1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/zstd.h>
39 #include <linux/xz.h>
40
41 #include <generated/utsrelease.h>
42
43 #include "../base.h"
44 #include "firmware.h"
45 #include "fallback.h"
46
47 MODULE_AUTHOR("Manuel Estrada Sainz");
48 MODULE_DESCRIPTION("Multi purpose firmware loading support");
49 MODULE_LICENSE("GPL");
50
51 struct firmware_cache {
52 /* firmware_buf instance will be added into the below list */
53 spinlock_t lock;
54 struct list_head head;
55 int state;
56
57 #ifdef CONFIG_FW_CACHE
58 /*
59 * Names of firmware images which have been cached successfully
60 * will be added into the below list so that device uncache
61 * helper can trace which firmware images have been cached
62 * before.
63 */
64 spinlock_t name_lock;
65 struct list_head fw_names;
66
67 struct delayed_work work;
68
69 struct notifier_block pm_notify;
70 #endif
71 };
72
73 struct fw_cache_entry {
74 struct list_head list;
75 const char *name;
76 };
77
78 struct fw_name_devm {
79 unsigned long magic;
80 const char *name;
81 };
82
to_fw_priv(struct kref * ref)83 static inline struct fw_priv *to_fw_priv(struct kref *ref)
84 {
85 return container_of(ref, struct fw_priv, ref);
86 }
87
88 #define FW_LOADER_NO_CACHE 0
89 #define FW_LOADER_START_CACHE 1
90
91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92 * guarding for corner cases a global lock should be OK */
93 DEFINE_MUTEX(fw_lock);
94
95 struct firmware_cache fw_cache;
96
fw_state_init(struct fw_priv * fw_priv)97 void fw_state_init(struct fw_priv *fw_priv)
98 {
99 struct fw_state *fw_st = &fw_priv->fw_st;
100
101 init_completion(&fw_st->completion);
102 fw_st->status = FW_STATUS_UNKNOWN;
103 }
104
fw_state_wait(struct fw_priv * fw_priv)105 static inline int fw_state_wait(struct fw_priv *fw_priv)
106 {
107 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
108 }
109
110 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
111
__allocate_fw_priv(const char * fw_name,struct firmware_cache * fwc,void * dbuf,size_t size,size_t offset,u32 opt_flags)112 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
113 struct firmware_cache *fwc,
114 void *dbuf,
115 size_t size,
116 size_t offset,
117 u32 opt_flags)
118 {
119 struct fw_priv *fw_priv;
120
121 /* For a partial read, the buffer must be preallocated. */
122 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
123 return NULL;
124
125 /* Only partial reads are allowed to use an offset. */
126 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
127 return NULL;
128
129 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
130 if (!fw_priv)
131 return NULL;
132
133 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
134 if (!fw_priv->fw_name) {
135 kfree(fw_priv);
136 return NULL;
137 }
138
139 kref_init(&fw_priv->ref);
140 fw_priv->fwc = fwc;
141 fw_priv->data = dbuf;
142 fw_priv->allocated_size = size;
143 fw_priv->offset = offset;
144 fw_priv->opt_flags = opt_flags;
145 fw_state_init(fw_priv);
146 #ifdef CONFIG_FW_LOADER_USER_HELPER
147 INIT_LIST_HEAD(&fw_priv->pending_list);
148 #endif
149
150 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
151
152 return fw_priv;
153 }
154
__lookup_fw_priv(const char * fw_name)155 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
156 {
157 struct fw_priv *tmp;
158 struct firmware_cache *fwc = &fw_cache;
159
160 list_for_each_entry(tmp, &fwc->head, list)
161 if (!strcmp(tmp->fw_name, fw_name))
162 return tmp;
163 return NULL;
164 }
165
166 /* Returns 1 for batching firmware requests with the same name */
alloc_lookup_fw_priv(const char * fw_name,struct firmware_cache * fwc,struct fw_priv ** fw_priv,void * dbuf,size_t size,size_t offset,u32 opt_flags)167 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
168 struct fw_priv **fw_priv, void *dbuf, size_t size,
169 size_t offset, u32 opt_flags)
170 {
171 struct fw_priv *tmp;
172
173 spin_lock(&fwc->lock);
174 /*
175 * Do not merge requests that are marked to be non-cached or
176 * are performing partial reads.
177 */
178 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
179 tmp = __lookup_fw_priv(fw_name);
180 if (tmp) {
181 kref_get(&tmp->ref);
182 spin_unlock(&fwc->lock);
183 *fw_priv = tmp;
184 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
185 return 1;
186 }
187 }
188
189 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
190 if (tmp) {
191 INIT_LIST_HEAD(&tmp->list);
192 if (!(opt_flags & FW_OPT_NOCACHE))
193 list_add(&tmp->list, &fwc->head);
194 }
195 spin_unlock(&fwc->lock);
196
197 *fw_priv = tmp;
198
199 return tmp ? 0 : -ENOMEM;
200 }
201
__free_fw_priv(struct kref * ref)202 static void __free_fw_priv(struct kref *ref)
203 __releases(&fwc->lock)
204 {
205 struct fw_priv *fw_priv = to_fw_priv(ref);
206 struct firmware_cache *fwc = fw_priv->fwc;
207
208 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
209 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
210 (unsigned int)fw_priv->size);
211
212 list_del(&fw_priv->list);
213 spin_unlock(&fwc->lock);
214
215 if (fw_is_paged_buf(fw_priv))
216 fw_free_paged_buf(fw_priv);
217 else if (!fw_priv->allocated_size)
218 vfree(fw_priv->data);
219
220 kfree_const(fw_priv->fw_name);
221 kfree(fw_priv);
222 }
223
free_fw_priv(struct fw_priv * fw_priv)224 void free_fw_priv(struct fw_priv *fw_priv)
225 {
226 struct firmware_cache *fwc = fw_priv->fwc;
227 spin_lock(&fwc->lock);
228 if (!kref_put(&fw_priv->ref, __free_fw_priv))
229 spin_unlock(&fwc->lock);
230 }
231
232 #ifdef CONFIG_FW_LOADER_PAGED_BUF
fw_is_paged_buf(struct fw_priv * fw_priv)233 bool fw_is_paged_buf(struct fw_priv *fw_priv)
234 {
235 return fw_priv->is_paged_buf;
236 }
237
fw_free_paged_buf(struct fw_priv * fw_priv)238 void fw_free_paged_buf(struct fw_priv *fw_priv)
239 {
240 int i;
241
242 if (!fw_priv->pages)
243 return;
244
245 vunmap(fw_priv->data);
246
247 for (i = 0; i < fw_priv->nr_pages; i++)
248 __free_page(fw_priv->pages[i]);
249 kvfree(fw_priv->pages);
250 fw_priv->pages = NULL;
251 fw_priv->page_array_size = 0;
252 fw_priv->nr_pages = 0;
253 fw_priv->data = NULL;
254 fw_priv->size = 0;
255 }
256
fw_grow_paged_buf(struct fw_priv * fw_priv,int pages_needed)257 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
258 {
259 /* If the array of pages is too small, grow it */
260 if (fw_priv->page_array_size < pages_needed) {
261 int new_array_size = max(pages_needed,
262 fw_priv->page_array_size * 2);
263 struct page **new_pages;
264
265 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
266 GFP_KERNEL);
267 if (!new_pages)
268 return -ENOMEM;
269 memcpy(new_pages, fw_priv->pages,
270 fw_priv->page_array_size * sizeof(void *));
271 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
272 (new_array_size - fw_priv->page_array_size));
273 kvfree(fw_priv->pages);
274 fw_priv->pages = new_pages;
275 fw_priv->page_array_size = new_array_size;
276 }
277
278 while (fw_priv->nr_pages < pages_needed) {
279 fw_priv->pages[fw_priv->nr_pages] =
280 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
281
282 if (!fw_priv->pages[fw_priv->nr_pages])
283 return -ENOMEM;
284 fw_priv->nr_pages++;
285 }
286
287 return 0;
288 }
289
fw_map_paged_buf(struct fw_priv * fw_priv)290 int fw_map_paged_buf(struct fw_priv *fw_priv)
291 {
292 /* one pages buffer should be mapped/unmapped only once */
293 if (!fw_priv->pages)
294 return 0;
295
296 vunmap(fw_priv->data);
297 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
298 PAGE_KERNEL_RO);
299 if (!fw_priv->data)
300 return -ENOMEM;
301
302 return 0;
303 }
304 #endif
305
306 /*
307 * ZSTD-compressed firmware support
308 */
309 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
fw_decompress_zstd(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)310 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
311 size_t in_size, const void *in_buffer)
312 {
313 size_t len, out_size, workspace_size;
314 void *workspace, *out_buf;
315 zstd_dctx *ctx;
316 int err;
317
318 if (fw_priv->allocated_size) {
319 out_size = fw_priv->allocated_size;
320 out_buf = fw_priv->data;
321 } else {
322 zstd_frame_header params;
323
324 if (zstd_get_frame_header(¶ms, in_buffer, in_size) ||
325 params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
326 dev_dbg(dev, "%s: invalid zstd header\n", __func__);
327 return -EINVAL;
328 }
329 out_size = params.frameContentSize;
330 out_buf = vzalloc(out_size);
331 if (!out_buf)
332 return -ENOMEM;
333 }
334
335 workspace_size = zstd_dctx_workspace_bound();
336 workspace = kvzalloc(workspace_size, GFP_KERNEL);
337 if (!workspace) {
338 err = -ENOMEM;
339 goto error;
340 }
341
342 ctx = zstd_init_dctx(workspace, workspace_size);
343 if (!ctx) {
344 dev_dbg(dev, "%s: failed to initialize context\n", __func__);
345 err = -EINVAL;
346 goto error;
347 }
348
349 len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
350 if (zstd_is_error(len)) {
351 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
352 zstd_get_error_code(len));
353 err = -EINVAL;
354 goto error;
355 }
356
357 if (!fw_priv->allocated_size)
358 fw_priv->data = out_buf;
359 fw_priv->size = len;
360 err = 0;
361
362 error:
363 kvfree(workspace);
364 if (err && !fw_priv->allocated_size)
365 vfree(out_buf);
366 return err;
367 }
368 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
369
370 /*
371 * XZ-compressed firmware support
372 */
373 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
374 /* show an error and return the standard error code */
fw_decompress_xz_error(struct device * dev,enum xz_ret xz_ret)375 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
376 {
377 if (xz_ret != XZ_STREAM_END) {
378 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
379 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
380 }
381 return 0;
382 }
383
384 /* single-shot decompression onto the pre-allocated buffer */
fw_decompress_xz_single(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)385 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
386 size_t in_size, const void *in_buffer)
387 {
388 struct xz_dec *xz_dec;
389 struct xz_buf xz_buf;
390 enum xz_ret xz_ret;
391
392 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
393 if (!xz_dec)
394 return -ENOMEM;
395
396 xz_buf.in_size = in_size;
397 xz_buf.in = in_buffer;
398 xz_buf.in_pos = 0;
399 xz_buf.out_size = fw_priv->allocated_size;
400 xz_buf.out = fw_priv->data;
401 xz_buf.out_pos = 0;
402
403 xz_ret = xz_dec_run(xz_dec, &xz_buf);
404 xz_dec_end(xz_dec);
405
406 fw_priv->size = xz_buf.out_pos;
407 return fw_decompress_xz_error(dev, xz_ret);
408 }
409
410 /* decompression on paged buffer and map it */
fw_decompress_xz_pages(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)411 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
412 size_t in_size, const void *in_buffer)
413 {
414 struct xz_dec *xz_dec;
415 struct xz_buf xz_buf;
416 enum xz_ret xz_ret;
417 struct page *page;
418 int err = 0;
419
420 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
421 if (!xz_dec)
422 return -ENOMEM;
423
424 xz_buf.in_size = in_size;
425 xz_buf.in = in_buffer;
426 xz_buf.in_pos = 0;
427
428 fw_priv->is_paged_buf = true;
429 fw_priv->size = 0;
430 do {
431 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
432 err = -ENOMEM;
433 goto out;
434 }
435
436 /* decompress onto the new allocated page */
437 page = fw_priv->pages[fw_priv->nr_pages - 1];
438 xz_buf.out = kmap_local_page(page);
439 xz_buf.out_pos = 0;
440 xz_buf.out_size = PAGE_SIZE;
441 xz_ret = xz_dec_run(xz_dec, &xz_buf);
442 kunmap_local(xz_buf.out);
443 fw_priv->size += xz_buf.out_pos;
444 /* partial decompression means either end or error */
445 if (xz_buf.out_pos != PAGE_SIZE)
446 break;
447 } while (xz_ret == XZ_OK);
448
449 err = fw_decompress_xz_error(dev, xz_ret);
450 if (!err)
451 err = fw_map_paged_buf(fw_priv);
452
453 out:
454 xz_dec_end(xz_dec);
455 return err;
456 }
457
fw_decompress_xz(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)458 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
459 size_t in_size, const void *in_buffer)
460 {
461 /* if the buffer is pre-allocated, we can perform in single-shot mode */
462 if (fw_priv->data)
463 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
464 else
465 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
466 }
467 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
468
469 /* direct firmware loading support */
470 #define CUSTOM_FW_PATH_COUNT 10
471 #define PATH_SIZE 255
472 static char fw_path_para[CUSTOM_FW_PATH_COUNT][PATH_SIZE];
473 static const char * const fw_path[] = {
474 fw_path_para[0],
475 fw_path_para[1],
476 fw_path_para[2],
477 fw_path_para[3],
478 fw_path_para[4],
479 fw_path_para[5],
480 fw_path_para[6],
481 fw_path_para[7],
482 fw_path_para[8],
483 fw_path_para[9],
484 "/lib/firmware/updates/" UTS_RELEASE,
485 "/lib/firmware/updates",
486 "/lib/firmware/" UTS_RELEASE,
487 "/lib/firmware"
488 };
489
490 static char strpath[PATH_SIZE * CUSTOM_FW_PATH_COUNT];
firmware_param_path_set(const char * val,const struct kernel_param * kp)491 static int firmware_param_path_set(const char *val, const struct kernel_param *kp)
492 {
493 int i;
494 char *path, *end;
495
496 strscpy(strpath, val, sizeof(strpath));
497 /* Remove leading and trailing spaces from path */
498 path = strim(strpath);
499 for (i = 0; path && i < CUSTOM_FW_PATH_COUNT; i++) {
500 end = strchr(path, ',');
501
502 /* Skip continuous token case, for example ',,,' */
503 if (end == path) {
504 i--;
505 path = ++end;
506 continue;
507 }
508
509 if (end != NULL)
510 *end = '\0';
511 else {
512 /* end of the string reached and no other tockens ',' */
513 strscpy(fw_path_para[i], path, PATH_SIZE);
514 break;
515 }
516
517 strscpy(fw_path_para[i], path, PATH_SIZE);
518 path = ++end;
519 }
520
521 return 0;
522 }
523
firmware_param_path_get(char * buffer,const struct kernel_param * kp)524 static int firmware_param_path_get(char *buffer, const struct kernel_param *kp)
525 {
526 int count = 0, i;
527
528 for (i = 0; i < CUSTOM_FW_PATH_COUNT; i++) {
529 if (strlen(fw_path_para[i]) != 0)
530 count += scnprintf(buffer + count, PATH_SIZE, "%s%s", fw_path_para[i], ",");
531 }
532
533 buffer[count - 1] = '\0';
534
535 return count - 1;
536 }
537 /*
538 * Typical usage is that passing 'firmware_class.path=/vendor,/firwmare_mnt'
539 * from kernel command line because firmware_class is generally built in
540 * kernel instead of module. ',' is used as delimiter for setting 10
541 * custom paths for firmware loader.
542 */
543
544 static const struct kernel_param_ops firmware_param_ops = {
545 .set = firmware_param_path_set,
546 .get = firmware_param_path_get,
547 };
548 module_param_cb(path, &firmware_param_ops, NULL, 0644);
549 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
550
551 static int
fw_get_filesystem_firmware(struct device * device,struct fw_priv * fw_priv,const char * suffix,int (* decompress)(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer))552 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
553 const char *suffix,
554 int (*decompress)(struct device *dev,
555 struct fw_priv *fw_priv,
556 size_t in_size,
557 const void *in_buffer))
558 {
559 size_t size;
560 int i, len, maxlen = 0;
561 int rc = -ENOENT;
562 char *path, *nt = NULL;
563 size_t msize = INT_MAX;
564 void *buffer = NULL;
565
566 /* Already populated data member means we're loading into a buffer */
567 if (!decompress && fw_priv->data) {
568 buffer = fw_priv->data;
569 msize = fw_priv->allocated_size;
570 }
571
572 path = __getname();
573 if (!path)
574 return -ENOMEM;
575
576 wait_for_initramfs();
577 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
578 size_t file_size = 0;
579 size_t *file_size_ptr = NULL;
580
581 /* skip the unset customized path */
582 if (!fw_path[i][0])
583 continue;
584
585 /* strip off \n from customized path */
586 maxlen = strlen(fw_path[i]);
587 if (i == 0) {
588 nt = strchr(fw_path[i], '\n');
589 if (nt)
590 maxlen = nt - fw_path[i];
591 }
592
593 len = snprintf(path, PATH_MAX, "%.*s/%s%s",
594 maxlen, fw_path[i],
595 fw_priv->fw_name, suffix);
596 if (len >= PATH_MAX) {
597 rc = -ENAMETOOLONG;
598 break;
599 }
600
601 fw_priv->size = 0;
602
603 /*
604 * The total file size is only examined when doing a partial
605 * read; the "full read" case needs to fail if the whole
606 * firmware was not completely loaded.
607 */
608 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
609 file_size_ptr = &file_size;
610
611 /* load firmware files from the mount namespace of init */
612 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
613 &buffer, msize,
614 file_size_ptr,
615 READING_FIRMWARE);
616 if (rc < 0) {
617 if (!(fw_priv->opt_flags & FW_OPT_NO_WARN)) {
618 if (rc != -ENOENT)
619 dev_warn(device,
620 "loading %s failed with error %d\n",
621 path, rc);
622 else
623 dev_dbg(device,
624 "loading %s failed for no such file or directory.\n",
625 path);
626 }
627 continue;
628 }
629 size = rc;
630 rc = 0;
631
632 dev_dbg(device, "Loading firmware from %s\n", path);
633 if (decompress) {
634 dev_dbg(device, "f/w decompressing %s\n",
635 fw_priv->fw_name);
636 rc = decompress(device, fw_priv, size, buffer);
637 /* discard the superfluous original content */
638 vfree(buffer);
639 buffer = NULL;
640 if (rc) {
641 fw_free_paged_buf(fw_priv);
642 continue;
643 }
644 } else {
645 dev_dbg(device, "direct-loading %s\n",
646 fw_priv->fw_name);
647 if (!fw_priv->data)
648 fw_priv->data = buffer;
649 fw_priv->size = size;
650 }
651 fw_state_done(fw_priv);
652 break;
653 }
654 __putname(path);
655
656 return rc;
657 }
658
659 /* firmware holds the ownership of pages */
firmware_free_data(const struct firmware * fw)660 static void firmware_free_data(const struct firmware *fw)
661 {
662 /* Loaded directly? */
663 if (!fw->priv) {
664 vfree(fw->data);
665 return;
666 }
667 free_fw_priv(fw->priv);
668 }
669
670 /* store the pages buffer info firmware from buf */
fw_set_page_data(struct fw_priv * fw_priv,struct firmware * fw)671 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
672 {
673 fw->priv = fw_priv;
674 fw->size = fw_priv->size;
675 fw->data = fw_priv->data;
676
677 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
678 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
679 (unsigned int)fw_priv->size);
680 }
681
682 #ifdef CONFIG_FW_CACHE
fw_name_devm_release(struct device * dev,void * res)683 static void fw_name_devm_release(struct device *dev, void *res)
684 {
685 struct fw_name_devm *fwn = res;
686
687 if (fwn->magic == (unsigned long)&fw_cache)
688 pr_debug("%s: fw_name-%s devm-%p released\n",
689 __func__, fwn->name, res);
690 kfree_const(fwn->name);
691 }
692
fw_devm_match(struct device * dev,void * res,void * match_data)693 static int fw_devm_match(struct device *dev, void *res,
694 void *match_data)
695 {
696 struct fw_name_devm *fwn = res;
697
698 return (fwn->magic == (unsigned long)&fw_cache) &&
699 !strcmp(fwn->name, match_data);
700 }
701
fw_find_devm_name(struct device * dev,const char * name)702 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
703 const char *name)
704 {
705 struct fw_name_devm *fwn;
706
707 fwn = devres_find(dev, fw_name_devm_release,
708 fw_devm_match, (void *)name);
709 return fwn;
710 }
711
fw_cache_is_setup(struct device * dev,const char * name)712 static bool fw_cache_is_setup(struct device *dev, const char *name)
713 {
714 struct fw_name_devm *fwn;
715
716 fwn = fw_find_devm_name(dev, name);
717 if (fwn)
718 return true;
719
720 return false;
721 }
722
723 /* add firmware name into devres list */
fw_add_devm_name(struct device * dev,const char * name)724 static int fw_add_devm_name(struct device *dev, const char *name)
725 {
726 struct fw_name_devm *fwn;
727
728 if (fw_cache_is_setup(dev, name))
729 return 0;
730
731 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
732 GFP_KERNEL);
733 if (!fwn)
734 return -ENOMEM;
735 fwn->name = kstrdup_const(name, GFP_KERNEL);
736 if (!fwn->name) {
737 devres_free(fwn);
738 return -ENOMEM;
739 }
740
741 fwn->magic = (unsigned long)&fw_cache;
742 devres_add(dev, fwn);
743
744 return 0;
745 }
746 #else
fw_cache_is_setup(struct device * dev,const char * name)747 static bool fw_cache_is_setup(struct device *dev, const char *name)
748 {
749 return false;
750 }
751
fw_add_devm_name(struct device * dev,const char * name)752 static int fw_add_devm_name(struct device *dev, const char *name)
753 {
754 return 0;
755 }
756 #endif
757
assign_fw(struct firmware * fw,struct device * device)758 int assign_fw(struct firmware *fw, struct device *device)
759 {
760 struct fw_priv *fw_priv = fw->priv;
761 int ret;
762
763 mutex_lock(&fw_lock);
764 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
765 mutex_unlock(&fw_lock);
766 return -ENOENT;
767 }
768
769 /*
770 * add firmware name into devres list so that we can auto cache
771 * and uncache firmware for device.
772 *
773 * device may has been deleted already, but the problem
774 * should be fixed in devres or driver core.
775 */
776 /* don't cache firmware handled without uevent */
777 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
778 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
779 ret = fw_add_devm_name(device, fw_priv->fw_name);
780 if (ret) {
781 mutex_unlock(&fw_lock);
782 return ret;
783 }
784 }
785
786 /*
787 * After caching firmware image is started, let it piggyback
788 * on request firmware.
789 */
790 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
791 fw_priv->fwc->state == FW_LOADER_START_CACHE)
792 fw_cache_piggyback_on_request(fw_priv);
793
794 /* pass the pages buffer to driver at the last minute */
795 fw_set_page_data(fw_priv, fw);
796 mutex_unlock(&fw_lock);
797 return 0;
798 }
799
800 /* prepare firmware and firmware_buf structs;
801 * return 0 if a firmware is already assigned, 1 if need to load one,
802 * or a negative error code
803 */
804 static int
_request_firmware_prepare(struct firmware ** firmware_p,const char * name,struct device * device,void * dbuf,size_t size,size_t offset,u32 opt_flags)805 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
806 struct device *device, void *dbuf, size_t size,
807 size_t offset, u32 opt_flags)
808 {
809 struct firmware *firmware;
810 struct fw_priv *fw_priv;
811 int ret;
812
813 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
814 if (!firmware) {
815 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
816 __func__);
817 return -ENOMEM;
818 }
819
820 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
821 dev_dbg(device, "using built-in %s\n", name);
822 return 0; /* assigned */
823 }
824
825 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
826 offset, opt_flags);
827
828 /*
829 * bind with 'priv' now to avoid warning in failure path
830 * of requesting firmware.
831 */
832 firmware->priv = fw_priv;
833
834 if (ret > 0) {
835 ret = fw_state_wait(fw_priv);
836 if (!ret) {
837 fw_set_page_data(fw_priv, firmware);
838 return 0; /* assigned */
839 }
840 }
841
842 if (ret < 0)
843 return ret;
844 return 1; /* need to load */
845 }
846
847 /*
848 * Batched requests need only one wake, we need to do this step last due to the
849 * fallback mechanism. The buf is protected with kref_get(), and it won't be
850 * released until the last user calls release_firmware().
851 *
852 * Failed batched requests are possible as well, in such cases we just share
853 * the struct fw_priv and won't release it until all requests are woken
854 * and have gone through this same path.
855 */
fw_abort_batch_reqs(struct firmware * fw)856 static void fw_abort_batch_reqs(struct firmware *fw)
857 {
858 struct fw_priv *fw_priv;
859
860 /* Loaded directly? */
861 if (!fw || !fw->priv)
862 return;
863
864 fw_priv = fw->priv;
865 mutex_lock(&fw_lock);
866 if (!fw_state_is_aborted(fw_priv))
867 fw_state_aborted(fw_priv);
868 mutex_unlock(&fw_lock);
869 }
870
871 #if defined(CONFIG_FW_LOADER_DEBUG)
872 #include <crypto/hash.h>
873 #include <crypto/sha2.h>
874
fw_log_firmware_info(const struct firmware * fw,const char * name,struct device * device)875 static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device)
876 {
877 struct shash_desc *shash;
878 struct crypto_shash *alg;
879 u8 *sha256buf;
880 char *outbuf;
881
882 alg = crypto_alloc_shash("sha256", 0, 0);
883 if (IS_ERR(alg))
884 return;
885
886 sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
887 outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL);
888 shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL);
889 if (!sha256buf || !outbuf || !shash)
890 goto out_free;
891
892 shash->tfm = alg;
893
894 if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0)
895 goto out_shash;
896
897 for (int i = 0; i < SHA256_DIGEST_SIZE; i++)
898 sprintf(&outbuf[i * 2], "%02x", sha256buf[i]);
899 outbuf[SHA256_BLOCK_SIZE] = 0;
900 dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf);
901
902 out_shash:
903 crypto_free_shash(alg);
904 out_free:
905 kfree(shash);
906 kfree(outbuf);
907 kfree(sha256buf);
908 }
909 #else
fw_log_firmware_info(const struct firmware * fw,const char * name,struct device * device)910 static void fw_log_firmware_info(const struct firmware *fw, const char *name,
911 struct device *device)
912 {}
913 #endif
914
915 /* called from request_firmware() and request_firmware_work_func() */
916 static int
_request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset,u32 opt_flags)917 _request_firmware(const struct firmware **firmware_p, const char *name,
918 struct device *device, void *buf, size_t size,
919 size_t offset, u32 opt_flags)
920 {
921 struct firmware *fw = NULL;
922 struct cred *kern_cred = NULL;
923 const struct cred *old_cred;
924 bool nondirect = false;
925 int ret;
926
927 if (!firmware_p)
928 return -EINVAL;
929
930 if (!name || name[0] == '\0') {
931 ret = -EINVAL;
932 goto out;
933 }
934
935 ret = _request_firmware_prepare(&fw, name, device, buf, size,
936 offset, opt_flags);
937 if (ret <= 0) /* error or already assigned */
938 goto out;
939
940 /*
941 * We are about to try to access the firmware file. Because we may have been
942 * called by a driver when serving an unrelated request from userland, we use
943 * the kernel credentials to read the file.
944 */
945 kern_cred = prepare_kernel_cred(&init_task);
946 if (!kern_cred) {
947 ret = -ENOMEM;
948 goto out;
949 }
950 old_cred = override_creds(kern_cred);
951
952 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
953
954 /* Only full reads can support decompression, platform, and sysfs. */
955 if (!(opt_flags & FW_OPT_PARTIAL))
956 nondirect = true;
957
958 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
959 if (ret == -ENOENT && nondirect)
960 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
961 fw_decompress_zstd);
962 #endif
963 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
964 if (ret == -ENOENT && nondirect)
965 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
966 fw_decompress_xz);
967 #endif
968 if (ret == -ENOENT && nondirect)
969 ret = firmware_fallback_platform(fw->priv);
970
971 if (ret) {
972 if (!(opt_flags & FW_OPT_NO_WARN))
973 dev_warn(device,
974 "Direct firmware load for %s failed with error %d\n",
975 name, ret);
976 if (nondirect)
977 ret = firmware_fallback_sysfs(fw, name, device,
978 opt_flags, ret);
979 } else
980 ret = assign_fw(fw, device);
981
982 revert_creds(old_cred);
983 put_cred(kern_cred);
984
985 out:
986 if (ret < 0) {
987 fw_abort_batch_reqs(fw);
988 release_firmware(fw);
989 fw = NULL;
990 } else {
991 fw_log_firmware_info(fw, name, device);
992 }
993
994 *firmware_p = fw;
995 return ret;
996 }
997
998 /**
999 * request_firmware() - send firmware request and wait for it
1000 * @firmware_p: pointer to firmware image
1001 * @name: name of firmware file
1002 * @device: device for which firmware is being loaded
1003 *
1004 * @firmware_p will be used to return a firmware image by the name
1005 * of @name for device @device.
1006 *
1007 * Should be called from user context where sleeping is allowed.
1008 *
1009 * @name will be used as $FIRMWARE in the uevent environment and
1010 * should be distinctive enough not to be confused with any other
1011 * firmware image for this or any other device.
1012 *
1013 * Caller must hold the reference count of @device.
1014 *
1015 * The function can be called safely inside device's suspend and
1016 * resume callback.
1017 **/
1018 int
request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device)1019 request_firmware(const struct firmware **firmware_p, const char *name,
1020 struct device *device)
1021 {
1022 int ret;
1023
1024 /* Need to pin this module until return */
1025 __module_get(THIS_MODULE);
1026 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1027 FW_OPT_UEVENT);
1028 module_put(THIS_MODULE);
1029 return ret;
1030 }
1031 EXPORT_SYMBOL(request_firmware);
1032
1033 /**
1034 * firmware_request_nowarn() - request for an optional fw module
1035 * @firmware: pointer to firmware image
1036 * @name: name of firmware file
1037 * @device: device for which firmware is being loaded
1038 *
1039 * This function is similar in behaviour to request_firmware(), except it
1040 * doesn't produce warning messages when the file is not found. The sysfs
1041 * fallback mechanism is enabled if direct filesystem lookup fails. However,
1042 * failures to find the firmware file with it are still suppressed. It is
1043 * therefore up to the driver to check for the return value of this call and to
1044 * decide when to inform the users of errors.
1045 **/
firmware_request_nowarn(const struct firmware ** firmware,const char * name,struct device * device)1046 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
1047 struct device *device)
1048 {
1049 int ret;
1050
1051 /* Need to pin this module until return */
1052 __module_get(THIS_MODULE);
1053 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1054 FW_OPT_UEVENT | FW_OPT_NO_WARN);
1055 module_put(THIS_MODULE);
1056 return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
1059
1060 /**
1061 * request_firmware_direct() - load firmware directly without usermode helper
1062 * @firmware_p: pointer to firmware image
1063 * @name: name of firmware file
1064 * @device: device for which firmware is being loaded
1065 *
1066 * This function works pretty much like request_firmware(), but this doesn't
1067 * fall back to usermode helper even if the firmware couldn't be loaded
1068 * directly from fs. Hence it's useful for loading optional firmwares, which
1069 * aren't always present, without extra long timeouts of udev.
1070 **/
request_firmware_direct(const struct firmware ** firmware_p,const char * name,struct device * device)1071 int request_firmware_direct(const struct firmware **firmware_p,
1072 const char *name, struct device *device)
1073 {
1074 int ret;
1075
1076 __module_get(THIS_MODULE);
1077 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1078 FW_OPT_UEVENT | FW_OPT_NO_WARN |
1079 FW_OPT_NOFALLBACK_SYSFS);
1080 module_put(THIS_MODULE);
1081 return ret;
1082 }
1083 EXPORT_SYMBOL_GPL(request_firmware_direct);
1084
1085 /**
1086 * firmware_request_platform() - request firmware with platform-fw fallback
1087 * @firmware: pointer to firmware image
1088 * @name: name of firmware file
1089 * @device: device for which firmware is being loaded
1090 *
1091 * This function is similar in behaviour to request_firmware, except that if
1092 * direct filesystem lookup fails, it will fallback to looking for a copy of the
1093 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1094 **/
firmware_request_platform(const struct firmware ** firmware,const char * name,struct device * device)1095 int firmware_request_platform(const struct firmware **firmware,
1096 const char *name, struct device *device)
1097 {
1098 int ret;
1099
1100 /* Need to pin this module until return */
1101 __module_get(THIS_MODULE);
1102 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1103 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1104 module_put(THIS_MODULE);
1105 return ret;
1106 }
1107 EXPORT_SYMBOL_GPL(firmware_request_platform);
1108
1109 /**
1110 * firmware_request_cache() - cache firmware for suspend so resume can use it
1111 * @name: name of firmware file
1112 * @device: device for which firmware should be cached for
1113 *
1114 * There are some devices with an optimization that enables the device to not
1115 * require loading firmware on system reboot. This optimization may still
1116 * require the firmware present on resume from suspend. This routine can be
1117 * used to ensure the firmware is present on resume from suspend in these
1118 * situations. This helper is not compatible with drivers which use
1119 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1120 **/
firmware_request_cache(struct device * device,const char * name)1121 int firmware_request_cache(struct device *device, const char *name)
1122 {
1123 int ret;
1124
1125 mutex_lock(&fw_lock);
1126 ret = fw_add_devm_name(device, name);
1127 mutex_unlock(&fw_lock);
1128
1129 return ret;
1130 }
1131 EXPORT_SYMBOL_GPL(firmware_request_cache);
1132
1133 /**
1134 * request_firmware_into_buf() - load firmware into a previously allocated buffer
1135 * @firmware_p: pointer to firmware image
1136 * @name: name of firmware file
1137 * @device: device for which firmware is being loaded and DMA region allocated
1138 * @buf: address of buffer to load firmware into
1139 * @size: size of buffer
1140 *
1141 * This function works pretty much like request_firmware(), but it doesn't
1142 * allocate a buffer to hold the firmware data. Instead, the firmware
1143 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1144 * data member is pointed at @buf.
1145 *
1146 * This function doesn't cache firmware either.
1147 */
1148 int
request_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size)1149 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1150 struct device *device, void *buf, size_t size)
1151 {
1152 int ret;
1153
1154 if (fw_cache_is_setup(device, name))
1155 return -EOPNOTSUPP;
1156
1157 __module_get(THIS_MODULE);
1158 ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1159 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1160 module_put(THIS_MODULE);
1161 return ret;
1162 }
1163 EXPORT_SYMBOL(request_firmware_into_buf);
1164
1165 /**
1166 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1167 * @firmware_p: pointer to firmware image
1168 * @name: name of firmware file
1169 * @device: device for which firmware is being loaded and DMA region allocated
1170 * @buf: address of buffer to load firmware into
1171 * @size: size of buffer
1172 * @offset: offset into file to read
1173 *
1174 * This function works pretty much like request_firmware_into_buf except
1175 * it allows a partial read of the file.
1176 */
1177 int
request_partial_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset)1178 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1179 const char *name, struct device *device,
1180 void *buf, size_t size, size_t offset)
1181 {
1182 int ret;
1183
1184 if (fw_cache_is_setup(device, name))
1185 return -EOPNOTSUPP;
1186
1187 __module_get(THIS_MODULE);
1188 ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1189 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1190 FW_OPT_PARTIAL);
1191 module_put(THIS_MODULE);
1192 return ret;
1193 }
1194 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1195
1196 /**
1197 * release_firmware() - release the resource associated with a firmware image
1198 * @fw: firmware resource to release
1199 **/
release_firmware(const struct firmware * fw)1200 void release_firmware(const struct firmware *fw)
1201 {
1202 if (fw) {
1203 if (!firmware_is_builtin(fw))
1204 firmware_free_data(fw);
1205 kfree(fw);
1206 }
1207 }
1208 EXPORT_SYMBOL(release_firmware);
1209
1210 /* Async support */
1211 struct firmware_work {
1212 struct work_struct work;
1213 struct module *module;
1214 const char *name;
1215 struct device *device;
1216 void *context;
1217 void (*cont)(const struct firmware *fw, void *context);
1218 u32 opt_flags;
1219 };
1220
request_firmware_work_func(struct work_struct * work)1221 static void request_firmware_work_func(struct work_struct *work)
1222 {
1223 struct firmware_work *fw_work;
1224 const struct firmware *fw;
1225
1226 fw_work = container_of(work, struct firmware_work, work);
1227
1228 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1229 fw_work->opt_flags);
1230 fw_work->cont(fw, fw_work->context);
1231 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1232
1233 module_put(fw_work->module);
1234 kfree_const(fw_work->name);
1235 kfree(fw_work);
1236 }
1237
1238 /**
1239 * request_firmware_nowait() - asynchronous version of request_firmware
1240 * @module: module requesting the firmware
1241 * @uevent: sends uevent to copy the firmware image if this flag
1242 * is non-zero else the firmware copy must be done manually.
1243 * @name: name of firmware file
1244 * @device: device for which firmware is being loaded
1245 * @gfp: allocation flags
1246 * @context: will be passed over to @cont, and
1247 * @fw may be %NULL if firmware request fails.
1248 * @cont: function will be called asynchronously when the firmware
1249 * request is over.
1250 *
1251 * Caller must hold the reference count of @device.
1252 *
1253 * Asynchronous variant of request_firmware() for user contexts:
1254 * - sleep for as small periods as possible since it may
1255 * increase kernel boot time of built-in device drivers
1256 * requesting firmware in their ->probe() methods, if
1257 * @gfp is GFP_KERNEL.
1258 *
1259 * - can't sleep at all if @gfp is GFP_ATOMIC.
1260 **/
1261 int
request_firmware_nowait(struct module * module,bool uevent,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context))1262 request_firmware_nowait(
1263 struct module *module, bool uevent,
1264 const char *name, struct device *device, gfp_t gfp, void *context,
1265 void (*cont)(const struct firmware *fw, void *context))
1266 {
1267 struct firmware_work *fw_work;
1268
1269 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1270 if (!fw_work)
1271 return -ENOMEM;
1272
1273 fw_work->module = module;
1274 fw_work->name = kstrdup_const(name, gfp);
1275 if (!fw_work->name) {
1276 kfree(fw_work);
1277 return -ENOMEM;
1278 }
1279 fw_work->device = device;
1280 fw_work->context = context;
1281 fw_work->cont = cont;
1282 fw_work->opt_flags = FW_OPT_NOWAIT |
1283 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1284
1285 if (!uevent && fw_cache_is_setup(device, name)) {
1286 kfree_const(fw_work->name);
1287 kfree(fw_work);
1288 return -EOPNOTSUPP;
1289 }
1290
1291 if (!try_module_get(module)) {
1292 kfree_const(fw_work->name);
1293 kfree(fw_work);
1294 return -EFAULT;
1295 }
1296
1297 get_device(fw_work->device);
1298 INIT_WORK(&fw_work->work, request_firmware_work_func);
1299 schedule_work(&fw_work->work);
1300 return 0;
1301 }
1302 EXPORT_SYMBOL(request_firmware_nowait);
1303
1304 #ifdef CONFIG_FW_CACHE
1305 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1306
1307 /**
1308 * cache_firmware() - cache one firmware image in kernel memory space
1309 * @fw_name: the firmware image name
1310 *
1311 * Cache firmware in kernel memory so that drivers can use it when
1312 * system isn't ready for them to request firmware image from userspace.
1313 * Once it returns successfully, driver can use request_firmware or its
1314 * nowait version to get the cached firmware without any interacting
1315 * with userspace
1316 *
1317 * Return 0 if the firmware image has been cached successfully
1318 * Return !0 otherwise
1319 *
1320 */
cache_firmware(const char * fw_name)1321 static int cache_firmware(const char *fw_name)
1322 {
1323 int ret;
1324 const struct firmware *fw;
1325
1326 pr_debug("%s: %s\n", __func__, fw_name);
1327
1328 ret = request_firmware(&fw, fw_name, NULL);
1329 if (!ret)
1330 kfree(fw);
1331
1332 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1333
1334 return ret;
1335 }
1336
lookup_fw_priv(const char * fw_name)1337 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1338 {
1339 struct fw_priv *tmp;
1340 struct firmware_cache *fwc = &fw_cache;
1341
1342 spin_lock(&fwc->lock);
1343 tmp = __lookup_fw_priv(fw_name);
1344 spin_unlock(&fwc->lock);
1345
1346 return tmp;
1347 }
1348
1349 /**
1350 * uncache_firmware() - remove one cached firmware image
1351 * @fw_name: the firmware image name
1352 *
1353 * Uncache one firmware image which has been cached successfully
1354 * before.
1355 *
1356 * Return 0 if the firmware cache has been removed successfully
1357 * Return !0 otherwise
1358 *
1359 */
uncache_firmware(const char * fw_name)1360 static int uncache_firmware(const char *fw_name)
1361 {
1362 struct fw_priv *fw_priv;
1363 struct firmware fw;
1364
1365 pr_debug("%s: %s\n", __func__, fw_name);
1366
1367 if (firmware_request_builtin(&fw, fw_name))
1368 return 0;
1369
1370 fw_priv = lookup_fw_priv(fw_name);
1371 if (fw_priv) {
1372 free_fw_priv(fw_priv);
1373 return 0;
1374 }
1375
1376 return -EINVAL;
1377 }
1378
alloc_fw_cache_entry(const char * name)1379 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1380 {
1381 struct fw_cache_entry *fce;
1382
1383 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1384 if (!fce)
1385 goto exit;
1386
1387 fce->name = kstrdup_const(name, GFP_ATOMIC);
1388 if (!fce->name) {
1389 kfree(fce);
1390 fce = NULL;
1391 goto exit;
1392 }
1393 exit:
1394 return fce;
1395 }
1396
__fw_entry_found(const char * name)1397 static int __fw_entry_found(const char *name)
1398 {
1399 struct firmware_cache *fwc = &fw_cache;
1400 struct fw_cache_entry *fce;
1401
1402 list_for_each_entry(fce, &fwc->fw_names, list) {
1403 if (!strcmp(fce->name, name))
1404 return 1;
1405 }
1406 return 0;
1407 }
1408
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1409 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1410 {
1411 const char *name = fw_priv->fw_name;
1412 struct firmware_cache *fwc = fw_priv->fwc;
1413 struct fw_cache_entry *fce;
1414
1415 spin_lock(&fwc->name_lock);
1416 if (__fw_entry_found(name))
1417 goto found;
1418
1419 fce = alloc_fw_cache_entry(name);
1420 if (fce) {
1421 list_add(&fce->list, &fwc->fw_names);
1422 kref_get(&fw_priv->ref);
1423 pr_debug("%s: fw: %s\n", __func__, name);
1424 }
1425 found:
1426 spin_unlock(&fwc->name_lock);
1427 }
1428
free_fw_cache_entry(struct fw_cache_entry * fce)1429 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1430 {
1431 kfree_const(fce->name);
1432 kfree(fce);
1433 }
1434
__async_dev_cache_fw_image(void * fw_entry,async_cookie_t cookie)1435 static void __async_dev_cache_fw_image(void *fw_entry,
1436 async_cookie_t cookie)
1437 {
1438 struct fw_cache_entry *fce = fw_entry;
1439 struct firmware_cache *fwc = &fw_cache;
1440 int ret;
1441
1442 ret = cache_firmware(fce->name);
1443 if (ret) {
1444 spin_lock(&fwc->name_lock);
1445 list_del(&fce->list);
1446 spin_unlock(&fwc->name_lock);
1447
1448 free_fw_cache_entry(fce);
1449 }
1450 }
1451
1452 /* called with dev->devres_lock held */
dev_create_fw_entry(struct device * dev,void * res,void * data)1453 static void dev_create_fw_entry(struct device *dev, void *res,
1454 void *data)
1455 {
1456 struct fw_name_devm *fwn = res;
1457 const char *fw_name = fwn->name;
1458 struct list_head *head = data;
1459 struct fw_cache_entry *fce;
1460
1461 fce = alloc_fw_cache_entry(fw_name);
1462 if (fce)
1463 list_add(&fce->list, head);
1464 }
1465
devm_name_match(struct device * dev,void * res,void * match_data)1466 static int devm_name_match(struct device *dev, void *res,
1467 void *match_data)
1468 {
1469 struct fw_name_devm *fwn = res;
1470 return (fwn->magic == (unsigned long)match_data);
1471 }
1472
dev_cache_fw_image(struct device * dev,void * data)1473 static void dev_cache_fw_image(struct device *dev, void *data)
1474 {
1475 LIST_HEAD(todo);
1476 struct fw_cache_entry *fce;
1477 struct fw_cache_entry *fce_next;
1478 struct firmware_cache *fwc = &fw_cache;
1479
1480 devres_for_each_res(dev, fw_name_devm_release,
1481 devm_name_match, &fw_cache,
1482 dev_create_fw_entry, &todo);
1483
1484 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1485 list_del(&fce->list);
1486
1487 spin_lock(&fwc->name_lock);
1488 /* only one cache entry for one firmware */
1489 if (!__fw_entry_found(fce->name)) {
1490 list_add(&fce->list, &fwc->fw_names);
1491 } else {
1492 free_fw_cache_entry(fce);
1493 fce = NULL;
1494 }
1495 spin_unlock(&fwc->name_lock);
1496
1497 if (fce)
1498 async_schedule_domain(__async_dev_cache_fw_image,
1499 (void *)fce,
1500 &fw_cache_domain);
1501 }
1502 }
1503
__device_uncache_fw_images(void)1504 static void __device_uncache_fw_images(void)
1505 {
1506 struct firmware_cache *fwc = &fw_cache;
1507 struct fw_cache_entry *fce;
1508
1509 spin_lock(&fwc->name_lock);
1510 while (!list_empty(&fwc->fw_names)) {
1511 fce = list_entry(fwc->fw_names.next,
1512 struct fw_cache_entry, list);
1513 list_del(&fce->list);
1514 spin_unlock(&fwc->name_lock);
1515
1516 uncache_firmware(fce->name);
1517 free_fw_cache_entry(fce);
1518
1519 spin_lock(&fwc->name_lock);
1520 }
1521 spin_unlock(&fwc->name_lock);
1522 }
1523
1524 /**
1525 * device_cache_fw_images() - cache devices' firmware
1526 *
1527 * If one device called request_firmware or its nowait version
1528 * successfully before, the firmware names are recored into the
1529 * device's devres link list, so device_cache_fw_images can call
1530 * cache_firmware() to cache these firmwares for the device,
1531 * then the device driver can load its firmwares easily at
1532 * time when system is not ready to complete loading firmware.
1533 */
device_cache_fw_images(void)1534 static void device_cache_fw_images(void)
1535 {
1536 struct firmware_cache *fwc = &fw_cache;
1537 DEFINE_WAIT(wait);
1538
1539 pr_debug("%s\n", __func__);
1540
1541 /* cancel uncache work */
1542 cancel_delayed_work_sync(&fwc->work);
1543
1544 fw_fallback_set_cache_timeout();
1545
1546 mutex_lock(&fw_lock);
1547 fwc->state = FW_LOADER_START_CACHE;
1548 dpm_for_each_dev(NULL, dev_cache_fw_image);
1549 mutex_unlock(&fw_lock);
1550
1551 /* wait for completion of caching firmware for all devices */
1552 async_synchronize_full_domain(&fw_cache_domain);
1553
1554 fw_fallback_set_default_timeout();
1555 }
1556
1557 /**
1558 * device_uncache_fw_images() - uncache devices' firmware
1559 *
1560 * uncache all firmwares which have been cached successfully
1561 * by device_uncache_fw_images earlier
1562 */
device_uncache_fw_images(void)1563 static void device_uncache_fw_images(void)
1564 {
1565 pr_debug("%s\n", __func__);
1566 __device_uncache_fw_images();
1567 }
1568
device_uncache_fw_images_work(struct work_struct * work)1569 static void device_uncache_fw_images_work(struct work_struct *work)
1570 {
1571 device_uncache_fw_images();
1572 }
1573
1574 /**
1575 * device_uncache_fw_images_delay() - uncache devices firmwares
1576 * @delay: number of milliseconds to delay uncache device firmwares
1577 *
1578 * uncache all devices's firmwares which has been cached successfully
1579 * by device_cache_fw_images after @delay milliseconds.
1580 */
device_uncache_fw_images_delay(unsigned long delay)1581 static void device_uncache_fw_images_delay(unsigned long delay)
1582 {
1583 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1584 msecs_to_jiffies(delay));
1585 }
1586
fw_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1587 static int fw_pm_notify(struct notifier_block *notify_block,
1588 unsigned long mode, void *unused)
1589 {
1590 switch (mode) {
1591 case PM_HIBERNATION_PREPARE:
1592 case PM_SUSPEND_PREPARE:
1593 case PM_RESTORE_PREPARE:
1594 /*
1595 * kill pending fallback requests with a custom fallback
1596 * to avoid stalling suspend.
1597 */
1598 kill_pending_fw_fallback_reqs(true);
1599 device_cache_fw_images();
1600 break;
1601
1602 case PM_POST_SUSPEND:
1603 case PM_POST_HIBERNATION:
1604 case PM_POST_RESTORE:
1605 /*
1606 * In case that system sleep failed and syscore_suspend is
1607 * not called.
1608 */
1609 mutex_lock(&fw_lock);
1610 fw_cache.state = FW_LOADER_NO_CACHE;
1611 mutex_unlock(&fw_lock);
1612
1613 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1614 break;
1615 }
1616
1617 return 0;
1618 }
1619
1620 /* stop caching firmware once syscore_suspend is reached */
fw_suspend(void)1621 static int fw_suspend(void)
1622 {
1623 fw_cache.state = FW_LOADER_NO_CACHE;
1624 return 0;
1625 }
1626
1627 static struct syscore_ops fw_syscore_ops = {
1628 .suspend = fw_suspend,
1629 };
1630
register_fw_pm_ops(void)1631 static int __init register_fw_pm_ops(void)
1632 {
1633 int ret;
1634
1635 spin_lock_init(&fw_cache.name_lock);
1636 INIT_LIST_HEAD(&fw_cache.fw_names);
1637
1638 INIT_DELAYED_WORK(&fw_cache.work,
1639 device_uncache_fw_images_work);
1640
1641 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1642 ret = register_pm_notifier(&fw_cache.pm_notify);
1643 if (ret)
1644 return ret;
1645
1646 register_syscore_ops(&fw_syscore_ops);
1647
1648 return ret;
1649 }
1650
unregister_fw_pm_ops(void)1651 static inline void unregister_fw_pm_ops(void)
1652 {
1653 unregister_syscore_ops(&fw_syscore_ops);
1654 unregister_pm_notifier(&fw_cache.pm_notify);
1655 }
1656 #else
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1657 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1658 {
1659 }
register_fw_pm_ops(void)1660 static inline int register_fw_pm_ops(void)
1661 {
1662 return 0;
1663 }
unregister_fw_pm_ops(void)1664 static inline void unregister_fw_pm_ops(void)
1665 {
1666 }
1667 #endif
1668
fw_cache_init(void)1669 static void __init fw_cache_init(void)
1670 {
1671 spin_lock_init(&fw_cache.lock);
1672 INIT_LIST_HEAD(&fw_cache.head);
1673 fw_cache.state = FW_LOADER_NO_CACHE;
1674 }
1675
fw_shutdown_notify(struct notifier_block * unused1,unsigned long unused2,void * unused3)1676 static int fw_shutdown_notify(struct notifier_block *unused1,
1677 unsigned long unused2, void *unused3)
1678 {
1679 /*
1680 * Kill all pending fallback requests to avoid both stalling shutdown,
1681 * and avoid a deadlock with the usermode_lock.
1682 */
1683 kill_pending_fw_fallback_reqs(false);
1684
1685 return NOTIFY_DONE;
1686 }
1687
1688 static struct notifier_block fw_shutdown_nb = {
1689 .notifier_call = fw_shutdown_notify,
1690 };
1691
firmware_class_init(void)1692 static int __init firmware_class_init(void)
1693 {
1694 int ret;
1695
1696 /* No need to unfold these on exit */
1697 fw_cache_init();
1698
1699 ret = register_fw_pm_ops();
1700 if (ret)
1701 return ret;
1702
1703 ret = register_reboot_notifier(&fw_shutdown_nb);
1704 if (ret)
1705 goto out;
1706
1707 return register_sysfs_loader();
1708
1709 out:
1710 unregister_fw_pm_ops();
1711 return ret;
1712 }
1713
firmware_class_exit(void)1714 static void __exit firmware_class_exit(void)
1715 {
1716 unregister_fw_pm_ops();
1717 unregister_reboot_notifier(&fw_shutdown_nb);
1718 unregister_sysfs_loader();
1719 }
1720
1721 fs_initcall(firmware_class_init);
1722 module_exit(firmware_class_exit);
1723