1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Intel Core SoC Power Management Controller Driver
4 *
5 * Copyright (c) 2016, Intel Corporation.
6 * All Rights Reserved.
7 *
8 * Authors: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
9 * Vishwanath Somayaji <vishwanath.somayaji@intel.com>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/bitfield.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/dmi.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/slab.h>
22 #include <linux/suspend.h>
23
24 #include <asm/cpu_device_id.h>
25 #include <asm/intel-family.h>
26 #include <asm/msr.h>
27 #include <asm/tsc.h>
28
29 #include "core.h"
30
31 /* Maximum number of modes supported by platfoms that has low power mode capability */
32 const char *pmc_lpm_modes[] = {
33 "S0i2.0",
34 "S0i2.1",
35 "S0i2.2",
36 "S0i3.0",
37 "S0i3.1",
38 "S0i3.2",
39 "S0i3.3",
40 "S0i3.4",
41 NULL
42 };
43
44 /* PKGC MSRs are common across Intel Core SoCs */
45 const struct pmc_bit_map msr_map[] = {
46 {"Package C2", MSR_PKG_C2_RESIDENCY},
47 {"Package C3", MSR_PKG_C3_RESIDENCY},
48 {"Package C6", MSR_PKG_C6_RESIDENCY},
49 {"Package C7", MSR_PKG_C7_RESIDENCY},
50 {"Package C8", MSR_PKG_C8_RESIDENCY},
51 {"Package C9", MSR_PKG_C9_RESIDENCY},
52 {"Package C10", MSR_PKG_C10_RESIDENCY},
53 {}
54 };
55
pmc_core_reg_read(struct pmc * pmc,int reg_offset)56 static inline u32 pmc_core_reg_read(struct pmc *pmc, int reg_offset)
57 {
58 return readl(pmc->regbase + reg_offset);
59 }
60
pmc_core_reg_write(struct pmc * pmc,int reg_offset,u32 val)61 static inline void pmc_core_reg_write(struct pmc *pmc, int reg_offset,
62 u32 val)
63 {
64 writel(val, pmc->regbase + reg_offset);
65 }
66
pmc_core_adjust_slp_s0_step(struct pmc * pmc,u32 value)67 static inline u64 pmc_core_adjust_slp_s0_step(struct pmc *pmc, u32 value)
68 {
69 /*
70 * ADL PCH does not have the SLP_S0 counter and LPM Residency counters are
71 * used as a workaround which uses 30.5 usec tick. All other client
72 * programs have the legacy SLP_S0 residency counter that is using the 122
73 * usec tick.
74 */
75 const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
76
77 if (pmc->map == &adl_reg_map)
78 return (u64)value * GET_X2_COUNTER((u64)lpm_adj_x2);
79 else
80 return (u64)value * pmc->map->slp_s0_res_counter_step;
81 }
82
set_etr3(struct pmc_dev * pmcdev)83 static int set_etr3(struct pmc_dev *pmcdev)
84 {
85 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
86 const struct pmc_reg_map *map = pmc->map;
87 u32 reg;
88 int err;
89
90 if (!map->etr3_offset)
91 return -EOPNOTSUPP;
92
93 mutex_lock(&pmcdev->lock);
94
95 /* check if CF9 is locked */
96 reg = pmc_core_reg_read(pmc, map->etr3_offset);
97 if (reg & ETR3_CF9LOCK) {
98 err = -EACCES;
99 goto out_unlock;
100 }
101
102 /* write CF9 global reset bit */
103 reg |= ETR3_CF9GR;
104 pmc_core_reg_write(pmc, map->etr3_offset, reg);
105
106 reg = pmc_core_reg_read(pmc, map->etr3_offset);
107 if (!(reg & ETR3_CF9GR)) {
108 err = -EIO;
109 goto out_unlock;
110 }
111
112 err = 0;
113
114 out_unlock:
115 mutex_unlock(&pmcdev->lock);
116 return err;
117 }
etr3_is_visible(struct kobject * kobj,struct attribute * attr,int idx)118 static umode_t etr3_is_visible(struct kobject *kobj,
119 struct attribute *attr,
120 int idx)
121 {
122 struct device *dev = kobj_to_dev(kobj);
123 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
124 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
125 const struct pmc_reg_map *map = pmc->map;
126 u32 reg;
127
128 mutex_lock(&pmcdev->lock);
129 reg = pmc_core_reg_read(pmc, map->etr3_offset);
130 mutex_unlock(&pmcdev->lock);
131
132 return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode;
133 }
134
etr3_show(struct device * dev,struct device_attribute * attr,char * buf)135 static ssize_t etr3_show(struct device *dev,
136 struct device_attribute *attr, char *buf)
137 {
138 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
139 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
140 const struct pmc_reg_map *map = pmc->map;
141 u32 reg;
142
143 if (!map->etr3_offset)
144 return -EOPNOTSUPP;
145
146 mutex_lock(&pmcdev->lock);
147
148 reg = pmc_core_reg_read(pmc, map->etr3_offset);
149 reg &= ETR3_CF9GR | ETR3_CF9LOCK;
150
151 mutex_unlock(&pmcdev->lock);
152
153 return sysfs_emit(buf, "0x%08x", reg);
154 }
155
etr3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)156 static ssize_t etr3_store(struct device *dev,
157 struct device_attribute *attr,
158 const char *buf, size_t len)
159 {
160 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
161 int err;
162 u32 reg;
163
164 err = kstrtouint(buf, 16, ®);
165 if (err)
166 return err;
167
168 /* allow only CF9 writes */
169 if (reg != ETR3_CF9GR)
170 return -EINVAL;
171
172 err = set_etr3(pmcdev);
173 if (err)
174 return err;
175
176 return len;
177 }
178 static DEVICE_ATTR_RW(etr3);
179
180 static struct attribute *pmc_attrs[] = {
181 &dev_attr_etr3.attr,
182 NULL
183 };
184
185 static const struct attribute_group pmc_attr_group = {
186 .attrs = pmc_attrs,
187 .is_visible = etr3_is_visible,
188 };
189
190 static const struct attribute_group *pmc_dev_groups[] = {
191 &pmc_attr_group,
192 NULL
193 };
194
pmc_core_dev_state_get(void * data,u64 * val)195 static int pmc_core_dev_state_get(void *data, u64 *val)
196 {
197 struct pmc *pmc = data;
198 const struct pmc_reg_map *map = pmc->map;
199 u32 value;
200
201 value = pmc_core_reg_read(pmc, map->slp_s0_offset);
202 *val = pmc_core_adjust_slp_s0_step(pmc, value);
203
204 return 0;
205 }
206
207 DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n");
208
pmc_core_check_read_lock_bit(struct pmc * pmc)209 static int pmc_core_check_read_lock_bit(struct pmc *pmc)
210 {
211 u32 value;
212
213 value = pmc_core_reg_read(pmc, pmc->map->pm_cfg_offset);
214 return value & BIT(pmc->map->pm_read_disable_bit);
215 }
216
pmc_core_slps0_display(struct pmc * pmc,struct device * dev,struct seq_file * s)217 static void pmc_core_slps0_display(struct pmc *pmc, struct device *dev,
218 struct seq_file *s)
219 {
220 const struct pmc_bit_map **maps = pmc->map->slps0_dbg_maps;
221 const struct pmc_bit_map *map;
222 int offset = pmc->map->slps0_dbg_offset;
223 u32 data;
224
225 while (*maps) {
226 map = *maps;
227 data = pmc_core_reg_read(pmc, offset);
228 offset += 4;
229 while (map->name) {
230 if (dev)
231 dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n",
232 map->name,
233 data & map->bit_mask ? "Yes" : "No");
234 if (s)
235 seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n",
236 map->name,
237 data & map->bit_mask ? "Yes" : "No");
238 ++map;
239 }
240 ++maps;
241 }
242 }
243
pmc_core_lpm_get_arr_size(const struct pmc_bit_map ** maps)244 static int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps)
245 {
246 int idx;
247
248 for (idx = 0; maps[idx]; idx++)
249 ;/* Nothing */
250
251 return idx;
252 }
253
pmc_core_lpm_display(struct pmc * pmc,struct device * dev,struct seq_file * s,u32 offset,int pmc_index,const char * str,const struct pmc_bit_map ** maps)254 static void pmc_core_lpm_display(struct pmc *pmc, struct device *dev,
255 struct seq_file *s, u32 offset, int pmc_index,
256 const char *str,
257 const struct pmc_bit_map **maps)
258 {
259 int index, idx, len = 32, bit_mask, arr_size;
260 u32 *lpm_regs;
261
262 arr_size = pmc_core_lpm_get_arr_size(maps);
263 lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL);
264 if (!lpm_regs)
265 return;
266
267 for (index = 0; index < arr_size; index++) {
268 lpm_regs[index] = pmc_core_reg_read(pmc, offset);
269 offset += 4;
270 }
271
272 for (idx = 0; idx < arr_size; idx++) {
273 if (dev)
274 dev_info(dev, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
275 lpm_regs[idx]);
276 if (s)
277 seq_printf(s, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
278 lpm_regs[idx]);
279 for (index = 0; maps[idx][index].name && index < len; index++) {
280 bit_mask = maps[idx][index].bit_mask;
281 if (dev)
282 dev_info(dev, "PMC%d:%-30s %-30d\n", pmc_index,
283 maps[idx][index].name,
284 lpm_regs[idx] & bit_mask ? 1 : 0);
285 if (s)
286 seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_index,
287 maps[idx][index].name,
288 lpm_regs[idx] & bit_mask ? 1 : 0);
289 }
290 }
291
292 kfree(lpm_regs);
293 }
294
295 static bool slps0_dbg_latch;
296
pmc_core_reg_read_byte(struct pmc * pmc,int offset)297 static inline u8 pmc_core_reg_read_byte(struct pmc *pmc, int offset)
298 {
299 return readb(pmc->regbase + offset);
300 }
301
pmc_core_display_map(struct seq_file * s,int index,int idx,int ip,int pmc_index,u8 pf_reg,const struct pmc_bit_map ** pf_map)302 static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip,
303 int pmc_index, u8 pf_reg, const struct pmc_bit_map **pf_map)
304 {
305 seq_printf(s, "PMC%d:PCH IP: %-2d - %-32s\tState: %s\n",
306 pmc_index, ip, pf_map[idx][index].name,
307 pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On");
308 }
309
pmc_core_ppfear_show(struct seq_file * s,void * unused)310 static int pmc_core_ppfear_show(struct seq_file *s, void *unused)
311 {
312 struct pmc_dev *pmcdev = s->private;
313 int i;
314
315 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
316 struct pmc *pmc = pmcdev->pmcs[i];
317 const struct pmc_bit_map **maps;
318 u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES];
319 int index, iter, idx, ip = 0;
320
321 if (!pmc)
322 continue;
323
324 maps = pmc->map->pfear_sts;
325 iter = pmc->map->ppfear0_offset;
326
327 for (index = 0; index < pmc->map->ppfear_buckets &&
328 index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++)
329 pf_regs[index] = pmc_core_reg_read_byte(pmc, iter);
330
331 for (idx = 0; maps[idx]; idx++) {
332 for (index = 0; maps[idx][index].name &&
333 index < pmc->map->ppfear_buckets * 8; ip++, index++)
334 pmc_core_display_map(s, index, idx, ip, i,
335 pf_regs[index / 8], maps);
336 }
337 }
338
339 return 0;
340 }
341 DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear);
342
343 /* This function should return link status, 0 means ready */
pmc_core_mtpmc_link_status(struct pmc * pmc)344 static int pmc_core_mtpmc_link_status(struct pmc *pmc)
345 {
346 u32 value;
347
348 value = pmc_core_reg_read(pmc, SPT_PMC_PM_STS_OFFSET);
349 return value & BIT(SPT_PMC_MSG_FULL_STS_BIT);
350 }
351
pmc_core_send_msg(struct pmc * pmc,u32 * addr_xram)352 static int pmc_core_send_msg(struct pmc *pmc, u32 *addr_xram)
353 {
354 u32 dest;
355 int timeout;
356
357 for (timeout = NUM_RETRIES; timeout > 0; timeout--) {
358 if (pmc_core_mtpmc_link_status(pmc) == 0)
359 break;
360 msleep(5);
361 }
362
363 if (timeout <= 0 && pmc_core_mtpmc_link_status(pmc))
364 return -EBUSY;
365
366 dest = (*addr_xram & MTPMC_MASK) | (1U << 1);
367 pmc_core_reg_write(pmc, SPT_PMC_MTPMC_OFFSET, dest);
368 return 0;
369 }
370
pmc_core_mphy_pg_show(struct seq_file * s,void * unused)371 static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused)
372 {
373 struct pmc_dev *pmcdev = s->private;
374 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
375 const struct pmc_bit_map *map = pmc->map->mphy_sts;
376 u32 mphy_core_reg_low, mphy_core_reg_high;
377 u32 val_low, val_high;
378 int index, err = 0;
379
380 if (pmcdev->pmc_xram_read_bit) {
381 seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
382 return 0;
383 }
384
385 mphy_core_reg_low = (SPT_PMC_MPHY_CORE_STS_0 << 16);
386 mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16);
387
388 mutex_lock(&pmcdev->lock);
389
390 if (pmc_core_send_msg(pmc, &mphy_core_reg_low) != 0) {
391 err = -EBUSY;
392 goto out_unlock;
393 }
394
395 msleep(10);
396 val_low = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
397
398 if (pmc_core_send_msg(pmc, &mphy_core_reg_high) != 0) {
399 err = -EBUSY;
400 goto out_unlock;
401 }
402
403 msleep(10);
404 val_high = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
405
406 for (index = 0; index < 8 && map[index].name; index++) {
407 seq_printf(s, "%-32s\tState: %s\n",
408 map[index].name,
409 map[index].bit_mask & val_low ? "Not power gated" :
410 "Power gated");
411 }
412
413 for (index = 8; map[index].name; index++) {
414 seq_printf(s, "%-32s\tState: %s\n",
415 map[index].name,
416 map[index].bit_mask & val_high ? "Not power gated" :
417 "Power gated");
418 }
419
420 out_unlock:
421 mutex_unlock(&pmcdev->lock);
422 return err;
423 }
424 DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg);
425
pmc_core_pll_show(struct seq_file * s,void * unused)426 static int pmc_core_pll_show(struct seq_file *s, void *unused)
427 {
428 struct pmc_dev *pmcdev = s->private;
429 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
430 const struct pmc_bit_map *map = pmc->map->pll_sts;
431 u32 mphy_common_reg, val;
432 int index, err = 0;
433
434 if (pmcdev->pmc_xram_read_bit) {
435 seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
436 return 0;
437 }
438
439 mphy_common_reg = (SPT_PMC_MPHY_COM_STS_0 << 16);
440 mutex_lock(&pmcdev->lock);
441
442 if (pmc_core_send_msg(pmc, &mphy_common_reg) != 0) {
443 err = -EBUSY;
444 goto out_unlock;
445 }
446
447 /* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */
448 msleep(10);
449 val = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
450
451 for (index = 0; map[index].name ; index++) {
452 seq_printf(s, "%-32s\tState: %s\n",
453 map[index].name,
454 map[index].bit_mask & val ? "Active" : "Idle");
455 }
456
457 out_unlock:
458 mutex_unlock(&pmcdev->lock);
459 return err;
460 }
461 DEFINE_SHOW_ATTRIBUTE(pmc_core_pll);
462
pmc_core_send_ltr_ignore(struct pmc_dev * pmcdev,u32 value,int ignore)463 int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value, int ignore)
464 {
465 struct pmc *pmc;
466 const struct pmc_reg_map *map;
467 u32 reg;
468 int pmc_index, ltr_index;
469
470 ltr_index = value;
471 /* For platforms with multiple pmcs, ltr index value given by user
472 * is based on the contiguous indexes from ltr_show output.
473 * pmc index and ltr index needs to be calculated from it.
474 */
475 for (pmc_index = 0; pmc_index < ARRAY_SIZE(pmcdev->pmcs) && ltr_index >= 0; pmc_index++) {
476 pmc = pmcdev->pmcs[pmc_index];
477
478 if (!pmc)
479 continue;
480
481 map = pmc->map;
482 if (ltr_index <= map->ltr_ignore_max)
483 break;
484
485 /* Along with IP names, ltr_show map includes CURRENT_PLATFORM
486 * and AGGREGATED_SYSTEM values per PMC. Take these two index
487 * values into account in ltr_index calculation. Also, to start
488 * ltr index from zero for next pmc, subtract it by 1.
489 */
490 ltr_index = ltr_index - (map->ltr_ignore_max + 2) - 1;
491 }
492
493 if (pmc_index >= ARRAY_SIZE(pmcdev->pmcs) || ltr_index < 0)
494 return -EINVAL;
495
496 pr_debug("ltr_ignore for pmc%d: ltr_index:%d\n", pmc_index, ltr_index);
497
498 mutex_lock(&pmcdev->lock);
499
500 reg = pmc_core_reg_read(pmc, map->ltr_ignore_offset);
501 if (ignore)
502 reg |= BIT(ltr_index);
503 else
504 reg &= ~BIT(ltr_index);
505 pmc_core_reg_write(pmc, map->ltr_ignore_offset, reg);
506
507 mutex_unlock(&pmcdev->lock);
508
509 return 0;
510 }
511
pmc_core_ltr_ignore_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)512 static ssize_t pmc_core_ltr_ignore_write(struct file *file,
513 const char __user *userbuf,
514 size_t count, loff_t *ppos)
515 {
516 struct seq_file *s = file->private_data;
517 struct pmc_dev *pmcdev = s->private;
518 u32 buf_size, value;
519 int err;
520
521 buf_size = min_t(u32, count, 64);
522
523 err = kstrtou32_from_user(userbuf, buf_size, 10, &value);
524 if (err)
525 return err;
526
527 err = pmc_core_send_ltr_ignore(pmcdev, value, 1);
528
529 return err == 0 ? count : err;
530 }
531
pmc_core_ltr_ignore_show(struct seq_file * s,void * unused)532 static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused)
533 {
534 return 0;
535 }
536
pmc_core_ltr_ignore_open(struct inode * inode,struct file * file)537 static int pmc_core_ltr_ignore_open(struct inode *inode, struct file *file)
538 {
539 return single_open(file, pmc_core_ltr_ignore_show, inode->i_private);
540 }
541
542 static const struct file_operations pmc_core_ltr_ignore_ops = {
543 .open = pmc_core_ltr_ignore_open,
544 .read = seq_read,
545 .write = pmc_core_ltr_ignore_write,
546 .llseek = seq_lseek,
547 .release = single_release,
548 };
549
pmc_core_slps0_dbg_latch(struct pmc_dev * pmcdev,bool reset)550 static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset)
551 {
552 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
553 const struct pmc_reg_map *map = pmc->map;
554 u32 fd;
555
556 mutex_lock(&pmcdev->lock);
557
558 if (!reset && !slps0_dbg_latch)
559 goto out_unlock;
560
561 fd = pmc_core_reg_read(pmc, map->slps0_dbg_offset);
562 if (reset)
563 fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS;
564 else
565 fd |= CNP_PMC_LATCH_SLPS0_EVENTS;
566 pmc_core_reg_write(pmc, map->slps0_dbg_offset, fd);
567
568 slps0_dbg_latch = false;
569
570 out_unlock:
571 mutex_unlock(&pmcdev->lock);
572 }
573
pmc_core_slps0_dbg_show(struct seq_file * s,void * unused)574 static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused)
575 {
576 struct pmc_dev *pmcdev = s->private;
577
578 pmc_core_slps0_dbg_latch(pmcdev, false);
579 pmc_core_slps0_display(pmcdev->pmcs[PMC_IDX_MAIN], NULL, s);
580 pmc_core_slps0_dbg_latch(pmcdev, true);
581
582 return 0;
583 }
584 DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg);
585
convert_ltr_scale(u32 val)586 static u32 convert_ltr_scale(u32 val)
587 {
588 /*
589 * As per PCIE specification supporting document
590 * ECN_LatencyTolnReporting_14Aug08.pdf the Latency
591 * Tolerance Reporting data payload is encoded in a
592 * 3 bit scale and 10 bit value fields. Values are
593 * multiplied by the indicated scale to yield an absolute time
594 * value, expressible in a range from 1 nanosecond to
595 * 2^25*(2^10-1) = 34,326,183,936 nanoseconds.
596 *
597 * scale encoding is as follows:
598 *
599 * ----------------------------------------------
600 * |scale factor | Multiplier (ns) |
601 * ----------------------------------------------
602 * | 0 | 1 |
603 * | 1 | 32 |
604 * | 2 | 1024 |
605 * | 3 | 32768 |
606 * | 4 | 1048576 |
607 * | 5 | 33554432 |
608 * | 6 | Invalid |
609 * | 7 | Invalid |
610 * ----------------------------------------------
611 */
612 if (val > 5) {
613 pr_warn("Invalid LTR scale factor.\n");
614 return 0;
615 }
616
617 return 1U << (5 * val);
618 }
619
pmc_core_ltr_show(struct seq_file * s,void * unused)620 static int pmc_core_ltr_show(struct seq_file *s, void *unused)
621 {
622 struct pmc_dev *pmcdev = s->private;
623 u64 decoded_snoop_ltr, decoded_non_snoop_ltr;
624 u32 ltr_raw_data, scale, val;
625 u16 snoop_ltr, nonsnoop_ltr;
626 int i, index, ltr_index = 0;
627
628 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
629 struct pmc *pmc = pmcdev->pmcs[i];
630 const struct pmc_bit_map *map;
631
632 if (!pmc)
633 continue;
634
635 map = pmc->map->ltr_show_sts;
636 for (index = 0; map[index].name; index++) {
637 decoded_snoop_ltr = decoded_non_snoop_ltr = 0;
638 ltr_raw_data = pmc_core_reg_read(pmc,
639 map[index].bit_mask);
640 snoop_ltr = ltr_raw_data & ~MTPMC_MASK;
641 nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK;
642
643 if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) {
644 scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr);
645 val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr);
646 decoded_non_snoop_ltr = val * convert_ltr_scale(scale);
647 }
648 if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) {
649 scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr);
650 val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr);
651 decoded_snoop_ltr = val * convert_ltr_scale(scale);
652 }
653
654 seq_printf(s, "%d\tPMC%d:%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\n",
655 ltr_index, i, map[index].name, ltr_raw_data,
656 decoded_non_snoop_ltr,
657 decoded_snoop_ltr);
658 ltr_index++;
659 }
660 }
661 return 0;
662 }
663 DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr);
664
adjust_lpm_residency(struct pmc * pmc,u32 offset,const int lpm_adj_x2)665 static inline u64 adjust_lpm_residency(struct pmc *pmc, u32 offset,
666 const int lpm_adj_x2)
667 {
668 u64 lpm_res = pmc_core_reg_read(pmc, offset);
669
670 return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res);
671 }
672
pmc_core_substate_res_show(struct seq_file * s,void * unused)673 static int pmc_core_substate_res_show(struct seq_file *s, void *unused)
674 {
675 struct pmc_dev *pmcdev = s->private;
676 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
677 const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
678 u32 offset = pmc->map->lpm_residency_offset;
679 int i, mode;
680
681 seq_printf(s, "%-10s %-15s\n", "Substate", "Residency");
682
683 pmc_for_each_mode(i, mode, pmcdev) {
684 seq_printf(s, "%-10s %-15llu\n", pmc_lpm_modes[mode],
685 adjust_lpm_residency(pmc, offset + (4 * mode), lpm_adj_x2));
686 }
687
688 return 0;
689 }
690 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res);
691
pmc_core_substate_sts_regs_show(struct seq_file * s,void * unused)692 static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused)
693 {
694 struct pmc_dev *pmcdev = s->private;
695 int i;
696
697 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
698 struct pmc *pmc = pmcdev->pmcs[i];
699 const struct pmc_bit_map **maps;
700 u32 offset;
701
702 if (!pmc)
703 continue;
704 maps = pmc->map->lpm_sts;
705 offset = pmc->map->lpm_status_offset;
706 pmc_core_lpm_display(pmc, NULL, s, offset, i, "STATUS", maps);
707 }
708
709 return 0;
710 }
711 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs);
712
pmc_core_substate_l_sts_regs_show(struct seq_file * s,void * unused)713 static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused)
714 {
715 struct pmc_dev *pmcdev = s->private;
716 int i;
717
718 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
719 struct pmc *pmc = pmcdev->pmcs[i];
720 const struct pmc_bit_map **maps;
721 u32 offset;
722
723 if (!pmc)
724 continue;
725 maps = pmc->map->lpm_sts;
726 offset = pmc->map->lpm_live_status_offset;
727 pmc_core_lpm_display(pmc, NULL, s, offset, i, "LIVE_STATUS", maps);
728 }
729
730 return 0;
731 }
732 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs);
733
pmc_core_substate_req_header_show(struct seq_file * s)734 static void pmc_core_substate_req_header_show(struct seq_file *s)
735 {
736 struct pmc_dev *pmcdev = s->private;
737 int i, mode;
738
739 seq_printf(s, "%30s |", "Element");
740 pmc_for_each_mode(i, mode, pmcdev)
741 seq_printf(s, " %9s |", pmc_lpm_modes[mode]);
742
743 seq_printf(s, " %9s |\n", "Status");
744 }
745
pmc_core_substate_req_regs_show(struct seq_file * s,void * unused)746 static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused)
747 {
748 struct pmc_dev *pmcdev = s->private;
749 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
750 const struct pmc_bit_map **maps = pmc->map->lpm_sts;
751 const struct pmc_bit_map *map;
752 const int num_maps = pmc->map->lpm_num_maps;
753 u32 sts_offset = pmc->map->lpm_status_offset;
754 u32 *lpm_req_regs = pmc->lpm_req_regs;
755 int mp;
756
757 /* Display the header */
758 pmc_core_substate_req_header_show(s);
759
760 /* Loop over maps */
761 for (mp = 0; mp < num_maps; mp++) {
762 u32 req_mask = 0;
763 u32 lpm_status;
764 int mode, idx, i, len = 32;
765
766 /*
767 * Capture the requirements and create a mask so that we only
768 * show an element if it's required for at least one of the
769 * enabled low power modes
770 */
771 pmc_for_each_mode(idx, mode, pmcdev)
772 req_mask |= lpm_req_regs[mp + (mode * num_maps)];
773
774 /* Get the last latched status for this map */
775 lpm_status = pmc_core_reg_read(pmc, sts_offset + (mp * 4));
776
777 /* Loop over elements in this map */
778 map = maps[mp];
779 for (i = 0; map[i].name && i < len; i++) {
780 u32 bit_mask = map[i].bit_mask;
781
782 if (!(bit_mask & req_mask))
783 /*
784 * Not required for any enabled states
785 * so don't display
786 */
787 continue;
788
789 /* Display the element name in the first column */
790 seq_printf(s, "%30s |", map[i].name);
791
792 /* Loop over the enabled states and display if required */
793 pmc_for_each_mode(idx, mode, pmcdev) {
794 if (lpm_req_regs[mp + (mode * num_maps)] & bit_mask)
795 seq_printf(s, " %9s |",
796 "Required");
797 else
798 seq_printf(s, " %9s |", " ");
799 }
800
801 /* In Status column, show the last captured state of this agent */
802 if (lpm_status & bit_mask)
803 seq_printf(s, " %9s |", "Yes");
804 else
805 seq_printf(s, " %9s |", " ");
806
807 seq_puts(s, "\n");
808 }
809 }
810
811 return 0;
812 }
813 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_req_regs);
814
pmc_core_lpm_latch_mode_show(struct seq_file * s,void * unused)815 static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused)
816 {
817 struct pmc_dev *pmcdev = s->private;
818 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
819 bool c10;
820 u32 reg;
821 int idx, mode;
822
823 reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
824 if (reg & LPM_STS_LATCH_MODE) {
825 seq_puts(s, "c10");
826 c10 = false;
827 } else {
828 seq_puts(s, "[c10]");
829 c10 = true;
830 }
831
832 pmc_for_each_mode(idx, mode, pmcdev) {
833 if ((BIT(mode) & reg) && !c10)
834 seq_printf(s, " [%s]", pmc_lpm_modes[mode]);
835 else
836 seq_printf(s, " %s", pmc_lpm_modes[mode]);
837 }
838
839 seq_puts(s, " clear\n");
840
841 return 0;
842 }
843
pmc_core_lpm_latch_mode_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)844 static ssize_t pmc_core_lpm_latch_mode_write(struct file *file,
845 const char __user *userbuf,
846 size_t count, loff_t *ppos)
847 {
848 struct seq_file *s = file->private_data;
849 struct pmc_dev *pmcdev = s->private;
850 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
851 bool clear = false, c10 = false;
852 unsigned char buf[8];
853 int idx, m, mode;
854 u32 reg;
855
856 if (count > sizeof(buf) - 1)
857 return -EINVAL;
858 if (copy_from_user(buf, userbuf, count))
859 return -EFAULT;
860 buf[count] = '\0';
861
862 /*
863 * Allowed strings are:
864 * Any enabled substate, e.g. 'S0i2.0'
865 * 'c10'
866 * 'clear'
867 */
868 mode = sysfs_match_string(pmc_lpm_modes, buf);
869
870 /* Check string matches enabled mode */
871 pmc_for_each_mode(idx, m, pmcdev)
872 if (mode == m)
873 break;
874
875 if (mode != m || mode < 0) {
876 if (sysfs_streq(buf, "clear"))
877 clear = true;
878 else if (sysfs_streq(buf, "c10"))
879 c10 = true;
880 else
881 return -EINVAL;
882 }
883
884 if (clear) {
885 mutex_lock(&pmcdev->lock);
886
887 reg = pmc_core_reg_read(pmc, pmc->map->etr3_offset);
888 reg |= ETR3_CLEAR_LPM_EVENTS;
889 pmc_core_reg_write(pmc, pmc->map->etr3_offset, reg);
890
891 mutex_unlock(&pmcdev->lock);
892
893 return count;
894 }
895
896 if (c10) {
897 mutex_lock(&pmcdev->lock);
898
899 reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
900 reg &= ~LPM_STS_LATCH_MODE;
901 pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
902
903 mutex_unlock(&pmcdev->lock);
904
905 return count;
906 }
907
908 /*
909 * For LPM mode latching we set the latch enable bit and selected mode
910 * and clear everything else.
911 */
912 reg = LPM_STS_LATCH_MODE | BIT(mode);
913 mutex_lock(&pmcdev->lock);
914 pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
915 mutex_unlock(&pmcdev->lock);
916
917 return count;
918 }
919 DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode);
920
pmc_core_pkgc_show(struct seq_file * s,void * unused)921 static int pmc_core_pkgc_show(struct seq_file *s, void *unused)
922 {
923 struct pmc *pmc = s->private;
924 const struct pmc_bit_map *map = pmc->map->msr_sts;
925 u64 pcstate_count;
926 int index;
927
928 for (index = 0; map[index].name ; index++) {
929 if (rdmsrl_safe(map[index].bit_mask, &pcstate_count))
930 continue;
931
932 pcstate_count *= 1000;
933 do_div(pcstate_count, tsc_khz);
934 seq_printf(s, "%-8s : %llu\n", map[index].name,
935 pcstate_count);
936 }
937
938 return 0;
939 }
940 DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc);
941
pmc_core_pri_verify(u32 lpm_pri,u8 * mode_order)942 static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order)
943 {
944 int i, j;
945
946 if (!lpm_pri)
947 return false;
948 /*
949 * Each byte contains the priority level for 2 modes (7:4 and 3:0).
950 * In a 32 bit register this allows for describing 8 modes. Store the
951 * levels and look for values out of range.
952 */
953 for (i = 0; i < 8; i++) {
954 int level = lpm_pri & GENMASK(3, 0);
955
956 if (level >= LPM_MAX_NUM_MODES)
957 return false;
958
959 mode_order[i] = level;
960 lpm_pri >>= 4;
961 }
962
963 /* Check that we have unique values */
964 for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++)
965 for (j = i + 1; j < LPM_MAX_NUM_MODES; j++)
966 if (mode_order[i] == mode_order[j])
967 return false;
968
969 return true;
970 }
971
pmc_core_get_low_power_modes(struct platform_device * pdev)972 static void pmc_core_get_low_power_modes(struct platform_device *pdev)
973 {
974 struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
975 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
976 u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI;
977 u8 mode_order[LPM_MAX_NUM_MODES];
978 u32 lpm_pri;
979 u32 lpm_en;
980 int mode, i, p;
981
982 /* Use LPM Maps to indicate support for substates */
983 if (!pmc->map->lpm_num_maps)
984 return;
985
986 lpm_en = pmc_core_reg_read(pmc, pmc->map->lpm_en_offset);
987 /* For MTL, BIT 31 is not an lpm mode but a enable bit.
988 * Lower byte is enough to cover the number of lpm modes for all
989 * platforms and hence mask the upper 3 bytes.
990 */
991 pmcdev->num_lpm_modes = hweight32(lpm_en & 0xFF);
992
993 /* Read 32 bit LPM_PRI register */
994 lpm_pri = pmc_core_reg_read(pmc, pmc->map->lpm_priority_offset);
995
996
997 /*
998 * If lpm_pri value passes verification, then override the default
999 * modes here. Otherwise stick with the default.
1000 */
1001 if (pmc_core_pri_verify(lpm_pri, mode_order))
1002 /* Get list of modes in priority order */
1003 for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++)
1004 pri_order[mode_order[mode]] = mode;
1005 else
1006 dev_warn(&pdev->dev, "Assuming a default substate order for this platform\n");
1007
1008 /*
1009 * Loop through all modes from lowest to highest priority,
1010 * and capture all enabled modes in order
1011 */
1012 i = 0;
1013 for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) {
1014 int mode = pri_order[p];
1015
1016 if (!(BIT(mode) & lpm_en))
1017 continue;
1018
1019 pmcdev->lpm_en_modes[i++] = mode;
1020 }
1021 }
1022
get_primary_reg_base(struct pmc * pmc)1023 int get_primary_reg_base(struct pmc *pmc)
1024 {
1025 u64 slp_s0_addr;
1026
1027 if (lpit_read_residency_count_address(&slp_s0_addr)) {
1028 pmc->base_addr = PMC_BASE_ADDR_DEFAULT;
1029
1030 if (page_is_ram(PHYS_PFN(pmc->base_addr)))
1031 return -ENODEV;
1032 } else {
1033 pmc->base_addr = slp_s0_addr - pmc->map->slp_s0_offset;
1034 }
1035
1036 pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1037 if (!pmc->regbase)
1038 return -ENOMEM;
1039 return 0;
1040 }
1041
pmc_core_dbgfs_unregister(struct pmc_dev * pmcdev)1042 static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev)
1043 {
1044 debugfs_remove_recursive(pmcdev->dbgfs_dir);
1045 }
1046
pmc_core_dbgfs_register(struct pmc_dev * pmcdev)1047 static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev)
1048 {
1049 struct pmc *primary_pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1050 struct dentry *dir;
1051
1052 dir = debugfs_create_dir("pmc_core", NULL);
1053 pmcdev->dbgfs_dir = dir;
1054
1055 debugfs_create_file("slp_s0_residency_usec", 0444, dir, primary_pmc,
1056 &pmc_core_dev_state);
1057
1058 if (primary_pmc->map->pfear_sts)
1059 debugfs_create_file("pch_ip_power_gating_status", 0444, dir,
1060 pmcdev, &pmc_core_ppfear_fops);
1061
1062 debugfs_create_file("ltr_ignore", 0644, dir, pmcdev,
1063 &pmc_core_ltr_ignore_ops);
1064
1065 debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops);
1066
1067 debugfs_create_file("package_cstate_show", 0444, dir, primary_pmc,
1068 &pmc_core_pkgc_fops);
1069
1070 if (primary_pmc->map->pll_sts)
1071 debugfs_create_file("pll_status", 0444, dir, pmcdev,
1072 &pmc_core_pll_fops);
1073
1074 if (primary_pmc->map->mphy_sts)
1075 debugfs_create_file("mphy_core_lanes_power_gating_status",
1076 0444, dir, pmcdev,
1077 &pmc_core_mphy_pg_fops);
1078
1079 if (primary_pmc->map->slps0_dbg_maps) {
1080 debugfs_create_file("slp_s0_debug_status", 0444,
1081 dir, pmcdev,
1082 &pmc_core_slps0_dbg_fops);
1083
1084 debugfs_create_bool("slp_s0_dbg_latch", 0644,
1085 dir, &slps0_dbg_latch);
1086 }
1087
1088 if (primary_pmc->map->lpm_en_offset) {
1089 debugfs_create_file("substate_residencies", 0444,
1090 pmcdev->dbgfs_dir, pmcdev,
1091 &pmc_core_substate_res_fops);
1092 }
1093
1094 if (primary_pmc->map->lpm_status_offset) {
1095 debugfs_create_file("substate_status_registers", 0444,
1096 pmcdev->dbgfs_dir, pmcdev,
1097 &pmc_core_substate_sts_regs_fops);
1098 debugfs_create_file("substate_live_status_registers", 0444,
1099 pmcdev->dbgfs_dir, pmcdev,
1100 &pmc_core_substate_l_sts_regs_fops);
1101 debugfs_create_file("lpm_latch_mode", 0644,
1102 pmcdev->dbgfs_dir, pmcdev,
1103 &pmc_core_lpm_latch_mode_fops);
1104 }
1105
1106 if (primary_pmc->lpm_req_regs) {
1107 debugfs_create_file("substate_requirements", 0444,
1108 pmcdev->dbgfs_dir, pmcdev,
1109 &pmc_core_substate_req_regs_fops);
1110 }
1111 }
1112
1113 static const struct x86_cpu_id intel_pmc_core_ids[] = {
1114 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, spt_core_init),
1115 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, spt_core_init),
1116 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, spt_core_init),
1117 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, spt_core_init),
1118 X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, cnp_core_init),
1119 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, icl_core_init),
1120 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, icl_core_init),
1121 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, cnp_core_init),
1122 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, cnp_core_init),
1123 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, tgl_core_init),
1124 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, tgl_core_init),
1125 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, tgl_core_init),
1126 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, icl_core_init),
1127 X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, tgl_core_init),
1128 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, tgl_core_init),
1129 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT, tgl_core_init),
1130 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, adl_core_init),
1131 X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, tgl_core_init),
1132 X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, adl_core_init),
1133 X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, adl_core_init),
1134 X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, mtl_core_init),
1135 {}
1136 };
1137
1138 MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids);
1139
1140 static const struct pci_device_id pmc_pci_ids[] = {
1141 { PCI_VDEVICE(INTEL, SPT_PMC_PCI_DEVICE_ID) },
1142 { }
1143 };
1144
1145 /*
1146 * This quirk can be used on those platforms where
1147 * the platform BIOS enforces 24Mhz crystal to shutdown
1148 * before PMC can assert SLP_S0#.
1149 */
1150 static bool xtal_ignore;
quirk_xtal_ignore(const struct dmi_system_id * id)1151 static int quirk_xtal_ignore(const struct dmi_system_id *id)
1152 {
1153 xtal_ignore = true;
1154 return 0;
1155 }
1156
pmc_core_xtal_ignore(struct pmc * pmc)1157 static void pmc_core_xtal_ignore(struct pmc *pmc)
1158 {
1159 u32 value;
1160
1161 value = pmc_core_reg_read(pmc, pmc->map->pm_vric1_offset);
1162 /* 24MHz Crystal Shutdown Qualification Disable */
1163 value |= SPT_PMC_VRIC1_XTALSDQDIS;
1164 /* Low Voltage Mode Enable */
1165 value &= ~SPT_PMC_VRIC1_SLPS0LVEN;
1166 pmc_core_reg_write(pmc, pmc->map->pm_vric1_offset, value);
1167 }
1168
1169 static const struct dmi_system_id pmc_core_dmi_table[] = {
1170 {
1171 .callback = quirk_xtal_ignore,
1172 .ident = "HP Elite x2 1013 G3",
1173 .matches = {
1174 DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1175 DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"),
1176 },
1177 },
1178 {}
1179 };
1180
pmc_core_do_dmi_quirks(struct pmc * pmc)1181 static void pmc_core_do_dmi_quirks(struct pmc *pmc)
1182 {
1183 dmi_check_system(pmc_core_dmi_table);
1184
1185 if (xtal_ignore)
1186 pmc_core_xtal_ignore(pmc);
1187 }
1188
pmc_core_clean_structure(struct platform_device * pdev)1189 static void pmc_core_clean_structure(struct platform_device *pdev)
1190 {
1191 struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1192 int i;
1193
1194 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1195 struct pmc *pmc = pmcdev->pmcs[i];
1196
1197 if (pmc)
1198 iounmap(pmc->regbase);
1199 }
1200
1201 if (pmcdev->ssram_pcidev) {
1202 pci_dev_put(pmcdev->ssram_pcidev);
1203 pci_disable_device(pmcdev->ssram_pcidev);
1204 }
1205 platform_set_drvdata(pdev, NULL);
1206 mutex_destroy(&pmcdev->lock);
1207 }
1208
pmc_core_probe(struct platform_device * pdev)1209 static int pmc_core_probe(struct platform_device *pdev)
1210 {
1211 static bool device_initialized;
1212 struct pmc_dev *pmcdev;
1213 const struct x86_cpu_id *cpu_id;
1214 int (*core_init)(struct pmc_dev *pmcdev);
1215 struct pmc *primary_pmc;
1216 int ret;
1217
1218 if (device_initialized)
1219 return -ENODEV;
1220
1221 pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL);
1222 if (!pmcdev)
1223 return -ENOMEM;
1224
1225 platform_set_drvdata(pdev, pmcdev);
1226 pmcdev->pdev = pdev;
1227
1228 cpu_id = x86_match_cpu(intel_pmc_core_ids);
1229 if (!cpu_id)
1230 return -ENODEV;
1231
1232 core_init = (int (*)(struct pmc_dev *))cpu_id->driver_data;
1233
1234 /* Primary PMC */
1235 primary_pmc = devm_kzalloc(&pdev->dev, sizeof(*primary_pmc), GFP_KERNEL);
1236 if (!primary_pmc)
1237 return -ENOMEM;
1238 pmcdev->pmcs[PMC_IDX_MAIN] = primary_pmc;
1239
1240 /*
1241 * Coffee Lake has CPU ID of Kaby Lake and Cannon Lake PCH. So here
1242 * Sunrisepoint PCH regmap can't be used. Use Cannon Lake PCH regmap
1243 * in this case.
1244 */
1245 if (core_init == spt_core_init && !pci_dev_present(pmc_pci_ids))
1246 core_init = cnp_core_init;
1247
1248 mutex_init(&pmcdev->lock);
1249 ret = core_init(pmcdev);
1250 if (ret) {
1251 pmc_core_clean_structure(pdev);
1252 return ret;
1253 }
1254
1255 pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(primary_pmc);
1256 pmc_core_get_low_power_modes(pdev);
1257 pmc_core_do_dmi_quirks(primary_pmc);
1258
1259 pmc_core_dbgfs_register(pmcdev);
1260 pm_report_max_hw_sleep(FIELD_MAX(SLP_S0_RES_COUNTER_MASK) *
1261 pmc_core_adjust_slp_s0_step(primary_pmc, 1));
1262
1263 device_initialized = true;
1264 dev_info(&pdev->dev, " initialized\n");
1265
1266 return 0;
1267 }
1268
pmc_core_remove(struct platform_device * pdev)1269 static void pmc_core_remove(struct platform_device *pdev)
1270 {
1271 struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1272 pmc_core_dbgfs_unregister(pmcdev);
1273 pmc_core_clean_structure(pdev);
1274 }
1275
1276 static bool warn_on_s0ix_failures;
1277 module_param(warn_on_s0ix_failures, bool, 0644);
1278 MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures");
1279
pmc_core_suspend(struct device * dev)1280 static __maybe_unused int pmc_core_suspend(struct device *dev)
1281 {
1282 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1283 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1284
1285 if (pmcdev->suspend)
1286 pmcdev->suspend(pmcdev);
1287
1288 /* Check if the syspend will actually use S0ix */
1289 if (pm_suspend_via_firmware())
1290 return 0;
1291
1292 /* Save PC10 residency for checking later */
1293 if (rdmsrl_safe(MSR_PKG_C10_RESIDENCY, &pmcdev->pc10_counter))
1294 return -EIO;
1295
1296 /* Save S0ix residency for checking later */
1297 if (pmc_core_dev_state_get(pmc, &pmcdev->s0ix_counter))
1298 return -EIO;
1299
1300 return 0;
1301 }
1302
pmc_core_is_pc10_failed(struct pmc_dev * pmcdev)1303 static inline bool pmc_core_is_pc10_failed(struct pmc_dev *pmcdev)
1304 {
1305 u64 pc10_counter;
1306
1307 if (rdmsrl_safe(MSR_PKG_C10_RESIDENCY, &pc10_counter))
1308 return false;
1309
1310 if (pc10_counter == pmcdev->pc10_counter)
1311 return true;
1312
1313 return false;
1314 }
1315
pmc_core_is_s0ix_failed(struct pmc_dev * pmcdev)1316 static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev)
1317 {
1318 u64 s0ix_counter;
1319
1320 if (pmc_core_dev_state_get(pmcdev->pmcs[PMC_IDX_MAIN], &s0ix_counter))
1321 return false;
1322
1323 pm_report_hw_sleep_time((u32)(s0ix_counter - pmcdev->s0ix_counter));
1324
1325 if (s0ix_counter == pmcdev->s0ix_counter)
1326 return true;
1327
1328 return false;
1329 }
1330
pmc_core_resume_common(struct pmc_dev * pmcdev)1331 int pmc_core_resume_common(struct pmc_dev *pmcdev)
1332 {
1333 struct device *dev = &pmcdev->pdev->dev;
1334 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1335 const struct pmc_bit_map **maps = pmc->map->lpm_sts;
1336 int offset = pmc->map->lpm_status_offset;
1337 int i;
1338
1339 /* Check if the syspend used S0ix */
1340 if (pm_suspend_via_firmware())
1341 return 0;
1342
1343 if (!pmc_core_is_s0ix_failed(pmcdev))
1344 return 0;
1345
1346 if (!warn_on_s0ix_failures)
1347 return 0;
1348
1349 if (pmc_core_is_pc10_failed(pmcdev)) {
1350 /* S0ix failed because of PC10 entry failure */
1351 dev_info(dev, "CPU did not enter PC10!!! (PC10 cnt=0x%llx)\n",
1352 pmcdev->pc10_counter);
1353 return 0;
1354 }
1355
1356 /* The real interesting case - S0ix failed - lets ask PMC why. */
1357 dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n",
1358 pmcdev->s0ix_counter);
1359
1360 if (pmc->map->slps0_dbg_maps)
1361 pmc_core_slps0_display(pmc, dev, NULL);
1362
1363 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1364 struct pmc *pmc = pmcdev->pmcs[i];
1365
1366 if (!pmc)
1367 continue;
1368 if (pmc->map->lpm_sts)
1369 pmc_core_lpm_display(pmc, dev, NULL, offset, i, "STATUS", maps);
1370 }
1371
1372 return 0;
1373 }
1374
pmc_core_resume(struct device * dev)1375 static __maybe_unused int pmc_core_resume(struct device *dev)
1376 {
1377 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1378
1379 if (pmcdev->resume)
1380 return pmcdev->resume(pmcdev);
1381
1382 return pmc_core_resume_common(pmcdev);
1383 }
1384
1385 static const struct dev_pm_ops pmc_core_pm_ops = {
1386 SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume)
1387 };
1388
1389 static const struct acpi_device_id pmc_core_acpi_ids[] = {
1390 {"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/
1391 { }
1392 };
1393 MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids);
1394
1395 static struct platform_driver pmc_core_driver = {
1396 .driver = {
1397 .name = "intel_pmc_core",
1398 .acpi_match_table = ACPI_PTR(pmc_core_acpi_ids),
1399 .pm = &pmc_core_pm_ops,
1400 .dev_groups = pmc_dev_groups,
1401 },
1402 .probe = pmc_core_probe,
1403 .remove_new = pmc_core_remove,
1404 };
1405
1406 module_platform_driver(pmc_core_driver);
1407
1408 MODULE_LICENSE("GPL v2");
1409 MODULE_DESCRIPTION("Intel PMC Core Driver");
1410