1 /*
2 * Copyright (c) 2016 Hisilicon Limited.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/vmalloc.h>
35 #include <rdma/ib_umem.h>
36 #include <linux/math.h>
37 #include "hns_roce_device.h"
38 #include "hns_roce_cmd.h"
39 #include "hns_roce_hem.h"
40
hw_index_to_key(int ind)41 static u32 hw_index_to_key(int ind)
42 {
43 return ((u32)ind >> 24) | ((u32)ind << 8);
44 }
45
key_to_hw_index(u32 key)46 unsigned long key_to_hw_index(u32 key)
47 {
48 return (key << 24) | (key >> 8);
49 }
50
alloc_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)51 static int alloc_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
52 {
53 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
54 struct ib_device *ibdev = &hr_dev->ib_dev;
55 int err;
56 int id;
57
58 /* Allocate a key for mr from mr_table */
59 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
60 GFP_KERNEL);
61 if (id < 0) {
62 ibdev_err(ibdev, "failed to alloc id for MR key, id(%d)\n", id);
63 return -ENOMEM;
64 }
65
66 mr->key = hw_index_to_key(id); /* MR key */
67
68 err = hns_roce_table_get(hr_dev, &hr_dev->mr_table.mtpt_table,
69 (unsigned long)id);
70 if (err) {
71 ibdev_err(ibdev, "failed to alloc mtpt, ret = %d.\n", err);
72 goto err_free_bitmap;
73 }
74
75 return 0;
76 err_free_bitmap:
77 ida_free(&mtpt_ida->ida, id);
78 return err;
79 }
80
free_mr_key(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)81 static void free_mr_key(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
82 {
83 unsigned long obj = key_to_hw_index(mr->key);
84
85 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table, obj);
86 ida_free(&hr_dev->mr_table.mtpt_ida.ida, (int)obj);
87 }
88
alloc_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr,struct ib_udata * udata,u64 start)89 static int alloc_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr,
90 struct ib_udata *udata, u64 start)
91 {
92 struct ib_device *ibdev = &hr_dev->ib_dev;
93 bool is_fast = mr->type == MR_TYPE_FRMR;
94 struct hns_roce_buf_attr buf_attr = {};
95 int err;
96
97 mr->pbl_hop_num = is_fast ? 1 : hr_dev->caps.pbl_hop_num;
98 buf_attr.page_shift = is_fast ? PAGE_SHIFT :
99 hr_dev->caps.pbl_buf_pg_sz + PAGE_SHIFT;
100 buf_attr.region[0].size = mr->size;
101 buf_attr.region[0].hopnum = mr->pbl_hop_num;
102 buf_attr.region_count = 1;
103 buf_attr.user_access = mr->access;
104 /* fast MR's buffer is alloced before mapping, not at creation */
105 buf_attr.mtt_only = is_fast;
106
107 err = hns_roce_mtr_create(hr_dev, &mr->pbl_mtr, &buf_attr,
108 hr_dev->caps.pbl_ba_pg_sz + PAGE_SHIFT,
109 udata, start);
110 if (err)
111 ibdev_err(ibdev, "failed to alloc pbl mtr, ret = %d.\n", err);
112 else
113 mr->npages = mr->pbl_mtr.hem_cfg.buf_pg_count;
114
115 return err;
116 }
117
free_mr_pbl(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)118 static void free_mr_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
119 {
120 hns_roce_mtr_destroy(hr_dev, &mr->pbl_mtr);
121 }
122
hns_roce_mr_free(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)123 static void hns_roce_mr_free(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr)
124 {
125 struct ib_device *ibdev = &hr_dev->ib_dev;
126 int ret;
127
128 if (mr->enabled) {
129 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
130 key_to_hw_index(mr->key) &
131 (hr_dev->caps.num_mtpts - 1));
132 if (ret)
133 ibdev_warn(ibdev, "failed to destroy mpt, ret = %d.\n",
134 ret);
135 }
136
137 free_mr_pbl(hr_dev, mr);
138 free_mr_key(hr_dev, mr);
139 }
140
hns_roce_mr_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mr * mr)141 static int hns_roce_mr_enable(struct hns_roce_dev *hr_dev,
142 struct hns_roce_mr *mr)
143 {
144 unsigned long mtpt_idx = key_to_hw_index(mr->key);
145 struct hns_roce_cmd_mailbox *mailbox;
146 struct device *dev = hr_dev->dev;
147 int ret;
148
149 /* Allocate mailbox memory */
150 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
151 if (IS_ERR(mailbox))
152 return PTR_ERR(mailbox);
153
154 if (mr->type != MR_TYPE_FRMR)
155 ret = hr_dev->hw->write_mtpt(hr_dev, mailbox->buf, mr);
156 else
157 ret = hr_dev->hw->frmr_write_mtpt(hr_dev, mailbox->buf, mr);
158 if (ret) {
159 dev_err(dev, "failed to write mtpt, ret = %d.\n", ret);
160 goto err_page;
161 }
162
163 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
164 mtpt_idx & (hr_dev->caps.num_mtpts - 1));
165 if (ret) {
166 dev_err(dev, "failed to create mpt, ret = %d.\n", ret);
167 goto err_page;
168 }
169
170 mr->enabled = 1;
171
172 err_page:
173 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
174
175 return ret;
176 }
177
hns_roce_init_mr_table(struct hns_roce_dev * hr_dev)178 void hns_roce_init_mr_table(struct hns_roce_dev *hr_dev)
179 {
180 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
181
182 ida_init(&mtpt_ida->ida);
183 mtpt_ida->max = hr_dev->caps.num_mtpts - 1;
184 mtpt_ida->min = hr_dev->caps.reserved_mrws;
185 }
186
hns_roce_get_dma_mr(struct ib_pd * pd,int acc)187 struct ib_mr *hns_roce_get_dma_mr(struct ib_pd *pd, int acc)
188 {
189 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
190 struct hns_roce_mr *mr;
191 int ret;
192
193 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
194 if (!mr)
195 return ERR_PTR(-ENOMEM);
196
197 mr->type = MR_TYPE_DMA;
198 mr->pd = to_hr_pd(pd)->pdn;
199 mr->access = acc;
200
201 /* Allocate memory region key */
202 hns_roce_hem_list_init(&mr->pbl_mtr.hem_list);
203 ret = alloc_mr_key(hr_dev, mr);
204 if (ret)
205 goto err_free;
206
207 ret = hns_roce_mr_enable(hr_dev, mr);
208 if (ret)
209 goto err_mr;
210
211 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
212
213 return &mr->ibmr;
214 err_mr:
215 free_mr_key(hr_dev, mr);
216
217 err_free:
218 kfree(mr);
219 return ERR_PTR(ret);
220 }
221
hns_roce_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags,struct ib_udata * udata)222 struct ib_mr *hns_roce_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
223 u64 virt_addr, int access_flags,
224 struct ib_udata *udata)
225 {
226 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
227 struct hns_roce_mr *mr;
228 int ret;
229
230 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
231 if (!mr)
232 return ERR_PTR(-ENOMEM);
233
234 mr->iova = virt_addr;
235 mr->size = length;
236 mr->pd = to_hr_pd(pd)->pdn;
237 mr->access = access_flags;
238 mr->type = MR_TYPE_MR;
239
240 ret = alloc_mr_key(hr_dev, mr);
241 if (ret)
242 goto err_alloc_mr;
243
244 ret = alloc_mr_pbl(hr_dev, mr, udata, start);
245 if (ret)
246 goto err_alloc_key;
247
248 ret = hns_roce_mr_enable(hr_dev, mr);
249 if (ret)
250 goto err_alloc_pbl;
251
252 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
253
254 return &mr->ibmr;
255
256 err_alloc_pbl:
257 free_mr_pbl(hr_dev, mr);
258 err_alloc_key:
259 free_mr_key(hr_dev, mr);
260 err_alloc_mr:
261 kfree(mr);
262 return ERR_PTR(ret);
263 }
264
hns_roce_rereg_user_mr(struct ib_mr * ibmr,int flags,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_pd * pd,struct ib_udata * udata)265 struct ib_mr *hns_roce_rereg_user_mr(struct ib_mr *ibmr, int flags, u64 start,
266 u64 length, u64 virt_addr,
267 int mr_access_flags, struct ib_pd *pd,
268 struct ib_udata *udata)
269 {
270 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
271 struct ib_device *ib_dev = &hr_dev->ib_dev;
272 struct hns_roce_mr *mr = to_hr_mr(ibmr);
273 struct hns_roce_cmd_mailbox *mailbox;
274 unsigned long mtpt_idx;
275 int ret;
276
277 if (!mr->enabled)
278 return ERR_PTR(-EINVAL);
279
280 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
281 if (IS_ERR(mailbox))
282 return ERR_CAST(mailbox);
283
284 mtpt_idx = key_to_hw_index(mr->key) & (hr_dev->caps.num_mtpts - 1);
285
286 ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT,
287 mtpt_idx);
288 if (ret)
289 goto free_cmd_mbox;
290
291 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
292 mtpt_idx);
293 if (ret)
294 ibdev_warn(ib_dev, "failed to destroy MPT, ret = %d.\n", ret);
295
296 mr->enabled = 0;
297 mr->iova = virt_addr;
298 mr->size = length;
299
300 if (flags & IB_MR_REREG_PD)
301 mr->pd = to_hr_pd(pd)->pdn;
302
303 if (flags & IB_MR_REREG_ACCESS)
304 mr->access = mr_access_flags;
305
306 if (flags & IB_MR_REREG_TRANS) {
307 free_mr_pbl(hr_dev, mr);
308 ret = alloc_mr_pbl(hr_dev, mr, udata, start);
309 if (ret) {
310 ibdev_err(ib_dev, "failed to alloc mr PBL, ret = %d.\n",
311 ret);
312 goto free_cmd_mbox;
313 }
314 }
315
316 ret = hr_dev->hw->rereg_write_mtpt(hr_dev, mr, flags, mailbox->buf);
317 if (ret) {
318 ibdev_err(ib_dev, "failed to write mtpt, ret = %d.\n", ret);
319 goto free_cmd_mbox;
320 }
321
322 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
323 mtpt_idx);
324 if (ret) {
325 ibdev_err(ib_dev, "failed to create MPT, ret = %d.\n", ret);
326 goto free_cmd_mbox;
327 }
328
329 mr->enabled = 1;
330
331 free_cmd_mbox:
332 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
333
334 if (ret)
335 return ERR_PTR(ret);
336 return NULL;
337 }
338
hns_roce_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)339 int hns_roce_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
340 {
341 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
342 struct hns_roce_mr *mr = to_hr_mr(ibmr);
343
344 if (hr_dev->hw->dereg_mr)
345 hr_dev->hw->dereg_mr(hr_dev);
346
347 hns_roce_mr_free(hr_dev, mr);
348 kfree(mr);
349
350 return 0;
351 }
352
hns_roce_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)353 struct ib_mr *hns_roce_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
354 u32 max_num_sg)
355 {
356 struct hns_roce_dev *hr_dev = to_hr_dev(pd->device);
357 struct device *dev = hr_dev->dev;
358 struct hns_roce_mr *mr;
359 int ret;
360
361 if (mr_type != IB_MR_TYPE_MEM_REG)
362 return ERR_PTR(-EINVAL);
363
364 if (max_num_sg > HNS_ROCE_FRMR_MAX_PA) {
365 dev_err(dev, "max_num_sg larger than %d\n",
366 HNS_ROCE_FRMR_MAX_PA);
367 return ERR_PTR(-EINVAL);
368 }
369
370 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
371 if (!mr)
372 return ERR_PTR(-ENOMEM);
373
374 mr->type = MR_TYPE_FRMR;
375 mr->pd = to_hr_pd(pd)->pdn;
376 mr->size = max_num_sg * (1 << PAGE_SHIFT);
377
378 /* Allocate memory region key */
379 ret = alloc_mr_key(hr_dev, mr);
380 if (ret)
381 goto err_free;
382
383 ret = alloc_mr_pbl(hr_dev, mr, NULL, 0);
384 if (ret)
385 goto err_key;
386
387 ret = hns_roce_mr_enable(hr_dev, mr);
388 if (ret)
389 goto err_pbl;
390
391 mr->ibmr.rkey = mr->ibmr.lkey = mr->key;
392 mr->ibmr.length = mr->size;
393
394 return &mr->ibmr;
395
396 err_pbl:
397 free_mr_pbl(hr_dev, mr);
398 err_key:
399 free_mr_key(hr_dev, mr);
400 err_free:
401 kfree(mr);
402 return ERR_PTR(ret);
403 }
404
hns_roce_set_page(struct ib_mr * ibmr,u64 addr)405 static int hns_roce_set_page(struct ib_mr *ibmr, u64 addr)
406 {
407 struct hns_roce_mr *mr = to_hr_mr(ibmr);
408
409 if (likely(mr->npages < mr->pbl_mtr.hem_cfg.buf_pg_count)) {
410 mr->page_list[mr->npages++] = addr;
411 return 0;
412 }
413
414 return -ENOBUFS;
415 }
416
hns_roce_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)417 int hns_roce_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
418 unsigned int *sg_offset)
419 {
420 struct hns_roce_dev *hr_dev = to_hr_dev(ibmr->device);
421 struct ib_device *ibdev = &hr_dev->ib_dev;
422 struct hns_roce_mr *mr = to_hr_mr(ibmr);
423 struct hns_roce_mtr *mtr = &mr->pbl_mtr;
424 int ret, sg_num = 0;
425
426 if (!IS_ALIGNED(*sg_offset, HNS_ROCE_FRMR_ALIGN_SIZE) ||
427 ibmr->page_size < HNS_HW_PAGE_SIZE ||
428 ibmr->page_size > HNS_HW_MAX_PAGE_SIZE)
429 return sg_num;
430
431 mr->npages = 0;
432 mr->page_list = kvcalloc(mr->pbl_mtr.hem_cfg.buf_pg_count,
433 sizeof(dma_addr_t), GFP_KERNEL);
434 if (!mr->page_list)
435 return sg_num;
436
437 sg_num = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, hns_roce_set_page);
438 if (sg_num < 1) {
439 ibdev_err(ibdev, "failed to store sg pages %u %u, cnt = %d.\n",
440 mr->npages, mr->pbl_mtr.hem_cfg.buf_pg_count, sg_num);
441 goto err_page_list;
442 }
443
444 mtr->hem_cfg.region[0].offset = 0;
445 mtr->hem_cfg.region[0].count = mr->npages;
446 mtr->hem_cfg.region[0].hopnum = mr->pbl_hop_num;
447 mtr->hem_cfg.region_count = 1;
448 ret = hns_roce_mtr_map(hr_dev, mtr, mr->page_list, mr->npages);
449 if (ret) {
450 ibdev_err(ibdev, "failed to map sg mtr, ret = %d.\n", ret);
451 sg_num = 0;
452 } else {
453 mr->pbl_mtr.hem_cfg.buf_pg_shift = (u32)ilog2(ibmr->page_size);
454 }
455
456 err_page_list:
457 kvfree(mr->page_list);
458 mr->page_list = NULL;
459
460 return sg_num;
461 }
462
hns_roce_mw_free(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)463 static void hns_roce_mw_free(struct hns_roce_dev *hr_dev,
464 struct hns_roce_mw *mw)
465 {
466 struct device *dev = hr_dev->dev;
467 int ret;
468
469 if (mw->enabled) {
470 ret = hns_roce_destroy_hw_ctx(hr_dev, HNS_ROCE_CMD_DESTROY_MPT,
471 key_to_hw_index(mw->rkey) &
472 (hr_dev->caps.num_mtpts - 1));
473 if (ret)
474 dev_warn(dev, "MW DESTROY_MPT failed (%d)\n", ret);
475
476 hns_roce_table_put(hr_dev, &hr_dev->mr_table.mtpt_table,
477 key_to_hw_index(mw->rkey));
478 }
479
480 ida_free(&hr_dev->mr_table.mtpt_ida.ida,
481 (int)key_to_hw_index(mw->rkey));
482 }
483
hns_roce_mw_enable(struct hns_roce_dev * hr_dev,struct hns_roce_mw * mw)484 static int hns_roce_mw_enable(struct hns_roce_dev *hr_dev,
485 struct hns_roce_mw *mw)
486 {
487 struct hns_roce_mr_table *mr_table = &hr_dev->mr_table;
488 struct hns_roce_cmd_mailbox *mailbox;
489 struct device *dev = hr_dev->dev;
490 unsigned long mtpt_idx = key_to_hw_index(mw->rkey);
491 int ret;
492
493 /* prepare HEM entry memory */
494 ret = hns_roce_table_get(hr_dev, &mr_table->mtpt_table, mtpt_idx);
495 if (ret)
496 return ret;
497
498 mailbox = hns_roce_alloc_cmd_mailbox(hr_dev);
499 if (IS_ERR(mailbox)) {
500 ret = PTR_ERR(mailbox);
501 goto err_table;
502 }
503
504 ret = hr_dev->hw->mw_write_mtpt(mailbox->buf, mw);
505 if (ret) {
506 dev_err(dev, "MW write mtpt fail!\n");
507 goto err_page;
508 }
509
510 ret = hns_roce_create_hw_ctx(hr_dev, mailbox, HNS_ROCE_CMD_CREATE_MPT,
511 mtpt_idx & (hr_dev->caps.num_mtpts - 1));
512 if (ret) {
513 dev_err(dev, "MW CREATE_MPT failed (%d)\n", ret);
514 goto err_page;
515 }
516
517 mw->enabled = 1;
518
519 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
520
521 return 0;
522
523 err_page:
524 hns_roce_free_cmd_mailbox(hr_dev, mailbox);
525
526 err_table:
527 hns_roce_table_put(hr_dev, &mr_table->mtpt_table, mtpt_idx);
528
529 return ret;
530 }
531
hns_roce_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)532 int hns_roce_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
533 {
534 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
535 struct hns_roce_ida *mtpt_ida = &hr_dev->mr_table.mtpt_ida;
536 struct ib_device *ibdev = &hr_dev->ib_dev;
537 struct hns_roce_mw *mw = to_hr_mw(ibmw);
538 int ret;
539 int id;
540
541 /* Allocate a key for mw from mr_table */
542 id = ida_alloc_range(&mtpt_ida->ida, mtpt_ida->min, mtpt_ida->max,
543 GFP_KERNEL);
544 if (id < 0) {
545 ibdev_err(ibdev, "failed to alloc id for MW key, id(%d)\n", id);
546 return -ENOMEM;
547 }
548
549 mw->rkey = hw_index_to_key(id);
550
551 ibmw->rkey = mw->rkey;
552 mw->pdn = to_hr_pd(ibmw->pd)->pdn;
553 mw->pbl_hop_num = hr_dev->caps.pbl_hop_num;
554 mw->pbl_ba_pg_sz = hr_dev->caps.pbl_ba_pg_sz;
555 mw->pbl_buf_pg_sz = hr_dev->caps.pbl_buf_pg_sz;
556
557 ret = hns_roce_mw_enable(hr_dev, mw);
558 if (ret)
559 goto err_mw;
560
561 return 0;
562
563 err_mw:
564 hns_roce_mw_free(hr_dev, mw);
565 return ret;
566 }
567
hns_roce_dealloc_mw(struct ib_mw * ibmw)568 int hns_roce_dealloc_mw(struct ib_mw *ibmw)
569 {
570 struct hns_roce_dev *hr_dev = to_hr_dev(ibmw->device);
571 struct hns_roce_mw *mw = to_hr_mw(ibmw);
572
573 hns_roce_mw_free(hr_dev, mw);
574 return 0;
575 }
576
mtr_map_region(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_region * region,dma_addr_t * pages,int max_count)577 static int mtr_map_region(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
578 struct hns_roce_buf_region *region, dma_addr_t *pages,
579 int max_count)
580 {
581 int count, npage;
582 int offset, end;
583 __le64 *mtts;
584 u64 addr;
585 int i;
586
587 offset = region->offset;
588 end = offset + region->count;
589 npage = 0;
590 while (offset < end && npage < max_count) {
591 count = 0;
592 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
593 offset, &count);
594 if (!mtts)
595 return -ENOBUFS;
596
597 for (i = 0; i < count && npage < max_count; i++) {
598 addr = pages[npage];
599
600 mtts[i] = cpu_to_le64(addr);
601 npage++;
602 }
603 offset += count;
604 }
605
606 return npage;
607 }
608
mtr_has_mtt(struct hns_roce_buf_attr * attr)609 static inline bool mtr_has_mtt(struct hns_roce_buf_attr *attr)
610 {
611 int i;
612
613 for (i = 0; i < attr->region_count; i++)
614 if (attr->region[i].hopnum != HNS_ROCE_HOP_NUM_0 &&
615 attr->region[i].hopnum > 0)
616 return true;
617
618 /* because the mtr only one root base address, when hopnum is 0 means
619 * root base address equals the first buffer address, thus all alloced
620 * memory must in a continuous space accessed by direct mode.
621 */
622 return false;
623 }
624
mtr_bufs_size(struct hns_roce_buf_attr * attr)625 static inline size_t mtr_bufs_size(struct hns_roce_buf_attr *attr)
626 {
627 size_t size = 0;
628 int i;
629
630 for (i = 0; i < attr->region_count; i++)
631 size += attr->region[i].size;
632
633 return size;
634 }
635
636 /*
637 * check the given pages in continuous address space
638 * Returns 0 on success, or the error page num.
639 */
mtr_check_direct_pages(dma_addr_t * pages,int page_count,unsigned int page_shift)640 static inline int mtr_check_direct_pages(dma_addr_t *pages, int page_count,
641 unsigned int page_shift)
642 {
643 size_t page_size = 1 << page_shift;
644 int i;
645
646 for (i = 1; i < page_count; i++)
647 if (pages[i] - pages[i - 1] != page_size)
648 return i;
649
650 return 0;
651 }
652
mtr_free_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)653 static void mtr_free_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
654 {
655 /* release user buffers */
656 if (mtr->umem) {
657 ib_umem_release(mtr->umem);
658 mtr->umem = NULL;
659 }
660
661 /* release kernel buffers */
662 if (mtr->kmem) {
663 hns_roce_buf_free(hr_dev, mtr->kmem);
664 mtr->kmem = NULL;
665 }
666 }
667
mtr_alloc_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,struct ib_udata * udata,unsigned long user_addr)668 static int mtr_alloc_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
669 struct hns_roce_buf_attr *buf_attr,
670 struct ib_udata *udata, unsigned long user_addr)
671 {
672 struct ib_device *ibdev = &hr_dev->ib_dev;
673 size_t total_size;
674
675 total_size = mtr_bufs_size(buf_attr);
676
677 if (udata) {
678 mtr->kmem = NULL;
679 mtr->umem = ib_umem_get(ibdev, user_addr, total_size,
680 buf_attr->user_access);
681 if (IS_ERR_OR_NULL(mtr->umem)) {
682 ibdev_err(ibdev, "failed to get umem, ret = %ld.\n",
683 PTR_ERR(mtr->umem));
684 return -ENOMEM;
685 }
686 } else {
687 mtr->umem = NULL;
688 mtr->kmem = hns_roce_buf_alloc(hr_dev, total_size,
689 buf_attr->page_shift,
690 mtr->hem_cfg.is_direct ?
691 HNS_ROCE_BUF_DIRECT : 0);
692 if (IS_ERR(mtr->kmem)) {
693 ibdev_err(ibdev, "failed to alloc kmem, ret = %ld.\n",
694 PTR_ERR(mtr->kmem));
695 return PTR_ERR(mtr->kmem);
696 }
697 }
698
699 return 0;
700 }
701
mtr_map_bufs(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,int page_count,unsigned int page_shift)702 static int mtr_map_bufs(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
703 int page_count, unsigned int page_shift)
704 {
705 struct ib_device *ibdev = &hr_dev->ib_dev;
706 dma_addr_t *pages;
707 int npage;
708 int ret;
709
710 /* alloc a tmp array to store buffer's dma address */
711 pages = kvcalloc(page_count, sizeof(dma_addr_t), GFP_KERNEL);
712 if (!pages)
713 return -ENOMEM;
714
715 if (mtr->umem)
716 npage = hns_roce_get_umem_bufs(hr_dev, pages, page_count,
717 mtr->umem, page_shift);
718 else
719 npage = hns_roce_get_kmem_bufs(hr_dev, pages, page_count,
720 mtr->kmem, page_shift);
721
722 if (npage != page_count) {
723 ibdev_err(ibdev, "failed to get mtr page %d != %d.\n", npage,
724 page_count);
725 ret = -ENOBUFS;
726 goto err_alloc_list;
727 }
728
729 if (mtr->hem_cfg.is_direct && npage > 1) {
730 ret = mtr_check_direct_pages(pages, npage, page_shift);
731 if (ret) {
732 ibdev_err(ibdev, "failed to check %s page: %d / %d.\n",
733 mtr->umem ? "umtr" : "kmtr", ret, npage);
734 ret = -ENOBUFS;
735 goto err_alloc_list;
736 }
737 }
738
739 ret = hns_roce_mtr_map(hr_dev, mtr, pages, page_count);
740 if (ret)
741 ibdev_err(ibdev, "failed to map mtr pages, ret = %d.\n", ret);
742
743 err_alloc_list:
744 kvfree(pages);
745
746 return ret;
747 }
748
hns_roce_mtr_map(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,dma_addr_t * pages,unsigned int page_cnt)749 int hns_roce_mtr_map(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
750 dma_addr_t *pages, unsigned int page_cnt)
751 {
752 struct ib_device *ibdev = &hr_dev->ib_dev;
753 struct hns_roce_buf_region *r;
754 unsigned int i, mapped_cnt;
755 int ret = 0;
756
757 /*
758 * Only use the first page address as root ba when hopnum is 0, this
759 * is because the addresses of all pages are consecutive in this case.
760 */
761 if (mtr->hem_cfg.is_direct) {
762 mtr->hem_cfg.root_ba = pages[0];
763 return 0;
764 }
765
766 for (i = 0, mapped_cnt = 0; i < mtr->hem_cfg.region_count &&
767 mapped_cnt < page_cnt; i++) {
768 r = &mtr->hem_cfg.region[i];
769 /* if hopnum is 0, no need to map pages in this region */
770 if (!r->hopnum) {
771 mapped_cnt += r->count;
772 continue;
773 }
774
775 if (r->offset + r->count > page_cnt) {
776 ret = -EINVAL;
777 ibdev_err(ibdev,
778 "failed to check mtr%u count %u + %u > %u.\n",
779 i, r->offset, r->count, page_cnt);
780 return ret;
781 }
782
783 ret = mtr_map_region(hr_dev, mtr, r, &pages[r->offset],
784 page_cnt - mapped_cnt);
785 if (ret < 0) {
786 ibdev_err(ibdev,
787 "failed to map mtr%u offset %u, ret = %d.\n",
788 i, r->offset, ret);
789 return ret;
790 }
791 mapped_cnt += ret;
792 ret = 0;
793 }
794
795 if (mapped_cnt < page_cnt) {
796 ret = -ENOBUFS;
797 ibdev_err(ibdev, "failed to map mtr pages count: %u < %u.\n",
798 mapped_cnt, page_cnt);
799 }
800
801 return ret;
802 }
803
hns_roce_mtr_find(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,u32 offset,u64 * mtt_buf,int mtt_max,u64 * base_addr)804 int hns_roce_mtr_find(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
805 u32 offset, u64 *mtt_buf, int mtt_max, u64 *base_addr)
806 {
807 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
808 int mtt_count, left;
809 u32 start_index;
810 int total = 0;
811 __le64 *mtts;
812 u32 npage;
813 u64 addr;
814
815 if (!mtt_buf || mtt_max < 1)
816 goto done;
817
818 /* no mtt memory in direct mode, so just return the buffer address */
819 if (cfg->is_direct) {
820 start_index = offset >> HNS_HW_PAGE_SHIFT;
821 for (mtt_count = 0; mtt_count < cfg->region_count &&
822 total < mtt_max; mtt_count++) {
823 npage = cfg->region[mtt_count].offset;
824 if (npage < start_index)
825 continue;
826
827 addr = cfg->root_ba + (npage << HNS_HW_PAGE_SHIFT);
828 mtt_buf[total] = addr;
829
830 total++;
831 }
832
833 goto done;
834 }
835
836 start_index = offset >> cfg->buf_pg_shift;
837 left = mtt_max;
838 while (left > 0) {
839 mtt_count = 0;
840 mtts = hns_roce_hem_list_find_mtt(hr_dev, &mtr->hem_list,
841 start_index + total,
842 &mtt_count);
843 if (!mtts || !mtt_count)
844 goto done;
845
846 npage = min(mtt_count, left);
847 left -= npage;
848 for (mtt_count = 0; mtt_count < npage; mtt_count++)
849 mtt_buf[total++] = le64_to_cpu(mtts[mtt_count]);
850 }
851
852 done:
853 if (base_addr)
854 *base_addr = cfg->root_ba;
855
856 return total;
857 }
858
mtr_init_buf_cfg(struct hns_roce_dev * hr_dev,struct hns_roce_buf_attr * attr,struct hns_roce_hem_cfg * cfg,unsigned int * buf_page_shift,u64 unalinged_size)859 static int mtr_init_buf_cfg(struct hns_roce_dev *hr_dev,
860 struct hns_roce_buf_attr *attr,
861 struct hns_roce_hem_cfg *cfg,
862 unsigned int *buf_page_shift, u64 unalinged_size)
863 {
864 struct hns_roce_buf_region *r;
865 u64 first_region_padding;
866 int page_cnt, region_cnt;
867 unsigned int page_shift;
868 size_t buf_size;
869
870 /* If mtt is disabled, all pages must be within a continuous range */
871 cfg->is_direct = !mtr_has_mtt(attr);
872 buf_size = mtr_bufs_size(attr);
873 if (cfg->is_direct) {
874 /* When HEM buffer uses 0-level addressing, the page size is
875 * equal to the whole buffer size, and we split the buffer into
876 * small pages which is used to check whether the adjacent
877 * units are in the continuous space and its size is fixed to
878 * 4K based on hns ROCEE's requirement.
879 */
880 page_shift = HNS_HW_PAGE_SHIFT;
881
882 /* The ROCEE requires the page size to be 4K * 2 ^ N. */
883 cfg->buf_pg_count = 1;
884 cfg->buf_pg_shift = HNS_HW_PAGE_SHIFT +
885 order_base_2(DIV_ROUND_UP(buf_size, HNS_HW_PAGE_SIZE));
886 first_region_padding = 0;
887 } else {
888 page_shift = attr->page_shift;
889 cfg->buf_pg_count = DIV_ROUND_UP(buf_size + unalinged_size,
890 1 << page_shift);
891 cfg->buf_pg_shift = page_shift;
892 first_region_padding = unalinged_size;
893 }
894
895 /* Convert buffer size to page index and page count for each region and
896 * the buffer's offset needs to be appended to the first region.
897 */
898 for (page_cnt = 0, region_cnt = 0; region_cnt < attr->region_count &&
899 region_cnt < ARRAY_SIZE(cfg->region); region_cnt++) {
900 r = &cfg->region[region_cnt];
901 r->offset = page_cnt;
902 buf_size = hr_hw_page_align(attr->region[region_cnt].size +
903 first_region_padding);
904 r->count = DIV_ROUND_UP(buf_size, 1 << page_shift);
905 first_region_padding = 0;
906 page_cnt += r->count;
907 r->hopnum = to_hr_hem_hopnum(attr->region[region_cnt].hopnum,
908 r->count);
909 }
910
911 cfg->region_count = region_cnt;
912 *buf_page_shift = page_shift;
913
914 return page_cnt;
915 }
916
cal_pages_per_l1ba(unsigned int ba_per_bt,unsigned int hopnum)917 static u64 cal_pages_per_l1ba(unsigned int ba_per_bt, unsigned int hopnum)
918 {
919 return int_pow(ba_per_bt, hopnum - 1);
920 }
921
cal_best_bt_pg_sz(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int pg_shift)922 static unsigned int cal_best_bt_pg_sz(struct hns_roce_dev *hr_dev,
923 struct hns_roce_mtr *mtr,
924 unsigned int pg_shift)
925 {
926 unsigned long cap = hr_dev->caps.page_size_cap;
927 struct hns_roce_buf_region *re;
928 unsigned int pgs_per_l1ba;
929 unsigned int ba_per_bt;
930 unsigned int ba_num;
931 int i;
932
933 for_each_set_bit_from(pg_shift, &cap, sizeof(cap) * BITS_PER_BYTE) {
934 if (!(BIT(pg_shift) & cap))
935 continue;
936
937 ba_per_bt = BIT(pg_shift) / BA_BYTE_LEN;
938 ba_num = 0;
939 for (i = 0; i < mtr->hem_cfg.region_count; i++) {
940 re = &mtr->hem_cfg.region[i];
941 if (re->hopnum == 0)
942 continue;
943
944 pgs_per_l1ba = cal_pages_per_l1ba(ba_per_bt, re->hopnum);
945 ba_num += DIV_ROUND_UP(re->count, pgs_per_l1ba);
946 }
947
948 if (ba_num <= ba_per_bt)
949 return pg_shift;
950 }
951
952 return 0;
953 }
954
mtr_alloc_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,unsigned int ba_page_shift)955 static int mtr_alloc_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
956 unsigned int ba_page_shift)
957 {
958 struct hns_roce_hem_cfg *cfg = &mtr->hem_cfg;
959 int ret;
960
961 hns_roce_hem_list_init(&mtr->hem_list);
962 if (!cfg->is_direct) {
963 ba_page_shift = cal_best_bt_pg_sz(hr_dev, mtr, ba_page_shift);
964 if (!ba_page_shift)
965 return -ERANGE;
966
967 ret = hns_roce_hem_list_request(hr_dev, &mtr->hem_list,
968 cfg->region, cfg->region_count,
969 ba_page_shift);
970 if (ret)
971 return ret;
972 cfg->root_ba = mtr->hem_list.root_ba;
973 cfg->ba_pg_shift = ba_page_shift;
974 } else {
975 cfg->ba_pg_shift = cfg->buf_pg_shift;
976 }
977
978 return 0;
979 }
980
mtr_free_mtt(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)981 static void mtr_free_mtt(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
982 {
983 hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
984 }
985
986 /**
987 * hns_roce_mtr_create - Create hns memory translate region.
988 *
989 * @hr_dev: RoCE device struct pointer
990 * @mtr: memory translate region
991 * @buf_attr: buffer attribute for creating mtr
992 * @ba_page_shift: page shift for multi-hop base address table
993 * @udata: user space context, if it's NULL, means kernel space
994 * @user_addr: userspace virtual address to start at
995 */
hns_roce_mtr_create(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr,struct hns_roce_buf_attr * buf_attr,unsigned int ba_page_shift,struct ib_udata * udata,unsigned long user_addr)996 int hns_roce_mtr_create(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr,
997 struct hns_roce_buf_attr *buf_attr,
998 unsigned int ba_page_shift, struct ib_udata *udata,
999 unsigned long user_addr)
1000 {
1001 struct ib_device *ibdev = &hr_dev->ib_dev;
1002 unsigned int buf_page_shift = 0;
1003 int buf_page_cnt;
1004 int ret;
1005
1006 buf_page_cnt = mtr_init_buf_cfg(hr_dev, buf_attr, &mtr->hem_cfg,
1007 &buf_page_shift,
1008 udata ? user_addr & ~PAGE_MASK : 0);
1009 if (buf_page_cnt < 1 || buf_page_shift < HNS_HW_PAGE_SHIFT) {
1010 ibdev_err(ibdev, "failed to init mtr cfg, count %d shift %u.\n",
1011 buf_page_cnt, buf_page_shift);
1012 return -EINVAL;
1013 }
1014
1015 ret = mtr_alloc_mtt(hr_dev, mtr, ba_page_shift);
1016 if (ret) {
1017 ibdev_err(ibdev, "failed to alloc mtr mtt, ret = %d.\n", ret);
1018 return ret;
1019 }
1020
1021 /* The caller has its own buffer list and invokes the hns_roce_mtr_map()
1022 * to finish the MTT configuration.
1023 */
1024 if (buf_attr->mtt_only) {
1025 mtr->umem = NULL;
1026 mtr->kmem = NULL;
1027 return 0;
1028 }
1029
1030 ret = mtr_alloc_bufs(hr_dev, mtr, buf_attr, udata, user_addr);
1031 if (ret) {
1032 ibdev_err(ibdev, "failed to alloc mtr bufs, ret = %d.\n", ret);
1033 goto err_alloc_mtt;
1034 }
1035
1036 /* Write buffer's dma address to MTT */
1037 ret = mtr_map_bufs(hr_dev, mtr, buf_page_cnt, buf_page_shift);
1038 if (ret)
1039 ibdev_err(ibdev, "failed to map mtr bufs, ret = %d.\n", ret);
1040 else
1041 return 0;
1042
1043 mtr_free_bufs(hr_dev, mtr);
1044 err_alloc_mtt:
1045 mtr_free_mtt(hr_dev, mtr);
1046 return ret;
1047 }
1048
hns_roce_mtr_destroy(struct hns_roce_dev * hr_dev,struct hns_roce_mtr * mtr)1049 void hns_roce_mtr_destroy(struct hns_roce_dev *hr_dev, struct hns_roce_mtr *mtr)
1050 {
1051 /* release multi-hop addressing resource */
1052 hns_roce_hem_list_release(hr_dev, &mtr->hem_list);
1053
1054 /* free buffers */
1055 mtr_free_bufs(hr_dev, mtr);
1056 }
1057