ma_pivots(node, type);
1485 	if (unlikely(ma_dead_node(node)))
1486 		return 0;
1487 
1488 	offset = mt_pivots[type] - 1;
1489 	if (likely(!pivots[offset]))
1490 		return ma_meta_end(node, type);
1491 
1492 	if (likely(pivots[offset] == mas->max))
1493 		return offset;
1494 
1495 	return mt_pivots[type];
1496 }
1497 
1498 /*
1499  * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1500  * @mas - the maple state
1501  *
1502  * Return: The maximum gap in the leaf.
1503  */
mas_leaf_max_gap(struct ma_state * mas)1504 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1505 {
1506 	enum maple_type mt;
1507 	unsigned long pstart, gap, max_gap;
1508 	struct maple_node *mn;
1509 	unsigned long *pivots;
1510 	void __rcu **slots;
1511 	unsigned char i;
1512 	unsigned char max_piv;
1513 
1514 	mt = mte_node_type(mas->node);
1515 	mn = mas_mn(mas);
1516 	slots = ma_slots(mn, mt);
1517 	max_gap = 0;
1518 	if (unlikely(ma_is_dense(mt))) {
1519 		gap = 0;
1520 		for (i = 0; i < mt_slots[mt]; i++) {
1521 			if (slots[i]) {
1522 				if (gap > max_gap)
1523 					max_gap = gap;
1524 				gap = 0;
1525 			} else {
1526 				gap++;
1527 			}
1528 		}
1529 		if (gap > max_gap)
1530 			max_gap = gap;
1531 		return max_gap;
1532 	}
1533 
1534 	/*
1535 	 * Check the first implied pivot optimizes the loop below and slot 1 may
1536 	 * be skipped if there is a gap in slot 0.
1537 	 */
1538 	pivots = ma_pivots(mn, mt);
1539 	if (likely(!slots[0])) {
1540 		max_gap = pivots[0] - mas->min + 1;
1541 		i = 2;
1542 	} else {
1543 		i = 1;
1544 	}
1545 
1546 	/* reduce max_piv as the special case is checked before the loop */
1547 	max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1548 	/*
1549 	 * Check end implied pivot which can only be a gap on the right most
1550 	 * node.
1551 	 */
1552 	if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1553 		gap = ULONG_MAX - pivots[max_piv];
1554 		if (gap > max_gap)
1555 			max_gap = gap;
1556 	}
1557 
1558 	for (; i <= max_piv; i++) {
1559 		/* data == no gap. */
1560 		if (likely(slots[i]))
1561 			continue;
1562 
1563 		pstart = pivots[i - 1];
1564 		gap = pivots[i] - pstart;
1565 		if (gap > max_gap)
1566 			max_gap = gap;
1567 
1568 		/* There cannot be two gaps in a row. */
1569 		i++;
1570 	}
1571 	return max_gap;
1572 }
1573 
1574 /*
1575  * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1576  * @node: The maple node
1577  * @gaps: The pointer to the gaps
1578  * @mt: The maple node type
1579  * @*off: Pointer to store the offset location of the gap.
1580  *
1581  * Uses the metadata data end to scan backwards across set gaps.
1582  *
1583  * Return: The maximum gap value
1584  */
1585 static inline unsigned long
ma_max_gap(struct maple_node * node,unsigned long * gaps,enum maple_type mt,unsigned char * off)1586 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1587 	    unsigned char *off)
1588 {
1589 	unsigned char offset, i;
1590 	unsigned long max_gap = 0;
1591 
1592 	i = offset = ma_meta_end(node, mt);
1593 	do {
1594 		if (gaps[i] > max_gap) {
1595 			max_gap = gaps[i];
1596 			offset = i;
1597 		}
1598 	} while (i--);
1599 
1600 	*off = offset;
1601 	return max_gap;
1602 }
1603 
1604 /*
1605  * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1606  * @mas: The maple state.
1607  *
1608  * Return: The gap value.
1609  */
mas_max_gap(struct ma_state * mas)1610 static inline unsigned long mas_max_gap(struct ma_state *mas)
1611 {
1612 	unsigned long *gaps;
1613 	unsigned char offset;
1614 	enum maple_type mt;
1615 	struct maple_node *node;
1616 
1617 	mt = mte_node_type(mas->node);
1618 	if (ma_is_leaf(mt))
1619 		return mas_leaf_max_gap(mas);
1620 
1621 	node = mas_mn(mas);
1622 	MAS_BUG_ON(mas, mt != maple_arange_64);
1623 	offset = ma_meta_gap(node, mt);
1624 	gaps = ma_gaps(node, mt);
1625 	return gaps[offset];
1626 }
1627 
1628 /*
1629  * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1630  * @mas: The maple state
1631  * @offset: The gap offset in the parent to set
1632  * @new: The new gap value.
1633  *
1634  * Set the parent gap then continue to set the gap upwards, using the metadata
1635  * of the parent to see if it is necessary to check the node above.
1636  */
mas_parent_gap(struct ma_state * mas,unsigned char offset,unsigned long new)1637 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1638 		unsigned long new)
1639 {
1640 	unsigned long meta_gap = 0;
1641 	struct maple_node *pnode;
1642 	struct maple_enode *penode;
1643 	unsigned long *pgaps;
1644 	unsigned char meta_offset;
1645 	enum maple_type pmt;
1646 
1647 	pnode = mte_parent(mas->node);
1648 	pmt = mas_parent_type(mas, mas->node);
1649 	penode = mt_mk_node(pnode, pmt);
1650 	pgaps = ma_gaps(pnode, pmt);
1651 
1652 ascend:
1653 	MAS_BUG_ON(mas, pmt != maple_arange_64);
1654 	meta_offset = ma_meta_gap(pnode, pmt);
1655 	meta_gap = pgaps[meta_offset];
1656 
1657 	pgaps[offset] = new;
1658 
1659 	if (meta_gap == new)
1660 		return;
1661 
1662 	if (offset != meta_offset) {
1663 		if (meta_gap > new)
1664 			return;
1665 
1666 		ma_set_meta_gap(pnode, pmt, offset);
1667 	} else if (new < meta_gap) {
1668 		new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1669 		ma_set_meta_gap(pnode, pmt, meta_offset);
1670 	}
1671 
1672 	if (ma_is_root(pnode))
1673 		return;
1674 
1675 	/* Go to the parent node. */
1676 	pnode = mte_parent(penode);
1677 	pmt = mas_parent_type(mas, penode);
1678 	pgaps = ma_gaps(pnode, pmt);
1679 	offset = mte_parent_slot(penode);
1680 	penode = mt_mk_node(pnode, pmt);
1681 	goto ascend;
1682 }
1683 
1684 /*
1685  * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1686  * @mas - the maple state.
1687  */
mas_update_gap(struct ma_state * mas)1688 static inline void mas_update_gap(struct ma_state *mas)
1689 {
1690 	unsigned char pslot;
1691 	unsigned long p_gap;
1692 	unsigned long max_gap;
1693 
1694 	if (!mt_is_alloc(mas->tree))
1695 		return;
1696 
1697 	if (mte_is_root(mas->node))
1698 		return;
1699 
1700 	max_gap = mas_max_gap(mas);
1701 
1702 	pslot = mte_parent_slot(mas->node);
1703 	p_gap = ma_gaps(mte_parent(mas->node),
1704 			mas_parent_type(mas, mas->node))[pslot];
1705 
1706 	if (p_gap != max_gap)
1707 		mas_parent_gap(mas, pslot, max_gap);
1708 }
1709 
1710 /*
1711  * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1712  * @parent with the slot encoded.
1713  * @mas - the maple state (for the tree)
1714  * @parent - the maple encoded node containing the children.
1715  */
mas_adopt_children(struct ma_state * mas,struct maple_enode * parent)1716 static inline void mas_adopt_children(struct ma_state *mas,
1717 		struct maple_enode *parent)
1718 {
1719 	enum maple_type type = mte_node_type(parent);
1720 	struct maple_node *node = mte_to_node(parent);
1721 	void __rcu **slots = ma_slots(node, type);
1722 	unsigned long *pivots = ma_pivots(node, type);
1723 	struct maple_enode *child;
1724 	unsigned char offset;
1725 
1726 	offset = ma_data_end(node, type, pivots, mas->max);
1727 	do {
1728 		child = mas_slot_locked(mas, slots, offset);
1729 		mas_set_parent(mas, child, parent, offset);
1730 	} while (offset--);
1731 }
1732 
1733 /*
1734  * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1735  * node as dead.
1736  * @mas - the maple state with the new node
1737  * @old_enode - The old maple encoded node to replace.
1738  */
mas_put_in_tree(struct ma_state * mas,struct maple_enode * old_enode)1739 static inline void mas_put_in_tree(struct ma_state *mas,
1740 		struct maple_enode *old_enode)
1741 	__must_hold(mas->tree->ma_lock)
1742 {
1743 	unsigned char offset;
1744 	void __rcu **slots;
1745 
1746 	if (mte_is_root(mas->node)) {
1747 		mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1748 		rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1749 		mas_set_height(mas);
1750 	} else {
1751 
1752 		offset = mte_parent_slot(mas->node);
1753 		slots = ma_slots(mte_parent(mas->node),
1754 				 mas_parent_type(mas, mas->node));
1755 		rcu_assign_pointer(slots[offset], mas->node);
1756 	}
1757 
1758 	mte_set_node_dead(old_enode);
1759 }
1760 
1761 /*
1762  * mas_replace_node() - Replace a node by putting it in the tree, marking it
1763  * dead, and freeing it.
1764  * the parent encoding to locate the maple node in the tree.
1765  * @mas - the ma_state with @mas->node pointing to the new node.
1766  * @old_enode - The old maple encoded node.
1767  */
mas_replace_node(struct ma_state * mas,struct maple_enode * old_enode)1768 static inline void mas_replace_node(struct ma_state *mas,
1769 		struct maple_enode *old_enode)
1770 	__must_hold(mas->tree->ma_lock)
1771 {
1772 	mas_put_in_tree(mas, old_enode);
1773 	mas_free(mas, old_enode);
1774 }
1775 
1776 /*
1777  * mas_find_child() - Find a child who has the parent @mas->node.
1778  * @mas: the maple state with the parent.
1779  * @child: the maple state to store the child.
1780  */
mas_find_child(struct ma_state * mas,struct ma_state * child)1781 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1782 	__must_hold(mas->tree->ma_lock)
1783 {
1784 	enum maple_type mt;
1785 	unsigned char offset;
1786 	unsigned char end;
1787 	unsigned long *pivots;
1788 	struct maple_enode *entry;
1789 	struct maple_node *node;
1790 	void __rcu **slots;
1791 
1792 	mt = mte_node_type(mas->node);
1793 	node = mas_mn(mas);
1794 	slots = ma_slots(node, mt);
1795 	pivots = ma_pivots(node, mt);
1796 	end = ma_data_end(node, mt, pivots, mas->max);
1797 	for (offset = mas->offset; offset <= end; offset++) {
1798 		entry = mas_slot_locked(mas, slots, offset);
1799 		if (mte_parent(entry) == node) {
1800 			*child = *mas;
1801 			mas->offset = offset + 1;
1802 			child->offset = offset;
1803 			mas_descend(child);
1804 			child->offset = 0;
1805 			return true;
1806 		}
1807 	}
1808 	return false;
1809 }
1810 
1811 /*
1812  * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1813  * old data or set b_node->b_end.
1814  * @b_node: the maple_big_node
1815  * @shift: the shift count
1816  */
mab_shift_right(struct maple_big_node * b_node,unsigned char shift)1817 static inline void mab_shift_right(struct maple_big_node *b_node,
1818 				 unsigned char shift)
1819 {
1820 	unsigned long size = b_node->b_end * sizeof(unsigned long);
1821 
1822 	memmove(b_node->pivot + shift, b_node->pivot, size);
1823 	memmove(b_node->slot + shift, b_node->slot, size);
1824 	if (b_node->type == maple_arange_64)
1825 		memmove(b_node->gap + shift, b_node->gap, size);
1826 }
1827 
1828 /*
1829  * mab_middle_node() - Check if a middle node is needed (unlikely)
1830  * @b_node: the maple_big_node that contains the data.
1831  * @size: the amount of data in the b_node
1832  * @split: the potential split location
1833  * @slot_count: the size that can be stored in a single node being considered.
1834  *
1835  * Return: true if a middle node is required.
1836  */
mab_middle_node(struct maple_big_node * b_node,int split,unsigned char slot_count)1837 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1838 				   unsigned char slot_count)
1839 {
1840 	unsigned char size = b_node->b_end;
1841 
1842 	if (size >= 2 * slot_count)
1843 		return true;
1844 
1845 	if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1846 		return true;
1847 
1848 	return false;
1849 }
1850 
1851 /*
1852  * mab_no_null_split() - ensure the split doesn't fall on a NULL
1853  * @b_node: the maple_big_node with the data
1854  * @split: the suggested split location
1855  * @slot_count: the number of slots in the node being considered.
1856  *
1857  * Return: the split location.
1858  */
mab_no_null_split(struct maple_big_node * b_node,unsigned char split,unsigned char slot_count)1859 static inline int mab_no_null_split(struct maple_big_node *b_node,
1860 				    unsigned char split, unsigned char slot_count)
1861 {
1862 	if (!b_node->slot[split]) {
1863 		/*
1864 		 * If the split is less than the max slot && the right side will
1865 		 * still be sufficient, then increment the split on NULL.
1866 		 */
1867 		if ((split < slot_count - 1) &&
1868 		    (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1869 			split++;
1870 		else
1871 			split--;
1872 	}
1873 	return split;
1874 }
1875 
1876 /*
1877  * mab_calc_split() - Calculate the split location and if there needs to be two
1878  * splits.
1879  * @bn: The maple_big_node with the data
1880  * @mid_split: The second split, if required.  0 otherwise.
1881  *
1882  * Return: The first split location.  The middle split is set in @mid_split.
1883  */
mab_calc_split(struct ma_state * mas,struct maple_big_node * bn,unsigned char * mid_split,unsigned long min)1884 static inline int mab_calc_split(struct ma_state *mas,
1885 	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1886 {
1887 	unsigned char b_end = bn->b_end;
1888 	int split = b_end / 2; /* Assume equal split. */
1889 	unsigned char slot_min, slot_count = mt_slots[bn->type];
1890 
1891 	/*
1892 	 * To support gap tracking, all NULL entries are kept together and a node cannot
1893 	 * end on a NULL entry, with the exception of the left-most leaf.  The
1894 	 * limitation means that the split of a node must be checked for this condition
1895 	 * and be able to put more data in one direction or the other.
1896 	 */
1897 	if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1898 		*mid_split = 0;
1899 		split = b_end - mt_min_slots[bn->type];
1900 
1901 		if (!ma_is_leaf(bn->type))
1902 			return split;
1903 
1904 		mas->mas_flags |= MA_STATE_REBALANCE;
1905 		if (!bn->slot[split])
1906 			split--;
1907 		return split;
1908 	}
1909 
1910 	/*
1911 	 * Although extremely rare, it is possible to enter what is known as the 3-way
1912 	 * split scenario.  The 3-way split comes about by means of a store of a range
1913 	 * that overwrites the end and beginning of two full nodes.  The result is a set
1914 	 * of entries that cannot be stored in 2 nodes.  Sometimes, these two nodes can
1915 	 * also be located in different parent nodes which are also full.  This can
1916 	 * carry upwards all the way to the root in the worst case.
1917 	 */
1918 	if (unlikely(mab_middle_node(bn, split, slot_count))) {
1919 		split = b_end / 3;
1920 		*mid_split = split * 2;
1921 	} else {
1922 		slot_min = mt_min_slots[bn->type];
1923 
1924 		*mid_split = 0;
1925 		/*
1926 		 * Avoid having a range less than the slot count unless it
1927 		 * causes one node to be deficient.
1928 		 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1929 		 */
1930 		while ((split < slot_count - 1) &&
1931 		       ((bn->pivot[split] - min) < slot_count - 1) &&
1932 		       (b_end - split > slot_min))
1933 			split++;
1934 	}
1935 
1936 	/* Avoid ending a node on a NULL entry */
1937 	split = mab_no_null_split(bn, split, slot_count);
1938 
1939 	if (unlikely(*mid_split))
1940 		*mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1941 
1942 	return split;
1943 }
1944 
1945 /*
1946  * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1947  * and set @b_node->b_end to the next free slot.
1948  * @mas: The maple state
1949  * @mas_start: The starting slot to copy
1950  * @mas_end: The end slot to copy (inclusively)
1951  * @b_node: The maple_big_node to place the data
1952  * @mab_start: The starting location in maple_big_node to store the data.
1953  */
mas_mab_cp(struct ma_state * mas,unsigned char mas_start,unsigned char mas_end,struct maple_big_node * b_node,unsigned char mab_start)1954 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1955 			unsigned char mas_end, struct maple_big_node *b_node,
1956 			unsigned char mab_start)
1957 {
1958 	enum maple_type mt;
1959 	struct maple_node *node;
1960 	void __rcu **slots;
1961 	unsigned long *pivots, *gaps;
1962 	int i = mas_start, j = mab_start;
1963 	unsigned char piv_end;
1964 
1965 	node = mas_mn(mas);
1966 	mt = mte_node_type(mas->node);
1967 	pivots = ma_pivots(node, mt);
1968 	if (!i) {
1969 		b_node->pivot[j] = pivots[i++];
1970 		if (unlikely(i > mas_end))
1971 			goto complete;
1972 		j++;
1973 	}
1974 
1975 	piv_end = min(mas_end, mt_pivots[mt]);
1976 	for (; i < piv_end; i++, j++) {
1977 		b_node->pivot[j] = pivots[i];
1978 		if (unlikely(!b_node->pivot[j]))
1979 			break;
1980 
1981 		if (unlikely(mas->max == b_node->pivot[j]))
1982 			goto complete;
1983 	}
1984 
1985 	if (likely(i <= mas_end))
1986 		b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1987 
1988 complete:
1989 	b_node->b_end = ++j;
1990 	j -= mab_start;
1991 	slots = ma_slots(node, mt);
1992 	memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1993 	if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1994 		gaps = ma_gaps(node, mt);
1995 		memcpy(b_node->gap + mab_start, gaps + mas_start,
1996 		       sizeof(unsigned long) * j);
1997 	}
1998 }
1999 
2000 /*
2001  * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
2002  * @mas: The maple state
2003  * @node: The maple node
2004  * @pivots: pointer to the maple node pivots
2005  * @mt: The maple type
2006  * @end: The assumed end
2007  *
2008  * Note, end may be incremented within this function but not modified at the
2009  * source.  This is fine since the metadata is the last thing to be stored in a
2010  * node during a write.
2011  */
mas_leaf_set_meta(struct ma_state * mas,struct maple_node * node,unsigned long * pivots,enum maple_type mt,unsigned char end)2012 static inline void mas_leaf_set_meta(struct ma_state *mas,
2013 		struct maple_node *node, unsigned long *pivots,
2014 		enum maple_type mt, unsigned char end)
2015 {
2016 	/* There is no room for metadata already */
2017 	if (mt_pivots[mt] <= end)
2018 		return;
2019 
2020 	if (pivots[end] && pivots[end] < mas->max)
2021 		end++;
2022 
2023 	if (end < mt_slots[mt] - 1)
2024 		ma_set_meta(node, mt, 0, end);
2025 }
2026 
2027 /*
2028  * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2029  * @b_node: the maple_big_node that has the data
2030  * @mab_start: the start location in @b_node.
2031  * @mab_end: The end location in @b_node (inclusively)
2032  * @mas: The maple state with the maple encoded node.
2033  */
mab_mas_cp(struct maple_big_node * b_node,unsigned char mab_start,unsigned char mab_end,struct ma_state * mas,bool new_max)2034 static inline void mab_mas_cp(struct maple_big_node *b_node,
2035 			      unsigned char mab_start, unsigned char mab_end,
2036 			      struct ma_state *mas, bool new_max)
2037 {
2038 	int i, j = 0;
2039 	enum maple_type mt = mte_node_type(mas->node);
2040 	struct maple_node *node = mte_to_node(mas->node);
2041 	void __rcu **slots = ma_slots(node, mt);
2042 	unsigned long *pivots = ma_pivots(node, mt);
2043 	unsigned long *gaps = NULL;
2044 	unsigned char end;
2045 
2046 	if (mab_end - mab_start > mt_pivots[mt])
2047 		mab_end--;
2048 
2049 	if (!pivots[mt_pivots[mt] - 1])
2050 		slots[mt_pivots[mt]] = NULL;
2051 
2052 	i = mab_start;
2053 	do {
2054 		pivots[j++] = b_node->pivot[i++];
2055 	} while (i <= mab_end && likely(b_node->pivot[i]));
2056 
2057 	memcpy(slots, b_node->slot + mab_start,
2058 	       sizeof(void *) * (i - mab_start));
2059 
2060 	if (new_max)
2061 		mas->max = b_node->pivot[i - 1];
2062 
2063 	end = j - 1;
2064 	if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2065 		unsigned long max_gap = 0;
2066 		unsigned char offset = 0;
2067 
2068 		gaps = ma_gaps(node, mt);
2069 		do {
2070 			gaps[--j] = b_node->gap[--i];
2071 			if (gaps[j] > max_gap) {
2072 				offset = j;
2073 				max_gap = gaps[j];
2074 			}
2075 		} while (j);
2076 
2077 		ma_set_meta(node, mt, offset, end);
2078 	} else {
2079 		mas_leaf_set_meta(mas, node, pivots, mt, end);
2080 	}
2081 }
2082 
2083 /*
2084  * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2085  * @mas: The maple state
2086  * @end: The maple node end
2087  * @mt: The maple node type
2088  */
mas_bulk_rebalance(struct ma_state * mas,unsigned char end,enum maple_type mt)2089 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2090 				      enum maple_type mt)
2091 {
2092 	if (!(mas->mas_flags & MA_STATE_BULK))
2093 		return;
2094 
2095 	if (mte_is_root(mas->node))
2096 		return;
2097 
2098 	if (end > mt_min_slots[mt]) {
2099 		mas->mas_flags &= ~MA_STATE_REBALANCE;
2100 		return;
2101 	}
2102 }
2103 
2104 /*
2105  * mas_store_b_node() - Store an @entry into the b_node while also copying the
2106  * data from a maple encoded node.
2107  * @wr_mas: the maple write state
2108  * @b_node: the maple_big_node to fill with data
2109  * @offset_end: the offset to end copying
2110  *
2111  * Return: The actual end of the data stored in @b_node
2112  */
mas_store_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char offset_end)2113 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2114 		struct maple_big_node *b_node, unsigned char offset_end)
2115 {
2116 	unsigned char slot;
2117 	unsigned char b_end;
2118 	/* Possible underflow of piv will wrap back to 0 before use. */
2119 	unsigned long piv;
2120 	struct ma_state *mas = wr_mas->mas;
2121 
2122 	b_node->type = wr_mas->type;
2123 	b_end = 0;
2124 	slot = mas->offset;
2125 	if (slot) {
2126 		/* Copy start data up to insert. */
2127 		mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2128 		b_end = b_node->b_end;
2129 		piv = b_node->pivot[b_end - 1];
2130 	} else
2131 		piv = mas->min - 1;
2132 
2133 	if (piv + 1 < mas->index) {
2134 		/* Handle range starting after old range */
2135 		b_node->slot[b_end] = wr_mas->content;
2136 		if (!wr_mas->content)
2137 			b_node->gap[b_end] = mas->index - 1 - piv;
2138 		b_node->pivot[b_end++] = mas->index - 1;
2139 	}
2140 
2141 	/* Store the new entry. */
2142 	mas->offset = b_end;
2143 	b_node->slot[b_end] = wr_mas->entry;
2144 	b_node->pivot[b_end] = mas->last;
2145 
2146 	/* Appended. */
2147 	if (mas->last >= mas->max)
2148 		goto b_end;
2149 
2150 	/* Handle new range ending before old range ends */
2151 	piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2152 	if (piv > mas->last) {
2153 		if (piv == ULONG_MAX)
2154 			mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2155 
2156 		if (offset_end != slot)
2157 			wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2158 							  offset_end);
2159 
2160 		b_node->slot[++b_end] = wr_mas->content;
2161 		if (!wr_mas->content)
2162 			b_node->gap[b_end] = piv - mas->last + 1;
2163 		b_node->pivot[b_end] = piv;
2164 	}
2165 
2166 	slot = offset_end + 1;
2167 	if (slot > wr_mas->node_end)
2168 		goto b_end;
2169 
2170 	/* Copy end data to the end of the node. */
2171 	mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2172 	b_node->b_end--;
2173 	return;
2174 
2175 b_end:
2176 	b_node->b_end = b_end;
2177 }
2178 
2179 /*
2180  * mas_prev_sibling() - Find the previous node with the same parent.
2181  * @mas: the maple state
2182  *
2183  * Return: True if there is a previous sibling, false otherwise.
2184  */
mas_prev_sibling(struct ma_state * mas)2185 static inline bool mas_prev_sibling(struct ma_state *mas)
2186 {
2187 	unsigned int p_slot = mte_parent_slot(mas->node);
2188 
2189 	if (mte_is_root(mas->node))
2190 		return false;
2191 
2192 	if (!p_slot)
2193 		return false;
2194 
2195 	mas_ascend(mas);
2196 	mas->offset = p_slot - 1;
2197 	mas_descend(mas);
2198 	return true;
2199 }
2200 
2201 /*
2202  * mas_next_sibling() - Find the next node with the same parent.
2203  * @mas: the maple state
2204  *
2205  * Return: true if there is a next sibling, false otherwise.
2206  */
mas_next_sibling(struct ma_state * mas)2207 static inline bool mas_next_sibling(struct ma_state *mas)
2208 {
2209 	MA_STATE(parent, mas->tree, mas->index, mas->last);
2210 
2211 	if (mte_is_root(mas->node))
2212 		return false;
2213 
2214 	parent = *mas;
2215 	mas_ascend(&parent);
2216 	parent.offset = mte_parent_slot(mas->node) + 1;
2217 	if (parent.offset > mas_data_end(&parent))
2218 		return false;
2219 
2220 	*mas = parent;
2221 	mas_descend(mas);
2222 	return true;
2223 }
2224 
2225 /*
2226  * mte_node_or_node() - Return the encoded node or MAS_NONE.
2227  * @enode: The encoded maple node.
2228  *
2229  * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2230  *
2231  * Return: @enode or MAS_NONE
2232  */
mte_node_or_none(struct maple_enode * enode)2233 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2234 {
2235 	if (enode)
2236 		return enode;
2237 
2238 	return ma_enode_ptr(MAS_NONE);
2239 }
2240 
2241 /*
2242  * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2243  * @wr_mas: The maple write state
2244  *
2245  * Uses mas_slot_locked() and does not need to worry about dead nodes.
2246  */
mas_wr_node_walk(struct ma_wr_state * wr_mas)2247 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2248 {
2249 	struct ma_state *mas = wr_mas->mas;
2250 	unsigned char count, offset;
2251 
2252 	if (unlikely(ma_is_dense(wr_mas->type))) {
2253 		wr_mas->r_max = wr_mas->r_min = mas->index;
2254 		mas->offset = mas->index = mas->min;
2255 		return;
2256 	}
2257 
2258 	wr_mas->node = mas_mn(wr_mas->mas);
2259 	wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2260 	count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2261 					       wr_mas->pivots, mas->max);
2262 	offset = mas->offset;
2263 
2264 	while (offset < count && mas->index > wr_mas->pivots[offset])
2265 		offset++;
2266 
2267 	wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2268 	wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2269 	wr_mas->offset_end = mas->offset = offset;
2270 }
2271 
2272 /*
2273  * mast_rebalance_next() - Rebalance against the next node
2274  * @mast: The maple subtree state
2275  * @old_r: The encoded maple node to the right (next node).
2276  */
mast_rebalance_next(struct maple_subtree_state * mast)2277 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2278 {
2279 	unsigned char b_end = mast->bn->b_end;
2280 
2281 	mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2282 		   mast->bn, b_end);
2283 	mast->orig_r->last = mast->orig_r->max;
2284 }
2285 
2286 /*
2287  * mast_rebalance_prev() - Rebalance against the previous node
2288  * @mast: The maple subtree state
2289  * @old_l: The encoded maple node to the left (previous node)
2290  */
mast_rebalance_prev(struct maple_subtree_state * mast)2291 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2292 {
2293 	unsigned char end = mas_data_end(mast->orig_l) + 1;
2294 	unsigned char b_end = mast->bn->b_end;
2295 
2296 	mab_shift_right(mast->bn, end);
2297 	mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2298 	mast->l->min = mast->orig_l->min;
2299 	mast->orig_l->index = mast->orig_l->min;
2300 	mast->bn->b_end = end + b_end;
2301 	mast->l->offset += end;
2302 }
2303 
2304 /*
2305  * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2306  * the node to the right.  Checking the nodes to the right then the left at each
2307  * level upwards until root is reached.
2308  * Data is copied into the @mast->bn.
2309  * @mast: The maple_subtree_state.
2310  */
2311 static inline
mast_spanning_rebalance(struct maple_subtree_state * mast)2312 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2313 {
2314 	struct ma_state r_tmp = *mast->orig_r;
2315 	struct ma_state l_tmp = *mast->orig_l;
2316 	unsigned char depth = 0;
2317 
2318 	r_tmp = *mast->orig_r;
2319 	l_tmp = *mast->orig_l;
2320 	do {
2321 		mas_ascend(mast->orig_r);
2322 		mas_ascend(mast->orig_l);
2323 		depth++;
2324 		if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2325 			mast->orig_r->offset++;
2326 			do {
2327 				mas_descend(mast->orig_r);
2328 				mast->orig_r->offset = 0;
2329 			} while (--depth);
2330 
2331 			mast_rebalance_next(mast);
2332 			*mast->orig_l = l_tmp;
2333 			return true;
2334 		} else if (mast->orig_l->offset != 0) {
2335 			mast->orig_l->offset--;
2336 			do {
2337 				mas_descend(mast->orig_l);
2338 				mast->orig_l->offset =
2339 					mas_data_end(mast->orig_l);
2340 			} while (--depth);
2341 
2342 			mast_rebalance_prev(mast);
2343 			*mast->orig_r = r_tmp;
2344 			return true;
2345 		}
2346 	} while (!mte_is_root(mast->orig_r->node));
2347 
2348 	*mast->orig_r = r_tmp;
2349 	*mast->orig_l = l_tmp;
2350 	return false;
2351 }
2352 
2353 /*
2354  * mast_ascend() - Ascend the original left and right maple states.
2355  * @mast: the maple subtree state.
2356  *
2357  * Ascend the original left and right sides.  Set the offsets to point to the
2358  * data already in the new tree (@mast->l and @mast->r).
2359  */
mast_ascend(struct maple_subtree_state * mast)2360 static inline void mast_ascend(struct maple_subtree_state *mast)
2361 {
2362 	MA_WR_STATE(wr_mas, mast->orig_r,  NULL);
2363 	mas_ascend(mast->orig_l);
2364 	mas_ascend(mast->orig_r);
2365 
2366 	mast->orig_r->offset = 0;
2367 	mast->orig_r->index = mast->r->max;
2368 	/* last should be larger than or equal to index */
2369 	if (mast->orig_r->last < mast->orig_r->index)
2370 		mast->orig_r->last = mast->orig_r->index;
2371 
2372 	wr_mas.type = mte_node_type(mast->orig_r->node);
2373 	mas_wr_node_walk(&wr_mas);
2374 	/* Set up the left side of things */
2375 	mast->orig_l->offset = 0;
2376 	mast->orig_l->index = mast->l->min;
2377 	wr_mas.mas = mast->orig_l;
2378 	wr_mas.type = mte_node_type(mast->orig_l->node);
2379 	mas_wr_node_walk(&wr_mas);
2380 
2381 	mast->bn->type = wr_mas.type;
2382 }
2383 
2384 /*
2385  * mas_new_ma_node() - Create and return a new maple node.  Helper function.
2386  * @mas: the maple state with the allocations.
2387  * @b_node: the maple_big_node with the type encoding.
2388  *
2389  * Use the node type from the maple_big_node to allocate a new node from the
2390  * ma_state.  This function exists mainly for code readability.
2391  *
2392  * Return: A new maple encoded node
2393  */
2394 static inline struct maple_enode
mas_new_ma_node(struct ma_state * mas,struct maple_big_node * b_node)2395 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2396 {
2397 	return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2398 }
2399 
2400 /*
2401  * mas_mab_to_node() - Set up right and middle nodes
2402  *
2403  * @mas: the maple state that contains the allocations.
2404  * @b_node: the node which contains the data.
2405  * @left: The pointer which will have the left node
2406  * @right: The pointer which may have the right node
2407  * @middle: the pointer which may have the middle node (rare)
2408  * @mid_split: the split location for the middle node
2409  *
2410  * Return: the split of left.
2411  */
mas_mab_to_node(struct ma_state * mas,struct maple_big_node * b_node,struct maple_enode ** left,struct maple_enode ** right,struct maple_enode ** middle,unsigned char * mid_split,unsigned long min)2412 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2413 	struct maple_big_node *b_node, struct maple_enode **left,
2414 	struct maple_enode **right, struct maple_enode **middle,
2415 	unsigned char *mid_split, unsigned long min)
2416 {
2417 	unsigned char split = 0;
2418 	unsigned char slot_count = mt_slots[b_node->type];
2419 
2420 	*left = mas_new_ma_node(mas, b_node);
2421 	*right = NULL;
2422 	*middle = NULL;
2423 	*mid_split = 0;
2424 
2425 	if (b_node->b_end < slot_count) {
2426 		split = b_node->b_end;
2427 	} else {
2428 		split = mab_calc_split(mas, b_node, mid_split, min);
2429 		*right = mas_new_ma_node(mas, b_node);
2430 	}
2431 
2432 	if (*mid_split)
2433 		*middle = mas_new_ma_node(mas, b_node);
2434 
2435 	return split;
2436 
2437 }
2438 
2439 /*
2440  * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2441  * pointer.
2442  * @b_node - the big node to add the entry
2443  * @mas - the maple state to get the pivot (mas->max)
2444  * @entry - the entry to add, if NULL nothing happens.
2445  */
mab_set_b_end(struct maple_big_node * b_node,struct ma_state * mas,void * entry)2446 static inline void mab_set_b_end(struct maple_big_node *b_node,
2447 				 struct ma_state *mas,
2448 				 void *entry)
2449 {
2450 	if (!entry)
2451 		return;
2452 
2453 	b_node->slot[b_node->b_end] = entry;
2454 	if (mt_is_alloc(mas->tree))
2455 		b_node->gap[b_node->b_end] = mas_max_gap(mas);
2456 	b_node->pivot[b_node->b_end++] = mas->max;
2457 }
2458 
2459 /*
2460  * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
2461  * of @mas->node to either @left or @right, depending on @slot and @split
2462  *
2463  * @mas - the maple state with the node that needs a parent
2464  * @left - possible parent 1
2465  * @right - possible parent 2
2466  * @slot - the slot the mas->node was placed
2467  * @split - the split location between @left and @right
2468  */
mas_set_split_parent(struct ma_state * mas,struct maple_enode * left,struct maple_enode * right,unsigned char * slot,unsigned char split)2469 static inline void mas_set_split_parent(struct ma_state *mas,
2470 					struct maple_enode *left,
2471 					struct maple_enode *right,
2472 					unsigned char *slot, unsigned char split)
2473 {
2474 	if (mas_is_none(mas))
2475 		return;
2476 
2477 	if ((*slot) <= split)
2478 		mas_set_parent(mas, mas->node, left, *slot);
2479 	else if (right)
2480 		mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2481 
2482 	(*slot)++;
2483 }
2484 
2485 /*
2486  * mte_mid_split_check() - Check if the next node passes the mid-split
2487  * @**l: Pointer to left encoded maple node.
2488  * @**m: Pointer to middle encoded maple node.
2489  * @**r: Pointer to right encoded maple node.
2490  * @slot: The offset
2491  * @*split: The split location.
2492  * @mid_split: The middle split.
2493  */
mte_mid_split_check(struct maple_enode ** l,struct maple_enode ** r,struct maple_enode * right,unsigned char slot,unsigned char * split,unsigned char mid_split)2494 static inline void mte_mid_split_check(struct maple_enode **l,
2495 				       struct maple_enode **r,
2496 				       struct maple_enode *right,
2497 				       unsigned char slot,
2498 				       unsigned char *split,
2499 				       unsigned char mid_split)
2500 {
2501 	if (*r == right)
2502 		return;
2503 
2504 	if (slot < mid_split)
2505 		return;
2506 
2507 	*l = *r;
2508 	*r = right;
2509 	*split = mid_split;
2510 }
2511 
2512 /*
2513  * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
2514  * is taken from @mast->l.
2515  * @mast - the maple subtree state
2516  * @left - the left node
2517  * @right - the right node
2518  * @split - the split location.
2519  */
mast_set_split_parents(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2520 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2521 					  struct maple_enode *left,
2522 					  struct maple_enode *middle,
2523 					  struct maple_enode *right,
2524 					  unsigned char split,
2525 					  unsigned char mid_split)
2526 {
2527 	unsigned char slot;
2528 	struct maple_enode *l = left;
2529 	struct maple_enode *r = right;
2530 
2531 	if (mas_is_none(mast->l))
2532 		return;
2533 
2534 	if (middle)
2535 		r = middle;
2536 
2537 	slot = mast->l->offset;
2538 
2539 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2540 	mas_set_split_parent(mast->l, l, r, &slot, split);
2541 
2542 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2543 	mas_set_split_parent(mast->m, l, r, &slot, split);
2544 
2545 	mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2546 	mas_set_split_parent(mast->r, l, r, &slot, split);
2547 }
2548 
2549 /*
2550  * mas_topiary_node() - Dispose of a singe node
2551  * @mas: The maple state for pushing nodes
2552  * @enode: The encoded maple node
2553  * @in_rcu: If the tree is in rcu mode
2554  *
2555  * The node will either be RCU freed or pushed back on the maple state.
2556  */
mas_topiary_node(struct ma_state * mas,struct maple_enode * enode,bool in_rcu)2557 static inline void mas_topiary_node(struct ma_state *mas,
2558 		struct maple_enode *enode, bool in_rcu)
2559 {
2560 	struct maple_node *tmp;
2561 
2562 	if (enode == MAS_NONE)
2563 		return;
2564 
2565 	tmp = mte_to_node(enode);
2566 	mte_set_node_dead(enode);
2567 	if (in_rcu)
2568 		ma_free_rcu(tmp);
2569 	else
2570 		mas_push_node(mas, tmp);
2571 }
2572 
2573 /*
2574  * mas_topiary_replace() - Replace the data with new data, then repair the
2575  * parent links within the new tree.  Iterate over the dead sub-tree and collect
2576  * the dead subtrees and topiary the nodes that are no longer of use.
2577  *
2578  * The new tree will have up to three children with the correct parent.  Keep
2579  * track of the new entries as they need to be followed to find the next level
2580  * of new entries.
2581  *
2582  * The old tree will have up to three children with the old parent.  Keep track
2583  * of the old entries as they may have more nodes below replaced.  Nodes within
2584  * [index, last] are dead subtrees, others need to be freed and followed.
2585  *
2586  * @mas: The maple state pointing at the new data
2587  * @old_enode: The maple encoded node being replaced
2588  *
2589  */
mas_topiary_replace(struct ma_state * mas,struct maple_enode * old_enode)2590 static inline void mas_topiary_replace(struct ma_state *mas,
2591 		struct maple_enode *old_enode)
2592 {
2593 	struct ma_state tmp[3], tmp_next[3];
2594 	MA_TOPIARY(subtrees, mas->tree);
2595 	bool in_rcu;
2596 	int i, n;
2597 
2598 	/* Place data in tree & then mark node as old */
2599 	mas_put_in_tree(mas, old_enode);
2600 
2601 	/* Update the parent pointers in the tree */
2602 	tmp[0] = *mas;
2603 	tmp[0].offset = 0;
2604 	tmp[1].node = MAS_NONE;
2605 	tmp[2].node = MAS_NONE;
2606 	while (!mte_is_leaf(tmp[0].node)) {
2607 		n = 0;
2608 		for (i = 0; i < 3; i++) {
2609 			if (mas_is_none(&tmp[i]))
2610 				continue;
2611 
2612 			while (n < 3) {
2613 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2614 					break;
2615 				n++;
2616 			}
2617 
2618 			mas_adopt_children(&tmp[i], tmp[i].node);
2619 		}
2620 
2621 		if (MAS_WARN_ON(mas, n == 0))
2622 			break;
2623 
2624 		while (n < 3)
2625 			tmp_next[n++].node = MAS_NONE;
2626 
2627 		for (i = 0; i < 3; i++)
2628 			tmp[i] = tmp_next[i];
2629 	}
2630 
2631 	/* Collect the old nodes that need to be discarded */
2632 	if (mte_is_leaf(old_enode))
2633 		return mas_free(mas, old_enode);
2634 
2635 	tmp[0] = *mas;
2636 	tmp[0].offset = 0;
2637 	tmp[0].node = old_enode;
2638 	tmp[1].node = MAS_NONE;
2639 	tmp[2].node = MAS_NONE;
2640 	in_rcu = mt_in_rcu(mas->tree);
2641 	do {
2642 		n = 0;
2643 		for (i = 0; i < 3; i++) {
2644 			if (mas_is_none(&tmp[i]))
2645 				continue;
2646 
2647 			while (n < 3) {
2648 				if (!mas_find_child(&tmp[i], &tmp_next[n]))
2649 					break;
2650 
2651 				if ((tmp_next[n].min >= tmp_next->index) &&
2652 				    (tmp_next[n].max <= tmp_next->last)) {
2653 					mat_add(&subtrees, tmp_next[n].node);
2654 					tmp_next[n].node = MAS_NONE;
2655 				} else {
2656 					n++;
2657 				}
2658 			}
2659 		}
2660 
2661 		if (MAS_WARN_ON(mas, n == 0))
2662 			break;
2663 
2664 		while (n < 3)
2665 			tmp_next[n++].node = MAS_NONE;
2666 
2667 		for (i = 0; i < 3; i++) {
2668 			mas_topiary_node(mas, tmp[i].node, in_rcu);
2669 			tmp[i] = tmp_next[i];
2670 		}
2671 	} while (!mte_is_leaf(tmp[0].node));
2672 
2673 	for (i = 0; i < 3; i++)
2674 		mas_topiary_node(mas, tmp[i].node, in_rcu);
2675 
2676 	mas_mat_destroy(mas, &subtrees);
2677 }
2678 
2679 /*
2680  * mas_wmb_replace() - Write memory barrier and replace
2681  * @mas: The maple state
2682  * @old: The old maple encoded node that is being replaced.
2683  *
2684  * Updates gap as necessary.
2685  */
mas_wmb_replace(struct ma_state * mas,struct maple_enode * old_enode)2686 static inline void mas_wmb_replace(struct ma_state *mas,
2687 		struct maple_enode *old_enode)
2688 {
2689 	/* Insert the new data in the tree */
2690 	mas_topiary_replace(mas, old_enode);
2691 
2692 	if (mte_is_leaf(mas->node))
2693 		return;
2694 
2695 	mas_update_gap(mas);
2696 }
2697 
2698 /*
2699  * mast_cp_to_nodes() - Copy data out to nodes.
2700  * @mast: The maple subtree state
2701  * @left: The left encoded maple node
2702  * @middle: The middle encoded maple node
2703  * @right: The right encoded maple node
2704  * @split: The location to split between left and (middle ? middle : right)
2705  * @mid_split: The location to split between middle and right.
2706  */
mast_cp_to_nodes(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2707 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2708 	struct maple_enode *left, struct maple_enode *middle,
2709 	struct maple_enode *right, unsigned char split, unsigned char mid_split)
2710 {
2711 	bool new_lmax = true;
2712 
2713 	mast->l->node = mte_node_or_none(left);
2714 	mast->m->node = mte_node_or_none(middle);
2715 	mast->r->node = mte_node_or_none(right);
2716 
2717 	mast->l->min = mast->orig_l->min;
2718 	if (split == mast->bn->b_end) {
2719 		mast->l->max = mast->orig_r->max;
2720 		new_lmax = false;
2721 	}
2722 
2723 	mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2724 
2725 	if (middle) {
2726 		mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2727 		mast->m->min = mast->bn->pivot[split] + 1;
2728 		split = mid_split;
2729 	}
2730 
2731 	mast->r->max = mast->orig_r->max;
2732 	if (right) {
2733 		mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2734 		mast->r->min = mast->bn->pivot[split] + 1;
2735 	}
2736 }
2737 
2738 /*
2739  * mast_combine_cp_left - Copy in the original left side of the tree into the
2740  * combined data set in the maple subtree state big node.
2741  * @mast: The maple subtree state
2742  */
mast_combine_cp_left(struct maple_subtree_state * mast)2743 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2744 {
2745 	unsigned char l_slot = mast->orig_l->offset;
2746 
2747 	if (!l_slot)
2748 		return;
2749 
2750 	mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2751 }
2752 
2753 /*
2754  * mast_combine_cp_right: Copy in the original right side of the tree into the
2755  * combined data set in the maple subtree state big node.
2756  * @mast: The maple subtree state
2757  */
mast_combine_cp_right(struct maple_subtree_state * mast)2758 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2759 {
2760 	if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2761 		return;
2762 
2763 	mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2764 		   mt_slot_count(mast->orig_r->node), mast->bn,
2765 		   mast->bn->b_end);
2766 	mast->orig_r->last = mast->orig_r->max;
2767 }
2768 
2769 /*
2770  * mast_sufficient: Check if the maple subtree state has enough data in the big
2771  * node to create at least one sufficient node
2772  * @mast: the maple subtree state
2773  */
mast_sufficient(struct maple_subtree_state * mast)2774 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2775 {
2776 	if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2777 		return true;
2778 
2779 	return false;
2780 }
2781 
2782 /*
2783  * mast_overflow: Check if there is too much data in the subtree state for a
2784  * single node.
2785  * @mast: The maple subtree state
2786  */
mast_overflow(struct maple_subtree_state * mast)2787 static inline bool mast_overflow(struct maple_subtree_state *mast)
2788 {
2789 	if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2790 		return true;
2791 
2792 	return false;
2793 }
2794 
mtree_range_walk(struct ma_state * mas)2795 static inline void *mtree_range_walk(struct ma_state *mas)
2796 {
2797 	unsigned long *pivots;
2798 	unsigned char offset;
2799 	struct maple_node *node;
2800 	struct maple_enode *next, *last;
2801 	enum maple_type type;
2802 	void __rcu **slots;
2803 	unsigned char end;
2804 	unsigned long max, min;
2805 	unsigned long prev_max, prev_min;
2806 
2807 	next = mas->node;
2808 	min = mas->min;
2809 	max = mas->max;
2810 	do {
2811 		offset = 0;
2812 		last = next;
2813 		node = mte_to_node(next);
2814 		type = mte_node_type(next);
2815 		pivots = ma_pivots(node, type);
2816 		end = ma_data_end(node, type, pivots, max);
2817 		if (unlikely(ma_dead_node(node)))
2818 			goto dead_node;
2819 
2820 		if (pivots[offset] >= mas->index) {
2821 			prev_max = max;
2822 			prev_min = min;
2823 			max = pivots[offset];
2824 			goto next;
2825 		}
2826 
2827 		do {
2828 			offset++;
2829 		} while ((offset < end) && (pivots[offset] < mas->index));
2830 
2831 		prev_min = min;
2832 		min = pivots[offset - 1] + 1;
2833 		prev_max = max;
2834 		if (likely(offset < end && pivots[offset]))
2835 			max = pivots[offset];
2836 
2837 next:
2838 		slots = ma_slots(node, type);
2839 		next = mt_slot(mas->tree, slots, offset);
2840 		if (unlikely(ma_dead_node(node)))
2841 			goto dead_node;
2842 	} while (!ma_is_leaf(type));
2843 
2844 	mas->offset = offset;
2845 	mas->index = min;
2846 	mas->last = max;
2847 	mas->min = prev_min;
2848 	mas->max = prev_max;
2849 	mas->node = last;
2850 	return (void *)next;
2851 
2852 dead_node:
2853 	mas_reset(mas);
2854 	return NULL;
2855 }
2856 
2857 /*
2858  * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2859  * @mas: The starting maple state
2860  * @mast: The maple_subtree_state, keeps track of 4 maple states.
2861  * @count: The estimated count of iterations needed.
2862  *
2863  * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2864  * is hit.  First @b_node is split into two entries which are inserted into the
2865  * next iteration of the loop.  @b_node is returned populated with the final
2866  * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
2867  * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2868  * to account of what has been copied into the new sub-tree.  The update of
2869  * orig_l_mas->last is used in mas_consume to find the slots that will need to
2870  * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
2871  * the new sub-tree in case the sub-tree becomes the full tree.
2872  *
2873  * Return: the number of elements in b_node during the last loop.
2874  */
mas_spanning_rebalance(struct ma_state * mas,struct maple_subtree_state * mast,unsigned char count)2875 static int mas_spanning_rebalance(struct ma_state *mas,
2876 		struct maple_subtree_state *mast, unsigned char count)
2877 {
2878 	unsigned char split, mid_split;
2879 	unsigned char slot = 0;
2880 	struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2881 	struct maple_enode *old_enode;
2882 
2883 	MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2884 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2885 	MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2886 
2887 	/*
2888 	 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2889 	 * Rebalancing is done by use of the ``struct maple_topiary``.
2890 	 */
2891 	mast->l = &l_mas;
2892 	mast->m = &m_mas;
2893 	mast->r = &r_mas;
2894 	l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2895 
2896 	/* Check if this is not root and has sufficient data.  */
2897 	if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2898 	    unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2899 		mast_spanning_rebalance(mast);
2900 
2901 	l_mas.depth = 0;
2902 
2903 	/*
2904 	 * Each level of the tree is examined and balanced, pushing data to the left or
2905 	 * right, or rebalancing against left or right nodes is employed to avoid
2906 	 * rippling up the tree to limit the amount of churn.  Once a new sub-section of
2907 	 * the tree is created, there may be a mix of new and old nodes.  The old nodes
2908 	 * will have the incorrect parent pointers and currently be in two trees: the
2909 	 * original tree and the partially new tree.  To remedy the parent pointers in
2910 	 * the old tree, the new data is swapped into the active tree and a walk down
2911 	 * the tree is performed and the parent pointers are updated.
2912 	 * See mas_topiary_replace() for more information.
2913 	 */
2914 	while (count--) {
2915 		mast->bn->b_end--;
2916 		mast->bn->type = mte_node_type(mast->orig_l->node);
2917 		split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2918 					&mid_split, mast->orig_l->min);
2919 		mast_set_split_parents(mast, left, middle, right, split,
2920 				       mid_split);
2921 		mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2922 
2923 		/*
2924 		 * Copy data from next level in the tree to mast->bn from next
2925 		 * iteration
2926 		 */
2927 		memset(mast->bn, 0, sizeof(struct maple_big_node));
2928 		mast->bn->type = mte_node_type(left);
2929 		l_mas.depth++;
2930 
2931 		/* Root already stored in l->node. */
2932 		if (mas_is_root_limits(mast->l))
2933 			goto new_root;
2934 
2935 		mast_ascend(mast);
2936 		mast_combine_cp_left(mast);
2937 		l_mas.offset = mast->bn->b_end;
2938 		mab_set_b_end(mast->bn, &l_mas, left);
2939 		mab_set_b_end(mast->bn, &m_mas, middle);
2940 		mab_set_b_end(mast->bn, &r_mas, right);
2941 
2942 		/* Copy anything necessary out of the right node. */
2943 		mast_combine_cp_right(mast);
2944 		mast->orig_l->last = mast->orig_l->max;
2945 
2946 		if (mast_sufficient(mast))
2947 			continue;
2948 
2949 		if (mast_overflow(mast))
2950 			continue;
2951 
2952 		/* May be a new root stored in mast->bn */
2953 		if (mas_is_root_limits(mast->orig_l))
2954 			break;
2955 
2956 		mast_spanning_rebalance(mast);
2957 
2958 		/* rebalancing from other nodes may require another loop. */
2959 		if (!count)
2960 			count++;
2961 	}
2962 
2963 	l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2964 				mte_node_type(mast->orig_l->node));
2965 	l_mas.depth++;
2966 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2967 	mas_set_parent(mas, left, l_mas.node, slot);
2968 	if (middle)
2969 		mas_set_parent(mas, middle, l_mas.node, ++slot);
2970 
2971 	if (right)
2972 		mas_set_parent(mas, right, l_mas.node, ++slot);
2973 
2974 	if (mas_is_root_limits(mast->l)) {
2975 new_root:
2976 		mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2977 		while (!mte_is_root(mast->orig_l->node))
2978 			mast_ascend(mast);
2979 	} else {
2980 		mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2981 	}
2982 
2983 	old_enode = mast->orig_l->node;
2984 	mas->depth = l_mas.depth;
2985 	mas->node = l_mas.node;
2986 	mas->min = l_mas.min;
2987 	mas->max = l_mas.max;
2988 	mas->offset = l_mas.offset;
2989 	mas_wmb_replace(mas, old_enode);
2990 	mtree_range_walk(mas);
2991 	return mast->bn->b_end;
2992 }
2993 
2994 /*
2995  * mas_rebalance() - Rebalance a given node.
2996  * @mas: The maple state
2997  * @b_node: The big maple node.
2998  *
2999  * Rebalance two nodes into a single node or two new nodes that are sufficient.
3000  * Continue upwards until tree is sufficient.
3001  *
3002  * Return: the number of elements in b_node during the last loop.
3003  */
mas_rebalance(struct ma_state * mas,struct maple_big_node * b_node)3004 static inline int mas_rebalance(struct ma_state *mas,
3005 				struct maple_big_node *b_node)
3006 {
3007 	char empty_count = mas_mt_height(mas);
3008 	struct maple_subtree_state mast;
3009 	unsigned char shift, b_end = ++b_node->b_end;
3010 
3011 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3012 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3013 
3014 	trace_ma_op(__func__, mas);
3015 
3016 	/*
3017 	 * Rebalancing occurs if a node is insufficient.  Data is rebalanced
3018 	 * against the node to the right if it exists, otherwise the node to the
3019 	 * left of this node is rebalanced against this node.  If rebalancing
3020 	 * causes just one node to be produced instead of two, then the parent
3021 	 * is also examined and rebalanced if it is insufficient.  Every level
3022 	 * tries to combine the data in the same way.  If one node contains the
3023 	 * entire range of the tree, then that node is used as a new root node.
3024 	 */
3025 	mas_node_count(mas, empty_count * 2 - 1);
3026 	if (mas_is_err(mas))
3027 		return 0;
3028 
3029 	mast.orig_l = &l_mas;
3030 	mast.orig_r = &r_mas;
3031 	mast.bn = b_node;
3032 	mast.bn->type = mte_node_type(mas->node);
3033 
3034 	l_mas = r_mas = *mas;
3035 
3036 	if (mas_next_sibling(&r_mas)) {
3037 		mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3038 		r_mas.last = r_mas.index = r_mas.max;
3039 	} else {
3040 		mas_prev_sibling(&l_mas);
3041 		shift = mas_data_end(&l_mas) + 1;
3042 		mab_shift_right(b_node, shift);
3043 		mas->offset += shift;
3044 		mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3045 		b_node->b_end = shift + b_end;
3046 		l_mas.index = l_mas.last = l_mas.min;
3047 	}
3048 
3049 	return mas_spanning_rebalance(mas, &mast, empty_count);
3050 }
3051 
3052 /*
3053  * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3054  * state.
3055  * @mas: The maple state
3056  * @end: The end of the left-most node.
3057  *
3058  * During a mass-insert event (such as forking), it may be necessary to
3059  * rebalance the left-most node when it is not sufficient.
3060  */
mas_destroy_rebalance(struct ma_state * mas,unsigned char end)3061 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3062 {
3063 	enum maple_type mt = mte_node_type(mas->node);
3064 	struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3065 	struct maple_enode *eparent, *old_eparent;
3066 	unsigned char offset, tmp, split = mt_slots[mt] / 2;
3067 	void __rcu **l_slots, **slots;
3068 	unsigned long *l_pivs, *pivs, gap;
3069 	bool in_rcu = mt_in_rcu(mas->tree);
3070 
3071 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3072 
3073 	l_mas = *mas;
3074 	mas_prev_sibling(&l_mas);
3075 
3076 	/* set up node. */
3077 	if (in_rcu) {
3078 		/* Allocate for both left and right as well as parent. */
3079 		mas_node_count(mas, 3);
3080 		if (mas_is_err(mas))
3081 			return;
3082 
3083 		newnode = mas_pop_node(mas);
3084 	} else {
3085 		newnode = &reuse;
3086 	}
3087 
3088 	node = mas_mn(mas);
3089 	newnode->parent = node->parent;
3090 	slots = ma_slots(newnode, mt);
3091 	pivs = ma_pivots(newnode, mt);
3092 	left = mas_mn(&l_mas);
3093 	l_slots = ma_slots(left, mt);
3094 	l_pivs = ma_pivots(left, mt);
3095 	if (!l_slots[split])
3096 		split++;
3097 	tmp = mas_data_end(&l_mas) - split;
3098 
3099 	memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3100 	memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3101 	pivs[tmp] = l_mas.max;
3102 	memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3103 	memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3104 
3105 	l_mas.max = l_pivs[split];
3106 	mas->min = l_mas.max + 1;
3107 	old_eparent = mt_mk_node(mte_parent(l_mas.node),
3108 			     mas_parent_type(&l_mas, l_mas.node));
3109 	tmp += end;
3110 	if (!in_rcu) {
3111 		unsigned char max_p = mt_pivots[mt];
3112 		unsigned char max_s = mt_slots[mt];
3113 
3114 		if (tmp < max_p)
3115 			memset(pivs + tmp, 0,
3116 			       sizeof(unsigned long) * (max_p - tmp));
3117 
3118 		if (tmp < mt_slots[mt])
3119 			memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3120 
3121 		memcpy(node, newnode, sizeof(struct maple_node));
3122 		ma_set_meta(node, mt, 0, tmp - 1);
3123 		mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3124 			      l_pivs[split]);
3125 
3126 		/* Remove data from l_pivs. */
3127 		tmp = split + 1;
3128 		memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3129 		memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3130 		ma_set_meta(left, mt, 0, split);
3131 		eparent = old_eparent;
3132 
3133 		goto done;
3134 	}
3135 
3136 	/* RCU requires replacing both l_mas, mas, and parent. */
3137 	mas->node = mt_mk_node(newnode, mt);
3138 	ma_set_meta(newnode, mt, 0, tmp);
3139 
3140 	new_left = mas_pop_node(mas);
3141 	new_left->parent = left->parent;
3142 	mt = mte_node_type(l_mas.node);
3143 	slots = ma_slots(new_left, mt);
3144 	pivs = ma_pivots(new_left, mt);
3145 	memcpy(slots, l_slots, sizeof(void *) * split);
3146 	memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3147 	ma_set_meta(new_left, mt, 0, split);
3148 	l_mas.node = mt_mk_node(new_left, mt);
3149 
3150 	/* replace parent. */
3151 	offset = mte_parent_slot(mas->node);
3152 	mt = mas_parent_type(&l_mas, l_mas.node);
3153 	parent = mas_pop_node(mas);
3154 	slots = ma_slots(parent, mt);
3155 	pivs = ma_pivots(parent, mt);
3156 	memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3157 	rcu_assign_pointer(slots[offset], mas->node);
3158 	rcu_assign_pointer(slots[offset - 1], l_mas.node);
3159 	pivs[offset - 1] = l_mas.max;
3160 	eparent = mt_mk_node(parent, mt);
3161 done:
3162 	gap = mas_leaf_max_gap(mas);
3163 	mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3164 	gap = mas_leaf_max_gap(&l_mas);
3165 	mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3166 	mas_ascend(mas);
3167 
3168 	if (in_rcu) {
3169 		mas_replace_node(mas, old_eparent);
3170 		mas_adopt_children(mas, mas->node);
3171 	}
3172 
3173 	mas_update_gap(mas);
3174 }
3175 
3176 /*
3177  * mas_split_final_node() - Split the final node in a subtree operation.
3178  * @mast: the maple subtree state
3179  * @mas: The maple state
3180  * @height: The height of the tree in case it's a new root.
3181  */
mas_split_final_node(struct maple_subtree_state * mast,struct ma_state * mas,int height)3182 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3183 					struct ma_state *mas, int height)
3184 {
3185 	struct maple_enode *ancestor;
3186 
3187 	if (mte_is_root(mas->node)) {
3188 		if (mt_is_alloc(mas->tree))
3189 			mast->bn->type = maple_arange_64;
3190 		else
3191 			mast->bn->type = maple_range_64;
3192 		mas->depth = height;
3193 	}
3194 	/*
3195 	 * Only a single node is used here, could be root.
3196 	 * The Big_node data should just fit in a single node.
3197 	 */
3198 	ancestor = mas_new_ma_node(mas, mast->bn);
3199 	mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3200 	mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3201 	mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3202 
3203 	mast->l->node = ancestor;
3204 	mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3205 	mas->offset = mast->bn->b_end - 1;
3206 	return true;
3207 }
3208 
3209 /*
3210  * mast_fill_bnode() - Copy data into the big node in the subtree state
3211  * @mast: The maple subtree state
3212  * @mas: the maple state
3213  * @skip: The number of entries to skip for new nodes insertion.
3214  */
mast_fill_bnode(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char skip)3215 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3216 					 struct ma_state *mas,
3217 					 unsigned char skip)
3218 {
3219 	bool cp = true;
3220 	unsigned char split;
3221 
3222 	memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3223 	memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3224 	memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3225 	mast->bn->b_end = 0;
3226 
3227 	if (mte_is_root(mas->node)) {
3228 		cp = false;
3229 	} else {
3230 		mas_ascend(mas);
3231 		mas->offset = mte_parent_slot(mas->node);
3232 	}
3233 
3234 	if (cp && mast->l->offset)
3235 		mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3236 
3237 	split = mast->bn->b_end;
3238 	mab_set_b_end(mast->bn, mast->l, mast->l->node);
3239 	mast->r->offset = mast->bn->b_end;
3240 	mab_set_b_end(mast->bn, mast->r, mast->r->node);
3241 	if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3242 		cp = false;
3243 
3244 	if (cp)
3245 		mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3246 			   mast->bn, mast->bn->b_end);
3247 
3248 	mast->bn->b_end--;
3249 	mast->bn->type = mte_node_type(mas->node);
3250 }
3251 
3252 /*
3253  * mast_split_data() - Split the data in the subtree state big node into regular
3254  * nodes.
3255  * @mast: The maple subtree state
3256  * @mas: The maple state
3257  * @split: The location to split the big node
3258  */
mast_split_data(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char split)3259 static inline void mast_split_data(struct maple_subtree_state *mast,
3260 	   struct ma_state *mas, unsigned char split)
3261 {
3262 	unsigned char p_slot;
3263 
3264 	mab_mas_cp(mast->bn, 0, split, mast->l, true);
3265 	mte_set_pivot(mast->r->node, 0, mast->r->max);
3266 	mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3267 	mast->l->offset = mte_parent_slot(mas->node);
3268 	mast->l->max = mast->bn->pivot[split];
3269 	mast->r->min = mast->l->max + 1;
3270 	if (mte_is_leaf(mas->node))
3271 		return;
3272 
3273 	p_slot = mast->orig_l->offset;
3274 	mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3275 			     &p_slot, split);
3276 	mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3277 			     &p_slot, split);
3278 }
3279 
3280 /*
3281  * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3282  * data to the right or left node if there is room.
3283  * @mas: The maple state
3284  * @height: The current height of the maple state
3285  * @mast: The maple subtree state
3286  * @left: Push left or not.
3287  *
3288  * Keeping the height of the tree low means faster lookups.
3289  *
3290  * Return: True if pushed, false otherwise.
3291  */
mas_push_data(struct ma_state * mas,int height,struct maple_subtree_state * mast,bool left)3292 static inline bool mas_push_data(struct ma_state *mas, int height,
3293 				 struct maple_subtree_state *mast, bool left)
3294 {
3295 	unsigned char slot_total = mast->bn->b_end;
3296 	unsigned char end, space, split;
3297 
3298 	MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3299 	tmp_mas = *mas;
3300 	tmp_mas.depth = mast->l->depth;
3301 
3302 	if (left && !mas_prev_sibling(&tmp_mas))
3303 		return false;
3304 	else if (!left && !mas_next_sibling(&tmp_mas))
3305 		return false;
3306 
3307 	end = mas_data_end(&tmp_mas);
3308 	slot_total += end;
3309 	space = 2 * mt_slot_count(mas->node) - 2;
3310 	/* -2 instead of -1 to ensure there isn't a triple split */
3311 	if (ma_is_leaf(mast->bn->type))
3312 		space--;
3313 
3314 	if (mas->max == ULONG_MAX)
3315 		space--;
3316 
3317 	if (slot_total >= space)
3318 		return false;
3319 
3320 	/* Get the data; Fill mast->bn */
3321 	mast->bn->b_end++;
3322 	if (left) {
3323 		mab_shift_right(mast->bn, end + 1);
3324 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3325 		mast->bn->b_end = slot_total + 1;
3326 	} else {
3327 		mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3328 	}
3329 
3330 	/* Configure mast for splitting of mast->bn */
3331 	split = mt_slots[mast->bn->type] - 2;
3332 	if (left) {
3333 		/*  Switch mas to prev node  */
3334 		*mas = tmp_mas;
3335 		/* Start using mast->l for the left side. */
3336 		tmp_mas.node = mast->l->node;
3337 		*mast->l = tmp_mas;
3338 	} else {
3339 		tmp_mas.node = mast->r->node;
3340 		*mast->r = tmp_mas;
3341 		split = slot_total - split;
3342 	}
3343 	split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3344 	/* Update parent slot for split calculation. */
3345 	if (left)
3346 		mast->orig_l->offset += end + 1;
3347 
3348 	mast_split_data(mast, mas, split);
3349 	mast_fill_bnode(mast, mas, 2);
3350 	mas_split_final_node(mast, mas, height + 1);
3351 	return true;
3352 }
3353 
3354 /*
3355  * mas_split() - Split data that is too big for one node into two.
3356  * @mas: The maple state
3357  * @b_node: The maple big node
3358  * Return: 1 on success, 0 on failure.
3359  */
mas_split(struct ma_state * mas,struct maple_big_node * b_node)3360 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3361 {
3362 	struct maple_subtree_state mast;
3363 	int height = 0;
3364 	unsigned char mid_split, split = 0;
3365 	struct maple_enode *old;
3366 
3367 	/*
3368 	 * Splitting is handled differently from any other B-tree; the Maple
3369 	 * Tree splits upwards.  Splitting up means that the split operation
3370 	 * occurs when the walk of the tree hits the leaves and not on the way
3371 	 * down.  The reason for splitting up is that it is impossible to know
3372 	 * how much space will be needed until the leaf is (or leaves are)
3373 	 * reached.  Since overwriting data is allowed and a range could
3374 	 * overwrite more than one range or result in changing one entry into 3
3375 	 * entries, it is impossible to know if a split is required until the
3376 	 * data is examined.
3377 	 *
3378 	 * Splitting is a balancing act between keeping allocations to a minimum
3379 	 * and avoiding a 'jitter' event where a tree is expanded to make room
3380 	 * for an entry followed by a contraction when the entry is removed.  To
3381 	 * accomplish the balance, there are empty slots remaining in both left
3382 	 * and right nodes after a split.
3383 	 */
3384 	MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3385 	MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3386 	MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3387 	MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3388 
3389 	trace_ma_op(__func__, mas);
3390 	mas->depth = mas_mt_height(mas);
3391 	/* Allocation failures will happen early. */
3392 	mas_node_count(mas, 1 + mas->depth * 2);
3393 	if (mas_is_err(mas))
3394 		return 0;
3395 
3396 	mast.l = &l_mas;
3397 	mast.r = &r_mas;
3398 	mast.orig_l = &prev_l_mas;
3399 	mast.orig_r = &prev_r_mas;
3400 	mast.bn = b_node;
3401 
3402 	while (height++ <= mas->depth) {
3403 		if (mt_slots[b_node->type] > b_node->b_end) {
3404 			mas_split_final_node(&mast, mas, height);
3405 			break;
3406 		}
3407 
3408 		l_mas = r_mas = *mas;
3409 		l_mas.node = mas_new_ma_node(mas, b_node);
3410 		r_mas.node = mas_new_ma_node(mas, b_node);
3411 		/*
3412 		 * Another way that 'jitter' is avoided is to terminate a split up early if the
3413 		 * left or right node has space to spare.  This is referred to as "pushing left"
3414 		 * or "pushing right" and is similar to the B* tree, except the nodes left or
3415 		 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3416 		 * is a significant savings.
3417 		 */
3418 		/* Try to push left. */
3419 		if (mas_push_data(mas, height, &mast, true))
3420 			break;
3421 
3422 		/* Try to push right. */
3423 		if (mas_push_data(mas, height, &mast, false))
3424 			break;
3425 
3426 		split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3427 		mast_split_data(&mast, mas, split);
3428 		/*
3429 		 * Usually correct, mab_mas_cp in the above call overwrites
3430 		 * r->max.
3431 		 */
3432 		mast.r->max = mas->max;
3433 		mast_fill_bnode(&mast, mas, 1);
3434 		prev_l_mas = *mast.l;
3435 		prev_r_mas = *mast.r;
3436 	}
3437 
3438 	/* Set the original node as dead */
3439 	old = mas->node;
3440 	mas->node = l_mas.node;
3441 	mas_wmb_replace(mas, old);
3442 	mtree_range_walk(mas);
3443 	return 1;
3444 }
3445 
3446 /*
3447  * mas_reuse_node() - Reuse the node to store the data.
3448  * @wr_mas: The maple write state
3449  * @bn: The maple big node
3450  * @end: The end of the data.
3451  *
3452  * Will always return false in RCU mode.
3453  *
3454  * Return: True if node was reused, false otherwise.
3455  */
mas_reuse_node(struct ma_wr_state * wr_mas,struct maple_big_node * bn,unsigned char end)3456 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3457 			  struct maple_big_node *bn, unsigned char end)
3458 {
3459 	/* Need to be rcu safe. */
3460 	if (mt_in_rcu(wr_mas->mas->tree))
3461 		return false;
3462 
3463 	if (end > bn->b_end) {
3464 		int clear = mt_slots[wr_mas->type] - bn->b_end;
3465 
3466 		memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3467 		memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3468 	}
3469 	mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3470 	return true;
3471 }
3472 
3473 /*
3474  * mas_commit_b_node() - Commit the big node into the tree.
3475  * @wr_mas: The maple write state
3476  * @b_node: The maple big node
3477  * @end: The end of the data.
3478  */
mas_commit_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char end)3479 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3480 			    struct maple_big_node *b_node, unsigned char end)
3481 {
3482 	struct maple_node *node;
3483 	struct maple_enode *old_enode;
3484 	unsigned char b_end = b_node->b_end;
3485 	enum maple_type b_type = b_node->type;
3486 
3487 	old_enode = wr_mas->mas->node;
3488 	if ((b_end < mt_min_slots[b_type]) &&
3489 	    (!mte_is_root(old_enode)) &&
3490 	    (mas_mt_height(wr_mas->mas) > 1))
3491 		return mas_rebalance(wr_mas->mas, b_node);
3492 
3493 	if (b_end >= mt_slots[b_type])
3494 		return mas_split(wr_mas->mas, b_node);
3495 
3496 	if (mas_reuse_node(wr_mas, b_node, end))
3497 		goto reuse_node;
3498 
3499 	mas_node_count(wr_mas->mas, 1);
3500 	if (mas_is_err(wr_mas->mas))
3501 		return 0;
3502 
3503 	node = mas_pop_node(wr_mas->mas);
3504 	node->parent = mas_mn(wr_mas->mas)->parent;
3505 	wr_mas->mas->node = mt_mk_node(node, b_type);
3506 	mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3507 	mas_replace_node(wr_mas->mas, old_enode);
3508 reuse_node:
3509 	mas_update_gap(wr_mas->mas);
3510 	return 1;
3511 }
3512 
3513 /*
3514  * mas_root_expand() - Expand a root to a node
3515  * @mas: The maple state
3516  * @entry: The entry to store into the tree
3517  */
mas_root_expand(struct ma_state * mas,void * entry)3518 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3519 {
3520 	void *contents = mas_root_locked(mas);
3521 	enum maple_type type = maple_leaf_64;
3522 	struct maple_node *node;
3523 	void __rcu **slots;
3524 	unsigned long *pivots;
3525 	int slot = 0;
3526 
3527 	mas_node_count(mas, 1);
3528 	if (unlikely(mas_is_err(mas)))
3529 		return 0;
3530 
3531 	node = mas_pop_node(mas);
3532 	pivots = ma_pivots(node, type);
3533 	slots = ma_slots(node, type);
3534 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3535 	mas->node = mt_mk_node(node, type);
3536 
3537 	if (mas->index) {
3538 		if (contents) {
3539 			rcu_assign_pointer(slots[slot], contents);
3540 			if (likely(mas->index > 1))
3541 				slot++;
3542 		}
3543 		pivots[slot++] = mas->index - 1;
3544 	}
3545 
3546 	rcu_assign_pointer(slots[slot], entry);
3547 	mas->offset = slot;
3548 	pivots[slot] = mas->last;
3549 	if (mas->last != ULONG_MAX)
3550 		pivots[++slot] = ULONG_MAX;
3551 
3552 	mas->depth = 1;
3553 	mas_set_height(mas);
3554 	ma_set_meta(node, maple_leaf_64, 0, slot);
3555 	/* swap the new root into the tree */
3556 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3557 	return slot;
3558 }
3559 
mas_store_root(struct ma_state * mas,void * entry)3560 static inline void mas_store_root(struct ma_state *mas, void *entry)
3561 {
3562 	if (likely((mas->last != 0) || (mas->index != 0)))
3563 		mas_root_expand(mas, entry);
3564 	else if (((unsigned long) (entry) & 3) == 2)
3565 		mas_root_expand(mas, entry);
3566 	else {
3567 		rcu_assign_pointer(mas->tree->ma_root, entry);
3568 		mas->node = MAS_START;
3569 	}
3570 }
3571 
3572 /*
3573  * mas_is_span_wr() - Check if the write needs to be treated as a write that
3574  * spans the node.
3575  * @mas: The maple state
3576  * @piv: The pivot value being written
3577  * @type: The maple node type
3578  * @entry: The data to write
3579  *
3580  * Spanning writes are writes that start in one node and end in another OR if
3581  * the write of a %NULL will cause the node to end with a %NULL.
3582  *
3583  * Return: True if this is a spanning write, false otherwise.
3584  */
mas_is_span_wr(struct ma_wr_state * wr_mas)3585 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3586 {
3587 	unsigned long max = wr_mas->r_max;
3588 	unsigned long last = wr_mas->mas->last;
3589 	enum maple_type type = wr_mas->type;
3590 	void *entry = wr_mas->entry;
3591 
3592 	/* Contained in this pivot, fast path */
3593 	if (last < max)
3594 		return false;
3595 
3596 	if (ma_is_leaf(type)) {
3597 		max = wr_mas->mas->max;
3598 		if (last < max)
3599 			return false;
3600 	}
3601 
3602 	if (last == max) {
3603 		/*
3604 		 * The last entry of leaf node cannot be NULL unless it is the
3605 		 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3606 		 */
3607 		if (entry || last == ULONG_MAX)
3608 			return false;
3609 	}
3610 
3611 	trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3612 	return true;
3613 }
3614 
mas_wr_walk_descend(struct ma_wr_state * wr_mas)3615 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3616 {
3617 	wr_mas->type = mte_node_type(wr_mas->mas->node);
3618 	mas_wr_node_walk(wr_mas);
3619 	wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3620 }
3621 
mas_wr_walk_traverse(struct ma_wr_state * wr_mas)3622 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3623 {
3624 	wr_mas->mas->max = wr_mas->r_max;
3625 	wr_mas->mas->min = wr_mas->r_min;
3626 	wr_mas->mas->node = wr_mas->content;
3627 	wr_mas->mas->offset = 0;
3628 	wr_mas->mas->depth++;
3629 }
3630 /*
3631  * mas_wr_walk() - Walk the tree for a write.
3632  * @wr_mas: The maple write state
3633  *
3634  * Uses mas_slot_locked() and does not need to worry about dead nodes.
3635  *
3636  * Return: True if it's contained in a node, false on spanning write.
3637  */
mas_wr_walk(struct ma_wr_state * wr_mas)3638 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3639 {
3640 	struct ma_state *mas = wr_mas->mas;
3641 
3642 	while (true) {
3643 		mas_wr_walk_descend(wr_mas);
3644 		if (unlikely(mas_is_span_wr(wr_mas)))
3645 			return false;
3646 
3647 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3648 						  mas->offset);
3649 		if (ma_is_leaf(wr_mas->type))
3650 			return true;
3651 
3652 		mas_wr_walk_traverse(wr_mas);
3653 	}
3654 
3655 	return true;
3656 }
3657 
mas_wr_walk_index(struct ma_wr_state * wr_mas)3658 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3659 {
3660 	struct ma_state *mas = wr_mas->mas;
3661 
3662 	while (true) {
3663 		mas_wr_walk_descend(wr_mas);
3664 		wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3665 						  mas->offset);
3666 		if (ma_is_leaf(wr_mas->type))
3667 			return true;
3668 		mas_wr_walk_traverse(wr_mas);
3669 
3670 	}
3671 	return true;
3672 }
3673 /*
3674  * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3675  * @l_wr_mas: The left maple write state
3676  * @r_wr_mas: The right maple write state
3677  */
mas_extend_spanning_null(struct ma_wr_state * l_wr_mas,struct ma_wr_state * r_wr_mas)3678 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3679 					    struct ma_wr_state *r_wr_mas)
3680 {
3681 	struct ma_state *r_mas = r_wr_mas->mas;
3682 	struct ma_state *l_mas = l_wr_mas->mas;
3683 	unsigned char l_slot;
3684 
3685 	l_slot = l_mas->offset;
3686 	if (!l_wr_mas->content)
3687 		l_mas->index = l_wr_mas->r_min;
3688 
3689 	if ((l_mas->index == l_wr_mas->r_min) &&
3690 		 (l_slot &&
3691 		  !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3692 		if (l_slot > 1)
3693 			l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3694 		else
3695 			l_mas->index = l_mas->min;
3696 
3697 		l_mas->offset = l_slot - 1;
3698 	}
3699 
3700 	if (!r_wr_mas->content) {
3701 		if (r_mas->last < r_wr_mas->r_max)
3702 			r_mas->last = r_wr_mas->r_max;
3703 		r_mas->offset++;
3704 	} else if ((r_mas->last == r_wr_mas->r_max) &&
3705 	    (r_mas->last < r_mas->max) &&
3706 	    !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3707 		r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3708 					     r_wr_mas->type, r_mas->offset + 1);
3709 		r_mas->offset++;
3710 	}
3711 }
3712 
mas_state_walk(struct ma_state * mas)3713 static inline void *mas_state_walk(struct ma_state *mas)
3714 {
3715 	void *entry;
3716 
3717 	entry = mas_start(mas);
3718 	if (mas_is_none(mas))
3719 		return NULL;
3720 
3721 	if (mas_is_ptr(mas))
3722 		return entry;
3723 
3724 	return mtree_range_walk(mas);
3725 }
3726 
3727 /*
3728  * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3729  * to date.
3730  *
3731  * @mas: The maple state.
3732  *
3733  * Note: Leaves mas in undesirable state.
3734  * Return: The entry for @mas->index or %NULL on dead node.
3735  */
mtree_lookup_walk(struct ma_state * mas)3736 static inline void *mtree_lookup_walk(struct ma_state *mas)
3737 {
3738 	unsigned long *pivots;
3739 	unsigned char offset;
3740 	struct maple_node *node;
3741 	struct maple_enode *next;
3742 	enum maple_type type;
3743 	void __rcu **slots;
3744 	unsigned char end;
3745 	unsigned long max;
3746 
3747 	next = mas->node;
3748 	max = ULONG_MAX;
3749 	do {
3750 		offset = 0;
3751 		node = mte_to_node(next);
3752 		type = mte_node_type(next);
3753 		pivots = ma_pivots(node, type);
3754 		end = ma_data_end(node, type, pivots, max);
3755 		if (unlikely(ma_dead_node(node)))
3756 			goto dead_node;
3757 		do {
3758 			if (pivots[offset] >= mas->index) {
3759 				max = pivots[offset];
3760 				break;
3761 			}
3762 		} while (++offset < end);
3763 
3764 		slots = ma_slots(node, type);
3765 		next = mt_slot(mas->tree, slots, offset);
3766 		if (unlikely(ma_dead_node(node)))
3767 			goto dead_node;
3768 	} while (!ma_is_leaf(type));
3769 
3770 	return (void *)next;
3771 
3772 dead_node:
3773 	mas_reset(mas);
3774 	return NULL;
3775 }
3776 
3777 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3778 /*
3779  * mas_new_root() - Create a new root node that only contains the entry passed
3780  * in.
3781  * @mas: The maple state
3782  * @entry: The entry to store.
3783  *
3784  * Only valid when the index == 0 and the last == ULONG_MAX
3785  *
3786  * Return 0 on error, 1 on success.
3787  */
mas_new_root(struct ma_state * mas,void * entry)3788 static inline int mas_new_root(struct ma_state *mas, void *entry)
3789 {
3790 	struct maple_enode *root = mas_root_locked(mas);
3791 	enum maple_type type = maple_leaf_64;
3792 	struct maple_node *node;
3793 	void __rcu **slots;
3794 	unsigned long *pivots;
3795 
3796 	if (!entry && !mas->index && mas->last == ULONG_MAX) {
3797 		mas->depth = 0;
3798 		mas_set_height(mas);
3799 		rcu_assign_pointer(mas->tree->ma_root, entry);
3800 		mas->node = MAS_START;
3801 		goto done;
3802 	}
3803 
3804 	mas_node_count(mas, 1);
3805 	if (mas_is_err(mas))
3806 		return 0;
3807 
3808 	node = mas_pop_node(mas);
3809 	pivots = ma_pivots(node, type);
3810 	slots = ma_slots(node, type);
3811 	node->parent = ma_parent_ptr(mas_tree_parent(mas));
3812 	mas->node = mt_mk_node(node, type);
3813 	rcu_assign_pointer(slots[0], entry);
3814 	pivots[0] = mas->last;
3815 	mas->depth = 1;
3816 	mas_set_height(mas);
3817 	rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3818 
3819 done:
3820 	if (xa_is_node(root))
3821 		mte_destroy_walk(root, mas->tree);
3822 
3823 	return 1;
3824 }
3825 /*
3826  * mas_wr_spanning_store() - Create a subtree with the store operation completed
3827  * and new nodes where necessary, then place the sub-tree in the actual tree.
3828  * Note that mas is expected to point to the node which caused the store to
3829  * span.
3830  * @wr_mas: The maple write state
3831  *
3832  * Return: 0 on error, positive on success.
3833  */
mas_wr_spanning_store(struct ma_wr_state * wr_mas)3834 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3835 {
3836 	struct maple_subtree_state mast;
3837 	struct maple_big_node b_node;
3838 	struct ma_state *mas;
3839 	unsigned char height;
3840 
3841 	/* Left and Right side of spanning store */
3842 	MA_STATE(l_mas, NULL, 0, 0);
3843 	MA_STATE(r_mas, NULL, 0, 0);
3844 	MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3845 	MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3846 
3847 	/*
3848 	 * A store operation that spans multiple nodes is called a spanning
3849 	 * store and is handled early in the store call stack by the function
3850 	 * mas_is_span_wr().  When a spanning store is identified, the maple
3851 	 * state is duplicated.  The first maple state walks the left tree path
3852 	 * to ``index``, the duplicate walks the right tree path to ``last``.
3853 	 * The data in the two nodes are combined into a single node, two nodes,
3854 	 * or possibly three nodes (see the 3-way split above).  A ``NULL``
3855 	 * written to the last entry of a node is considered a spanning store as
3856 	 * a rebalance is required for the operation to complete and an overflow
3857 	 * of data may happen.
3858 	 */
3859 	mas = wr_mas->mas;
3860 	trace_ma_op(__func__, mas);
3861 
3862 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
3863 		return mas_new_root(mas, wr_mas->entry);
3864 	/*
3865 	 * Node rebalancing may occur due to this store, so there may be three new
3866 	 * entries per level plus a new root.
3867 	 */
3868 	height = mas_mt_height(mas);
3869 	mas_node_count(mas, 1 + height * 3);
3870 	if (mas_is_err(mas))
3871 		return 0;
3872 
3873 	/*
3874 	 * Set up right side.  Need to get to the next offset after the spanning
3875 	 * store to ensure it's not NULL and to combine both the next node and
3876 	 * the node with the start together.
3877 	 */
3878 	r_mas = *mas;
3879 	/* Avoid overflow, walk to next slot in the tree. */
3880 	if (r_mas.last + 1)
3881 		r_mas.last++;
3882 
3883 	r_mas.index = r_mas.last;
3884 	mas_wr_walk_index(&r_wr_mas);
3885 	r_mas.last = r_mas.index = mas->last;
3886 
3887 	/* Set up left side. */
3888 	l_mas = *mas;
3889 	mas_wr_walk_index(&l_wr_mas);
3890 
3891 	if (!wr_mas->entry) {
3892 		mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3893 		mas->offset = l_mas.offset;
3894 		mas->index = l_mas.index;
3895 		mas->last = l_mas.last = r_mas.last;
3896 	}
3897 
3898 	/* expanding NULLs may make this cover the entire range */
3899 	if (!l_mas.index && r_mas.last == ULONG_MAX) {
3900 		mas_set_range(mas, 0, ULONG_MAX);
3901 		return mas_new_root(mas, wr_mas->entry);
3902 	}
3903 
3904 	memset(&b_node, 0, sizeof(struct maple_big_node));
3905 	/* Copy l_mas and store the value in b_node. */
3906 	mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
3907 	/* Copy r_mas into b_node. */
3908 	if (r_mas.offset <= r_wr_mas.node_end)
3909 		mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
3910 			   &b_node, b_node.b_end + 1);
3911 	else
3912 		b_node.b_end++;
3913 
3914 	/* Stop spanning searches by searching for just index. */
3915 	l_mas.index = l_mas.last = mas->index;
3916 
3917 	mast.bn = &b_node;
3918 	mast.orig_l = &l_mas;
3919 	mast.orig_r = &r_mas;
3920 	/* Combine l_mas and r_mas and split them up evenly again. */
3921 	return mas_spanning_rebalance(mas, &mast, height + 1);
3922 }
3923 
3924 /*
3925  * mas_wr_node_store() - Attempt to store the value in a node
3926  * @wr_mas: The maple write state
3927  *
3928  * Attempts to reuse the node, but may allocate.
3929  *
3930  * Return: True if stored, false otherwise
3931  */
mas_wr_node_store(struct ma_wr_state * wr_mas,unsigned char new_end)3932 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
3933 				     unsigned char new_end)
3934 {
3935 	struct ma_state *mas = wr_mas->mas;
3936 	void __rcu **dst_slots;
3937 	unsigned long *dst_pivots;
3938 	unsigned char dst_offset, offset_end = wr_mas->offset_end;
3939 	struct maple_node reuse, *newnode;
3940 	unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3941 	bool in_rcu = mt_in_rcu(mas->tree);
3942 
3943 	/* Check if there is enough data. The room is enough. */
3944 	if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
3945 	    !(mas->mas_flags & MA_STATE_BULK))
3946 		return false;
3947 
3948 	if (mas->last == wr_mas->end_piv)
3949 		offset_end++; /* don't copy this offset */
3950 	else if (unlikely(wr_mas->r_max == ULONG_MAX))
3951 		mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
3952 
3953 	/* set up node. */
3954 	if (in_rcu) {
3955 		mas_node_count(mas, 1);
3956 		if (mas_is_err(mas))
3957 			return false;
3958 
3959 		newnode = mas_pop_node(mas);
3960 	} else {
3961 		memset(&reuse, 0, sizeof(struct maple_node));
3962 		newnode = &reuse;
3963 	}
3964 
3965 	newnode->parent = mas_mn(mas)->parent;
3966 	dst_pivots = ma_pivots(newnode, wr_mas->type);
3967 	dst_slots = ma_slots(newnode, wr_mas->type);
3968 	/* Copy from start to insert point */
3969 	memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3970 	memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3971 
3972 	/* Handle insert of new range starting after old range */
3973 	if (wr_mas->r_min < mas->index) {
3974 		rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3975 		dst_pivots[mas->offset++] = mas->index - 1;
3976 	}
3977 
3978 	/* Store the new entry and range end. */
3979 	if (mas->offset < node_pivots)
3980 		dst_pivots[mas->offset] = mas->last;
3981 	rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3982 
3983 	/*
3984 	 * this range wrote to the end of the node or it overwrote the rest of
3985 	 * the data
3986 	 */
3987 	if (offset_end > wr_mas->node_end)
3988 		goto done;
3989 
3990 	dst_offset = mas->offset + 1;
3991 	/* Copy to the end of node if necessary. */
3992 	copy_size = wr_mas->node_end - offset_end + 1;
3993 	memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3994 	       sizeof(void *) * copy_size);
3995 	memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3996 	       sizeof(unsigned long) * (copy_size - 1));
3997 
3998 	if (new_end < node_pivots)
3999 		dst_pivots[new_end] = mas->max;
4000 
4001 done:
4002 	mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4003 	if (in_rcu) {
4004 		struct maple_enode *old_enode = mas->node;
4005 
4006 		mas->node = mt_mk_node(newnode, wr_mas->type);
4007 		mas_replace_node(mas, old_enode);
4008 	} else {
4009 		memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4010 	}
4011 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4012 	mas_update_gap(mas);
4013 	return true;
4014 }
4015 
4016 /*
4017  * mas_wr_slot_store: Attempt to store a value in a slot.
4018  * @wr_mas: the maple write state
4019  *
4020  * Return: True if stored, false otherwise
4021  */
mas_wr_slot_store(struct ma_wr_state * wr_mas)4022 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4023 {
4024 	struct ma_state *mas = wr_mas->mas;
4025 	unsigned char offset = mas->offset;
4026 	void __rcu **slots = wr_mas->slots;
4027 	bool gap = false;
4028 
4029 	gap |= !mt_slot_locked(mas->tree, slots, offset);
4030 	gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
4031 
4032 	if (wr_mas->offset_end - offset == 1) {
4033 		if (mas->index == wr_mas->r_min) {
4034 			/* Overwriting the range and a part of the next one */
4035 			rcu_assign_pointer(slots[offset], wr_mas->entry);
4036 			wr_mas->pivots[offset] = mas->last;
4037 		} else {
4038 			/* Overwriting a part of the range and the next one */
4039 			rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4040 			wr_mas->pivots[offset] = mas->index - 1;
4041 			mas->offset++; /* Keep mas accurate. */
4042 		}
4043 	} else if (!mt_in_rcu(mas->tree)) {
4044 		/*
4045 		 * Expand the range, only partially overwriting the previous and
4046 		 * next ranges
4047 		 */
4048 		gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
4049 		rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4050 		wr_mas->pivots[offset] = mas->index - 1;
4051 		wr_mas->pivots[offset + 1] = mas->last;
4052 		mas->offset++; /* Keep mas accurate. */
4053 	} else {
4054 		return false;
4055 	}
4056 
4057 	trace_ma_write(__func__, mas, 0, wr_mas->entry);
4058 	/*
4059 	 * Only update gap when the new entry is empty or there is an empty
4060 	 * entry in the original two ranges.
4061 	 */
4062 	if (!wr_mas->entry || gap)
4063 		mas_update_gap(mas);
4064 
4065 	return true;
4066 }
4067 
mas_wr_extend_null(struct ma_wr_state * wr_mas)4068 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4069 {
4070 	struct ma_state *mas = wr_mas->mas;
4071 
4072 	if (!wr_mas->slots[wr_mas->offset_end]) {
4073 		/* If this one is null, the next and prev are not */
4074 		mas->last = wr_mas->end_piv;
4075 	} else {
4076 		/* Check next slot(s) if we are overwriting the end */
4077 		if ((mas->last == wr_mas->end_piv) &&
4078 		    (wr_mas->node_end != wr_mas->offset_end) &&
4079 		    !wr_mas->slots[wr_mas->offset_end + 1]) {
4080 			wr_mas->offset_end++;
4081 			if (wr_mas->offset_end == wr_mas->node_end)
4082 				mas->last = mas->max;
4083 			else
4084 				mas->last = wr_mas->pivots[wr_mas->offset_end];
4085 			wr_mas->end_piv = mas->last;
4086 		}
4087 	}
4088 
4089 	if (!wr_mas->content) {
4090 		/* If this one is null, the next and prev are not */
4091 		mas->index = wr_mas->r_min;
4092 	} else {
4093 		/* Check prev slot if we are overwriting the start */
4094 		if (mas->index == wr_mas->r_min && mas->offset &&
4095 		    !wr_mas->slots[mas->offset - 1]) {
4096 			mas->offset--;
4097 			wr_mas->r_min = mas->index =
4098 				mas_safe_min(mas, wr_mas->pivots, mas->offset);
4099 			wr_mas->r_max = wr_mas->pivots[mas->offset];
4100 		}
4101 	}
4102 }
4103 
mas_wr_end_piv(struct ma_wr_state * wr_mas)4104 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4105 {
4106 	while ((wr_mas->offset_end < wr_mas->node_end) &&
4107 	       (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4108 		wr_mas->offset_end++;
4109 
4110 	if (wr_mas->offset_end < wr_mas->node_end)
4111 		wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4112 	else
4113 		wr_mas->end_piv = wr_mas->mas->max;
4114 
4115 	if (!wr_mas->entry)
4116 		mas_wr_extend_null(wr_mas);
4117 }
4118 
mas_wr_new_end(struct ma_wr_state * wr_mas)4119 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4120 {
4121 	struct ma_state *mas = wr_mas->mas;
4122 	unsigned char new_end = wr_mas->node_end + 2;
4123 
4124 	new_end -= wr_mas->offset_end - mas->offset;
4125 	if (wr_mas->r_min == mas->index)
4126 		new_end--;
4127 
4128 	if (wr_mas->end_piv == mas->last)
4129 		new_end--;
4130 
4131 	return new_end;
4132 }
4133 
4134 /*
4135  * mas_wr_append: Attempt to append
4136  * @wr_mas: the maple write state
4137  * @new_end: The end of the node after the modification
4138  *
4139  * This is currently unsafe in rcu mode since the end of the node may be cached
4140  * by readers while the node contents may be updated which could result in
4141  * inaccurate information.
4142  *
4143  * Return: True if appended, false otherwise
4144  */
mas_wr_append(struct ma_wr_state * wr_mas,unsigned char new_end)4145 static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
4146 		unsigned char new_end)
4147 {
4148 	struct ma_state *mas;
4149 	void __rcu **slots;
4150 	unsigned char end;
4151 
4152 	mas = wr_mas->mas;
4153 	if (mt_in_rcu(mas->tree))
4154 		return false;
4155 
4156 	if (mas->offset != wr_mas->node_end)
4157 		return false;
4158 
4159 	end = wr_mas->node_end;
4160 	if (mas->offset != end)
4161 		return false;
4162 
4163 	if (new_end < mt_pivots[wr_mas->type]) {
4164 		wr_mas->pivots[new_end] = wr_mas->pivots[end];
4165 		ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4166 	}
4167 
4168 	slots = wr_mas->slots;
4169 	if (new_end == end + 1) {
4170 		if (mas->last == wr_mas->r_max) {
4171 			/* Append to end of range */
4172 			rcu_assign_pointer(slots[new_end], wr_mas->entry);
4173 			wr_mas->pivots[end] = mas->index - 1;
4174 			mas->offset = new_end;
4175 		} else {
4176 			/* Append to start of range */
4177 			rcu_assign_pointer(slots[new_end], wr_mas->content);
4178 			wr_mas->pivots[end] = mas->last;
4179 			rcu_assign_pointer(slots[end], wr_mas->entry);
4180 		}
4181 	} else {
4182 		/* Append to the range without touching any boundaries. */
4183 		rcu_assign_pointer(slots[new_end], wr_mas->content);
4184 		wr_mas->pivots[end + 1] = mas->last;
4185 		rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4186 		wr_mas->pivots[end] = mas->index - 1;
4187 		mas->offset = end + 1;
4188 	}
4189 
4190 	if (!wr_mas->content || !wr_mas->entry)
4191 		mas_update_gap(mas);
4192 
4193 	trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4194 	return  true;
4195 }
4196 
4197 /*
4198  * mas_wr_bnode() - Slow path for a modification.
4199  * @wr_mas: The write maple state
4200  *
4201  * This is where split, rebalance end up.
4202  */
mas_wr_bnode(struct ma_wr_state * wr_mas)4203 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4204 {
4205 	struct maple_big_node b_node;
4206 
4207 	trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4208 	memset(&b_node, 0, sizeof(struct maple_big_node));
4209 	mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4210 	mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4211 }
4212 
mas_wr_modify(struct ma_wr_state * wr_mas)4213 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4214 {
4215 	struct ma_state *mas = wr_mas->mas;
4216 	unsigned char new_end;
4217 
4218 	/* Direct replacement */
4219 	if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4220 		rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4221 		if (!!wr_mas->entry ^ !!wr_mas->content)
4222 			mas_update_gap(mas);
4223 		return;
4224 	}
4225 
4226 	/*
4227 	 * new_end exceeds the size of the maple node and cannot enter the fast
4228 	 * path.
4229 	 */
4230 	new_end = mas_wr_new_end(wr_mas);
4231 	if (new_end >= mt_slots[wr_mas->type])
4232 		goto slow_path;
4233 
4234 	/* Attempt to append */
4235 	if (mas_wr_append(wr_mas, new_end))
4236 		return;
4237 
4238 	if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas))
4239 		return;
4240 
4241 	if (mas_wr_node_store(wr_mas, new_end))
4242 		return;
4243 
4244 	if (mas_is_err(mas))
4245 		return;
4246 
4247 slow_path:
4248 	mas_wr_bnode(wr_mas);
4249 }
4250 
4251 /*
4252  * mas_wr_store_entry() - Internal call to store a value
4253  * @mas: The maple state
4254  * @entry: The entry to store.
4255  *
4256  * Return: The contents that was stored at the index.
4257  */
mas_wr_store_entry(struct ma_wr_state * wr_mas)4258 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4259 {
4260 	struct ma_state *mas = wr_mas->mas;
4261 
4262 	wr_mas->content = mas_start(mas);
4263 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4264 		mas_store_root(mas, wr_mas->entry);
4265 		return wr_mas->content;
4266 	}
4267 
4268 	if (unlikely(!mas_wr_walk(wr_mas))) {
4269 		mas_wr_spanning_store(wr_mas);
4270 		return wr_mas->content;
4271 	}
4272 
4273 	/* At this point, we are at the leaf node that needs to be altered. */
4274 	mas_wr_end_piv(wr_mas);
4275 	/* New root for a single pointer */
4276 	if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4277 		mas_new_root(mas, wr_mas->entry);
4278 		return wr_mas->content;
4279 	}
4280 
4281 	mas_wr_modify(wr_mas);
4282 	return wr_mas->content;
4283 }
4284 
4285 /**
4286  * mas_insert() - Internal call to insert a value
4287  * @mas: The maple state
4288  * @entry: The entry to store
4289  *
4290  * Return: %NULL or the contents that already exists at the requested index
4291  * otherwise.  The maple state needs to be checked for error conditions.
4292  */
mas_insert(struct ma_state * mas,void * entry)4293 static inline void *mas_insert(struct ma_state *mas, void *entry)
4294 {
4295 	MA_WR_STATE(wr_mas, mas, entry);
4296 
4297 	/*
4298 	 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4299 	 * tree.  If the insert fits exactly into an existing gap with a value
4300 	 * of NULL, then the slot only needs to be written with the new value.
4301 	 * If the range being inserted is adjacent to another range, then only a
4302 	 * single pivot needs to be inserted (as well as writing the entry).  If
4303 	 * the new range is within a gap but does not touch any other ranges,
4304 	 * then two pivots need to be inserted: the start - 1, and the end.  As
4305 	 * usual, the entry must be written.  Most operations require a new node
4306 	 * to be allocated and replace an existing node to ensure RCU safety,
4307 	 * when in RCU mode.  The exception to requiring a newly allocated node
4308 	 * is when inserting at the end of a node (appending).  When done
4309 	 * carefully, appending can reuse the node in place.
4310 	 */
4311 	wr_mas.content = mas_start(mas);
4312 	if (wr_mas.content)
4313 		goto exists;
4314 
4315 	if (mas_is_none(mas) || mas_is_ptr(mas)) {
4316 		mas_store_root(mas, entry);
4317 		return NULL;
4318 	}
4319 
4320 	/* spanning writes always overwrite something */
4321 	if (!mas_wr_walk(&wr_mas))
4322 		goto exists;
4323 
4324 	/* At this point, we are at the leaf node that needs to be altered. */
4325 	wr_mas.offset_end = mas->offset;
4326 	wr_mas.end_piv = wr_mas.r_max;
4327 
4328 	if (wr_mas.content || (mas->last > wr_mas.r_max))
4329 		goto exists;
4330 
4331 	if (!entry)
4332 		return NULL;
4333 
4334 	mas_wr_modify(&wr_mas);
4335 	return wr_mas.content;
4336 
4337 exists:
4338 	mas_set_err(mas, -EEXIST);
4339 	return wr_mas.content;
4340 
4341 }
4342 
mas_rewalk(struct ma_state * mas,unsigned long index)4343 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4344 {
4345 retry:
4346 	mas_set(mas, index);
4347 	mas_state_walk(mas);
4348 	if (mas_is_start(mas))
4349 		goto retry;
4350 }
4351 
mas_rewalk_if_dead(struct ma_state * mas,struct maple_node * node,const unsigned long index)4352 static inline bool mas_rewalk_if_dead(struct ma_state *mas,
4353 		struct maple_node *node, const unsigned long index)
4354 {
4355 	if (unlikely(ma_dead_node(node))) {
4356 		mas_rewalk(mas, index);
4357 		return true;
4358 	}
4359 	return false;
4360 }
4361 
4362 /*
4363  * mas_prev_node() - Find the prev non-null entry at the same level in the
4364  * tree.  The prev value will be mas->node[mas->offset] or MAS_NONE.
4365  * @mas: The maple state
4366  * @min: The lower limit to search
4367  *
4368  * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4369  * Return: 1 if the node is dead, 0 otherwise.
4370  */
mas_prev_node(struct ma_state * mas,unsigned long min)4371 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4372 {
4373 	enum maple_type mt;
4374 	int offset, level;
4375 	void __rcu **slots;
4376 	struct maple_node *node;
4377 	unsigned long *pivots;
4378 	unsigned long max;
4379 
4380 	node = mas_mn(mas);
4381 	if (!mas->min)
4382 		goto no_entry;
4383 
4384 	max = mas->min - 1;
4385 	if (max < min)
4386 		goto no_entry;
4387 
4388 	level = 0;
4389 	do {
4390 		if (ma_is_root(node))
4391 			goto no_entry;
4392 
4393 		/* Walk up. */
4394 		if (unlikely(mas_ascend(mas)))
4395 			return 1;
4396 		offset = mas->offset;
4397 		level++;
4398 		node = mas_mn(mas);
4399 	} while (!offset);
4400 
4401 	offset--;
4402 	mt = mte_node_type(mas->node);
4403 	while (level > 1) {
4404 		level--;
4405 		slots = ma_slots(node, mt);
4406 		mas->node = mas_slot(mas, slots, offset);
4407 		if (unlikely(ma_dead_node(node)))
4408 			return 1;
4409 
4410 		mt = mte_node_type(mas->node);
4411 		node = mas_mn(mas);
4412 		pivots = ma_pivots(node, mt);
4413 		offset = ma_data_end(node, mt, pivots, max);
4414 		if (unlikely(ma_dead_node(node)))
4415 			return 1;
4416 	}
4417 
4418 	slots = ma_slots(node, mt);
4419 	mas->node = mas_slot(mas, slots, offset);
4420 	pivots = ma_pivots(node, mt);
4421 	if (unlikely(ma_dead_node(node)))
4422 		return 1;
4423 
4424 	if (likely(offset))
4425 		mas->min = pivots[offset - 1] + 1;
4426 	mas->max = max;
4427 	mas->offset = mas_data_end(mas);
4428 	if (unlikely(mte_dead_node(mas->node)))
4429 		return 1;
4430 
4431 	return 0;
4432 
4433 no_entry:
4434 	if (unlikely(ma_dead_node(node)))
4435 		return 1;
4436 
4437 	mas->node = MAS_NONE;
4438 	return 0;
4439 }
4440 
4441 /*
4442  * mas_prev_slot() - Get the entry in the previous slot
4443  *
4444  * @mas: The maple state
4445  * @max: The minimum starting range
4446  * @empty: Can be empty
4447  * @set_underflow: Set the @mas->node to underflow state on limit.
4448  *
4449  * Return: The entry in the previous slot which is possibly NULL
4450  */
mas_prev_slot(struct ma_state * mas,unsigned long min,bool empty,bool set_underflow)4451 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty,
4452 			   bool set_underflow)
4453 {
4454 	void *entry;
4455 	void __rcu **slots;
4456 	unsigned long pivot;
4457 	enum maple_type type;
4458 	unsigned long *pivots;
4459 	struct maple_node *node;
4460 	unsigned long save_point = mas->index;
4461 
4462 retry:
4463 	node = mas_mn(mas);
4464 	type = mte_node_type(mas->node);
4465 	pivots = ma_pivots(node, type);
4466 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4467 		goto retry;
4468 
4469 	if (mas->min <= min) {
4470 		pivot = mas_safe_min(mas, pivots, mas->offset);
4471 
4472 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4473 			goto retry;
4474 
4475 		if (pivot <= min)
4476 			goto underflow;
4477 	}
4478 
4479 again:
4480 	if (likely(mas->offset)) {
4481 		mas->offset--;
4482 		mas->last = mas->index - 1;
4483 		mas->index = mas_safe_min(mas, pivots, mas->offset);
4484 	} else  {
4485 		if (mas_prev_node(mas, min)) {
4486 			mas_rewalk(mas, save_point);
4487 			goto retry;
4488 		}
4489 
4490 		if (mas_is_none(mas))
4491 			goto underflow;
4492 
4493 		mas->last = mas->max;
4494 		node = mas_mn(mas);
4495 		type = mte_node_type(mas->node);
4496 		pivots = ma_pivots(node, type);
4497 		mas->index = pivots[mas->offset - 1] + 1;
4498 	}
4499 
4500 	slots = ma_slots(node, type);
4501 	entry = mas_slot(mas, slots, mas->offset);
4502 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4503 		goto retry;
4504 
4505 	if (likely(entry))
4506 		return entry;
4507 
4508 	if (!empty) {
4509 		if (mas->index <= min)
4510 			goto underflow;
4511 
4512 		goto again;
4513 	}
4514 
4515 	return entry;
4516 
4517 underflow:
4518 	if (set_underflow)
4519 		mas->node = MAS_UNDERFLOW;
4520 	return NULL;
4521 }
4522 
4523 /*
4524  * mas_next_node() - Get the next node at the same level in the tree.
4525  * @mas: The maple state
4526  * @max: The maximum pivot value to check.
4527  *
4528  * The next value will be mas->node[mas->offset] or MAS_NONE.
4529  * Return: 1 on dead node, 0 otherwise.
4530  */
mas_next_node(struct ma_state * mas,struct maple_node * node,unsigned long max)4531 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4532 				unsigned long max)
4533 {
4534 	unsigned long min;
4535 	unsigned long *pivots;
4536 	struct maple_enode *enode;
4537 	int level = 0;
4538 	unsigned char node_end;
4539 	enum maple_type mt;
4540 	void __rcu **slots;
4541 
4542 	if (mas->max >= max)
4543 		goto no_entry;
4544 
4545 	min = mas->max + 1;
4546 	level = 0;
4547 	do {
4548 		if (ma_is_root(node))
4549 			goto no_entry;
4550 
4551 		/* Walk up. */
4552 		if (unlikely(mas_ascend(mas)))
4553 			return 1;
4554 
4555 		level++;
4556 		node = mas_mn(mas);
4557 		mt = mte_node_type(mas->node);
4558 		pivots = ma_pivots(node, mt);
4559 		node_end = ma_data_end(node, mt, pivots, mas->max);
4560 		if (unlikely(ma_dead_node(node)))
4561 			return 1;
4562 
4563 	} while (unlikely(mas->offset == node_end));
4564 
4565 	slots = ma_slots(node, mt);
4566 	mas->offset++;
4567 	enode = mas_slot(mas, slots, mas->offset);
4568 	if (unlikely(ma_dead_node(node)))
4569 		return 1;
4570 
4571 	if (level > 1)
4572 		mas->offset = 0;
4573 
4574 	while (unlikely(level > 1)) {
4575 		level--;
4576 		mas->node = enode;
4577 		node = mas_mn(mas);
4578 		mt = mte_node_type(mas->node);
4579 		slots = ma_slots(node, mt);
4580 		enode = mas_slot(mas, slots, 0);
4581 		if (unlikely(ma_dead_node(node)))
4582 			return 1;
4583 	}
4584 
4585 	if (!mas->offset)
4586 		pivots = ma_pivots(node, mt);
4587 
4588 	mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4589 	if (unlikely(ma_dead_node(node)))
4590 		return 1;
4591 
4592 	mas->node = enode;
4593 	mas->min = min;
4594 	return 0;
4595 
4596 no_entry:
4597 	if (unlikely(ma_dead_node(node)))
4598 		return 1;
4599 
4600 	mas->node = MAS_NONE;
4601 	return 0;
4602 }
4603 
4604 /*
4605  * mas_next_slot() - Get the entry in the next slot
4606  *
4607  * @mas: The maple state
4608  * @max: The maximum starting range
4609  * @empty: Can be empty
4610  * @set_overflow: Should @mas->node be set to overflow when the limit is
4611  * reached.
4612  *
4613  * Return: The entry in the next slot which is possibly NULL
4614  */
mas_next_slot(struct ma_state * mas,unsigned long max,bool empty,bool set_overflow)4615 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty,
4616 			   bool set_overflow)
4617 {
4618 	void __rcu **slots;
4619 	unsigned long *pivots;
4620 	unsigned long pivot;
4621 	enum maple_type type;
4622 	struct maple_node *node;
4623 	unsigned char data_end;
4624 	unsigned long save_point = mas->last;
4625 	void *entry;
4626 
4627 retry:
4628 	node = mas_mn(mas);
4629 	type = mte_node_type(mas->node);
4630 	pivots = ma_pivots(node, type);
4631 	data_end = ma_data_end(node, type, pivots, mas->max);
4632 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4633 		goto retry;
4634 
4635 	if (mas->max >= max) {
4636 		if (likely(mas->offset < data_end))
4637 			pivot = pivots[mas->offset];
4638 		else
4639 			goto overflow;
4640 
4641 		if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4642 			goto retry;
4643 
4644 		if (pivot >= max)
4645 			goto overflow;
4646 	}
4647 
4648 	if (likely(mas->offset < data_end)) {
4649 		mas->index = pivots[mas->offset] + 1;
4650 again:
4651 		mas->offset++;
4652 		if (likely(mas->offset < data_end))
4653 			mas->last = pivots[mas->offset];
4654 		else
4655 			mas->last = mas->max;
4656 	} else  {
4657 		if (mas_next_node(mas, node, max)) {
4658 			mas_rewalk(mas, save_point);
4659 			goto retry;
4660 		}
4661 
4662 		if (WARN_ON_ONCE(mas_is_none(mas))) {
4663 			mas->node = MAS_OVERFLOW;
4664 			return NULL;
4665 			goto overflow;
4666 		}
4667 
4668 		mas->offset = 0;
4669 		mas->index = mas->min;
4670 		node = mas_mn(mas);
4671 		type = mte_node_type(mas->node);
4672 		pivots = ma_pivots(node, type);
4673 		mas->last = pivots[0];
4674 	}
4675 
4676 	slots = ma_slots(node, type);
4677 	entry = mt_slot(mas->tree, slots, mas->offset);
4678 	if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4679 		goto retry;
4680 
4681 	if (entry)
4682 		return entry;
4683 
4684 	if (!empty) {
4685 		if (mas->last >= max)
4686 			goto overflow;
4687 
4688 		mas->index = mas->last + 1;
4689 		/* Node cannot end on NULL, so it's safe to short-cut here */
4690 		goto again;
4691 	}
4692 
4693 	return entry;
4694 
4695 overflow:
4696 	if (set_overflow)
4697 		mas->node = MAS_OVERFLOW;
4698 	return NULL;
4699 }
4700 
4701 /*
4702  * mas_next_entry() - Internal function to get the next entry.
4703  * @mas: The maple state
4704  * @limit: The maximum range start.
4705  *
4706  * Set the @mas->node to the next entry and the range_start to
4707  * the beginning value for the entry.  Does not check beyond @limit.
4708  * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4709  * @mas->last on overflow.
4710  * Restarts on dead nodes.
4711  *
4712  * Return: the next entry or %NULL.
4713  */
mas_next_entry(struct ma_state * mas,unsigned long limit)4714 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4715 {
4716 	if (mas->last >= limit) {
4717 		mas->node = MAS_OVERFLOW;
4718 		return NULL;
4719 	}
4720 
4721 	return mas_next_slot(mas, limit, false, true);
4722 }
4723 
4724 /*
4725  * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
4726  * highest gap address of a given size in a given node and descend.
4727  * @mas: The maple state
4728  * @size: The needed size.
4729  *
4730  * Return: True if found in a leaf, false otherwise.
4731  *
4732  */
mas_rev_awalk(struct ma_state * mas,unsigned long size,unsigned long * gap_min,unsigned long * gap_max)4733 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4734 		unsigned long *gap_min, unsigned long *gap_max)
4735 {
4736 	enum maple_type type = mte_node_type(mas->node);
4737 	struct maple_node *node = mas_mn(mas);
4738 	unsigned long *pivots, *gaps;
4739 	void __rcu **slots;
4740 	unsigned long gap = 0;
4741 	unsigned long max, min;
4742 	unsigned char offset;
4743 
4744 	if (unlikely(mas_is_err(mas)))
4745 		return true;
4746 
4747 	if (ma_is_dense(type)) {
4748 		/* dense nodes. */
4749 		mas->offset = (unsigned char)(mas->index - mas->min);
4750 		return true;
4751 	}
4752 
4753 	pivots = ma_pivots(node, type);
4754 	slots = ma_slots(node, type);
4755 	gaps = ma_gaps(node, type);
4756 	offset = mas->offset;
4757 	min = mas_safe_min(mas, pivots, offset);
4758 	/* Skip out of bounds. */
4759 	while (mas->last < min)
4760 		min = mas_safe_min(mas, pivots, --offset);
4761 
4762 	max = mas_safe_pivot(mas, pivots, offset, type);
4763 	while (mas->index <= max) {
4764 		gap = 0;
4765 		if (gaps)
4766 			gap = gaps[offset];
4767 		else if (!mas_slot(mas, slots, offset))
4768 			gap = max - min + 1;
4769 
4770 		if (gap) {
4771 			if ((size <= gap) && (size <= mas->last - min + 1))
4772 				break;
4773 
4774 			if (!gaps) {
4775 				/* Skip the next slot, it cannot be a gap. */
4776 				if (offset < 2)
4777 					goto ascend;
4778 
4779 				offset -= 2;
4780 				max = pivots[offset];
4781 				min = mas_safe_min(mas, pivots, offset);
4782 				continue;
4783 			}
4784 		}
4785 
4786 		if (!offset)
4787 			goto ascend;
4788 
4789 		offset--;
4790 		max = min - 1;
4791 		min = mas_safe_min(mas, pivots, offset);
4792 	}
4793 
4794 	if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4795 		goto no_space;
4796 
4797 	if (unlikely(ma_is_leaf(type))) {
4798 		mas->offset = offset;
4799 		*gap_min = min;
4800 		*gap_max = min + gap - 1;
4801 		return true;
4802 	}
4803 
4804 	/* descend, only happens under lock. */
4805 	mas->node = mas_slot(mas, slots, offset);
4806 	mas->min = min;
4807 	mas->max = max;
4808 	mas->offset = mas_data_end(mas);
4809 	return false;
4810 
4811 ascend:
4812 	if (!mte_is_root(mas->node))
4813 		return false;
4814 
4815 no_space:
4816 	mas_set_err(mas, -EBUSY);
4817 	return false;
4818 }
4819 
mas_anode_descend(struct ma_state * mas,unsigned long size)4820 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4821 {
4822 	enum maple_type type = mte_node_type(mas->node);
4823 	unsigned long pivot, min, gap = 0;
4824 	unsigned char offset, data_end;
4825 	unsigned long *gaps, *pivots;
4826 	void __rcu **slots;
4827 	struct maple_node *node;
4828 	bool found = false;
4829 
4830 	if (ma_is_dense(type)) {
4831 		mas->offset = (unsigned char)(mas->index - mas->min);
4832 		return true;
4833 	}
4834 
4835 	node = mas_mn(mas);
4836 	pivots = ma_pivots(node, type);
4837 	slots = ma_slots(node, type);
4838 	gaps = ma_gaps(node, type);
4839 	offset = mas->offset;
4840 	min = mas_safe_min(mas, pivots, offset);
4841 	data_end = ma_data_end(node, type, pivots, mas->max);
4842 	for (; offset <= data_end; offset++) {
4843 		pivot = mas_safe_pivot(mas, pivots, offset, type);
4844 
4845 		/* Not within lower bounds */
4846 		if (mas->index > pivot)
4847 			goto next_slot;
4848 
4849 		if (gaps)
4850 			gap = gaps[offset];
4851 		else if (!mas_slot(mas, slots, offset))
4852 			gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4853 		else
4854 			goto next_slot;
4855 
4856 		if (gap >= size) {
4857 			if (ma_is_leaf(type)) {
4858 				found = true;
4859 				goto done;
4860 			}
4861 			if (mas->index <= pivot) {
4862 				mas->node = mas_slot(mas, slots, offset);
4863 				mas->min = min;
4864 				mas->max = pivot;
4865 				offset = 0;
4866 				break;
4867 			}
4868 		}
4869 next_slot:
4870 		min = pivot + 1;
4871 		if (mas->last <= pivot) {
4872 			mas_set_err(mas, -EBUSY);
4873 			return true;
4874 		}
4875 	}
4876 
4877 	if (mte_is_root(mas->node))
4878 		found = true;
4879 done:
4880 	mas->offset = offset;
4881 	return found;
4882 }
4883 
4884 /**
4885  * mas_walk() - Search for @mas->index in the tree.
4886  * @mas: The maple state.
4887  *
4888  * mas->index and mas->last will be set to the range if there is a value.  If
4889  * mas->node is MAS_NONE, reset to MAS_START.
4890  *
4891  * Return: the entry at the location or %NULL.
4892  */
mas_walk(struct ma_state * mas)4893 void *mas_walk(struct ma_state *mas)
4894 {
4895 	void *entry;
4896 
4897 	if (!mas_is_active(mas) || !mas_is_start(mas))
4898 		mas->node = MAS_START;
4899 retry:
4900 	entry = mas_state_walk(mas);
4901 	if (mas_is_start(mas)) {
4902 		goto retry;
4903 	} else if (mas_is_none(mas)) {
4904 		mas->index = 0;
4905 		mas->last = ULONG_MAX;
4906 	} else if (mas_is_ptr(mas)) {
4907 		if (!mas->index) {
4908 			mas->last = 0;
4909 			return entry;
4910 		}
4911 
4912 		mas->index = 1;
4913 		mas->last = ULONG_MAX;
4914 		mas->node = MAS_NONE;
4915 		return NULL;
4916 	}
4917 
4918 	return entry;
4919 }
4920 EXPORT_SYMBOL_GPL(mas_walk);
4921 
mas_rewind_node(struct ma_state * mas)4922 static inline bool mas_rewind_node(struct ma_state *mas)
4923 {
4924 	unsigned char slot;
4925 
4926 	do {
4927 		if (mte_is_root(mas->node)) {
4928 			slot = mas->offset;
4929 			if (!slot)
4930 				return false;
4931 		} else {
4932 			mas_ascend(mas);
4933 			slot = mas->offset;
4934 		}
4935 	} while (!slot);
4936 
4937 	mas->offset = --slot;
4938 	return true;
4939 }
4940 
4941 /*
4942  * mas_skip_node() - Internal function.  Skip over a node.
4943  * @mas: The maple state.
4944  *
4945  * Return: true if there is another node, false otherwise.
4946  */
mas_skip_node(struct ma_state * mas)4947 static inline bool mas_skip_node(struct ma_state *mas)
4948 {
4949 	if (mas_is_err(mas))
4950 		return false;
4951 
4952 	do {
4953 		if (mte_is_root(mas->node)) {
4954 			if (mas->offset >= mas_data_end(mas)) {
4955 				mas_set_err(mas, -EBUSY);
4956 				return false;
4957 			}
4958 		} else {
4959 			mas_ascend(mas);
4960 		}
4961 	} while (mas->offset >= mas_data_end(mas));
4962 
4963 	mas->offset++;
4964 	return true;
4965 }
4966 
4967 /*
4968  * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
4969  * @size
4970  * @mas: The maple state
4971  * @size: The size of the gap required
4972  *
4973  * Search between @mas->index and @mas->last for a gap of @size.
4974  */
mas_awalk(struct ma_state * mas,unsigned long size)4975 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4976 {
4977 	struct maple_enode *last = NULL;
4978 
4979 	/*
4980 	 * There are 4 options:
4981 	 * go to child (descend)
4982 	 * go back to parent (ascend)
4983 	 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
4984 	 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
4985 	 */
4986 	while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4987 		if (last == mas->node)
4988 			mas_skip_node(mas);
4989 		else
4990 			last = mas->node;
4991 	}
4992 }
4993 
4994 /*
4995  * mas_sparse_area() - Internal function.  Return upper or lower limit when
4996  * searching for a gap in an empty tree.
4997  * @mas: The maple state
4998  * @min: the minimum range
4999  * @max: The maximum range
5000  * @size: The size of the gap
5001  * @fwd: Searching forward or back
5002  */
mas_sparse_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size,bool fwd)5003 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5004 				unsigned long max, unsigned long size, bool fwd)
5005 {
5006 	if (!unlikely(mas_is_none(mas)) && min == 0) {
5007 		min++;
5008 		/*
5009 		 * At this time, min is increased, we need to recheck whether
5010 		 * the size is satisfied.
5011 		 */
5012 		if (min > max || max - min + 1 < size)
5013 			return -EBUSY;
5014 	}
5015 	/* mas_is_ptr */
5016 
5017 	if (fwd) {
5018 		mas->index = min;
5019 		mas->last = min + size - 1;
5020 	} else {
5021 		mas->last = max;
5022 		mas->index = max - size + 1;
5023 	}
5024 	return 0;
5025 }
5026 
5027 /*
5028  * mas_empty_area() - Get the lowest address within the range that is
5029  * sufficient for the size requested.
5030  * @mas: The maple state
5031  * @min: The lowest value of the range
5032  * @max: The highest value of the range
5033  * @size: The size needed
5034  */
mas_empty_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5035 int mas_empty_area(struct ma_state *mas, unsigned long min,
5036 		unsigned long max, unsigned long size)
5037 {
5038 	unsigned char offset;
5039 	unsigned long *pivots;
5040 	enum maple_type mt;
5041 
5042 	if (min > max)
5043 		return -EINVAL;
5044 
5045 	if (size == 0 || max - min < size - 1)
5046 		return -EINVAL;
5047 
5048 	if (mas_is_start(mas))
5049 		mas_start(mas);
5050 	else if (mas->offset >= 2)
5051 		mas->offset -= 2;
5052 	else if (!mas_skip_node(mas))
5053 		return -EBUSY;
5054 
5055 	/* Empty set */
5056 	if (mas_is_none(mas) || mas_is_ptr(mas))
5057 		return mas_sparse_area(mas, min, max, size, true);
5058 
5059 	/* The start of the window can only be within these values */
5060 	mas->index = min;
5061 	mas->last = max;
5062 	mas_awalk(mas, size);
5063 
5064 	if (unlikely(mas_is_err(mas)))
5065 		return xa_err(mas->node);
5066 
5067 	offset = mas->offset;
5068 	if (unlikely(offset == MAPLE_NODE_SLOTS))
5069 		return -EBUSY;
5070 
5071 	mt = mte_node_type(mas->node);
5072 	pivots = ma_pivots(mas_mn(mas), mt);
5073 	min = mas_safe_min(mas, pivots, offset);
5074 	if (mas->index < min)
5075 		mas->index = min;
5076 	mas->last = mas->index + size - 1;
5077 	return 0;
5078 }
5079 EXPORT_SYMBOL_GPL(mas_empty_area);
5080 
5081 /*
5082  * mas_empty_area_rev() - Get the highest address within the range that is
5083  * sufficient for the size requested.
5084  * @mas: The maple state
5085  * @min: The lowest value of the range
5086  * @max: The highest value of the range
5087  * @size: The size needed
5088  */
mas_empty_area_rev(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5089 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5090 		unsigned long max, unsigned long size)
5091 {
5092 	struct maple_enode *last = mas->node;
5093 
5094 	if (min > max)
5095 		return -EINVAL;
5096 
5097 	if (size == 0 || max - min < size - 1)
5098 		return -EINVAL;
5099 
5100 	if (mas_is_start(mas))
5101 		mas_start(mas);
5102 	else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5103 		return -EBUSY;
5104 
5105 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5106 		return mas_sparse_area(mas, min, max, size, false);
5107 	else if (mas->offset >= 2)
5108 		mas->offset -= 2;
5109 	else
5110 		mas->offset = mas_data_end(mas);
5111 
5112 
5113 	/* The start of the window can only be within these values. */
5114 	mas->index = min;
5115 	mas->last = max;
5116 
5117 	while (!mas_rev_awalk(mas, size, &min, &max)) {
5118 		if (last == mas->node) {
5119 			if (!mas_rewind_node(mas))
5120 				return -EBUSY;
5121 		} else {
5122 			last = mas->node;
5123 		}
5124 	}
5125 
5126 	if (mas_is_err(mas))
5127 		return xa_err(mas->node);
5128 
5129 	if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5130 		return -EBUSY;
5131 
5132 	/* Trim the upper limit to the max. */
5133 	if (max < mas->last)
5134 		mas->last = max;
5135 
5136 	mas->index = mas->last - size + 1;
5137 	return 0;
5138 }
5139 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5140 
5141 /*
5142  * mte_dead_leaves() - Mark all leaves of a node as dead.
5143  * @mas: The maple state
5144  * @slots: Pointer to the slot array
5145  * @type: The maple node type
5146  *
5147  * Must hold the write lock.
5148  *
5149  * Return: The number of leaves marked as dead.
5150  */
5151 static inline
mte_dead_leaves(struct maple_enode * enode,struct maple_tree * mt,void __rcu ** slots)5152 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5153 			      void __rcu **slots)
5154 {
5155 	struct maple_node *node;
5156 	enum maple_type type;
5157 	void *entry;
5158 	int offset;
5159 
5160 	for (offset = 0; offset < mt_slot_count(enode); offset++) {
5161 		entry = mt_slot(mt, slots, offset);
5162 		type = mte_node_type(entry);
5163 		node = mte_to_node(entry);
5164 		/* Use both node and type to catch LE & BE metadata */
5165 		if (!node || !type)
5166 			break;
5167 
5168 		mte_set_node_dead(entry);
5169 		node->type = type;
5170 		rcu_assign_pointer(slots[offset], node);
5171 	}
5172 
5173 	return offset;
5174 }
5175 
5176 /**
5177  * mte_dead_walk() - Walk down a dead tree to just before the leaves
5178  * @enode: The maple encoded node
5179  * @offset: The starting offset
5180  *
5181  * Note: This can only be used from the RCU callback context.
5182  */
mte_dead_walk(struct maple_enode ** enode,unsigned char offset)5183 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5184 {
5185 	struct maple_node *node, *next;
5186 	void __rcu **slots = NULL;
5187 
5188 	next = mte_to_node(*enode);
5189 	do {
5190 		*enode = ma_enode_ptr(next);
5191 		node = mte_to_node(*enode);
5192 		slots = ma_slots(node, node->type);
5193 		next = rcu_dereference_protected(slots[offset],
5194 					lock_is_held(&rcu_callback_map));
5195 		offset = 0;
5196 	} while (!ma_is_leaf(next->type));
5197 
5198 	return slots;
5199 }
5200 
5201 /**
5202  * mt_free_walk() - Walk & free a tree in the RCU callback context
5203  * @head: The RCU head that's within the node.
5204  *
5205  * Note: This can only be used from the RCU callback context.
5206  */
mt_free_walk(struct rcu_head * head)5207 static void mt_free_walk(struct rcu_head *head)
5208 {
5209 	void __rcu **slots;
5210 	struct maple_node *node, *start;
5211 	struct maple_enode *enode;
5212 	unsigned char offset;
5213 	enum maple_type type;
5214 
5215 	node = container_of(head, struct maple_node, rcu);
5216 
5217 	if (ma_is_leaf(node->type))
5218 		goto free_leaf;
5219 
5220 	start = node;
5221 	enode = mt_mk_node(node, node->type);
5222 	slots = mte_dead_walk(&enode, 0);
5223 	node = mte_to_node(enode);
5224 	do {
5225 		mt_free_bulk(node->slot_len, slots);
5226 		offset = node->parent_slot + 1;
5227 		enode = node->piv_parent;
5228 		if (mte_to_node(enode) == node)
5229 			goto free_leaf;
5230 
5231 		type = mte_node_type(enode);
5232 		slots = ma_slots(mte_to_node(enode), type);
5233 		if ((offset < mt_slots[type]) &&
5234 		    rcu_dereference_protected(slots[offset],
5235 					      lock_is_held(&rcu_callback_map)))
5236 			slots = mte_dead_walk(&enode, offset);
5237 		node = mte_to_node(enode);
5238 	} while ((node != start) || (node->slot_len < offset));
5239 
5240 	slots = ma_slots(node, node->type);
5241 	mt_free_bulk(node->slot_len, slots);
5242 
5243 free_leaf:
5244 	mt_free_rcu(&node->rcu);
5245 }
5246 
mte_destroy_descend(struct maple_enode ** enode,struct maple_tree * mt,struct maple_enode * prev,unsigned char offset)5247 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5248 	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5249 {
5250 	struct maple_node *node;
5251 	struct maple_enode *next = *enode;
5252 	void __rcu **slots = NULL;
5253 	enum maple_type type;
5254 	unsigned char next_offset = 0;
5255 
5256 	do {
5257 		*enode = next;
5258 		node = mte_to_node(*enode);
5259 		type = mte_node_type(*enode);
5260 		slots = ma_slots(node, type);
5261 		next = mt_slot_locked(mt, slots, next_offset);
5262 		if ((mte_dead_node(next)))
5263 			next = mt_slot_locked(mt, slots, ++next_offset);
5264 
5265 		mte_set_node_dead(*enode);
5266 		node->type = type;
5267 		node->piv_parent = prev;
5268 		node->parent_slot = offset;
5269 		offset = next_offset;
5270 		next_offset = 0;
5271 		prev = *enode;
5272 	} while (!mte_is_leaf(next));
5273 
5274 	return slots;
5275 }
5276 
mt_destroy_walk(struct maple_enode * enode,struct maple_tree * mt,bool free)5277 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5278 			    bool free)
5279 {
5280 	void __rcu **slots;
5281 	struct maple_node *node = mte_to_node(enode);
5282 	struct maple_enode *start;
5283 
5284 	if (mte_is_leaf(enode)) {
5285 		node->type = mte_node_type(enode);
5286 		goto free_leaf;
5287 	}
5288 
5289 	start = enode;
5290 	slots = mte_destroy_descend(&enode, mt, start, 0);
5291 	node = mte_to_node(enode); // Updated in the above call.
5292 	do {
5293 		enum maple_type type;
5294 		unsigned char offset;
5295 		struct maple_enode *parent, *tmp;
5296 
5297 		node->slot_len = mte_dead_leaves(enode, mt, slots);
5298 		if (free)
5299 			mt_free_bulk(node->slot_len, slots);
5300 		offset = node->parent_slot + 1;
5301 		enode = node->piv_parent;
5302 		if (mte_to_node(enode) == node)
5303 			goto free_leaf;
5304 
5305 		type = mte_node_type(enode);
5306 		slots = ma_slots(mte_to_node(enode), type);
5307 		if (offset >= mt_slots[type])
5308 			goto next;
5309 
5310 		tmp = mt_slot_locked(mt, slots, offset);
5311 		if (mte_node_type(tmp) && mte_to_node(tmp)) {
5312 			parent = enode;
5313 			enode = tmp;
5314 			slots = mte_destroy_descend(&enode, mt, parent, offset);
5315 		}
5316 next:
5317 		node = mte_to_node(enode);
5318 	} while (start != enode);
5319 
5320 	node = mte_to_node(enode);
5321 	node->slot_len = mte_dead_leaves(enode, mt, slots);
5322 	if (free)
5323 		mt_free_bulk(node->slot_len, slots);
5324 
5325 free_leaf:
5326 	if (free)
5327 		mt_free_rcu(&node->rcu);
5328 	else
5329 		mt_clear_meta(mt, node, node->type);
5330 }
5331 
5332 /*
5333  * mte_destroy_walk() - Free a tree or sub-tree.
5334  * @enode: the encoded maple node (maple_enode) to start
5335  * @mt: the tree to free - needed for node types.
5336  *
5337  * Must hold the write lock.
5338  */
mte_destroy_walk(struct maple_enode * enode,struct maple_tree * mt)5339 static inline void mte_destroy_walk(struct maple_enode *enode,
5340 				    struct maple_tree *mt)
5341 {
5342 	struct maple_node *node = mte_to_node(enode);
5343 
5344 	if (mt_in_rcu(mt)) {
5345 		mt_destroy_walk(enode, mt, false);
5346 		call_rcu(&node->rcu, mt_free_walk);
5347 	} else {
5348 		mt_destroy_walk(enode, mt, true);
5349 	}
5350 }
5351 
mas_wr_store_setup(struct ma_wr_state * wr_mas)5352 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5353 {
5354 	if (!mas_is_active(wr_mas->mas)) {
5355 		if (mas_is_start(wr_mas->mas))
5356 			return;
5357 
5358 		if (unlikely(mas_is_paused(wr_mas->mas)))
5359 			goto reset;
5360 
5361 		if (unlikely(mas_is_none(wr_mas->mas)))
5362 			goto reset;
5363 
5364 		if (unlikely(mas_is_overflow(wr_mas->mas)))
5365 			goto reset;
5366 
5367 		if (unlikely(mas_is_underflow(wr_mas->mas)))
5368 			goto reset;
5369 	}
5370 
5371 	/*
5372 	 * A less strict version of mas_is_span_wr() where we allow spanning
5373 	 * writes within this node.  This is to stop partial walks in
5374 	 * mas_prealloc() from being reset.
5375 	 */
5376 	if (wr_mas->mas->last > wr_mas->mas->max)
5377 		goto reset;
5378 
5379 	if (wr_mas->entry)
5380 		return;
5381 
5382 	if (mte_is_leaf(wr_mas->mas->node) &&
5383 	    wr_mas->mas->last == wr_mas->mas->max)
5384 		goto reset;
5385 
5386 	return;
5387 
5388 reset:
5389 	mas_reset(wr_mas->mas);
5390 }
5391 
5392 /* Interface */
5393 
5394 /**
5395  * mas_store() - Store an @entry.
5396  * @mas: The maple state.
5397  * @entry: The entry to store.
5398  *
5399  * The @mas->index and @mas->last is used to set the range for the @entry.
5400  * Note: The @mas should have pre-allocated entries to ensure there is memory to
5401  * store the entry.  Please see mas_expected_entries()/mas_destroy() for more details.
5402  *
5403  * Return: the first entry between mas->index and mas->last or %NULL.
5404  */
mas_store(struct ma_state * mas,void * entry)5405 void *mas_store(struct ma_state *mas, void *entry)
5406 {
5407 	MA_WR_STATE(wr_mas, mas, entry);
5408 
5409 	trace_ma_write(__func__, mas, 0, entry);
5410 #ifdef CONFIG_DEBUG_MAPLE_TREE
5411 	if (MAS_WARN_ON(mas, mas->index > mas->last))
5412 		pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5413 
5414 	if (mas->index > mas->last) {
5415 		mas_set_err(mas, -EINVAL);
5416 		return NULL;
5417 	}
5418 
5419 #endif
5420 
5421 	/*
5422 	 * Storing is the same operation as insert with the added caveat that it
5423 	 * can overwrite entries.  Although this seems simple enough, one may
5424 	 * want to examine what happens if a single store operation was to
5425 	 * overwrite multiple entries within a self-balancing B-Tree.
5426 	 */
5427 	mas_wr_store_setup(&wr_mas);
5428 	mas_wr_store_entry(&wr_mas);
5429 	return wr_mas.content;
5430 }
5431 EXPORT_SYMBOL_GPL(mas_store);
5432 
5433 /**
5434  * mas_store_gfp() - Store a value into the tree.
5435  * @mas: The maple state
5436  * @entry: The entry to store
5437  * @gfp: The GFP_FLAGS to use for allocations if necessary.
5438  *
5439  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5440  * be allocated.
5441  */
mas_store_gfp(struct ma_state * mas,void * entry,gfp_t gfp)5442 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5443 {
5444 	MA_WR_STATE(wr_mas, mas, entry);
5445 
5446 	mas_wr_store_setup(&wr_mas);
5447 	trace_ma_write(__func__, mas, 0, entry);
5448 retry:
5449 	mas_wr_store_entry(&wr_mas);
5450 	if (unlikely(mas_nomem(mas, gfp)))
5451 		goto retry;
5452 
5453 	if (unlikely(mas_is_err(mas)))
5454 		return xa_err(mas->node);
5455 
5456 	return 0;
5457 }
5458 EXPORT_SYMBOL_GPL(mas_store_gfp);
5459 
5460 /**
5461  * mas_store_prealloc() - Store a value into the tree using memory
5462  * preallocated in the maple state.
5463  * @mas: The maple state
5464  * @entry: The entry to store.
5465  */
mas_store_prealloc(struct ma_state * mas,void * entry)5466 void mas_store_prealloc(struct ma_state *mas, void *entry)
5467 {
5468 	MA_WR_STATE(wr_mas, mas, entry);
5469 
5470 	mas_wr_store_setup(&wr_mas);
5471 	trace_ma_write(__func__, mas, 0, entry);
5472 	mas_wr_store_entry(&wr_mas);
5473 	MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5474 	mas_destroy(mas);
5475 }
5476 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5477 
5478 /**
5479  * mas_preallocate() - Preallocate enough nodes for a store operation
5480  * @mas: The maple state
5481  * @entry: The entry that will be stored
5482  * @gfp: The GFP_FLAGS to use for allocations.
5483  *
5484  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5485  */
mas_preallocate(struct ma_state * mas,void * entry,gfp_t gfp)5486 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5487 {
5488 	MA_WR_STATE(wr_mas, mas, entry);
5489 	unsigned char node_size;
5490 	int request = 1;
5491 	int ret;
5492 
5493 
5494 	if (unlikely(!mas->index && mas->last == ULONG_MAX))
5495 		goto ask_now;
5496 
5497 	mas_wr_store_setup(&wr_mas);
5498 	wr_mas.content = mas_start(mas);
5499 	/* Root expand */
5500 	if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5501 		goto ask_now;
5502 
5503 	if (unlikely(!mas_wr_walk(&wr_mas))) {
5504 		/* Spanning store, use worst case for now */
5505 		request = 1 + mas_mt_height(mas) * 3;
5506 		goto ask_now;
5507 	}
5508 
5509 	/* At this point, we are at the leaf node that needs to be altered. */
5510 	/* Exact fit, no nodes needed. */
5511 	if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
5512 		return 0;
5513 
5514 	mas_wr_end_piv(&wr_mas);
5515 	node_size = mas_wr_new_end(&wr_mas);
5516 
5517 	/* Slot store, does not require additional nodes */
5518 	if (node_size == wr_mas.node_end) {
5519 		/* reuse node */
5520 		if (!mt_in_rcu(mas->tree))
5521 			return 0;
5522 		/* shifting boundary */
5523 		if (wr_mas.offset_end - mas->offset == 1)
5524 			return 0;
5525 	}
5526 
5527 	if (node_size >= mt_slots[wr_mas.type]) {
5528 		/* Split, worst case for now. */
5529 		request = 1 + mas_mt_height(mas) * 2;
5530 		goto ask_now;
5531 	}
5532 
5533 	/* New root needs a singe node */
5534 	if (unlikely(mte_is_root(mas->node)))
5535 		goto ask_now;
5536 
5537 	/* Potential spanning rebalance collapsing a node, use worst-case */
5538 	if (node_size  - 1 <= mt_min_slots[wr_mas.type])
5539 		request = mas_mt_height(mas) * 2 - 1;
5540 
5541 	/* node store, slot store needs one node */
5542 ask_now:
5543 	mas_node_count_gfp(mas, request, gfp);
5544 	mas->mas_flags |= MA_STATE_PREALLOC;
5545 	if (likely(!mas_is_err(mas)))
5546 		return 0;
5547 
5548 	mas_set_alloc_req(mas, 0);
5549 	ret = xa_err(mas->node);
5550 	mas_reset(mas);
5551 	mas_destroy(mas);
5552 	mas_reset(mas);
5553 	return ret;
5554 }
5555 EXPORT_SYMBOL_GPL(mas_preallocate);
5556 
5557 /*
5558  * mas_destroy() - destroy a maple state.
5559  * @mas: The maple state
5560  *
5561  * Upon completion, check the left-most node and rebalance against the node to
5562  * the right if necessary.  Frees any allocated nodes associated with this maple
5563  * state.
5564  */
mas_destroy(struct ma_state * mas)5565 void mas_destroy(struct ma_state *mas)
5566 {
5567 	struct maple_alloc *node;
5568 	unsigned long total;
5569 
5570 	/*
5571 	 * When using mas_for_each() to insert an expected number of elements,
5572 	 * it is possible that the number inserted is less than the expected
5573 	 * number.  To fix an invalid final node, a check is performed here to
5574 	 * rebalance the previous node with the final node.
5575 	 */
5576 	if (mas->mas_flags & MA_STATE_REBALANCE) {
5577 		unsigned char end;
5578 
5579 		mas_start(mas);
5580 		mtree_range_walk(mas);
5581 		end = mas_data_end(mas) + 1;
5582 		if (end < mt_min_slot_count(mas->node) - 1)
5583 			mas_destroy_rebalance(mas, end);
5584 
5585 		mas->mas_flags &= ~MA_STATE_REBALANCE;
5586 	}
5587 	mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5588 
5589 	total = mas_allocated(mas);
5590 	while (total) {
5591 		node = mas->alloc;
5592 		mas->alloc = node->slot[0];
5593 		if (node->node_count > 1) {
5594 			size_t count = node->node_count - 1;
5595 
5596 			mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5597 			total -= count;
5598 		}
5599 		mt_free_one(ma_mnode_ptr(node));
5600 		total--;
5601 	}
5602 
5603 	mas->alloc = NULL;
5604 }
5605 EXPORT_SYMBOL_GPL(mas_destroy);
5606 
5607 /*
5608  * mas_expected_entries() - Set the expected number of entries that will be inserted.
5609  * @mas: The maple state
5610  * @nr_entries: The number of expected entries.
5611  *
5612  * This will attempt to pre-allocate enough nodes to store the expected number
5613  * of entries.  The allocations will occur using the bulk allocator interface
5614  * for speed.  Please call mas_destroy() on the @mas after inserting the entries
5615  * to ensure any unused nodes are freed.
5616  *
5617  * Return: 0 on success, -ENOMEM if memory could not be allocated.
5618  */
mas_expected_entries(struct ma_state * mas,unsigned long nr_entries)5619 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5620 {
5621 	int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5622 	struct maple_enode *enode = mas->node;
5623 	int nr_nodes;
5624 	int ret;
5625 
5626 	/*
5627 	 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5628 	 * forking a process and duplicating the VMAs from one tree to a new
5629 	 * tree.  When such a situation arises, it is known that the new tree is
5630 	 * not going to be used until the entire tree is populated.  For
5631 	 * performance reasons, it is best to use a bulk load with RCU disabled.
5632 	 * This allows for optimistic splitting that favours the left and reuse
5633 	 * of nodes during the operation.
5634 	 */
5635 
5636 	/* Optimize splitting for bulk insert in-order */
5637 	mas->mas_flags |= MA_STATE_BULK;
5638 
5639 	/*
5640 	 * Avoid overflow, assume a gap between each entry and a trailing null.
5641 	 * If this is wrong, it just means allocation can happen during
5642 	 * insertion of entries.
5643 	 */
5644 	nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5645 	if (!mt_is_alloc(mas->tree))
5646 		nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5647 
5648 	/* Leaves; reduce slots to keep space for expansion */
5649 	nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5650 	/* Internal nodes */
5651 	nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5652 	/* Add working room for split (2 nodes) + new parents */
5653 	mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5654 
5655 	/* Detect if allocations run out */
5656 	mas->mas_flags |= MA_STATE_PREALLOC;
5657 
5658 	if (!mas_is_err(mas))
5659 		return 0;
5660 
5661 	ret = xa_err(mas->node);
5662 	mas->node = enode;
5663 	mas_destroy(mas);
5664 	return ret;
5665 
5666 }
5667 EXPORT_SYMBOL_GPL(mas_expected_entries);
5668 
mas_next_setup(struct ma_state * mas,unsigned long max,void ** entry)5669 static inline bool mas_next_setup(struct ma_state *mas, unsigned long max,
5670 		void **entry)
5671 {
5672 	bool was_none = mas_is_none(mas);
5673 
5674 	if (unlikely(mas->last >= max)) {
5675 		mas->node = MAS_OVERFLOW;
5676 		return true;
5677 	}
5678 
5679 	if (mas_is_active(mas))
5680 		return false;
5681 
5682 	if (mas_is_none(mas) || mas_is_paused(mas)) {
5683 		mas->node = MAS_START;
5684 	} else if (mas_is_overflow(mas)) {
5685 		/* Overflowed before, but the max changed */
5686 		mas->node = MAS_START;
5687 	} else if (mas_is_underflow(mas)) {
5688 		mas->node = MAS_START;
5689 		*entry = mas_walk(mas);
5690 		if (*entry)
5691 			return true;
5692 	}
5693 
5694 	if (mas_is_start(mas))
5695 		*entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5696 
5697 	if (mas_is_ptr(mas)) {
5698 		*entry = NULL;
5699 		if (was_none && mas->index == 0) {
5700 			mas->index = mas->last = 0;
5701 			return true;
5702 		}
5703 		mas->index = 1;
5704 		mas->last = ULONG_MAX;
5705 		mas->node = MAS_NONE;
5706 		return true;
5707 	}
5708 
5709 	if (mas_is_none(mas))
5710 		return true;
5711 
5712 	return false;
5713 }
5714 
5715 /**
5716  * mas_next() - Get the next entry.
5717  * @mas: The maple state
5718  * @max: The maximum index to check.
5719  *
5720  * Returns the next entry after @mas->index.
5721  * Must hold rcu_read_lock or the write lock.
5722  * Can return the zero entry.
5723  *
5724  * Return: The next entry or %NULL
5725  */
mas_next(struct ma_state * mas,unsigned long max)5726 void *mas_next(struct ma_state *mas, unsigned long max)
5727 {
5728 	void *entry = NULL;
5729 
5730 	if (mas_next_setup(mas, max, &entry))
5731 		return entry;
5732 
5733 	/* Retries on dead nodes handled by mas_next_slot */
5734 	return mas_next_slot(mas, max, false, true);
5735 }
5736 EXPORT_SYMBOL_GPL(mas_next);
5737 
5738 /**
5739  * mas_next_range() - Advance the maple state to the next range
5740  * @mas: The maple state
5741  * @max: The maximum index to check.
5742  *
5743  * Sets @mas->index and @mas->last to the range.
5744  * Must hold rcu_read_lock or the write lock.
5745  * Can return the zero entry.
5746  *
5747  * Return: The next entry or %NULL
5748  */
mas_next_range(struct ma_state * mas,unsigned long max)5749 void *mas_next_range(struct ma_state *mas, unsigned long max)
5750 {
5751 	void *entry = NULL;
5752 
5753 	if (mas_next_setup(mas, max, &entry))
5754 		return entry;
5755 
5756 	/* Retries on dead nodes handled by mas_next_slot */
5757 	return mas_next_slot(mas, max, true, true);
5758 }
5759 EXPORT_SYMBOL_GPL(mas_next_range);
5760 
5761 /**
5762  * mt_next() - get the next value in the maple tree
5763  * @mt: The maple tree
5764  * @index: The start index
5765  * @max: The maximum index to check
5766  *
5767  * Takes RCU read lock internally to protect the search, which does not
5768  * protect the returned pointer after dropping RCU read lock.
5769  * See also: Documentation/core-api/maple_tree.rst
5770  *
5771  * Return: The entry higher than @index or %NULL if nothing is found.
5772  */
mt_next(struct maple_tree * mt,unsigned long index,unsigned long max)5773 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5774 {
5775 	void *entry = NULL;
5776 	MA_STATE(mas, mt, index, index);
5777 
5778 	rcu_read_lock();
5779 	entry = mas_next(&mas, max);
5780 	rcu_read_unlock();
5781 	return entry;
5782 }
5783 EXPORT_SYMBOL_GPL(mt_next);
5784 
mas_prev_setup(struct ma_state * mas,unsigned long min,void ** entry)5785 static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min,
5786 		void **entry)
5787 {
5788 	if (unlikely(mas->index <= min)) {
5789 		mas->node = MAS_UNDERFLOW;
5790 		return true;
5791 	}
5792 
5793 	if (mas_is_active(mas))
5794 		return false;
5795 
5796 	if (mas_is_overflow(mas)) {
5797 		mas->node = MAS_START;
5798 		*entry = mas_walk(mas);
5799 		if (*entry)
5800 			return true;
5801 	}
5802 
5803 	if (mas_is_none(mas) || mas_is_paused(mas)) {
5804 		mas->node = MAS_START;
5805 	} else if (mas_is_underflow(mas)) {
5806 		/* underflowed before but the min changed */
5807 		mas->node = MAS_START;
5808 	}
5809 
5810 	if (mas_is_start(mas))
5811 		mas_walk(mas);
5812 
5813 	if (unlikely(mas_is_ptr(mas))) {
5814 		if (!mas->index)
5815 			goto none;
5816 		mas->index = mas->last = 0;
5817 		*entry = mas_root(mas);
5818 		return true;
5819 	}
5820 
5821 	if (mas_is_none(mas)) {
5822 		if (mas->index) {
5823 			/* Walked to out-of-range pointer? */
5824 			mas->index = mas->last = 0;
5825 			mas->node = MAS_ROOT;
5826 			*entry = mas_root(mas);
5827 			return true;
5828 		}
5829 		return true;
5830 	}
5831 
5832 	return false;
5833 
5834 none:
5835 	mas->node = MAS_NONE;
5836 	return true;
5837 }
5838 
5839 /**
5840  * mas_prev() - Get the previous entry
5841  * @mas: The maple state
5842  * @min: The minimum value to check.
5843  *
5844  * Must hold rcu_read_lock or the write lock.
5845  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5846  * searchable nodes.
5847  *
5848  * Return: the previous value or %NULL.
5849  */
mas_prev(struct ma_state * mas,unsigned long min)5850 void *mas_prev(struct ma_state *mas, unsigned long min)
5851 {
5852 	void *entry = NULL;
5853 
5854 	if (mas_prev_setup(mas, min, &entry))
5855 		return entry;
5856 
5857 	return mas_prev_slot(mas, min, false, true);
5858 }
5859 EXPORT_SYMBOL_GPL(mas_prev);
5860 
5861 /**
5862  * mas_prev_range() - Advance to the previous range
5863  * @mas: The maple state
5864  * @min: The minimum value to check.
5865  *
5866  * Sets @mas->index and @mas->last to the range.
5867  * Must hold rcu_read_lock or the write lock.
5868  * Will reset mas to MAS_START if the node is MAS_NONE.  Will stop on not
5869  * searchable nodes.
5870  *
5871  * Return: the previous value or %NULL.
5872  */
mas_prev_range(struct ma_state * mas,unsigned long min)5873 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5874 {
5875 	void *entry = NULL;
5876 
5877 	if (mas_prev_setup(mas, min, &entry))
5878 		return entry;
5879 
5880 	return mas_prev_slot(mas, min, true, true);
5881 }
5882 EXPORT_SYMBOL_GPL(mas_prev_range);
5883 
5884 /**
5885  * mt_prev() - get the previous value in the maple tree
5886  * @mt: The maple tree
5887  * @index: The start index
5888  * @min: The minimum index to check
5889  *
5890  * Takes RCU read lock internally to protect the search, which does not
5891  * protect the returned pointer after dropping RCU read lock.
5892  * See also: Documentation/core-api/maple_tree.rst
5893  *
5894  * Return: The entry before @index or %NULL if nothing is found.
5895  */
mt_prev(struct maple_tree * mt,unsigned long index,unsigned long min)5896 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5897 {
5898 	void *entry = NULL;
5899 	MA_STATE(mas, mt, index, index);
5900 
5901 	rcu_read_lock();
5902 	entry = mas_prev(&mas, min);
5903 	rcu_read_unlock();
5904 	return entry;
5905 }
5906 EXPORT_SYMBOL_GPL(mt_prev);
5907 
5908 /**
5909  * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5910  * @mas: The maple state to pause
5911  *
5912  * Some users need to pause a walk and drop the lock they're holding in
5913  * order to yield to a higher priority thread or carry out an operation
5914  * on an entry.  Those users should call this function before they drop
5915  * the lock.  It resets the @mas to be suitable for the next iteration
5916  * of the loop after the user has reacquired the lock.  If most entries
5917  * found during a walk require you to call mas_pause(), the mt_for_each()
5918  * iterator may be more appropriate.
5919  *
5920  */
mas_pause(struct ma_state * mas)5921 void mas_pause(struct ma_state *mas)
5922 {
5923 	mas->node = MAS_PAUSE;
5924 }
5925 EXPORT_SYMBOL_GPL(mas_pause);
5926 
5927 /**
5928  * mas_find_setup() - Internal function to set up mas_find*().
5929  * @mas: The maple state
5930  * @max: The maximum index
5931  * @entry: Pointer to the entry
5932  *
5933  * Returns: True if entry is the answer, false otherwise.
5934  */
mas_find_setup(struct ma_state * mas,unsigned long max,void ** entry)5935 static inline bool mas_find_setup(struct ma_state *mas, unsigned long max,
5936 		void **entry)
5937 {
5938 	if (mas_is_active(mas)) {
5939 		if (mas->last < max)
5940 			return false;
5941 
5942 		return true;
5943 	}
5944 
5945 	if (mas_is_paused(mas)) {
5946 		if (unlikely(mas->last >= max))
5947 			return true;
5948 
5949 		mas->index = ++mas->last;
5950 		mas->node = MAS_START;
5951 	} else if (mas_is_none(mas)) {
5952 		if (unlikely(mas->last >= max))
5953 			return true;
5954 
5955 		mas->index = mas->last;
5956 		mas->node = MAS_START;
5957 	} else if (mas_is_overflow(mas) || mas_is_underflow(mas)) {
5958 		if (mas->index > max) {
5959 			mas->node = MAS_OVERFLOW;
5960 			return true;
5961 		}
5962 
5963 		mas->node = MAS_START;
5964 	}
5965 
5966 	if (mas_is_start(mas)) {
5967 		/* First run or continue */
5968 		if (mas->index > max)
5969 			return true;
5970 
5971 		*entry = mas_walk(mas);
5972 		if (*entry)
5973 			return true;
5974 
5975 	}
5976 
5977 	if (unlikely(!mas_searchable(mas))) {
5978 		if (unlikely(mas_is_ptr(mas)))
5979 			goto ptr_out_of_range;
5980 
5981 		return true;
5982 	}
5983 
5984 	if (mas->index == max)
5985 		return true;
5986 
5987 	return false;
5988 
5989 ptr_out_of_range:
5990 	mas->node = MAS_NONE;
5991 	mas->index = 1;
5992 	mas->last = ULONG_MAX;
5993 	return true;
5994 }
5995 
5996 /**
5997  * mas_find() - On the first call, find the entry at or after mas->index up to
5998  * %max.  Otherwise, find the entry after mas->index.
5999  * @mas: The maple state
6000  * @max: The maximum value to check.
6001  *
6002  * Must hold rcu_read_lock or the write lock.
6003  * If an entry exists, last and index are updated accordingly.
6004  * May set @mas->node to MAS_NONE.
6005  *
6006  * Return: The entry or %NULL.
6007  */
mas_find(struct ma_state * mas,unsigned long max)6008 void *mas_find(struct ma_state *mas, unsigned long max)
6009 {
6010 	void *entry = NULL;
6011 
6012 	if (mas_find_setup(mas, max, &entry))
6013 		return entry;
6014 
6015 	/* Retries on dead nodes handled by mas_next_slot */
6016 	return mas_next_slot(mas, max, false, false);
6017 }
6018 EXPORT_SYMBOL_GPL(mas_find);
6019 
6020 /**
6021  * mas_find_range() - On the first call, find the entry at or after
6022  * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
6023  * @mas: The maple state
6024  * @max: The maximum value to check.
6025  *
6026  * Must hold rcu_read_lock or the write lock.
6027  * If an entry exists, last and index are updated accordingly.
6028  * May set @mas->node to MAS_NONE.
6029  *
6030  * Return: The entry or %NULL.
6031  */
mas_find_range(struct ma_state * mas,unsigned long max)6032 void *mas_find_range(struct ma_state *mas, unsigned long max)
6033 {
6034 	void *entry = NULL;
6035 
6036 	if (mas_find_setup(mas, max, &entry))
6037 		return entry;
6038 
6039 	/* Retries on dead nodes handled by mas_next_slot */
6040 	return mas_next_slot(mas, max, true, false);
6041 }
6042 EXPORT_SYMBOL_GPL(mas_find_range);
6043 
6044 /**
6045  * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6046  * @mas: The maple state
6047  * @min: The minimum index
6048  * @entry: Pointer to the entry
6049  *
6050  * Returns: True if entry is the answer, false otherwise.
6051  */
mas_find_rev_setup(struct ma_state * mas,unsigned long min,void ** entry)6052 static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6053 		void **entry)
6054 {
6055 	if (mas_is_active(mas)) {
6056 		if (mas->index > min)
6057 			return false;
6058 
6059 		return true;
6060 	}
6061 
6062 	if (mas_is_paused(mas)) {
6063 		if (unlikely(mas->index <= min)) {
6064 			mas->node = MAS_NONE;
6065 			return true;
6066 		}
6067 		mas->node = MAS_START;
6068 		mas->last = --mas->index;
6069 	} else if (mas_is_none(mas)) {
6070 		if (mas->index <= min)
6071 			goto none;
6072 
6073 		mas->last = mas->index;
6074 		mas->node = MAS_START;
6075 	} else if (mas_is_underflow(mas) || mas_is_overflow(mas)) {
6076 		if (mas->last <= min) {
6077 			mas->node = MAS_UNDERFLOW;
6078 			return true;
6079 		}
6080 
6081 		mas->node = MAS_START;
6082 	}
6083 
6084 	if (mas_is_start(mas)) {
6085 		/* First run or continue */
6086 		if (mas->index < min)
6087 			return true;
6088 
6089 		*entry = mas_walk(mas);
6090 		if (*entry)
6091 			return true;
6092 	}
6093 
6094 	if (unlikely(!mas_searchable(mas))) {
6095 		if (mas_is_ptr(mas))
6096 			goto none;
6097 
6098 		if (mas_is_none(mas)) {
6099 			/*
6100 			 * Walked to the location, and there was nothing so the
6101 			 * previous location is 0.
6102 			 */
6103 			mas->last = mas->index = 0;
6104 			mas->node = MAS_ROOT;
6105 			*entry = mas_root(mas);
6106 			return true;
6107 		}
6108 	}
6109 
6110 	if (mas->index < min)
6111 		return true;
6112 
6113 	return false;
6114 
6115 none:
6116 	mas->node = MAS_NONE;
6117 	return true;
6118 }
6119 
6120 /**
6121  * mas_find_rev: On the first call, find the first non-null entry at or below
6122  * mas->index down to %min.  Otherwise find the first non-null entry below
6123  * mas->index down to %min.
6124  * @mas: The maple state
6125  * @min: The minimum value to check.
6126  *
6127  * Must hold rcu_read_lock or the write lock.
6128  * If an entry exists, last and index are updated accordingly.
6129  * May set @mas->node to MAS_NONE.
6130  *
6131  * Return: The entry or %NULL.
6132  */
mas_find_rev(struct ma_state * mas,unsigned long min)6133 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6134 {
6135 	void *entry = NULL;
6136 
6137 	if (mas_find_rev_setup(mas, min, &entry))
6138 		return entry;
6139 
6140 	/* Retries on dead nodes handled by mas_prev_slot */
6141 	return mas_prev_slot(mas, min, false, false);
6142 
6143 }
6144 EXPORT_SYMBOL_GPL(mas_find_rev);
6145 
6146 /**
6147  * mas_find_range_rev: On the first call, find the first non-null entry at or
6148  * below mas->index down to %min.  Otherwise advance to the previous slot after
6149  * mas->index down to %min.
6150  * @mas: The maple state
6151  * @min: The minimum value to check.
6152  *
6153  * Must hold rcu_read_lock or the write lock.
6154  * If an entry exists, last and index are updated accordingly.
6155  * May set @mas->node to MAS_NONE.
6156  *
6157  * Return: The entry or %NULL.
6158  */
mas_find_range_rev(struct ma_state * mas,unsigned long min)6159 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6160 {
6161 	void *entry = NULL;
6162 
6163 	if (mas_find_rev_setup(mas, min, &entry))
6164 		return entry;
6165 
6166 	/* Retries on dead nodes handled by mas_prev_slot */
6167 	return mas_prev_slot(mas, min, true, false);
6168 }
6169 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6170 
6171 /**
6172  * mas_erase() - Find the range in which index resides and erase the entire
6173  * range.
6174  * @mas: The maple state
6175  *
6176  * Must hold the write lock.
6177  * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6178  * erases that range.
6179  *
6180  * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6181  */
mas_erase(struct ma_state * mas)6182 void *mas_erase(struct ma_state *mas)
6183 {
6184 	void *entry;
6185 	MA_WR_STATE(wr_mas, mas, NULL);
6186 
6187 	if (mas_is_none(mas) || mas_is_paused(mas))
6188 		mas->node = MAS_START;
6189 
6190 	/* Retry unnecessary when holding the write lock. */
6191 	entry = mas_state_walk(mas);
6192 	if (!entry)
6193 		return NULL;
6194 
6195 write_retry:
6196 	/* Must reset to ensure spanning writes of last slot are detected */
6197 	mas_reset(mas);
6198 	mas_wr_store_setup(&wr_mas);
6199 	mas_wr_store_entry(&wr_mas);
6200 	if (mas_nomem(mas, GFP_KERNEL))
6201 		goto write_retry;
6202 
6203 	return entry;
6204 }
6205 EXPORT_SYMBOL_GPL(mas_erase);
6206 
6207 /**
6208  * mas_nomem() - Check if there was an error allocating and do the allocation
6209  * if necessary If there are allocations, then free them.
6210  * @mas: The maple state
6211  * @gfp: The GFP_FLAGS to use for allocations
6212  * Return: true on allocation, false otherwise.
6213  */
mas_nomem(struct ma_state * mas,gfp_t gfp)6214 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6215 	__must_hold(mas->tree->ma_lock)
6216 {
6217 	if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6218 		mas_destroy(mas);
6219 		return false;
6220 	}
6221 
6222 	if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6223 		mtree_unlock(mas->tree);
6224 		mas_alloc_nodes(mas, gfp);
6225 		mtree_lock(mas->tree);
6226 	} else {
6227 		mas_alloc_nodes(mas, gfp);
6228 	}
6229 
6230 	if (!mas_allocated(mas))
6231 		return false;
6232 
6233 	mas->node = MAS_START;
6234 	return true;
6235 }
6236 
maple_tree_init(void)6237 void __init maple_tree_init(void)
6238 {
6239 	maple_node_cache = kmem_cache_create("maple_node",
6240 			sizeof(struct maple_node), sizeof(struct maple_node),
6241 			SLAB_PANIC, NULL);
6242 }
6243 
6244 /**
6245  * mtree_load() - Load a value stored in a maple tree
6246  * @mt: The maple tree
6247  * @index: The index to load
6248  *
6249  * Return: the entry or %NULL
6250  */
mtree_load(struct maple_tree * mt,unsigned long index)6251 void *mtree_load(struct maple_tree *mt, unsigned long index)
6252 {
6253 	MA_STATE(mas, mt, index, index);
6254 	void *entry;
6255 
6256 	trace_ma_read(__func__, &mas);
6257 	rcu_read_lock();
6258 retry:
6259 	entry = mas_start(&mas);
6260 	if (unlikely(mas_is_none(&mas)))
6261 		goto unlock;
6262 
6263 	if (unlikely(mas_is_ptr(&mas))) {
6264 		if (index)
6265 			entry = NULL;
6266 
6267 		goto unlock;
6268 	}
6269 
6270 	entry = mtree_lookup_walk(&mas);
6271 	if (!entry && unlikely(mas_is_start(&mas)))
6272 		goto retry;
6273 unlock:
6274 	rcu_read_unlock();
6275 	if (xa_is_zero(entry))
6276 		return NULL;
6277 
6278 	return entry;
6279 }
6280 EXPORT_SYMBOL(mtree_load);
6281 
6282 /**
6283  * mtree_store_range() - Store an entry at a given range.
6284  * @mt: The maple tree
6285  * @index: The start of the range
6286  * @last: The end of the range
6287  * @entry: The entry to store
6288  * @gfp: The GFP_FLAGS to use for allocations
6289  *
6290  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6291  * be allocated.
6292  */
mtree_store_range(struct maple_tree * mt,unsigned long index,unsigned long last,void * entry,gfp_t gfp)6293 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6294 		unsigned long last, void *entry, gfp_t gfp)
6295 {
6296 	MA_STATE(mas, mt, index, last);
6297 	MA_WR_STATE(wr_mas, &mas, entry);
6298 
6299 	trace_ma_write(__func__, &mas, 0, entry);
6300 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6301 		return -EINVAL;
6302 
6303 	if (index > last)
6304 		return -EINVAL;
6305 
6306 	mtree_lock(mt);
6307 retry:
6308 	mas_wr_store_entry(&wr_mas);
6309 	if (mas_nomem(&mas, gfp))
6310 		goto retry;
6311 
6312 	mtree_unlock(mt);
6313 	if (mas_is_err(&mas))
6314 		return xa_err(mas.node);
6315 
6316 	return 0;
6317 }
6318 EXPORT_SYMBOL(mtree_store_range);
6319 
6320 /**
6321  * mtree_store() - Store an entry at a given index.
6322  * @mt: The maple tree
6323  * @index: The index to store the value
6324  * @entry: The entry to store
6325  * @gfp: The GFP_FLAGS to use for allocations
6326  *
6327  * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6328  * be allocated.
6329  */
mtree_store(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6330 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6331 		 gfp_t gfp)
6332 {
6333 	return mtree_store_range(mt, index, index, entry, gfp);
6334 }
6335 EXPORT_SYMBOL(mtree_store);
6336 
6337 /**
6338  * mtree_insert_range() - Insert an entry at a given range if there is no value.
6339  * @mt: The maple tree
6340  * @first: The start of the range
6341  * @last: The end of the range
6342  * @entry: The entry to store
6343  * @gfp: The GFP_FLAGS to use for allocations.
6344  *
6345  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6346  * request, -ENOMEM if memory could not be allocated.
6347  */
mtree_insert_range(struct maple_tree * mt,unsigned long first,unsigned long last,void * entry,gfp_t gfp)6348 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6349 		unsigned long last, void *entry, gfp_t gfp)
6350 {
6351 	MA_STATE(ms, mt, first, last);
6352 
6353 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
6354 		return -EINVAL;
6355 
6356 	if (first > last)
6357 		return -EINVAL;
6358 
6359 	mtree_lock(mt);
6360 retry:
6361 	mas_insert(&ms, entry);
6362 	if (mas_nomem(&ms, gfp))
6363 		goto retry;
6364 
6365 	mtree_unlock(mt);
6366 	if (mas_is_err(&ms))
6367 		return xa_err(ms.node);
6368 
6369 	return 0;
6370 }
6371 EXPORT_SYMBOL(mtree_insert_range);
6372 
6373 /**
6374  * mtree_insert() - Insert an entry at a given index if there is no value.
6375  * @mt: The maple tree
6376  * @index : The index to store the value
6377  * @entry: The entry to store
6378  * @gfp: The GFP_FLAGS to use for allocations.
6379  *
6380  * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6381  * request, -ENOMEM if memory could not be allocated.
6382  */
mtree_insert(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6383 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6384 		 gfp_t gfp)
6385 {
6386 	return mtree_insert_range(mt, index, index, entry, gfp);
6387 }
6388 EXPORT_SYMBOL(mtree_insert);
6389 
mtree_alloc_range(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6390 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6391 		void *entry, unsigned long size, unsigned long min,
6392 		unsigned long max, gfp_t gfp)
6393 {
6394 	int ret = 0;
6395 
6396 	MA_STATE(mas, mt, 0, 0);
6397 	if (!mt_is_alloc(mt))
6398 		return -EINVAL;
6399 
6400 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6401 		return -EINVAL;
6402 
6403 	mtree_lock(mt);
6404 retry:
6405 	ret = mas_empty_area(&mas, min, max, size);
6406 	if (ret)
6407 		goto unlock;
6408 
6409 	mas_insert(&mas, entry);
6410 	/*
6411 	 * mas_nomem() may release the lock, causing the allocated area
6412 	 * to be unavailable, so try to allocate a free area again.
6413 	 */
6414 	if (mas_nomem(&mas, gfp))
6415 		goto retry;
6416 
6417 	if (mas_is_err(&mas))
6418 		ret = xa_err(mas.node);
6419 	else
6420 		*startp = mas.index;
6421 
6422 unlock:
6423 	mtree_unlock(mt);
6424 	return ret;
6425 }
6426 EXPORT_SYMBOL(mtree_alloc_range);
6427 
mtree_alloc_rrange(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6428 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6429 		void *entry, unsigned long size, unsigned long min,
6430 		unsigned long max, gfp_t gfp)
6431 {
6432 	int ret = 0;
6433 
6434 	MA_STATE(mas, mt, 0, 0);
6435 	if (!mt_is_alloc(mt))
6436 		return -EINVAL;
6437 
6438 	if (WARN_ON_ONCE(mt_is_reserved(entry)))
6439 		return -EINVAL;
6440 
6441 	mtree_lock(mt);
6442 retry:
6443 	ret = mas_empty_area_rev(&mas, min, max, size);
6444 	if (ret)
6445 		goto unlock;
6446 
6447 	mas_insert(&mas, entry);
6448 	/*
6449 	 * mas_nomem() may release the lock, causing the allocated area
6450 	 * to be unavailable, so try to allocate a free area again.
6451 	 */
6452 	if (mas_nomem(&mas, gfp))
6453 		goto retry;
6454 
6455 	if (mas_is_err(&mas))
6456 		ret = xa_err(mas.node);
6457 	else
6458 		*startp = mas.index;
6459 
6460 unlock:
6461 	mtree_unlock(mt);
6462 	return ret;
6463 }
6464 EXPORT_SYMBOL(mtree_alloc_rrange);
6465 
6466 /**
6467  * mtree_erase() - Find an index and erase the entire range.
6468  * @mt: The maple tree
6469  * @index: The index to erase
6470  *
6471  * Erasing is the same as a walk to an entry then a store of a NULL to that
6472  * ENTIRE range.  In fact, it is implemented as such using the advanced API.
6473  *
6474  * Return: The entry stored at the @index or %NULL
6475  */
mtree_erase(struct maple_tree * mt,unsigned long index)6476 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6477 {
6478 	void *entry = NULL;
6479 
6480 	MA_STATE(mas, mt, index, index);
6481 	trace_ma_op(__func__, &mas);
6482 
6483 	mtree_lock(mt);
6484 	entry = mas_erase(&mas);
6485 	mtree_unlock(mt);
6486 
6487 	return entry;
6488 }
6489 EXPORT_SYMBOL(mtree_erase);
6490 
6491 /*
6492  * mas_dup_free() - Free an incomplete duplication of a tree.
6493  * @mas: The maple state of a incomplete tree.
6494  *
6495  * The parameter @mas->node passed in indicates that the allocation failed on
6496  * this node. This function frees all nodes starting from @mas->node in the
6497  * reverse order of mas_dup_build(). There is no need to hold the source tree
6498  * lock at this time.
6499  */
mas_dup_free(struct ma_state * mas)6500 static void mas_dup_free(struct ma_state *mas)
6501 {
6502 	struct maple_node *node;
6503 	enum maple_type type;
6504 	void __rcu **slots;
6505 	unsigned char count, i;
6506 
6507 	/* Maybe the first node allocation failed. */
6508 	if (mas_is_none(mas))
6509 		return;
6510 
6511 	while (!mte_is_root(mas->node)) {
6512 		mas_ascend(mas);
6513 		if (mas->offset) {
6514 			mas->offset--;
6515 			do {
6516 				mas_descend(mas);
6517 				mas->offset = mas_data_end(mas);
6518 			} while (!mte_is_leaf(mas->node));
6519 
6520 			mas_ascend(mas);
6521 		}
6522 
6523 		node = mte_to_node(mas->node);
6524 		type = mte_node_type(mas->node);
6525 		slots = ma_slots(node, type);
6526 		count = mas_data_end(mas) + 1;
6527 		for (i = 0; i < count; i++)
6528 			((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6529 		mt_free_bulk(count, slots);
6530 	}
6531 
6532 	node = mte_to_node(mas->node);
6533 	mt_free_one(node);
6534 }
6535 
6536 /*
6537  * mas_copy_node() - Copy a maple node and replace the parent.
6538  * @mas: The maple state of source tree.
6539  * @new_mas: The maple state of new tree.
6540  * @parent: The parent of the new node.
6541  *
6542  * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6543  * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6544  */
mas_copy_node(struct ma_state * mas,struct ma_state * new_mas,struct maple_pnode * parent)6545 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6546 		struct maple_pnode *parent)
6547 {
6548 	struct maple_node *node = mte_to_node(mas->node);
6549 	struct maple_node *new_node = mte_to_node(new_mas->node);
6550 	unsigned long val;
6551 
6552 	/* Copy the node completely. */
6553 	memcpy(new_node, node, sizeof(struct maple_node));
6554 	/* Update the parent node pointer. */
6555 	val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6556 	new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6557 }
6558 
6559 /*
6560  * mas_dup_alloc() - Allocate child nodes for a maple node.
6561  * @mas: The maple state of source tree.
6562  * @new_mas: The maple state of new tree.
6563  * @gfp: The GFP_FLAGS to use for allocations.
6564  *
6565  * This function allocates child nodes for @new_mas->node during the duplication
6566  * process. If memory allocation fails, @mas is set to -ENOMEM.
6567  */
mas_dup_alloc(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6568 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6569 		gfp_t gfp)
6570 {
6571 	struct maple_node *node = mte_to_node(mas->node);
6572 	struct maple_node *new_node = mte_to_node(new_mas->node);
6573 	enum maple_type type;
6574 	unsigned char request, count, i;
6575 	void __rcu **slots;
6576 	void __rcu **new_slots;
6577 	unsigned long val;
6578 
6579 	/* Allocate memory for child nodes. */
6580 	type = mte_node_type(mas->node);
6581 	new_slots = ma_slots(new_node, type);
6582 	request = mas_data_end(mas) + 1;
6583 	count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6584 	if (unlikely(count < request)) {
6585 		memset(new_slots, 0, request * sizeof(void *));
6586 		mas_set_err(mas, -ENOMEM);
6587 		return;
6588 	}
6589 
6590 	/* Restore node type information in slots. */
6591 	slots = ma_slots(node, type);
6592 	for (i = 0; i < count; i++) {
6593 		val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6594 		val &= MAPLE_NODE_MASK;
6595 		((unsigned long *)new_slots)[i] |= val;
6596 	}
6597 }
6598 
6599 /*
6600  * mas_dup_build() - Build a new maple tree from a source tree
6601  * @mas: The maple state of source tree, need to be in MAS_START state.
6602  * @new_mas: The maple state of new tree, need to be in MAS_START state.
6603  * @gfp: The GFP_FLAGS to use for allocations.
6604  *
6605  * This function builds a new tree in DFS preorder. If the memory allocation
6606  * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6607  * last node. mas_dup_free() will free the incomplete duplication of a tree.
6608  *
6609  * Note that the attributes of the two trees need to be exactly the same, and the
6610  * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6611  */
mas_dup_build(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6612 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6613 		gfp_t gfp)
6614 {
6615 	struct maple_node *node;
6616 	struct maple_pnode *parent = NULL;
6617 	struct maple_enode *root;
6618 	enum maple_type type;
6619 
6620 	if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6621 	    unlikely(!mtree_empty(new_mas->tree))) {
6622 		mas_set_err(mas, -EINVAL);
6623 		return;
6624 	}
6625 
6626 	root = mas_start(mas);
6627 	if (mas_is_ptr(mas) || mas_is_none(mas))
6628 		goto set_new_tree;
6629 
6630 	node = mt_alloc_one(gfp);
6631 	if (!node) {
6632 		new_mas->node = MAS_NONE;
6633 		mas_set_err(mas, -ENOMEM);
6634 		return;
6635 	}
6636 
6637 	type = mte_node_type(mas->node);
6638 	root = mt_mk_node(node, type);
6639 	new_mas->node = root;
6640 	new_mas->min = 0;
6641 	new_mas->max = ULONG_MAX;
6642 	root = mte_mk_root(root);
6643 	while (1) {
6644 		mas_copy_node(mas, new_mas, parent);
6645 		if (!mte_is_leaf(mas->node)) {
6646 			/* Only allocate child nodes for non-leaf nodes. */
6647 			mas_dup_alloc(mas, new_mas, gfp);
6648 			if (unlikely(mas_is_err(mas)))
6649 				return;
6650 		} else {
6651 			/*
6652 			 * This is the last leaf node and duplication is
6653 			 * completed.
6654 			 */
6655 			if (mas->max == ULONG_MAX)
6656 				goto done;
6657 
6658 			/* This is not the last leaf node and needs to go up. */
6659 			do {
6660 				mas_ascend(mas);
6661 				mas_ascend(new_mas);
6662 			} while (mas->offset == mas_data_end(mas));
6663 
6664 			/* Move to the next subtree. */
6665 			mas->offset++;
6666 			new_mas->offset++;
6667 		}
6668 
6669 		mas_descend(mas);
6670 		parent = ma_parent_ptr(mte_to_node(new_mas->node));
6671 		mas_descend(new_mas);
6672 		mas->offset = 0;
6673 		new_mas->offset = 0;
6674 	}
6675 done:
6676 	/* Specially handle the parent of the root node. */
6677 	mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6678 set_new_tree:
6679 	/* Make them the same height */
6680 	new_mas->tree->ma_flags = mas->tree->ma_flags;
6681 	rcu_assign_pointer(new_mas->tree->ma_root, root);
6682 }
6683 
6684 /**
6685  * __mt_dup(): Duplicate an entire maple tree
6686  * @mt: The source maple tree
6687  * @new: The new maple tree
6688  * @gfp: The GFP_FLAGS to use for allocations
6689  *
6690  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6691  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6692  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6693  * source node except for all the addresses stored in it. It will be faster than
6694  * traversing all elements in the source tree and inserting them one by one into
6695  * the new tree.
6696  * The user needs to ensure that the attributes of the source tree and the new
6697  * tree are the same, and the new tree needs to be an empty tree, otherwise
6698  * -EINVAL will be returned.
6699  * Note that the user needs to manually lock the source tree and the new tree.
6700  *
6701  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6702  * the attributes of the two trees are different or the new tree is not an empty
6703  * tree.
6704  */
__mt_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6705 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6706 {
6707 	int ret = 0;
6708 	MA_STATE(mas, mt, 0, 0);
6709 	MA_STATE(new_mas, new, 0, 0);
6710 
6711 	mas_dup_build(&mas, &new_mas, gfp);
6712 	if (unlikely(mas_is_err(&mas))) {
6713 		ret = xa_err(mas.node);
6714 		if (ret == -ENOMEM)
6715 			mas_dup_free(&new_mas);
6716 	}
6717 
6718 	return ret;
6719 }
6720 EXPORT_SYMBOL(__mt_dup);
6721 
6722 /**
6723  * mtree_dup(): Duplicate an entire maple tree
6724  * @mt: The source maple tree
6725  * @new: The new maple tree
6726  * @gfp: The GFP_FLAGS to use for allocations
6727  *
6728  * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6729  * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6730  * new child nodes in non-leaf nodes. The new node is exactly the same as the
6731  * source node except for all the addresses stored in it. It will be faster than
6732  * traversing all elements in the source tree and inserting them one by one into
6733  * the new tree.
6734  * The user needs to ensure that the attributes of the source tree and the new
6735  * tree are the same, and the new tree needs to be an empty tree, otherwise
6736  * -EINVAL will be returned.
6737  *
6738  * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6739  * the attributes of the two trees are different or the new tree is not an empty
6740  * tree.
6741  */
mtree_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6742 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6743 {
6744 	int ret = 0;
6745 	MA_STATE(mas, mt, 0, 0);
6746 	MA_STATE(new_mas, new, 0, 0);
6747 
6748 	mas_lock(&new_mas);
6749 	mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6750 	mas_dup_build(&mas, &new_mas, gfp);
6751 	mas_unlock(&mas);
6752 	if (unlikely(mas_is_err(&mas))) {
6753 		ret = xa_err(mas.node);
6754 		if (ret == -ENOMEM)
6755 			mas_dup_free(&new_mas);
6756 	}
6757 
6758 	mas_unlock(&new_mas);
6759 	return ret;
6760 }
6761 EXPORT_SYMBOL(mtree_dup);
6762 
6763 /**
6764  * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6765  * @mt: The maple tree
6766  *
6767  * Note: Does not handle locking.
6768  */
__mt_destroy(struct maple_tree * mt)6769 void __mt_destroy(struct maple_tree *mt)
6770 {
6771 	void *root = mt_root_locked(mt);
6772 
6773 	rcu_assign_pointer(mt->ma_root, NULL);
6774 	if (xa_is_node(root))
6775 		mte_destroy_walk(root, mt);
6776 
6777 	mt->ma_flags = mt_attr(mt);
6778 }
6779 EXPORT_SYMBOL_GPL(__mt_destroy);
6780 
6781 /**
6782  * mtree_destroy() - Destroy a maple tree
6783  * @mt: The maple tree
6784  *
6785  * Frees all resources used by the tree.  Handles locking.
6786  */
mtree_destroy(struct maple_tree * mt)6787 void mtree_destroy(struct maple_tree *mt)
6788 {
6789 	mtree_lock(mt);
6790 	__mt_destroy(mt);
6791 	mtree_unlock(mt);
6792 }
6793 EXPORT_SYMBOL(mtree_destroy);
6794 
6795 /**
6796  * mt_find() - Search from the start up until an entry is found.
6797  * @mt: The maple tree
6798  * @index: Pointer which contains the start location of the search
6799  * @max: The maximum value of the search range
6800  *
6801  * Takes RCU read lock internally to protect the search, which does not
6802  * protect the returned pointer after dropping RCU read lock.
6803  * See also: Documentation/core-api/maple_tree.rst
6804  *
6805  * In case that an entry is found @index is updated to point to the next
6806  * possible entry independent whether the found entry is occupying a
6807  * single index or a range if indices.
6808  *
6809  * Return: The entry at or after the @index or %NULL
6810  */
mt_find(struct maple_tree * mt,unsigned long * index,unsigned long max)6811 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6812 {
6813 	MA_STATE(mas, mt, *index, *index);
6814 	void *entry;
6815 #ifdef CONFIG_DEBUG_MAPLE_TREE
6816 	unsigned long copy = *index;
6817 #endif
6818 
6819 	trace_ma_read(__func__, &mas);
6820 
6821 	if ((*index) > max)
6822 		return NULL;
6823 
6824 	rcu_read_lock();
6825 retry:
6826 	entry = mas_state_walk(&mas);
6827 	if (mas_is_start(&mas))
6828 		goto retry;
6829 
6830 	if (unlikely(xa_is_zero(entry)))
6831 		entry = NULL;
6832 
6833 	if (entry)
6834 		goto unlock;
6835 
6836 	while (mas_searchable(&mas) && (mas.last < max)) {
6837 		entry = mas_next_entry(&mas, max);
6838 		if (likely(entry && !xa_is_zero(entry)))
6839 			break;
6840 	}
6841 
6842 	if (unlikely(xa_is_zero(entry)))
6843 		entry = NULL;
6844 unlock:
6845 	rcu_read_unlock();
6846 	if (likely(entry)) {
6847 		*index = mas.last + 1;
6848 #ifdef CONFIG_DEBUG_MAPLE_TREE
6849 		if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6850 			pr_err("index not increased! %lx <= %lx\n",
6851 			       *index, copy);
6852 #endif
6853 	}
6854 
6855 	return entry;
6856 }
6857 EXPORT_SYMBOL(mt_find);
6858 
6859 /**
6860  * mt_find_after() - Search from the start up until an entry is found.
6861  * @mt: The maple tree
6862  * @index: Pointer which contains the start location of the search
6863  * @max: The maximum value to check
6864  *
6865  * Same as mt_find() except that it checks @index for 0 before
6866  * searching. If @index == 0, the search is aborted. This covers a wrap
6867  * around of @index to 0 in an iterator loop.
6868  *
6869  * Return: The entry at or after the @index or %NULL
6870  */
mt_find_after(struct maple_tree * mt,unsigned long * index,unsigned long max)6871 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6872 		    unsigned long max)
6873 {
6874 	if (!(*index))
6875 		return NULL;
6876 
6877 	return mt_find(mt, index, max);
6878 }
6879 EXPORT_SYMBOL(mt_find_after);
6880 
6881 #ifdef CONFIG_DEBUG_MAPLE_TREE
6882 atomic_t maple_tree_tests_run;
6883 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6884 atomic_t maple_tree_tests_passed;
6885 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6886 
6887 #ifndef __KERNEL__
6888 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
mt_set_non_kernel(unsigned int val)6889 void mt_set_non_kernel(unsigned int val)
6890 {
6891 	kmem_cache_set_non_kernel(maple_node_cache, val);
6892 }
6893 
6894 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
mt_get_alloc_size(void)6895 unsigned long mt_get_alloc_size(void)
6896 {
6897 	return kmem_cache_get_alloc(maple_node_cache);
6898 }
6899 
6900 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
mt_zero_nr_tallocated(void)6901 void mt_zero_nr_tallocated(void)
6902 {
6903 	kmem_cache_zero_nr_tallocated(maple_node_cache);
6904 }
6905 
6906 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
mt_nr_tallocated(void)6907 unsigned int mt_nr_tallocated(void)
6908 {
6909 	return kmem_cache_nr_tallocated(maple_node_cache);
6910 }
6911 
6912 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
mt_nr_allocated(void)6913 unsigned int mt_nr_allocated(void)
6914 {
6915 	return kmem_cache_nr_allocated(maple_node_cache);
6916 }
6917 
6918 /*
6919  * mas_dead_node() - Check if the maple state is pointing to a dead node.
6920  * @mas: The maple state
6921  * @index: The index to restore in @mas.
6922  *
6923  * Used in test code.
6924  * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6925  */
mas_dead_node(struct ma_state * mas,unsigned long index)6926 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6927 {
6928 	if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6929 		return 0;
6930 
6931 	if (likely(!mte_dead_node(mas->node)))
6932 		return 0;
6933 
6934 	mas_rewalk(mas, index);
6935 	return 1;
6936 }
6937 
mt_cache_shrink(void)6938 void mt_cache_shrink(void)
6939 {
6940 }
6941 #else
6942 /*
6943  * mt_cache_shrink() - For testing, don't use this.
6944  *
6945  * Certain testcases can trigger an OOM when combined with other memory
6946  * debugging configuration options.  This function is used to reduce the
6947  * possibility of an out of memory even due to kmem_cache objects remaining
6948  * around for longer than usual.
6949  */
mt_cache_shrink(void)6950 void mt_cache_shrink(void)
6951 {
6952 	kmem_cache_shrink(maple_node_cache);
6953 
6954 }
6955 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6956 
6957 #endif /* not defined __KERNEL__ */
6958 /*
6959  * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6960  * @mas: The maple state
6961  * @offset: The offset into the slot array to fetch.
6962  *
6963  * Return: The entry stored at @offset.
6964  */
mas_get_slot(struct ma_state * mas,unsigned char offset)6965 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6966 		unsigned char offset)
6967 {
6968 	return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6969 			offset);
6970 }
6971 
6972 /* Depth first search, post-order */
mas_dfs_postorder(struct ma_state * mas,unsigned long max)6973 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6974 {
6975 
6976 	struct maple_enode *p = MAS_NONE, *mn = mas->node;
6977 	unsigned long p_min, p_max;
6978 
6979 	mas_next_node(mas, mas_mn(mas), max);
6980 	if (!mas_is_none(mas))
6981 		return;
6982 
6983 	if (mte_is_root(mn))
6984 		return;
6985 
6986 	mas->node = mn;
6987 	mas_ascend(mas);
6988 	do {
6989 		p = mas->node;
6990 		p_min = mas->min;
6991 		p_max = mas->max;
6992 		mas_prev_node(mas, 0);
6993 	} while (!mas_is_none(mas));
6994 
6995 	mas->node = p;
6996 	mas->max = p_max;
6997 	mas->min = p_min;
6998 }
6999 
7000 /* Tree validations */
7001 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7002 		unsigned long min, unsigned long max, unsigned int depth,
7003 		enum mt_dump_format format);
mt_dump_range(unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7004 static void mt_dump_range(unsigned long min, unsigned long max,
7005 			  unsigned int depth, enum mt_dump_format format)
7006 {
7007 	static const char spaces[] = "                                ";
7008 
7009 	switch(format) {
7010 	case mt_dump_hex:
7011 		if (min == max)
7012 			pr_info("%.*s%lx: ", depth * 2, spaces, min);
7013 		else
7014 			pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7015 		break;
7016 	default:
7017 	case mt_dump_dec:
7018 		if (min == max)
7019 			pr_info("%.*s%lu: ", depth * 2, spaces, min);
7020 		else
7021 			pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7022 	}
7023 }
7024 
mt_dump_entry(void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7025 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7026 			  unsigned int depth, enum mt_dump_format format)
7027 {
7028 	mt_dump_range(min, max, depth, format);
7029 
7030 	if (xa_is_value(entry))
7031 		pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
7032 				xa_to_value(entry), entry);
7033 	else if (xa_is_zero(entry))
7034 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
7035 	else if (mt_is_reserved(entry))
7036 		pr_cont("UNKNOWN ENTRY (%p)\n", entry);
7037 	else
7038 		pr_cont("%p\n", entry);
7039 }
7040 
mt_dump_range64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7041 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7042 		unsigned long min, unsigned long max, unsigned int depth,
7043 		enum mt_dump_format format)
7044 {
7045 	struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7046 	bool leaf = mte_is_leaf(entry);
7047 	unsigned long first = min;
7048 	int i;
7049 
7050 	pr_cont(" contents: ");
7051 	for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7052 		switch(format) {
7053 		case mt_dump_hex:
7054 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7055 			break;
7056 		default:
7057 		case mt_dump_dec:
7058 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7059 		}
7060 	}
7061 	pr_cont("%p\n", node->slot[i]);
7062 	for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7063 		unsigned long last = max;
7064 
7065 		if (i < (MAPLE_RANGE64_SLOTS - 1))
7066 			last = node->pivot[i];
7067 		else if (!node->slot[i] && max != mt_node_max(entry))
7068 			break;
7069 		if (last == 0 && i > 0)
7070 			break;
7071 		if (leaf)
7072 			mt_dump_entry(mt_slot(mt, node->slot, i),
7073 					first, last, depth + 1, format);
7074 		else if (node->slot[i])
7075 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7076 					first, last, depth + 1, format);
7077 
7078 		if (last == max)
7079 			break;
7080 		if (last > max) {
7081 			switch(format) {
7082 			case mt_dump_hex:
7083 				pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
7084 					node, last, max, i);
7085 				break;
7086 			default:
7087 			case mt_dump_dec:
7088 				pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7089 					node, last, max, i);
7090 			}
7091 		}
7092 		first = last + 1;
7093 	}
7094 }
7095 
mt_dump_arange64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7096 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7097 	unsigned long min, unsigned long max, unsigned int depth,
7098 	enum mt_dump_format format)
7099 {
7100 	struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7101 	bool leaf = mte_is_leaf(entry);
7102 	unsigned long first = min;
7103 	int i;
7104 
7105 	pr_cont(" contents: ");
7106 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7107 		switch (format) {
7108 		case mt_dump_hex:
7109 			pr_cont("%lx ", node->gap[i]);
7110 			break;
7111 		default:
7112 		case mt_dump_dec:
7113 			pr_cont("%lu ", node->gap[i]);
7114 		}
7115 	}
7116 	pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7117 	for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7118 		switch (format) {
7119 		case mt_dump_hex:
7120 			pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
7121 			break;
7122 		default:
7123 		case mt_dump_dec:
7124 			pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
7125 		}
7126 	}
7127 	pr_cont("%p\n", node->slot[i]);
7128 	for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7129 		unsigned long last = max;
7130 
7131 		if (i < (MAPLE_ARANGE64_SLOTS - 1))
7132 			last = node->pivot[i];
7133 		else if (!node->slot[i])
7134 			break;
7135 		if (last == 0 && i > 0)
7136 			break;
7137 		if (leaf)
7138 			mt_dump_entry(mt_slot(mt, node->slot, i),
7139 					first, last, depth + 1, format);
7140 		else if (node->slot[i])
7141 			mt_dump_node(mt, mt_slot(mt, node->slot, i),
7142 					first, last, depth + 1, format);
7143 
7144 		if (last == max)
7145 			break;
7146 		if (last > max) {
7147 			pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
7148 					node, last, max, i);
7149 			break;
7150 		}
7151 		first = last + 1;
7152 	}
7153 }
7154 
mt_dump_node(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7155 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7156 		unsigned long min, unsigned long max, unsigned int depth,
7157 		enum mt_dump_format format)
7158 {
7159 	struct maple_node *node = mte_to_node(entry);
7160 	unsigned int type = mte_node_type(entry);
7161 	unsigned int i;
7162 
7163 	mt_dump_range(min, max, depth, format);
7164 
7165 	pr_cont("node %p depth %d type %d parent %p", node, depth, type,
7166 			node ? node->parent : NULL);
7167 	switch (type) {
7168 	case maple_dense:
7169 		pr_cont("\n");
7170 		for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7171 			if (min + i > max)
7172 				pr_cont("OUT OF RANGE: ");
7173 			mt_dump_entry(mt_slot(mt, node->slot, i),
7174 					min + i, min + i, depth, format);
7175 		}
7176 		break;
7177 	case maple_leaf_64:
7178 	case maple_range_64:
7179 		mt_dump_range64(mt, entry, min, max, depth, format);
7180 		break;
7181 	case maple_arange_64:
7182 		mt_dump_arange64(mt, entry, min, max, depth, format);
7183 		break;
7184 
7185 	default:
7186 		pr_cont(" UNKNOWN TYPE\n");
7187 	}
7188 }
7189 
mt_dump(const struct maple_tree * mt,enum mt_dump_format format)7190 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7191 {
7192 	void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7193 
7194 	pr_info("maple_tree(%p) flags %X, height %u root %p\n",
7195 		 mt, mt->ma_flags, mt_height(mt), entry);
7196 	if (!xa_is_node(entry))
7197 		mt_dump_entry(entry, 0, 0, 0, format);
7198 	else if (entry)
7199 		mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7200 }
7201 EXPORT_SYMBOL_GPL(mt_dump);
7202 
7203 /*
7204  * Calculate the maximum gap in a node and check if that's what is reported in
7205  * the parent (unless root).
7206  */
mas_validate_gaps(struct ma_state * mas)7207 static void mas_validate_gaps(struct ma_state *mas)
7208 {
7209 	struct maple_enode *mte = mas->node;
7210 	struct maple_node *p_mn, *node = mte_to_node(mte);
7211 	enum maple_type mt = mte_node_type(mas->node);
7212 	unsigned long gap = 0, max_gap = 0;
7213 	unsigned long p_end, p_start = mas->min;
7214 	unsigned char p_slot, offset;
7215 	unsigned long *gaps = NULL;
7216 	unsigned long *pivots = ma_pivots(node, mt);
7217 	unsigned int i;
7218 
7219 	if (ma_is_dense(mt)) {
7220 		for (i = 0; i < mt_slot_count(mte); i++) {
7221 			if (mas_get_slot(mas, i)) {
7222 				if (gap > max_gap)
7223 					max_gap = gap;
7224 				gap = 0;
7225 				continue;
7226 			}
7227 			gap++;
7228 		}
7229 		goto counted;
7230 	}
7231 
7232 	gaps = ma_gaps(node, mt);
7233 	for (i = 0; i < mt_slot_count(mte); i++) {
7234 		p_end = mas_safe_pivot(mas, pivots, i, mt);
7235 
7236 		if (!gaps) {
7237 			if (!mas_get_slot(mas, i))
7238 				gap = p_end - p_start + 1;
7239 		} else {
7240 			void *entry = mas_get_slot(mas, i);
7241 
7242 			gap = gaps[i];
7243 			MT_BUG_ON(mas->tree, !entry);
7244 
7245 			if (gap > p_end - p_start + 1) {
7246 				pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7247 				       mas_mn(mas), i, gap, p_end, p_start,
7248 				       p_end - p_start + 1);
7249 				MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7250 			}
7251 		}
7252 
7253 		if (gap > max_gap)
7254 			max_gap = gap;
7255 
7256 		p_start = p_end + 1;
7257 		if (p_end >= mas->max)
7258 			break;
7259 	}
7260 
7261 counted:
7262 	if (mt == maple_arange_64) {
7263 		offset = ma_meta_gap(node, mt);
7264 		if (offset > i) {
7265 			pr_err("gap offset %p[%u] is invalid\n", node, offset);
7266 			MT_BUG_ON(mas->tree, 1);
7267 		}
7268 
7269 		if (gaps[offset] != max_gap) {
7270 			pr_err("gap %p[%u] is not the largest gap %lu\n",
7271 			       node, offset, max_gap);
7272 			MT_BUG_ON(mas->tree, 1);
7273 		}
7274 
7275 		MT_BUG_ON(mas->tree, !gaps);
7276 		for (i++ ; i < mt_slot_count(mte); i++) {
7277 			if (gaps[i] != 0) {
7278 				pr_err("gap %p[%u] beyond node limit != 0\n",
7279 				       node, i);
7280 				MT_BUG_ON(mas->tree, 1);
7281 			}
7282 		}
7283 	}
7284 
7285 	if (mte_is_root(mte))
7286 		return;
7287 
7288 	p_slot = mte_parent_slot(mas->node);
7289 	p_mn = mte_parent(mte);
7290 	MT_BUG_ON(mas->tree, max_gap > mas->max);
7291 	if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7292 		pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7293 		mt_dump(mas->tree, mt_dump_hex);
7294 		MT_BUG_ON(mas->tree, 1);
7295 	}
7296 }
7297 
mas_validate_parent_slot(struct ma_state * mas)7298 static void mas_validate_parent_slot(struct ma_state *mas)
7299 {
7300 	struct maple_node *parent;
7301 	struct maple_enode *node;
7302 	enum maple_type p_type;
7303 	unsigned char p_slot;
7304 	void __rcu **slots;
7305 	int i;
7306 
7307 	if (mte_is_root(mas->node))
7308 		return;
7309 
7310 	p_slot = mte_parent_slot(mas->node);
7311 	p_type = mas_parent_type(mas, mas->node);
7312 	parent = mte_parent(mas->node);
7313 	slots = ma_slots(parent, p_type);
7314 	MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7315 
7316 	/* Check prev/next parent slot for duplicate node entry */
7317 
7318 	for (i = 0; i < mt_slots[p_type]; i++) {
7319 		node = mas_slot(mas, slots, i);
7320 		if (i == p_slot) {
7321 			if (node != mas->node)
7322 				pr_err("parent %p[%u] does not have %p\n",
7323 					parent, i, mas_mn(mas));
7324 			MT_BUG_ON(mas->tree, node != mas->node);
7325 		} else if (node == mas->node) {
7326 			pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7327 			       mas_mn(mas), parent, i, p_slot);
7328 			MT_BUG_ON(mas->tree, node == mas->node);
7329 		}
7330 	}
7331 }
7332 
mas_validate_child_slot(struct ma_state * mas)7333 static void mas_validate_child_slot(struct ma_state *mas)
7334 {
7335 	enum maple_type type = mte_node_type(mas->node);
7336 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7337 	unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7338 	struct maple_enode *child;
7339 	unsigned char i;
7340 
7341 	if (mte_is_leaf(mas->node))
7342 		return;
7343 
7344 	for (i = 0; i < mt_slots[type]; i++) {
7345 		child = mas_slot(mas, slots, i);
7346 
7347 		if (!child) {
7348 			pr_err("Non-leaf node lacks child at %p[%u]\n",
7349 			       mas_mn(mas), i);
7350 			MT_BUG_ON(mas->tree, 1);
7351 		}
7352 
7353 		if (mte_parent_slot(child) != i) {
7354 			pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7355 			       mas_mn(mas), i, mte_to_node(child),
7356 			       mte_parent_slot(child));
7357 			MT_BUG_ON(mas->tree, 1);
7358 		}
7359 
7360 		if (mte_parent(child) != mte_to_node(mas->node)) {
7361 			pr_err("child %p has parent %p not %p\n",
7362 			       mte_to_node(child), mte_parent(child),
7363 			       mte_to_node(mas->node));
7364 			MT_BUG_ON(mas->tree, 1);
7365 		}
7366 
7367 		if (i < mt_pivots[type] && pivots[i] == mas->max)
7368 			break;
7369 	}
7370 }
7371 
7372 /*
7373  * Validate all pivots are within mas->min and mas->max, check metadata ends
7374  * where the maximum ends and ensure there is no slots or pivots set outside of
7375  * the end of the data.
7376  */
mas_validate_limits(struct ma_state * mas)7377 static void mas_validate_limits(struct ma_state *mas)
7378 {
7379 	int i;
7380 	unsigned long prev_piv = 0;
7381 	enum maple_type type = mte_node_type(mas->node);
7382 	void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7383 	unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7384 
7385 	for (i = 0; i < mt_slots[type]; i++) {
7386 		unsigned long piv;
7387 
7388 		piv = mas_safe_pivot(mas, pivots, i, type);
7389 
7390 		if (!piv && (i != 0)) {
7391 			pr_err("Missing node limit pivot at %p[%u]",
7392 			       mas_mn(mas), i);
7393 			MAS_WARN_ON(mas, 1);
7394 		}
7395 
7396 		if (prev_piv > piv) {
7397 			pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7398 				mas_mn(mas), i, piv, prev_piv);
7399 			MAS_WARN_ON(mas, piv < prev_piv);
7400 		}
7401 
7402 		if (piv < mas->min) {
7403 			pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7404 				piv, mas->min);
7405 			MAS_WARN_ON(mas, piv < mas->min);
7406 		}
7407 		if (piv > mas->max) {
7408 			pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7409 				piv, mas->max);
7410 			MAS_WARN_ON(mas, piv > mas->max);
7411 		}
7412 		prev_piv = piv;
7413 		if (piv == mas->max)
7414 			break;
7415 	}
7416 
7417 	if (mas_data_end(mas) != i) {
7418 		pr_err("node%p: data_end %u != the last slot offset %u\n",
7419 		       mas_mn(mas), mas_data_end(mas), i);
7420 		MT_BUG_ON(mas->tree, 1);
7421 	}
7422 
7423 	for (i += 1; i < mt_slots[type]; i++) {
7424 		void *entry = mas_slot(mas, slots, i);
7425 
7426 		if (entry && (i != mt_slots[type] - 1)) {
7427 			pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7428 			       i, entry);
7429 			MT_BUG_ON(mas->tree, entry != NULL);
7430 		}
7431 
7432 		if (i < mt_pivots[type]) {
7433 			unsigned long piv = pivots[i];
7434 
7435 			if (!piv)
7436 				continue;
7437 
7438 			pr_err("%p[%u] should not have piv %lu\n",
7439 			       mas_mn(mas), i, piv);
7440 			MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7441 		}
7442 	}
7443 }
7444 
mt_validate_nulls(struct maple_tree * mt)7445 static void mt_validate_nulls(struct maple_tree *mt)
7446 {
7447 	void *entry, *last = (void *)1;
7448 	unsigned char offset = 0;
7449 	void __rcu **slots;
7450 	MA_STATE(mas, mt, 0, 0);
7451 
7452 	mas_start(&mas);
7453 	if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7454 		return;
7455 
7456 	while (!mte_is_leaf(mas.node))
7457 		mas_descend(&mas);
7458 
7459 	slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7460 	do {
7461 		entry = mas_slot(&mas, slots, offset);
7462 		if (!last && !entry) {
7463 			pr_err("Sequential nulls end at %p[%u]\n",
7464 				mas_mn(&mas), offset);
7465 		}
7466 		MT_BUG_ON(mt, !last && !entry);
7467 		last = entry;
7468 		if (offset == mas_data_end(&mas)) {
7469 			mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7470 			if (mas_is_none(&mas))
7471 				return;
7472 			offset = 0;
7473 			slots = ma_slots(mte_to_node(mas.node),
7474 					 mte_node_type(mas.node));
7475 		} else {
7476 			offset++;
7477 		}
7478 
7479 	} while (!mas_is_none(&mas));
7480 }
7481 
7482 /*
7483  * validate a maple tree by checking:
7484  * 1. The limits (pivots are within mas->min to mas->max)
7485  * 2. The gap is correctly set in the parents
7486  */
mt_validate(struct maple_tree * mt)7487 void mt_validate(struct maple_tree *mt)
7488 {
7489 	unsigned char end;
7490 
7491 	MA_STATE(mas, mt, 0, 0);
7492 	rcu_read_lock();
7493 	mas_start(&mas);
7494 	if (!mas_searchable(&mas))
7495 		goto done;
7496 
7497 	while (!mte_is_leaf(mas.node))
7498 		mas_descend(&mas);
7499 
7500 	while (!mas_is_none(&mas)) {
7501 		MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7502 		end = mas_data_end(&mas);
7503 		if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7504 				(mas.max != ULONG_MAX))) {
7505 			pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7506 		}
7507 
7508 		mas_validate_parent_slot(&mas);
7509 		mas_validate_limits(&mas);
7510 		mas_validate_child_slot(&mas);
7511 		if (mt_is_alloc(mt))
7512 			mas_validate_gaps(&mas);
7513 		mas_dfs_postorder(&mas, ULONG_MAX);
7514 	}
7515 	mt_validate_nulls(mt);
7516 done:
7517 	rcu_read_unlock();
7518 
7519 }
7520 EXPORT_SYMBOL_GPL(mt_validate);
7521 
mas_dump(const struct ma_state * mas)7522 void mas_dump(const struct ma_state *mas)
7523 {
7524 	pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7525 	if (mas_is_none(mas))
7526 		pr_err("(MAS_NONE) ");
7527 	else if (mas_is_ptr(mas))
7528 		pr_err("(MAS_ROOT) ");
7529 	else if (mas_is_start(mas))
7530 		 pr_err("(MAS_START) ");
7531 	else if (mas_is_paused(mas))
7532 		pr_err("(MAS_PAUSED) ");
7533 
7534 	pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
7535 	pr_err("     min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7536 	       mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7537 	if (mas->index > mas->last)
7538 		pr_err("Check index & last\n");
7539 }
7540 EXPORT_SYMBOL_GPL(mas_dump);
7541 
mas_wr_dump(const struct ma_wr_state * wr_mas)7542 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7543 {
7544 	pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7545 	       wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7546 	pr_err("        type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7547 	       wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
7548 	       wr_mas->end_piv);
7549 }
7550 EXPORT_SYMBOL_GPL(mas_wr_dump);
7551 
7552 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7553