1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 #include <trace/hooks/mm.h>
43
44 #include "internal.h"
45
46 /*
47 * Sleep at most 200ms at a time in balance_dirty_pages().
48 */
49 #define MAX_PAUSE max(HZ/5, 1)
50
51 /*
52 * Try to keep balance_dirty_pages() call intervals higher than this many pages
53 * by raising pause time to max_pause when falls below it.
54 */
55 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56
57 /*
58 * Estimate write bandwidth at 200ms intervals.
59 */
60 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
61
62 #define RATELIMIT_CALC_SHIFT 10
63
64 /*
65 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
66 * will look to see if it needs to force writeback or throttling.
67 */
68 static long ratelimit_pages = 32;
69
70 /* The following parameters are exported via /proc/sys/vm */
71
72 /*
73 * Start background writeback (via writeback threads) at this percentage
74 */
75 static int dirty_background_ratio = 10;
76
77 /*
78 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
79 * dirty_background_ratio * the amount of dirtyable memory
80 */
81 static unsigned long dirty_background_bytes;
82
83 /*
84 * free highmem will not be subtracted from the total free memory
85 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 */
87 static int vm_highmem_is_dirtyable;
88
89 /*
90 * The generator of dirty data starts writeback at this percentage
91 */
92 static int vm_dirty_ratio = 20;
93
94 /*
95 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
96 * vm_dirty_ratio * the amount of dirtyable memory
97 */
98 static unsigned long vm_dirty_bytes;
99
100 /*
101 * The interval between `kupdate'-style writebacks
102 */
103 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
104
105 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
106
107 /*
108 * The longest time for which data is allowed to remain dirty
109 */
110 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
111
112 /*
113 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114 * a full sync is triggered after this time elapses without any disk activity.
115 */
116 int laptop_mode;
117
118 EXPORT_SYMBOL(laptop_mode);
119
120 /* End of sysctl-exported parameters */
121
122 struct wb_domain global_wb_domain;
123
124 /* consolidated parameters for balance_dirty_pages() and its subroutines */
125 struct dirty_throttle_control {
126 #ifdef CONFIG_CGROUP_WRITEBACK
127 struct wb_domain *dom;
128 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
129 #endif
130 struct bdi_writeback *wb;
131 struct fprop_local_percpu *wb_completions;
132
133 unsigned long avail; /* dirtyable */
134 unsigned long dirty; /* file_dirty + write + nfs */
135 unsigned long thresh; /* dirty threshold */
136 unsigned long bg_thresh; /* dirty background threshold */
137
138 unsigned long wb_dirty; /* per-wb counterparts */
139 unsigned long wb_thresh;
140 unsigned long wb_bg_thresh;
141
142 unsigned long pos_ratio;
143 };
144
145 /*
146 * Length of period for aging writeout fractions of bdis. This is an
147 * arbitrarily chosen number. The longer the period, the slower fractions will
148 * reflect changes in current writeout rate.
149 */
150 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
151
152 #ifdef CONFIG_CGROUP_WRITEBACK
153
154 #define GDTC_INIT(__wb) .wb = (__wb), \
155 .dom = &global_wb_domain, \
156 .wb_completions = &(__wb)->completions
157
158 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
159
160 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
161 .dom = mem_cgroup_wb_domain(__wb), \
162 .wb_completions = &(__wb)->memcg_completions, \
163 .gdtc = __gdtc
164
mdtc_valid(struct dirty_throttle_control * dtc)165 static bool mdtc_valid(struct dirty_throttle_control *dtc)
166 {
167 return dtc->dom;
168 }
169
dtc_dom(struct dirty_throttle_control * dtc)170 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
171 {
172 return dtc->dom;
173 }
174
mdtc_gdtc(struct dirty_throttle_control * mdtc)175 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
176 {
177 return mdtc->gdtc;
178 }
179
wb_memcg_completions(struct bdi_writeback * wb)180 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
181 {
182 return &wb->memcg_completions;
183 }
184
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)185 static void wb_min_max_ratio(struct bdi_writeback *wb,
186 unsigned long *minp, unsigned long *maxp)
187 {
188 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
189 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
190 unsigned long long min = wb->bdi->min_ratio;
191 unsigned long long max = wb->bdi->max_ratio;
192
193 /*
194 * @wb may already be clean by the time control reaches here and
195 * the total may not include its bw.
196 */
197 if (this_bw < tot_bw) {
198 if (min) {
199 min *= this_bw;
200 min = div64_ul(min, tot_bw);
201 }
202 if (max < 100 * BDI_RATIO_SCALE) {
203 max *= this_bw;
204 max = div64_ul(max, tot_bw);
205 }
206 }
207
208 *minp = min;
209 *maxp = max;
210 }
211
212 #else /* CONFIG_CGROUP_WRITEBACK */
213
214 #define GDTC_INIT(__wb) .wb = (__wb), \
215 .wb_completions = &(__wb)->completions
216 #define GDTC_INIT_NO_WB
217 #define MDTC_INIT(__wb, __gdtc)
218
mdtc_valid(struct dirty_throttle_control * dtc)219 static bool mdtc_valid(struct dirty_throttle_control *dtc)
220 {
221 return false;
222 }
223
dtc_dom(struct dirty_throttle_control * dtc)224 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
225 {
226 return &global_wb_domain;
227 }
228
mdtc_gdtc(struct dirty_throttle_control * mdtc)229 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
230 {
231 return NULL;
232 }
233
wb_memcg_completions(struct bdi_writeback * wb)234 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
235 {
236 return NULL;
237 }
238
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)239 static void wb_min_max_ratio(struct bdi_writeback *wb,
240 unsigned long *minp, unsigned long *maxp)
241 {
242 *minp = wb->bdi->min_ratio;
243 *maxp = wb->bdi->max_ratio;
244 }
245
246 #endif /* CONFIG_CGROUP_WRITEBACK */
247
248 /*
249 * In a memory zone, there is a certain amount of pages we consider
250 * available for the page cache, which is essentially the number of
251 * free and reclaimable pages, minus some zone reserves to protect
252 * lowmem and the ability to uphold the zone's watermarks without
253 * requiring writeback.
254 *
255 * This number of dirtyable pages is the base value of which the
256 * user-configurable dirty ratio is the effective number of pages that
257 * are allowed to be actually dirtied. Per individual zone, or
258 * globally by using the sum of dirtyable pages over all zones.
259 *
260 * Because the user is allowed to specify the dirty limit globally as
261 * absolute number of bytes, calculating the per-zone dirty limit can
262 * require translating the configured limit into a percentage of
263 * global dirtyable memory first.
264 */
265
266 /**
267 * node_dirtyable_memory - number of dirtyable pages in a node
268 * @pgdat: the node
269 *
270 * Return: the node's number of pages potentially available for dirty
271 * page cache. This is the base value for the per-node dirty limits.
272 */
node_dirtyable_memory(struct pglist_data * pgdat)273 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
274 {
275 unsigned long nr_pages = 0;
276 int z;
277
278 for (z = 0; z < MAX_NR_ZONES; z++) {
279 struct zone *zone = pgdat->node_zones + z;
280
281 if (!populated_zone(zone))
282 continue;
283
284 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
285 }
286
287 /*
288 * Pages reserved for the kernel should not be considered
289 * dirtyable, to prevent a situation where reclaim has to
290 * clean pages in order to balance the zones.
291 */
292 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
293
294 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
295 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
296
297 return nr_pages;
298 }
299
highmem_dirtyable_memory(unsigned long total)300 static unsigned long highmem_dirtyable_memory(unsigned long total)
301 {
302 #ifdef CONFIG_HIGHMEM
303 int node;
304 unsigned long x = 0;
305 int i;
306
307 for_each_node_state(node, N_HIGH_MEMORY) {
308 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
309 struct zone *z;
310 unsigned long nr_pages;
311
312 if (!is_highmem_idx(i))
313 continue;
314
315 z = &NODE_DATA(node)->node_zones[i];
316 if (!populated_zone(z))
317 continue;
318
319 nr_pages = zone_page_state(z, NR_FREE_PAGES);
320 /* watch for underflows */
321 nr_pages -= min(nr_pages, high_wmark_pages(z));
322 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
323 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
324 x += nr_pages;
325 }
326 }
327
328 /*
329 * Make sure that the number of highmem pages is never larger
330 * than the number of the total dirtyable memory. This can only
331 * occur in very strange VM situations but we want to make sure
332 * that this does not occur.
333 */
334 return min(x, total);
335 #else
336 return 0;
337 #endif
338 }
339
340 /**
341 * global_dirtyable_memory - number of globally dirtyable pages
342 *
343 * Return: the global number of pages potentially available for dirty
344 * page cache. This is the base value for the global dirty limits.
345 */
global_dirtyable_memory(void)346 static unsigned long global_dirtyable_memory(void)
347 {
348 unsigned long x;
349
350 x = global_zone_page_state(NR_FREE_PAGES);
351 /*
352 * Pages reserved for the kernel should not be considered
353 * dirtyable, to prevent a situation where reclaim has to
354 * clean pages in order to balance the zones.
355 */
356 x -= min(x, totalreserve_pages);
357
358 x += global_node_page_state(NR_INACTIVE_FILE);
359 x += global_node_page_state(NR_ACTIVE_FILE);
360
361 if (!vm_highmem_is_dirtyable)
362 x -= highmem_dirtyable_memory(x);
363
364 return x + 1; /* Ensure that we never return 0 */
365 }
366
367 /**
368 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
369 * @dtc: dirty_throttle_control of interest
370 *
371 * Calculate @dtc->thresh and ->bg_thresh considering
372 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
373 * must ensure that @dtc->avail is set before calling this function. The
374 * dirty limits will be lifted by 1/4 for real-time tasks.
375 */
domain_dirty_limits(struct dirty_throttle_control * dtc)376 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
377 {
378 const unsigned long available_memory = dtc->avail;
379 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
380 unsigned long bytes = vm_dirty_bytes;
381 unsigned long bg_bytes = dirty_background_bytes;
382 /* convert ratios to per-PAGE_SIZE for higher precision */
383 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
384 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
385 unsigned long thresh;
386 unsigned long bg_thresh;
387 struct task_struct *tsk;
388
389 /* gdtc is !NULL iff @dtc is for memcg domain */
390 if (gdtc) {
391 unsigned long global_avail = gdtc->avail;
392
393 /*
394 * The byte settings can't be applied directly to memcg
395 * domains. Convert them to ratios by scaling against
396 * globally available memory. As the ratios are in
397 * per-PAGE_SIZE, they can be obtained by dividing bytes by
398 * number of pages.
399 */
400 if (bytes)
401 ratio = min(DIV_ROUND_UP(bytes, global_avail),
402 PAGE_SIZE);
403 if (bg_bytes)
404 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
405 PAGE_SIZE);
406 bytes = bg_bytes = 0;
407 }
408
409 if (bytes)
410 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
411 else
412 thresh = (ratio * available_memory) / PAGE_SIZE;
413
414 if (bg_bytes)
415 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
416 else
417 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
418
419 tsk = current;
420 if (rt_task(tsk)) {
421 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
422 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
423 }
424 /*
425 * Dirty throttling logic assumes the limits in page units fit into
426 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
427 */
428 if (thresh > UINT_MAX)
429 thresh = UINT_MAX;
430 /* This makes sure bg_thresh is within 32-bits as well */
431 if (bg_thresh >= thresh)
432 bg_thresh = thresh / 2;
433 dtc->thresh = thresh;
434 dtc->bg_thresh = bg_thresh;
435
436 /* we should eventually report the domain in the TP */
437 if (!gdtc)
438 trace_global_dirty_state(bg_thresh, thresh);
439 }
440
441 /**
442 * global_dirty_limits - background-writeback and dirty-throttling thresholds
443 * @pbackground: out parameter for bg_thresh
444 * @pdirty: out parameter for thresh
445 *
446 * Calculate bg_thresh and thresh for global_wb_domain. See
447 * domain_dirty_limits() for details.
448 */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)449 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
450 {
451 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
452
453 gdtc.avail = global_dirtyable_memory();
454 domain_dirty_limits(&gdtc);
455
456 *pbackground = gdtc.bg_thresh;
457 *pdirty = gdtc.thresh;
458 }
459
460 /**
461 * node_dirty_limit - maximum number of dirty pages allowed in a node
462 * @pgdat: the node
463 *
464 * Return: the maximum number of dirty pages allowed in a node, based
465 * on the node's dirtyable memory.
466 */
node_dirty_limit(struct pglist_data * pgdat)467 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
468 {
469 unsigned long node_memory = node_dirtyable_memory(pgdat);
470 struct task_struct *tsk = current;
471 unsigned long dirty;
472
473 if (vm_dirty_bytes)
474 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
475 node_memory / global_dirtyable_memory();
476 else
477 dirty = vm_dirty_ratio * node_memory / 100;
478
479 if (rt_task(tsk))
480 dirty += dirty / 4;
481
482 /*
483 * Dirty throttling logic assumes the limits in page units fit into
484 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
485 */
486 return min_t(unsigned long, dirty, UINT_MAX);
487 }
488
489 /**
490 * node_dirty_ok - tells whether a node is within its dirty limits
491 * @pgdat: the node to check
492 *
493 * Return: %true when the dirty pages in @pgdat are within the node's
494 * dirty limit, %false if the limit is exceeded.
495 */
node_dirty_ok(struct pglist_data * pgdat)496 bool node_dirty_ok(struct pglist_data *pgdat)
497 {
498 unsigned long limit = node_dirty_limit(pgdat);
499 unsigned long nr_pages = 0;
500
501 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
502 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
503
504 return nr_pages <= limit;
505 }
506
507 #ifdef CONFIG_SYSCTL
dirty_background_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)508 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
509 void *buffer, size_t *lenp, loff_t *ppos)
510 {
511 int ret;
512
513 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
514 if (ret == 0 && write)
515 dirty_background_bytes = 0;
516 return ret;
517 }
518
dirty_background_bytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)519 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
520 void *buffer, size_t *lenp, loff_t *ppos)
521 {
522 int ret;
523 unsigned long old_bytes = dirty_background_bytes;
524
525 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
526 if (ret == 0 && write) {
527 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
528 UINT_MAX) {
529 dirty_background_bytes = old_bytes;
530 return -ERANGE;
531 }
532 dirty_background_ratio = 0;
533 }
534 return ret;
535 }
536
dirty_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)537 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
538 size_t *lenp, loff_t *ppos)
539 {
540 int old_ratio = vm_dirty_ratio;
541 int ret;
542
543 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
544 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
545 writeback_set_ratelimit();
546 vm_dirty_bytes = 0;
547 }
548 return ret;
549 }
550
dirty_bytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)551 static int dirty_bytes_handler(struct ctl_table *table, int write,
552 void *buffer, size_t *lenp, loff_t *ppos)
553 {
554 unsigned long old_bytes = vm_dirty_bytes;
555 int ret;
556
557 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
558 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
559 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
560 vm_dirty_bytes = old_bytes;
561 return -ERANGE;
562 }
563 writeback_set_ratelimit();
564 vm_dirty_ratio = 0;
565 }
566 return ret;
567 }
568 #endif
569
wp_next_time(unsigned long cur_time)570 static unsigned long wp_next_time(unsigned long cur_time)
571 {
572 cur_time += VM_COMPLETIONS_PERIOD_LEN;
573 /* 0 has a special meaning... */
574 if (!cur_time)
575 return 1;
576 return cur_time;
577 }
578
wb_domain_writeout_add(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac,long nr)579 static void wb_domain_writeout_add(struct wb_domain *dom,
580 struct fprop_local_percpu *completions,
581 unsigned int max_prop_frac, long nr)
582 {
583 __fprop_add_percpu_max(&dom->completions, completions,
584 max_prop_frac, nr);
585 /* First event after period switching was turned off? */
586 if (unlikely(!dom->period_time)) {
587 /*
588 * We can race with other __bdi_writeout_inc calls here but
589 * it does not cause any harm since the resulting time when
590 * timer will fire and what is in writeout_period_time will be
591 * roughly the same.
592 */
593 dom->period_time = wp_next_time(jiffies);
594 mod_timer(&dom->period_timer, dom->period_time);
595 }
596 }
597
598 /*
599 * Increment @wb's writeout completion count and the global writeout
600 * completion count. Called from __folio_end_writeback().
601 */
__wb_writeout_add(struct bdi_writeback * wb,long nr)602 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
603 {
604 struct wb_domain *cgdom;
605
606 wb_stat_mod(wb, WB_WRITTEN, nr);
607 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
608 wb->bdi->max_prop_frac, nr);
609
610 cgdom = mem_cgroup_wb_domain(wb);
611 if (cgdom)
612 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
613 wb->bdi->max_prop_frac, nr);
614 }
615
wb_writeout_inc(struct bdi_writeback * wb)616 void wb_writeout_inc(struct bdi_writeback *wb)
617 {
618 unsigned long flags;
619
620 local_irq_save(flags);
621 __wb_writeout_add(wb, 1);
622 local_irq_restore(flags);
623 }
624 EXPORT_SYMBOL_GPL(wb_writeout_inc);
625
626 /*
627 * On idle system, we can be called long after we scheduled because we use
628 * deferred timers so count with missed periods.
629 */
writeout_period(struct timer_list * t)630 static void writeout_period(struct timer_list *t)
631 {
632 struct wb_domain *dom = from_timer(dom, t, period_timer);
633 int miss_periods = (jiffies - dom->period_time) /
634 VM_COMPLETIONS_PERIOD_LEN;
635
636 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
637 dom->period_time = wp_next_time(dom->period_time +
638 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
639 mod_timer(&dom->period_timer, dom->period_time);
640 } else {
641 /*
642 * Aging has zeroed all fractions. Stop wasting CPU on period
643 * updates.
644 */
645 dom->period_time = 0;
646 }
647 }
648
wb_domain_init(struct wb_domain * dom,gfp_t gfp)649 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
650 {
651 memset(dom, 0, sizeof(*dom));
652
653 spin_lock_init(&dom->lock);
654
655 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
656
657 dom->dirty_limit_tstamp = jiffies;
658
659 return fprop_global_init(&dom->completions, gfp);
660 }
661
662 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)663 void wb_domain_exit(struct wb_domain *dom)
664 {
665 del_timer_sync(&dom->period_timer);
666 fprop_global_destroy(&dom->completions);
667 }
668 #endif
669
670 /*
671 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
672 * registered backing devices, which, for obvious reasons, can not
673 * exceed 100%.
674 */
675 static unsigned int bdi_min_ratio;
676
bdi_check_pages_limit(unsigned long pages)677 static int bdi_check_pages_limit(unsigned long pages)
678 {
679 unsigned long max_dirty_pages = global_dirtyable_memory();
680
681 if (pages > max_dirty_pages)
682 return -EINVAL;
683
684 return 0;
685 }
686
bdi_ratio_from_pages(unsigned long pages)687 static unsigned long bdi_ratio_from_pages(unsigned long pages)
688 {
689 unsigned long background_thresh;
690 unsigned long dirty_thresh;
691 unsigned long ratio;
692
693 global_dirty_limits(&background_thresh, &dirty_thresh);
694 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
695
696 return ratio;
697 }
698
bdi_get_bytes(unsigned int ratio)699 static u64 bdi_get_bytes(unsigned int ratio)
700 {
701 unsigned long background_thresh;
702 unsigned long dirty_thresh;
703 u64 bytes;
704
705 global_dirty_limits(&background_thresh, &dirty_thresh);
706 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
707
708 return bytes;
709 }
710
__bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)711 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
712 {
713 unsigned int delta;
714 int ret = 0;
715
716 if (min_ratio > 100 * BDI_RATIO_SCALE)
717 return -EINVAL;
718 min_ratio *= BDI_RATIO_SCALE;
719
720 spin_lock_bh(&bdi_lock);
721 if (min_ratio > bdi->max_ratio) {
722 ret = -EINVAL;
723 } else {
724 if (min_ratio < bdi->min_ratio) {
725 delta = bdi->min_ratio - min_ratio;
726 bdi_min_ratio -= delta;
727 bdi->min_ratio = min_ratio;
728 } else {
729 delta = min_ratio - bdi->min_ratio;
730 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
731 bdi_min_ratio += delta;
732 bdi->min_ratio = min_ratio;
733 } else {
734 ret = -EINVAL;
735 }
736 }
737 }
738 spin_unlock_bh(&bdi_lock);
739
740 return ret;
741 }
742
__bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)743 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
744 {
745 int ret = 0;
746
747 if (max_ratio > 100 * BDI_RATIO_SCALE)
748 return -EINVAL;
749
750 spin_lock_bh(&bdi_lock);
751 if (bdi->min_ratio > max_ratio) {
752 ret = -EINVAL;
753 } else {
754 bdi->max_ratio = max_ratio;
755 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
756 }
757 spin_unlock_bh(&bdi_lock);
758
759 return ret;
760 }
761
bdi_set_min_ratio_no_scale(struct backing_dev_info * bdi,unsigned int min_ratio)762 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
763 {
764 return __bdi_set_min_ratio(bdi, min_ratio);
765 }
766
bdi_set_max_ratio_no_scale(struct backing_dev_info * bdi,unsigned int max_ratio)767 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
768 {
769 return __bdi_set_max_ratio(bdi, max_ratio);
770 }
771
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)772 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
773 {
774 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
775 }
776
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)777 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
778 {
779 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
780 }
781 EXPORT_SYMBOL(bdi_set_max_ratio);
782
bdi_get_min_bytes(struct backing_dev_info * bdi)783 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
784 {
785 return bdi_get_bytes(bdi->min_ratio);
786 }
787
bdi_set_min_bytes(struct backing_dev_info * bdi,u64 min_bytes)788 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
789 {
790 int ret;
791 unsigned long pages = min_bytes >> PAGE_SHIFT;
792 unsigned long min_ratio;
793
794 ret = bdi_check_pages_limit(pages);
795 if (ret)
796 return ret;
797
798 min_ratio = bdi_ratio_from_pages(pages);
799 return __bdi_set_min_ratio(bdi, min_ratio);
800 }
801
bdi_get_max_bytes(struct backing_dev_info * bdi)802 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
803 {
804 return bdi_get_bytes(bdi->max_ratio);
805 }
806
bdi_set_max_bytes(struct backing_dev_info * bdi,u64 max_bytes)807 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
808 {
809 int ret;
810 unsigned long pages = max_bytes >> PAGE_SHIFT;
811 unsigned long max_ratio;
812
813 ret = bdi_check_pages_limit(pages);
814 if (ret)
815 return ret;
816
817 max_ratio = bdi_ratio_from_pages(pages);
818 return __bdi_set_max_ratio(bdi, max_ratio);
819 }
820
bdi_set_strict_limit(struct backing_dev_info * bdi,unsigned int strict_limit)821 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
822 {
823 if (strict_limit > 1)
824 return -EINVAL;
825
826 spin_lock_bh(&bdi_lock);
827 if (strict_limit)
828 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
829 else
830 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
831 spin_unlock_bh(&bdi_lock);
832
833 return 0;
834 }
835
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)836 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
837 unsigned long bg_thresh)
838 {
839 return (thresh + bg_thresh) / 2;
840 }
841
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)842 static unsigned long hard_dirty_limit(struct wb_domain *dom,
843 unsigned long thresh)
844 {
845 return max(thresh, dom->dirty_limit);
846 }
847
848 /*
849 * Memory which can be further allocated to a memcg domain is capped by
850 * system-wide clean memory excluding the amount being used in the domain.
851 */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)852 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
853 unsigned long filepages, unsigned long headroom)
854 {
855 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
856 unsigned long clean = filepages - min(filepages, mdtc->dirty);
857 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
858 unsigned long other_clean = global_clean - min(global_clean, clean);
859
860 mdtc->avail = filepages + min(headroom, other_clean);
861 }
862
863 /**
864 * __wb_calc_thresh - @wb's share of dirty throttling threshold
865 * @dtc: dirty_throttle_context of interest
866 *
867 * Note that balance_dirty_pages() will only seriously take it as a hard limit
868 * when sleeping max_pause per page is not enough to keep the dirty pages under
869 * control. For example, when the device is completely stalled due to some error
870 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
871 * In the other normal situations, it acts more gently by throttling the tasks
872 * more (rather than completely block them) when the wb dirty pages go high.
873 *
874 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
875 * - starving fast devices
876 * - piling up dirty pages (that will take long time to sync) on slow devices
877 *
878 * The wb's share of dirty limit will be adapting to its throughput and
879 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
880 *
881 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
882 * dirty balancing includes all PG_dirty and PG_writeback pages.
883 */
__wb_calc_thresh(struct dirty_throttle_control * dtc)884 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
885 {
886 struct wb_domain *dom = dtc_dom(dtc);
887 unsigned long thresh = dtc->thresh;
888 u64 wb_thresh;
889 unsigned long numerator, denominator;
890 unsigned long wb_min_ratio, wb_max_ratio;
891
892 /*
893 * Calculate this BDI's share of the thresh ratio.
894 */
895 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
896 &numerator, &denominator);
897
898 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
899 wb_thresh *= numerator;
900 wb_thresh = div64_ul(wb_thresh, denominator);
901
902 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
903
904 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
905 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
906 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
907
908 return wb_thresh;
909 }
910
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)911 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
912 {
913 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
914 .thresh = thresh };
915 return __wb_calc_thresh(&gdtc);
916 }
917
918 /*
919 * setpoint - dirty 3
920 * f(dirty) := 1.0 + (----------------)
921 * limit - setpoint
922 *
923 * it's a 3rd order polynomial that subjects to
924 *
925 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
926 * (2) f(setpoint) = 1.0 => the balance point
927 * (3) f(limit) = 0 => the hard limit
928 * (4) df/dx <= 0 => negative feedback control
929 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
930 * => fast response on large errors; small oscillation near setpoint
931 */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)932 static long long pos_ratio_polynom(unsigned long setpoint,
933 unsigned long dirty,
934 unsigned long limit)
935 {
936 long long pos_ratio;
937 long x;
938
939 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
940 (limit - setpoint) | 1);
941 pos_ratio = x;
942 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
943 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
944 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
945
946 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
947 }
948
949 /*
950 * Dirty position control.
951 *
952 * (o) global/bdi setpoints
953 *
954 * We want the dirty pages be balanced around the global/wb setpoints.
955 * When the number of dirty pages is higher/lower than the setpoint, the
956 * dirty position control ratio (and hence task dirty ratelimit) will be
957 * decreased/increased to bring the dirty pages back to the setpoint.
958 *
959 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
960 *
961 * if (dirty < setpoint) scale up pos_ratio
962 * if (dirty > setpoint) scale down pos_ratio
963 *
964 * if (wb_dirty < wb_setpoint) scale up pos_ratio
965 * if (wb_dirty > wb_setpoint) scale down pos_ratio
966 *
967 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
968 *
969 * (o) global control line
970 *
971 * ^ pos_ratio
972 * |
973 * | |<===== global dirty control scope ======>|
974 * 2.0 * * * * * * *
975 * | .*
976 * | . *
977 * | . *
978 * | . *
979 * | . *
980 * | . *
981 * 1.0 ................................*
982 * | . . *
983 * | . . *
984 * | . . *
985 * | . . *
986 * | . . *
987 * 0 +------------.------------------.----------------------*------------->
988 * freerun^ setpoint^ limit^ dirty pages
989 *
990 * (o) wb control line
991 *
992 * ^ pos_ratio
993 * |
994 * | *
995 * | *
996 * | *
997 * | *
998 * | * |<=========== span ============>|
999 * 1.0 .......................*
1000 * | . *
1001 * | . *
1002 * | . *
1003 * | . *
1004 * | . *
1005 * | . *
1006 * | . *
1007 * | . *
1008 * | . *
1009 * | . *
1010 * | . *
1011 * 1/4 ...............................................* * * * * * * * * * * *
1012 * | . .
1013 * | . .
1014 * | . .
1015 * 0 +----------------------.-------------------------------.------------->
1016 * wb_setpoint^ x_intercept^
1017 *
1018 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1019 * be smoothly throttled down to normal if it starts high in situations like
1020 * - start writing to a slow SD card and a fast disk at the same time. The SD
1021 * card's wb_dirty may rush to many times higher than wb_setpoint.
1022 * - the wb dirty thresh drops quickly due to change of JBOD workload
1023 */
wb_position_ratio(struct dirty_throttle_control * dtc)1024 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1025 {
1026 struct bdi_writeback *wb = dtc->wb;
1027 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1028 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1029 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1030 unsigned long wb_thresh = dtc->wb_thresh;
1031 unsigned long x_intercept;
1032 unsigned long setpoint; /* dirty pages' target balance point */
1033 unsigned long wb_setpoint;
1034 unsigned long span;
1035 long long pos_ratio; /* for scaling up/down the rate limit */
1036 long x;
1037
1038 dtc->pos_ratio = 0;
1039
1040 if (unlikely(dtc->dirty >= limit))
1041 return;
1042
1043 /*
1044 * global setpoint
1045 *
1046 * See comment for pos_ratio_polynom().
1047 */
1048 setpoint = (freerun + limit) / 2;
1049 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1050
1051 /*
1052 * The strictlimit feature is a tool preventing mistrusted filesystems
1053 * from growing a large number of dirty pages before throttling. For
1054 * such filesystems balance_dirty_pages always checks wb counters
1055 * against wb limits. Even if global "nr_dirty" is under "freerun".
1056 * This is especially important for fuse which sets bdi->max_ratio to
1057 * 1% by default. Without strictlimit feature, fuse writeback may
1058 * consume arbitrary amount of RAM because it is accounted in
1059 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1060 *
1061 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1062 * two values: wb_dirty and wb_thresh. Let's consider an example:
1063 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1064 * limits are set by default to 10% and 20% (background and throttle).
1065 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1066 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1067 * about ~6K pages (as the average of background and throttle wb
1068 * limits). The 3rd order polynomial will provide positive feedback if
1069 * wb_dirty is under wb_setpoint and vice versa.
1070 *
1071 * Note, that we cannot use global counters in these calculations
1072 * because we want to throttle process writing to a strictlimit wb
1073 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1074 * in the example above).
1075 */
1076 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1077 long long wb_pos_ratio;
1078
1079 if (dtc->wb_dirty < 8) {
1080 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1081 2 << RATELIMIT_CALC_SHIFT);
1082 return;
1083 }
1084
1085 if (dtc->wb_dirty >= wb_thresh)
1086 return;
1087
1088 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1089 dtc->wb_bg_thresh);
1090
1091 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1092 return;
1093
1094 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1095 wb_thresh);
1096
1097 /*
1098 * Typically, for strictlimit case, wb_setpoint << setpoint
1099 * and pos_ratio >> wb_pos_ratio. In the other words global
1100 * state ("dirty") is not limiting factor and we have to
1101 * make decision based on wb counters. But there is an
1102 * important case when global pos_ratio should get precedence:
1103 * global limits are exceeded (e.g. due to activities on other
1104 * wb's) while given strictlimit wb is below limit.
1105 *
1106 * "pos_ratio * wb_pos_ratio" would work for the case above,
1107 * but it would look too non-natural for the case of all
1108 * activity in the system coming from a single strictlimit wb
1109 * with bdi->max_ratio == 100%.
1110 *
1111 * Note that min() below somewhat changes the dynamics of the
1112 * control system. Normally, pos_ratio value can be well over 3
1113 * (when globally we are at freerun and wb is well below wb
1114 * setpoint). Now the maximum pos_ratio in the same situation
1115 * is 2. We might want to tweak this if we observe the control
1116 * system is too slow to adapt.
1117 */
1118 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1119 return;
1120 }
1121
1122 /*
1123 * We have computed basic pos_ratio above based on global situation. If
1124 * the wb is over/under its share of dirty pages, we want to scale
1125 * pos_ratio further down/up. That is done by the following mechanism.
1126 */
1127
1128 /*
1129 * wb setpoint
1130 *
1131 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1132 *
1133 * x_intercept - wb_dirty
1134 * := --------------------------
1135 * x_intercept - wb_setpoint
1136 *
1137 * The main wb control line is a linear function that subjects to
1138 *
1139 * (1) f(wb_setpoint) = 1.0
1140 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1141 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1142 *
1143 * For single wb case, the dirty pages are observed to fluctuate
1144 * regularly within range
1145 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1146 * for various filesystems, where (2) can yield in a reasonable 12.5%
1147 * fluctuation range for pos_ratio.
1148 *
1149 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1150 * own size, so move the slope over accordingly and choose a slope that
1151 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1152 */
1153 if (unlikely(wb_thresh > dtc->thresh))
1154 wb_thresh = dtc->thresh;
1155 /*
1156 * It's very possible that wb_thresh is close to 0 not because the
1157 * device is slow, but that it has remained inactive for long time.
1158 * Honour such devices a reasonable good (hopefully IO efficient)
1159 * threshold, so that the occasional writes won't be blocked and active
1160 * writes can rampup the threshold quickly.
1161 */
1162 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1163 /*
1164 * scale global setpoint to wb's:
1165 * wb_setpoint = setpoint * wb_thresh / thresh
1166 */
1167 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1168 wb_setpoint = setpoint * (u64)x >> 16;
1169 /*
1170 * Use span=(8*write_bw) in single wb case as indicated by
1171 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1172 *
1173 * wb_thresh thresh - wb_thresh
1174 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1175 * thresh thresh
1176 */
1177 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1178 x_intercept = wb_setpoint + span;
1179
1180 if (dtc->wb_dirty < x_intercept - span / 4) {
1181 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1182 (x_intercept - wb_setpoint) | 1);
1183 } else
1184 pos_ratio /= 4;
1185
1186 /*
1187 * wb reserve area, safeguard against dirty pool underrun and disk idle
1188 * It may push the desired control point of global dirty pages higher
1189 * than setpoint.
1190 */
1191 x_intercept = wb_thresh / 2;
1192 if (dtc->wb_dirty < x_intercept) {
1193 if (dtc->wb_dirty > x_intercept / 8)
1194 pos_ratio = div_u64(pos_ratio * x_intercept,
1195 dtc->wb_dirty);
1196 else
1197 pos_ratio *= 8;
1198 }
1199
1200 dtc->pos_ratio = pos_ratio;
1201 }
1202
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1203 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1204 unsigned long elapsed,
1205 unsigned long written)
1206 {
1207 const unsigned long period = roundup_pow_of_two(3 * HZ);
1208 unsigned long avg = wb->avg_write_bandwidth;
1209 unsigned long old = wb->write_bandwidth;
1210 u64 bw;
1211
1212 /*
1213 * bw = written * HZ / elapsed
1214 *
1215 * bw * elapsed + write_bandwidth * (period - elapsed)
1216 * write_bandwidth = ---------------------------------------------------
1217 * period
1218 *
1219 * @written may have decreased due to folio_redirty_for_writepage().
1220 * Avoid underflowing @bw calculation.
1221 */
1222 bw = written - min(written, wb->written_stamp);
1223 bw *= HZ;
1224 if (unlikely(elapsed > period)) {
1225 bw = div64_ul(bw, elapsed);
1226 avg = bw;
1227 goto out;
1228 }
1229 bw += (u64)wb->write_bandwidth * (period - elapsed);
1230 bw >>= ilog2(period);
1231
1232 /*
1233 * one more level of smoothing, for filtering out sudden spikes
1234 */
1235 if (avg > old && old >= (unsigned long)bw)
1236 avg -= (avg - old) >> 3;
1237
1238 if (avg < old && old <= (unsigned long)bw)
1239 avg += (old - avg) >> 3;
1240
1241 out:
1242 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1243 avg = max(avg, 1LU);
1244 if (wb_has_dirty_io(wb)) {
1245 long delta = avg - wb->avg_write_bandwidth;
1246 WARN_ON_ONCE(atomic_long_add_return(delta,
1247 &wb->bdi->tot_write_bandwidth) <= 0);
1248 }
1249 wb->write_bandwidth = bw;
1250 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1251 }
1252
update_dirty_limit(struct dirty_throttle_control * dtc)1253 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1254 {
1255 struct wb_domain *dom = dtc_dom(dtc);
1256 unsigned long thresh = dtc->thresh;
1257 unsigned long limit = dom->dirty_limit;
1258
1259 /*
1260 * Follow up in one step.
1261 */
1262 if (limit < thresh) {
1263 limit = thresh;
1264 goto update;
1265 }
1266
1267 /*
1268 * Follow down slowly. Use the higher one as the target, because thresh
1269 * may drop below dirty. This is exactly the reason to introduce
1270 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1271 */
1272 thresh = max(thresh, dtc->dirty);
1273 if (limit > thresh) {
1274 limit -= (limit - thresh) >> 5;
1275 goto update;
1276 }
1277 return;
1278 update:
1279 dom->dirty_limit = limit;
1280 }
1281
domain_update_dirty_limit(struct dirty_throttle_control * dtc,unsigned long now)1282 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1283 unsigned long now)
1284 {
1285 struct wb_domain *dom = dtc_dom(dtc);
1286
1287 /*
1288 * check locklessly first to optimize away locking for the most time
1289 */
1290 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1291 return;
1292
1293 spin_lock(&dom->lock);
1294 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1295 update_dirty_limit(dtc);
1296 dom->dirty_limit_tstamp = now;
1297 }
1298 spin_unlock(&dom->lock);
1299 }
1300
1301 /*
1302 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1303 *
1304 * Normal wb tasks will be curbed at or below it in long term.
1305 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1306 */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1307 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1308 unsigned long dirtied,
1309 unsigned long elapsed)
1310 {
1311 struct bdi_writeback *wb = dtc->wb;
1312 unsigned long dirty = dtc->dirty;
1313 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1314 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1315 unsigned long setpoint = (freerun + limit) / 2;
1316 unsigned long write_bw = wb->avg_write_bandwidth;
1317 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1318 unsigned long dirty_rate;
1319 unsigned long task_ratelimit;
1320 unsigned long balanced_dirty_ratelimit;
1321 unsigned long step;
1322 unsigned long x;
1323 unsigned long shift;
1324
1325 /*
1326 * The dirty rate will match the writeout rate in long term, except
1327 * when dirty pages are truncated by userspace or re-dirtied by FS.
1328 */
1329 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1330
1331 /*
1332 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1333 */
1334 task_ratelimit = (u64)dirty_ratelimit *
1335 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1336 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1337
1338 /*
1339 * A linear estimation of the "balanced" throttle rate. The theory is,
1340 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1341 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1342 * formula will yield the balanced rate limit (write_bw / N).
1343 *
1344 * Note that the expanded form is not a pure rate feedback:
1345 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1346 * but also takes pos_ratio into account:
1347 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1348 *
1349 * (1) is not realistic because pos_ratio also takes part in balancing
1350 * the dirty rate. Consider the state
1351 * pos_ratio = 0.5 (3)
1352 * rate = 2 * (write_bw / N) (4)
1353 * If (1) is used, it will stuck in that state! Because each dd will
1354 * be throttled at
1355 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1356 * yielding
1357 * dirty_rate = N * task_ratelimit = write_bw (6)
1358 * put (6) into (1) we get
1359 * rate_(i+1) = rate_(i) (7)
1360 *
1361 * So we end up using (2) to always keep
1362 * rate_(i+1) ~= (write_bw / N) (8)
1363 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1364 * pos_ratio is able to drive itself to 1.0, which is not only where
1365 * the dirty count meet the setpoint, but also where the slope of
1366 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1367 */
1368 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1369 dirty_rate | 1);
1370 /*
1371 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1372 */
1373 if (unlikely(balanced_dirty_ratelimit > write_bw))
1374 balanced_dirty_ratelimit = write_bw;
1375
1376 /*
1377 * We could safely do this and return immediately:
1378 *
1379 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1380 *
1381 * However to get a more stable dirty_ratelimit, the below elaborated
1382 * code makes use of task_ratelimit to filter out singular points and
1383 * limit the step size.
1384 *
1385 * The below code essentially only uses the relative value of
1386 *
1387 * task_ratelimit - dirty_ratelimit
1388 * = (pos_ratio - 1) * dirty_ratelimit
1389 *
1390 * which reflects the direction and size of dirty position error.
1391 */
1392
1393 /*
1394 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1395 * task_ratelimit is on the same side of dirty_ratelimit, too.
1396 * For example, when
1397 * - dirty_ratelimit > balanced_dirty_ratelimit
1398 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1399 * lowering dirty_ratelimit will help meet both the position and rate
1400 * control targets. Otherwise, don't update dirty_ratelimit if it will
1401 * only help meet the rate target. After all, what the users ultimately
1402 * feel and care are stable dirty rate and small position error.
1403 *
1404 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1405 * and filter out the singular points of balanced_dirty_ratelimit. Which
1406 * keeps jumping around randomly and can even leap far away at times
1407 * due to the small 200ms estimation period of dirty_rate (we want to
1408 * keep that period small to reduce time lags).
1409 */
1410 step = 0;
1411
1412 /*
1413 * For strictlimit case, calculations above were based on wb counters
1414 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1415 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1416 * Hence, to calculate "step" properly, we have to use wb_dirty as
1417 * "dirty" and wb_setpoint as "setpoint".
1418 *
1419 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1420 * it's possible that wb_thresh is close to zero due to inactivity
1421 * of backing device.
1422 */
1423 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1424 dirty = dtc->wb_dirty;
1425 if (dtc->wb_dirty < 8)
1426 setpoint = dtc->wb_dirty + 1;
1427 else
1428 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1429 }
1430
1431 if (dirty < setpoint) {
1432 x = min3(wb->balanced_dirty_ratelimit,
1433 balanced_dirty_ratelimit, task_ratelimit);
1434 if (dirty_ratelimit < x)
1435 step = x - dirty_ratelimit;
1436 } else {
1437 x = max3(wb->balanced_dirty_ratelimit,
1438 balanced_dirty_ratelimit, task_ratelimit);
1439 if (dirty_ratelimit > x)
1440 step = dirty_ratelimit - x;
1441 }
1442
1443 /*
1444 * Don't pursue 100% rate matching. It's impossible since the balanced
1445 * rate itself is constantly fluctuating. So decrease the track speed
1446 * when it gets close to the target. Helps eliminate pointless tremors.
1447 */
1448 shift = dirty_ratelimit / (2 * step + 1);
1449 if (shift < BITS_PER_LONG)
1450 step = DIV_ROUND_UP(step >> shift, 8);
1451 else
1452 step = 0;
1453
1454 if (dirty_ratelimit < balanced_dirty_ratelimit)
1455 dirty_ratelimit += step;
1456 else
1457 dirty_ratelimit -= step;
1458
1459 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1460 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1461
1462 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1463 }
1464
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,bool update_ratelimit)1465 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1466 struct dirty_throttle_control *mdtc,
1467 bool update_ratelimit)
1468 {
1469 struct bdi_writeback *wb = gdtc->wb;
1470 unsigned long now = jiffies;
1471 unsigned long elapsed;
1472 unsigned long dirtied;
1473 unsigned long written;
1474
1475 spin_lock(&wb->list_lock);
1476
1477 /*
1478 * Lockless checks for elapsed time are racy and delayed update after
1479 * IO completion doesn't do it at all (to make sure written pages are
1480 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1481 * division errors.
1482 */
1483 elapsed = max(now - wb->bw_time_stamp, 1UL);
1484 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1485 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1486
1487 if (update_ratelimit) {
1488 domain_update_dirty_limit(gdtc, now);
1489 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1490
1491 /*
1492 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1493 * compiler has no way to figure that out. Help it.
1494 */
1495 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1496 domain_update_dirty_limit(mdtc, now);
1497 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1498 }
1499 }
1500 wb_update_write_bandwidth(wb, elapsed, written);
1501
1502 wb->dirtied_stamp = dirtied;
1503 wb->written_stamp = written;
1504 WRITE_ONCE(wb->bw_time_stamp, now);
1505 spin_unlock(&wb->list_lock);
1506 }
1507
wb_update_bandwidth(struct bdi_writeback * wb)1508 void wb_update_bandwidth(struct bdi_writeback *wb)
1509 {
1510 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1511
1512 __wb_update_bandwidth(&gdtc, NULL, false);
1513 }
1514
1515 /* Interval after which we consider wb idle and don't estimate bandwidth */
1516 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1517
wb_bandwidth_estimate_start(struct bdi_writeback * wb)1518 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1519 {
1520 unsigned long now = jiffies;
1521 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1522
1523 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1524 !atomic_read(&wb->writeback_inodes)) {
1525 spin_lock(&wb->list_lock);
1526 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1527 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1528 WRITE_ONCE(wb->bw_time_stamp, now);
1529 spin_unlock(&wb->list_lock);
1530 }
1531 }
1532
1533 /*
1534 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1535 * will look to see if it needs to start dirty throttling.
1536 *
1537 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1538 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1539 * (the number of pages we may dirty without exceeding the dirty limits).
1540 */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1541 static unsigned long dirty_poll_interval(unsigned long dirty,
1542 unsigned long thresh)
1543 {
1544 if (thresh > dirty)
1545 return 1UL << (ilog2(thresh - dirty) >> 1);
1546
1547 return 1;
1548 }
1549
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1550 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1551 unsigned long wb_dirty)
1552 {
1553 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1554 unsigned long t;
1555
1556 /*
1557 * Limit pause time for small memory systems. If sleeping for too long
1558 * time, a small pool of dirty/writeback pages may go empty and disk go
1559 * idle.
1560 *
1561 * 8 serves as the safety ratio.
1562 */
1563 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1564 t++;
1565
1566 return min_t(unsigned long, t, MAX_PAUSE);
1567 }
1568
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1569 static long wb_min_pause(struct bdi_writeback *wb,
1570 long max_pause,
1571 unsigned long task_ratelimit,
1572 unsigned long dirty_ratelimit,
1573 int *nr_dirtied_pause)
1574 {
1575 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1576 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1577 long t; /* target pause */
1578 long pause; /* estimated next pause */
1579 int pages; /* target nr_dirtied_pause */
1580
1581 /* target for 10ms pause on 1-dd case */
1582 t = max(1, HZ / 100);
1583
1584 /*
1585 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1586 * overheads.
1587 *
1588 * (N * 10ms) on 2^N concurrent tasks.
1589 */
1590 if (hi > lo)
1591 t += (hi - lo) * (10 * HZ) / 1024;
1592
1593 /*
1594 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1595 * on the much more stable dirty_ratelimit. However the next pause time
1596 * will be computed based on task_ratelimit and the two rate limits may
1597 * depart considerably at some time. Especially if task_ratelimit goes
1598 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1599 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1600 * result task_ratelimit won't be executed faithfully, which could
1601 * eventually bring down dirty_ratelimit.
1602 *
1603 * We apply two rules to fix it up:
1604 * 1) try to estimate the next pause time and if necessary, use a lower
1605 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1606 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1607 * 2) limit the target pause time to max_pause/2, so that the normal
1608 * small fluctuations of task_ratelimit won't trigger rule (1) and
1609 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1610 */
1611 t = min(t, 1 + max_pause / 2);
1612 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1613
1614 /*
1615 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1616 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1617 * When the 16 consecutive reads are often interrupted by some dirty
1618 * throttling pause during the async writes, cfq will go into idles
1619 * (deadline is fine). So push nr_dirtied_pause as high as possible
1620 * until reaches DIRTY_POLL_THRESH=32 pages.
1621 */
1622 if (pages < DIRTY_POLL_THRESH) {
1623 t = max_pause;
1624 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1625 if (pages > DIRTY_POLL_THRESH) {
1626 pages = DIRTY_POLL_THRESH;
1627 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1628 }
1629 }
1630
1631 pause = HZ * pages / (task_ratelimit + 1);
1632 if (pause > max_pause) {
1633 t = max_pause;
1634 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1635 }
1636
1637 *nr_dirtied_pause = pages;
1638 /*
1639 * The minimal pause time will normally be half the target pause time.
1640 */
1641 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1642 }
1643
wb_dirty_limits(struct dirty_throttle_control * dtc)1644 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1645 {
1646 struct bdi_writeback *wb = dtc->wb;
1647 unsigned long wb_reclaimable;
1648
1649 /*
1650 * wb_thresh is not treated as some limiting factor as
1651 * dirty_thresh, due to reasons
1652 * - in JBOD setup, wb_thresh can fluctuate a lot
1653 * - in a system with HDD and USB key, the USB key may somehow
1654 * go into state (wb_dirty >> wb_thresh) either because
1655 * wb_dirty starts high, or because wb_thresh drops low.
1656 * In this case we don't want to hard throttle the USB key
1657 * dirtiers for 100 seconds until wb_dirty drops under
1658 * wb_thresh. Instead the auxiliary wb control line in
1659 * wb_position_ratio() will let the dirtier task progress
1660 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1661 */
1662 dtc->wb_thresh = __wb_calc_thresh(dtc);
1663 dtc->wb_bg_thresh = dtc->thresh ?
1664 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1665
1666 /*
1667 * In order to avoid the stacked BDI deadlock we need
1668 * to ensure we accurately count the 'dirty' pages when
1669 * the threshold is low.
1670 *
1671 * Otherwise it would be possible to get thresh+n pages
1672 * reported dirty, even though there are thresh-m pages
1673 * actually dirty; with m+n sitting in the percpu
1674 * deltas.
1675 */
1676 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1677 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1678 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1679 } else {
1680 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1681 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1682 }
1683 }
1684
1685 /*
1686 * balance_dirty_pages() must be called by processes which are generating dirty
1687 * data. It looks at the number of dirty pages in the machine and will force
1688 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1689 * If we're over `background_thresh' then the writeback threads are woken to
1690 * perform some writeout.
1691 */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied,unsigned int flags)1692 static int balance_dirty_pages(struct bdi_writeback *wb,
1693 unsigned long pages_dirtied, unsigned int flags)
1694 {
1695 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1696 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1697 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1698 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1699 &mdtc_stor : NULL;
1700 struct dirty_throttle_control *sdtc;
1701 unsigned long nr_reclaimable; /* = file_dirty */
1702 long period;
1703 long pause;
1704 long max_pause;
1705 long min_pause;
1706 int nr_dirtied_pause;
1707 bool dirty_exceeded = false;
1708 unsigned long task_ratelimit;
1709 unsigned long dirty_ratelimit;
1710 struct backing_dev_info *bdi = wb->bdi;
1711 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1712 unsigned long start_time = jiffies;
1713 int ret = 0;
1714
1715 for (;;) {
1716 unsigned long now = jiffies;
1717 unsigned long dirty, thresh, bg_thresh;
1718 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1719 unsigned long m_thresh = 0;
1720 unsigned long m_bg_thresh = 0;
1721
1722 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1723 gdtc->avail = global_dirtyable_memory();
1724 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1725
1726 domain_dirty_limits(gdtc);
1727
1728 if (unlikely(strictlimit)) {
1729 wb_dirty_limits(gdtc);
1730
1731 dirty = gdtc->wb_dirty;
1732 thresh = gdtc->wb_thresh;
1733 bg_thresh = gdtc->wb_bg_thresh;
1734 } else {
1735 dirty = gdtc->dirty;
1736 thresh = gdtc->thresh;
1737 bg_thresh = gdtc->bg_thresh;
1738 }
1739
1740 if (mdtc) {
1741 unsigned long filepages, headroom, writeback;
1742
1743 /*
1744 * If @wb belongs to !root memcg, repeat the same
1745 * basic calculations for the memcg domain.
1746 */
1747 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1748 &mdtc->dirty, &writeback);
1749 mdtc->dirty += writeback;
1750 mdtc_calc_avail(mdtc, filepages, headroom);
1751
1752 domain_dirty_limits(mdtc);
1753
1754 if (unlikely(strictlimit)) {
1755 wb_dirty_limits(mdtc);
1756 m_dirty = mdtc->wb_dirty;
1757 m_thresh = mdtc->wb_thresh;
1758 m_bg_thresh = mdtc->wb_bg_thresh;
1759 } else {
1760 m_dirty = mdtc->dirty;
1761 m_thresh = mdtc->thresh;
1762 m_bg_thresh = mdtc->bg_thresh;
1763 }
1764 }
1765
1766 /*
1767 * In laptop mode, we wait until hitting the higher threshold
1768 * before starting background writeout, and then write out all
1769 * the way down to the lower threshold. So slow writers cause
1770 * minimal disk activity.
1771 *
1772 * In normal mode, we start background writeout at the lower
1773 * background_thresh, to keep the amount of dirty memory low.
1774 */
1775 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1776 !writeback_in_progress(wb))
1777 wb_start_background_writeback(wb);
1778
1779 /*
1780 * Throttle it only when the background writeback cannot
1781 * catch-up. This avoids (excessively) small writeouts
1782 * when the wb limits are ramping up in case of !strictlimit.
1783 *
1784 * In strictlimit case make decision based on the wb counters
1785 * and limits. Small writeouts when the wb limits are ramping
1786 * up are the price we consciously pay for strictlimit-ing.
1787 *
1788 * If memcg domain is in effect, @dirty should be under
1789 * both global and memcg freerun ceilings.
1790 */
1791 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1792 (!mdtc ||
1793 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1794 unsigned long intv;
1795 unsigned long m_intv;
1796
1797 free_running:
1798 intv = dirty_poll_interval(dirty, thresh);
1799 m_intv = ULONG_MAX;
1800
1801 current->dirty_paused_when = now;
1802 current->nr_dirtied = 0;
1803 if (mdtc)
1804 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1805 current->nr_dirtied_pause = min(intv, m_intv);
1806 break;
1807 }
1808
1809 /* Start writeback even when in laptop mode */
1810 if (unlikely(!writeback_in_progress(wb)))
1811 wb_start_background_writeback(wb);
1812
1813 mem_cgroup_flush_foreign(wb);
1814
1815 /*
1816 * Calculate global domain's pos_ratio and select the
1817 * global dtc by default.
1818 */
1819 if (!strictlimit) {
1820 wb_dirty_limits(gdtc);
1821
1822 if ((current->flags & PF_LOCAL_THROTTLE) &&
1823 gdtc->wb_dirty <
1824 dirty_freerun_ceiling(gdtc->wb_thresh,
1825 gdtc->wb_bg_thresh))
1826 /*
1827 * LOCAL_THROTTLE tasks must not be throttled
1828 * when below the per-wb freerun ceiling.
1829 */
1830 goto free_running;
1831 }
1832
1833 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1834 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1835
1836 wb_position_ratio(gdtc);
1837 sdtc = gdtc;
1838
1839 if (mdtc) {
1840 /*
1841 * If memcg domain is in effect, calculate its
1842 * pos_ratio. @wb should satisfy constraints from
1843 * both global and memcg domains. Choose the one
1844 * w/ lower pos_ratio.
1845 */
1846 if (!strictlimit) {
1847 wb_dirty_limits(mdtc);
1848
1849 if ((current->flags & PF_LOCAL_THROTTLE) &&
1850 mdtc->wb_dirty <
1851 dirty_freerun_ceiling(mdtc->wb_thresh,
1852 mdtc->wb_bg_thresh))
1853 /*
1854 * LOCAL_THROTTLE tasks must not be
1855 * throttled when below the per-wb
1856 * freerun ceiling.
1857 */
1858 goto free_running;
1859 }
1860 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1861 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1862
1863 wb_position_ratio(mdtc);
1864 if (mdtc->pos_ratio < gdtc->pos_ratio)
1865 sdtc = mdtc;
1866 }
1867
1868 if (dirty_exceeded != wb->dirty_exceeded)
1869 wb->dirty_exceeded = dirty_exceeded;
1870
1871 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1872 BANDWIDTH_INTERVAL))
1873 __wb_update_bandwidth(gdtc, mdtc, true);
1874
1875 /* throttle according to the chosen dtc */
1876 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1877 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1878 RATELIMIT_CALC_SHIFT;
1879 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1880 min_pause = wb_min_pause(wb, max_pause,
1881 task_ratelimit, dirty_ratelimit,
1882 &nr_dirtied_pause);
1883
1884 if (unlikely(task_ratelimit == 0)) {
1885 period = max_pause;
1886 pause = max_pause;
1887 goto pause;
1888 }
1889 period = HZ * pages_dirtied / task_ratelimit;
1890 pause = period;
1891 if (current->dirty_paused_when)
1892 pause -= now - current->dirty_paused_when;
1893 /*
1894 * For less than 1s think time (ext3/4 may block the dirtier
1895 * for up to 800ms from time to time on 1-HDD; so does xfs,
1896 * however at much less frequency), try to compensate it in
1897 * future periods by updating the virtual time; otherwise just
1898 * do a reset, as it may be a light dirtier.
1899 */
1900 if (pause < min_pause) {
1901 trace_balance_dirty_pages(wb,
1902 sdtc->thresh,
1903 sdtc->bg_thresh,
1904 sdtc->dirty,
1905 sdtc->wb_thresh,
1906 sdtc->wb_dirty,
1907 dirty_ratelimit,
1908 task_ratelimit,
1909 pages_dirtied,
1910 period,
1911 min(pause, 0L),
1912 start_time);
1913 if (pause < -HZ) {
1914 current->dirty_paused_when = now;
1915 current->nr_dirtied = 0;
1916 } else if (period) {
1917 current->dirty_paused_when += period;
1918 current->nr_dirtied = 0;
1919 } else if (current->nr_dirtied_pause <= pages_dirtied)
1920 current->nr_dirtied_pause += pages_dirtied;
1921 break;
1922 }
1923 if (unlikely(pause > max_pause)) {
1924 /* for occasional dropped task_ratelimit */
1925 now += min(pause - max_pause, max_pause);
1926 pause = max_pause;
1927 }
1928
1929 pause:
1930 trace_balance_dirty_pages(wb,
1931 sdtc->thresh,
1932 sdtc->bg_thresh,
1933 sdtc->dirty,
1934 sdtc->wb_thresh,
1935 sdtc->wb_dirty,
1936 dirty_ratelimit,
1937 task_ratelimit,
1938 pages_dirtied,
1939 period,
1940 pause,
1941 start_time);
1942 if (flags & BDP_ASYNC) {
1943 ret = -EAGAIN;
1944 break;
1945 }
1946 __set_current_state(TASK_KILLABLE);
1947 bdi->last_bdp_sleep = jiffies;
1948 io_schedule_timeout(pause);
1949
1950 current->dirty_paused_when = now + pause;
1951 current->nr_dirtied = 0;
1952 current->nr_dirtied_pause = nr_dirtied_pause;
1953
1954 /*
1955 * This is typically equal to (dirty < thresh) and can also
1956 * keep "1000+ dd on a slow USB stick" under control.
1957 */
1958 if (task_ratelimit)
1959 break;
1960
1961 /*
1962 * In the case of an unresponsive NFS server and the NFS dirty
1963 * pages exceeds dirty_thresh, give the other good wb's a pipe
1964 * to go through, so that tasks on them still remain responsive.
1965 *
1966 * In theory 1 page is enough to keep the consumer-producer
1967 * pipe going: the flusher cleans 1 page => the task dirties 1
1968 * more page. However wb_dirty has accounting errors. So use
1969 * the larger and more IO friendly wb_stat_error.
1970 */
1971 if (sdtc->wb_dirty <= wb_stat_error())
1972 break;
1973
1974 if (fatal_signal_pending(current))
1975 break;
1976 }
1977 return ret;
1978 }
1979
1980 static DEFINE_PER_CPU(int, bdp_ratelimits);
1981
1982 /*
1983 * Normal tasks are throttled by
1984 * loop {
1985 * dirty tsk->nr_dirtied_pause pages;
1986 * take a snap in balance_dirty_pages();
1987 * }
1988 * However there is a worst case. If every task exit immediately when dirtied
1989 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1990 * called to throttle the page dirties. The solution is to save the not yet
1991 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1992 * randomly into the running tasks. This works well for the above worst case,
1993 * as the new task will pick up and accumulate the old task's leaked dirty
1994 * count and eventually get throttled.
1995 */
1996 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1997
1998 /**
1999 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2000 * @mapping: address_space which was dirtied.
2001 * @flags: BDP flags.
2002 *
2003 * Processes which are dirtying memory should call in here once for each page
2004 * which was newly dirtied. The function will periodically check the system's
2005 * dirty state and will initiate writeback if needed.
2006 *
2007 * See balance_dirty_pages_ratelimited() for details.
2008 *
2009 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2010 * indicate that memory is out of balance and the caller must wait
2011 * for I/O to complete. Otherwise, it will return 0 to indicate
2012 * that either memory was already in balance, or it was able to sleep
2013 * until the amount of dirty memory returned to balance.
2014 */
balance_dirty_pages_ratelimited_flags(struct address_space * mapping,unsigned int flags)2015 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2016 unsigned int flags)
2017 {
2018 struct inode *inode = mapping->host;
2019 struct backing_dev_info *bdi = inode_to_bdi(inode);
2020 struct bdi_writeback *wb = NULL;
2021 int ratelimit;
2022 int ret = 0;
2023 int *p;
2024
2025 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2026 return ret;
2027
2028 trace_android_rvh_ctl_dirty_rate(inode);
2029
2030 if (inode_cgwb_enabled(inode))
2031 wb = wb_get_create_current(bdi, GFP_KERNEL);
2032 if (!wb)
2033 wb = &bdi->wb;
2034
2035 ratelimit = current->nr_dirtied_pause;
2036 if (wb->dirty_exceeded)
2037 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2038
2039 preempt_disable();
2040 /*
2041 * This prevents one CPU to accumulate too many dirtied pages without
2042 * calling into balance_dirty_pages(), which can happen when there are
2043 * 1000+ tasks, all of them start dirtying pages at exactly the same
2044 * time, hence all honoured too large initial task->nr_dirtied_pause.
2045 */
2046 p = this_cpu_ptr(&bdp_ratelimits);
2047 if (unlikely(current->nr_dirtied >= ratelimit))
2048 *p = 0;
2049 else if (unlikely(*p >= ratelimit_pages)) {
2050 *p = 0;
2051 ratelimit = 0;
2052 }
2053 /*
2054 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2055 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2056 * the dirty throttling and livelock other long-run dirtiers.
2057 */
2058 p = this_cpu_ptr(&dirty_throttle_leaks);
2059 if (*p > 0 && current->nr_dirtied < ratelimit) {
2060 unsigned long nr_pages_dirtied;
2061 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2062 *p -= nr_pages_dirtied;
2063 current->nr_dirtied += nr_pages_dirtied;
2064 }
2065 preempt_enable();
2066
2067 if (unlikely(current->nr_dirtied >= ratelimit))
2068 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2069
2070 wb_put(wb);
2071 return ret;
2072 }
2073 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2074
2075 /**
2076 * balance_dirty_pages_ratelimited - balance dirty memory state.
2077 * @mapping: address_space which was dirtied.
2078 *
2079 * Processes which are dirtying memory should call in here once for each page
2080 * which was newly dirtied. The function will periodically check the system's
2081 * dirty state and will initiate writeback if needed.
2082 *
2083 * Once we're over the dirty memory limit we decrease the ratelimiting
2084 * by a lot, to prevent individual processes from overshooting the limit
2085 * by (ratelimit_pages) each.
2086 */
balance_dirty_pages_ratelimited(struct address_space * mapping)2087 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2088 {
2089 balance_dirty_pages_ratelimited_flags(mapping, 0);
2090 }
2091 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2092
2093 /**
2094 * wb_over_bg_thresh - does @wb need to be written back?
2095 * @wb: bdi_writeback of interest
2096 *
2097 * Determines whether background writeback should keep writing @wb or it's
2098 * clean enough.
2099 *
2100 * Return: %true if writeback should continue.
2101 */
wb_over_bg_thresh(struct bdi_writeback * wb)2102 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2103 {
2104 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2105 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2106 struct dirty_throttle_control * const gdtc = &gdtc_stor;
2107 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2108 &mdtc_stor : NULL;
2109 unsigned long reclaimable;
2110 unsigned long thresh;
2111
2112 /*
2113 * Similar to balance_dirty_pages() but ignores pages being written
2114 * as we're trying to decide whether to put more under writeback.
2115 */
2116 gdtc->avail = global_dirtyable_memory();
2117 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2118 domain_dirty_limits(gdtc);
2119
2120 if (gdtc->dirty > gdtc->bg_thresh)
2121 return true;
2122
2123 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2124 if (thresh < 2 * wb_stat_error())
2125 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2126 else
2127 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2128
2129 if (reclaimable > thresh)
2130 return true;
2131
2132 if (mdtc) {
2133 unsigned long filepages, headroom, writeback;
2134
2135 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2136 &writeback);
2137 mdtc_calc_avail(mdtc, filepages, headroom);
2138 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
2139
2140 if (mdtc->dirty > mdtc->bg_thresh)
2141 return true;
2142
2143 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2144 if (thresh < 2 * wb_stat_error())
2145 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2146 else
2147 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2148
2149 if (reclaimable > thresh)
2150 return true;
2151 }
2152
2153 return false;
2154 }
2155
2156 #ifdef CONFIG_SYSCTL
2157 /*
2158 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2159 */
dirty_writeback_centisecs_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2160 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2161 void *buffer, size_t *length, loff_t *ppos)
2162 {
2163 unsigned int old_interval = dirty_writeback_interval;
2164 int ret;
2165
2166 ret = proc_dointvec(table, write, buffer, length, ppos);
2167
2168 /*
2169 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2170 * and a different non-zero value will wakeup the writeback threads.
2171 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2172 * iterate over all bdis and wbs.
2173 * The reason we do this is to make the change take effect immediately.
2174 */
2175 if (!ret && write && dirty_writeback_interval &&
2176 dirty_writeback_interval != old_interval)
2177 wakeup_flusher_threads(WB_REASON_PERIODIC);
2178
2179 return ret;
2180 }
2181 #endif
2182
laptop_mode_timer_fn(struct timer_list * t)2183 void laptop_mode_timer_fn(struct timer_list *t)
2184 {
2185 struct backing_dev_info *backing_dev_info =
2186 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2187
2188 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2189 }
2190
2191 /*
2192 * We've spun up the disk and we're in laptop mode: schedule writeback
2193 * of all dirty data a few seconds from now. If the flush is already scheduled
2194 * then push it back - the user is still using the disk.
2195 */
laptop_io_completion(struct backing_dev_info * info)2196 void laptop_io_completion(struct backing_dev_info *info)
2197 {
2198 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2199 }
2200
2201 /*
2202 * We're in laptop mode and we've just synced. The sync's writes will have
2203 * caused another writeback to be scheduled by laptop_io_completion.
2204 * Nothing needs to be written back anymore, so we unschedule the writeback.
2205 */
laptop_sync_completion(void)2206 void laptop_sync_completion(void)
2207 {
2208 struct backing_dev_info *bdi;
2209
2210 rcu_read_lock();
2211
2212 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2213 del_timer(&bdi->laptop_mode_wb_timer);
2214
2215 rcu_read_unlock();
2216 }
2217
2218 /*
2219 * If ratelimit_pages is too high then we can get into dirty-data overload
2220 * if a large number of processes all perform writes at the same time.
2221 *
2222 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2223 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2224 * thresholds.
2225 */
2226
writeback_set_ratelimit(void)2227 void writeback_set_ratelimit(void)
2228 {
2229 struct wb_domain *dom = &global_wb_domain;
2230 unsigned long background_thresh;
2231 unsigned long dirty_thresh;
2232
2233 global_dirty_limits(&background_thresh, &dirty_thresh);
2234 dom->dirty_limit = dirty_thresh;
2235 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2236 if (ratelimit_pages < 16)
2237 ratelimit_pages = 16;
2238 }
2239
page_writeback_cpu_online(unsigned int cpu)2240 static int page_writeback_cpu_online(unsigned int cpu)
2241 {
2242 writeback_set_ratelimit();
2243 return 0;
2244 }
2245
2246 #ifdef CONFIG_SYSCTL
2247
2248 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2249 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2250
2251 static struct ctl_table vm_page_writeback_sysctls[] = {
2252 {
2253 .procname = "dirty_background_ratio",
2254 .data = &dirty_background_ratio,
2255 .maxlen = sizeof(dirty_background_ratio),
2256 .mode = 0644,
2257 .proc_handler = dirty_background_ratio_handler,
2258 .extra1 = SYSCTL_ZERO,
2259 .extra2 = SYSCTL_ONE_HUNDRED,
2260 },
2261 {
2262 .procname = "dirty_background_bytes",
2263 .data = &dirty_background_bytes,
2264 .maxlen = sizeof(dirty_background_bytes),
2265 .mode = 0644,
2266 .proc_handler = dirty_background_bytes_handler,
2267 .extra1 = SYSCTL_LONG_ONE,
2268 },
2269 {
2270 .procname = "dirty_ratio",
2271 .data = &vm_dirty_ratio,
2272 .maxlen = sizeof(vm_dirty_ratio),
2273 .mode = 0644,
2274 .proc_handler = dirty_ratio_handler,
2275 .extra1 = SYSCTL_ZERO,
2276 .extra2 = SYSCTL_ONE_HUNDRED,
2277 },
2278 {
2279 .procname = "dirty_bytes",
2280 .data = &vm_dirty_bytes,
2281 .maxlen = sizeof(vm_dirty_bytes),
2282 .mode = 0644,
2283 .proc_handler = dirty_bytes_handler,
2284 .extra1 = (void *)&dirty_bytes_min,
2285 },
2286 {
2287 .procname = "dirty_writeback_centisecs",
2288 .data = &dirty_writeback_interval,
2289 .maxlen = sizeof(dirty_writeback_interval),
2290 .mode = 0644,
2291 .proc_handler = dirty_writeback_centisecs_handler,
2292 },
2293 {
2294 .procname = "dirty_expire_centisecs",
2295 .data = &dirty_expire_interval,
2296 .maxlen = sizeof(dirty_expire_interval),
2297 .mode = 0644,
2298 .proc_handler = proc_dointvec_minmax,
2299 .extra1 = SYSCTL_ZERO,
2300 },
2301 #ifdef CONFIG_HIGHMEM
2302 {
2303 .procname = "highmem_is_dirtyable",
2304 .data = &vm_highmem_is_dirtyable,
2305 .maxlen = sizeof(vm_highmem_is_dirtyable),
2306 .mode = 0644,
2307 .proc_handler = proc_dointvec_minmax,
2308 .extra1 = SYSCTL_ZERO,
2309 .extra2 = SYSCTL_ONE,
2310 },
2311 #endif
2312 {
2313 .procname = "laptop_mode",
2314 .data = &laptop_mode,
2315 .maxlen = sizeof(laptop_mode),
2316 .mode = 0644,
2317 .proc_handler = proc_dointvec_jiffies,
2318 },
2319 {}
2320 };
2321 #endif
2322
2323 /*
2324 * Called early on to tune the page writeback dirty limits.
2325 *
2326 * We used to scale dirty pages according to how total memory
2327 * related to pages that could be allocated for buffers.
2328 *
2329 * However, that was when we used "dirty_ratio" to scale with
2330 * all memory, and we don't do that any more. "dirty_ratio"
2331 * is now applied to total non-HIGHPAGE memory, and as such we can't
2332 * get into the old insane situation any more where we had
2333 * large amounts of dirty pages compared to a small amount of
2334 * non-HIGHMEM memory.
2335 *
2336 * But we might still want to scale the dirty_ratio by how
2337 * much memory the box has..
2338 */
page_writeback_init(void)2339 void __init page_writeback_init(void)
2340 {
2341 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2342
2343 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2344 page_writeback_cpu_online, NULL);
2345 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2346 page_writeback_cpu_online);
2347 #ifdef CONFIG_SYSCTL
2348 register_sysctl_init("vm", vm_page_writeback_sysctls);
2349 #endif
2350 }
2351
2352 /**
2353 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2354 * @mapping: address space structure to write
2355 * @start: starting page index
2356 * @end: ending page index (inclusive)
2357 *
2358 * This function scans the page range from @start to @end (inclusive) and tags
2359 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2360 * that write_cache_pages (or whoever calls this function) will then use
2361 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2362 * used to avoid livelocking of writeback by a process steadily creating new
2363 * dirty pages in the file (thus it is important for this function to be quick
2364 * so that it can tag pages faster than a dirtying process can create them).
2365 */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2366 void tag_pages_for_writeback(struct address_space *mapping,
2367 pgoff_t start, pgoff_t end)
2368 {
2369 XA_STATE(xas, &mapping->i_pages, start);
2370 unsigned int tagged = 0;
2371 void *page;
2372
2373 xas_lock_irq(&xas);
2374 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2375 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2376 if (++tagged % XA_CHECK_SCHED)
2377 continue;
2378
2379 xas_pause(&xas);
2380 xas_unlock_irq(&xas);
2381 cond_resched();
2382 xas_lock_irq(&xas);
2383 }
2384 xas_unlock_irq(&xas);
2385 }
2386 EXPORT_SYMBOL(tag_pages_for_writeback);
2387
2388 /**
2389 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2390 * @mapping: address space structure to write
2391 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2392 * @writepage: function called for each page
2393 * @data: data passed to writepage function
2394 *
2395 * If a page is already under I/O, write_cache_pages() skips it, even
2396 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2397 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2398 * and msync() need to guarantee that all the data which was dirty at the time
2399 * the call was made get new I/O started against them. If wbc->sync_mode is
2400 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2401 * existing IO to complete.
2402 *
2403 * To avoid livelocks (when other process dirties new pages), we first tag
2404 * pages which should be written back with TOWRITE tag and only then start
2405 * writing them. For data-integrity sync we have to be careful so that we do
2406 * not miss some pages (e.g., because some other process has cleared TOWRITE
2407 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2408 * by the process clearing the DIRTY tag (and submitting the page for IO).
2409 *
2410 * To avoid deadlocks between range_cyclic writeback and callers that hold
2411 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2412 * we do not loop back to the start of the file. Doing so causes a page
2413 * lock/page writeback access order inversion - we should only ever lock
2414 * multiple pages in ascending page->index order, and looping back to the start
2415 * of the file violates that rule and causes deadlocks.
2416 *
2417 * Return: %0 on success, negative error code otherwise
2418 */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2419 int write_cache_pages(struct address_space *mapping,
2420 struct writeback_control *wbc, writepage_t writepage,
2421 void *data)
2422 {
2423 int ret = 0;
2424 int done = 0;
2425 int error;
2426 struct folio_batch fbatch;
2427 int nr_folios;
2428 pgoff_t index;
2429 pgoff_t end; /* Inclusive */
2430 pgoff_t done_index;
2431 int range_whole = 0;
2432 xa_mark_t tag;
2433
2434 folio_batch_init(&fbatch);
2435 if (wbc->range_cyclic) {
2436 index = mapping->writeback_index; /* prev offset */
2437 end = -1;
2438 } else {
2439 index = wbc->range_start >> PAGE_SHIFT;
2440 end = wbc->range_end >> PAGE_SHIFT;
2441 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2442 range_whole = 1;
2443 }
2444 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2445 tag_pages_for_writeback(mapping, index, end);
2446 tag = PAGECACHE_TAG_TOWRITE;
2447 } else {
2448 tag = PAGECACHE_TAG_DIRTY;
2449 }
2450 done_index = index;
2451 while (!done && (index <= end)) {
2452 int i;
2453
2454 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2455 tag, &fbatch);
2456
2457 if (nr_folios == 0)
2458 break;
2459
2460 for (i = 0; i < nr_folios; i++) {
2461 struct folio *folio = fbatch.folios[i];
2462 unsigned long nr;
2463
2464 done_index = folio->index;
2465
2466 folio_lock(folio);
2467
2468 /*
2469 * Page truncated or invalidated. We can freely skip it
2470 * then, even for data integrity operations: the page
2471 * has disappeared concurrently, so there could be no
2472 * real expectation of this data integrity operation
2473 * even if there is now a new, dirty page at the same
2474 * pagecache address.
2475 */
2476 if (unlikely(folio->mapping != mapping)) {
2477 continue_unlock:
2478 folio_unlock(folio);
2479 continue;
2480 }
2481
2482 if (!folio_test_dirty(folio)) {
2483 /* someone wrote it for us */
2484 goto continue_unlock;
2485 }
2486
2487 if (folio_test_writeback(folio)) {
2488 if (wbc->sync_mode != WB_SYNC_NONE)
2489 folio_wait_writeback(folio);
2490 else
2491 goto continue_unlock;
2492 }
2493
2494 BUG_ON(folio_test_writeback(folio));
2495 if (!folio_clear_dirty_for_io(folio))
2496 goto continue_unlock;
2497
2498 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2499 error = writepage(folio, wbc, data);
2500 nr = folio_nr_pages(folio);
2501 if (unlikely(error)) {
2502 /*
2503 * Handle errors according to the type of
2504 * writeback. There's no need to continue for
2505 * background writeback. Just push done_index
2506 * past this page so media errors won't choke
2507 * writeout for the entire file. For integrity
2508 * writeback, we must process the entire dirty
2509 * set regardless of errors because the fs may
2510 * still have state to clear for each page. In
2511 * that case we continue processing and return
2512 * the first error.
2513 */
2514 if (error == AOP_WRITEPAGE_ACTIVATE) {
2515 folio_unlock(folio);
2516 error = 0;
2517 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2518 ret = error;
2519 done_index = folio->index + nr;
2520 done = 1;
2521 break;
2522 }
2523 if (!ret)
2524 ret = error;
2525 }
2526
2527 /*
2528 * We stop writing back only if we are not doing
2529 * integrity sync. In case of integrity sync we have to
2530 * keep going until we have written all the pages
2531 * we tagged for writeback prior to entering this loop.
2532 */
2533 wbc->nr_to_write -= nr;
2534 if (wbc->nr_to_write <= 0 &&
2535 wbc->sync_mode == WB_SYNC_NONE) {
2536 done = 1;
2537 break;
2538 }
2539 }
2540 folio_batch_release(&fbatch);
2541 cond_resched();
2542 }
2543
2544 /*
2545 * If we hit the last page and there is more work to be done: wrap
2546 * back the index back to the start of the file for the next
2547 * time we are called.
2548 */
2549 if (wbc->range_cyclic && !done)
2550 done_index = 0;
2551 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2552 mapping->writeback_index = done_index;
2553
2554 return ret;
2555 }
2556 EXPORT_SYMBOL(write_cache_pages);
2557
writepage_cb(struct folio * folio,struct writeback_control * wbc,void * data)2558 static int writepage_cb(struct folio *folio, struct writeback_control *wbc,
2559 void *data)
2560 {
2561 struct address_space *mapping = data;
2562 int ret = mapping->a_ops->writepage(&folio->page, wbc);
2563 mapping_set_error(mapping, ret);
2564 return ret;
2565 }
2566
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2567 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2568 {
2569 int ret;
2570 struct bdi_writeback *wb;
2571
2572 if (wbc->nr_to_write <= 0)
2573 return 0;
2574 wb = inode_to_wb_wbc(mapping->host, wbc);
2575 wb_bandwidth_estimate_start(wb);
2576 while (1) {
2577 if (mapping->a_ops->writepages) {
2578 ret = mapping->a_ops->writepages(mapping, wbc);
2579 } else if (mapping->a_ops->writepage) {
2580 struct blk_plug plug;
2581
2582 blk_start_plug(&plug);
2583 ret = write_cache_pages(mapping, wbc, writepage_cb,
2584 mapping);
2585 blk_finish_plug(&plug);
2586 } else {
2587 /* deal with chardevs and other special files */
2588 ret = 0;
2589 }
2590 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2591 break;
2592
2593 /*
2594 * Lacking an allocation context or the locality or writeback
2595 * state of any of the inode's pages, throttle based on
2596 * writeback activity on the local node. It's as good a
2597 * guess as any.
2598 */
2599 reclaim_throttle(NODE_DATA(numa_node_id()),
2600 VMSCAN_THROTTLE_WRITEBACK);
2601 }
2602 /*
2603 * Usually few pages are written by now from those we've just submitted
2604 * but if there's constant writeback being submitted, this makes sure
2605 * writeback bandwidth is updated once in a while.
2606 */
2607 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2608 BANDWIDTH_INTERVAL))
2609 wb_update_bandwidth(wb);
2610 return ret;
2611 }
2612
2613 /*
2614 * For address_spaces which do not use buffers nor write back.
2615 */
noop_dirty_folio(struct address_space * mapping,struct folio * folio)2616 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2617 {
2618 if (!folio_test_dirty(folio))
2619 return !folio_test_set_dirty(folio);
2620 return false;
2621 }
2622 EXPORT_SYMBOL(noop_dirty_folio);
2623
2624 /*
2625 * Helper function for set_page_dirty family.
2626 *
2627 * Caller must hold folio_memcg_lock().
2628 *
2629 * NOTE: This relies on being atomic wrt interrupts.
2630 */
folio_account_dirtied(struct folio * folio,struct address_space * mapping)2631 static void folio_account_dirtied(struct folio *folio,
2632 struct address_space *mapping)
2633 {
2634 struct inode *inode = mapping->host;
2635
2636 trace_writeback_dirty_folio(folio, mapping);
2637
2638 if (mapping_can_writeback(mapping)) {
2639 struct bdi_writeback *wb;
2640 long nr = folio_nr_pages(folio);
2641
2642 inode_attach_wb(inode, folio);
2643 wb = inode_to_wb(inode);
2644
2645 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2646 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2647 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2648 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2649 wb_stat_mod(wb, WB_DIRTIED, nr);
2650 task_io_account_write(nr * PAGE_SIZE);
2651 current->nr_dirtied += nr;
2652 __this_cpu_add(bdp_ratelimits, nr);
2653
2654 mem_cgroup_track_foreign_dirty(folio, wb);
2655 }
2656 }
2657
2658 /*
2659 * Helper function for deaccounting dirty page without writeback.
2660 *
2661 * Caller must hold folio_memcg_lock().
2662 */
folio_account_cleaned(struct folio * folio,struct bdi_writeback * wb)2663 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2664 {
2665 long nr = folio_nr_pages(folio);
2666
2667 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2668 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2669 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2670 task_io_account_cancelled_write(nr * PAGE_SIZE);
2671 }
2672
2673 /*
2674 * Mark the folio dirty, and set it dirty in the page cache, and mark
2675 * the inode dirty.
2676 *
2677 * If warn is true, then emit a warning if the folio is not uptodate and has
2678 * not been truncated.
2679 *
2680 * The caller must hold folio_memcg_lock(). Most callers have the folio
2681 * locked. A few have the folio blocked from truncation through other
2682 * means (eg zap_vma_pages() has it mapped and is holding the page table
2683 * lock). This can also be called from mark_buffer_dirty(), which I
2684 * cannot prove is always protected against truncate.
2685 */
__folio_mark_dirty(struct folio * folio,struct address_space * mapping,int warn)2686 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2687 int warn)
2688 {
2689 unsigned long flags;
2690
2691 xa_lock_irqsave(&mapping->i_pages, flags);
2692 if (folio->mapping) { /* Race with truncate? */
2693 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2694 folio_account_dirtied(folio, mapping);
2695 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2696 PAGECACHE_TAG_DIRTY);
2697 }
2698 xa_unlock_irqrestore(&mapping->i_pages, flags);
2699 }
2700
2701 /**
2702 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2703 * @mapping: Address space this folio belongs to.
2704 * @folio: Folio to be marked as dirty.
2705 *
2706 * Filesystems which do not use buffer heads should call this function
2707 * from their set_page_dirty address space operation. It ignores the
2708 * contents of folio_get_private(), so if the filesystem marks individual
2709 * blocks as dirty, the filesystem should handle that itself.
2710 *
2711 * This is also sometimes used by filesystems which use buffer_heads when
2712 * a single buffer is being dirtied: we want to set the folio dirty in
2713 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2714 * whereas block_dirty_folio() is a "top-down" dirtying.
2715 *
2716 * The caller must ensure this doesn't race with truncation. Most will
2717 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2718 * folio mapped and the pte lock held, which also locks out truncation.
2719 */
filemap_dirty_folio(struct address_space * mapping,struct folio * folio)2720 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2721 {
2722 folio_memcg_lock(folio);
2723 if (folio_test_set_dirty(folio)) {
2724 folio_memcg_unlock(folio);
2725 return false;
2726 }
2727
2728 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2729 folio_memcg_unlock(folio);
2730
2731 if (mapping->host) {
2732 /* !PageAnon && !swapper_space */
2733 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2734 }
2735 return true;
2736 }
2737 EXPORT_SYMBOL(filemap_dirty_folio);
2738
2739 /**
2740 * folio_redirty_for_writepage - Decline to write a dirty folio.
2741 * @wbc: The writeback control.
2742 * @folio: The folio.
2743 *
2744 * When a writepage implementation decides that it doesn't want to write
2745 * @folio for some reason, it should call this function, unlock @folio and
2746 * return 0.
2747 *
2748 * Return: True if we redirtied the folio. False if someone else dirtied
2749 * it first.
2750 */
folio_redirty_for_writepage(struct writeback_control * wbc,struct folio * folio)2751 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2752 struct folio *folio)
2753 {
2754 struct address_space *mapping = folio->mapping;
2755 long nr = folio_nr_pages(folio);
2756 bool ret;
2757
2758 wbc->pages_skipped += nr;
2759 ret = filemap_dirty_folio(mapping, folio);
2760 if (mapping && mapping_can_writeback(mapping)) {
2761 struct inode *inode = mapping->host;
2762 struct bdi_writeback *wb;
2763 struct wb_lock_cookie cookie = {};
2764
2765 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2766 current->nr_dirtied -= nr;
2767 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2768 wb_stat_mod(wb, WB_DIRTIED, -nr);
2769 unlocked_inode_to_wb_end(inode, &cookie);
2770 }
2771 return ret;
2772 }
2773 EXPORT_SYMBOL(folio_redirty_for_writepage);
2774
2775 /**
2776 * folio_mark_dirty - Mark a folio as being modified.
2777 * @folio: The folio.
2778 *
2779 * The folio may not be truncated while this function is running.
2780 * Holding the folio lock is sufficient to prevent truncation, but some
2781 * callers cannot acquire a sleeping lock. These callers instead hold
2782 * the page table lock for a page table which contains at least one page
2783 * in this folio. Truncation will block on the page table lock as it
2784 * unmaps pages before removing the folio from its mapping.
2785 *
2786 * Return: True if the folio was newly dirtied, false if it was already dirty.
2787 */
folio_mark_dirty(struct folio * folio)2788 bool folio_mark_dirty(struct folio *folio)
2789 {
2790 struct address_space *mapping = folio_mapping(folio);
2791
2792 if (likely(mapping)) {
2793 /*
2794 * readahead/folio_deactivate could remain
2795 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2796 * About readahead, if the folio is written, the flags would be
2797 * reset. So no problem.
2798 * About folio_deactivate, if the folio is redirtied,
2799 * the flag will be reset. So no problem. but if the
2800 * folio is used by readahead it will confuse readahead
2801 * and make it restart the size rampup process. But it's
2802 * a trivial problem.
2803 */
2804 if (folio_test_reclaim(folio))
2805 folio_clear_reclaim(folio);
2806 return mapping->a_ops->dirty_folio(mapping, folio);
2807 }
2808
2809 return noop_dirty_folio(mapping, folio);
2810 }
2811 EXPORT_SYMBOL(folio_mark_dirty);
2812
2813 /*
2814 * set_page_dirty() is racy if the caller has no reference against
2815 * page->mapping->host, and if the page is unlocked. This is because another
2816 * CPU could truncate the page off the mapping and then free the mapping.
2817 *
2818 * Usually, the page _is_ locked, or the caller is a user-space process which
2819 * holds a reference on the inode by having an open file.
2820 *
2821 * In other cases, the page should be locked before running set_page_dirty().
2822 */
set_page_dirty_lock(struct page * page)2823 int set_page_dirty_lock(struct page *page)
2824 {
2825 int ret;
2826
2827 lock_page(page);
2828 ret = set_page_dirty(page);
2829 unlock_page(page);
2830 return ret;
2831 }
2832 EXPORT_SYMBOL(set_page_dirty_lock);
2833
2834 /*
2835 * This cancels just the dirty bit on the kernel page itself, it does NOT
2836 * actually remove dirty bits on any mmap's that may be around. It also
2837 * leaves the page tagged dirty, so any sync activity will still find it on
2838 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2839 * look at the dirty bits in the VM.
2840 *
2841 * Doing this should *normally* only ever be done when a page is truncated,
2842 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2843 * this when it notices that somebody has cleaned out all the buffers on a
2844 * page without actually doing it through the VM. Can you say "ext3 is
2845 * horribly ugly"? Thought you could.
2846 */
__folio_cancel_dirty(struct folio * folio)2847 void __folio_cancel_dirty(struct folio *folio)
2848 {
2849 struct address_space *mapping = folio_mapping(folio);
2850
2851 if (mapping_can_writeback(mapping)) {
2852 struct inode *inode = mapping->host;
2853 struct bdi_writeback *wb;
2854 struct wb_lock_cookie cookie = {};
2855
2856 folio_memcg_lock(folio);
2857 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2858
2859 if (folio_test_clear_dirty(folio))
2860 folio_account_cleaned(folio, wb);
2861
2862 unlocked_inode_to_wb_end(inode, &cookie);
2863 folio_memcg_unlock(folio);
2864 } else {
2865 folio_clear_dirty(folio);
2866 }
2867 }
2868 EXPORT_SYMBOL(__folio_cancel_dirty);
2869
2870 /*
2871 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2872 * Returns true if the folio was previously dirty.
2873 *
2874 * This is for preparing to put the folio under writeout. We leave
2875 * the folio tagged as dirty in the xarray so that a concurrent
2876 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2877 * The ->writepage implementation will run either folio_start_writeback()
2878 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2879 * and xarray dirty tag back into sync.
2880 *
2881 * This incoherency between the folio's dirty flag and xarray tag is
2882 * unfortunate, but it only exists while the folio is locked.
2883 */
folio_clear_dirty_for_io(struct folio * folio)2884 bool folio_clear_dirty_for_io(struct folio *folio)
2885 {
2886 struct address_space *mapping = folio_mapping(folio);
2887 bool ret = false;
2888
2889 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2890
2891 if (mapping && mapping_can_writeback(mapping)) {
2892 struct inode *inode = mapping->host;
2893 struct bdi_writeback *wb;
2894 struct wb_lock_cookie cookie = {};
2895
2896 /*
2897 * Yes, Virginia, this is indeed insane.
2898 *
2899 * We use this sequence to make sure that
2900 * (a) we account for dirty stats properly
2901 * (b) we tell the low-level filesystem to
2902 * mark the whole folio dirty if it was
2903 * dirty in a pagetable. Only to then
2904 * (c) clean the folio again and return 1 to
2905 * cause the writeback.
2906 *
2907 * This way we avoid all nasty races with the
2908 * dirty bit in multiple places and clearing
2909 * them concurrently from different threads.
2910 *
2911 * Note! Normally the "folio_mark_dirty(folio)"
2912 * has no effect on the actual dirty bit - since
2913 * that will already usually be set. But we
2914 * need the side effects, and it can help us
2915 * avoid races.
2916 *
2917 * We basically use the folio "master dirty bit"
2918 * as a serialization point for all the different
2919 * threads doing their things.
2920 */
2921 if (folio_mkclean(folio))
2922 folio_mark_dirty(folio);
2923 /*
2924 * We carefully synchronise fault handlers against
2925 * installing a dirty pte and marking the folio dirty
2926 * at this point. We do this by having them hold the
2927 * page lock while dirtying the folio, and folios are
2928 * always locked coming in here, so we get the desired
2929 * exclusion.
2930 */
2931 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2932 if (folio_test_clear_dirty(folio)) {
2933 long nr = folio_nr_pages(folio);
2934 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2935 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2936 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2937 ret = true;
2938 }
2939 unlocked_inode_to_wb_end(inode, &cookie);
2940 return ret;
2941 }
2942 return folio_test_clear_dirty(folio);
2943 }
2944 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2945
wb_inode_writeback_start(struct bdi_writeback * wb)2946 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2947 {
2948 atomic_inc(&wb->writeback_inodes);
2949 }
2950
wb_inode_writeback_end(struct bdi_writeback * wb)2951 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2952 {
2953 unsigned long flags;
2954 atomic_dec(&wb->writeback_inodes);
2955 /*
2956 * Make sure estimate of writeback throughput gets updated after
2957 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2958 * (which is the interval other bandwidth updates use for batching) so
2959 * that if multiple inodes end writeback at a similar time, they get
2960 * batched into one bandwidth update.
2961 */
2962 spin_lock_irqsave(&wb->work_lock, flags);
2963 if (test_bit(WB_registered, &wb->state))
2964 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2965 spin_unlock_irqrestore(&wb->work_lock, flags);
2966 }
2967
__folio_end_writeback(struct folio * folio)2968 bool __folio_end_writeback(struct folio *folio)
2969 {
2970 long nr = folio_nr_pages(folio);
2971 struct address_space *mapping = folio_mapping(folio);
2972 bool ret;
2973
2974 folio_memcg_lock(folio);
2975 if (mapping && mapping_use_writeback_tags(mapping)) {
2976 struct inode *inode = mapping->host;
2977 struct backing_dev_info *bdi = inode_to_bdi(inode);
2978 unsigned long flags;
2979
2980 xa_lock_irqsave(&mapping->i_pages, flags);
2981 ret = folio_test_clear_writeback(folio);
2982 if (ret) {
2983 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
2984 PAGECACHE_TAG_WRITEBACK);
2985 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2986 struct bdi_writeback *wb = inode_to_wb(inode);
2987
2988 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2989 __wb_writeout_add(wb, nr);
2990 if (!mapping_tagged(mapping,
2991 PAGECACHE_TAG_WRITEBACK))
2992 wb_inode_writeback_end(wb);
2993 }
2994 }
2995
2996 if (mapping->host && !mapping_tagged(mapping,
2997 PAGECACHE_TAG_WRITEBACK))
2998 sb_clear_inode_writeback(mapping->host);
2999
3000 xa_unlock_irqrestore(&mapping->i_pages, flags);
3001 } else {
3002 ret = folio_test_clear_writeback(folio);
3003 }
3004 if (ret) {
3005 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3006 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3007 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3008 }
3009 folio_memcg_unlock(folio);
3010 return ret;
3011 }
3012
__folio_start_writeback(struct folio * folio,bool keep_write)3013 bool __folio_start_writeback(struct folio *folio, bool keep_write)
3014 {
3015 long nr = folio_nr_pages(folio);
3016 struct address_space *mapping = folio_mapping(folio);
3017 bool ret;
3018 int access_ret;
3019
3020 folio_memcg_lock(folio);
3021 if (mapping && mapping_use_writeback_tags(mapping)) {
3022 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3023 struct inode *inode = mapping->host;
3024 struct backing_dev_info *bdi = inode_to_bdi(inode);
3025 unsigned long flags;
3026
3027 xas_lock_irqsave(&xas, flags);
3028 xas_load(&xas);
3029 ret = folio_test_set_writeback(folio);
3030 if (!ret) {
3031 bool on_wblist;
3032
3033 on_wblist = mapping_tagged(mapping,
3034 PAGECACHE_TAG_WRITEBACK);
3035
3036 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3037 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3038 struct bdi_writeback *wb = inode_to_wb(inode);
3039
3040 wb_stat_mod(wb, WB_WRITEBACK, nr);
3041 if (!on_wblist)
3042 wb_inode_writeback_start(wb);
3043 }
3044
3045 /*
3046 * We can come through here when swapping
3047 * anonymous folios, so we don't necessarily
3048 * have an inode to track for sync.
3049 */
3050 if (mapping->host && !on_wblist)
3051 sb_mark_inode_writeback(mapping->host);
3052 }
3053 if (!folio_test_dirty(folio))
3054 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3055 if (!keep_write)
3056 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3057 xas_unlock_irqrestore(&xas, flags);
3058 } else {
3059 ret = folio_test_set_writeback(folio);
3060 }
3061 if (!ret) {
3062 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3063 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3064 }
3065 folio_memcg_unlock(folio);
3066 access_ret = arch_make_folio_accessible(folio);
3067 /*
3068 * If writeback has been triggered on a page that cannot be made
3069 * accessible, it is too late to recover here.
3070 */
3071 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3072
3073 return ret;
3074 }
3075 EXPORT_SYMBOL(__folio_start_writeback);
3076
3077 /**
3078 * folio_wait_writeback - Wait for a folio to finish writeback.
3079 * @folio: The folio to wait for.
3080 *
3081 * If the folio is currently being written back to storage, wait for the
3082 * I/O to complete.
3083 *
3084 * Context: Sleeps. Must be called in process context and with
3085 * no spinlocks held. Caller should hold a reference on the folio.
3086 * If the folio is not locked, writeback may start again after writeback
3087 * has finished.
3088 */
folio_wait_writeback(struct folio * folio)3089 void folio_wait_writeback(struct folio *folio)
3090 {
3091 while (folio_test_writeback(folio)) {
3092 trace_folio_wait_writeback(folio, folio_mapping(folio));
3093 folio_wait_bit(folio, PG_writeback);
3094 }
3095 }
3096 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3097
3098 /**
3099 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3100 * @folio: The folio to wait for.
3101 *
3102 * If the folio is currently being written back to storage, wait for the
3103 * I/O to complete or a fatal signal to arrive.
3104 *
3105 * Context: Sleeps. Must be called in process context and with
3106 * no spinlocks held. Caller should hold a reference on the folio.
3107 * If the folio is not locked, writeback may start again after writeback
3108 * has finished.
3109 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3110 */
folio_wait_writeback_killable(struct folio * folio)3111 int folio_wait_writeback_killable(struct folio *folio)
3112 {
3113 while (folio_test_writeback(folio)) {
3114 trace_folio_wait_writeback(folio, folio_mapping(folio));
3115 if (folio_wait_bit_killable(folio, PG_writeback))
3116 return -EINTR;
3117 }
3118
3119 return 0;
3120 }
3121 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3122
3123 /**
3124 * folio_wait_stable() - wait for writeback to finish, if necessary.
3125 * @folio: The folio to wait on.
3126 *
3127 * This function determines if the given folio is related to a backing
3128 * device that requires folio contents to be held stable during writeback.
3129 * If so, then it will wait for any pending writeback to complete.
3130 *
3131 * Context: Sleeps. Must be called in process context and with
3132 * no spinlocks held. Caller should hold a reference on the folio.
3133 * If the folio is not locked, writeback may start again after writeback
3134 * has finished.
3135 */
folio_wait_stable(struct folio * folio)3136 void folio_wait_stable(struct folio *folio)
3137 {
3138 if (mapping_stable_writes(folio_mapping(folio)))
3139 folio_wait_writeback(folio);
3140 }
3141 EXPORT_SYMBOL_GPL(folio_wait_stable);
3142