1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 #include <trace/hooks/net.h>
157
158 #include "dev.h"
159 #include "net-sysfs.h"
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
163 struct list_head ptype_all __read_mostly; /* Taps */
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
174 *
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static DECLARE_RWSEM(devnet_rename_sem);
202
dev_base_seq_inc(struct net * net)203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 while (++net->dev_base_seq == 0)
206 ;
207 }
208
dev_name_hash(struct net * net,const char * name)209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
dev_index_hash(struct net * net,int ifindex)216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
rps_lock_irqsave(struct softnet_data * sd,unsigned long * flags)221 static inline void rps_lock_irqsave(struct softnet_data *sd,
222 unsigned long *flags)
223 {
224 if (IS_ENABLED(CONFIG_RPS))
225 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
226 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
227 local_irq_save(*flags);
228 }
229
rps_lock_irq_disable(struct softnet_data * sd)230 static inline void rps_lock_irq_disable(struct softnet_data *sd)
231 {
232 if (IS_ENABLED(CONFIG_RPS))
233 spin_lock_irq(&sd->input_pkt_queue.lock);
234 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
235 local_irq_disable();
236 }
237
rps_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)238 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
239 unsigned long *flags)
240 {
241 if (IS_ENABLED(CONFIG_RPS))
242 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
243 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
244 local_irq_restore(*flags);
245 }
246
rps_unlock_irq_enable(struct softnet_data * sd)247 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
248 {
249 if (IS_ENABLED(CONFIG_RPS))
250 spin_unlock_irq(&sd->input_pkt_queue.lock);
251 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
252 local_irq_enable();
253 }
254
netdev_name_node_alloc(struct net_device * dev,const char * name)255 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
256 const char *name)
257 {
258 struct netdev_name_node *name_node;
259
260 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
261 if (!name_node)
262 return NULL;
263 INIT_HLIST_NODE(&name_node->hlist);
264 name_node->dev = dev;
265 name_node->name = name;
266 return name_node;
267 }
268
269 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)270 netdev_name_node_head_alloc(struct net_device *dev)
271 {
272 struct netdev_name_node *name_node;
273
274 name_node = netdev_name_node_alloc(dev, dev->name);
275 if (!name_node)
276 return NULL;
277 INIT_LIST_HEAD(&name_node->list);
278 return name_node;
279 }
280
netdev_name_node_free(struct netdev_name_node * name_node)281 static void netdev_name_node_free(struct netdev_name_node *name_node)
282 {
283 kfree(name_node);
284 }
285
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)286 static void netdev_name_node_add(struct net *net,
287 struct netdev_name_node *name_node)
288 {
289 hlist_add_head_rcu(&name_node->hlist,
290 dev_name_hash(net, name_node->name));
291 }
292
netdev_name_node_del(struct netdev_name_node * name_node)293 static void netdev_name_node_del(struct netdev_name_node *name_node)
294 {
295 hlist_del_rcu(&name_node->hlist);
296 }
297
netdev_name_node_lookup(struct net * net,const char * name)298 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
299 const char *name)
300 {
301 struct hlist_head *head = dev_name_hash(net, name);
302 struct netdev_name_node *name_node;
303
304 hlist_for_each_entry(name_node, head, hlist)
305 if (!strcmp(name_node->name, name))
306 return name_node;
307 return NULL;
308 }
309
netdev_name_node_lookup_rcu(struct net * net,const char * name)310 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
311 const char *name)
312 {
313 struct hlist_head *head = dev_name_hash(net, name);
314 struct netdev_name_node *name_node;
315
316 hlist_for_each_entry_rcu(name_node, head, hlist)
317 if (!strcmp(name_node->name, name))
318 return name_node;
319 return NULL;
320 }
321
netdev_name_in_use(struct net * net,const char * name)322 bool netdev_name_in_use(struct net *net, const char *name)
323 {
324 return netdev_name_node_lookup(net, name);
325 }
326 EXPORT_SYMBOL(netdev_name_in_use);
327
netdev_name_node_alt_create(struct net_device * dev,const char * name)328 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
329 {
330 struct netdev_name_node *name_node;
331 struct net *net = dev_net(dev);
332
333 name_node = netdev_name_node_lookup(net, name);
334 if (name_node)
335 return -EEXIST;
336 name_node = netdev_name_node_alloc(dev, name);
337 if (!name_node)
338 return -ENOMEM;
339 netdev_name_node_add(net, name_node);
340 /* The node that holds dev->name acts as a head of per-device list. */
341 list_add_tail(&name_node->list, &dev->name_node->list);
342
343 return 0;
344 }
345
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)346 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
347 {
348 list_del(&name_node->list);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351 }
352
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 netdev_name_node_del(name_node);
368 synchronize_rcu();
369 __netdev_name_node_alt_destroy(name_node);
370
371 return 0;
372 }
373
netdev_name_node_alt_flush(struct net_device * dev)374 static void netdev_name_node_alt_flush(struct net_device *dev)
375 {
376 struct netdev_name_node *name_node, *tmp;
377
378 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
379 __netdev_name_node_alt_destroy(name_node);
380 }
381
382 /* Device list insertion */
list_netdevice(struct net_device * dev)383 static void list_netdevice(struct net_device *dev)
384 {
385 struct netdev_name_node *name_node;
386 struct net *net = dev_net(dev);
387
388 ASSERT_RTNL();
389
390 write_lock(&dev_base_lock);
391 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
392 netdev_name_node_add(net, dev->name_node);
393 hlist_add_head_rcu(&dev->index_hlist,
394 dev_index_hash(net, dev->ifindex));
395 write_unlock(&dev_base_lock);
396
397 netdev_for_each_altname(dev, name_node)
398 netdev_name_node_add(net, name_node);
399
400 /* We reserved the ifindex, this can't fail */
401 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
402
403 dev_base_seq_inc(net);
404 }
405
406 /* Device list removal
407 * caller must respect a RCU grace period before freeing/reusing dev
408 */
unlist_netdevice(struct net_device * dev,bool lock)409 static void unlist_netdevice(struct net_device *dev, bool lock)
410 {
411 struct netdev_name_node *name_node;
412 struct net *net = dev_net(dev);
413
414 ASSERT_RTNL();
415
416 xa_erase(&net->dev_by_index, dev->ifindex);
417
418 netdev_for_each_altname(dev, name_node)
419 netdev_name_node_del(name_node);
420
421 /* Unlink dev from the device chain */
422 if (lock)
423 write_lock(&dev_base_lock);
424 list_del_rcu(&dev->dev_list);
425 netdev_name_node_del(dev->name_node);
426 hlist_del_rcu(&dev->index_hlist);
427 if (lock)
428 write_unlock(&dev_base_lock);
429
430 dev_base_seq_inc(dev_net(dev));
431 }
432
433 /*
434 * Our notifier list
435 */
436
437 static RAW_NOTIFIER_HEAD(netdev_chain);
438
439 /*
440 * Device drivers call our routines to queue packets here. We empty the
441 * queue in the local softnet handler.
442 */
443
444 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
445 EXPORT_PER_CPU_SYMBOL(softnet_data);
446
447 #ifdef CONFIG_LOCKDEP
448 /*
449 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
450 * according to dev->type
451 */
452 static const unsigned short netdev_lock_type[] = {
453 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
454 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
455 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
456 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
457 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
458 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
459 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
460 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
461 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
462 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
463 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
464 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
465 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
466 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
467 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
468
469 static const char *const netdev_lock_name[] = {
470 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
471 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
472 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
473 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
474 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
475 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
476 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
477 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
478 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
479 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
480 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
481 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
482 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
483 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
484 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
485
486 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
487 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
488
netdev_lock_pos(unsigned short dev_type)489 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
490 {
491 int i;
492
493 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
494 if (netdev_lock_type[i] == dev_type)
495 return i;
496 /* the last key is used by default */
497 return ARRAY_SIZE(netdev_lock_type) - 1;
498 }
499
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)500 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
501 unsigned short dev_type)
502 {
503 int i;
504
505 i = netdev_lock_pos(dev_type);
506 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
507 netdev_lock_name[i]);
508 }
509
netdev_set_addr_lockdep_class(struct net_device * dev)510 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
511 {
512 int i;
513
514 i = netdev_lock_pos(dev->type);
515 lockdep_set_class_and_name(&dev->addr_list_lock,
516 &netdev_addr_lock_key[i],
517 netdev_lock_name[i]);
518 }
519 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521 unsigned short dev_type)
522 {
523 }
524
netdev_set_addr_lockdep_class(struct net_device * dev)525 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
526 {
527 }
528 #endif
529
530 /*******************************************************************************
531 *
532 * Protocol management and registration routines
533 *
534 *******************************************************************************/
535
536
537 /*
538 * Add a protocol ID to the list. Now that the input handler is
539 * smarter we can dispense with all the messy stuff that used to be
540 * here.
541 *
542 * BEWARE!!! Protocol handlers, mangling input packets,
543 * MUST BE last in hash buckets and checking protocol handlers
544 * MUST start from promiscuous ptype_all chain in net_bh.
545 * It is true now, do not change it.
546 * Explanation follows: if protocol handler, mangling packet, will
547 * be the first on list, it is not able to sense, that packet
548 * is cloned and should be copied-on-write, so that it will
549 * change it and subsequent readers will get broken packet.
550 * --ANK (980803)
551 */
552
ptype_head(const struct packet_type * pt)553 static inline struct list_head *ptype_head(const struct packet_type *pt)
554 {
555 struct list_head vendor_pt = { .next = NULL, };
556
557 trace_android_vh_ptype_head(pt, &vendor_pt);
558 if (vendor_pt.next)
559 return vendor_pt.next;
560
561 if (pt->type == htons(ETH_P_ALL))
562 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
563 else
564 return pt->dev ? &pt->dev->ptype_specific :
565 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
566 }
567
568 /**
569 * dev_add_pack - add packet handler
570 * @pt: packet type declaration
571 *
572 * Add a protocol handler to the networking stack. The passed &packet_type
573 * is linked into kernel lists and may not be freed until it has been
574 * removed from the kernel lists.
575 *
576 * This call does not sleep therefore it can not
577 * guarantee all CPU's that are in middle of receiving packets
578 * will see the new packet type (until the next received packet).
579 */
580
dev_add_pack(struct packet_type * pt)581 void dev_add_pack(struct packet_type *pt)
582 {
583 struct list_head *head = ptype_head(pt);
584
585 spin_lock(&ptype_lock);
586 list_add_rcu(&pt->list, head);
587 spin_unlock(&ptype_lock);
588 }
589 EXPORT_SYMBOL(dev_add_pack);
590
591 /**
592 * __dev_remove_pack - remove packet handler
593 * @pt: packet type declaration
594 *
595 * Remove a protocol handler that was previously added to the kernel
596 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
597 * from the kernel lists and can be freed or reused once this function
598 * returns.
599 *
600 * The packet type might still be in use by receivers
601 * and must not be freed until after all the CPU's have gone
602 * through a quiescent state.
603 */
__dev_remove_pack(struct packet_type * pt)604 void __dev_remove_pack(struct packet_type *pt)
605 {
606 struct list_head *head = ptype_head(pt);
607 struct packet_type *pt1;
608
609 spin_lock(&ptype_lock);
610
611 list_for_each_entry(pt1, head, list) {
612 if (pt == pt1) {
613 list_del_rcu(&pt->list);
614 goto out;
615 }
616 }
617
618 pr_warn("dev_remove_pack: %p not found\n", pt);
619 out:
620 spin_unlock(&ptype_lock);
621 }
622 EXPORT_SYMBOL(__dev_remove_pack);
623
624 /**
625 * dev_remove_pack - remove packet handler
626 * @pt: packet type declaration
627 *
628 * Remove a protocol handler that was previously added to the kernel
629 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
630 * from the kernel lists and can be freed or reused once this function
631 * returns.
632 *
633 * This call sleeps to guarantee that no CPU is looking at the packet
634 * type after return.
635 */
dev_remove_pack(struct packet_type * pt)636 void dev_remove_pack(struct packet_type *pt)
637 {
638 __dev_remove_pack(pt);
639
640 synchronize_net();
641 }
642 EXPORT_SYMBOL(dev_remove_pack);
643
644
645 /*******************************************************************************
646 *
647 * Device Interface Subroutines
648 *
649 *******************************************************************************/
650
651 /**
652 * dev_get_iflink - get 'iflink' value of a interface
653 * @dev: targeted interface
654 *
655 * Indicates the ifindex the interface is linked to.
656 * Physical interfaces have the same 'ifindex' and 'iflink' values.
657 */
658
dev_get_iflink(const struct net_device * dev)659 int dev_get_iflink(const struct net_device *dev)
660 {
661 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
662 return dev->netdev_ops->ndo_get_iflink(dev);
663
664 return dev->ifindex;
665 }
666 EXPORT_SYMBOL(dev_get_iflink);
667
668 /**
669 * dev_fill_metadata_dst - Retrieve tunnel egress information.
670 * @dev: targeted interface
671 * @skb: The packet.
672 *
673 * For better visibility of tunnel traffic OVS needs to retrieve
674 * egress tunnel information for a packet. Following API allows
675 * user to get this info.
676 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)677 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
678 {
679 struct ip_tunnel_info *info;
680
681 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
682 return -EINVAL;
683
684 info = skb_tunnel_info_unclone(skb);
685 if (!info)
686 return -ENOMEM;
687 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
688 return -EINVAL;
689
690 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
691 }
692 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
693
dev_fwd_path(struct net_device_path_stack * stack)694 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
695 {
696 int k = stack->num_paths++;
697
698 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
699 return NULL;
700
701 return &stack->path[k];
702 }
703
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)704 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
705 struct net_device_path_stack *stack)
706 {
707 const struct net_device *last_dev;
708 struct net_device_path_ctx ctx = {
709 .dev = dev,
710 };
711 struct net_device_path *path;
712 int ret = 0;
713
714 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
715 stack->num_paths = 0;
716 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
717 last_dev = ctx.dev;
718 path = dev_fwd_path(stack);
719 if (!path)
720 return -1;
721
722 memset(path, 0, sizeof(struct net_device_path));
723 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
724 if (ret < 0)
725 return -1;
726
727 if (WARN_ON_ONCE(last_dev == ctx.dev))
728 return -1;
729 }
730
731 if (!ctx.dev)
732 return ret;
733
734 path = dev_fwd_path(stack);
735 if (!path)
736 return -1;
737 path->type = DEV_PATH_ETHERNET;
738 path->dev = ctx.dev;
739
740 return ret;
741 }
742 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
743
744 /**
745 * __dev_get_by_name - find a device by its name
746 * @net: the applicable net namespace
747 * @name: name to find
748 *
749 * Find an interface by name. Must be called under RTNL semaphore
750 * or @dev_base_lock. If the name is found a pointer to the device
751 * is returned. If the name is not found then %NULL is returned. The
752 * reference counters are not incremented so the caller must be
753 * careful with locks.
754 */
755
__dev_get_by_name(struct net * net,const char * name)756 struct net_device *__dev_get_by_name(struct net *net, const char *name)
757 {
758 struct netdev_name_node *node_name;
759
760 node_name = netdev_name_node_lookup(net, name);
761 return node_name ? node_name->dev : NULL;
762 }
763 EXPORT_SYMBOL(__dev_get_by_name);
764
765 /**
766 * dev_get_by_name_rcu - find a device by its name
767 * @net: the applicable net namespace
768 * @name: name to find
769 *
770 * Find an interface by name.
771 * If the name is found a pointer to the device is returned.
772 * If the name is not found then %NULL is returned.
773 * The reference counters are not incremented so the caller must be
774 * careful with locks. The caller must hold RCU lock.
775 */
776
dev_get_by_name_rcu(struct net * net,const char * name)777 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
778 {
779 struct netdev_name_node *node_name;
780
781 node_name = netdev_name_node_lookup_rcu(net, name);
782 return node_name ? node_name->dev : NULL;
783 }
784 EXPORT_SYMBOL(dev_get_by_name_rcu);
785
786 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)787 struct net_device *dev_get_by_name(struct net *net, const char *name)
788 {
789 struct net_device *dev;
790
791 rcu_read_lock();
792 dev = dev_get_by_name_rcu(net, name);
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800 * netdev_get_by_name() - find a device by its name
801 * @net: the applicable net namespace
802 * @name: name to find
803 * @tracker: tracking object for the acquired reference
804 * @gfp: allocation flags for the tracker
805 *
806 * Find an interface by name. This can be called from any
807 * context and does its own locking. The returned handle has
808 * the usage count incremented and the caller must use netdev_put() to
809 * release it when it is no longer needed. %NULL is returned if no
810 * matching device is found.
811 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)812 struct net_device *netdev_get_by_name(struct net *net, const char *name,
813 netdevice_tracker *tracker, gfp_t gfp)
814 {
815 struct net_device *dev;
816
817 dev = dev_get_by_name(net, name);
818 if (dev)
819 netdev_tracker_alloc(dev, tracker, gfp);
820 return dev;
821 }
822 EXPORT_SYMBOL(netdev_get_by_name);
823
824 /**
825 * __dev_get_by_index - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold either the RTNL semaphore
833 * or @dev_base_lock.
834 */
835
__dev_get_by_index(struct net * net,int ifindex)836 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
837 {
838 struct net_device *dev;
839 struct hlist_head *head = dev_index_hash(net, ifindex);
840
841 hlist_for_each_entry(dev, head, index_hlist)
842 if (dev->ifindex == ifindex)
843 return dev;
844
845 return NULL;
846 }
847 EXPORT_SYMBOL(__dev_get_by_index);
848
849 /**
850 * dev_get_by_index_rcu - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns %NULL if the device
855 * is not found or a pointer to the device. The device has not
856 * had its reference counter increased so the caller must be careful
857 * about locking. The caller must hold RCU lock.
858 */
859
dev_get_by_index_rcu(struct net * net,int ifindex)860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
861 {
862 struct net_device *dev;
863 struct hlist_head *head = dev_index_hash(net, ifindex);
864
865 hlist_for_each_entry_rcu(dev, head, index_hlist)
866 if (dev->ifindex == ifindex)
867 return dev;
868
869 return NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_index_rcu);
872
873 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)874 struct net_device *dev_get_by_index(struct net *net, int ifindex)
875 {
876 struct net_device *dev;
877
878 rcu_read_lock();
879 dev = dev_get_by_index_rcu(net, ifindex);
880 dev_hold(dev);
881 rcu_read_unlock();
882 return dev;
883 }
884 EXPORT_SYMBOL(dev_get_by_index);
885
886 /**
887 * netdev_get_by_index() - find a device by its ifindex
888 * @net: the applicable net namespace
889 * @ifindex: index of device
890 * @tracker: tracking object for the acquired reference
891 * @gfp: allocation flags for the tracker
892 *
893 * Search for an interface by index. Returns NULL if the device
894 * is not found or a pointer to the device. The device returned has
895 * had a reference added and the pointer is safe until the user calls
896 * netdev_put() to indicate they have finished with it.
897 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)898 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
899 netdevice_tracker *tracker, gfp_t gfp)
900 {
901 struct net_device *dev;
902
903 dev = dev_get_by_index(net, ifindex);
904 if (dev)
905 netdev_tracker_alloc(dev, tracker, gfp);
906 return dev;
907 }
908 EXPORT_SYMBOL(netdev_get_by_index);
909
910 /**
911 * dev_get_by_napi_id - find a device by napi_id
912 * @napi_id: ID of the NAPI struct
913 *
914 * Search for an interface by NAPI ID. Returns %NULL if the device
915 * is not found or a pointer to the device. The device has not had
916 * its reference counter increased so the caller must be careful
917 * about locking. The caller must hold RCU lock.
918 */
919
dev_get_by_napi_id(unsigned int napi_id)920 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
921 {
922 struct napi_struct *napi;
923
924 WARN_ON_ONCE(!rcu_read_lock_held());
925
926 if (napi_id < MIN_NAPI_ID)
927 return NULL;
928
929 napi = napi_by_id(napi_id);
930
931 return napi ? napi->dev : NULL;
932 }
933 EXPORT_SYMBOL(dev_get_by_napi_id);
934
935 /**
936 * netdev_get_name - get a netdevice name, knowing its ifindex.
937 * @net: network namespace
938 * @name: a pointer to the buffer where the name will be stored.
939 * @ifindex: the ifindex of the interface to get the name from.
940 */
netdev_get_name(struct net * net,char * name,int ifindex)941 int netdev_get_name(struct net *net, char *name, int ifindex)
942 {
943 struct net_device *dev;
944 int ret;
945
946 down_read(&devnet_rename_sem);
947 rcu_read_lock();
948
949 dev = dev_get_by_index_rcu(net, ifindex);
950 if (!dev) {
951 ret = -ENODEV;
952 goto out;
953 }
954
955 strcpy(name, dev->name);
956
957 ret = 0;
958 out:
959 rcu_read_unlock();
960 up_read(&devnet_rename_sem);
961 return ret;
962 }
963 EXPORT_SYMBOL_GPL(netdev_get_name);
964
965 /**
966 * dev_getbyhwaddr_rcu - find a device by its hardware address
967 * @net: the applicable net namespace
968 * @type: media type of device
969 * @ha: hardware address
970 *
971 * Search for an interface by MAC address. Returns NULL if the device
972 * is not found or a pointer to the device.
973 * The caller must hold RCU or RTNL.
974 * The returned device has not had its ref count increased
975 * and the caller must therefore be careful about locking
976 *
977 */
978
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)979 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
980 const char *ha)
981 {
982 struct net_device *dev;
983
984 for_each_netdev_rcu(net, dev)
985 if (dev->type == type &&
986 !memcmp(dev->dev_addr, ha, dev->addr_len))
987 return dev;
988
989 return NULL;
990 }
991 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
992
dev_getfirstbyhwtype(struct net * net,unsigned short type)993 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
994 {
995 struct net_device *dev, *ret = NULL;
996
997 rcu_read_lock();
998 for_each_netdev_rcu(net, dev)
999 if (dev->type == type) {
1000 dev_hold(dev);
1001 ret = dev;
1002 break;
1003 }
1004 rcu_read_unlock();
1005 return ret;
1006 }
1007 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1008
1009 /**
1010 * __dev_get_by_flags - find any device with given flags
1011 * @net: the applicable net namespace
1012 * @if_flags: IFF_* values
1013 * @mask: bitmask of bits in if_flags to check
1014 *
1015 * Search for any interface with the given flags. Returns NULL if a device
1016 * is not found or a pointer to the device. Must be called inside
1017 * rtnl_lock(), and result refcount is unchanged.
1018 */
1019
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1020 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1021 unsigned short mask)
1022 {
1023 struct net_device *dev, *ret;
1024
1025 ASSERT_RTNL();
1026
1027 ret = NULL;
1028 for_each_netdev(net, dev) {
1029 if (((dev->flags ^ if_flags) & mask) == 0) {
1030 ret = dev;
1031 break;
1032 }
1033 }
1034 return ret;
1035 }
1036 EXPORT_SYMBOL(__dev_get_by_flags);
1037
1038 /**
1039 * dev_valid_name - check if name is okay for network device
1040 * @name: name string
1041 *
1042 * Network device names need to be valid file names to
1043 * allow sysfs to work. We also disallow any kind of
1044 * whitespace.
1045 */
dev_valid_name(const char * name)1046 bool dev_valid_name(const char *name)
1047 {
1048 if (*name == '\0')
1049 return false;
1050 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1051 return false;
1052 if (!strcmp(name, ".") || !strcmp(name, ".."))
1053 return false;
1054
1055 while (*name) {
1056 if (*name == '/' || *name == ':' || isspace(*name))
1057 return false;
1058 name++;
1059 }
1060 return true;
1061 }
1062 EXPORT_SYMBOL(dev_valid_name);
1063
1064 /**
1065 * __dev_alloc_name - allocate a name for a device
1066 * @net: network namespace to allocate the device name in
1067 * @name: name format string
1068 * @buf: scratch buffer and result name string
1069 *
1070 * Passed a format string - eg "lt%d" it will try and find a suitable
1071 * id. It scans list of devices to build up a free map, then chooses
1072 * the first empty slot. The caller must hold the dev_base or rtnl lock
1073 * while allocating the name and adding the device in order to avoid
1074 * duplicates.
1075 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1076 * Returns the number of the unit assigned or a negative errno code.
1077 */
1078
__dev_alloc_name(struct net * net,const char * name,char * buf)1079 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1080 {
1081 int i = 0;
1082 const char *p;
1083 const int max_netdevices = 8*PAGE_SIZE;
1084 unsigned long *inuse;
1085 struct net_device *d;
1086
1087 if (!dev_valid_name(name))
1088 return -EINVAL;
1089
1090 p = strchr(name, '%');
1091 if (p) {
1092 /*
1093 * Verify the string as this thing may have come from
1094 * the user. There must be either one "%d" and no other "%"
1095 * characters.
1096 */
1097 if (p[1] != 'd' || strchr(p + 2, '%'))
1098 return -EINVAL;
1099
1100 /* Use one page as a bit array of possible slots */
1101 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1102 if (!inuse)
1103 return -ENOMEM;
1104
1105 for_each_netdev(net, d) {
1106 struct netdev_name_node *name_node;
1107
1108 netdev_for_each_altname(d, name_node) {
1109 if (!sscanf(name_node->name, name, &i))
1110 continue;
1111 if (i < 0 || i >= max_netdevices)
1112 continue;
1113
1114 /* avoid cases where sscanf is not exact inverse of printf */
1115 snprintf(buf, IFNAMSIZ, name, i);
1116 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1117 __set_bit(i, inuse);
1118 }
1119 if (!sscanf(d->name, name, &i))
1120 continue;
1121 if (i < 0 || i >= max_netdevices)
1122 continue;
1123
1124 /* avoid cases where sscanf is not exact inverse of printf */
1125 snprintf(buf, IFNAMSIZ, name, i);
1126 if (!strncmp(buf, d->name, IFNAMSIZ))
1127 __set_bit(i, inuse);
1128 }
1129
1130 i = find_first_zero_bit(inuse, max_netdevices);
1131 bitmap_free(inuse);
1132 }
1133
1134 snprintf(buf, IFNAMSIZ, name, i);
1135 if (!netdev_name_in_use(net, buf))
1136 return i;
1137
1138 /* It is possible to run out of possible slots
1139 * when the name is long and there isn't enough space left
1140 * for the digits, or if all bits are used.
1141 */
1142 return -ENFILE;
1143 }
1144
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name)1145 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1146 const char *want_name, char *out_name)
1147 {
1148 int ret;
1149
1150 if (!dev_valid_name(want_name))
1151 return -EINVAL;
1152
1153 if (strchr(want_name, '%')) {
1154 ret = __dev_alloc_name(net, want_name, out_name);
1155 return ret < 0 ? ret : 0;
1156 } else if (netdev_name_in_use(net, want_name)) {
1157 return -EEXIST;
1158 } else if (out_name != want_name) {
1159 strscpy(out_name, want_name, IFNAMSIZ);
1160 }
1161
1162 return 0;
1163 }
1164
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1165 static int dev_alloc_name_ns(struct net *net,
1166 struct net_device *dev,
1167 const char *name)
1168 {
1169 char buf[IFNAMSIZ];
1170 int ret;
1171
1172 BUG_ON(!net);
1173 ret = __dev_alloc_name(net, name, buf);
1174 if (ret >= 0)
1175 strscpy(dev->name, buf, IFNAMSIZ);
1176 return ret;
1177 }
1178
1179 /**
1180 * dev_alloc_name - allocate a name for a device
1181 * @dev: device
1182 * @name: name format string
1183 *
1184 * Passed a format string - eg "lt%d" it will try and find a suitable
1185 * id. It scans list of devices to build up a free map, then chooses
1186 * the first empty slot. The caller must hold the dev_base or rtnl lock
1187 * while allocating the name and adding the device in order to avoid
1188 * duplicates.
1189 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1190 * Returns the number of the unit assigned or a negative errno code.
1191 */
1192
dev_alloc_name(struct net_device * dev,const char * name)1193 int dev_alloc_name(struct net_device *dev, const char *name)
1194 {
1195 return dev_alloc_name_ns(dev_net(dev), dev, name);
1196 }
1197 EXPORT_SYMBOL(dev_alloc_name);
1198
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1199 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1200 const char *name)
1201 {
1202 char buf[IFNAMSIZ];
1203 int ret;
1204
1205 ret = dev_prep_valid_name(net, dev, name, buf);
1206 if (ret >= 0)
1207 strscpy(dev->name, buf, IFNAMSIZ);
1208 return ret;
1209 }
1210
1211 /**
1212 * dev_change_name - change name of a device
1213 * @dev: device
1214 * @newname: name (or format string) must be at least IFNAMSIZ
1215 *
1216 * Change name of a device, can pass format strings "eth%d".
1217 * for wildcarding.
1218 */
dev_change_name(struct net_device * dev,const char * newname)1219 int dev_change_name(struct net_device *dev, const char *newname)
1220 {
1221 unsigned char old_assign_type;
1222 char oldname[IFNAMSIZ];
1223 int err = 0;
1224 int ret;
1225 struct net *net;
1226
1227 ASSERT_RTNL();
1228 BUG_ON(!dev_net(dev));
1229
1230 net = dev_net(dev);
1231
1232 down_write(&devnet_rename_sem);
1233
1234 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1235 up_write(&devnet_rename_sem);
1236 return 0;
1237 }
1238
1239 memcpy(oldname, dev->name, IFNAMSIZ);
1240
1241 err = dev_get_valid_name(net, dev, newname);
1242 if (err < 0) {
1243 up_write(&devnet_rename_sem);
1244 return err;
1245 }
1246
1247 if (oldname[0] && !strchr(oldname, '%'))
1248 netdev_info(dev, "renamed from %s%s\n", oldname,
1249 dev->flags & IFF_UP ? " (while UP)" : "");
1250
1251 old_assign_type = dev->name_assign_type;
1252 dev->name_assign_type = NET_NAME_RENAMED;
1253
1254 rollback:
1255 ret = device_rename(&dev->dev, dev->name);
1256 if (ret) {
1257 memcpy(dev->name, oldname, IFNAMSIZ);
1258 dev->name_assign_type = old_assign_type;
1259 up_write(&devnet_rename_sem);
1260 return ret;
1261 }
1262
1263 up_write(&devnet_rename_sem);
1264
1265 netdev_adjacent_rename_links(dev, oldname);
1266
1267 write_lock(&dev_base_lock);
1268 netdev_name_node_del(dev->name_node);
1269 write_unlock(&dev_base_lock);
1270
1271 synchronize_rcu();
1272
1273 write_lock(&dev_base_lock);
1274 netdev_name_node_add(net, dev->name_node);
1275 write_unlock(&dev_base_lock);
1276
1277 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1278 ret = notifier_to_errno(ret);
1279
1280 if (ret) {
1281 /* err >= 0 after dev_alloc_name() or stores the first errno */
1282 if (err >= 0) {
1283 err = ret;
1284 down_write(&devnet_rename_sem);
1285 memcpy(dev->name, oldname, IFNAMSIZ);
1286 memcpy(oldname, newname, IFNAMSIZ);
1287 dev->name_assign_type = old_assign_type;
1288 old_assign_type = NET_NAME_RENAMED;
1289 goto rollback;
1290 } else {
1291 netdev_err(dev, "name change rollback failed: %d\n",
1292 ret);
1293 }
1294 }
1295
1296 return err;
1297 }
1298
1299 /**
1300 * dev_set_alias - change ifalias of a device
1301 * @dev: device
1302 * @alias: name up to IFALIASZ
1303 * @len: limit of bytes to copy from info
1304 *
1305 * Set ifalias for a device,
1306 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1307 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1308 {
1309 struct dev_ifalias *new_alias = NULL;
1310
1311 if (len >= IFALIASZ)
1312 return -EINVAL;
1313
1314 if (len) {
1315 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1316 if (!new_alias)
1317 return -ENOMEM;
1318
1319 memcpy(new_alias->ifalias, alias, len);
1320 new_alias->ifalias[len] = 0;
1321 }
1322
1323 mutex_lock(&ifalias_mutex);
1324 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1325 mutex_is_locked(&ifalias_mutex));
1326 mutex_unlock(&ifalias_mutex);
1327
1328 if (new_alias)
1329 kfree_rcu(new_alias, rcuhead);
1330
1331 return len;
1332 }
1333 EXPORT_SYMBOL(dev_set_alias);
1334
1335 /**
1336 * dev_get_alias - get ifalias of a device
1337 * @dev: device
1338 * @name: buffer to store name of ifalias
1339 * @len: size of buffer
1340 *
1341 * get ifalias for a device. Caller must make sure dev cannot go
1342 * away, e.g. rcu read lock or own a reference count to device.
1343 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1344 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1345 {
1346 const struct dev_ifalias *alias;
1347 int ret = 0;
1348
1349 rcu_read_lock();
1350 alias = rcu_dereference(dev->ifalias);
1351 if (alias)
1352 ret = snprintf(name, len, "%s", alias->ifalias);
1353 rcu_read_unlock();
1354
1355 return ret;
1356 }
1357
1358 /**
1359 * netdev_features_change - device changes features
1360 * @dev: device to cause notification
1361 *
1362 * Called to indicate a device has changed features.
1363 */
netdev_features_change(struct net_device * dev)1364 void netdev_features_change(struct net_device *dev)
1365 {
1366 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1367 }
1368 EXPORT_SYMBOL(netdev_features_change);
1369
1370 /**
1371 * netdev_state_change - device changes state
1372 * @dev: device to cause notification
1373 *
1374 * Called to indicate a device has changed state. This function calls
1375 * the notifier chains for netdev_chain and sends a NEWLINK message
1376 * to the routing socket.
1377 */
netdev_state_change(struct net_device * dev)1378 void netdev_state_change(struct net_device *dev)
1379 {
1380 if (dev->flags & IFF_UP) {
1381 struct netdev_notifier_change_info change_info = {
1382 .info.dev = dev,
1383 };
1384
1385 call_netdevice_notifiers_info(NETDEV_CHANGE,
1386 &change_info.info);
1387 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1388 }
1389 }
1390 EXPORT_SYMBOL(netdev_state_change);
1391
1392 /**
1393 * __netdev_notify_peers - notify network peers about existence of @dev,
1394 * to be called when rtnl lock is already held.
1395 * @dev: network device
1396 *
1397 * Generate traffic such that interested network peers are aware of
1398 * @dev, such as by generating a gratuitous ARP. This may be used when
1399 * a device wants to inform the rest of the network about some sort of
1400 * reconfiguration such as a failover event or virtual machine
1401 * migration.
1402 */
__netdev_notify_peers(struct net_device * dev)1403 void __netdev_notify_peers(struct net_device *dev)
1404 {
1405 ASSERT_RTNL();
1406 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1407 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1408 }
1409 EXPORT_SYMBOL(__netdev_notify_peers);
1410
1411 /**
1412 * netdev_notify_peers - notify network peers about existence of @dev
1413 * @dev: network device
1414 *
1415 * Generate traffic such that interested network peers are aware of
1416 * @dev, such as by generating a gratuitous ARP. This may be used when
1417 * a device wants to inform the rest of the network about some sort of
1418 * reconfiguration such as a failover event or virtual machine
1419 * migration.
1420 */
netdev_notify_peers(struct net_device * dev)1421 void netdev_notify_peers(struct net_device *dev)
1422 {
1423 rtnl_lock();
1424 __netdev_notify_peers(dev);
1425 rtnl_unlock();
1426 }
1427 EXPORT_SYMBOL(netdev_notify_peers);
1428
1429 static int napi_threaded_poll(void *data);
1430
napi_kthread_create(struct napi_struct * n)1431 static int napi_kthread_create(struct napi_struct *n)
1432 {
1433 int err = 0;
1434
1435 /* Create and wake up the kthread once to put it in
1436 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1437 * warning and work with loadavg.
1438 */
1439 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1440 n->dev->name, n->napi_id);
1441 if (IS_ERR(n->thread)) {
1442 err = PTR_ERR(n->thread);
1443 pr_err("kthread_run failed with err %d\n", err);
1444 n->thread = NULL;
1445 }
1446
1447 return err;
1448 }
1449
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1450 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1451 {
1452 const struct net_device_ops *ops = dev->netdev_ops;
1453 int ret;
1454
1455 ASSERT_RTNL();
1456 dev_addr_check(dev);
1457
1458 if (!netif_device_present(dev)) {
1459 /* may be detached because parent is runtime-suspended */
1460 if (dev->dev.parent)
1461 pm_runtime_resume(dev->dev.parent);
1462 if (!netif_device_present(dev))
1463 return -ENODEV;
1464 }
1465
1466 /* Block netpoll from trying to do any rx path servicing.
1467 * If we don't do this there is a chance ndo_poll_controller
1468 * or ndo_poll may be running while we open the device
1469 */
1470 netpoll_poll_disable(dev);
1471
1472 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1473 ret = notifier_to_errno(ret);
1474 if (ret)
1475 return ret;
1476
1477 set_bit(__LINK_STATE_START, &dev->state);
1478
1479 if (ops->ndo_validate_addr)
1480 ret = ops->ndo_validate_addr(dev);
1481
1482 if (!ret && ops->ndo_open)
1483 ret = ops->ndo_open(dev);
1484
1485 netpoll_poll_enable(dev);
1486
1487 if (ret)
1488 clear_bit(__LINK_STATE_START, &dev->state);
1489 else {
1490 dev->flags |= IFF_UP;
1491 dev_set_rx_mode(dev);
1492 dev_activate(dev);
1493 add_device_randomness(dev->dev_addr, dev->addr_len);
1494 }
1495
1496 return ret;
1497 }
1498
1499 /**
1500 * dev_open - prepare an interface for use.
1501 * @dev: device to open
1502 * @extack: netlink extended ack
1503 *
1504 * Takes a device from down to up state. The device's private open
1505 * function is invoked and then the multicast lists are loaded. Finally
1506 * the device is moved into the up state and a %NETDEV_UP message is
1507 * sent to the netdev notifier chain.
1508 *
1509 * Calling this function on an active interface is a nop. On a failure
1510 * a negative errno code is returned.
1511 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1512 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1513 {
1514 int ret;
1515
1516 if (dev->flags & IFF_UP)
1517 return 0;
1518
1519 ret = __dev_open(dev, extack);
1520 if (ret < 0)
1521 return ret;
1522
1523 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1524 call_netdevice_notifiers(NETDEV_UP, dev);
1525
1526 return ret;
1527 }
1528 EXPORT_SYMBOL(dev_open);
1529
__dev_close_many(struct list_head * head)1530 static void __dev_close_many(struct list_head *head)
1531 {
1532 struct net_device *dev;
1533
1534 ASSERT_RTNL();
1535 might_sleep();
1536
1537 list_for_each_entry(dev, head, close_list) {
1538 /* Temporarily disable netpoll until the interface is down */
1539 netpoll_poll_disable(dev);
1540
1541 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1542
1543 clear_bit(__LINK_STATE_START, &dev->state);
1544
1545 /* Synchronize to scheduled poll. We cannot touch poll list, it
1546 * can be even on different cpu. So just clear netif_running().
1547 *
1548 * dev->stop() will invoke napi_disable() on all of it's
1549 * napi_struct instances on this device.
1550 */
1551 smp_mb__after_atomic(); /* Commit netif_running(). */
1552 }
1553
1554 dev_deactivate_many(head);
1555
1556 list_for_each_entry(dev, head, close_list) {
1557 const struct net_device_ops *ops = dev->netdev_ops;
1558
1559 /*
1560 * Call the device specific close. This cannot fail.
1561 * Only if device is UP
1562 *
1563 * We allow it to be called even after a DETACH hot-plug
1564 * event.
1565 */
1566 if (ops->ndo_stop)
1567 ops->ndo_stop(dev);
1568
1569 dev->flags &= ~IFF_UP;
1570 netpoll_poll_enable(dev);
1571 }
1572 }
1573
__dev_close(struct net_device * dev)1574 static void __dev_close(struct net_device *dev)
1575 {
1576 LIST_HEAD(single);
1577
1578 list_add(&dev->close_list, &single);
1579 __dev_close_many(&single);
1580 list_del(&single);
1581 }
1582
dev_close_many(struct list_head * head,bool unlink)1583 void dev_close_many(struct list_head *head, bool unlink)
1584 {
1585 struct net_device *dev, *tmp;
1586
1587 /* Remove the devices that don't need to be closed */
1588 list_for_each_entry_safe(dev, tmp, head, close_list)
1589 if (!(dev->flags & IFF_UP))
1590 list_del_init(&dev->close_list);
1591
1592 __dev_close_many(head);
1593
1594 list_for_each_entry_safe(dev, tmp, head, close_list) {
1595 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1596 call_netdevice_notifiers(NETDEV_DOWN, dev);
1597 if (unlink)
1598 list_del_init(&dev->close_list);
1599 }
1600 }
1601 EXPORT_SYMBOL(dev_close_many);
1602
1603 /**
1604 * dev_close - shutdown an interface.
1605 * @dev: device to shutdown
1606 *
1607 * This function moves an active device into down state. A
1608 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1609 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1610 * chain.
1611 */
dev_close(struct net_device * dev)1612 void dev_close(struct net_device *dev)
1613 {
1614 if (dev->flags & IFF_UP) {
1615 LIST_HEAD(single);
1616
1617 list_add(&dev->close_list, &single);
1618 dev_close_many(&single, true);
1619 list_del(&single);
1620 }
1621 }
1622 EXPORT_SYMBOL(dev_close);
1623
1624
1625 /**
1626 * dev_disable_lro - disable Large Receive Offload on a device
1627 * @dev: device
1628 *
1629 * Disable Large Receive Offload (LRO) on a net device. Must be
1630 * called under RTNL. This is needed if received packets may be
1631 * forwarded to another interface.
1632 */
dev_disable_lro(struct net_device * dev)1633 void dev_disable_lro(struct net_device *dev)
1634 {
1635 struct net_device *lower_dev;
1636 struct list_head *iter;
1637
1638 dev->wanted_features &= ~NETIF_F_LRO;
1639 netdev_update_features(dev);
1640
1641 if (unlikely(dev->features & NETIF_F_LRO))
1642 netdev_WARN(dev, "failed to disable LRO!\n");
1643
1644 netdev_for_each_lower_dev(dev, lower_dev, iter)
1645 dev_disable_lro(lower_dev);
1646 }
1647 EXPORT_SYMBOL(dev_disable_lro);
1648
1649 /**
1650 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1651 * @dev: device
1652 *
1653 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1654 * called under RTNL. This is needed if Generic XDP is installed on
1655 * the device.
1656 */
dev_disable_gro_hw(struct net_device * dev)1657 static void dev_disable_gro_hw(struct net_device *dev)
1658 {
1659 dev->wanted_features &= ~NETIF_F_GRO_HW;
1660 netdev_update_features(dev);
1661
1662 if (unlikely(dev->features & NETIF_F_GRO_HW))
1663 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1664 }
1665
netdev_cmd_to_name(enum netdev_cmd cmd)1666 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1667 {
1668 #define N(val) \
1669 case NETDEV_##val: \
1670 return "NETDEV_" __stringify(val);
1671 switch (cmd) {
1672 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1673 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1674 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1675 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1676 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1677 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1678 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1679 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1680 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1681 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1682 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1683 N(XDP_FEAT_CHANGE)
1684 }
1685 #undef N
1686 return "UNKNOWN_NETDEV_EVENT";
1687 }
1688 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1689
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1690 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1691 struct net_device *dev)
1692 {
1693 struct netdev_notifier_info info = {
1694 .dev = dev,
1695 };
1696
1697 return nb->notifier_call(nb, val, &info);
1698 }
1699
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1700 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1701 struct net_device *dev)
1702 {
1703 int err;
1704
1705 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1706 err = notifier_to_errno(err);
1707 if (err)
1708 return err;
1709
1710 if (!(dev->flags & IFF_UP))
1711 return 0;
1712
1713 call_netdevice_notifier(nb, NETDEV_UP, dev);
1714 return 0;
1715 }
1716
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1717 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1718 struct net_device *dev)
1719 {
1720 if (dev->flags & IFF_UP) {
1721 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1722 dev);
1723 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1724 }
1725 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1726 }
1727
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1728 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1729 struct net *net)
1730 {
1731 struct net_device *dev;
1732 int err;
1733
1734 for_each_netdev(net, dev) {
1735 err = call_netdevice_register_notifiers(nb, dev);
1736 if (err)
1737 goto rollback;
1738 }
1739 return 0;
1740
1741 rollback:
1742 for_each_netdev_continue_reverse(net, dev)
1743 call_netdevice_unregister_notifiers(nb, dev);
1744 return err;
1745 }
1746
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1747 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1748 struct net *net)
1749 {
1750 struct net_device *dev;
1751
1752 for_each_netdev(net, dev)
1753 call_netdevice_unregister_notifiers(nb, dev);
1754 }
1755
1756 static int dev_boot_phase = 1;
1757
1758 /**
1759 * register_netdevice_notifier - register a network notifier block
1760 * @nb: notifier
1761 *
1762 * Register a notifier to be called when network device events occur.
1763 * The notifier passed is linked into the kernel structures and must
1764 * not be reused until it has been unregistered. A negative errno code
1765 * is returned on a failure.
1766 *
1767 * When registered all registration and up events are replayed
1768 * to the new notifier to allow device to have a race free
1769 * view of the network device list.
1770 */
1771
register_netdevice_notifier(struct notifier_block * nb)1772 int register_netdevice_notifier(struct notifier_block *nb)
1773 {
1774 struct net *net;
1775 int err;
1776
1777 /* Close race with setup_net() and cleanup_net() */
1778 down_write(&pernet_ops_rwsem);
1779 rtnl_lock();
1780 err = raw_notifier_chain_register(&netdev_chain, nb);
1781 if (err)
1782 goto unlock;
1783 if (dev_boot_phase)
1784 goto unlock;
1785 for_each_net(net) {
1786 err = call_netdevice_register_net_notifiers(nb, net);
1787 if (err)
1788 goto rollback;
1789 }
1790
1791 unlock:
1792 rtnl_unlock();
1793 up_write(&pernet_ops_rwsem);
1794 return err;
1795
1796 rollback:
1797 for_each_net_continue_reverse(net)
1798 call_netdevice_unregister_net_notifiers(nb, net);
1799
1800 raw_notifier_chain_unregister(&netdev_chain, nb);
1801 goto unlock;
1802 }
1803 EXPORT_SYMBOL(register_netdevice_notifier);
1804
1805 /**
1806 * unregister_netdevice_notifier - unregister a network notifier block
1807 * @nb: notifier
1808 *
1809 * Unregister a notifier previously registered by
1810 * register_netdevice_notifier(). The notifier is unlinked into the
1811 * kernel structures and may then be reused. A negative errno code
1812 * is returned on a failure.
1813 *
1814 * After unregistering unregister and down device events are synthesized
1815 * for all devices on the device list to the removed notifier to remove
1816 * the need for special case cleanup code.
1817 */
1818
unregister_netdevice_notifier(struct notifier_block * nb)1819 int unregister_netdevice_notifier(struct notifier_block *nb)
1820 {
1821 struct net *net;
1822 int err;
1823
1824 /* Close race with setup_net() and cleanup_net() */
1825 down_write(&pernet_ops_rwsem);
1826 rtnl_lock();
1827 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1828 if (err)
1829 goto unlock;
1830
1831 for_each_net(net)
1832 call_netdevice_unregister_net_notifiers(nb, net);
1833
1834 unlock:
1835 rtnl_unlock();
1836 up_write(&pernet_ops_rwsem);
1837 return err;
1838 }
1839 EXPORT_SYMBOL(unregister_netdevice_notifier);
1840
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1841 static int __register_netdevice_notifier_net(struct net *net,
1842 struct notifier_block *nb,
1843 bool ignore_call_fail)
1844 {
1845 int err;
1846
1847 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1848 if (err)
1849 return err;
1850 if (dev_boot_phase)
1851 return 0;
1852
1853 err = call_netdevice_register_net_notifiers(nb, net);
1854 if (err && !ignore_call_fail)
1855 goto chain_unregister;
1856
1857 return 0;
1858
1859 chain_unregister:
1860 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1861 return err;
1862 }
1863
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1864 static int __unregister_netdevice_notifier_net(struct net *net,
1865 struct notifier_block *nb)
1866 {
1867 int err;
1868
1869 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1870 if (err)
1871 return err;
1872
1873 call_netdevice_unregister_net_notifiers(nb, net);
1874 return 0;
1875 }
1876
1877 /**
1878 * register_netdevice_notifier_net - register a per-netns network notifier block
1879 * @net: network namespace
1880 * @nb: notifier
1881 *
1882 * Register a notifier to be called when network device events occur.
1883 * The notifier passed is linked into the kernel structures and must
1884 * not be reused until it has been unregistered. A negative errno code
1885 * is returned on a failure.
1886 *
1887 * When registered all registration and up events are replayed
1888 * to the new notifier to allow device to have a race free
1889 * view of the network device list.
1890 */
1891
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1892 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1893 {
1894 int err;
1895
1896 rtnl_lock();
1897 err = __register_netdevice_notifier_net(net, nb, false);
1898 rtnl_unlock();
1899 return err;
1900 }
1901 EXPORT_SYMBOL(register_netdevice_notifier_net);
1902
1903 /**
1904 * unregister_netdevice_notifier_net - unregister a per-netns
1905 * network notifier block
1906 * @net: network namespace
1907 * @nb: notifier
1908 *
1909 * Unregister a notifier previously registered by
1910 * register_netdevice_notifier_net(). The notifier is unlinked from the
1911 * kernel structures and may then be reused. A negative errno code
1912 * is returned on a failure.
1913 *
1914 * After unregistering unregister and down device events are synthesized
1915 * for all devices on the device list to the removed notifier to remove
1916 * the need for special case cleanup code.
1917 */
1918
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1919 int unregister_netdevice_notifier_net(struct net *net,
1920 struct notifier_block *nb)
1921 {
1922 int err;
1923
1924 rtnl_lock();
1925 err = __unregister_netdevice_notifier_net(net, nb);
1926 rtnl_unlock();
1927 return err;
1928 }
1929 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1930
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)1931 static void __move_netdevice_notifier_net(struct net *src_net,
1932 struct net *dst_net,
1933 struct notifier_block *nb)
1934 {
1935 __unregister_netdevice_notifier_net(src_net, nb);
1936 __register_netdevice_notifier_net(dst_net, nb, true);
1937 }
1938
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1939 int register_netdevice_notifier_dev_net(struct net_device *dev,
1940 struct notifier_block *nb,
1941 struct netdev_net_notifier *nn)
1942 {
1943 int err;
1944
1945 rtnl_lock();
1946 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1947 if (!err) {
1948 nn->nb = nb;
1949 list_add(&nn->list, &dev->net_notifier_list);
1950 }
1951 rtnl_unlock();
1952 return err;
1953 }
1954 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1955
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1956 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1957 struct notifier_block *nb,
1958 struct netdev_net_notifier *nn)
1959 {
1960 int err;
1961
1962 rtnl_lock();
1963 list_del(&nn->list);
1964 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1965 rtnl_unlock();
1966 return err;
1967 }
1968 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1969
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1970 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1971 struct net *net)
1972 {
1973 struct netdev_net_notifier *nn;
1974
1975 list_for_each_entry(nn, &dev->net_notifier_list, list)
1976 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1977 }
1978
1979 /**
1980 * call_netdevice_notifiers_info - call all network notifier blocks
1981 * @val: value passed unmodified to notifier function
1982 * @info: notifier information data
1983 *
1984 * Call all network notifier blocks. Parameters and return value
1985 * are as for raw_notifier_call_chain().
1986 */
1987
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1988 int call_netdevice_notifiers_info(unsigned long val,
1989 struct netdev_notifier_info *info)
1990 {
1991 struct net *net = dev_net(info->dev);
1992 int ret;
1993
1994 ASSERT_RTNL();
1995
1996 /* Run per-netns notifier block chain first, then run the global one.
1997 * Hopefully, one day, the global one is going to be removed after
1998 * all notifier block registrators get converted to be per-netns.
1999 */
2000 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2001 if (ret & NOTIFY_STOP_MASK)
2002 return ret;
2003 return raw_notifier_call_chain(&netdev_chain, val, info);
2004 }
2005
2006 /**
2007 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2008 * for and rollback on error
2009 * @val_up: value passed unmodified to notifier function
2010 * @val_down: value passed unmodified to the notifier function when
2011 * recovering from an error on @val_up
2012 * @info: notifier information data
2013 *
2014 * Call all per-netns network notifier blocks, but not notifier blocks on
2015 * the global notifier chain. Parameters and return value are as for
2016 * raw_notifier_call_chain_robust().
2017 */
2018
2019 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2020 call_netdevice_notifiers_info_robust(unsigned long val_up,
2021 unsigned long val_down,
2022 struct netdev_notifier_info *info)
2023 {
2024 struct net *net = dev_net(info->dev);
2025
2026 ASSERT_RTNL();
2027
2028 return raw_notifier_call_chain_robust(&net->netdev_chain,
2029 val_up, val_down, info);
2030 }
2031
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2032 static int call_netdevice_notifiers_extack(unsigned long val,
2033 struct net_device *dev,
2034 struct netlink_ext_ack *extack)
2035 {
2036 struct netdev_notifier_info info = {
2037 .dev = dev,
2038 .extack = extack,
2039 };
2040
2041 return call_netdevice_notifiers_info(val, &info);
2042 }
2043
2044 /**
2045 * call_netdevice_notifiers - call all network notifier blocks
2046 * @val: value passed unmodified to notifier function
2047 * @dev: net_device pointer passed unmodified to notifier function
2048 *
2049 * Call all network notifier blocks. Parameters and return value
2050 * are as for raw_notifier_call_chain().
2051 */
2052
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2053 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2054 {
2055 return call_netdevice_notifiers_extack(val, dev, NULL);
2056 }
2057 EXPORT_SYMBOL(call_netdevice_notifiers);
2058
2059 /**
2060 * call_netdevice_notifiers_mtu - call all network notifier blocks
2061 * @val: value passed unmodified to notifier function
2062 * @dev: net_device pointer passed unmodified to notifier function
2063 * @arg: additional u32 argument passed to the notifier function
2064 *
2065 * Call all network notifier blocks. Parameters and return value
2066 * are as for raw_notifier_call_chain().
2067 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2068 static int call_netdevice_notifiers_mtu(unsigned long val,
2069 struct net_device *dev, u32 arg)
2070 {
2071 struct netdev_notifier_info_ext info = {
2072 .info.dev = dev,
2073 .ext.mtu = arg,
2074 };
2075
2076 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2077
2078 return call_netdevice_notifiers_info(val, &info.info);
2079 }
2080
2081 #ifdef CONFIG_NET_INGRESS
2082 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2083
net_inc_ingress_queue(void)2084 void net_inc_ingress_queue(void)
2085 {
2086 static_branch_inc(&ingress_needed_key);
2087 }
2088 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2089
net_dec_ingress_queue(void)2090 void net_dec_ingress_queue(void)
2091 {
2092 static_branch_dec(&ingress_needed_key);
2093 }
2094 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2095 #endif
2096
2097 #ifdef CONFIG_NET_EGRESS
2098 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2099
net_inc_egress_queue(void)2100 void net_inc_egress_queue(void)
2101 {
2102 static_branch_inc(&egress_needed_key);
2103 }
2104 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2105
net_dec_egress_queue(void)2106 void net_dec_egress_queue(void)
2107 {
2108 static_branch_dec(&egress_needed_key);
2109 }
2110 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2111 #endif
2112
2113 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2114 EXPORT_SYMBOL(netstamp_needed_key);
2115 #ifdef CONFIG_JUMP_LABEL
2116 static atomic_t netstamp_needed_deferred;
2117 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2118 static void netstamp_clear(struct work_struct *work)
2119 {
2120 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2121 int wanted;
2122
2123 wanted = atomic_add_return(deferred, &netstamp_wanted);
2124 if (wanted > 0)
2125 static_branch_enable(&netstamp_needed_key);
2126 else
2127 static_branch_disable(&netstamp_needed_key);
2128 }
2129 static DECLARE_WORK(netstamp_work, netstamp_clear);
2130 #endif
2131
net_enable_timestamp(void)2132 void net_enable_timestamp(void)
2133 {
2134 #ifdef CONFIG_JUMP_LABEL
2135 int wanted = atomic_read(&netstamp_wanted);
2136
2137 while (wanted > 0) {
2138 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2139 return;
2140 }
2141 atomic_inc(&netstamp_needed_deferred);
2142 schedule_work(&netstamp_work);
2143 #else
2144 static_branch_inc(&netstamp_needed_key);
2145 #endif
2146 }
2147 EXPORT_SYMBOL(net_enable_timestamp);
2148
net_disable_timestamp(void)2149 void net_disable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152 int wanted = atomic_read(&netstamp_wanted);
2153
2154 while (wanted > 1) {
2155 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2156 return;
2157 }
2158 atomic_dec(&netstamp_needed_deferred);
2159 schedule_work(&netstamp_work);
2160 #else
2161 static_branch_dec(&netstamp_needed_key);
2162 #endif
2163 }
2164 EXPORT_SYMBOL(net_disable_timestamp);
2165
net_timestamp_set(struct sk_buff * skb)2166 static inline void net_timestamp_set(struct sk_buff *skb)
2167 {
2168 skb->tstamp = 0;
2169 skb->mono_delivery_time = 0;
2170 if (static_branch_unlikely(&netstamp_needed_key))
2171 skb->tstamp = ktime_get_real();
2172 }
2173
2174 #define net_timestamp_check(COND, SKB) \
2175 if (static_branch_unlikely(&netstamp_needed_key)) { \
2176 if ((COND) && !(SKB)->tstamp) \
2177 (SKB)->tstamp = ktime_get_real(); \
2178 } \
2179
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2180 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2181 {
2182 return __is_skb_forwardable(dev, skb, true);
2183 }
2184 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2185
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2186 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2187 bool check_mtu)
2188 {
2189 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2190
2191 if (likely(!ret)) {
2192 skb->protocol = eth_type_trans(skb, dev);
2193 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2194 }
2195
2196 return ret;
2197 }
2198
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2199 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2200 {
2201 return __dev_forward_skb2(dev, skb, true);
2202 }
2203 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2204
2205 /**
2206 * dev_forward_skb - loopback an skb to another netif
2207 *
2208 * @dev: destination network device
2209 * @skb: buffer to forward
2210 *
2211 * return values:
2212 * NET_RX_SUCCESS (no congestion)
2213 * NET_RX_DROP (packet was dropped, but freed)
2214 *
2215 * dev_forward_skb can be used for injecting an skb from the
2216 * start_xmit function of one device into the receive queue
2217 * of another device.
2218 *
2219 * The receiving device may be in another namespace, so
2220 * we have to clear all information in the skb that could
2221 * impact namespace isolation.
2222 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2223 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2224 {
2225 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2226 }
2227 EXPORT_SYMBOL_GPL(dev_forward_skb);
2228
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2229 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2230 {
2231 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2232 }
2233
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2234 static inline int deliver_skb(struct sk_buff *skb,
2235 struct packet_type *pt_prev,
2236 struct net_device *orig_dev)
2237 {
2238 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2239 return -ENOMEM;
2240 refcount_inc(&skb->users);
2241 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2242 }
2243
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2244 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2245 struct packet_type **pt,
2246 struct net_device *orig_dev,
2247 __be16 type,
2248 struct list_head *ptype_list)
2249 {
2250 struct packet_type *ptype, *pt_prev = *pt;
2251
2252 list_for_each_entry_rcu(ptype, ptype_list, list) {
2253 if (ptype->type != type)
2254 continue;
2255 if (pt_prev)
2256 deliver_skb(skb, pt_prev, orig_dev);
2257 pt_prev = ptype;
2258 }
2259 *pt = pt_prev;
2260 }
2261
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2262 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2263 {
2264 if (!ptype->af_packet_priv || !skb->sk)
2265 return false;
2266
2267 if (ptype->id_match)
2268 return ptype->id_match(ptype, skb->sk);
2269 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2270 return true;
2271
2272 return false;
2273 }
2274
2275 /**
2276 * dev_nit_active - return true if any network interface taps are in use
2277 *
2278 * @dev: network device to check for the presence of taps
2279 */
dev_nit_active(struct net_device * dev)2280 bool dev_nit_active(struct net_device *dev)
2281 {
2282 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2283 }
2284 EXPORT_SYMBOL_GPL(dev_nit_active);
2285
2286 /*
2287 * Support routine. Sends outgoing frames to any network
2288 * taps currently in use.
2289 */
2290
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2291 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2292 {
2293 struct packet_type *ptype;
2294 struct sk_buff *skb2 = NULL;
2295 struct packet_type *pt_prev = NULL;
2296 struct list_head *ptype_list = &ptype_all;
2297
2298 rcu_read_lock();
2299 again:
2300 list_for_each_entry_rcu(ptype, ptype_list, list) {
2301 if (READ_ONCE(ptype->ignore_outgoing))
2302 continue;
2303
2304 /* Never send packets back to the socket
2305 * they originated from - MvS (miquels@drinkel.ow.org)
2306 */
2307 if (skb_loop_sk(ptype, skb))
2308 continue;
2309
2310 if (pt_prev) {
2311 deliver_skb(skb2, pt_prev, skb->dev);
2312 pt_prev = ptype;
2313 continue;
2314 }
2315
2316 /* need to clone skb, done only once */
2317 skb2 = skb_clone(skb, GFP_ATOMIC);
2318 if (!skb2)
2319 goto out_unlock;
2320
2321 net_timestamp_set(skb2);
2322
2323 /* skb->nh should be correctly
2324 * set by sender, so that the second statement is
2325 * just protection against buggy protocols.
2326 */
2327 skb_reset_mac_header(skb2);
2328
2329 if (skb_network_header(skb2) < skb2->data ||
2330 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2331 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2332 ntohs(skb2->protocol),
2333 dev->name);
2334 skb_reset_network_header(skb2);
2335 }
2336
2337 skb2->transport_header = skb2->network_header;
2338 skb2->pkt_type = PACKET_OUTGOING;
2339 pt_prev = ptype;
2340 }
2341
2342 if (ptype_list == &ptype_all) {
2343 ptype_list = &dev->ptype_all;
2344 goto again;
2345 }
2346 out_unlock:
2347 if (pt_prev) {
2348 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2349 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2350 else
2351 kfree_skb(skb2);
2352 }
2353 rcu_read_unlock();
2354 }
2355 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2356
2357 /**
2358 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2359 * @dev: Network device
2360 * @txq: number of queues available
2361 *
2362 * If real_num_tx_queues is changed the tc mappings may no longer be
2363 * valid. To resolve this verify the tc mapping remains valid and if
2364 * not NULL the mapping. With no priorities mapping to this
2365 * offset/count pair it will no longer be used. In the worst case TC0
2366 * is invalid nothing can be done so disable priority mappings. If is
2367 * expected that drivers will fix this mapping if they can before
2368 * calling netif_set_real_num_tx_queues.
2369 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2370 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2371 {
2372 int i;
2373 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2374
2375 /* If TC0 is invalidated disable TC mapping */
2376 if (tc->offset + tc->count > txq) {
2377 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2378 dev->num_tc = 0;
2379 return;
2380 }
2381
2382 /* Invalidated prio to tc mappings set to TC0 */
2383 for (i = 1; i < TC_BITMASK + 1; i++) {
2384 int q = netdev_get_prio_tc_map(dev, i);
2385
2386 tc = &dev->tc_to_txq[q];
2387 if (tc->offset + tc->count > txq) {
2388 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2389 i, q);
2390 netdev_set_prio_tc_map(dev, i, 0);
2391 }
2392 }
2393 }
2394
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2395 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2396 {
2397 if (dev->num_tc) {
2398 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2399 int i;
2400
2401 /* walk through the TCs and see if it falls into any of them */
2402 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2403 if ((txq - tc->offset) < tc->count)
2404 return i;
2405 }
2406
2407 /* didn't find it, just return -1 to indicate no match */
2408 return -1;
2409 }
2410
2411 return 0;
2412 }
2413 EXPORT_SYMBOL(netdev_txq_to_tc);
2414
2415 #ifdef CONFIG_XPS
2416 static struct static_key xps_needed __read_mostly;
2417 static struct static_key xps_rxqs_needed __read_mostly;
2418 static DEFINE_MUTEX(xps_map_mutex);
2419 #define xmap_dereference(P) \
2420 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2421
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2422 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2423 struct xps_dev_maps *old_maps, int tci, u16 index)
2424 {
2425 struct xps_map *map = NULL;
2426 int pos;
2427
2428 map = xmap_dereference(dev_maps->attr_map[tci]);
2429 if (!map)
2430 return false;
2431
2432 for (pos = map->len; pos--;) {
2433 if (map->queues[pos] != index)
2434 continue;
2435
2436 if (map->len > 1) {
2437 map->queues[pos] = map->queues[--map->len];
2438 break;
2439 }
2440
2441 if (old_maps)
2442 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2443 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2444 kfree_rcu(map, rcu);
2445 return false;
2446 }
2447
2448 return true;
2449 }
2450
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2451 static bool remove_xps_queue_cpu(struct net_device *dev,
2452 struct xps_dev_maps *dev_maps,
2453 int cpu, u16 offset, u16 count)
2454 {
2455 int num_tc = dev_maps->num_tc;
2456 bool active = false;
2457 int tci;
2458
2459 for (tci = cpu * num_tc; num_tc--; tci++) {
2460 int i, j;
2461
2462 for (i = count, j = offset; i--; j++) {
2463 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2464 break;
2465 }
2466
2467 active |= i < 0;
2468 }
2469
2470 return active;
2471 }
2472
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2473 static void reset_xps_maps(struct net_device *dev,
2474 struct xps_dev_maps *dev_maps,
2475 enum xps_map_type type)
2476 {
2477 static_key_slow_dec_cpuslocked(&xps_needed);
2478 if (type == XPS_RXQS)
2479 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2480
2481 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2482
2483 kfree_rcu(dev_maps, rcu);
2484 }
2485
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2486 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2487 u16 offset, u16 count)
2488 {
2489 struct xps_dev_maps *dev_maps;
2490 bool active = false;
2491 int i, j;
2492
2493 dev_maps = xmap_dereference(dev->xps_maps[type]);
2494 if (!dev_maps)
2495 return;
2496
2497 for (j = 0; j < dev_maps->nr_ids; j++)
2498 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2499 if (!active)
2500 reset_xps_maps(dev, dev_maps, type);
2501
2502 if (type == XPS_CPUS) {
2503 for (i = offset + (count - 1); count--; i--)
2504 netdev_queue_numa_node_write(
2505 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2506 }
2507 }
2508
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2509 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2510 u16 count)
2511 {
2512 if (!static_key_false(&xps_needed))
2513 return;
2514
2515 cpus_read_lock();
2516 mutex_lock(&xps_map_mutex);
2517
2518 if (static_key_false(&xps_rxqs_needed))
2519 clean_xps_maps(dev, XPS_RXQS, offset, count);
2520
2521 clean_xps_maps(dev, XPS_CPUS, offset, count);
2522
2523 mutex_unlock(&xps_map_mutex);
2524 cpus_read_unlock();
2525 }
2526
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2527 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2528 {
2529 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2530 }
2531
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2532 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2533 u16 index, bool is_rxqs_map)
2534 {
2535 struct xps_map *new_map;
2536 int alloc_len = XPS_MIN_MAP_ALLOC;
2537 int i, pos;
2538
2539 for (pos = 0; map && pos < map->len; pos++) {
2540 if (map->queues[pos] != index)
2541 continue;
2542 return map;
2543 }
2544
2545 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2546 if (map) {
2547 if (pos < map->alloc_len)
2548 return map;
2549
2550 alloc_len = map->alloc_len * 2;
2551 }
2552
2553 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2554 * map
2555 */
2556 if (is_rxqs_map)
2557 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2558 else
2559 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2560 cpu_to_node(attr_index));
2561 if (!new_map)
2562 return NULL;
2563
2564 for (i = 0; i < pos; i++)
2565 new_map->queues[i] = map->queues[i];
2566 new_map->alloc_len = alloc_len;
2567 new_map->len = pos;
2568
2569 return new_map;
2570 }
2571
2572 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2573 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2574 struct xps_dev_maps *new_dev_maps, int index,
2575 int tc, bool skip_tc)
2576 {
2577 int i, tci = index * dev_maps->num_tc;
2578 struct xps_map *map;
2579
2580 /* copy maps belonging to foreign traffic classes */
2581 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2582 if (i == tc && skip_tc)
2583 continue;
2584
2585 /* fill in the new device map from the old device map */
2586 map = xmap_dereference(dev_maps->attr_map[tci]);
2587 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2588 }
2589 }
2590
2591 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2592 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2593 u16 index, enum xps_map_type type)
2594 {
2595 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2596 const unsigned long *online_mask = NULL;
2597 bool active = false, copy = false;
2598 int i, j, tci, numa_node_id = -2;
2599 int maps_sz, num_tc = 1, tc = 0;
2600 struct xps_map *map, *new_map;
2601 unsigned int nr_ids;
2602
2603 WARN_ON_ONCE(index >= dev->num_tx_queues);
2604
2605 if (dev->num_tc) {
2606 /* Do not allow XPS on subordinate device directly */
2607 num_tc = dev->num_tc;
2608 if (num_tc < 0)
2609 return -EINVAL;
2610
2611 /* If queue belongs to subordinate dev use its map */
2612 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2613
2614 tc = netdev_txq_to_tc(dev, index);
2615 if (tc < 0)
2616 return -EINVAL;
2617 }
2618
2619 mutex_lock(&xps_map_mutex);
2620
2621 dev_maps = xmap_dereference(dev->xps_maps[type]);
2622 if (type == XPS_RXQS) {
2623 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2624 nr_ids = dev->num_rx_queues;
2625 } else {
2626 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2627 if (num_possible_cpus() > 1)
2628 online_mask = cpumask_bits(cpu_online_mask);
2629 nr_ids = nr_cpu_ids;
2630 }
2631
2632 if (maps_sz < L1_CACHE_BYTES)
2633 maps_sz = L1_CACHE_BYTES;
2634
2635 /* The old dev_maps could be larger or smaller than the one we're
2636 * setting up now, as dev->num_tc or nr_ids could have been updated in
2637 * between. We could try to be smart, but let's be safe instead and only
2638 * copy foreign traffic classes if the two map sizes match.
2639 */
2640 if (dev_maps &&
2641 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2642 copy = true;
2643
2644 /* allocate memory for queue storage */
2645 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2646 j < nr_ids;) {
2647 if (!new_dev_maps) {
2648 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2649 if (!new_dev_maps) {
2650 mutex_unlock(&xps_map_mutex);
2651 return -ENOMEM;
2652 }
2653
2654 new_dev_maps->nr_ids = nr_ids;
2655 new_dev_maps->num_tc = num_tc;
2656 }
2657
2658 tci = j * num_tc + tc;
2659 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2660
2661 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2662 if (!map)
2663 goto error;
2664
2665 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2666 }
2667
2668 if (!new_dev_maps)
2669 goto out_no_new_maps;
2670
2671 if (!dev_maps) {
2672 /* Increment static keys at most once per type */
2673 static_key_slow_inc_cpuslocked(&xps_needed);
2674 if (type == XPS_RXQS)
2675 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2676 }
2677
2678 for (j = 0; j < nr_ids; j++) {
2679 bool skip_tc = false;
2680
2681 tci = j * num_tc + tc;
2682 if (netif_attr_test_mask(j, mask, nr_ids) &&
2683 netif_attr_test_online(j, online_mask, nr_ids)) {
2684 /* add tx-queue to CPU/rx-queue maps */
2685 int pos = 0;
2686
2687 skip_tc = true;
2688
2689 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2690 while ((pos < map->len) && (map->queues[pos] != index))
2691 pos++;
2692
2693 if (pos == map->len)
2694 map->queues[map->len++] = index;
2695 #ifdef CONFIG_NUMA
2696 if (type == XPS_CPUS) {
2697 if (numa_node_id == -2)
2698 numa_node_id = cpu_to_node(j);
2699 else if (numa_node_id != cpu_to_node(j))
2700 numa_node_id = -1;
2701 }
2702 #endif
2703 }
2704
2705 if (copy)
2706 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2707 skip_tc);
2708 }
2709
2710 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2711
2712 /* Cleanup old maps */
2713 if (!dev_maps)
2714 goto out_no_old_maps;
2715
2716 for (j = 0; j < dev_maps->nr_ids; j++) {
2717 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2718 map = xmap_dereference(dev_maps->attr_map[tci]);
2719 if (!map)
2720 continue;
2721
2722 if (copy) {
2723 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2724 if (map == new_map)
2725 continue;
2726 }
2727
2728 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2729 kfree_rcu(map, rcu);
2730 }
2731 }
2732
2733 old_dev_maps = dev_maps;
2734
2735 out_no_old_maps:
2736 dev_maps = new_dev_maps;
2737 active = true;
2738
2739 out_no_new_maps:
2740 if (type == XPS_CPUS)
2741 /* update Tx queue numa node */
2742 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2743 (numa_node_id >= 0) ?
2744 numa_node_id : NUMA_NO_NODE);
2745
2746 if (!dev_maps)
2747 goto out_no_maps;
2748
2749 /* removes tx-queue from unused CPUs/rx-queues */
2750 for (j = 0; j < dev_maps->nr_ids; j++) {
2751 tci = j * dev_maps->num_tc;
2752
2753 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2754 if (i == tc &&
2755 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2756 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2757 continue;
2758
2759 active |= remove_xps_queue(dev_maps,
2760 copy ? old_dev_maps : NULL,
2761 tci, index);
2762 }
2763 }
2764
2765 if (old_dev_maps)
2766 kfree_rcu(old_dev_maps, rcu);
2767
2768 /* free map if not active */
2769 if (!active)
2770 reset_xps_maps(dev, dev_maps, type);
2771
2772 out_no_maps:
2773 mutex_unlock(&xps_map_mutex);
2774
2775 return 0;
2776 error:
2777 /* remove any maps that we added */
2778 for (j = 0; j < nr_ids; j++) {
2779 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2780 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2781 map = copy ?
2782 xmap_dereference(dev_maps->attr_map[tci]) :
2783 NULL;
2784 if (new_map && new_map != map)
2785 kfree(new_map);
2786 }
2787 }
2788
2789 mutex_unlock(&xps_map_mutex);
2790
2791 kfree(new_dev_maps);
2792 return -ENOMEM;
2793 }
2794 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2795
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2796 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2797 u16 index)
2798 {
2799 int ret;
2800
2801 cpus_read_lock();
2802 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2803 cpus_read_unlock();
2804
2805 return ret;
2806 }
2807 EXPORT_SYMBOL(netif_set_xps_queue);
2808
2809 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2810 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2811 {
2812 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2813
2814 /* Unbind any subordinate channels */
2815 while (txq-- != &dev->_tx[0]) {
2816 if (txq->sb_dev)
2817 netdev_unbind_sb_channel(dev, txq->sb_dev);
2818 }
2819 }
2820
netdev_reset_tc(struct net_device * dev)2821 void netdev_reset_tc(struct net_device *dev)
2822 {
2823 #ifdef CONFIG_XPS
2824 netif_reset_xps_queues_gt(dev, 0);
2825 #endif
2826 netdev_unbind_all_sb_channels(dev);
2827
2828 /* Reset TC configuration of device */
2829 dev->num_tc = 0;
2830 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2831 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2832 }
2833 EXPORT_SYMBOL(netdev_reset_tc);
2834
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2835 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2836 {
2837 if (tc >= dev->num_tc)
2838 return -EINVAL;
2839
2840 #ifdef CONFIG_XPS
2841 netif_reset_xps_queues(dev, offset, count);
2842 #endif
2843 dev->tc_to_txq[tc].count = count;
2844 dev->tc_to_txq[tc].offset = offset;
2845 return 0;
2846 }
2847 EXPORT_SYMBOL(netdev_set_tc_queue);
2848
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2849 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2850 {
2851 if (num_tc > TC_MAX_QUEUE)
2852 return -EINVAL;
2853
2854 #ifdef CONFIG_XPS
2855 netif_reset_xps_queues_gt(dev, 0);
2856 #endif
2857 netdev_unbind_all_sb_channels(dev);
2858
2859 dev->num_tc = num_tc;
2860 return 0;
2861 }
2862 EXPORT_SYMBOL(netdev_set_num_tc);
2863
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2864 void netdev_unbind_sb_channel(struct net_device *dev,
2865 struct net_device *sb_dev)
2866 {
2867 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2868
2869 #ifdef CONFIG_XPS
2870 netif_reset_xps_queues_gt(sb_dev, 0);
2871 #endif
2872 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2873 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2874
2875 while (txq-- != &dev->_tx[0]) {
2876 if (txq->sb_dev == sb_dev)
2877 txq->sb_dev = NULL;
2878 }
2879 }
2880 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2881
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2882 int netdev_bind_sb_channel_queue(struct net_device *dev,
2883 struct net_device *sb_dev,
2884 u8 tc, u16 count, u16 offset)
2885 {
2886 /* Make certain the sb_dev and dev are already configured */
2887 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2888 return -EINVAL;
2889
2890 /* We cannot hand out queues we don't have */
2891 if ((offset + count) > dev->real_num_tx_queues)
2892 return -EINVAL;
2893
2894 /* Record the mapping */
2895 sb_dev->tc_to_txq[tc].count = count;
2896 sb_dev->tc_to_txq[tc].offset = offset;
2897
2898 /* Provide a way for Tx queue to find the tc_to_txq map or
2899 * XPS map for itself.
2900 */
2901 while (count--)
2902 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2903
2904 return 0;
2905 }
2906 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2907
netdev_set_sb_channel(struct net_device * dev,u16 channel)2908 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2909 {
2910 /* Do not use a multiqueue device to represent a subordinate channel */
2911 if (netif_is_multiqueue(dev))
2912 return -ENODEV;
2913
2914 /* We allow channels 1 - 32767 to be used for subordinate channels.
2915 * Channel 0 is meant to be "native" mode and used only to represent
2916 * the main root device. We allow writing 0 to reset the device back
2917 * to normal mode after being used as a subordinate channel.
2918 */
2919 if (channel > S16_MAX)
2920 return -EINVAL;
2921
2922 dev->num_tc = -channel;
2923
2924 return 0;
2925 }
2926 EXPORT_SYMBOL(netdev_set_sb_channel);
2927
2928 /*
2929 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2930 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2931 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2932 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2933 {
2934 bool disabling;
2935 int rc;
2936
2937 disabling = txq < dev->real_num_tx_queues;
2938
2939 if (txq < 1 || txq > dev->num_tx_queues)
2940 return -EINVAL;
2941
2942 if (dev->reg_state == NETREG_REGISTERED ||
2943 dev->reg_state == NETREG_UNREGISTERING) {
2944 ASSERT_RTNL();
2945
2946 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2947 txq);
2948 if (rc)
2949 return rc;
2950
2951 if (dev->num_tc)
2952 netif_setup_tc(dev, txq);
2953
2954 dev_qdisc_change_real_num_tx(dev, txq);
2955
2956 dev->real_num_tx_queues = txq;
2957
2958 if (disabling) {
2959 synchronize_net();
2960 qdisc_reset_all_tx_gt(dev, txq);
2961 #ifdef CONFIG_XPS
2962 netif_reset_xps_queues_gt(dev, txq);
2963 #endif
2964 }
2965 } else {
2966 dev->real_num_tx_queues = txq;
2967 }
2968
2969 return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2972
2973 #ifdef CONFIG_SYSFS
2974 /**
2975 * netif_set_real_num_rx_queues - set actual number of RX queues used
2976 * @dev: Network device
2977 * @rxq: Actual number of RX queues
2978 *
2979 * This must be called either with the rtnl_lock held or before
2980 * registration of the net device. Returns 0 on success, or a
2981 * negative error code. If called before registration, it always
2982 * succeeds.
2983 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2984 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2985 {
2986 int rc;
2987
2988 if (rxq < 1 || rxq > dev->num_rx_queues)
2989 return -EINVAL;
2990
2991 if (dev->reg_state == NETREG_REGISTERED) {
2992 ASSERT_RTNL();
2993
2994 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2995 rxq);
2996 if (rc)
2997 return rc;
2998 }
2999
3000 dev->real_num_rx_queues = rxq;
3001 return 0;
3002 }
3003 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3004 #endif
3005
3006 /**
3007 * netif_set_real_num_queues - set actual number of RX and TX queues used
3008 * @dev: Network device
3009 * @txq: Actual number of TX queues
3010 * @rxq: Actual number of RX queues
3011 *
3012 * Set the real number of both TX and RX queues.
3013 * Does nothing if the number of queues is already correct.
3014 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3015 int netif_set_real_num_queues(struct net_device *dev,
3016 unsigned int txq, unsigned int rxq)
3017 {
3018 unsigned int old_rxq = dev->real_num_rx_queues;
3019 int err;
3020
3021 if (txq < 1 || txq > dev->num_tx_queues ||
3022 rxq < 1 || rxq > dev->num_rx_queues)
3023 return -EINVAL;
3024
3025 /* Start from increases, so the error path only does decreases -
3026 * decreases can't fail.
3027 */
3028 if (rxq > dev->real_num_rx_queues) {
3029 err = netif_set_real_num_rx_queues(dev, rxq);
3030 if (err)
3031 return err;
3032 }
3033 if (txq > dev->real_num_tx_queues) {
3034 err = netif_set_real_num_tx_queues(dev, txq);
3035 if (err)
3036 goto undo_rx;
3037 }
3038 if (rxq < dev->real_num_rx_queues)
3039 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3040 if (txq < dev->real_num_tx_queues)
3041 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3042
3043 return 0;
3044 undo_rx:
3045 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3046 return err;
3047 }
3048 EXPORT_SYMBOL(netif_set_real_num_queues);
3049
3050 /**
3051 * netif_set_tso_max_size() - set the max size of TSO frames supported
3052 * @dev: netdev to update
3053 * @size: max skb->len of a TSO frame
3054 *
3055 * Set the limit on the size of TSO super-frames the device can handle.
3056 * Unless explicitly set the stack will assume the value of
3057 * %GSO_LEGACY_MAX_SIZE.
3058 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3059 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3060 {
3061 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3062 if (size < READ_ONCE(dev->gso_max_size))
3063 netif_set_gso_max_size(dev, size);
3064 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3065 netif_set_gso_ipv4_max_size(dev, size);
3066 }
3067 EXPORT_SYMBOL(netif_set_tso_max_size);
3068
3069 /**
3070 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3071 * @dev: netdev to update
3072 * @segs: max number of TCP segments
3073 *
3074 * Set the limit on the number of TCP segments the device can generate from
3075 * a single TSO super-frame.
3076 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3077 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3078 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3079 {
3080 dev->tso_max_segs = segs;
3081 if (segs < READ_ONCE(dev->gso_max_segs))
3082 netif_set_gso_max_segs(dev, segs);
3083 }
3084 EXPORT_SYMBOL(netif_set_tso_max_segs);
3085
3086 /**
3087 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3088 * @to: netdev to update
3089 * @from: netdev from which to copy the limits
3090 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3091 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3092 {
3093 netif_set_tso_max_size(to, from->tso_max_size);
3094 netif_set_tso_max_segs(to, from->tso_max_segs);
3095 }
3096 EXPORT_SYMBOL(netif_inherit_tso_max);
3097
3098 /**
3099 * netif_get_num_default_rss_queues - default number of RSS queues
3100 *
3101 * Default value is the number of physical cores if there are only 1 or 2, or
3102 * divided by 2 if there are more.
3103 */
netif_get_num_default_rss_queues(void)3104 int netif_get_num_default_rss_queues(void)
3105 {
3106 cpumask_var_t cpus;
3107 int cpu, count = 0;
3108
3109 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3110 return 1;
3111
3112 cpumask_copy(cpus, cpu_online_mask);
3113 for_each_cpu(cpu, cpus) {
3114 ++count;
3115 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3116 }
3117 free_cpumask_var(cpus);
3118
3119 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3120 }
3121 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3122
__netif_reschedule(struct Qdisc * q)3123 static void __netif_reschedule(struct Qdisc *q)
3124 {
3125 struct softnet_data *sd;
3126 unsigned long flags;
3127
3128 local_irq_save(flags);
3129 sd = this_cpu_ptr(&softnet_data);
3130 q->next_sched = NULL;
3131 *sd->output_queue_tailp = q;
3132 sd->output_queue_tailp = &q->next_sched;
3133 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3134 local_irq_restore(flags);
3135 }
3136
__netif_schedule(struct Qdisc * q)3137 void __netif_schedule(struct Qdisc *q)
3138 {
3139 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3140 __netif_reschedule(q);
3141 }
3142 EXPORT_SYMBOL(__netif_schedule);
3143
3144 struct dev_kfree_skb_cb {
3145 enum skb_drop_reason reason;
3146 };
3147
get_kfree_skb_cb(const struct sk_buff * skb)3148 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3149 {
3150 return (struct dev_kfree_skb_cb *)skb->cb;
3151 }
3152
netif_schedule_queue(struct netdev_queue * txq)3153 void netif_schedule_queue(struct netdev_queue *txq)
3154 {
3155 rcu_read_lock();
3156 if (!netif_xmit_stopped(txq)) {
3157 struct Qdisc *q = rcu_dereference(txq->qdisc);
3158
3159 __netif_schedule(q);
3160 }
3161 rcu_read_unlock();
3162 }
3163 EXPORT_SYMBOL(netif_schedule_queue);
3164
netif_tx_wake_queue(struct netdev_queue * dev_queue)3165 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3166 {
3167 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3168 struct Qdisc *q;
3169
3170 rcu_read_lock();
3171 q = rcu_dereference(dev_queue->qdisc);
3172 __netif_schedule(q);
3173 rcu_read_unlock();
3174 }
3175 }
3176 EXPORT_SYMBOL(netif_tx_wake_queue);
3177
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3178 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3179 {
3180 unsigned long flags;
3181
3182 if (unlikely(!skb))
3183 return;
3184
3185 if (likely(refcount_read(&skb->users) == 1)) {
3186 smp_rmb();
3187 refcount_set(&skb->users, 0);
3188 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3189 return;
3190 }
3191 get_kfree_skb_cb(skb)->reason = reason;
3192 local_irq_save(flags);
3193 skb->next = __this_cpu_read(softnet_data.completion_queue);
3194 __this_cpu_write(softnet_data.completion_queue, skb);
3195 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3196 local_irq_restore(flags);
3197 }
3198 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3199
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3200 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3201 {
3202 if (in_hardirq() || irqs_disabled())
3203 dev_kfree_skb_irq_reason(skb, reason);
3204 else
3205 kfree_skb_reason(skb, reason);
3206 }
3207 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3208
3209
3210 /**
3211 * netif_device_detach - mark device as removed
3212 * @dev: network device
3213 *
3214 * Mark device as removed from system and therefore no longer available.
3215 */
netif_device_detach(struct net_device * dev)3216 void netif_device_detach(struct net_device *dev)
3217 {
3218 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3219 netif_running(dev)) {
3220 netif_tx_stop_all_queues(dev);
3221 }
3222 }
3223 EXPORT_SYMBOL(netif_device_detach);
3224
3225 /**
3226 * netif_device_attach - mark device as attached
3227 * @dev: network device
3228 *
3229 * Mark device as attached from system and restart if needed.
3230 */
netif_device_attach(struct net_device * dev)3231 void netif_device_attach(struct net_device *dev)
3232 {
3233 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3234 netif_running(dev)) {
3235 netif_tx_wake_all_queues(dev);
3236 __netdev_watchdog_up(dev);
3237 }
3238 }
3239 EXPORT_SYMBOL(netif_device_attach);
3240
3241 /*
3242 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3243 * to be used as a distribution range.
3244 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3245 static u16 skb_tx_hash(const struct net_device *dev,
3246 const struct net_device *sb_dev,
3247 struct sk_buff *skb)
3248 {
3249 u32 hash;
3250 u16 qoffset = 0;
3251 u16 qcount = dev->real_num_tx_queues;
3252
3253 if (dev->num_tc) {
3254 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3255
3256 qoffset = sb_dev->tc_to_txq[tc].offset;
3257 qcount = sb_dev->tc_to_txq[tc].count;
3258 if (unlikely(!qcount)) {
3259 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3260 sb_dev->name, qoffset, tc);
3261 qoffset = 0;
3262 qcount = dev->real_num_tx_queues;
3263 }
3264 }
3265
3266 if (skb_rx_queue_recorded(skb)) {
3267 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3268 hash = skb_get_rx_queue(skb);
3269 if (hash >= qoffset)
3270 hash -= qoffset;
3271 while (unlikely(hash >= qcount))
3272 hash -= qcount;
3273 return hash + qoffset;
3274 }
3275
3276 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3277 }
3278
skb_warn_bad_offload(const struct sk_buff * skb)3279 void skb_warn_bad_offload(const struct sk_buff *skb)
3280 {
3281 static const netdev_features_t null_features;
3282 struct net_device *dev = skb->dev;
3283 const char *name = "";
3284
3285 if (!net_ratelimit())
3286 return;
3287
3288 if (dev) {
3289 if (dev->dev.parent)
3290 name = dev_driver_string(dev->dev.parent);
3291 else
3292 name = netdev_name(dev);
3293 }
3294 skb_dump(KERN_WARNING, skb, false);
3295 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3296 name, dev ? &dev->features : &null_features,
3297 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3298 }
3299
3300 /*
3301 * Invalidate hardware checksum when packet is to be mangled, and
3302 * complete checksum manually on outgoing path.
3303 */
skb_checksum_help(struct sk_buff * skb)3304 int skb_checksum_help(struct sk_buff *skb)
3305 {
3306 __wsum csum;
3307 int ret = 0, offset;
3308
3309 if (skb->ip_summed == CHECKSUM_COMPLETE)
3310 goto out_set_summed;
3311
3312 if (unlikely(skb_is_gso(skb))) {
3313 skb_warn_bad_offload(skb);
3314 return -EINVAL;
3315 }
3316
3317 /* Before computing a checksum, we should make sure no frag could
3318 * be modified by an external entity : checksum could be wrong.
3319 */
3320 if (skb_has_shared_frag(skb)) {
3321 ret = __skb_linearize(skb);
3322 if (ret)
3323 goto out;
3324 }
3325
3326 offset = skb_checksum_start_offset(skb);
3327 ret = -EINVAL;
3328 if (unlikely(offset >= skb_headlen(skb))) {
3329 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3330 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3331 offset, skb_headlen(skb));
3332 goto out;
3333 }
3334 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3335
3336 offset += skb->csum_offset;
3337 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3338 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3339 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3340 offset + sizeof(__sum16), skb_headlen(skb));
3341 goto out;
3342 }
3343 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3344 if (ret)
3345 goto out;
3346
3347 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3348 out_set_summed:
3349 skb->ip_summed = CHECKSUM_NONE;
3350 out:
3351 return ret;
3352 }
3353 EXPORT_SYMBOL(skb_checksum_help);
3354
skb_crc32c_csum_help(struct sk_buff * skb)3355 int skb_crc32c_csum_help(struct sk_buff *skb)
3356 {
3357 __le32 crc32c_csum;
3358 int ret = 0, offset, start;
3359
3360 if (skb->ip_summed != CHECKSUM_PARTIAL)
3361 goto out;
3362
3363 if (unlikely(skb_is_gso(skb)))
3364 goto out;
3365
3366 /* Before computing a checksum, we should make sure no frag could
3367 * be modified by an external entity : checksum could be wrong.
3368 */
3369 if (unlikely(skb_has_shared_frag(skb))) {
3370 ret = __skb_linearize(skb);
3371 if (ret)
3372 goto out;
3373 }
3374 start = skb_checksum_start_offset(skb);
3375 offset = start + offsetof(struct sctphdr, checksum);
3376 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3377 ret = -EINVAL;
3378 goto out;
3379 }
3380
3381 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3382 if (ret)
3383 goto out;
3384
3385 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3386 skb->len - start, ~(__u32)0,
3387 crc32c_csum_stub));
3388 *(__le32 *)(skb->data + offset) = crc32c_csum;
3389 skb_reset_csum_not_inet(skb);
3390 out:
3391 return ret;
3392 }
3393
skb_network_protocol(struct sk_buff * skb,int * depth)3394 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3395 {
3396 __be16 type = skb->protocol;
3397
3398 /* Tunnel gso handlers can set protocol to ethernet. */
3399 if (type == htons(ETH_P_TEB)) {
3400 struct ethhdr *eth;
3401
3402 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3403 return 0;
3404
3405 eth = (struct ethhdr *)skb->data;
3406 type = eth->h_proto;
3407 }
3408
3409 return vlan_get_protocol_and_depth(skb, type, depth);
3410 }
3411
3412
3413 /* Take action when hardware reception checksum errors are detected. */
3414 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3415 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 netdev_err(dev, "hw csum failure\n");
3418 skb_dump(KERN_ERR, skb, true);
3419 dump_stack();
3420 }
3421
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3422 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3425 }
3426 EXPORT_SYMBOL(netdev_rx_csum_fault);
3427 #endif
3428
3429 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3430 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3431 {
3432 #ifdef CONFIG_HIGHMEM
3433 int i;
3434
3435 if (!(dev->features & NETIF_F_HIGHDMA)) {
3436 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3437 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3438
3439 if (PageHighMem(skb_frag_page(frag)))
3440 return 1;
3441 }
3442 }
3443 #endif
3444 return 0;
3445 }
3446
3447 /* If MPLS offload request, verify we are testing hardware MPLS features
3448 * instead of standard features for the netdev.
3449 */
3450 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3451 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3452 netdev_features_t features,
3453 __be16 type)
3454 {
3455 if (eth_p_mpls(type))
3456 features &= skb->dev->mpls_features;
3457
3458 return features;
3459 }
3460 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3461 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3462 netdev_features_t features,
3463 __be16 type)
3464 {
3465 return features;
3466 }
3467 #endif
3468
harmonize_features(struct sk_buff * skb,netdev_features_t features)3469 static netdev_features_t harmonize_features(struct sk_buff *skb,
3470 netdev_features_t features)
3471 {
3472 __be16 type;
3473
3474 type = skb_network_protocol(skb, NULL);
3475 features = net_mpls_features(skb, features, type);
3476
3477 if (skb->ip_summed != CHECKSUM_NONE &&
3478 !can_checksum_protocol(features, type)) {
3479 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3480 }
3481 if (illegal_highdma(skb->dev, skb))
3482 features &= ~NETIF_F_SG;
3483
3484 return features;
3485 }
3486
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3487 netdev_features_t passthru_features_check(struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490 {
3491 return features;
3492 }
3493 EXPORT_SYMBOL(passthru_features_check);
3494
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3495 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3496 struct net_device *dev,
3497 netdev_features_t features)
3498 {
3499 return vlan_features_check(skb, features);
3500 }
3501
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3502 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3503 struct net_device *dev,
3504 netdev_features_t features)
3505 {
3506 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3507
3508 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3509 return features & ~NETIF_F_GSO_MASK;
3510
3511 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3512 return features & ~NETIF_F_GSO_MASK;
3513
3514 if (!skb_shinfo(skb)->gso_type) {
3515 skb_warn_bad_offload(skb);
3516 return features & ~NETIF_F_GSO_MASK;
3517 }
3518
3519 /* Support for GSO partial features requires software
3520 * intervention before we can actually process the packets
3521 * so we need to strip support for any partial features now
3522 * and we can pull them back in after we have partially
3523 * segmented the frame.
3524 */
3525 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3526 features &= ~dev->gso_partial_features;
3527
3528 /* Make sure to clear the IPv4 ID mangling feature if the
3529 * IPv4 header has the potential to be fragmented.
3530 */
3531 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3532 struct iphdr *iph = skb->encapsulation ?
3533 inner_ip_hdr(skb) : ip_hdr(skb);
3534
3535 if (!(iph->frag_off & htons(IP_DF)))
3536 features &= ~NETIF_F_TSO_MANGLEID;
3537 }
3538
3539 return features;
3540 }
3541
netif_skb_features(struct sk_buff * skb)3542 netdev_features_t netif_skb_features(struct sk_buff *skb)
3543 {
3544 struct net_device *dev = skb->dev;
3545 netdev_features_t features = dev->features;
3546
3547 if (skb_is_gso(skb))
3548 features = gso_features_check(skb, dev, features);
3549
3550 /* If encapsulation offload request, verify we are testing
3551 * hardware encapsulation features instead of standard
3552 * features for the netdev
3553 */
3554 if (skb->encapsulation)
3555 features &= dev->hw_enc_features;
3556
3557 if (skb_vlan_tagged(skb))
3558 features = netdev_intersect_features(features,
3559 dev->vlan_features |
3560 NETIF_F_HW_VLAN_CTAG_TX |
3561 NETIF_F_HW_VLAN_STAG_TX);
3562
3563 if (dev->netdev_ops->ndo_features_check)
3564 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3565 features);
3566 else
3567 features &= dflt_features_check(skb, dev, features);
3568
3569 return harmonize_features(skb, features);
3570 }
3571 EXPORT_SYMBOL(netif_skb_features);
3572
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3573 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3574 struct netdev_queue *txq, bool more)
3575 {
3576 unsigned int len;
3577 int rc;
3578
3579 if (dev_nit_active(dev))
3580 dev_queue_xmit_nit(skb, dev);
3581
3582 len = skb->len;
3583 trace_net_dev_start_xmit(skb, dev);
3584
3585 trace_android_vh_dc_send_copy(skb, dev);
3586
3587 rc = netdev_start_xmit(skb, dev, txq, more);
3588 trace_net_dev_xmit(skb, rc, dev, len);
3589
3590 return rc;
3591 }
3592
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3593 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3594 struct netdev_queue *txq, int *ret)
3595 {
3596 struct sk_buff *skb = first;
3597 int rc = NETDEV_TX_OK;
3598
3599 while (skb) {
3600 struct sk_buff *next = skb->next;
3601
3602 skb_mark_not_on_list(skb);
3603 rc = xmit_one(skb, dev, txq, next != NULL);
3604 if (unlikely(!dev_xmit_complete(rc))) {
3605 skb->next = next;
3606 goto out;
3607 }
3608
3609 skb = next;
3610 if (netif_tx_queue_stopped(txq) && skb) {
3611 rc = NETDEV_TX_BUSY;
3612 break;
3613 }
3614 }
3615
3616 out:
3617 *ret = rc;
3618 return skb;
3619 }
3620
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3621 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3622 netdev_features_t features)
3623 {
3624 if (skb_vlan_tag_present(skb) &&
3625 !vlan_hw_offload_capable(features, skb->vlan_proto))
3626 skb = __vlan_hwaccel_push_inside(skb);
3627 return skb;
3628 }
3629
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3630 int skb_csum_hwoffload_help(struct sk_buff *skb,
3631 const netdev_features_t features)
3632 {
3633 if (unlikely(skb_csum_is_sctp(skb)))
3634 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3635 skb_crc32c_csum_help(skb);
3636
3637 if (features & NETIF_F_HW_CSUM)
3638 return 0;
3639
3640 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3641 switch (skb->csum_offset) {
3642 case offsetof(struct tcphdr, check):
3643 case offsetof(struct udphdr, check):
3644 return 0;
3645 }
3646 }
3647
3648 return skb_checksum_help(skb);
3649 }
3650 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3651
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3652 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3653 {
3654 netdev_features_t features;
3655
3656 features = netif_skb_features(skb);
3657 skb = validate_xmit_vlan(skb, features);
3658 if (unlikely(!skb))
3659 goto out_null;
3660
3661 skb = sk_validate_xmit_skb(skb, dev);
3662 if (unlikely(!skb))
3663 goto out_null;
3664
3665 if (netif_needs_gso(skb, features)) {
3666 struct sk_buff *segs;
3667
3668 segs = skb_gso_segment(skb, features);
3669 if (IS_ERR(segs)) {
3670 goto out_kfree_skb;
3671 } else if (segs) {
3672 consume_skb(skb);
3673 skb = segs;
3674 }
3675 } else {
3676 if (skb_needs_linearize(skb, features) &&
3677 __skb_linearize(skb))
3678 goto out_kfree_skb;
3679
3680 /* If packet is not checksummed and device does not
3681 * support checksumming for this protocol, complete
3682 * checksumming here.
3683 */
3684 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3685 if (skb->encapsulation)
3686 skb_set_inner_transport_header(skb,
3687 skb_checksum_start_offset(skb));
3688 else
3689 skb_set_transport_header(skb,
3690 skb_checksum_start_offset(skb));
3691 if (skb_csum_hwoffload_help(skb, features))
3692 goto out_kfree_skb;
3693 }
3694 }
3695
3696 skb = validate_xmit_xfrm(skb, features, again);
3697
3698 return skb;
3699
3700 out_kfree_skb:
3701 kfree_skb(skb);
3702 out_null:
3703 dev_core_stats_tx_dropped_inc(dev);
3704 return NULL;
3705 }
3706
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3707 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3708 {
3709 struct sk_buff *next, *head = NULL, *tail;
3710
3711 for (; skb != NULL; skb = next) {
3712 next = skb->next;
3713 skb_mark_not_on_list(skb);
3714
3715 /* in case skb wont be segmented, point to itself */
3716 skb->prev = skb;
3717
3718 skb = validate_xmit_skb(skb, dev, again);
3719 if (!skb)
3720 continue;
3721
3722 if (!head)
3723 head = skb;
3724 else
3725 tail->next = skb;
3726 /* If skb was segmented, skb->prev points to
3727 * the last segment. If not, it still contains skb.
3728 */
3729 tail = skb->prev;
3730 }
3731 return head;
3732 }
3733 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3734
qdisc_pkt_len_init(struct sk_buff * skb)3735 static void qdisc_pkt_len_init(struct sk_buff *skb)
3736 {
3737 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3738
3739 qdisc_skb_cb(skb)->pkt_len = skb->len;
3740
3741 /* To get more precise estimation of bytes sent on wire,
3742 * we add to pkt_len the headers size of all segments
3743 */
3744 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3745 u16 gso_segs = shinfo->gso_segs;
3746 unsigned int hdr_len;
3747
3748 /* mac layer + network layer */
3749 hdr_len = skb_transport_offset(skb);
3750
3751 /* + transport layer */
3752 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3753 const struct tcphdr *th;
3754 struct tcphdr _tcphdr;
3755
3756 th = skb_header_pointer(skb, hdr_len,
3757 sizeof(_tcphdr), &_tcphdr);
3758 if (likely(th))
3759 hdr_len += __tcp_hdrlen(th);
3760 } else {
3761 struct udphdr _udphdr;
3762
3763 if (skb_header_pointer(skb, hdr_len,
3764 sizeof(_udphdr), &_udphdr))
3765 hdr_len += sizeof(struct udphdr);
3766 }
3767
3768 if (shinfo->gso_type & SKB_GSO_DODGY)
3769 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3770 shinfo->gso_size);
3771
3772 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3773 }
3774 }
3775
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3776 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3777 struct sk_buff **to_free,
3778 struct netdev_queue *txq)
3779 {
3780 int rc;
3781
3782 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3783 if (rc == NET_XMIT_SUCCESS)
3784 trace_qdisc_enqueue(q, txq, skb);
3785 return rc;
3786 }
3787
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3788 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3789 struct net_device *dev,
3790 struct netdev_queue *txq)
3791 {
3792 spinlock_t *root_lock = qdisc_lock(q);
3793 struct sk_buff *to_free = NULL;
3794 bool contended;
3795 int rc;
3796
3797 qdisc_calculate_pkt_len(skb, q);
3798
3799 if (q->flags & TCQ_F_NOLOCK) {
3800 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3801 qdisc_run_begin(q)) {
3802 /* Retest nolock_qdisc_is_empty() within the protection
3803 * of q->seqlock to protect from racing with requeuing.
3804 */
3805 if (unlikely(!nolock_qdisc_is_empty(q))) {
3806 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3807 __qdisc_run(q);
3808 qdisc_run_end(q);
3809
3810 goto no_lock_out;
3811 }
3812
3813 qdisc_bstats_cpu_update(q, skb);
3814 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3815 !nolock_qdisc_is_empty(q))
3816 __qdisc_run(q);
3817
3818 qdisc_run_end(q);
3819 return NET_XMIT_SUCCESS;
3820 }
3821
3822 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3823 qdisc_run(q);
3824
3825 no_lock_out:
3826 if (unlikely(to_free))
3827 kfree_skb_list_reason(to_free,
3828 SKB_DROP_REASON_QDISC_DROP);
3829 return rc;
3830 }
3831
3832 /*
3833 * Heuristic to force contended enqueues to serialize on a
3834 * separate lock before trying to get qdisc main lock.
3835 * This permits qdisc->running owner to get the lock more
3836 * often and dequeue packets faster.
3837 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3838 * and then other tasks will only enqueue packets. The packets will be
3839 * sent after the qdisc owner is scheduled again. To prevent this
3840 * scenario the task always serialize on the lock.
3841 */
3842 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3843 if (unlikely(contended))
3844 spin_lock(&q->busylock);
3845
3846 spin_lock(root_lock);
3847 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3848 __qdisc_drop(skb, &to_free);
3849 rc = NET_XMIT_DROP;
3850 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3851 qdisc_run_begin(q)) {
3852 /*
3853 * This is a work-conserving queue; there are no old skbs
3854 * waiting to be sent out; and the qdisc is not running -
3855 * xmit the skb directly.
3856 */
3857
3858 qdisc_bstats_update(q, skb);
3859
3860 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3861 if (unlikely(contended)) {
3862 spin_unlock(&q->busylock);
3863 contended = false;
3864 }
3865 __qdisc_run(q);
3866 }
3867
3868 qdisc_run_end(q);
3869 rc = NET_XMIT_SUCCESS;
3870 } else {
3871 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3872 if (qdisc_run_begin(q)) {
3873 if (unlikely(contended)) {
3874 spin_unlock(&q->busylock);
3875 contended = false;
3876 }
3877 __qdisc_run(q);
3878 qdisc_run_end(q);
3879 }
3880 }
3881 spin_unlock(root_lock);
3882 if (unlikely(to_free))
3883 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3884 if (unlikely(contended))
3885 spin_unlock(&q->busylock);
3886 return rc;
3887 }
3888
3889 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3890 static void skb_update_prio(struct sk_buff *skb)
3891 {
3892 const struct netprio_map *map;
3893 const struct sock *sk;
3894 unsigned int prioidx;
3895
3896 if (skb->priority)
3897 return;
3898 map = rcu_dereference_bh(skb->dev->priomap);
3899 if (!map)
3900 return;
3901 sk = skb_to_full_sk(skb);
3902 if (!sk)
3903 return;
3904
3905 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3906
3907 if (prioidx < map->priomap_len)
3908 skb->priority = map->priomap[prioidx];
3909 }
3910 #else
3911 #define skb_update_prio(skb)
3912 #endif
3913
3914 /**
3915 * dev_loopback_xmit - loop back @skb
3916 * @net: network namespace this loopback is happening in
3917 * @sk: sk needed to be a netfilter okfn
3918 * @skb: buffer to transmit
3919 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3920 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3921 {
3922 skb_reset_mac_header(skb);
3923 __skb_pull(skb, skb_network_offset(skb));
3924 skb->pkt_type = PACKET_LOOPBACK;
3925 if (skb->ip_summed == CHECKSUM_NONE)
3926 skb->ip_summed = CHECKSUM_UNNECESSARY;
3927 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3928 skb_dst_force(skb);
3929 netif_rx(skb);
3930 return 0;
3931 }
3932 EXPORT_SYMBOL(dev_loopback_xmit);
3933
3934 #ifdef CONFIG_NET_EGRESS
3935 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)3936 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3937 {
3938 int qm = skb_get_queue_mapping(skb);
3939
3940 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3941 }
3942
netdev_xmit_txqueue_skipped(void)3943 static bool netdev_xmit_txqueue_skipped(void)
3944 {
3945 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3946 }
3947
netdev_xmit_skip_txqueue(bool skip)3948 void netdev_xmit_skip_txqueue(bool skip)
3949 {
3950 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3951 }
3952 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3953 #endif /* CONFIG_NET_EGRESS */
3954
3955 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb)3956 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3957 {
3958 int ret = TC_ACT_UNSPEC;
3959 #ifdef CONFIG_NET_CLS_ACT
3960 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3961 struct tcf_result res;
3962
3963 if (!miniq)
3964 return ret;
3965
3966 tc_skb_cb(skb)->mru = 0;
3967 tc_skb_cb(skb)->post_ct = false;
3968
3969 mini_qdisc_bstats_cpu_update(miniq, skb);
3970 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3971 /* Only tcf related quirks below. */
3972 switch (ret) {
3973 case TC_ACT_SHOT:
3974 mini_qdisc_qstats_cpu_drop(miniq);
3975 break;
3976 case TC_ACT_OK:
3977 case TC_ACT_RECLASSIFY:
3978 skb->tc_index = TC_H_MIN(res.classid);
3979 break;
3980 }
3981 #endif /* CONFIG_NET_CLS_ACT */
3982 return ret;
3983 }
3984
3985 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3986
tcx_inc(void)3987 void tcx_inc(void)
3988 {
3989 static_branch_inc(&tcx_needed_key);
3990 }
3991
tcx_dec(void)3992 void tcx_dec(void)
3993 {
3994 static_branch_dec(&tcx_needed_key);
3995 }
3996
3997 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)3998 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3999 const bool needs_mac)
4000 {
4001 const struct bpf_mprog_fp *fp;
4002 const struct bpf_prog *prog;
4003 int ret = TCX_NEXT;
4004
4005 if (needs_mac)
4006 __skb_push(skb, skb->mac_len);
4007 bpf_mprog_foreach_prog(entry, fp, prog) {
4008 bpf_compute_data_pointers(skb);
4009 ret = bpf_prog_run(prog, skb);
4010 if (ret != TCX_NEXT)
4011 break;
4012 }
4013 if (needs_mac)
4014 __skb_pull(skb, skb->mac_len);
4015 return tcx_action_code(skb, ret);
4016 }
4017
4018 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4019 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4020 struct net_device *orig_dev, bool *another)
4021 {
4022 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4023 int sch_ret;
4024
4025 if (!entry)
4026 return skb;
4027 if (*pt_prev) {
4028 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4029 *pt_prev = NULL;
4030 }
4031
4032 qdisc_skb_cb(skb)->pkt_len = skb->len;
4033 tcx_set_ingress(skb, true);
4034
4035 if (static_branch_unlikely(&tcx_needed_key)) {
4036 sch_ret = tcx_run(entry, skb, true);
4037 if (sch_ret != TC_ACT_UNSPEC)
4038 goto ingress_verdict;
4039 }
4040 sch_ret = tc_run(tcx_entry(entry), skb);
4041 ingress_verdict:
4042 switch (sch_ret) {
4043 case TC_ACT_REDIRECT:
4044 /* skb_mac_header check was done by BPF, so we can safely
4045 * push the L2 header back before redirecting to another
4046 * netdev.
4047 */
4048 __skb_push(skb, skb->mac_len);
4049 if (skb_do_redirect(skb) == -EAGAIN) {
4050 __skb_pull(skb, skb->mac_len);
4051 *another = true;
4052 break;
4053 }
4054 *ret = NET_RX_SUCCESS;
4055 return NULL;
4056 case TC_ACT_SHOT:
4057 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4058 *ret = NET_RX_DROP;
4059 return NULL;
4060 /* used by tc_run */
4061 case TC_ACT_STOLEN:
4062 case TC_ACT_QUEUED:
4063 case TC_ACT_TRAP:
4064 consume_skb(skb);
4065 fallthrough;
4066 case TC_ACT_CONSUMED:
4067 *ret = NET_RX_SUCCESS;
4068 return NULL;
4069 }
4070
4071 return skb;
4072 }
4073
4074 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4075 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4076 {
4077 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4078 int sch_ret;
4079
4080 if (!entry)
4081 return skb;
4082
4083 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4084 * already set by the caller.
4085 */
4086 if (static_branch_unlikely(&tcx_needed_key)) {
4087 sch_ret = tcx_run(entry, skb, false);
4088 if (sch_ret != TC_ACT_UNSPEC)
4089 goto egress_verdict;
4090 }
4091 sch_ret = tc_run(tcx_entry(entry), skb);
4092 egress_verdict:
4093 switch (sch_ret) {
4094 case TC_ACT_REDIRECT:
4095 /* No need to push/pop skb's mac_header here on egress! */
4096 skb_do_redirect(skb);
4097 *ret = NET_XMIT_SUCCESS;
4098 return NULL;
4099 case TC_ACT_SHOT:
4100 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4101 *ret = NET_XMIT_DROP;
4102 return NULL;
4103 /* used by tc_run */
4104 case TC_ACT_STOLEN:
4105 case TC_ACT_QUEUED:
4106 case TC_ACT_TRAP:
4107 consume_skb(skb);
4108 fallthrough;
4109 case TC_ACT_CONSUMED:
4110 *ret = NET_XMIT_SUCCESS;
4111 return NULL;
4112 }
4113
4114 return skb;
4115 }
4116 #else
4117 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4118 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4119 struct net_device *orig_dev, bool *another)
4120 {
4121 return skb;
4122 }
4123
4124 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4126 {
4127 return skb;
4128 }
4129 #endif /* CONFIG_NET_XGRESS */
4130
4131 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4132 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4133 struct xps_dev_maps *dev_maps, unsigned int tci)
4134 {
4135 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4136 struct xps_map *map;
4137 int queue_index = -1;
4138
4139 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4140 return queue_index;
4141
4142 tci *= dev_maps->num_tc;
4143 tci += tc;
4144
4145 map = rcu_dereference(dev_maps->attr_map[tci]);
4146 if (map) {
4147 if (map->len == 1)
4148 queue_index = map->queues[0];
4149 else
4150 queue_index = map->queues[reciprocal_scale(
4151 skb_get_hash(skb), map->len)];
4152 if (unlikely(queue_index >= dev->real_num_tx_queues))
4153 queue_index = -1;
4154 }
4155 return queue_index;
4156 }
4157 #endif
4158
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4159 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4160 struct sk_buff *skb)
4161 {
4162 #ifdef CONFIG_XPS
4163 struct xps_dev_maps *dev_maps;
4164 struct sock *sk = skb->sk;
4165 int queue_index = -1;
4166
4167 if (!static_key_false(&xps_needed))
4168 return -1;
4169
4170 rcu_read_lock();
4171 if (!static_key_false(&xps_rxqs_needed))
4172 goto get_cpus_map;
4173
4174 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4175 if (dev_maps) {
4176 int tci = sk_rx_queue_get(sk);
4177
4178 if (tci >= 0)
4179 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4180 tci);
4181 }
4182
4183 get_cpus_map:
4184 if (queue_index < 0) {
4185 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4186 if (dev_maps) {
4187 unsigned int tci = skb->sender_cpu - 1;
4188
4189 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4190 tci);
4191 }
4192 }
4193 rcu_read_unlock();
4194
4195 return queue_index;
4196 #else
4197 return -1;
4198 #endif
4199 }
4200
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4201 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4202 struct net_device *sb_dev)
4203 {
4204 return 0;
4205 }
4206 EXPORT_SYMBOL(dev_pick_tx_zero);
4207
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4208 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4209 struct net_device *sb_dev)
4210 {
4211 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4212 }
4213 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4214
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4215 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4216 struct net_device *sb_dev)
4217 {
4218 struct sock *sk = skb->sk;
4219 int queue_index = sk_tx_queue_get(sk);
4220
4221 sb_dev = sb_dev ? : dev;
4222
4223 if (queue_index < 0 || skb->ooo_okay ||
4224 queue_index >= dev->real_num_tx_queues) {
4225 int new_index = get_xps_queue(dev, sb_dev, skb);
4226
4227 if (new_index < 0)
4228 new_index = skb_tx_hash(dev, sb_dev, skb);
4229
4230 if (queue_index != new_index && sk &&
4231 sk_fullsock(sk) &&
4232 rcu_access_pointer(sk->sk_dst_cache))
4233 sk_tx_queue_set(sk, new_index);
4234
4235 queue_index = new_index;
4236 }
4237
4238 return queue_index;
4239 }
4240 EXPORT_SYMBOL(netdev_pick_tx);
4241
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4242 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4243 struct sk_buff *skb,
4244 struct net_device *sb_dev)
4245 {
4246 int queue_index = 0;
4247
4248 #ifdef CONFIG_XPS
4249 u32 sender_cpu = skb->sender_cpu - 1;
4250
4251 if (sender_cpu >= (u32)NR_CPUS)
4252 skb->sender_cpu = raw_smp_processor_id() + 1;
4253 #endif
4254
4255 if (dev->real_num_tx_queues != 1) {
4256 const struct net_device_ops *ops = dev->netdev_ops;
4257
4258 if (ops->ndo_select_queue)
4259 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4260 else
4261 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4262
4263 queue_index = netdev_cap_txqueue(dev, queue_index);
4264 }
4265
4266 skb_set_queue_mapping(skb, queue_index);
4267 return netdev_get_tx_queue(dev, queue_index);
4268 }
4269
4270 /**
4271 * __dev_queue_xmit() - transmit a buffer
4272 * @skb: buffer to transmit
4273 * @sb_dev: suboordinate device used for L2 forwarding offload
4274 *
4275 * Queue a buffer for transmission to a network device. The caller must
4276 * have set the device and priority and built the buffer before calling
4277 * this function. The function can be called from an interrupt.
4278 *
4279 * When calling this method, interrupts MUST be enabled. This is because
4280 * the BH enable code must have IRQs enabled so that it will not deadlock.
4281 *
4282 * Regardless of the return value, the skb is consumed, so it is currently
4283 * difficult to retry a send to this method. (You can bump the ref count
4284 * before sending to hold a reference for retry if you are careful.)
4285 *
4286 * Return:
4287 * * 0 - buffer successfully transmitted
4288 * * positive qdisc return code - NET_XMIT_DROP etc.
4289 * * negative errno - other errors
4290 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4291 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4292 {
4293 struct net_device *dev = skb->dev;
4294 struct netdev_queue *txq = NULL;
4295 struct Qdisc *q;
4296 int rc = -ENOMEM;
4297 bool again = false;
4298
4299 skb_reset_mac_header(skb);
4300 skb_assert_len(skb);
4301
4302 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4303 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4304
4305 /* Disable soft irqs for various locks below. Also
4306 * stops preemption for RCU.
4307 */
4308 rcu_read_lock_bh();
4309
4310 skb_update_prio(skb);
4311
4312 qdisc_pkt_len_init(skb);
4313 tcx_set_ingress(skb, false);
4314 #ifdef CONFIG_NET_EGRESS
4315 if (static_branch_unlikely(&egress_needed_key)) {
4316 if (nf_hook_egress_active()) {
4317 skb = nf_hook_egress(skb, &rc, dev);
4318 if (!skb)
4319 goto out;
4320 }
4321
4322 netdev_xmit_skip_txqueue(false);
4323
4324 nf_skip_egress(skb, true);
4325 skb = sch_handle_egress(skb, &rc, dev);
4326 if (!skb)
4327 goto out;
4328 nf_skip_egress(skb, false);
4329
4330 if (netdev_xmit_txqueue_skipped())
4331 txq = netdev_tx_queue_mapping(dev, skb);
4332 }
4333 #endif
4334 /* If device/qdisc don't need skb->dst, release it right now while
4335 * its hot in this cpu cache.
4336 */
4337 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4338 skb_dst_drop(skb);
4339 else
4340 skb_dst_force(skb);
4341
4342 if (!txq)
4343 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4344
4345 q = rcu_dereference_bh(txq->qdisc);
4346
4347 trace_net_dev_queue(skb);
4348 if (q->enqueue) {
4349 rc = __dev_xmit_skb(skb, q, dev, txq);
4350 goto out;
4351 }
4352
4353 /* The device has no queue. Common case for software devices:
4354 * loopback, all the sorts of tunnels...
4355
4356 * Really, it is unlikely that netif_tx_lock protection is necessary
4357 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4358 * counters.)
4359 * However, it is possible, that they rely on protection
4360 * made by us here.
4361
4362 * Check this and shot the lock. It is not prone from deadlocks.
4363 *Either shot noqueue qdisc, it is even simpler 8)
4364 */
4365 if (dev->flags & IFF_UP) {
4366 int cpu = smp_processor_id(); /* ok because BHs are off */
4367
4368 /* Other cpus might concurrently change txq->xmit_lock_owner
4369 * to -1 or to their cpu id, but not to our id.
4370 */
4371 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4372 if (dev_xmit_recursion())
4373 goto recursion_alert;
4374
4375 skb = validate_xmit_skb(skb, dev, &again);
4376 if (!skb)
4377 goto out;
4378
4379 HARD_TX_LOCK(dev, txq, cpu);
4380
4381 if (!netif_xmit_stopped(txq)) {
4382 dev_xmit_recursion_inc();
4383 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4384 dev_xmit_recursion_dec();
4385 if (dev_xmit_complete(rc)) {
4386 HARD_TX_UNLOCK(dev, txq);
4387 goto out;
4388 }
4389 }
4390 HARD_TX_UNLOCK(dev, txq);
4391 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4392 dev->name);
4393 } else {
4394 /* Recursion is detected! It is possible,
4395 * unfortunately
4396 */
4397 recursion_alert:
4398 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4399 dev->name);
4400 }
4401 }
4402
4403 rc = -ENETDOWN;
4404 rcu_read_unlock_bh();
4405
4406 dev_core_stats_tx_dropped_inc(dev);
4407 kfree_skb_list(skb);
4408 return rc;
4409 out:
4410 rcu_read_unlock_bh();
4411 return rc;
4412 }
4413 EXPORT_SYMBOL(__dev_queue_xmit);
4414
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4415 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4416 {
4417 struct net_device *dev = skb->dev;
4418 struct sk_buff *orig_skb = skb;
4419 struct netdev_queue *txq;
4420 int ret = NETDEV_TX_BUSY;
4421 bool again = false;
4422
4423 if (unlikely(!netif_running(dev) ||
4424 !netif_carrier_ok(dev)))
4425 goto drop;
4426
4427 skb = validate_xmit_skb_list(skb, dev, &again);
4428 if (skb != orig_skb)
4429 goto drop;
4430
4431 skb_set_queue_mapping(skb, queue_id);
4432 txq = skb_get_tx_queue(dev, skb);
4433
4434 local_bh_disable();
4435
4436 dev_xmit_recursion_inc();
4437 HARD_TX_LOCK(dev, txq, smp_processor_id());
4438 if (!netif_xmit_frozen_or_drv_stopped(txq))
4439 ret = netdev_start_xmit(skb, dev, txq, false);
4440 HARD_TX_UNLOCK(dev, txq);
4441 dev_xmit_recursion_dec();
4442
4443 local_bh_enable();
4444 return ret;
4445 drop:
4446 dev_core_stats_tx_dropped_inc(dev);
4447 kfree_skb_list(skb);
4448 return NET_XMIT_DROP;
4449 }
4450 EXPORT_SYMBOL(__dev_direct_xmit);
4451
4452 /*************************************************************************
4453 * Receiver routines
4454 *************************************************************************/
4455
4456 int netdev_max_backlog __read_mostly = 1000;
4457 EXPORT_SYMBOL(netdev_max_backlog);
4458
4459 int netdev_tstamp_prequeue __read_mostly = 1;
4460 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4461 int netdev_budget __read_mostly = 300;
4462 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4463 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4464 int weight_p __read_mostly = 64; /* old backlog weight */
4465 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4466 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4467 int dev_rx_weight __read_mostly = 64;
4468 int dev_tx_weight __read_mostly = 64;
4469
4470 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4471 static inline void ____napi_schedule(struct softnet_data *sd,
4472 struct napi_struct *napi)
4473 {
4474 struct task_struct *thread;
4475
4476 lockdep_assert_irqs_disabled();
4477
4478 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4479 /* Paired with smp_mb__before_atomic() in
4480 * napi_enable()/dev_set_threaded().
4481 * Use READ_ONCE() to guarantee a complete
4482 * read on napi->thread. Only call
4483 * wake_up_process() when it's not NULL.
4484 */
4485 thread = READ_ONCE(napi->thread);
4486 if (thread) {
4487 /* Avoid doing set_bit() if the thread is in
4488 * INTERRUPTIBLE state, cause napi_thread_wait()
4489 * makes sure to proceed with napi polling
4490 * if the thread is explicitly woken from here.
4491 */
4492 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4493 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4494 wake_up_process(thread);
4495 return;
4496 }
4497 }
4498
4499 list_add_tail(&napi->poll_list, &sd->poll_list);
4500 WRITE_ONCE(napi->list_owner, smp_processor_id());
4501 /* If not called from net_rx_action()
4502 * we have to raise NET_RX_SOFTIRQ.
4503 */
4504 if (!sd->in_net_rx_action)
4505 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4506 }
4507
4508 #ifdef CONFIG_RPS
4509
4510 /* One global table that all flow-based protocols share. */
4511 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4512 EXPORT_SYMBOL(rps_sock_flow_table);
4513 u32 rps_cpu_mask __read_mostly;
4514 EXPORT_SYMBOL(rps_cpu_mask);
4515
4516 struct static_key_false rps_needed __read_mostly;
4517 EXPORT_SYMBOL(rps_needed);
4518 struct static_key_false rfs_needed __read_mostly;
4519 EXPORT_SYMBOL(rfs_needed);
4520
4521 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4522 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4523 struct rps_dev_flow *rflow, u16 next_cpu)
4524 {
4525 if (next_cpu < nr_cpu_ids) {
4526 #ifdef CONFIG_RFS_ACCEL
4527 struct netdev_rx_queue *rxqueue;
4528 struct rps_dev_flow_table *flow_table;
4529 struct rps_dev_flow *old_rflow;
4530 u32 flow_id;
4531 u16 rxq_index;
4532 int rc;
4533
4534 /* Should we steer this flow to a different hardware queue? */
4535 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4536 !(dev->features & NETIF_F_NTUPLE))
4537 goto out;
4538 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4539 if (rxq_index == skb_get_rx_queue(skb))
4540 goto out;
4541
4542 rxqueue = dev->_rx + rxq_index;
4543 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4544 if (!flow_table)
4545 goto out;
4546 flow_id = skb_get_hash(skb) & flow_table->mask;
4547 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4548 rxq_index, flow_id);
4549 if (rc < 0)
4550 goto out;
4551 old_rflow = rflow;
4552 rflow = &flow_table->flows[flow_id];
4553 rflow->filter = rc;
4554 if (old_rflow->filter == rflow->filter)
4555 old_rflow->filter = RPS_NO_FILTER;
4556 out:
4557 #endif
4558 rflow->last_qtail =
4559 per_cpu(softnet_data, next_cpu).input_queue_head;
4560 }
4561
4562 rflow->cpu = next_cpu;
4563 return rflow;
4564 }
4565
4566 /*
4567 * get_rps_cpu is called from netif_receive_skb and returns the target
4568 * CPU from the RPS map of the receiving queue for a given skb.
4569 * rcu_read_lock must be held on entry.
4570 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4571 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4572 struct rps_dev_flow **rflowp)
4573 {
4574 const struct rps_sock_flow_table *sock_flow_table;
4575 struct netdev_rx_queue *rxqueue = dev->_rx;
4576 struct rps_dev_flow_table *flow_table;
4577 struct rps_map *map;
4578 int cpu = -1;
4579 u32 tcpu;
4580 u32 hash;
4581
4582 if (skb_rx_queue_recorded(skb)) {
4583 u16 index = skb_get_rx_queue(skb);
4584
4585 if (unlikely(index >= dev->real_num_rx_queues)) {
4586 WARN_ONCE(dev->real_num_rx_queues > 1,
4587 "%s received packet on queue %u, but number "
4588 "of RX queues is %u\n",
4589 dev->name, index, dev->real_num_rx_queues);
4590 goto done;
4591 }
4592 rxqueue += index;
4593 }
4594
4595 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4596
4597 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4598 map = rcu_dereference(rxqueue->rps_map);
4599 if (!flow_table && !map)
4600 goto done;
4601
4602 skb_reset_network_header(skb);
4603 hash = skb_get_hash(skb);
4604 if (!hash)
4605 goto done;
4606
4607 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4608 if (flow_table && sock_flow_table) {
4609 struct rps_dev_flow *rflow;
4610 u32 next_cpu;
4611 u32 ident;
4612
4613 /* First check into global flow table if there is a match.
4614 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4615 */
4616 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4617 if ((ident ^ hash) & ~rps_cpu_mask)
4618 goto try_rps;
4619
4620 next_cpu = ident & rps_cpu_mask;
4621
4622 /* OK, now we know there is a match,
4623 * we can look at the local (per receive queue) flow table
4624 */
4625 rflow = &flow_table->flows[hash & flow_table->mask];
4626 tcpu = rflow->cpu;
4627
4628 /*
4629 * If the desired CPU (where last recvmsg was done) is
4630 * different from current CPU (one in the rx-queue flow
4631 * table entry), switch if one of the following holds:
4632 * - Current CPU is unset (>= nr_cpu_ids).
4633 * - Current CPU is offline.
4634 * - The current CPU's queue tail has advanced beyond the
4635 * last packet that was enqueued using this table entry.
4636 * This guarantees that all previous packets for the flow
4637 * have been dequeued, thus preserving in order delivery.
4638 */
4639 if (unlikely(tcpu != next_cpu) &&
4640 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4641 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4642 rflow->last_qtail)) >= 0)) {
4643 tcpu = next_cpu;
4644 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4645 }
4646
4647 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4648 *rflowp = rflow;
4649 cpu = tcpu;
4650 goto done;
4651 }
4652 }
4653
4654 try_rps:
4655
4656 if (map) {
4657 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4658 if (cpu_online(tcpu)) {
4659 cpu = tcpu;
4660 goto done;
4661 }
4662 }
4663
4664 done:
4665 return cpu;
4666 }
4667
4668 #ifdef CONFIG_RFS_ACCEL
4669
4670 /**
4671 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4672 * @dev: Device on which the filter was set
4673 * @rxq_index: RX queue index
4674 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4675 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4676 *
4677 * Drivers that implement ndo_rx_flow_steer() should periodically call
4678 * this function for each installed filter and remove the filters for
4679 * which it returns %true.
4680 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4681 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4682 u32 flow_id, u16 filter_id)
4683 {
4684 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4685 struct rps_dev_flow_table *flow_table;
4686 struct rps_dev_flow *rflow;
4687 bool expire = true;
4688 unsigned int cpu;
4689
4690 rcu_read_lock();
4691 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4692 if (flow_table && flow_id <= flow_table->mask) {
4693 rflow = &flow_table->flows[flow_id];
4694 cpu = READ_ONCE(rflow->cpu);
4695 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4696 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4697 rflow->last_qtail) <
4698 (int)(10 * flow_table->mask)))
4699 expire = false;
4700 }
4701 rcu_read_unlock();
4702 return expire;
4703 }
4704 EXPORT_SYMBOL(rps_may_expire_flow);
4705
4706 #endif /* CONFIG_RFS_ACCEL */
4707
4708 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4709 static void rps_trigger_softirq(void *data)
4710 {
4711 struct softnet_data *sd = data;
4712
4713 ____napi_schedule(sd, &sd->backlog);
4714 sd->received_rps++;
4715 }
4716
4717 #endif /* CONFIG_RPS */
4718
4719 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4720 static void trigger_rx_softirq(void *data)
4721 {
4722 struct softnet_data *sd = data;
4723
4724 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4725 smp_store_release(&sd->defer_ipi_scheduled, 0);
4726 }
4727
4728 /*
4729 * After we queued a packet into sd->input_pkt_queue,
4730 * we need to make sure this queue is serviced soon.
4731 *
4732 * - If this is another cpu queue, link it to our rps_ipi_list,
4733 * and make sure we will process rps_ipi_list from net_rx_action().
4734 *
4735 * - If this is our own queue, NAPI schedule our backlog.
4736 * Note that this also raises NET_RX_SOFTIRQ.
4737 */
napi_schedule_rps(struct softnet_data * sd)4738 static void napi_schedule_rps(struct softnet_data *sd)
4739 {
4740 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4741
4742 #ifdef CONFIG_RPS
4743 if (sd != mysd) {
4744 sd->rps_ipi_next = mysd->rps_ipi_list;
4745 mysd->rps_ipi_list = sd;
4746
4747 /* If not called from net_rx_action() or napi_threaded_poll()
4748 * we have to raise NET_RX_SOFTIRQ.
4749 */
4750 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4751 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4752 return;
4753 }
4754 #endif /* CONFIG_RPS */
4755 __napi_schedule_irqoff(&mysd->backlog);
4756 }
4757
4758 #ifdef CONFIG_NET_FLOW_LIMIT
4759 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4760 #endif
4761
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4762 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4763 {
4764 #ifdef CONFIG_NET_FLOW_LIMIT
4765 struct sd_flow_limit *fl;
4766 struct softnet_data *sd;
4767 unsigned int old_flow, new_flow;
4768
4769 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4770 return false;
4771
4772 sd = this_cpu_ptr(&softnet_data);
4773
4774 rcu_read_lock();
4775 fl = rcu_dereference(sd->flow_limit);
4776 if (fl) {
4777 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4778 old_flow = fl->history[fl->history_head];
4779 fl->history[fl->history_head] = new_flow;
4780
4781 fl->history_head++;
4782 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4783
4784 if (likely(fl->buckets[old_flow]))
4785 fl->buckets[old_flow]--;
4786
4787 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4788 fl->count++;
4789 rcu_read_unlock();
4790 return true;
4791 }
4792 }
4793 rcu_read_unlock();
4794 #endif
4795 return false;
4796 }
4797
4798 /*
4799 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4800 * queue (may be a remote CPU queue).
4801 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4802 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4803 unsigned int *qtail)
4804 {
4805 enum skb_drop_reason reason;
4806 struct softnet_data *sd;
4807 unsigned long flags;
4808 unsigned int qlen;
4809
4810 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4811 sd = &per_cpu(softnet_data, cpu);
4812
4813 rps_lock_irqsave(sd, &flags);
4814 if (!netif_running(skb->dev))
4815 goto drop;
4816 qlen = skb_queue_len(&sd->input_pkt_queue);
4817 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4818 if (qlen) {
4819 enqueue:
4820 __skb_queue_tail(&sd->input_pkt_queue, skb);
4821 input_queue_tail_incr_save(sd, qtail);
4822 rps_unlock_irq_restore(sd, &flags);
4823 return NET_RX_SUCCESS;
4824 }
4825
4826 /* Schedule NAPI for backlog device
4827 * We can use non atomic operation since we own the queue lock
4828 */
4829 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4830 napi_schedule_rps(sd);
4831 goto enqueue;
4832 }
4833 reason = SKB_DROP_REASON_CPU_BACKLOG;
4834
4835 drop:
4836 sd->dropped++;
4837 rps_unlock_irq_restore(sd, &flags);
4838
4839 dev_core_stats_rx_dropped_inc(skb->dev);
4840 kfree_skb_reason(skb, reason);
4841 return NET_RX_DROP;
4842 }
4843
netif_get_rxqueue(struct sk_buff * skb)4844 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4845 {
4846 struct net_device *dev = skb->dev;
4847 struct netdev_rx_queue *rxqueue;
4848
4849 rxqueue = dev->_rx;
4850
4851 if (skb_rx_queue_recorded(skb)) {
4852 u16 index = skb_get_rx_queue(skb);
4853
4854 if (unlikely(index >= dev->real_num_rx_queues)) {
4855 WARN_ONCE(dev->real_num_rx_queues > 1,
4856 "%s received packet on queue %u, but number "
4857 "of RX queues is %u\n",
4858 dev->name, index, dev->real_num_rx_queues);
4859
4860 return rxqueue; /* Return first rxqueue */
4861 }
4862 rxqueue += index;
4863 }
4864 return rxqueue;
4865 }
4866
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4867 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4868 struct bpf_prog *xdp_prog)
4869 {
4870 void *orig_data, *orig_data_end, *hard_start;
4871 struct netdev_rx_queue *rxqueue;
4872 bool orig_bcast, orig_host;
4873 u32 mac_len, frame_sz;
4874 __be16 orig_eth_type;
4875 struct ethhdr *eth;
4876 u32 metalen, act;
4877 int off;
4878
4879 /* The XDP program wants to see the packet starting at the MAC
4880 * header.
4881 */
4882 mac_len = skb->data - skb_mac_header(skb);
4883 hard_start = skb->data - skb_headroom(skb);
4884
4885 /* SKB "head" area always have tailroom for skb_shared_info */
4886 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4887 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4888
4889 rxqueue = netif_get_rxqueue(skb);
4890 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4891 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4892 skb_headlen(skb) + mac_len, true);
4893
4894 orig_data_end = xdp->data_end;
4895 orig_data = xdp->data;
4896 eth = (struct ethhdr *)xdp->data;
4897 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4898 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4899 orig_eth_type = eth->h_proto;
4900
4901 act = bpf_prog_run_xdp(xdp_prog, xdp);
4902
4903 /* check if bpf_xdp_adjust_head was used */
4904 off = xdp->data - orig_data;
4905 if (off) {
4906 if (off > 0)
4907 __skb_pull(skb, off);
4908 else if (off < 0)
4909 __skb_push(skb, -off);
4910
4911 skb->mac_header += off;
4912 skb_reset_network_header(skb);
4913 }
4914
4915 /* check if bpf_xdp_adjust_tail was used */
4916 off = xdp->data_end - orig_data_end;
4917 if (off != 0) {
4918 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4919 skb->len += off; /* positive on grow, negative on shrink */
4920 }
4921
4922 /* check if XDP changed eth hdr such SKB needs update */
4923 eth = (struct ethhdr *)xdp->data;
4924 if ((orig_eth_type != eth->h_proto) ||
4925 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4926 skb->dev->dev_addr)) ||
4927 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4928 __skb_push(skb, ETH_HLEN);
4929 skb->pkt_type = PACKET_HOST;
4930 skb->protocol = eth_type_trans(skb, skb->dev);
4931 }
4932
4933 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4934 * before calling us again on redirect path. We do not call do_redirect
4935 * as we leave that up to the caller.
4936 *
4937 * Caller is responsible for managing lifetime of skb (i.e. calling
4938 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4939 */
4940 switch (act) {
4941 case XDP_REDIRECT:
4942 case XDP_TX:
4943 __skb_push(skb, mac_len);
4944 break;
4945 case XDP_PASS:
4946 metalen = xdp->data - xdp->data_meta;
4947 if (metalen)
4948 skb_metadata_set(skb, metalen);
4949 break;
4950 }
4951
4952 return act;
4953 }
4954
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4955 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4956 struct xdp_buff *xdp,
4957 struct bpf_prog *xdp_prog)
4958 {
4959 u32 act = XDP_DROP;
4960
4961 /* Reinjected packets coming from act_mirred or similar should
4962 * not get XDP generic processing.
4963 */
4964 if (skb_is_redirected(skb))
4965 return XDP_PASS;
4966
4967 /* XDP packets must be linear and must have sufficient headroom
4968 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4969 * native XDP provides, thus we need to do it here as well.
4970 */
4971 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4972 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4973 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4974 int troom = skb->tail + skb->data_len - skb->end;
4975
4976 /* In case we have to go down the path and also linearize,
4977 * then lets do the pskb_expand_head() work just once here.
4978 */
4979 if (pskb_expand_head(skb,
4980 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4981 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4982 goto do_drop;
4983 if (skb_linearize(skb))
4984 goto do_drop;
4985 }
4986
4987 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4988 switch (act) {
4989 case XDP_REDIRECT:
4990 case XDP_TX:
4991 case XDP_PASS:
4992 break;
4993 default:
4994 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4995 fallthrough;
4996 case XDP_ABORTED:
4997 trace_xdp_exception(skb->dev, xdp_prog, act);
4998 fallthrough;
4999 case XDP_DROP:
5000 do_drop:
5001 kfree_skb(skb);
5002 break;
5003 }
5004
5005 return act;
5006 }
5007
5008 /* When doing generic XDP we have to bypass the qdisc layer and the
5009 * network taps in order to match in-driver-XDP behavior. This also means
5010 * that XDP packets are able to starve other packets going through a qdisc,
5011 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5012 * queues, so they do not have this starvation issue.
5013 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)5014 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5015 {
5016 struct net_device *dev = skb->dev;
5017 struct netdev_queue *txq;
5018 bool free_skb = true;
5019 int cpu, rc;
5020
5021 txq = netdev_core_pick_tx(dev, skb, NULL);
5022 cpu = smp_processor_id();
5023 HARD_TX_LOCK(dev, txq, cpu);
5024 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5025 rc = netdev_start_xmit(skb, dev, txq, 0);
5026 if (dev_xmit_complete(rc))
5027 free_skb = false;
5028 }
5029 HARD_TX_UNLOCK(dev, txq);
5030 if (free_skb) {
5031 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5032 dev_core_stats_tx_dropped_inc(dev);
5033 kfree_skb(skb);
5034 }
5035 }
5036
5037 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5038
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)5039 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5040 {
5041 if (xdp_prog) {
5042 struct xdp_buff xdp;
5043 u32 act;
5044 int err;
5045
5046 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5047 if (act != XDP_PASS) {
5048 switch (act) {
5049 case XDP_REDIRECT:
5050 err = xdp_do_generic_redirect(skb->dev, skb,
5051 &xdp, xdp_prog);
5052 if (err)
5053 goto out_redir;
5054 break;
5055 case XDP_TX:
5056 generic_xdp_tx(skb, xdp_prog);
5057 break;
5058 }
5059 return XDP_DROP;
5060 }
5061 }
5062 return XDP_PASS;
5063 out_redir:
5064 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5065 return XDP_DROP;
5066 }
5067 EXPORT_SYMBOL_GPL(do_xdp_generic);
5068
netif_rx_internal(struct sk_buff * skb)5069 static int netif_rx_internal(struct sk_buff *skb)
5070 {
5071 int ret;
5072
5073 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5074
5075 trace_netif_rx(skb);
5076
5077 #ifdef CONFIG_RPS
5078 if (static_branch_unlikely(&rps_needed)) {
5079 struct rps_dev_flow voidflow, *rflow = &voidflow;
5080 int cpu;
5081
5082 rcu_read_lock();
5083
5084 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5085 if (cpu < 0)
5086 cpu = smp_processor_id();
5087
5088 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5089
5090 rcu_read_unlock();
5091 } else
5092 #endif
5093 {
5094 unsigned int qtail;
5095
5096 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5097 }
5098 return ret;
5099 }
5100
5101 /**
5102 * __netif_rx - Slightly optimized version of netif_rx
5103 * @skb: buffer to post
5104 *
5105 * This behaves as netif_rx except that it does not disable bottom halves.
5106 * As a result this function may only be invoked from the interrupt context
5107 * (either hard or soft interrupt).
5108 */
__netif_rx(struct sk_buff * skb)5109 int __netif_rx(struct sk_buff *skb)
5110 {
5111 int ret;
5112
5113 lockdep_assert_once(hardirq_count() | softirq_count());
5114
5115 trace_netif_rx_entry(skb);
5116 ret = netif_rx_internal(skb);
5117 trace_netif_rx_exit(ret);
5118 return ret;
5119 }
5120 EXPORT_SYMBOL(__netif_rx);
5121
5122 /**
5123 * netif_rx - post buffer to the network code
5124 * @skb: buffer to post
5125 *
5126 * This function receives a packet from a device driver and queues it for
5127 * the upper (protocol) levels to process via the backlog NAPI device. It
5128 * always succeeds. The buffer may be dropped during processing for
5129 * congestion control or by the protocol layers.
5130 * The network buffer is passed via the backlog NAPI device. Modern NIC
5131 * driver should use NAPI and GRO.
5132 * This function can used from interrupt and from process context. The
5133 * caller from process context must not disable interrupts before invoking
5134 * this function.
5135 *
5136 * return values:
5137 * NET_RX_SUCCESS (no congestion)
5138 * NET_RX_DROP (packet was dropped)
5139 *
5140 */
netif_rx(struct sk_buff * skb)5141 int netif_rx(struct sk_buff *skb)
5142 {
5143 bool need_bh_off = !(hardirq_count() | softirq_count());
5144 int ret;
5145
5146 if (need_bh_off)
5147 local_bh_disable();
5148 trace_netif_rx_entry(skb);
5149 ret = netif_rx_internal(skb);
5150 trace_netif_rx_exit(ret);
5151 if (need_bh_off)
5152 local_bh_enable();
5153 return ret;
5154 }
5155 EXPORT_SYMBOL(netif_rx);
5156
net_tx_action(struct softirq_action * h)5157 static __latent_entropy void net_tx_action(struct softirq_action *h)
5158 {
5159 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5160
5161 if (sd->completion_queue) {
5162 struct sk_buff *clist;
5163
5164 local_irq_disable();
5165 clist = sd->completion_queue;
5166 sd->completion_queue = NULL;
5167 local_irq_enable();
5168
5169 while (clist) {
5170 struct sk_buff *skb = clist;
5171
5172 clist = clist->next;
5173
5174 WARN_ON(refcount_read(&skb->users));
5175 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5176 trace_consume_skb(skb, net_tx_action);
5177 else
5178 trace_kfree_skb(skb, net_tx_action,
5179 get_kfree_skb_cb(skb)->reason);
5180
5181 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5182 __kfree_skb(skb);
5183 else
5184 __napi_kfree_skb(skb,
5185 get_kfree_skb_cb(skb)->reason);
5186 }
5187 }
5188
5189 if (sd->output_queue) {
5190 struct Qdisc *head;
5191
5192 local_irq_disable();
5193 head = sd->output_queue;
5194 sd->output_queue = NULL;
5195 sd->output_queue_tailp = &sd->output_queue;
5196 local_irq_enable();
5197
5198 rcu_read_lock();
5199
5200 while (head) {
5201 struct Qdisc *q = head;
5202 spinlock_t *root_lock = NULL;
5203
5204 head = head->next_sched;
5205
5206 /* We need to make sure head->next_sched is read
5207 * before clearing __QDISC_STATE_SCHED
5208 */
5209 smp_mb__before_atomic();
5210
5211 if (!(q->flags & TCQ_F_NOLOCK)) {
5212 root_lock = qdisc_lock(q);
5213 spin_lock(root_lock);
5214 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5215 &q->state))) {
5216 /* There is a synchronize_net() between
5217 * STATE_DEACTIVATED flag being set and
5218 * qdisc_reset()/some_qdisc_is_busy() in
5219 * dev_deactivate(), so we can safely bail out
5220 * early here to avoid data race between
5221 * qdisc_deactivate() and some_qdisc_is_busy()
5222 * for lockless qdisc.
5223 */
5224 clear_bit(__QDISC_STATE_SCHED, &q->state);
5225 continue;
5226 }
5227
5228 clear_bit(__QDISC_STATE_SCHED, &q->state);
5229 qdisc_run(q);
5230 if (root_lock)
5231 spin_unlock(root_lock);
5232 }
5233
5234 rcu_read_unlock();
5235 }
5236
5237 xfrm_dev_backlog(sd);
5238 }
5239
5240 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5241 /* This hook is defined here for ATM LANE */
5242 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5243 unsigned char *addr) __read_mostly;
5244 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5245 #endif
5246
5247 /**
5248 * netdev_is_rx_handler_busy - check if receive handler is registered
5249 * @dev: device to check
5250 *
5251 * Check if a receive handler is already registered for a given device.
5252 * Return true if there one.
5253 *
5254 * The caller must hold the rtnl_mutex.
5255 */
netdev_is_rx_handler_busy(struct net_device * dev)5256 bool netdev_is_rx_handler_busy(struct net_device *dev)
5257 {
5258 ASSERT_RTNL();
5259 return dev && rtnl_dereference(dev->rx_handler);
5260 }
5261 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5262
5263 /**
5264 * netdev_rx_handler_register - register receive handler
5265 * @dev: device to register a handler for
5266 * @rx_handler: receive handler to register
5267 * @rx_handler_data: data pointer that is used by rx handler
5268 *
5269 * Register a receive handler for a device. This handler will then be
5270 * called from __netif_receive_skb. A negative errno code is returned
5271 * on a failure.
5272 *
5273 * The caller must hold the rtnl_mutex.
5274 *
5275 * For a general description of rx_handler, see enum rx_handler_result.
5276 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5277 int netdev_rx_handler_register(struct net_device *dev,
5278 rx_handler_func_t *rx_handler,
5279 void *rx_handler_data)
5280 {
5281 if (netdev_is_rx_handler_busy(dev))
5282 return -EBUSY;
5283
5284 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5285 return -EINVAL;
5286
5287 /* Note: rx_handler_data must be set before rx_handler */
5288 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5289 rcu_assign_pointer(dev->rx_handler, rx_handler);
5290
5291 return 0;
5292 }
5293 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5294
5295 /**
5296 * netdev_rx_handler_unregister - unregister receive handler
5297 * @dev: device to unregister a handler from
5298 *
5299 * Unregister a receive handler from a device.
5300 *
5301 * The caller must hold the rtnl_mutex.
5302 */
netdev_rx_handler_unregister(struct net_device * dev)5303 void netdev_rx_handler_unregister(struct net_device *dev)
5304 {
5305
5306 ASSERT_RTNL();
5307 RCU_INIT_POINTER(dev->rx_handler, NULL);
5308 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5309 * section has a guarantee to see a non NULL rx_handler_data
5310 * as well.
5311 */
5312 synchronize_net();
5313 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5314 }
5315 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5316
5317 /*
5318 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5319 * the special handling of PFMEMALLOC skbs.
5320 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5321 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5322 {
5323 switch (skb->protocol) {
5324 case htons(ETH_P_ARP):
5325 case htons(ETH_P_IP):
5326 case htons(ETH_P_IPV6):
5327 case htons(ETH_P_8021Q):
5328 case htons(ETH_P_8021AD):
5329 return true;
5330 default:
5331 return false;
5332 }
5333 }
5334
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5335 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5336 int *ret, struct net_device *orig_dev)
5337 {
5338 if (nf_hook_ingress_active(skb)) {
5339 int ingress_retval;
5340
5341 if (*pt_prev) {
5342 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5343 *pt_prev = NULL;
5344 }
5345
5346 rcu_read_lock();
5347 ingress_retval = nf_hook_ingress(skb);
5348 rcu_read_unlock();
5349 return ingress_retval;
5350 }
5351 return 0;
5352 }
5353
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5354 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5355 struct packet_type **ppt_prev)
5356 {
5357 struct packet_type *ptype, *pt_prev;
5358 rx_handler_func_t *rx_handler;
5359 struct sk_buff *skb = *pskb;
5360 struct net_device *orig_dev;
5361 bool deliver_exact = false;
5362 int ret = NET_RX_DROP;
5363 __be16 type;
5364 int flag = 0;
5365
5366 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5367
5368 trace_netif_receive_skb(skb);
5369
5370 orig_dev = skb->dev;
5371
5372 skb_reset_network_header(skb);
5373 if (!skb_transport_header_was_set(skb))
5374 skb_reset_transport_header(skb);
5375 skb_reset_mac_len(skb);
5376
5377 pt_prev = NULL;
5378
5379 another_round:
5380 skb->skb_iif = skb->dev->ifindex;
5381
5382 __this_cpu_inc(softnet_data.processed);
5383
5384 trace_android_vh_dc_receive(skb, &flag);
5385 if (flag != 0)
5386 return NET_RX_DROP;
5387
5388 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5389 int ret2;
5390
5391 migrate_disable();
5392 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5393 migrate_enable();
5394
5395 if (ret2 != XDP_PASS) {
5396 ret = NET_RX_DROP;
5397 goto out;
5398 }
5399 }
5400
5401 if (eth_type_vlan(skb->protocol)) {
5402 skb = skb_vlan_untag(skb);
5403 if (unlikely(!skb))
5404 goto out;
5405 }
5406
5407 if (skb_skip_tc_classify(skb))
5408 goto skip_classify;
5409
5410 if (pfmemalloc)
5411 goto skip_taps;
5412
5413 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5414 if (pt_prev)
5415 ret = deliver_skb(skb, pt_prev, orig_dev);
5416 pt_prev = ptype;
5417 }
5418
5419 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5420 if (pt_prev)
5421 ret = deliver_skb(skb, pt_prev, orig_dev);
5422 pt_prev = ptype;
5423 }
5424
5425 skip_taps:
5426 #ifdef CONFIG_NET_INGRESS
5427 if (static_branch_unlikely(&ingress_needed_key)) {
5428 bool another = false;
5429
5430 nf_skip_egress(skb, true);
5431 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5432 &another);
5433 if (another)
5434 goto another_round;
5435 if (!skb)
5436 goto out;
5437
5438 nf_skip_egress(skb, false);
5439 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5440 goto out;
5441 }
5442 #endif
5443 skb_reset_redirect(skb);
5444 skip_classify:
5445 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5446 goto drop;
5447
5448 if (skb_vlan_tag_present(skb)) {
5449 if (pt_prev) {
5450 ret = deliver_skb(skb, pt_prev, orig_dev);
5451 pt_prev = NULL;
5452 }
5453 if (vlan_do_receive(&skb))
5454 goto another_round;
5455 else if (unlikely(!skb))
5456 goto out;
5457 }
5458
5459 rx_handler = rcu_dereference(skb->dev->rx_handler);
5460 if (rx_handler) {
5461 if (pt_prev) {
5462 ret = deliver_skb(skb, pt_prev, orig_dev);
5463 pt_prev = NULL;
5464 }
5465 switch (rx_handler(&skb)) {
5466 case RX_HANDLER_CONSUMED:
5467 ret = NET_RX_SUCCESS;
5468 goto out;
5469 case RX_HANDLER_ANOTHER:
5470 goto another_round;
5471 case RX_HANDLER_EXACT:
5472 deliver_exact = true;
5473 break;
5474 case RX_HANDLER_PASS:
5475 break;
5476 default:
5477 BUG();
5478 }
5479 }
5480
5481 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5482 check_vlan_id:
5483 if (skb_vlan_tag_get_id(skb)) {
5484 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5485 * find vlan device.
5486 */
5487 skb->pkt_type = PACKET_OTHERHOST;
5488 } else if (eth_type_vlan(skb->protocol)) {
5489 /* Outer header is 802.1P with vlan 0, inner header is
5490 * 802.1Q or 802.1AD and vlan_do_receive() above could
5491 * not find vlan dev for vlan id 0.
5492 */
5493 __vlan_hwaccel_clear_tag(skb);
5494 skb = skb_vlan_untag(skb);
5495 if (unlikely(!skb))
5496 goto out;
5497 if (vlan_do_receive(&skb))
5498 /* After stripping off 802.1P header with vlan 0
5499 * vlan dev is found for inner header.
5500 */
5501 goto another_round;
5502 else if (unlikely(!skb))
5503 goto out;
5504 else
5505 /* We have stripped outer 802.1P vlan 0 header.
5506 * But could not find vlan dev.
5507 * check again for vlan id to set OTHERHOST.
5508 */
5509 goto check_vlan_id;
5510 }
5511 /* Note: we might in the future use prio bits
5512 * and set skb->priority like in vlan_do_receive()
5513 * For the time being, just ignore Priority Code Point
5514 */
5515 __vlan_hwaccel_clear_tag(skb);
5516 }
5517
5518 type = skb->protocol;
5519
5520 /* deliver only exact match when indicated */
5521 if (likely(!deliver_exact)) {
5522 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5523 &ptype_base[ntohs(type) &
5524 PTYPE_HASH_MASK]);
5525 }
5526
5527 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5528 &orig_dev->ptype_specific);
5529
5530 if (unlikely(skb->dev != orig_dev)) {
5531 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5532 &skb->dev->ptype_specific);
5533 }
5534
5535 if (pt_prev) {
5536 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5537 goto drop;
5538 *ppt_prev = pt_prev;
5539 } else {
5540 drop:
5541 if (!deliver_exact)
5542 dev_core_stats_rx_dropped_inc(skb->dev);
5543 else
5544 dev_core_stats_rx_nohandler_inc(skb->dev);
5545 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5546 /* Jamal, now you will not able to escape explaining
5547 * me how you were going to use this. :-)
5548 */
5549 ret = NET_RX_DROP;
5550 }
5551
5552 out:
5553 /* The invariant here is that if *ppt_prev is not NULL
5554 * then skb should also be non-NULL.
5555 *
5556 * Apparently *ppt_prev assignment above holds this invariant due to
5557 * skb dereferencing near it.
5558 */
5559 *pskb = skb;
5560 return ret;
5561 }
5562
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5563 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5564 {
5565 struct net_device *orig_dev = skb->dev;
5566 struct packet_type *pt_prev = NULL;
5567 int ret;
5568
5569 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5570 if (pt_prev)
5571 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5572 skb->dev, pt_prev, orig_dev);
5573 return ret;
5574 }
5575
5576 /**
5577 * netif_receive_skb_core - special purpose version of netif_receive_skb
5578 * @skb: buffer to process
5579 *
5580 * More direct receive version of netif_receive_skb(). It should
5581 * only be used by callers that have a need to skip RPS and Generic XDP.
5582 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5583 *
5584 * This function may only be called from softirq context and interrupts
5585 * should be enabled.
5586 *
5587 * Return values (usually ignored):
5588 * NET_RX_SUCCESS: no congestion
5589 * NET_RX_DROP: packet was dropped
5590 */
netif_receive_skb_core(struct sk_buff * skb)5591 int netif_receive_skb_core(struct sk_buff *skb)
5592 {
5593 int ret;
5594
5595 rcu_read_lock();
5596 ret = __netif_receive_skb_one_core(skb, false);
5597 rcu_read_unlock();
5598
5599 return ret;
5600 }
5601 EXPORT_SYMBOL(netif_receive_skb_core);
5602
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5603 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5604 struct packet_type *pt_prev,
5605 struct net_device *orig_dev)
5606 {
5607 struct sk_buff *skb, *next;
5608
5609 if (!pt_prev)
5610 return;
5611 if (list_empty(head))
5612 return;
5613 if (pt_prev->list_func != NULL)
5614 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5615 ip_list_rcv, head, pt_prev, orig_dev);
5616 else
5617 list_for_each_entry_safe(skb, next, head, list) {
5618 skb_list_del_init(skb);
5619 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5620 }
5621 }
5622
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5623 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5624 {
5625 /* Fast-path assumptions:
5626 * - There is no RX handler.
5627 * - Only one packet_type matches.
5628 * If either of these fails, we will end up doing some per-packet
5629 * processing in-line, then handling the 'last ptype' for the whole
5630 * sublist. This can't cause out-of-order delivery to any single ptype,
5631 * because the 'last ptype' must be constant across the sublist, and all
5632 * other ptypes are handled per-packet.
5633 */
5634 /* Current (common) ptype of sublist */
5635 struct packet_type *pt_curr = NULL;
5636 /* Current (common) orig_dev of sublist */
5637 struct net_device *od_curr = NULL;
5638 struct list_head sublist;
5639 struct sk_buff *skb, *next;
5640
5641 INIT_LIST_HEAD(&sublist);
5642 list_for_each_entry_safe(skb, next, head, list) {
5643 struct net_device *orig_dev = skb->dev;
5644 struct packet_type *pt_prev = NULL;
5645
5646 skb_list_del_init(skb);
5647 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5648 if (!pt_prev)
5649 continue;
5650 if (pt_curr != pt_prev || od_curr != orig_dev) {
5651 /* dispatch old sublist */
5652 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5653 /* start new sublist */
5654 INIT_LIST_HEAD(&sublist);
5655 pt_curr = pt_prev;
5656 od_curr = orig_dev;
5657 }
5658 list_add_tail(&skb->list, &sublist);
5659 }
5660
5661 /* dispatch final sublist */
5662 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5663 }
5664
__netif_receive_skb(struct sk_buff * skb)5665 static int __netif_receive_skb(struct sk_buff *skb)
5666 {
5667 int ret;
5668
5669 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5670 unsigned int noreclaim_flag;
5671
5672 /*
5673 * PFMEMALLOC skbs are special, they should
5674 * - be delivered to SOCK_MEMALLOC sockets only
5675 * - stay away from userspace
5676 * - have bounded memory usage
5677 *
5678 * Use PF_MEMALLOC as this saves us from propagating the allocation
5679 * context down to all allocation sites.
5680 */
5681 noreclaim_flag = memalloc_noreclaim_save();
5682 ret = __netif_receive_skb_one_core(skb, true);
5683 memalloc_noreclaim_restore(noreclaim_flag);
5684 } else
5685 ret = __netif_receive_skb_one_core(skb, false);
5686
5687 return ret;
5688 }
5689
__netif_receive_skb_list(struct list_head * head)5690 static void __netif_receive_skb_list(struct list_head *head)
5691 {
5692 unsigned long noreclaim_flag = 0;
5693 struct sk_buff *skb, *next;
5694 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5695
5696 list_for_each_entry_safe(skb, next, head, list) {
5697 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5698 struct list_head sublist;
5699
5700 /* Handle the previous sublist */
5701 list_cut_before(&sublist, head, &skb->list);
5702 if (!list_empty(&sublist))
5703 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5704 pfmemalloc = !pfmemalloc;
5705 /* See comments in __netif_receive_skb */
5706 if (pfmemalloc)
5707 noreclaim_flag = memalloc_noreclaim_save();
5708 else
5709 memalloc_noreclaim_restore(noreclaim_flag);
5710 }
5711 }
5712 /* Handle the remaining sublist */
5713 if (!list_empty(head))
5714 __netif_receive_skb_list_core(head, pfmemalloc);
5715 /* Restore pflags */
5716 if (pfmemalloc)
5717 memalloc_noreclaim_restore(noreclaim_flag);
5718 }
5719
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5720 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5721 {
5722 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5723 struct bpf_prog *new = xdp->prog;
5724 int ret = 0;
5725
5726 switch (xdp->command) {
5727 case XDP_SETUP_PROG:
5728 rcu_assign_pointer(dev->xdp_prog, new);
5729 if (old)
5730 bpf_prog_put(old);
5731
5732 if (old && !new) {
5733 static_branch_dec(&generic_xdp_needed_key);
5734 } else if (new && !old) {
5735 static_branch_inc(&generic_xdp_needed_key);
5736 dev_disable_lro(dev);
5737 dev_disable_gro_hw(dev);
5738 }
5739 break;
5740
5741 default:
5742 ret = -EINVAL;
5743 break;
5744 }
5745
5746 return ret;
5747 }
5748
netif_receive_skb_internal(struct sk_buff * skb)5749 static int netif_receive_skb_internal(struct sk_buff *skb)
5750 {
5751 int ret;
5752
5753 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5754
5755 if (skb_defer_rx_timestamp(skb))
5756 return NET_RX_SUCCESS;
5757
5758 rcu_read_lock();
5759 #ifdef CONFIG_RPS
5760 if (static_branch_unlikely(&rps_needed)) {
5761 struct rps_dev_flow voidflow, *rflow = &voidflow;
5762 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5763
5764 if (cpu >= 0) {
5765 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5766 rcu_read_unlock();
5767 return ret;
5768 }
5769 }
5770 #endif
5771 ret = __netif_receive_skb(skb);
5772 rcu_read_unlock();
5773 return ret;
5774 }
5775
netif_receive_skb_list_internal(struct list_head * head)5776 void netif_receive_skb_list_internal(struct list_head *head)
5777 {
5778 struct sk_buff *skb, *next;
5779 struct list_head sublist;
5780
5781 INIT_LIST_HEAD(&sublist);
5782 list_for_each_entry_safe(skb, next, head, list) {
5783 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5784 skb_list_del_init(skb);
5785 if (!skb_defer_rx_timestamp(skb))
5786 list_add_tail(&skb->list, &sublist);
5787 }
5788 list_splice_init(&sublist, head);
5789
5790 rcu_read_lock();
5791 #ifdef CONFIG_RPS
5792 if (static_branch_unlikely(&rps_needed)) {
5793 list_for_each_entry_safe(skb, next, head, list) {
5794 struct rps_dev_flow voidflow, *rflow = &voidflow;
5795 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5796
5797 if (cpu >= 0) {
5798 /* Will be handled, remove from list */
5799 skb_list_del_init(skb);
5800 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5801 }
5802 }
5803 }
5804 #endif
5805 __netif_receive_skb_list(head);
5806 rcu_read_unlock();
5807 }
5808
5809 /**
5810 * netif_receive_skb - process receive buffer from network
5811 * @skb: buffer to process
5812 *
5813 * netif_receive_skb() is the main receive data processing function.
5814 * It always succeeds. The buffer may be dropped during processing
5815 * for congestion control or by the protocol layers.
5816 *
5817 * This function may only be called from softirq context and interrupts
5818 * should be enabled.
5819 *
5820 * Return values (usually ignored):
5821 * NET_RX_SUCCESS: no congestion
5822 * NET_RX_DROP: packet was dropped
5823 */
netif_receive_skb(struct sk_buff * skb)5824 int netif_receive_skb(struct sk_buff *skb)
5825 {
5826 int ret;
5827
5828 trace_netif_receive_skb_entry(skb);
5829
5830 ret = netif_receive_skb_internal(skb);
5831 trace_netif_receive_skb_exit(ret);
5832
5833 return ret;
5834 }
5835 EXPORT_SYMBOL(netif_receive_skb);
5836
5837 /**
5838 * netif_receive_skb_list - process many receive buffers from network
5839 * @head: list of skbs to process.
5840 *
5841 * Since return value of netif_receive_skb() is normally ignored, and
5842 * wouldn't be meaningful for a list, this function returns void.
5843 *
5844 * This function may only be called from softirq context and interrupts
5845 * should be enabled.
5846 */
netif_receive_skb_list(struct list_head * head)5847 void netif_receive_skb_list(struct list_head *head)
5848 {
5849 struct sk_buff *skb;
5850
5851 if (list_empty(head))
5852 return;
5853 if (trace_netif_receive_skb_list_entry_enabled()) {
5854 list_for_each_entry(skb, head, list)
5855 trace_netif_receive_skb_list_entry(skb);
5856 }
5857 netif_receive_skb_list_internal(head);
5858 trace_netif_receive_skb_list_exit(0);
5859 }
5860 EXPORT_SYMBOL(netif_receive_skb_list);
5861
5862 static DEFINE_PER_CPU(struct work_struct, flush_works);
5863
5864 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5865 static void flush_backlog(struct work_struct *work)
5866 {
5867 struct sk_buff *skb, *tmp;
5868 struct softnet_data *sd;
5869
5870 local_bh_disable();
5871 sd = this_cpu_ptr(&softnet_data);
5872
5873 rps_lock_irq_disable(sd);
5874 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5875 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5876 __skb_unlink(skb, &sd->input_pkt_queue);
5877 dev_kfree_skb_irq(skb);
5878 input_queue_head_incr(sd);
5879 }
5880 }
5881 rps_unlock_irq_enable(sd);
5882
5883 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5884 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5885 __skb_unlink(skb, &sd->process_queue);
5886 kfree_skb(skb);
5887 input_queue_head_incr(sd);
5888 }
5889 }
5890 local_bh_enable();
5891 }
5892
flush_required(int cpu)5893 static bool flush_required(int cpu)
5894 {
5895 #if IS_ENABLED(CONFIG_RPS)
5896 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5897 bool do_flush;
5898
5899 rps_lock_irq_disable(sd);
5900
5901 /* as insertion into process_queue happens with the rps lock held,
5902 * process_queue access may race only with dequeue
5903 */
5904 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5905 !skb_queue_empty_lockless(&sd->process_queue);
5906 rps_unlock_irq_enable(sd);
5907
5908 return do_flush;
5909 #endif
5910 /* without RPS we can't safely check input_pkt_queue: during a
5911 * concurrent remote skb_queue_splice() we can detect as empty both
5912 * input_pkt_queue and process_queue even if the latter could end-up
5913 * containing a lot of packets.
5914 */
5915 return true;
5916 }
5917
flush_all_backlogs(void)5918 static void flush_all_backlogs(void)
5919 {
5920 static cpumask_t flush_cpus;
5921 unsigned int cpu;
5922
5923 /* since we are under rtnl lock protection we can use static data
5924 * for the cpumask and avoid allocating on stack the possibly
5925 * large mask
5926 */
5927 ASSERT_RTNL();
5928
5929 cpus_read_lock();
5930
5931 cpumask_clear(&flush_cpus);
5932 for_each_online_cpu(cpu) {
5933 if (flush_required(cpu)) {
5934 queue_work_on(cpu, system_highpri_wq,
5935 per_cpu_ptr(&flush_works, cpu));
5936 cpumask_set_cpu(cpu, &flush_cpus);
5937 }
5938 }
5939
5940 /* we can have in flight packet[s] on the cpus we are not flushing,
5941 * synchronize_net() in unregister_netdevice_many() will take care of
5942 * them
5943 */
5944 for_each_cpu(cpu, &flush_cpus)
5945 flush_work(per_cpu_ptr(&flush_works, cpu));
5946
5947 cpus_read_unlock();
5948 }
5949
net_rps_send_ipi(struct softnet_data * remsd)5950 static void net_rps_send_ipi(struct softnet_data *remsd)
5951 {
5952 #ifdef CONFIG_RPS
5953 while (remsd) {
5954 struct softnet_data *next = remsd->rps_ipi_next;
5955
5956 if (cpu_online(remsd->cpu))
5957 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5958 remsd = next;
5959 }
5960 #endif
5961 }
5962
5963 /*
5964 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5965 * Note: called with local irq disabled, but exits with local irq enabled.
5966 */
net_rps_action_and_irq_enable(struct softnet_data * sd)5967 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5968 {
5969 #ifdef CONFIG_RPS
5970 struct softnet_data *remsd = sd->rps_ipi_list;
5971
5972 if (remsd) {
5973 sd->rps_ipi_list = NULL;
5974
5975 local_irq_enable();
5976
5977 /* Send pending IPI's to kick RPS processing on remote cpus. */
5978 net_rps_send_ipi(remsd);
5979 } else
5980 #endif
5981 local_irq_enable();
5982 }
5983
sd_has_rps_ipi_waiting(struct softnet_data * sd)5984 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5985 {
5986 #ifdef CONFIG_RPS
5987 return sd->rps_ipi_list != NULL;
5988 #else
5989 return false;
5990 #endif
5991 }
5992
process_backlog(struct napi_struct * napi,int quota)5993 static int process_backlog(struct napi_struct *napi, int quota)
5994 {
5995 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5996 bool again = true;
5997 int work = 0;
5998
5999 /* Check if we have pending ipi, its better to send them now,
6000 * not waiting net_rx_action() end.
6001 */
6002 if (sd_has_rps_ipi_waiting(sd)) {
6003 local_irq_disable();
6004 net_rps_action_and_irq_enable(sd);
6005 }
6006
6007 napi->weight = READ_ONCE(dev_rx_weight);
6008 while (again) {
6009 struct sk_buff *skb;
6010
6011 while ((skb = __skb_dequeue(&sd->process_queue))) {
6012 rcu_read_lock();
6013 __netif_receive_skb(skb);
6014 rcu_read_unlock();
6015 input_queue_head_incr(sd);
6016 if (++work >= quota)
6017 return work;
6018
6019 }
6020
6021 rps_lock_irq_disable(sd);
6022 if (skb_queue_empty(&sd->input_pkt_queue)) {
6023 /*
6024 * Inline a custom version of __napi_complete().
6025 * only current cpu owns and manipulates this napi,
6026 * and NAPI_STATE_SCHED is the only possible flag set
6027 * on backlog.
6028 * We can use a plain write instead of clear_bit(),
6029 * and we dont need an smp_mb() memory barrier.
6030 */
6031 napi->state = 0;
6032 again = false;
6033 } else {
6034 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6035 &sd->process_queue);
6036 }
6037 rps_unlock_irq_enable(sd);
6038 }
6039
6040 return work;
6041 }
6042
6043 /**
6044 * __napi_schedule - schedule for receive
6045 * @n: entry to schedule
6046 *
6047 * The entry's receive function will be scheduled to run.
6048 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6049 */
__napi_schedule(struct napi_struct * n)6050 void __napi_schedule(struct napi_struct *n)
6051 {
6052 unsigned long flags;
6053
6054 local_irq_save(flags);
6055 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6056 local_irq_restore(flags);
6057 }
6058 EXPORT_SYMBOL(__napi_schedule);
6059
6060 /**
6061 * napi_schedule_prep - check if napi can be scheduled
6062 * @n: napi context
6063 *
6064 * Test if NAPI routine is already running, and if not mark
6065 * it as running. This is used as a condition variable to
6066 * insure only one NAPI poll instance runs. We also make
6067 * sure there is no pending NAPI disable.
6068 */
napi_schedule_prep(struct napi_struct * n)6069 bool napi_schedule_prep(struct napi_struct *n)
6070 {
6071 unsigned long new, val = READ_ONCE(n->state);
6072
6073 do {
6074 if (unlikely(val & NAPIF_STATE_DISABLE))
6075 return false;
6076 new = val | NAPIF_STATE_SCHED;
6077
6078 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6079 * This was suggested by Alexander Duyck, as compiler
6080 * emits better code than :
6081 * if (val & NAPIF_STATE_SCHED)
6082 * new |= NAPIF_STATE_MISSED;
6083 */
6084 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6085 NAPIF_STATE_MISSED;
6086 } while (!try_cmpxchg(&n->state, &val, new));
6087
6088 return !(val & NAPIF_STATE_SCHED);
6089 }
6090 EXPORT_SYMBOL(napi_schedule_prep);
6091
6092 /**
6093 * __napi_schedule_irqoff - schedule for receive
6094 * @n: entry to schedule
6095 *
6096 * Variant of __napi_schedule() assuming hard irqs are masked.
6097 *
6098 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6099 * because the interrupt disabled assumption might not be true
6100 * due to force-threaded interrupts and spinlock substitution.
6101 */
__napi_schedule_irqoff(struct napi_struct * n)6102 void __napi_schedule_irqoff(struct napi_struct *n)
6103 {
6104 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6105 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6106 else
6107 __napi_schedule(n);
6108 }
6109 EXPORT_SYMBOL(__napi_schedule_irqoff);
6110
napi_complete_done(struct napi_struct * n,int work_done)6111 bool napi_complete_done(struct napi_struct *n, int work_done)
6112 {
6113 unsigned long flags, val, new, timeout = 0;
6114 bool ret = true;
6115
6116 /*
6117 * 1) Don't let napi dequeue from the cpu poll list
6118 * just in case its running on a different cpu.
6119 * 2) If we are busy polling, do nothing here, we have
6120 * the guarantee we will be called later.
6121 */
6122 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6123 NAPIF_STATE_IN_BUSY_POLL)))
6124 return false;
6125
6126 if (work_done) {
6127 if (n->gro_bitmask)
6128 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6129 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6130 }
6131 if (n->defer_hard_irqs_count > 0) {
6132 n->defer_hard_irqs_count--;
6133 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6134 if (timeout)
6135 ret = false;
6136 }
6137 if (n->gro_bitmask) {
6138 /* When the NAPI instance uses a timeout and keeps postponing
6139 * it, we need to bound somehow the time packets are kept in
6140 * the GRO layer
6141 */
6142 napi_gro_flush(n, !!timeout);
6143 }
6144
6145 gro_normal_list(n);
6146
6147 if (unlikely(!list_empty(&n->poll_list))) {
6148 /* If n->poll_list is not empty, we need to mask irqs */
6149 local_irq_save(flags);
6150 list_del_init(&n->poll_list);
6151 local_irq_restore(flags);
6152 }
6153 WRITE_ONCE(n->list_owner, -1);
6154
6155 val = READ_ONCE(n->state);
6156 do {
6157 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6158
6159 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6160 NAPIF_STATE_SCHED_THREADED |
6161 NAPIF_STATE_PREFER_BUSY_POLL);
6162
6163 /* If STATE_MISSED was set, leave STATE_SCHED set,
6164 * because we will call napi->poll() one more time.
6165 * This C code was suggested by Alexander Duyck to help gcc.
6166 */
6167 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6168 NAPIF_STATE_SCHED;
6169 } while (!try_cmpxchg(&n->state, &val, new));
6170
6171 if (unlikely(val & NAPIF_STATE_MISSED)) {
6172 __napi_schedule(n);
6173 return false;
6174 }
6175
6176 if (timeout)
6177 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6178 HRTIMER_MODE_REL_PINNED);
6179 return ret;
6180 }
6181 EXPORT_SYMBOL(napi_complete_done);
6182
6183 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6184 static struct napi_struct *napi_by_id(unsigned int napi_id)
6185 {
6186 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6187 struct napi_struct *napi;
6188
6189 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6190 if (napi->napi_id == napi_id)
6191 return napi;
6192
6193 return NULL;
6194 }
6195
6196 #if defined(CONFIG_NET_RX_BUSY_POLL)
6197
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6198 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6199 {
6200 if (!skip_schedule) {
6201 gro_normal_list(napi);
6202 __napi_schedule(napi);
6203 return;
6204 }
6205
6206 if (napi->gro_bitmask) {
6207 /* flush too old packets
6208 * If HZ < 1000, flush all packets.
6209 */
6210 napi_gro_flush(napi, HZ >= 1000);
6211 }
6212
6213 gro_normal_list(napi);
6214 clear_bit(NAPI_STATE_SCHED, &napi->state);
6215 }
6216
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6217 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6218 u16 budget)
6219 {
6220 bool skip_schedule = false;
6221 unsigned long timeout;
6222 int rc;
6223
6224 /* Busy polling means there is a high chance device driver hard irq
6225 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6226 * set in napi_schedule_prep().
6227 * Since we are about to call napi->poll() once more, we can safely
6228 * clear NAPI_STATE_MISSED.
6229 *
6230 * Note: x86 could use a single "lock and ..." instruction
6231 * to perform these two clear_bit()
6232 */
6233 clear_bit(NAPI_STATE_MISSED, &napi->state);
6234 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6235
6236 local_bh_disable();
6237
6238 if (prefer_busy_poll) {
6239 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6240 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6241 if (napi->defer_hard_irqs_count && timeout) {
6242 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6243 skip_schedule = true;
6244 }
6245 }
6246
6247 /* All we really want here is to re-enable device interrupts.
6248 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6249 */
6250 rc = napi->poll(napi, budget);
6251 /* We can't gro_normal_list() here, because napi->poll() might have
6252 * rearmed the napi (napi_complete_done()) in which case it could
6253 * already be running on another CPU.
6254 */
6255 trace_napi_poll(napi, rc, budget);
6256 netpoll_poll_unlock(have_poll_lock);
6257 if (rc == budget)
6258 __busy_poll_stop(napi, skip_schedule);
6259 local_bh_enable();
6260 }
6261
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6262 void napi_busy_loop(unsigned int napi_id,
6263 bool (*loop_end)(void *, unsigned long),
6264 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6265 {
6266 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6267 int (*napi_poll)(struct napi_struct *napi, int budget);
6268 void *have_poll_lock = NULL;
6269 struct napi_struct *napi;
6270
6271 restart:
6272 napi_poll = NULL;
6273
6274 rcu_read_lock();
6275
6276 napi = napi_by_id(napi_id);
6277 if (!napi)
6278 goto out;
6279
6280 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6281 preempt_disable();
6282 for (;;) {
6283 int work = 0;
6284
6285 local_bh_disable();
6286 if (!napi_poll) {
6287 unsigned long val = READ_ONCE(napi->state);
6288
6289 /* If multiple threads are competing for this napi,
6290 * we avoid dirtying napi->state as much as we can.
6291 */
6292 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6293 NAPIF_STATE_IN_BUSY_POLL)) {
6294 if (prefer_busy_poll)
6295 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6296 goto count;
6297 }
6298 if (cmpxchg(&napi->state, val,
6299 val | NAPIF_STATE_IN_BUSY_POLL |
6300 NAPIF_STATE_SCHED) != val) {
6301 if (prefer_busy_poll)
6302 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6303 goto count;
6304 }
6305 have_poll_lock = netpoll_poll_lock(napi);
6306 napi_poll = napi->poll;
6307 }
6308 work = napi_poll(napi, budget);
6309 trace_napi_poll(napi, work, budget);
6310 gro_normal_list(napi);
6311 count:
6312 if (work > 0)
6313 __NET_ADD_STATS(dev_net(napi->dev),
6314 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6315 local_bh_enable();
6316
6317 if (!loop_end || loop_end(loop_end_arg, start_time))
6318 break;
6319
6320 if (unlikely(need_resched())) {
6321 if (napi_poll)
6322 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6323 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6324 preempt_enable();
6325 rcu_read_unlock();
6326 cond_resched();
6327 if (loop_end(loop_end_arg, start_time))
6328 return;
6329 goto restart;
6330 }
6331 cpu_relax();
6332 }
6333 if (napi_poll)
6334 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6335 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6336 preempt_enable();
6337 out:
6338 rcu_read_unlock();
6339 }
6340 EXPORT_SYMBOL(napi_busy_loop);
6341
6342 #endif /* CONFIG_NET_RX_BUSY_POLL */
6343
napi_hash_add(struct napi_struct * napi)6344 static void napi_hash_add(struct napi_struct *napi)
6345 {
6346 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6347 return;
6348
6349 spin_lock(&napi_hash_lock);
6350
6351 /* 0..NR_CPUS range is reserved for sender_cpu use */
6352 do {
6353 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6354 napi_gen_id = MIN_NAPI_ID;
6355 } while (napi_by_id(napi_gen_id));
6356 napi->napi_id = napi_gen_id;
6357
6358 hlist_add_head_rcu(&napi->napi_hash_node,
6359 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6360
6361 spin_unlock(&napi_hash_lock);
6362 }
6363
6364 /* Warning : caller is responsible to make sure rcu grace period
6365 * is respected before freeing memory containing @napi
6366 */
napi_hash_del(struct napi_struct * napi)6367 static void napi_hash_del(struct napi_struct *napi)
6368 {
6369 spin_lock(&napi_hash_lock);
6370
6371 hlist_del_init_rcu(&napi->napi_hash_node);
6372
6373 spin_unlock(&napi_hash_lock);
6374 }
6375
napi_watchdog(struct hrtimer * timer)6376 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6377 {
6378 struct napi_struct *napi;
6379
6380 napi = container_of(timer, struct napi_struct, timer);
6381
6382 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6383 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6384 */
6385 if (!napi_disable_pending(napi) &&
6386 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6387 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6388 __napi_schedule_irqoff(napi);
6389 }
6390
6391 return HRTIMER_NORESTART;
6392 }
6393
init_gro_hash(struct napi_struct * napi)6394 static void init_gro_hash(struct napi_struct *napi)
6395 {
6396 int i;
6397
6398 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6399 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6400 napi->gro_hash[i].count = 0;
6401 }
6402 napi->gro_bitmask = 0;
6403 }
6404
dev_set_threaded(struct net_device * dev,bool threaded)6405 int dev_set_threaded(struct net_device *dev, bool threaded)
6406 {
6407 struct napi_struct *napi;
6408 int err = 0;
6409
6410 if (dev->threaded == threaded)
6411 return 0;
6412
6413 if (threaded) {
6414 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6415 if (!napi->thread) {
6416 err = napi_kthread_create(napi);
6417 if (err) {
6418 threaded = false;
6419 break;
6420 }
6421 }
6422 }
6423 }
6424
6425 dev->threaded = threaded;
6426
6427 /* Make sure kthread is created before THREADED bit
6428 * is set.
6429 */
6430 smp_mb__before_atomic();
6431
6432 /* Setting/unsetting threaded mode on a napi might not immediately
6433 * take effect, if the current napi instance is actively being
6434 * polled. In this case, the switch between threaded mode and
6435 * softirq mode will happen in the next round of napi_schedule().
6436 * This should not cause hiccups/stalls to the live traffic.
6437 */
6438 list_for_each_entry(napi, &dev->napi_list, dev_list)
6439 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6440
6441 return err;
6442 }
6443 EXPORT_SYMBOL(dev_set_threaded);
6444
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6445 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6446 int (*poll)(struct napi_struct *, int), int weight)
6447 {
6448 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6449 return;
6450
6451 INIT_LIST_HEAD(&napi->poll_list);
6452 INIT_HLIST_NODE(&napi->napi_hash_node);
6453 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6454 napi->timer.function = napi_watchdog;
6455 init_gro_hash(napi);
6456 napi->skb = NULL;
6457 INIT_LIST_HEAD(&napi->rx_list);
6458 napi->rx_count = 0;
6459 napi->poll = poll;
6460 if (weight > NAPI_POLL_WEIGHT)
6461 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6462 weight);
6463 napi->weight = weight;
6464 napi->dev = dev;
6465 #ifdef CONFIG_NETPOLL
6466 napi->poll_owner = -1;
6467 #endif
6468 napi->list_owner = -1;
6469 set_bit(NAPI_STATE_SCHED, &napi->state);
6470 set_bit(NAPI_STATE_NPSVC, &napi->state);
6471 list_add_rcu(&napi->dev_list, &dev->napi_list);
6472 napi_hash_add(napi);
6473 napi_get_frags_check(napi);
6474 /* Create kthread for this napi if dev->threaded is set.
6475 * Clear dev->threaded if kthread creation failed so that
6476 * threaded mode will not be enabled in napi_enable().
6477 */
6478 if (dev->threaded && napi_kthread_create(napi))
6479 dev->threaded = 0;
6480 }
6481 EXPORT_SYMBOL(netif_napi_add_weight);
6482
napi_disable(struct napi_struct * n)6483 void napi_disable(struct napi_struct *n)
6484 {
6485 unsigned long val, new;
6486
6487 might_sleep();
6488 set_bit(NAPI_STATE_DISABLE, &n->state);
6489
6490 val = READ_ONCE(n->state);
6491 do {
6492 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6493 usleep_range(20, 200);
6494 val = READ_ONCE(n->state);
6495 }
6496
6497 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6498 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6499 } while (!try_cmpxchg(&n->state, &val, new));
6500
6501 hrtimer_cancel(&n->timer);
6502
6503 clear_bit(NAPI_STATE_DISABLE, &n->state);
6504 }
6505 EXPORT_SYMBOL(napi_disable);
6506
6507 /**
6508 * napi_enable - enable NAPI scheduling
6509 * @n: NAPI context
6510 *
6511 * Resume NAPI from being scheduled on this context.
6512 * Must be paired with napi_disable.
6513 */
napi_enable(struct napi_struct * n)6514 void napi_enable(struct napi_struct *n)
6515 {
6516 unsigned long new, val = READ_ONCE(n->state);
6517
6518 do {
6519 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6520
6521 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6522 if (n->dev->threaded && n->thread)
6523 new |= NAPIF_STATE_THREADED;
6524 } while (!try_cmpxchg(&n->state, &val, new));
6525 }
6526 EXPORT_SYMBOL(napi_enable);
6527
flush_gro_hash(struct napi_struct * napi)6528 static void flush_gro_hash(struct napi_struct *napi)
6529 {
6530 int i;
6531
6532 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6533 struct sk_buff *skb, *n;
6534
6535 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6536 kfree_skb(skb);
6537 napi->gro_hash[i].count = 0;
6538 }
6539 }
6540
6541 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6542 void __netif_napi_del(struct napi_struct *napi)
6543 {
6544 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6545 return;
6546
6547 napi_hash_del(napi);
6548 list_del_rcu(&napi->dev_list);
6549 napi_free_frags(napi);
6550
6551 flush_gro_hash(napi);
6552 napi->gro_bitmask = 0;
6553
6554 if (napi->thread) {
6555 kthread_stop(napi->thread);
6556 napi->thread = NULL;
6557 }
6558 }
6559 EXPORT_SYMBOL(__netif_napi_del);
6560
__napi_poll(struct napi_struct * n,bool * repoll)6561 static int __napi_poll(struct napi_struct *n, bool *repoll)
6562 {
6563 int work, weight;
6564
6565 weight = n->weight;
6566
6567 /* This NAPI_STATE_SCHED test is for avoiding a race
6568 * with netpoll's poll_napi(). Only the entity which
6569 * obtains the lock and sees NAPI_STATE_SCHED set will
6570 * actually make the ->poll() call. Therefore we avoid
6571 * accidentally calling ->poll() when NAPI is not scheduled.
6572 */
6573 work = 0;
6574 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6575 work = n->poll(n, weight);
6576 trace_napi_poll(n, work, weight);
6577 }
6578
6579 if (unlikely(work > weight))
6580 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6581 n->poll, work, weight);
6582
6583 if (likely(work < weight))
6584 return work;
6585
6586 /* Drivers must not modify the NAPI state if they
6587 * consume the entire weight. In such cases this code
6588 * still "owns" the NAPI instance and therefore can
6589 * move the instance around on the list at-will.
6590 */
6591 if (unlikely(napi_disable_pending(n))) {
6592 napi_complete(n);
6593 return work;
6594 }
6595
6596 /* The NAPI context has more processing work, but busy-polling
6597 * is preferred. Exit early.
6598 */
6599 if (napi_prefer_busy_poll(n)) {
6600 if (napi_complete_done(n, work)) {
6601 /* If timeout is not set, we need to make sure
6602 * that the NAPI is re-scheduled.
6603 */
6604 napi_schedule(n);
6605 }
6606 return work;
6607 }
6608
6609 if (n->gro_bitmask) {
6610 /* flush too old packets
6611 * If HZ < 1000, flush all packets.
6612 */
6613 napi_gro_flush(n, HZ >= 1000);
6614 }
6615
6616 gro_normal_list(n);
6617
6618 /* Some drivers may have called napi_schedule
6619 * prior to exhausting their budget.
6620 */
6621 if (unlikely(!list_empty(&n->poll_list))) {
6622 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6623 n->dev ? n->dev->name : "backlog");
6624 return work;
6625 }
6626
6627 *repoll = true;
6628
6629 return work;
6630 }
6631
napi_poll(struct napi_struct * n,struct list_head * repoll)6632 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6633 {
6634 bool do_repoll = false;
6635 void *have;
6636 int work;
6637
6638 list_del_init(&n->poll_list);
6639
6640 have = netpoll_poll_lock(n);
6641
6642 work = __napi_poll(n, &do_repoll);
6643
6644 if (do_repoll)
6645 list_add_tail(&n->poll_list, repoll);
6646
6647 netpoll_poll_unlock(have);
6648
6649 return work;
6650 }
6651
napi_thread_wait(struct napi_struct * napi)6652 static int napi_thread_wait(struct napi_struct *napi)
6653 {
6654 bool woken = false;
6655
6656 set_current_state(TASK_INTERRUPTIBLE);
6657
6658 while (!kthread_should_stop()) {
6659 /* Testing SCHED_THREADED bit here to make sure the current
6660 * kthread owns this napi and could poll on this napi.
6661 * Testing SCHED bit is not enough because SCHED bit might be
6662 * set by some other busy poll thread or by napi_disable().
6663 */
6664 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6665 WARN_ON(!list_empty(&napi->poll_list));
6666 __set_current_state(TASK_RUNNING);
6667 return 0;
6668 }
6669
6670 schedule();
6671 /* woken being true indicates this thread owns this napi. */
6672 woken = true;
6673 set_current_state(TASK_INTERRUPTIBLE);
6674 }
6675 __set_current_state(TASK_RUNNING);
6676
6677 return -1;
6678 }
6679
skb_defer_free_flush(struct softnet_data * sd)6680 static void skb_defer_free_flush(struct softnet_data *sd)
6681 {
6682 struct sk_buff *skb, *next;
6683
6684 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6685 if (!READ_ONCE(sd->defer_list))
6686 return;
6687
6688 spin_lock(&sd->defer_lock);
6689 skb = sd->defer_list;
6690 sd->defer_list = NULL;
6691 sd->defer_count = 0;
6692 spin_unlock(&sd->defer_lock);
6693
6694 while (skb != NULL) {
6695 next = skb->next;
6696 napi_consume_skb(skb, 1);
6697 skb = next;
6698 }
6699 }
6700
napi_threaded_poll(void * data)6701 static int napi_threaded_poll(void *data)
6702 {
6703 struct napi_struct *napi = data;
6704 struct softnet_data *sd;
6705 void *have;
6706
6707 while (!napi_thread_wait(napi)) {
6708 unsigned long last_qs = jiffies;
6709
6710 for (;;) {
6711 bool repoll = false;
6712
6713 local_bh_disable();
6714 sd = this_cpu_ptr(&softnet_data);
6715 sd->in_napi_threaded_poll = true;
6716
6717 have = netpoll_poll_lock(napi);
6718 __napi_poll(napi, &repoll);
6719 netpoll_poll_unlock(have);
6720
6721 sd->in_napi_threaded_poll = false;
6722 barrier();
6723
6724 if (sd_has_rps_ipi_waiting(sd)) {
6725 local_irq_disable();
6726 net_rps_action_and_irq_enable(sd);
6727 }
6728 skb_defer_free_flush(sd);
6729 local_bh_enable();
6730
6731 if (!repoll)
6732 break;
6733
6734 rcu_softirq_qs_periodic(last_qs);
6735 cond_resched();
6736 }
6737 }
6738 return 0;
6739 }
6740
net_rx_action(struct softirq_action * h)6741 static __latent_entropy void net_rx_action(struct softirq_action *h)
6742 {
6743 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6744 unsigned long time_limit = jiffies +
6745 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6746 int budget = READ_ONCE(netdev_budget);
6747 LIST_HEAD(list);
6748 LIST_HEAD(repoll);
6749
6750 start:
6751 sd->in_net_rx_action = true;
6752 local_irq_disable();
6753 list_splice_init(&sd->poll_list, &list);
6754 local_irq_enable();
6755
6756 for (;;) {
6757 struct napi_struct *n;
6758
6759 skb_defer_free_flush(sd);
6760
6761 if (list_empty(&list)) {
6762 if (list_empty(&repoll)) {
6763 sd->in_net_rx_action = false;
6764 barrier();
6765 /* We need to check if ____napi_schedule()
6766 * had refilled poll_list while
6767 * sd->in_net_rx_action was true.
6768 */
6769 if (!list_empty(&sd->poll_list))
6770 goto start;
6771 if (!sd_has_rps_ipi_waiting(sd))
6772 goto end;
6773 }
6774 break;
6775 }
6776
6777 n = list_first_entry(&list, struct napi_struct, poll_list);
6778 budget -= napi_poll(n, &repoll);
6779
6780 /* If softirq window is exhausted then punt.
6781 * Allow this to run for 2 jiffies since which will allow
6782 * an average latency of 1.5/HZ.
6783 */
6784 if (unlikely(budget <= 0 ||
6785 time_after_eq(jiffies, time_limit))) {
6786 sd->time_squeeze++;
6787 break;
6788 }
6789 }
6790
6791 local_irq_disable();
6792
6793 list_splice_tail_init(&sd->poll_list, &list);
6794 list_splice_tail(&repoll, &list);
6795 list_splice(&list, &sd->poll_list);
6796 if (!list_empty(&sd->poll_list))
6797 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6798 else
6799 sd->in_net_rx_action = false;
6800
6801 net_rps_action_and_irq_enable(sd);
6802 end:;
6803 }
6804
6805 struct netdev_adjacent {
6806 struct net_device *dev;
6807 netdevice_tracker dev_tracker;
6808
6809 /* upper master flag, there can only be one master device per list */
6810 bool master;
6811
6812 /* lookup ignore flag */
6813 bool ignore;
6814
6815 /* counter for the number of times this device was added to us */
6816 u16 ref_nr;
6817
6818 /* private field for the users */
6819 void *private;
6820
6821 struct list_head list;
6822 struct rcu_head rcu;
6823 };
6824
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6825 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6826 struct list_head *adj_list)
6827 {
6828 struct netdev_adjacent *adj;
6829
6830 list_for_each_entry(adj, adj_list, list) {
6831 if (adj->dev == adj_dev)
6832 return adj;
6833 }
6834 return NULL;
6835 }
6836
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6837 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6838 struct netdev_nested_priv *priv)
6839 {
6840 struct net_device *dev = (struct net_device *)priv->data;
6841
6842 return upper_dev == dev;
6843 }
6844
6845 /**
6846 * netdev_has_upper_dev - Check if device is linked to an upper device
6847 * @dev: device
6848 * @upper_dev: upper device to check
6849 *
6850 * Find out if a device is linked to specified upper device and return true
6851 * in case it is. Note that this checks only immediate upper device,
6852 * not through a complete stack of devices. The caller must hold the RTNL lock.
6853 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6854 bool netdev_has_upper_dev(struct net_device *dev,
6855 struct net_device *upper_dev)
6856 {
6857 struct netdev_nested_priv priv = {
6858 .data = (void *)upper_dev,
6859 };
6860
6861 ASSERT_RTNL();
6862
6863 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6864 &priv);
6865 }
6866 EXPORT_SYMBOL(netdev_has_upper_dev);
6867
6868 /**
6869 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6870 * @dev: device
6871 * @upper_dev: upper device to check
6872 *
6873 * Find out if a device is linked to specified upper device and return true
6874 * in case it is. Note that this checks the entire upper device chain.
6875 * The caller must hold rcu lock.
6876 */
6877
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6878 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6879 struct net_device *upper_dev)
6880 {
6881 struct netdev_nested_priv priv = {
6882 .data = (void *)upper_dev,
6883 };
6884
6885 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6886 &priv);
6887 }
6888 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6889
6890 /**
6891 * netdev_has_any_upper_dev - Check if device is linked to some device
6892 * @dev: device
6893 *
6894 * Find out if a device is linked to an upper device and return true in case
6895 * it is. The caller must hold the RTNL lock.
6896 */
netdev_has_any_upper_dev(struct net_device * dev)6897 bool netdev_has_any_upper_dev(struct net_device *dev)
6898 {
6899 ASSERT_RTNL();
6900
6901 return !list_empty(&dev->adj_list.upper);
6902 }
6903 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6904
6905 /**
6906 * netdev_master_upper_dev_get - Get master upper device
6907 * @dev: device
6908 *
6909 * Find a master upper device and return pointer to it or NULL in case
6910 * it's not there. The caller must hold the RTNL lock.
6911 */
netdev_master_upper_dev_get(struct net_device * dev)6912 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6913 {
6914 struct netdev_adjacent *upper;
6915
6916 ASSERT_RTNL();
6917
6918 if (list_empty(&dev->adj_list.upper))
6919 return NULL;
6920
6921 upper = list_first_entry(&dev->adj_list.upper,
6922 struct netdev_adjacent, list);
6923 if (likely(upper->master))
6924 return upper->dev;
6925 return NULL;
6926 }
6927 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6928
__netdev_master_upper_dev_get(struct net_device * dev)6929 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6930 {
6931 struct netdev_adjacent *upper;
6932
6933 ASSERT_RTNL();
6934
6935 if (list_empty(&dev->adj_list.upper))
6936 return NULL;
6937
6938 upper = list_first_entry(&dev->adj_list.upper,
6939 struct netdev_adjacent, list);
6940 if (likely(upper->master) && !upper->ignore)
6941 return upper->dev;
6942 return NULL;
6943 }
6944
6945 /**
6946 * netdev_has_any_lower_dev - Check if device is linked to some device
6947 * @dev: device
6948 *
6949 * Find out if a device is linked to a lower device and return true in case
6950 * it is. The caller must hold the RTNL lock.
6951 */
netdev_has_any_lower_dev(struct net_device * dev)6952 static bool netdev_has_any_lower_dev(struct net_device *dev)
6953 {
6954 ASSERT_RTNL();
6955
6956 return !list_empty(&dev->adj_list.lower);
6957 }
6958
netdev_adjacent_get_private(struct list_head * adj_list)6959 void *netdev_adjacent_get_private(struct list_head *adj_list)
6960 {
6961 struct netdev_adjacent *adj;
6962
6963 adj = list_entry(adj_list, struct netdev_adjacent, list);
6964
6965 return adj->private;
6966 }
6967 EXPORT_SYMBOL(netdev_adjacent_get_private);
6968
6969 /**
6970 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6971 * @dev: device
6972 * @iter: list_head ** of the current position
6973 *
6974 * Gets the next device from the dev's upper list, starting from iter
6975 * position. The caller must hold RCU read lock.
6976 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6977 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6978 struct list_head **iter)
6979 {
6980 struct netdev_adjacent *upper;
6981
6982 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6983
6984 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6985
6986 if (&upper->list == &dev->adj_list.upper)
6987 return NULL;
6988
6989 *iter = &upper->list;
6990
6991 return upper->dev;
6992 }
6993 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6994
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)6995 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6996 struct list_head **iter,
6997 bool *ignore)
6998 {
6999 struct netdev_adjacent *upper;
7000
7001 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7002
7003 if (&upper->list == &dev->adj_list.upper)
7004 return NULL;
7005
7006 *iter = &upper->list;
7007 *ignore = upper->ignore;
7008
7009 return upper->dev;
7010 }
7011
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7012 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7013 struct list_head **iter)
7014 {
7015 struct netdev_adjacent *upper;
7016
7017 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7018
7019 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7020
7021 if (&upper->list == &dev->adj_list.upper)
7022 return NULL;
7023
7024 *iter = &upper->list;
7025
7026 return upper->dev;
7027 }
7028
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7029 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7030 int (*fn)(struct net_device *dev,
7031 struct netdev_nested_priv *priv),
7032 struct netdev_nested_priv *priv)
7033 {
7034 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7035 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7036 int ret, cur = 0;
7037 bool ignore;
7038
7039 now = dev;
7040 iter = &dev->adj_list.upper;
7041
7042 while (1) {
7043 if (now != dev) {
7044 ret = fn(now, priv);
7045 if (ret)
7046 return ret;
7047 }
7048
7049 next = NULL;
7050 while (1) {
7051 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7052 if (!udev)
7053 break;
7054 if (ignore)
7055 continue;
7056
7057 next = udev;
7058 niter = &udev->adj_list.upper;
7059 dev_stack[cur] = now;
7060 iter_stack[cur++] = iter;
7061 break;
7062 }
7063
7064 if (!next) {
7065 if (!cur)
7066 return 0;
7067 next = dev_stack[--cur];
7068 niter = iter_stack[cur];
7069 }
7070
7071 now = next;
7072 iter = niter;
7073 }
7074
7075 return 0;
7076 }
7077
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7078 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7079 int (*fn)(struct net_device *dev,
7080 struct netdev_nested_priv *priv),
7081 struct netdev_nested_priv *priv)
7082 {
7083 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7084 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7085 int ret, cur = 0;
7086
7087 now = dev;
7088 iter = &dev->adj_list.upper;
7089
7090 while (1) {
7091 if (now != dev) {
7092 ret = fn(now, priv);
7093 if (ret)
7094 return ret;
7095 }
7096
7097 next = NULL;
7098 while (1) {
7099 udev = netdev_next_upper_dev_rcu(now, &iter);
7100 if (!udev)
7101 break;
7102
7103 next = udev;
7104 niter = &udev->adj_list.upper;
7105 dev_stack[cur] = now;
7106 iter_stack[cur++] = iter;
7107 break;
7108 }
7109
7110 if (!next) {
7111 if (!cur)
7112 return 0;
7113 next = dev_stack[--cur];
7114 niter = iter_stack[cur];
7115 }
7116
7117 now = next;
7118 iter = niter;
7119 }
7120
7121 return 0;
7122 }
7123 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7124
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7125 static bool __netdev_has_upper_dev(struct net_device *dev,
7126 struct net_device *upper_dev)
7127 {
7128 struct netdev_nested_priv priv = {
7129 .flags = 0,
7130 .data = (void *)upper_dev,
7131 };
7132
7133 ASSERT_RTNL();
7134
7135 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7136 &priv);
7137 }
7138
7139 /**
7140 * netdev_lower_get_next_private - Get the next ->private from the
7141 * lower neighbour list
7142 * @dev: device
7143 * @iter: list_head ** of the current position
7144 *
7145 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7146 * list, starting from iter position. The caller must hold either hold the
7147 * RTNL lock or its own locking that guarantees that the neighbour lower
7148 * list will remain unchanged.
7149 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7150 void *netdev_lower_get_next_private(struct net_device *dev,
7151 struct list_head **iter)
7152 {
7153 struct netdev_adjacent *lower;
7154
7155 lower = list_entry(*iter, struct netdev_adjacent, list);
7156
7157 if (&lower->list == &dev->adj_list.lower)
7158 return NULL;
7159
7160 *iter = lower->list.next;
7161
7162 return lower->private;
7163 }
7164 EXPORT_SYMBOL(netdev_lower_get_next_private);
7165
7166 /**
7167 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7168 * lower neighbour list, RCU
7169 * variant
7170 * @dev: device
7171 * @iter: list_head ** of the current position
7172 *
7173 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7174 * list, starting from iter position. The caller must hold RCU read lock.
7175 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7176 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7177 struct list_head **iter)
7178 {
7179 struct netdev_adjacent *lower;
7180
7181 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7182
7183 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7184
7185 if (&lower->list == &dev->adj_list.lower)
7186 return NULL;
7187
7188 *iter = &lower->list;
7189
7190 return lower->private;
7191 }
7192 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7193
7194 /**
7195 * netdev_lower_get_next - Get the next device from the lower neighbour
7196 * list
7197 * @dev: device
7198 * @iter: list_head ** of the current position
7199 *
7200 * Gets the next netdev_adjacent from the dev's lower neighbour
7201 * list, starting from iter position. The caller must hold RTNL lock or
7202 * its own locking that guarantees that the neighbour lower
7203 * list will remain unchanged.
7204 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7205 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7206 {
7207 struct netdev_adjacent *lower;
7208
7209 lower = list_entry(*iter, struct netdev_adjacent, list);
7210
7211 if (&lower->list == &dev->adj_list.lower)
7212 return NULL;
7213
7214 *iter = lower->list.next;
7215
7216 return lower->dev;
7217 }
7218 EXPORT_SYMBOL(netdev_lower_get_next);
7219
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7220 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7221 struct list_head **iter)
7222 {
7223 struct netdev_adjacent *lower;
7224
7225 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7226
7227 if (&lower->list == &dev->adj_list.lower)
7228 return NULL;
7229
7230 *iter = &lower->list;
7231
7232 return lower->dev;
7233 }
7234
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7235 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7236 struct list_head **iter,
7237 bool *ignore)
7238 {
7239 struct netdev_adjacent *lower;
7240
7241 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7242
7243 if (&lower->list == &dev->adj_list.lower)
7244 return NULL;
7245
7246 *iter = &lower->list;
7247 *ignore = lower->ignore;
7248
7249 return lower->dev;
7250 }
7251
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7252 int netdev_walk_all_lower_dev(struct net_device *dev,
7253 int (*fn)(struct net_device *dev,
7254 struct netdev_nested_priv *priv),
7255 struct netdev_nested_priv *priv)
7256 {
7257 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7258 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7259 int ret, cur = 0;
7260
7261 now = dev;
7262 iter = &dev->adj_list.lower;
7263
7264 while (1) {
7265 if (now != dev) {
7266 ret = fn(now, priv);
7267 if (ret)
7268 return ret;
7269 }
7270
7271 next = NULL;
7272 while (1) {
7273 ldev = netdev_next_lower_dev(now, &iter);
7274 if (!ldev)
7275 break;
7276
7277 next = ldev;
7278 niter = &ldev->adj_list.lower;
7279 dev_stack[cur] = now;
7280 iter_stack[cur++] = iter;
7281 break;
7282 }
7283
7284 if (!next) {
7285 if (!cur)
7286 return 0;
7287 next = dev_stack[--cur];
7288 niter = iter_stack[cur];
7289 }
7290
7291 now = next;
7292 iter = niter;
7293 }
7294
7295 return 0;
7296 }
7297 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7298
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7299 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7300 int (*fn)(struct net_device *dev,
7301 struct netdev_nested_priv *priv),
7302 struct netdev_nested_priv *priv)
7303 {
7304 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7305 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7306 int ret, cur = 0;
7307 bool ignore;
7308
7309 now = dev;
7310 iter = &dev->adj_list.lower;
7311
7312 while (1) {
7313 if (now != dev) {
7314 ret = fn(now, priv);
7315 if (ret)
7316 return ret;
7317 }
7318
7319 next = NULL;
7320 while (1) {
7321 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7322 if (!ldev)
7323 break;
7324 if (ignore)
7325 continue;
7326
7327 next = ldev;
7328 niter = &ldev->adj_list.lower;
7329 dev_stack[cur] = now;
7330 iter_stack[cur++] = iter;
7331 break;
7332 }
7333
7334 if (!next) {
7335 if (!cur)
7336 return 0;
7337 next = dev_stack[--cur];
7338 niter = iter_stack[cur];
7339 }
7340
7341 now = next;
7342 iter = niter;
7343 }
7344
7345 return 0;
7346 }
7347
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7348 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7349 struct list_head **iter)
7350 {
7351 struct netdev_adjacent *lower;
7352
7353 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7354 if (&lower->list == &dev->adj_list.lower)
7355 return NULL;
7356
7357 *iter = &lower->list;
7358
7359 return lower->dev;
7360 }
7361 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7362
__netdev_upper_depth(struct net_device * dev)7363 static u8 __netdev_upper_depth(struct net_device *dev)
7364 {
7365 struct net_device *udev;
7366 struct list_head *iter;
7367 u8 max_depth = 0;
7368 bool ignore;
7369
7370 for (iter = &dev->adj_list.upper,
7371 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7372 udev;
7373 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7374 if (ignore)
7375 continue;
7376 if (max_depth < udev->upper_level)
7377 max_depth = udev->upper_level;
7378 }
7379
7380 return max_depth;
7381 }
7382
__netdev_lower_depth(struct net_device * dev)7383 static u8 __netdev_lower_depth(struct net_device *dev)
7384 {
7385 struct net_device *ldev;
7386 struct list_head *iter;
7387 u8 max_depth = 0;
7388 bool ignore;
7389
7390 for (iter = &dev->adj_list.lower,
7391 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7392 ldev;
7393 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7394 if (ignore)
7395 continue;
7396 if (max_depth < ldev->lower_level)
7397 max_depth = ldev->lower_level;
7398 }
7399
7400 return max_depth;
7401 }
7402
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7403 static int __netdev_update_upper_level(struct net_device *dev,
7404 struct netdev_nested_priv *__unused)
7405 {
7406 dev->upper_level = __netdev_upper_depth(dev) + 1;
7407 return 0;
7408 }
7409
7410 #ifdef CONFIG_LOCKDEP
7411 static LIST_HEAD(net_unlink_list);
7412
net_unlink_todo(struct net_device * dev)7413 static void net_unlink_todo(struct net_device *dev)
7414 {
7415 if (list_empty(&dev->unlink_list))
7416 list_add_tail(&dev->unlink_list, &net_unlink_list);
7417 }
7418 #endif
7419
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7420 static int __netdev_update_lower_level(struct net_device *dev,
7421 struct netdev_nested_priv *priv)
7422 {
7423 dev->lower_level = __netdev_lower_depth(dev) + 1;
7424
7425 #ifdef CONFIG_LOCKDEP
7426 if (!priv)
7427 return 0;
7428
7429 if (priv->flags & NESTED_SYNC_IMM)
7430 dev->nested_level = dev->lower_level - 1;
7431 if (priv->flags & NESTED_SYNC_TODO)
7432 net_unlink_todo(dev);
7433 #endif
7434 return 0;
7435 }
7436
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7437 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7438 int (*fn)(struct net_device *dev,
7439 struct netdev_nested_priv *priv),
7440 struct netdev_nested_priv *priv)
7441 {
7442 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7443 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7444 int ret, cur = 0;
7445
7446 now = dev;
7447 iter = &dev->adj_list.lower;
7448
7449 while (1) {
7450 if (now != dev) {
7451 ret = fn(now, priv);
7452 if (ret)
7453 return ret;
7454 }
7455
7456 next = NULL;
7457 while (1) {
7458 ldev = netdev_next_lower_dev_rcu(now, &iter);
7459 if (!ldev)
7460 break;
7461
7462 next = ldev;
7463 niter = &ldev->adj_list.lower;
7464 dev_stack[cur] = now;
7465 iter_stack[cur++] = iter;
7466 break;
7467 }
7468
7469 if (!next) {
7470 if (!cur)
7471 return 0;
7472 next = dev_stack[--cur];
7473 niter = iter_stack[cur];
7474 }
7475
7476 now = next;
7477 iter = niter;
7478 }
7479
7480 return 0;
7481 }
7482 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7483
7484 /**
7485 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7486 * lower neighbour list, RCU
7487 * variant
7488 * @dev: device
7489 *
7490 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7491 * list. The caller must hold RCU read lock.
7492 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7493 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7494 {
7495 struct netdev_adjacent *lower;
7496
7497 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7498 struct netdev_adjacent, list);
7499 if (lower)
7500 return lower->private;
7501 return NULL;
7502 }
7503 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7504
7505 /**
7506 * netdev_master_upper_dev_get_rcu - Get master upper device
7507 * @dev: device
7508 *
7509 * Find a master upper device and return pointer to it or NULL in case
7510 * it's not there. The caller must hold the RCU read lock.
7511 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7512 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7513 {
7514 struct netdev_adjacent *upper;
7515
7516 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7517 struct netdev_adjacent, list);
7518 if (upper && likely(upper->master))
7519 return upper->dev;
7520 return NULL;
7521 }
7522 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7523
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7524 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7525 struct net_device *adj_dev,
7526 struct list_head *dev_list)
7527 {
7528 char linkname[IFNAMSIZ+7];
7529
7530 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7531 "upper_%s" : "lower_%s", adj_dev->name);
7532 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7533 linkname);
7534 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7535 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7536 char *name,
7537 struct list_head *dev_list)
7538 {
7539 char linkname[IFNAMSIZ+7];
7540
7541 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7542 "upper_%s" : "lower_%s", name);
7543 sysfs_remove_link(&(dev->dev.kobj), linkname);
7544 }
7545
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7546 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7547 struct net_device *adj_dev,
7548 struct list_head *dev_list)
7549 {
7550 return (dev_list == &dev->adj_list.upper ||
7551 dev_list == &dev->adj_list.lower) &&
7552 net_eq(dev_net(dev), dev_net(adj_dev));
7553 }
7554
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7555 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7556 struct net_device *adj_dev,
7557 struct list_head *dev_list,
7558 void *private, bool master)
7559 {
7560 struct netdev_adjacent *adj;
7561 int ret;
7562
7563 adj = __netdev_find_adj(adj_dev, dev_list);
7564
7565 if (adj) {
7566 adj->ref_nr += 1;
7567 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7568 dev->name, adj_dev->name, adj->ref_nr);
7569
7570 return 0;
7571 }
7572
7573 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7574 if (!adj)
7575 return -ENOMEM;
7576
7577 adj->dev = adj_dev;
7578 adj->master = master;
7579 adj->ref_nr = 1;
7580 adj->private = private;
7581 adj->ignore = false;
7582 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7583
7584 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7585 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7586
7587 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7588 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7589 if (ret)
7590 goto free_adj;
7591 }
7592
7593 /* Ensure that master link is always the first item in list. */
7594 if (master) {
7595 ret = sysfs_create_link(&(dev->dev.kobj),
7596 &(adj_dev->dev.kobj), "master");
7597 if (ret)
7598 goto remove_symlinks;
7599
7600 list_add_rcu(&adj->list, dev_list);
7601 } else {
7602 list_add_tail_rcu(&adj->list, dev_list);
7603 }
7604
7605 return 0;
7606
7607 remove_symlinks:
7608 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7609 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7610 free_adj:
7611 netdev_put(adj_dev, &adj->dev_tracker);
7612 kfree(adj);
7613
7614 return ret;
7615 }
7616
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7617 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7618 struct net_device *adj_dev,
7619 u16 ref_nr,
7620 struct list_head *dev_list)
7621 {
7622 struct netdev_adjacent *adj;
7623
7624 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7625 dev->name, adj_dev->name, ref_nr);
7626
7627 adj = __netdev_find_adj(adj_dev, dev_list);
7628
7629 if (!adj) {
7630 pr_err("Adjacency does not exist for device %s from %s\n",
7631 dev->name, adj_dev->name);
7632 WARN_ON(1);
7633 return;
7634 }
7635
7636 if (adj->ref_nr > ref_nr) {
7637 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7638 dev->name, adj_dev->name, ref_nr,
7639 adj->ref_nr - ref_nr);
7640 adj->ref_nr -= ref_nr;
7641 return;
7642 }
7643
7644 if (adj->master)
7645 sysfs_remove_link(&(dev->dev.kobj), "master");
7646
7647 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7648 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7649
7650 list_del_rcu(&adj->list);
7651 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7652 adj_dev->name, dev->name, adj_dev->name);
7653 netdev_put(adj_dev, &adj->dev_tracker);
7654 kfree_rcu(adj, rcu);
7655 }
7656
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7657 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7658 struct net_device *upper_dev,
7659 struct list_head *up_list,
7660 struct list_head *down_list,
7661 void *private, bool master)
7662 {
7663 int ret;
7664
7665 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7666 private, master);
7667 if (ret)
7668 return ret;
7669
7670 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7671 private, false);
7672 if (ret) {
7673 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7674 return ret;
7675 }
7676
7677 return 0;
7678 }
7679
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7680 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7681 struct net_device *upper_dev,
7682 u16 ref_nr,
7683 struct list_head *up_list,
7684 struct list_head *down_list)
7685 {
7686 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7687 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7688 }
7689
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7690 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7691 struct net_device *upper_dev,
7692 void *private, bool master)
7693 {
7694 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7695 &dev->adj_list.upper,
7696 &upper_dev->adj_list.lower,
7697 private, master);
7698 }
7699
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7700 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7701 struct net_device *upper_dev)
7702 {
7703 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7704 &dev->adj_list.upper,
7705 &upper_dev->adj_list.lower);
7706 }
7707
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7708 static int __netdev_upper_dev_link(struct net_device *dev,
7709 struct net_device *upper_dev, bool master,
7710 void *upper_priv, void *upper_info,
7711 struct netdev_nested_priv *priv,
7712 struct netlink_ext_ack *extack)
7713 {
7714 struct netdev_notifier_changeupper_info changeupper_info = {
7715 .info = {
7716 .dev = dev,
7717 .extack = extack,
7718 },
7719 .upper_dev = upper_dev,
7720 .master = master,
7721 .linking = true,
7722 .upper_info = upper_info,
7723 };
7724 struct net_device *master_dev;
7725 int ret = 0;
7726
7727 ASSERT_RTNL();
7728
7729 if (dev == upper_dev)
7730 return -EBUSY;
7731
7732 /* To prevent loops, check if dev is not upper device to upper_dev. */
7733 if (__netdev_has_upper_dev(upper_dev, dev))
7734 return -EBUSY;
7735
7736 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7737 return -EMLINK;
7738
7739 if (!master) {
7740 if (__netdev_has_upper_dev(dev, upper_dev))
7741 return -EEXIST;
7742 } else {
7743 master_dev = __netdev_master_upper_dev_get(dev);
7744 if (master_dev)
7745 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7746 }
7747
7748 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7749 &changeupper_info.info);
7750 ret = notifier_to_errno(ret);
7751 if (ret)
7752 return ret;
7753
7754 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7755 master);
7756 if (ret)
7757 return ret;
7758
7759 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7760 &changeupper_info.info);
7761 ret = notifier_to_errno(ret);
7762 if (ret)
7763 goto rollback;
7764
7765 __netdev_update_upper_level(dev, NULL);
7766 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7767
7768 __netdev_update_lower_level(upper_dev, priv);
7769 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7770 priv);
7771
7772 return 0;
7773
7774 rollback:
7775 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7776
7777 return ret;
7778 }
7779
7780 /**
7781 * netdev_upper_dev_link - Add a link to the upper device
7782 * @dev: device
7783 * @upper_dev: new upper device
7784 * @extack: netlink extended ack
7785 *
7786 * Adds a link to device which is upper to this one. The caller must hold
7787 * the RTNL lock. On a failure a negative errno code is returned.
7788 * On success the reference counts are adjusted and the function
7789 * returns zero.
7790 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7791 int netdev_upper_dev_link(struct net_device *dev,
7792 struct net_device *upper_dev,
7793 struct netlink_ext_ack *extack)
7794 {
7795 struct netdev_nested_priv priv = {
7796 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7797 .data = NULL,
7798 };
7799
7800 return __netdev_upper_dev_link(dev, upper_dev, false,
7801 NULL, NULL, &priv, extack);
7802 }
7803 EXPORT_SYMBOL(netdev_upper_dev_link);
7804
7805 /**
7806 * netdev_master_upper_dev_link - Add a master link to the upper device
7807 * @dev: device
7808 * @upper_dev: new upper device
7809 * @upper_priv: upper device private
7810 * @upper_info: upper info to be passed down via notifier
7811 * @extack: netlink extended ack
7812 *
7813 * Adds a link to device which is upper to this one. In this case, only
7814 * one master upper device can be linked, although other non-master devices
7815 * might be linked as well. The caller must hold the RTNL lock.
7816 * On a failure a negative errno code is returned. On success the reference
7817 * counts are adjusted and the function returns zero.
7818 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7819 int netdev_master_upper_dev_link(struct net_device *dev,
7820 struct net_device *upper_dev,
7821 void *upper_priv, void *upper_info,
7822 struct netlink_ext_ack *extack)
7823 {
7824 struct netdev_nested_priv priv = {
7825 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7826 .data = NULL,
7827 };
7828
7829 return __netdev_upper_dev_link(dev, upper_dev, true,
7830 upper_priv, upper_info, &priv, extack);
7831 }
7832 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7833
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7834 static void __netdev_upper_dev_unlink(struct net_device *dev,
7835 struct net_device *upper_dev,
7836 struct netdev_nested_priv *priv)
7837 {
7838 struct netdev_notifier_changeupper_info changeupper_info = {
7839 .info = {
7840 .dev = dev,
7841 },
7842 .upper_dev = upper_dev,
7843 .linking = false,
7844 };
7845
7846 ASSERT_RTNL();
7847
7848 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7849
7850 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7851 &changeupper_info.info);
7852
7853 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7854
7855 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7856 &changeupper_info.info);
7857
7858 __netdev_update_upper_level(dev, NULL);
7859 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7860
7861 __netdev_update_lower_level(upper_dev, priv);
7862 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7863 priv);
7864 }
7865
7866 /**
7867 * netdev_upper_dev_unlink - Removes a link to upper device
7868 * @dev: device
7869 * @upper_dev: new upper device
7870 *
7871 * Removes a link to device which is upper to this one. The caller must hold
7872 * the RTNL lock.
7873 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7874 void netdev_upper_dev_unlink(struct net_device *dev,
7875 struct net_device *upper_dev)
7876 {
7877 struct netdev_nested_priv priv = {
7878 .flags = NESTED_SYNC_TODO,
7879 .data = NULL,
7880 };
7881
7882 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7883 }
7884 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7885
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7886 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7887 struct net_device *lower_dev,
7888 bool val)
7889 {
7890 struct netdev_adjacent *adj;
7891
7892 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7893 if (adj)
7894 adj->ignore = val;
7895
7896 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7897 if (adj)
7898 adj->ignore = val;
7899 }
7900
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)7901 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7902 struct net_device *lower_dev)
7903 {
7904 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7905 }
7906
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)7907 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7908 struct net_device *lower_dev)
7909 {
7910 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7911 }
7912
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)7913 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7914 struct net_device *new_dev,
7915 struct net_device *dev,
7916 struct netlink_ext_ack *extack)
7917 {
7918 struct netdev_nested_priv priv = {
7919 .flags = 0,
7920 .data = NULL,
7921 };
7922 int err;
7923
7924 if (!new_dev)
7925 return 0;
7926
7927 if (old_dev && new_dev != old_dev)
7928 netdev_adjacent_dev_disable(dev, old_dev);
7929 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7930 extack);
7931 if (err) {
7932 if (old_dev && new_dev != old_dev)
7933 netdev_adjacent_dev_enable(dev, old_dev);
7934 return err;
7935 }
7936
7937 return 0;
7938 }
7939 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7940
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7941 void netdev_adjacent_change_commit(struct net_device *old_dev,
7942 struct net_device *new_dev,
7943 struct net_device *dev)
7944 {
7945 struct netdev_nested_priv priv = {
7946 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7947 .data = NULL,
7948 };
7949
7950 if (!new_dev || !old_dev)
7951 return;
7952
7953 if (new_dev == old_dev)
7954 return;
7955
7956 netdev_adjacent_dev_enable(dev, old_dev);
7957 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7958 }
7959 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7960
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7961 void netdev_adjacent_change_abort(struct net_device *old_dev,
7962 struct net_device *new_dev,
7963 struct net_device *dev)
7964 {
7965 struct netdev_nested_priv priv = {
7966 .flags = 0,
7967 .data = NULL,
7968 };
7969
7970 if (!new_dev)
7971 return;
7972
7973 if (old_dev && new_dev != old_dev)
7974 netdev_adjacent_dev_enable(dev, old_dev);
7975
7976 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7977 }
7978 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7979
7980 /**
7981 * netdev_bonding_info_change - Dispatch event about slave change
7982 * @dev: device
7983 * @bonding_info: info to dispatch
7984 *
7985 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7986 * The caller must hold the RTNL lock.
7987 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7988 void netdev_bonding_info_change(struct net_device *dev,
7989 struct netdev_bonding_info *bonding_info)
7990 {
7991 struct netdev_notifier_bonding_info info = {
7992 .info.dev = dev,
7993 };
7994
7995 memcpy(&info.bonding_info, bonding_info,
7996 sizeof(struct netdev_bonding_info));
7997 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7998 &info.info);
7999 }
8000 EXPORT_SYMBOL(netdev_bonding_info_change);
8001
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8002 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8003 struct netlink_ext_ack *extack)
8004 {
8005 struct netdev_notifier_offload_xstats_info info = {
8006 .info.dev = dev,
8007 .info.extack = extack,
8008 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8009 };
8010 int err;
8011 int rc;
8012
8013 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8014 GFP_KERNEL);
8015 if (!dev->offload_xstats_l3)
8016 return -ENOMEM;
8017
8018 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8019 NETDEV_OFFLOAD_XSTATS_DISABLE,
8020 &info.info);
8021 err = notifier_to_errno(rc);
8022 if (err)
8023 goto free_stats;
8024
8025 return 0;
8026
8027 free_stats:
8028 kfree(dev->offload_xstats_l3);
8029 dev->offload_xstats_l3 = NULL;
8030 return err;
8031 }
8032
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8033 int netdev_offload_xstats_enable(struct net_device *dev,
8034 enum netdev_offload_xstats_type type,
8035 struct netlink_ext_ack *extack)
8036 {
8037 ASSERT_RTNL();
8038
8039 if (netdev_offload_xstats_enabled(dev, type))
8040 return -EALREADY;
8041
8042 switch (type) {
8043 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8044 return netdev_offload_xstats_enable_l3(dev, extack);
8045 }
8046
8047 WARN_ON(1);
8048 return -EINVAL;
8049 }
8050 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8051
netdev_offload_xstats_disable_l3(struct net_device * dev)8052 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8053 {
8054 struct netdev_notifier_offload_xstats_info info = {
8055 .info.dev = dev,
8056 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8057 };
8058
8059 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8060 &info.info);
8061 kfree(dev->offload_xstats_l3);
8062 dev->offload_xstats_l3 = NULL;
8063 }
8064
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8065 int netdev_offload_xstats_disable(struct net_device *dev,
8066 enum netdev_offload_xstats_type type)
8067 {
8068 ASSERT_RTNL();
8069
8070 if (!netdev_offload_xstats_enabled(dev, type))
8071 return -EALREADY;
8072
8073 switch (type) {
8074 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8075 netdev_offload_xstats_disable_l3(dev);
8076 return 0;
8077 }
8078
8079 WARN_ON(1);
8080 return -EINVAL;
8081 }
8082 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8083
netdev_offload_xstats_disable_all(struct net_device * dev)8084 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8085 {
8086 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8087 }
8088
8089 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8090 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8091 enum netdev_offload_xstats_type type)
8092 {
8093 switch (type) {
8094 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8095 return dev->offload_xstats_l3;
8096 }
8097
8098 WARN_ON(1);
8099 return NULL;
8100 }
8101
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8102 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8103 enum netdev_offload_xstats_type type)
8104 {
8105 ASSERT_RTNL();
8106
8107 return netdev_offload_xstats_get_ptr(dev, type);
8108 }
8109 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8110
8111 struct netdev_notifier_offload_xstats_ru {
8112 bool used;
8113 };
8114
8115 struct netdev_notifier_offload_xstats_rd {
8116 struct rtnl_hw_stats64 stats;
8117 bool used;
8118 };
8119
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8120 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8121 const struct rtnl_hw_stats64 *src)
8122 {
8123 dest->rx_packets += src->rx_packets;
8124 dest->tx_packets += src->tx_packets;
8125 dest->rx_bytes += src->rx_bytes;
8126 dest->tx_bytes += src->tx_bytes;
8127 dest->rx_errors += src->rx_errors;
8128 dest->tx_errors += src->tx_errors;
8129 dest->rx_dropped += src->rx_dropped;
8130 dest->tx_dropped += src->tx_dropped;
8131 dest->multicast += src->multicast;
8132 }
8133
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8134 static int netdev_offload_xstats_get_used(struct net_device *dev,
8135 enum netdev_offload_xstats_type type,
8136 bool *p_used,
8137 struct netlink_ext_ack *extack)
8138 {
8139 struct netdev_notifier_offload_xstats_ru report_used = {};
8140 struct netdev_notifier_offload_xstats_info info = {
8141 .info.dev = dev,
8142 .info.extack = extack,
8143 .type = type,
8144 .report_used = &report_used,
8145 };
8146 int rc;
8147
8148 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8149 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8150 &info.info);
8151 *p_used = report_used.used;
8152 return notifier_to_errno(rc);
8153 }
8154
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8155 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8156 enum netdev_offload_xstats_type type,
8157 struct rtnl_hw_stats64 *p_stats,
8158 bool *p_used,
8159 struct netlink_ext_ack *extack)
8160 {
8161 struct netdev_notifier_offload_xstats_rd report_delta = {};
8162 struct netdev_notifier_offload_xstats_info info = {
8163 .info.dev = dev,
8164 .info.extack = extack,
8165 .type = type,
8166 .report_delta = &report_delta,
8167 };
8168 struct rtnl_hw_stats64 *stats;
8169 int rc;
8170
8171 stats = netdev_offload_xstats_get_ptr(dev, type);
8172 if (WARN_ON(!stats))
8173 return -EINVAL;
8174
8175 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8176 &info.info);
8177
8178 /* Cache whatever we got, even if there was an error, otherwise the
8179 * successful stats retrievals would get lost.
8180 */
8181 netdev_hw_stats64_add(stats, &report_delta.stats);
8182
8183 if (p_stats)
8184 *p_stats = *stats;
8185 *p_used = report_delta.used;
8186
8187 return notifier_to_errno(rc);
8188 }
8189
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8190 int netdev_offload_xstats_get(struct net_device *dev,
8191 enum netdev_offload_xstats_type type,
8192 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8193 struct netlink_ext_ack *extack)
8194 {
8195 ASSERT_RTNL();
8196
8197 if (p_stats)
8198 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8199 p_used, extack);
8200 else
8201 return netdev_offload_xstats_get_used(dev, type, p_used,
8202 extack);
8203 }
8204 EXPORT_SYMBOL(netdev_offload_xstats_get);
8205
8206 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8207 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8208 const struct rtnl_hw_stats64 *stats)
8209 {
8210 report_delta->used = true;
8211 netdev_hw_stats64_add(&report_delta->stats, stats);
8212 }
8213 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8214
8215 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8216 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8217 {
8218 report_used->used = true;
8219 }
8220 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8221
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8222 void netdev_offload_xstats_push_delta(struct net_device *dev,
8223 enum netdev_offload_xstats_type type,
8224 const struct rtnl_hw_stats64 *p_stats)
8225 {
8226 struct rtnl_hw_stats64 *stats;
8227
8228 ASSERT_RTNL();
8229
8230 stats = netdev_offload_xstats_get_ptr(dev, type);
8231 if (WARN_ON(!stats))
8232 return;
8233
8234 netdev_hw_stats64_add(stats, p_stats);
8235 }
8236 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8237
8238 /**
8239 * netdev_get_xmit_slave - Get the xmit slave of master device
8240 * @dev: device
8241 * @skb: The packet
8242 * @all_slaves: assume all the slaves are active
8243 *
8244 * The reference counters are not incremented so the caller must be
8245 * careful with locks. The caller must hold RCU lock.
8246 * %NULL is returned if no slave is found.
8247 */
8248
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8249 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8250 struct sk_buff *skb,
8251 bool all_slaves)
8252 {
8253 const struct net_device_ops *ops = dev->netdev_ops;
8254
8255 if (!ops->ndo_get_xmit_slave)
8256 return NULL;
8257 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8258 }
8259 EXPORT_SYMBOL(netdev_get_xmit_slave);
8260
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8261 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8262 struct sock *sk)
8263 {
8264 const struct net_device_ops *ops = dev->netdev_ops;
8265
8266 if (!ops->ndo_sk_get_lower_dev)
8267 return NULL;
8268 return ops->ndo_sk_get_lower_dev(dev, sk);
8269 }
8270
8271 /**
8272 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8273 * @dev: device
8274 * @sk: the socket
8275 *
8276 * %NULL is returned if no lower device is found.
8277 */
8278
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8279 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8280 struct sock *sk)
8281 {
8282 struct net_device *lower;
8283
8284 lower = netdev_sk_get_lower_dev(dev, sk);
8285 while (lower) {
8286 dev = lower;
8287 lower = netdev_sk_get_lower_dev(dev, sk);
8288 }
8289
8290 return dev;
8291 }
8292 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8293
netdev_adjacent_add_links(struct net_device * dev)8294 static void netdev_adjacent_add_links(struct net_device *dev)
8295 {
8296 struct netdev_adjacent *iter;
8297
8298 struct net *net = dev_net(dev);
8299
8300 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8301 if (!net_eq(net, dev_net(iter->dev)))
8302 continue;
8303 netdev_adjacent_sysfs_add(iter->dev, dev,
8304 &iter->dev->adj_list.lower);
8305 netdev_adjacent_sysfs_add(dev, iter->dev,
8306 &dev->adj_list.upper);
8307 }
8308
8309 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8310 if (!net_eq(net, dev_net(iter->dev)))
8311 continue;
8312 netdev_adjacent_sysfs_add(iter->dev, dev,
8313 &iter->dev->adj_list.upper);
8314 netdev_adjacent_sysfs_add(dev, iter->dev,
8315 &dev->adj_list.lower);
8316 }
8317 }
8318
netdev_adjacent_del_links(struct net_device * dev)8319 static void netdev_adjacent_del_links(struct net_device *dev)
8320 {
8321 struct netdev_adjacent *iter;
8322
8323 struct net *net = dev_net(dev);
8324
8325 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8326 if (!net_eq(net, dev_net(iter->dev)))
8327 continue;
8328 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8329 &iter->dev->adj_list.lower);
8330 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8331 &dev->adj_list.upper);
8332 }
8333
8334 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8335 if (!net_eq(net, dev_net(iter->dev)))
8336 continue;
8337 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8338 &iter->dev->adj_list.upper);
8339 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8340 &dev->adj_list.lower);
8341 }
8342 }
8343
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8344 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8345 {
8346 struct netdev_adjacent *iter;
8347
8348 struct net *net = dev_net(dev);
8349
8350 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8351 if (!net_eq(net, dev_net(iter->dev)))
8352 continue;
8353 netdev_adjacent_sysfs_del(iter->dev, oldname,
8354 &iter->dev->adj_list.lower);
8355 netdev_adjacent_sysfs_add(iter->dev, dev,
8356 &iter->dev->adj_list.lower);
8357 }
8358
8359 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8360 if (!net_eq(net, dev_net(iter->dev)))
8361 continue;
8362 netdev_adjacent_sysfs_del(iter->dev, oldname,
8363 &iter->dev->adj_list.upper);
8364 netdev_adjacent_sysfs_add(iter->dev, dev,
8365 &iter->dev->adj_list.upper);
8366 }
8367 }
8368
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8369 void *netdev_lower_dev_get_private(struct net_device *dev,
8370 struct net_device *lower_dev)
8371 {
8372 struct netdev_adjacent *lower;
8373
8374 if (!lower_dev)
8375 return NULL;
8376 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8377 if (!lower)
8378 return NULL;
8379
8380 return lower->private;
8381 }
8382 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8383
8384
8385 /**
8386 * netdev_lower_state_changed - Dispatch event about lower device state change
8387 * @lower_dev: device
8388 * @lower_state_info: state to dispatch
8389 *
8390 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8391 * The caller must hold the RTNL lock.
8392 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8393 void netdev_lower_state_changed(struct net_device *lower_dev,
8394 void *lower_state_info)
8395 {
8396 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8397 .info.dev = lower_dev,
8398 };
8399
8400 ASSERT_RTNL();
8401 changelowerstate_info.lower_state_info = lower_state_info;
8402 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8403 &changelowerstate_info.info);
8404 }
8405 EXPORT_SYMBOL(netdev_lower_state_changed);
8406
dev_change_rx_flags(struct net_device * dev,int flags)8407 static void dev_change_rx_flags(struct net_device *dev, int flags)
8408 {
8409 const struct net_device_ops *ops = dev->netdev_ops;
8410
8411 if (ops->ndo_change_rx_flags)
8412 ops->ndo_change_rx_flags(dev, flags);
8413 }
8414
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8415 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8416 {
8417 unsigned int old_flags = dev->flags;
8418 kuid_t uid;
8419 kgid_t gid;
8420
8421 ASSERT_RTNL();
8422
8423 dev->flags |= IFF_PROMISC;
8424 dev->promiscuity += inc;
8425 if (dev->promiscuity == 0) {
8426 /*
8427 * Avoid overflow.
8428 * If inc causes overflow, untouch promisc and return error.
8429 */
8430 if (inc < 0)
8431 dev->flags &= ~IFF_PROMISC;
8432 else {
8433 dev->promiscuity -= inc;
8434 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8435 return -EOVERFLOW;
8436 }
8437 }
8438 if (dev->flags != old_flags) {
8439 netdev_info(dev, "%s promiscuous mode\n",
8440 dev->flags & IFF_PROMISC ? "entered" : "left");
8441 if (audit_enabled) {
8442 current_uid_gid(&uid, &gid);
8443 audit_log(audit_context(), GFP_ATOMIC,
8444 AUDIT_ANOM_PROMISCUOUS,
8445 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8446 dev->name, (dev->flags & IFF_PROMISC),
8447 (old_flags & IFF_PROMISC),
8448 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8449 from_kuid(&init_user_ns, uid),
8450 from_kgid(&init_user_ns, gid),
8451 audit_get_sessionid(current));
8452 }
8453
8454 dev_change_rx_flags(dev, IFF_PROMISC);
8455 }
8456 if (notify)
8457 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8458 return 0;
8459 }
8460
8461 /**
8462 * dev_set_promiscuity - update promiscuity count on a device
8463 * @dev: device
8464 * @inc: modifier
8465 *
8466 * Add or remove promiscuity from a device. While the count in the device
8467 * remains above zero the interface remains promiscuous. Once it hits zero
8468 * the device reverts back to normal filtering operation. A negative inc
8469 * value is used to drop promiscuity on the device.
8470 * Return 0 if successful or a negative errno code on error.
8471 */
dev_set_promiscuity(struct net_device * dev,int inc)8472 int dev_set_promiscuity(struct net_device *dev, int inc)
8473 {
8474 unsigned int old_flags = dev->flags;
8475 int err;
8476
8477 err = __dev_set_promiscuity(dev, inc, true);
8478 if (err < 0)
8479 return err;
8480 if (dev->flags != old_flags)
8481 dev_set_rx_mode(dev);
8482 return err;
8483 }
8484 EXPORT_SYMBOL(dev_set_promiscuity);
8485
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8486 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8487 {
8488 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8489
8490 ASSERT_RTNL();
8491
8492 dev->flags |= IFF_ALLMULTI;
8493 dev->allmulti += inc;
8494 if (dev->allmulti == 0) {
8495 /*
8496 * Avoid overflow.
8497 * If inc causes overflow, untouch allmulti and return error.
8498 */
8499 if (inc < 0)
8500 dev->flags &= ~IFF_ALLMULTI;
8501 else {
8502 dev->allmulti -= inc;
8503 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8504 return -EOVERFLOW;
8505 }
8506 }
8507 if (dev->flags ^ old_flags) {
8508 netdev_info(dev, "%s allmulticast mode\n",
8509 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8510 dev_change_rx_flags(dev, IFF_ALLMULTI);
8511 dev_set_rx_mode(dev);
8512 if (notify)
8513 __dev_notify_flags(dev, old_flags,
8514 dev->gflags ^ old_gflags, 0, NULL);
8515 }
8516 return 0;
8517 }
8518
8519 /**
8520 * dev_set_allmulti - update allmulti count on a device
8521 * @dev: device
8522 * @inc: modifier
8523 *
8524 * Add or remove reception of all multicast frames to a device. While the
8525 * count in the device remains above zero the interface remains listening
8526 * to all interfaces. Once it hits zero the device reverts back to normal
8527 * filtering operation. A negative @inc value is used to drop the counter
8528 * when releasing a resource needing all multicasts.
8529 * Return 0 if successful or a negative errno code on error.
8530 */
8531
dev_set_allmulti(struct net_device * dev,int inc)8532 int dev_set_allmulti(struct net_device *dev, int inc)
8533 {
8534 return __dev_set_allmulti(dev, inc, true);
8535 }
8536 EXPORT_SYMBOL(dev_set_allmulti);
8537
8538 /*
8539 * Upload unicast and multicast address lists to device and
8540 * configure RX filtering. When the device doesn't support unicast
8541 * filtering it is put in promiscuous mode while unicast addresses
8542 * are present.
8543 */
__dev_set_rx_mode(struct net_device * dev)8544 void __dev_set_rx_mode(struct net_device *dev)
8545 {
8546 const struct net_device_ops *ops = dev->netdev_ops;
8547
8548 /* dev_open will call this function so the list will stay sane. */
8549 if (!(dev->flags&IFF_UP))
8550 return;
8551
8552 if (!netif_device_present(dev))
8553 return;
8554
8555 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8556 /* Unicast addresses changes may only happen under the rtnl,
8557 * therefore calling __dev_set_promiscuity here is safe.
8558 */
8559 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8560 __dev_set_promiscuity(dev, 1, false);
8561 dev->uc_promisc = true;
8562 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8563 __dev_set_promiscuity(dev, -1, false);
8564 dev->uc_promisc = false;
8565 }
8566 }
8567
8568 if (ops->ndo_set_rx_mode)
8569 ops->ndo_set_rx_mode(dev);
8570 }
8571
dev_set_rx_mode(struct net_device * dev)8572 void dev_set_rx_mode(struct net_device *dev)
8573 {
8574 netif_addr_lock_bh(dev);
8575 __dev_set_rx_mode(dev);
8576 netif_addr_unlock_bh(dev);
8577 }
8578
8579 /**
8580 * dev_get_flags - get flags reported to userspace
8581 * @dev: device
8582 *
8583 * Get the combination of flag bits exported through APIs to userspace.
8584 */
dev_get_flags(const struct net_device * dev)8585 unsigned int dev_get_flags(const struct net_device *dev)
8586 {
8587 unsigned int flags;
8588
8589 flags = (dev->flags & ~(IFF_PROMISC |
8590 IFF_ALLMULTI |
8591 IFF_RUNNING |
8592 IFF_LOWER_UP |
8593 IFF_DORMANT)) |
8594 (dev->gflags & (IFF_PROMISC |
8595 IFF_ALLMULTI));
8596
8597 if (netif_running(dev)) {
8598 if (netif_oper_up(dev))
8599 flags |= IFF_RUNNING;
8600 if (netif_carrier_ok(dev))
8601 flags |= IFF_LOWER_UP;
8602 if (netif_dormant(dev))
8603 flags |= IFF_DORMANT;
8604 }
8605
8606 return flags;
8607 }
8608 EXPORT_SYMBOL(dev_get_flags);
8609
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8610 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8611 struct netlink_ext_ack *extack)
8612 {
8613 unsigned int old_flags = dev->flags;
8614 int ret;
8615
8616 ASSERT_RTNL();
8617
8618 /*
8619 * Set the flags on our device.
8620 */
8621
8622 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8623 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8624 IFF_AUTOMEDIA)) |
8625 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8626 IFF_ALLMULTI));
8627
8628 /*
8629 * Load in the correct multicast list now the flags have changed.
8630 */
8631
8632 if ((old_flags ^ flags) & IFF_MULTICAST)
8633 dev_change_rx_flags(dev, IFF_MULTICAST);
8634
8635 dev_set_rx_mode(dev);
8636
8637 /*
8638 * Have we downed the interface. We handle IFF_UP ourselves
8639 * according to user attempts to set it, rather than blindly
8640 * setting it.
8641 */
8642
8643 ret = 0;
8644 if ((old_flags ^ flags) & IFF_UP) {
8645 if (old_flags & IFF_UP)
8646 __dev_close(dev);
8647 else
8648 ret = __dev_open(dev, extack);
8649 }
8650
8651 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8652 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8653 unsigned int old_flags = dev->flags;
8654
8655 dev->gflags ^= IFF_PROMISC;
8656
8657 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8658 if (dev->flags != old_flags)
8659 dev_set_rx_mode(dev);
8660 }
8661
8662 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8663 * is important. Some (broken) drivers set IFF_PROMISC, when
8664 * IFF_ALLMULTI is requested not asking us and not reporting.
8665 */
8666 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8667 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8668
8669 dev->gflags ^= IFF_ALLMULTI;
8670 __dev_set_allmulti(dev, inc, false);
8671 }
8672
8673 return ret;
8674 }
8675
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)8676 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8677 unsigned int gchanges, u32 portid,
8678 const struct nlmsghdr *nlh)
8679 {
8680 unsigned int changes = dev->flags ^ old_flags;
8681
8682 if (gchanges)
8683 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8684
8685 if (changes & IFF_UP) {
8686 if (dev->flags & IFF_UP)
8687 call_netdevice_notifiers(NETDEV_UP, dev);
8688 else
8689 call_netdevice_notifiers(NETDEV_DOWN, dev);
8690 }
8691
8692 if (dev->flags & IFF_UP &&
8693 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8694 struct netdev_notifier_change_info change_info = {
8695 .info = {
8696 .dev = dev,
8697 },
8698 .flags_changed = changes,
8699 };
8700
8701 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8702 }
8703 }
8704
8705 /**
8706 * dev_change_flags - change device settings
8707 * @dev: device
8708 * @flags: device state flags
8709 * @extack: netlink extended ack
8710 *
8711 * Change settings on device based state flags. The flags are
8712 * in the userspace exported format.
8713 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8714 int dev_change_flags(struct net_device *dev, unsigned int flags,
8715 struct netlink_ext_ack *extack)
8716 {
8717 int ret;
8718 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8719
8720 ret = __dev_change_flags(dev, flags, extack);
8721 if (ret < 0)
8722 return ret;
8723
8724 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8725 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8726 return ret;
8727 }
8728 EXPORT_SYMBOL(dev_change_flags);
8729
__dev_set_mtu(struct net_device * dev,int new_mtu)8730 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8731 {
8732 const struct net_device_ops *ops = dev->netdev_ops;
8733
8734 if (ops->ndo_change_mtu)
8735 return ops->ndo_change_mtu(dev, new_mtu);
8736
8737 /* Pairs with all the lockless reads of dev->mtu in the stack */
8738 WRITE_ONCE(dev->mtu, new_mtu);
8739 return 0;
8740 }
8741 EXPORT_SYMBOL(__dev_set_mtu);
8742
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8743 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8744 struct netlink_ext_ack *extack)
8745 {
8746 /* MTU must be positive, and in range */
8747 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8748 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8749 return -EINVAL;
8750 }
8751
8752 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8753 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8754 return -EINVAL;
8755 }
8756 return 0;
8757 }
8758
8759 /**
8760 * dev_set_mtu_ext - Change maximum transfer unit
8761 * @dev: device
8762 * @new_mtu: new transfer unit
8763 * @extack: netlink extended ack
8764 *
8765 * Change the maximum transfer size of the network device.
8766 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8767 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8768 struct netlink_ext_ack *extack)
8769 {
8770 int err, orig_mtu;
8771
8772 if (new_mtu == dev->mtu)
8773 return 0;
8774
8775 err = dev_validate_mtu(dev, new_mtu, extack);
8776 if (err)
8777 return err;
8778
8779 if (!netif_device_present(dev))
8780 return -ENODEV;
8781
8782 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8783 err = notifier_to_errno(err);
8784 if (err)
8785 return err;
8786
8787 orig_mtu = dev->mtu;
8788 err = __dev_set_mtu(dev, new_mtu);
8789
8790 if (!err) {
8791 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8792 orig_mtu);
8793 err = notifier_to_errno(err);
8794 if (err) {
8795 /* setting mtu back and notifying everyone again,
8796 * so that they have a chance to revert changes.
8797 */
8798 __dev_set_mtu(dev, orig_mtu);
8799 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8800 new_mtu);
8801 }
8802 }
8803 return err;
8804 }
8805
dev_set_mtu(struct net_device * dev,int new_mtu)8806 int dev_set_mtu(struct net_device *dev, int new_mtu)
8807 {
8808 struct netlink_ext_ack extack;
8809 int err;
8810
8811 memset(&extack, 0, sizeof(extack));
8812 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8813 if (err && extack._msg)
8814 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8815 return err;
8816 }
8817 EXPORT_SYMBOL(dev_set_mtu);
8818
8819 /**
8820 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8821 * @dev: device
8822 * @new_len: new tx queue length
8823 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8824 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8825 {
8826 unsigned int orig_len = dev->tx_queue_len;
8827 int res;
8828
8829 if (new_len != (unsigned int)new_len)
8830 return -ERANGE;
8831
8832 if (new_len != orig_len) {
8833 dev->tx_queue_len = new_len;
8834 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8835 res = notifier_to_errno(res);
8836 if (res)
8837 goto err_rollback;
8838 res = dev_qdisc_change_tx_queue_len(dev);
8839 if (res)
8840 goto err_rollback;
8841 }
8842
8843 return 0;
8844
8845 err_rollback:
8846 netdev_err(dev, "refused to change device tx_queue_len\n");
8847 dev->tx_queue_len = orig_len;
8848 return res;
8849 }
8850
8851 /**
8852 * dev_set_group - Change group this device belongs to
8853 * @dev: device
8854 * @new_group: group this device should belong to
8855 */
dev_set_group(struct net_device * dev,int new_group)8856 void dev_set_group(struct net_device *dev, int new_group)
8857 {
8858 dev->group = new_group;
8859 }
8860
8861 /**
8862 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8863 * @dev: device
8864 * @addr: new address
8865 * @extack: netlink extended ack
8866 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8867 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8868 struct netlink_ext_ack *extack)
8869 {
8870 struct netdev_notifier_pre_changeaddr_info info = {
8871 .info.dev = dev,
8872 .info.extack = extack,
8873 .dev_addr = addr,
8874 };
8875 int rc;
8876
8877 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8878 return notifier_to_errno(rc);
8879 }
8880 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8881
8882 /**
8883 * dev_set_mac_address - Change Media Access Control Address
8884 * @dev: device
8885 * @sa: new address
8886 * @extack: netlink extended ack
8887 *
8888 * Change the hardware (MAC) address of the device
8889 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8890 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8891 struct netlink_ext_ack *extack)
8892 {
8893 const struct net_device_ops *ops = dev->netdev_ops;
8894 int err;
8895
8896 if (!ops->ndo_set_mac_address)
8897 return -EOPNOTSUPP;
8898 if (sa->sa_family != dev->type)
8899 return -EINVAL;
8900 if (!netif_device_present(dev))
8901 return -ENODEV;
8902 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8903 if (err)
8904 return err;
8905 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8906 err = ops->ndo_set_mac_address(dev, sa);
8907 if (err)
8908 return err;
8909 }
8910 dev->addr_assign_type = NET_ADDR_SET;
8911 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8912 add_device_randomness(dev->dev_addr, dev->addr_len);
8913 return 0;
8914 }
8915 EXPORT_SYMBOL(dev_set_mac_address);
8916
8917 static DECLARE_RWSEM(dev_addr_sem);
8918
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8919 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8920 struct netlink_ext_ack *extack)
8921 {
8922 int ret;
8923
8924 down_write(&dev_addr_sem);
8925 ret = dev_set_mac_address(dev, sa, extack);
8926 up_write(&dev_addr_sem);
8927 return ret;
8928 }
8929 EXPORT_SYMBOL(dev_set_mac_address_user);
8930
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8931 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8932 {
8933 size_t size = sizeof(sa->sa_data_min);
8934 struct net_device *dev;
8935 int ret = 0;
8936
8937 down_read(&dev_addr_sem);
8938 rcu_read_lock();
8939
8940 dev = dev_get_by_name_rcu(net, dev_name);
8941 if (!dev) {
8942 ret = -ENODEV;
8943 goto unlock;
8944 }
8945 if (!dev->addr_len)
8946 memset(sa->sa_data, 0, size);
8947 else
8948 memcpy(sa->sa_data, dev->dev_addr,
8949 min_t(size_t, size, dev->addr_len));
8950 sa->sa_family = dev->type;
8951
8952 unlock:
8953 rcu_read_unlock();
8954 up_read(&dev_addr_sem);
8955 return ret;
8956 }
8957 EXPORT_SYMBOL(dev_get_mac_address);
8958
8959 /**
8960 * dev_change_carrier - Change device carrier
8961 * @dev: device
8962 * @new_carrier: new value
8963 *
8964 * Change device carrier
8965 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8966 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8967 {
8968 const struct net_device_ops *ops = dev->netdev_ops;
8969
8970 if (!ops->ndo_change_carrier)
8971 return -EOPNOTSUPP;
8972 if (!netif_device_present(dev))
8973 return -ENODEV;
8974 return ops->ndo_change_carrier(dev, new_carrier);
8975 }
8976
8977 /**
8978 * dev_get_phys_port_id - Get device physical port ID
8979 * @dev: device
8980 * @ppid: port ID
8981 *
8982 * Get device physical port ID
8983 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8984 int dev_get_phys_port_id(struct net_device *dev,
8985 struct netdev_phys_item_id *ppid)
8986 {
8987 const struct net_device_ops *ops = dev->netdev_ops;
8988
8989 if (!ops->ndo_get_phys_port_id)
8990 return -EOPNOTSUPP;
8991 return ops->ndo_get_phys_port_id(dev, ppid);
8992 }
8993
8994 /**
8995 * dev_get_phys_port_name - Get device physical port name
8996 * @dev: device
8997 * @name: port name
8998 * @len: limit of bytes to copy to name
8999 *
9000 * Get device physical port name
9001 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9002 int dev_get_phys_port_name(struct net_device *dev,
9003 char *name, size_t len)
9004 {
9005 const struct net_device_ops *ops = dev->netdev_ops;
9006 int err;
9007
9008 if (ops->ndo_get_phys_port_name) {
9009 err = ops->ndo_get_phys_port_name(dev, name, len);
9010 if (err != -EOPNOTSUPP)
9011 return err;
9012 }
9013 return devlink_compat_phys_port_name_get(dev, name, len);
9014 }
9015
9016 /**
9017 * dev_get_port_parent_id - Get the device's port parent identifier
9018 * @dev: network device
9019 * @ppid: pointer to a storage for the port's parent identifier
9020 * @recurse: allow/disallow recursion to lower devices
9021 *
9022 * Get the devices's port parent identifier
9023 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9024 int dev_get_port_parent_id(struct net_device *dev,
9025 struct netdev_phys_item_id *ppid,
9026 bool recurse)
9027 {
9028 const struct net_device_ops *ops = dev->netdev_ops;
9029 struct netdev_phys_item_id first = { };
9030 struct net_device *lower_dev;
9031 struct list_head *iter;
9032 int err;
9033
9034 if (ops->ndo_get_port_parent_id) {
9035 err = ops->ndo_get_port_parent_id(dev, ppid);
9036 if (err != -EOPNOTSUPP)
9037 return err;
9038 }
9039
9040 err = devlink_compat_switch_id_get(dev, ppid);
9041 if (!recurse || err != -EOPNOTSUPP)
9042 return err;
9043
9044 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9045 err = dev_get_port_parent_id(lower_dev, ppid, true);
9046 if (err)
9047 break;
9048 if (!first.id_len)
9049 first = *ppid;
9050 else if (memcmp(&first, ppid, sizeof(*ppid)))
9051 return -EOPNOTSUPP;
9052 }
9053
9054 return err;
9055 }
9056 EXPORT_SYMBOL(dev_get_port_parent_id);
9057
9058 /**
9059 * netdev_port_same_parent_id - Indicate if two network devices have
9060 * the same port parent identifier
9061 * @a: first network device
9062 * @b: second network device
9063 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9064 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9065 {
9066 struct netdev_phys_item_id a_id = { };
9067 struct netdev_phys_item_id b_id = { };
9068
9069 if (dev_get_port_parent_id(a, &a_id, true) ||
9070 dev_get_port_parent_id(b, &b_id, true))
9071 return false;
9072
9073 return netdev_phys_item_id_same(&a_id, &b_id);
9074 }
9075 EXPORT_SYMBOL(netdev_port_same_parent_id);
9076
9077 /**
9078 * dev_change_proto_down - set carrier according to proto_down.
9079 *
9080 * @dev: device
9081 * @proto_down: new value
9082 */
dev_change_proto_down(struct net_device * dev,bool proto_down)9083 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9084 {
9085 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9086 return -EOPNOTSUPP;
9087 if (!netif_device_present(dev))
9088 return -ENODEV;
9089 if (proto_down)
9090 netif_carrier_off(dev);
9091 else
9092 netif_carrier_on(dev);
9093 dev->proto_down = proto_down;
9094 return 0;
9095 }
9096
9097 /**
9098 * dev_change_proto_down_reason - proto down reason
9099 *
9100 * @dev: device
9101 * @mask: proto down mask
9102 * @value: proto down value
9103 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9104 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9105 u32 value)
9106 {
9107 int b;
9108
9109 if (!mask) {
9110 dev->proto_down_reason = value;
9111 } else {
9112 for_each_set_bit(b, &mask, 32) {
9113 if (value & (1 << b))
9114 dev->proto_down_reason |= BIT(b);
9115 else
9116 dev->proto_down_reason &= ~BIT(b);
9117 }
9118 }
9119 }
9120
9121 struct bpf_xdp_link {
9122 struct bpf_link link;
9123 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9124 int flags;
9125 };
9126
dev_xdp_mode(struct net_device * dev,u32 flags)9127 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9128 {
9129 if (flags & XDP_FLAGS_HW_MODE)
9130 return XDP_MODE_HW;
9131 if (flags & XDP_FLAGS_DRV_MODE)
9132 return XDP_MODE_DRV;
9133 if (flags & XDP_FLAGS_SKB_MODE)
9134 return XDP_MODE_SKB;
9135 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9136 }
9137
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9138 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9139 {
9140 switch (mode) {
9141 case XDP_MODE_SKB:
9142 return generic_xdp_install;
9143 case XDP_MODE_DRV:
9144 case XDP_MODE_HW:
9145 return dev->netdev_ops->ndo_bpf;
9146 default:
9147 return NULL;
9148 }
9149 }
9150
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9151 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9152 enum bpf_xdp_mode mode)
9153 {
9154 return dev->xdp_state[mode].link;
9155 }
9156
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9157 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9158 enum bpf_xdp_mode mode)
9159 {
9160 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9161
9162 if (link)
9163 return link->link.prog;
9164 return dev->xdp_state[mode].prog;
9165 }
9166
dev_xdp_prog_count(struct net_device * dev)9167 u8 dev_xdp_prog_count(struct net_device *dev)
9168 {
9169 u8 count = 0;
9170 int i;
9171
9172 for (i = 0; i < __MAX_XDP_MODE; i++)
9173 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9174 count++;
9175 return count;
9176 }
9177 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9178
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9179 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9180 {
9181 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9182
9183 return prog ? prog->aux->id : 0;
9184 }
9185
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9186 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9187 struct bpf_xdp_link *link)
9188 {
9189 dev->xdp_state[mode].link = link;
9190 dev->xdp_state[mode].prog = NULL;
9191 }
9192
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9193 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9194 struct bpf_prog *prog)
9195 {
9196 dev->xdp_state[mode].link = NULL;
9197 dev->xdp_state[mode].prog = prog;
9198 }
9199
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9200 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9201 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9202 u32 flags, struct bpf_prog *prog)
9203 {
9204 struct netdev_bpf xdp;
9205 int err;
9206
9207 memset(&xdp, 0, sizeof(xdp));
9208 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9209 xdp.extack = extack;
9210 xdp.flags = flags;
9211 xdp.prog = prog;
9212
9213 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9214 * "moved" into driver), so they don't increment it on their own, but
9215 * they do decrement refcnt when program is detached or replaced.
9216 * Given net_device also owns link/prog, we need to bump refcnt here
9217 * to prevent drivers from underflowing it.
9218 */
9219 if (prog)
9220 bpf_prog_inc(prog);
9221 err = bpf_op(dev, &xdp);
9222 if (err) {
9223 if (prog)
9224 bpf_prog_put(prog);
9225 return err;
9226 }
9227
9228 if (mode != XDP_MODE_HW)
9229 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9230
9231 return 0;
9232 }
9233
dev_xdp_uninstall(struct net_device * dev)9234 static void dev_xdp_uninstall(struct net_device *dev)
9235 {
9236 struct bpf_xdp_link *link;
9237 struct bpf_prog *prog;
9238 enum bpf_xdp_mode mode;
9239 bpf_op_t bpf_op;
9240
9241 ASSERT_RTNL();
9242
9243 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9244 prog = dev_xdp_prog(dev, mode);
9245 if (!prog)
9246 continue;
9247
9248 bpf_op = dev_xdp_bpf_op(dev, mode);
9249 if (!bpf_op)
9250 continue;
9251
9252 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9253
9254 /* auto-detach link from net device */
9255 link = dev_xdp_link(dev, mode);
9256 if (link)
9257 link->dev = NULL;
9258 else
9259 bpf_prog_put(prog);
9260
9261 dev_xdp_set_link(dev, mode, NULL);
9262 }
9263 }
9264
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9265 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9266 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9267 struct bpf_prog *old_prog, u32 flags)
9268 {
9269 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9270 struct bpf_prog *cur_prog;
9271 struct net_device *upper;
9272 struct list_head *iter;
9273 enum bpf_xdp_mode mode;
9274 bpf_op_t bpf_op;
9275 int err;
9276
9277 ASSERT_RTNL();
9278
9279 /* either link or prog attachment, never both */
9280 if (link && (new_prog || old_prog))
9281 return -EINVAL;
9282 /* link supports only XDP mode flags */
9283 if (link && (flags & ~XDP_FLAGS_MODES)) {
9284 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9285 return -EINVAL;
9286 }
9287 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9288 if (num_modes > 1) {
9289 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9290 return -EINVAL;
9291 }
9292 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9293 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9294 NL_SET_ERR_MSG(extack,
9295 "More than one program loaded, unset mode is ambiguous");
9296 return -EINVAL;
9297 }
9298 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9299 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9300 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9301 return -EINVAL;
9302 }
9303
9304 mode = dev_xdp_mode(dev, flags);
9305 /* can't replace attached link */
9306 if (dev_xdp_link(dev, mode)) {
9307 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9308 return -EBUSY;
9309 }
9310
9311 /* don't allow if an upper device already has a program */
9312 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9313 if (dev_xdp_prog_count(upper) > 0) {
9314 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9315 return -EEXIST;
9316 }
9317 }
9318
9319 cur_prog = dev_xdp_prog(dev, mode);
9320 /* can't replace attached prog with link */
9321 if (link && cur_prog) {
9322 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9323 return -EBUSY;
9324 }
9325 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9326 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9327 return -EEXIST;
9328 }
9329
9330 /* put effective new program into new_prog */
9331 if (link)
9332 new_prog = link->link.prog;
9333
9334 if (new_prog) {
9335 bool offload = mode == XDP_MODE_HW;
9336 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9337 ? XDP_MODE_DRV : XDP_MODE_SKB;
9338
9339 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9340 NL_SET_ERR_MSG(extack, "XDP program already attached");
9341 return -EBUSY;
9342 }
9343 if (!offload && dev_xdp_prog(dev, other_mode)) {
9344 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9345 return -EEXIST;
9346 }
9347 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9348 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9349 return -EINVAL;
9350 }
9351 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9352 NL_SET_ERR_MSG(extack, "Program bound to different device");
9353 return -EINVAL;
9354 }
9355 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9356 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9357 return -EINVAL;
9358 }
9359 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9360 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9361 return -EINVAL;
9362 }
9363 }
9364
9365 /* don't call drivers if the effective program didn't change */
9366 if (new_prog != cur_prog) {
9367 bpf_op = dev_xdp_bpf_op(dev, mode);
9368 if (!bpf_op) {
9369 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9370 return -EOPNOTSUPP;
9371 }
9372
9373 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9374 if (err)
9375 return err;
9376 }
9377
9378 if (link)
9379 dev_xdp_set_link(dev, mode, link);
9380 else
9381 dev_xdp_set_prog(dev, mode, new_prog);
9382 if (cur_prog)
9383 bpf_prog_put(cur_prog);
9384
9385 return 0;
9386 }
9387
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9388 static int dev_xdp_attach_link(struct net_device *dev,
9389 struct netlink_ext_ack *extack,
9390 struct bpf_xdp_link *link)
9391 {
9392 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9393 }
9394
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9395 static int dev_xdp_detach_link(struct net_device *dev,
9396 struct netlink_ext_ack *extack,
9397 struct bpf_xdp_link *link)
9398 {
9399 enum bpf_xdp_mode mode;
9400 bpf_op_t bpf_op;
9401
9402 ASSERT_RTNL();
9403
9404 mode = dev_xdp_mode(dev, link->flags);
9405 if (dev_xdp_link(dev, mode) != link)
9406 return -EINVAL;
9407
9408 bpf_op = dev_xdp_bpf_op(dev, mode);
9409 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9410 dev_xdp_set_link(dev, mode, NULL);
9411 return 0;
9412 }
9413
bpf_xdp_link_release(struct bpf_link * link)9414 static void bpf_xdp_link_release(struct bpf_link *link)
9415 {
9416 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9417
9418 rtnl_lock();
9419
9420 /* if racing with net_device's tear down, xdp_link->dev might be
9421 * already NULL, in which case link was already auto-detached
9422 */
9423 if (xdp_link->dev) {
9424 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9425 xdp_link->dev = NULL;
9426 }
9427
9428 rtnl_unlock();
9429 }
9430
bpf_xdp_link_detach(struct bpf_link * link)9431 static int bpf_xdp_link_detach(struct bpf_link *link)
9432 {
9433 bpf_xdp_link_release(link);
9434 return 0;
9435 }
9436
bpf_xdp_link_dealloc(struct bpf_link * link)9437 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9438 {
9439 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9440
9441 kfree(xdp_link);
9442 }
9443
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9444 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9445 struct seq_file *seq)
9446 {
9447 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9448 u32 ifindex = 0;
9449
9450 rtnl_lock();
9451 if (xdp_link->dev)
9452 ifindex = xdp_link->dev->ifindex;
9453 rtnl_unlock();
9454
9455 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9456 }
9457
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9458 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9459 struct bpf_link_info *info)
9460 {
9461 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9462 u32 ifindex = 0;
9463
9464 rtnl_lock();
9465 if (xdp_link->dev)
9466 ifindex = xdp_link->dev->ifindex;
9467 rtnl_unlock();
9468
9469 info->xdp.ifindex = ifindex;
9470 return 0;
9471 }
9472
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9473 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9474 struct bpf_prog *old_prog)
9475 {
9476 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9477 enum bpf_xdp_mode mode;
9478 bpf_op_t bpf_op;
9479 int err = 0;
9480
9481 rtnl_lock();
9482
9483 /* link might have been auto-released already, so fail */
9484 if (!xdp_link->dev) {
9485 err = -ENOLINK;
9486 goto out_unlock;
9487 }
9488
9489 if (old_prog && link->prog != old_prog) {
9490 err = -EPERM;
9491 goto out_unlock;
9492 }
9493 old_prog = link->prog;
9494 if (old_prog->type != new_prog->type ||
9495 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9496 err = -EINVAL;
9497 goto out_unlock;
9498 }
9499
9500 if (old_prog == new_prog) {
9501 /* no-op, don't disturb drivers */
9502 bpf_prog_put(new_prog);
9503 goto out_unlock;
9504 }
9505
9506 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9507 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9508 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9509 xdp_link->flags, new_prog);
9510 if (err)
9511 goto out_unlock;
9512
9513 old_prog = xchg(&link->prog, new_prog);
9514 bpf_prog_put(old_prog);
9515
9516 out_unlock:
9517 rtnl_unlock();
9518 return err;
9519 }
9520
9521 static const struct bpf_link_ops bpf_xdp_link_lops = {
9522 .release = bpf_xdp_link_release,
9523 .dealloc = bpf_xdp_link_dealloc,
9524 .detach = bpf_xdp_link_detach,
9525 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9526 .fill_link_info = bpf_xdp_link_fill_link_info,
9527 .update_prog = bpf_xdp_link_update,
9528 };
9529
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9530 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9531 {
9532 struct net *net = current->nsproxy->net_ns;
9533 struct bpf_link_primer link_primer;
9534 struct netlink_ext_ack extack = {};
9535 struct bpf_xdp_link *link;
9536 struct net_device *dev;
9537 int err, fd;
9538
9539 rtnl_lock();
9540 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9541 if (!dev) {
9542 rtnl_unlock();
9543 return -EINVAL;
9544 }
9545
9546 link = kzalloc(sizeof(*link), GFP_USER);
9547 if (!link) {
9548 err = -ENOMEM;
9549 goto unlock;
9550 }
9551
9552 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9553 link->dev = dev;
9554 link->flags = attr->link_create.flags;
9555
9556 err = bpf_link_prime(&link->link, &link_primer);
9557 if (err) {
9558 kfree(link);
9559 goto unlock;
9560 }
9561
9562 err = dev_xdp_attach_link(dev, &extack, link);
9563 rtnl_unlock();
9564
9565 if (err) {
9566 link->dev = NULL;
9567 bpf_link_cleanup(&link_primer);
9568 trace_bpf_xdp_link_attach_failed(extack._msg);
9569 goto out_put_dev;
9570 }
9571
9572 fd = bpf_link_settle(&link_primer);
9573 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9574 dev_put(dev);
9575 return fd;
9576
9577 unlock:
9578 rtnl_unlock();
9579
9580 out_put_dev:
9581 dev_put(dev);
9582 return err;
9583 }
9584
9585 /**
9586 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9587 * @dev: device
9588 * @extack: netlink extended ack
9589 * @fd: new program fd or negative value to clear
9590 * @expected_fd: old program fd that userspace expects to replace or clear
9591 * @flags: xdp-related flags
9592 *
9593 * Set or clear a bpf program for a device
9594 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9595 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9596 int fd, int expected_fd, u32 flags)
9597 {
9598 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9599 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9600 int err;
9601
9602 ASSERT_RTNL();
9603
9604 if (fd >= 0) {
9605 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9606 mode != XDP_MODE_SKB);
9607 if (IS_ERR(new_prog))
9608 return PTR_ERR(new_prog);
9609 }
9610
9611 if (expected_fd >= 0) {
9612 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9613 mode != XDP_MODE_SKB);
9614 if (IS_ERR(old_prog)) {
9615 err = PTR_ERR(old_prog);
9616 old_prog = NULL;
9617 goto err_out;
9618 }
9619 }
9620
9621 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9622
9623 err_out:
9624 if (err && new_prog)
9625 bpf_prog_put(new_prog);
9626 if (old_prog)
9627 bpf_prog_put(old_prog);
9628 return err;
9629 }
9630
9631 /**
9632 * dev_index_reserve() - allocate an ifindex in a namespace
9633 * @net: the applicable net namespace
9634 * @ifindex: requested ifindex, pass %0 to get one allocated
9635 *
9636 * Allocate a ifindex for a new device. Caller must either use the ifindex
9637 * to store the device (via list_netdevice()) or call dev_index_release()
9638 * to give the index up.
9639 *
9640 * Return: a suitable unique value for a new device interface number or -errno.
9641 */
dev_index_reserve(struct net * net,u32 ifindex)9642 static int dev_index_reserve(struct net *net, u32 ifindex)
9643 {
9644 int err;
9645
9646 if (ifindex > INT_MAX) {
9647 DEBUG_NET_WARN_ON_ONCE(1);
9648 return -EINVAL;
9649 }
9650
9651 if (!ifindex)
9652 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9653 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9654 else
9655 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9656 if (err < 0)
9657 return err;
9658
9659 return ifindex;
9660 }
9661
dev_index_release(struct net * net,int ifindex)9662 static void dev_index_release(struct net *net, int ifindex)
9663 {
9664 /* Expect only unused indexes, unlist_netdevice() removes the used */
9665 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9666 }
9667
9668 /* Delayed registration/unregisteration */
9669 LIST_HEAD(net_todo_list);
9670 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9671
net_set_todo(struct net_device * dev)9672 static void net_set_todo(struct net_device *dev)
9673 {
9674 list_add_tail(&dev->todo_list, &net_todo_list);
9675 atomic_inc(&dev_net(dev)->dev_unreg_count);
9676 }
9677
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9678 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9679 struct net_device *upper, netdev_features_t features)
9680 {
9681 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9682 netdev_features_t feature;
9683 int feature_bit;
9684
9685 for_each_netdev_feature(upper_disables, feature_bit) {
9686 feature = __NETIF_F_BIT(feature_bit);
9687 if (!(upper->wanted_features & feature)
9688 && (features & feature)) {
9689 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9690 &feature, upper->name);
9691 features &= ~feature;
9692 }
9693 }
9694
9695 return features;
9696 }
9697
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9698 static void netdev_sync_lower_features(struct net_device *upper,
9699 struct net_device *lower, netdev_features_t features)
9700 {
9701 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9702 netdev_features_t feature;
9703 int feature_bit;
9704
9705 for_each_netdev_feature(upper_disables, feature_bit) {
9706 feature = __NETIF_F_BIT(feature_bit);
9707 if (!(features & feature) && (lower->features & feature)) {
9708 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9709 &feature, lower->name);
9710 lower->wanted_features &= ~feature;
9711 __netdev_update_features(lower);
9712
9713 if (unlikely(lower->features & feature))
9714 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9715 &feature, lower->name);
9716 else
9717 netdev_features_change(lower);
9718 }
9719 }
9720 }
9721
netdev_fix_features(struct net_device * dev,netdev_features_t features)9722 static netdev_features_t netdev_fix_features(struct net_device *dev,
9723 netdev_features_t features)
9724 {
9725 /* Fix illegal checksum combinations */
9726 if ((features & NETIF_F_HW_CSUM) &&
9727 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9728 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9729 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9730 }
9731
9732 /* TSO requires that SG is present as well. */
9733 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9734 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9735 features &= ~NETIF_F_ALL_TSO;
9736 }
9737
9738 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9739 !(features & NETIF_F_IP_CSUM)) {
9740 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9741 features &= ~NETIF_F_TSO;
9742 features &= ~NETIF_F_TSO_ECN;
9743 }
9744
9745 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9746 !(features & NETIF_F_IPV6_CSUM)) {
9747 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9748 features &= ~NETIF_F_TSO6;
9749 }
9750
9751 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9752 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9753 features &= ~NETIF_F_TSO_MANGLEID;
9754
9755 /* TSO ECN requires that TSO is present as well. */
9756 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9757 features &= ~NETIF_F_TSO_ECN;
9758
9759 /* Software GSO depends on SG. */
9760 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9761 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9762 features &= ~NETIF_F_GSO;
9763 }
9764
9765 /* GSO partial features require GSO partial be set */
9766 if ((features & dev->gso_partial_features) &&
9767 !(features & NETIF_F_GSO_PARTIAL)) {
9768 netdev_dbg(dev,
9769 "Dropping partially supported GSO features since no GSO partial.\n");
9770 features &= ~dev->gso_partial_features;
9771 }
9772
9773 if (!(features & NETIF_F_RXCSUM)) {
9774 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9775 * successfully merged by hardware must also have the
9776 * checksum verified by hardware. If the user does not
9777 * want to enable RXCSUM, logically, we should disable GRO_HW.
9778 */
9779 if (features & NETIF_F_GRO_HW) {
9780 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9781 features &= ~NETIF_F_GRO_HW;
9782 }
9783 }
9784
9785 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9786 if (features & NETIF_F_RXFCS) {
9787 if (features & NETIF_F_LRO) {
9788 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9789 features &= ~NETIF_F_LRO;
9790 }
9791
9792 if (features & NETIF_F_GRO_HW) {
9793 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9794 features &= ~NETIF_F_GRO_HW;
9795 }
9796 }
9797
9798 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9799 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9800 features &= ~NETIF_F_LRO;
9801 }
9802
9803 if (features & NETIF_F_HW_TLS_TX) {
9804 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9805 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9806 bool hw_csum = features & NETIF_F_HW_CSUM;
9807
9808 if (!ip_csum && !hw_csum) {
9809 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9810 features &= ~NETIF_F_HW_TLS_TX;
9811 }
9812 }
9813
9814 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9815 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9816 features &= ~NETIF_F_HW_TLS_RX;
9817 }
9818
9819 return features;
9820 }
9821
__netdev_update_features(struct net_device * dev)9822 int __netdev_update_features(struct net_device *dev)
9823 {
9824 struct net_device *upper, *lower;
9825 netdev_features_t features;
9826 struct list_head *iter;
9827 int err = -1;
9828
9829 ASSERT_RTNL();
9830
9831 features = netdev_get_wanted_features(dev);
9832
9833 if (dev->netdev_ops->ndo_fix_features)
9834 features = dev->netdev_ops->ndo_fix_features(dev, features);
9835
9836 /* driver might be less strict about feature dependencies */
9837 features = netdev_fix_features(dev, features);
9838
9839 /* some features can't be enabled if they're off on an upper device */
9840 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9841 features = netdev_sync_upper_features(dev, upper, features);
9842
9843 if (dev->features == features)
9844 goto sync_lower;
9845
9846 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9847 &dev->features, &features);
9848
9849 if (dev->netdev_ops->ndo_set_features)
9850 err = dev->netdev_ops->ndo_set_features(dev, features);
9851 else
9852 err = 0;
9853
9854 if (unlikely(err < 0)) {
9855 netdev_err(dev,
9856 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9857 err, &features, &dev->features);
9858 /* return non-0 since some features might have changed and
9859 * it's better to fire a spurious notification than miss it
9860 */
9861 return -1;
9862 }
9863
9864 sync_lower:
9865 /* some features must be disabled on lower devices when disabled
9866 * on an upper device (think: bonding master or bridge)
9867 */
9868 netdev_for_each_lower_dev(dev, lower, iter)
9869 netdev_sync_lower_features(dev, lower, features);
9870
9871 if (!err) {
9872 netdev_features_t diff = features ^ dev->features;
9873
9874 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9875 /* udp_tunnel_{get,drop}_rx_info both need
9876 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9877 * device, or they won't do anything.
9878 * Thus we need to update dev->features
9879 * *before* calling udp_tunnel_get_rx_info,
9880 * but *after* calling udp_tunnel_drop_rx_info.
9881 */
9882 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9883 dev->features = features;
9884 udp_tunnel_get_rx_info(dev);
9885 } else {
9886 udp_tunnel_drop_rx_info(dev);
9887 }
9888 }
9889
9890 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9891 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9892 dev->features = features;
9893 err |= vlan_get_rx_ctag_filter_info(dev);
9894 } else {
9895 vlan_drop_rx_ctag_filter_info(dev);
9896 }
9897 }
9898
9899 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9900 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9901 dev->features = features;
9902 err |= vlan_get_rx_stag_filter_info(dev);
9903 } else {
9904 vlan_drop_rx_stag_filter_info(dev);
9905 }
9906 }
9907
9908 dev->features = features;
9909 }
9910
9911 return err < 0 ? 0 : 1;
9912 }
9913
9914 /**
9915 * netdev_update_features - recalculate device features
9916 * @dev: the device to check
9917 *
9918 * Recalculate dev->features set and send notifications if it
9919 * has changed. Should be called after driver or hardware dependent
9920 * conditions might have changed that influence the features.
9921 */
netdev_update_features(struct net_device * dev)9922 void netdev_update_features(struct net_device *dev)
9923 {
9924 if (__netdev_update_features(dev))
9925 netdev_features_change(dev);
9926 }
9927 EXPORT_SYMBOL(netdev_update_features);
9928
9929 /**
9930 * netdev_change_features - recalculate device features
9931 * @dev: the device to check
9932 *
9933 * Recalculate dev->features set and send notifications even
9934 * if they have not changed. Should be called instead of
9935 * netdev_update_features() if also dev->vlan_features might
9936 * have changed to allow the changes to be propagated to stacked
9937 * VLAN devices.
9938 */
netdev_change_features(struct net_device * dev)9939 void netdev_change_features(struct net_device *dev)
9940 {
9941 __netdev_update_features(dev);
9942 netdev_features_change(dev);
9943 }
9944 EXPORT_SYMBOL(netdev_change_features);
9945
9946 /**
9947 * netif_stacked_transfer_operstate - transfer operstate
9948 * @rootdev: the root or lower level device to transfer state from
9949 * @dev: the device to transfer operstate to
9950 *
9951 * Transfer operational state from root to device. This is normally
9952 * called when a stacking relationship exists between the root
9953 * device and the device(a leaf device).
9954 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9955 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9956 struct net_device *dev)
9957 {
9958 if (rootdev->operstate == IF_OPER_DORMANT)
9959 netif_dormant_on(dev);
9960 else
9961 netif_dormant_off(dev);
9962
9963 if (rootdev->operstate == IF_OPER_TESTING)
9964 netif_testing_on(dev);
9965 else
9966 netif_testing_off(dev);
9967
9968 if (netif_carrier_ok(rootdev))
9969 netif_carrier_on(dev);
9970 else
9971 netif_carrier_off(dev);
9972 }
9973 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9974
netif_alloc_rx_queues(struct net_device * dev)9975 static int netif_alloc_rx_queues(struct net_device *dev)
9976 {
9977 unsigned int i, count = dev->num_rx_queues;
9978 struct netdev_rx_queue *rx;
9979 size_t sz = count * sizeof(*rx);
9980 int err = 0;
9981
9982 BUG_ON(count < 1);
9983
9984 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9985 if (!rx)
9986 return -ENOMEM;
9987
9988 dev->_rx = rx;
9989
9990 for (i = 0; i < count; i++) {
9991 rx[i].dev = dev;
9992
9993 /* XDP RX-queue setup */
9994 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9995 if (err < 0)
9996 goto err_rxq_info;
9997 }
9998 return 0;
9999
10000 err_rxq_info:
10001 /* Rollback successful reg's and free other resources */
10002 while (i--)
10003 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10004 kvfree(dev->_rx);
10005 dev->_rx = NULL;
10006 return err;
10007 }
10008
netif_free_rx_queues(struct net_device * dev)10009 static void netif_free_rx_queues(struct net_device *dev)
10010 {
10011 unsigned int i, count = dev->num_rx_queues;
10012
10013 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10014 if (!dev->_rx)
10015 return;
10016
10017 for (i = 0; i < count; i++)
10018 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10019
10020 kvfree(dev->_rx);
10021 }
10022
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10023 static void netdev_init_one_queue(struct net_device *dev,
10024 struct netdev_queue *queue, void *_unused)
10025 {
10026 /* Initialize queue lock */
10027 spin_lock_init(&queue->_xmit_lock);
10028 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10029 queue->xmit_lock_owner = -1;
10030 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10031 queue->dev = dev;
10032 #ifdef CONFIG_BQL
10033 dql_init(&queue->dql, HZ);
10034 #endif
10035 }
10036
netif_free_tx_queues(struct net_device * dev)10037 static void netif_free_tx_queues(struct net_device *dev)
10038 {
10039 kvfree(dev->_tx);
10040 }
10041
netif_alloc_netdev_queues(struct net_device * dev)10042 static int netif_alloc_netdev_queues(struct net_device *dev)
10043 {
10044 unsigned int count = dev->num_tx_queues;
10045 struct netdev_queue *tx;
10046 size_t sz = count * sizeof(*tx);
10047
10048 if (count < 1 || count > 0xffff)
10049 return -EINVAL;
10050
10051 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10052 if (!tx)
10053 return -ENOMEM;
10054
10055 dev->_tx = tx;
10056
10057 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10058 spin_lock_init(&dev->tx_global_lock);
10059
10060 return 0;
10061 }
10062
netif_tx_stop_all_queues(struct net_device * dev)10063 void netif_tx_stop_all_queues(struct net_device *dev)
10064 {
10065 unsigned int i;
10066
10067 for (i = 0; i < dev->num_tx_queues; i++) {
10068 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10069
10070 netif_tx_stop_queue(txq);
10071 }
10072 }
10073 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10074
netdev_do_alloc_pcpu_stats(struct net_device * dev)10075 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10076 {
10077 void __percpu *v;
10078
10079 /* Drivers implementing ndo_get_peer_dev must support tstat
10080 * accounting, so that skb_do_redirect() can bump the dev's
10081 * RX stats upon network namespace switch.
10082 */
10083 if (dev->netdev_ops->ndo_get_peer_dev &&
10084 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10085 return -EOPNOTSUPP;
10086
10087 switch (dev->pcpu_stat_type) {
10088 case NETDEV_PCPU_STAT_NONE:
10089 return 0;
10090 case NETDEV_PCPU_STAT_LSTATS:
10091 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10092 break;
10093 case NETDEV_PCPU_STAT_TSTATS:
10094 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10095 break;
10096 case NETDEV_PCPU_STAT_DSTATS:
10097 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10098 break;
10099 default:
10100 return -EINVAL;
10101 }
10102
10103 return v ? 0 : -ENOMEM;
10104 }
10105
netdev_do_free_pcpu_stats(struct net_device * dev)10106 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10107 {
10108 switch (dev->pcpu_stat_type) {
10109 case NETDEV_PCPU_STAT_NONE:
10110 return;
10111 case NETDEV_PCPU_STAT_LSTATS:
10112 free_percpu(dev->lstats);
10113 break;
10114 case NETDEV_PCPU_STAT_TSTATS:
10115 free_percpu(dev->tstats);
10116 break;
10117 case NETDEV_PCPU_STAT_DSTATS:
10118 free_percpu(dev->dstats);
10119 break;
10120 }
10121 }
10122
10123 /**
10124 * register_netdevice() - register a network device
10125 * @dev: device to register
10126 *
10127 * Take a prepared network device structure and make it externally accessible.
10128 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10129 * Callers must hold the rtnl lock - you may want register_netdev()
10130 * instead of this.
10131 */
register_netdevice(struct net_device * dev)10132 int register_netdevice(struct net_device *dev)
10133 {
10134 int ret;
10135 struct net *net = dev_net(dev);
10136
10137 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10138 NETDEV_FEATURE_COUNT);
10139 BUG_ON(dev_boot_phase);
10140 ASSERT_RTNL();
10141
10142 might_sleep();
10143
10144 /* When net_device's are persistent, this will be fatal. */
10145 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10146 BUG_ON(!net);
10147
10148 ret = ethtool_check_ops(dev->ethtool_ops);
10149 if (ret)
10150 return ret;
10151
10152 spin_lock_init(&dev->addr_list_lock);
10153 netdev_set_addr_lockdep_class(dev);
10154
10155 ret = dev_get_valid_name(net, dev, dev->name);
10156 if (ret < 0)
10157 goto out;
10158
10159 ret = -ENOMEM;
10160 dev->name_node = netdev_name_node_head_alloc(dev);
10161 if (!dev->name_node)
10162 goto out;
10163
10164 /* Init, if this function is available */
10165 if (dev->netdev_ops->ndo_init) {
10166 ret = dev->netdev_ops->ndo_init(dev);
10167 if (ret) {
10168 if (ret > 0)
10169 ret = -EIO;
10170 goto err_free_name;
10171 }
10172 }
10173
10174 if (((dev->hw_features | dev->features) &
10175 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10176 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10177 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10178 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10179 ret = -EINVAL;
10180 goto err_uninit;
10181 }
10182
10183 ret = netdev_do_alloc_pcpu_stats(dev);
10184 if (ret)
10185 goto err_uninit;
10186
10187 ret = dev_index_reserve(net, dev->ifindex);
10188 if (ret < 0)
10189 goto err_free_pcpu;
10190 dev->ifindex = ret;
10191
10192 /* Transfer changeable features to wanted_features and enable
10193 * software offloads (GSO and GRO).
10194 */
10195 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10196 dev->features |= NETIF_F_SOFT_FEATURES;
10197
10198 if (dev->udp_tunnel_nic_info) {
10199 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10200 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10201 }
10202
10203 dev->wanted_features = dev->features & dev->hw_features;
10204
10205 if (!(dev->flags & IFF_LOOPBACK))
10206 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10207
10208 /* If IPv4 TCP segmentation offload is supported we should also
10209 * allow the device to enable segmenting the frame with the option
10210 * of ignoring a static IP ID value. This doesn't enable the
10211 * feature itself but allows the user to enable it later.
10212 */
10213 if (dev->hw_features & NETIF_F_TSO)
10214 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10215 if (dev->vlan_features & NETIF_F_TSO)
10216 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10217 if (dev->mpls_features & NETIF_F_TSO)
10218 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10219 if (dev->hw_enc_features & NETIF_F_TSO)
10220 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10221
10222 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10223 */
10224 dev->vlan_features |= NETIF_F_HIGHDMA;
10225
10226 /* Make NETIF_F_SG inheritable to tunnel devices.
10227 */
10228 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10229
10230 /* Make NETIF_F_SG inheritable to MPLS.
10231 */
10232 dev->mpls_features |= NETIF_F_SG;
10233
10234 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10235 ret = notifier_to_errno(ret);
10236 if (ret)
10237 goto err_ifindex_release;
10238
10239 ret = netdev_register_kobject(dev);
10240 write_lock(&dev_base_lock);
10241 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10242 write_unlock(&dev_base_lock);
10243 if (ret)
10244 goto err_uninit_notify;
10245
10246 __netdev_update_features(dev);
10247
10248 /*
10249 * Default initial state at registry is that the
10250 * device is present.
10251 */
10252
10253 set_bit(__LINK_STATE_PRESENT, &dev->state);
10254
10255 linkwatch_init_dev(dev);
10256
10257 dev_init_scheduler(dev);
10258
10259 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10260 list_netdevice(dev);
10261
10262 add_device_randomness(dev->dev_addr, dev->addr_len);
10263
10264 /* If the device has permanent device address, driver should
10265 * set dev_addr and also addr_assign_type should be set to
10266 * NET_ADDR_PERM (default value).
10267 */
10268 if (dev->addr_assign_type == NET_ADDR_PERM)
10269 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10270
10271 /* Notify protocols, that a new device appeared. */
10272 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10273 ret = notifier_to_errno(ret);
10274 if (ret) {
10275 /* Expect explicit free_netdev() on failure */
10276 dev->needs_free_netdev = false;
10277 unregister_netdevice_queue(dev, NULL);
10278 goto out;
10279 }
10280 /*
10281 * Prevent userspace races by waiting until the network
10282 * device is fully setup before sending notifications.
10283 */
10284 if (!dev->rtnl_link_ops ||
10285 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10286 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10287
10288 out:
10289 return ret;
10290
10291 err_uninit_notify:
10292 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10293 err_ifindex_release:
10294 dev_index_release(net, dev->ifindex);
10295 err_free_pcpu:
10296 netdev_do_free_pcpu_stats(dev);
10297 err_uninit:
10298 if (dev->netdev_ops->ndo_uninit)
10299 dev->netdev_ops->ndo_uninit(dev);
10300 if (dev->priv_destructor)
10301 dev->priv_destructor(dev);
10302 err_free_name:
10303 netdev_name_node_free(dev->name_node);
10304 goto out;
10305 }
10306 EXPORT_SYMBOL(register_netdevice);
10307
10308 /**
10309 * init_dummy_netdev - init a dummy network device for NAPI
10310 * @dev: device to init
10311 *
10312 * This takes a network device structure and initialize the minimum
10313 * amount of fields so it can be used to schedule NAPI polls without
10314 * registering a full blown interface. This is to be used by drivers
10315 * that need to tie several hardware interfaces to a single NAPI
10316 * poll scheduler due to HW limitations.
10317 */
init_dummy_netdev(struct net_device * dev)10318 int init_dummy_netdev(struct net_device *dev)
10319 {
10320 /* Clear everything. Note we don't initialize spinlocks
10321 * are they aren't supposed to be taken by any of the
10322 * NAPI code and this dummy netdev is supposed to be
10323 * only ever used for NAPI polls
10324 */
10325 memset(dev, 0, sizeof(struct net_device));
10326
10327 /* make sure we BUG if trying to hit standard
10328 * register/unregister code path
10329 */
10330 dev->reg_state = NETREG_DUMMY;
10331
10332 /* NAPI wants this */
10333 INIT_LIST_HEAD(&dev->napi_list);
10334
10335 /* a dummy interface is started by default */
10336 set_bit(__LINK_STATE_PRESENT, &dev->state);
10337 set_bit(__LINK_STATE_START, &dev->state);
10338
10339 /* napi_busy_loop stats accounting wants this */
10340 dev_net_set(dev, &init_net);
10341
10342 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10343 * because users of this 'device' dont need to change
10344 * its refcount.
10345 */
10346
10347 return 0;
10348 }
10349 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10350
10351
10352 /**
10353 * register_netdev - register a network device
10354 * @dev: device to register
10355 *
10356 * Take a completed network device structure and add it to the kernel
10357 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10358 * chain. 0 is returned on success. A negative errno code is returned
10359 * on a failure to set up the device, or if the name is a duplicate.
10360 *
10361 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10362 * and expands the device name if you passed a format string to
10363 * alloc_netdev.
10364 */
register_netdev(struct net_device * dev)10365 int register_netdev(struct net_device *dev)
10366 {
10367 int err;
10368
10369 if (rtnl_lock_killable())
10370 return -EINTR;
10371 err = register_netdevice(dev);
10372 rtnl_unlock();
10373 return err;
10374 }
10375 EXPORT_SYMBOL(register_netdev);
10376
netdev_refcnt_read(const struct net_device * dev)10377 int netdev_refcnt_read(const struct net_device *dev)
10378 {
10379 #ifdef CONFIG_PCPU_DEV_REFCNT
10380 int i, refcnt = 0;
10381
10382 for_each_possible_cpu(i)
10383 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10384 return refcnt;
10385 #else
10386 return refcount_read(&dev->dev_refcnt);
10387 #endif
10388 }
10389 EXPORT_SYMBOL(netdev_refcnt_read);
10390
10391 int netdev_unregister_timeout_secs __read_mostly = 10;
10392
10393 #define WAIT_REFS_MIN_MSECS 1
10394 #define WAIT_REFS_MAX_MSECS 250
10395 /**
10396 * netdev_wait_allrefs_any - wait until all references are gone.
10397 * @list: list of net_devices to wait on
10398 *
10399 * This is called when unregistering network devices.
10400 *
10401 * Any protocol or device that holds a reference should register
10402 * for netdevice notification, and cleanup and put back the
10403 * reference if they receive an UNREGISTER event.
10404 * We can get stuck here if buggy protocols don't correctly
10405 * call dev_put.
10406 */
netdev_wait_allrefs_any(struct list_head * list)10407 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10408 {
10409 unsigned long rebroadcast_time, warning_time;
10410 struct net_device *dev;
10411 int wait = 0;
10412
10413 rebroadcast_time = warning_time = jiffies;
10414
10415 list_for_each_entry(dev, list, todo_list)
10416 if (netdev_refcnt_read(dev) == 1)
10417 return dev;
10418
10419 while (true) {
10420 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10421 rtnl_lock();
10422
10423 /* Rebroadcast unregister notification */
10424 list_for_each_entry(dev, list, todo_list)
10425 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10426
10427 __rtnl_unlock();
10428 rcu_barrier();
10429 rtnl_lock();
10430
10431 list_for_each_entry(dev, list, todo_list)
10432 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10433 &dev->state)) {
10434 /* We must not have linkwatch events
10435 * pending on unregister. If this
10436 * happens, we simply run the queue
10437 * unscheduled, resulting in a noop
10438 * for this device.
10439 */
10440 linkwatch_run_queue();
10441 break;
10442 }
10443
10444 __rtnl_unlock();
10445
10446 rebroadcast_time = jiffies;
10447 }
10448
10449 rcu_barrier();
10450
10451 if (!wait) {
10452 wait = WAIT_REFS_MIN_MSECS;
10453 } else {
10454 msleep(wait);
10455 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10456 }
10457
10458 list_for_each_entry(dev, list, todo_list)
10459 if (netdev_refcnt_read(dev) == 1)
10460 return dev;
10461
10462 if (time_after(jiffies, warning_time +
10463 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10464 list_for_each_entry(dev, list, todo_list) {
10465 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10466 dev->name, netdev_refcnt_read(dev));
10467 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10468 }
10469
10470 warning_time = jiffies;
10471 }
10472 }
10473 }
10474
10475 /* The sequence is:
10476 *
10477 * rtnl_lock();
10478 * ...
10479 * register_netdevice(x1);
10480 * register_netdevice(x2);
10481 * ...
10482 * unregister_netdevice(y1);
10483 * unregister_netdevice(y2);
10484 * ...
10485 * rtnl_unlock();
10486 * free_netdev(y1);
10487 * free_netdev(y2);
10488 *
10489 * We are invoked by rtnl_unlock().
10490 * This allows us to deal with problems:
10491 * 1) We can delete sysfs objects which invoke hotplug
10492 * without deadlocking with linkwatch via keventd.
10493 * 2) Since we run with the RTNL semaphore not held, we can sleep
10494 * safely in order to wait for the netdev refcnt to drop to zero.
10495 *
10496 * We must not return until all unregister events added during
10497 * the interval the lock was held have been completed.
10498 */
netdev_run_todo(void)10499 void netdev_run_todo(void)
10500 {
10501 struct net_device *dev, *tmp;
10502 struct list_head list;
10503 #ifdef CONFIG_LOCKDEP
10504 struct list_head unlink_list;
10505
10506 list_replace_init(&net_unlink_list, &unlink_list);
10507
10508 while (!list_empty(&unlink_list)) {
10509 struct net_device *dev = list_first_entry(&unlink_list,
10510 struct net_device,
10511 unlink_list);
10512 list_del_init(&dev->unlink_list);
10513 dev->nested_level = dev->lower_level - 1;
10514 }
10515 #endif
10516
10517 /* Snapshot list, allow later requests */
10518 list_replace_init(&net_todo_list, &list);
10519
10520 __rtnl_unlock();
10521
10522 /* Wait for rcu callbacks to finish before next phase */
10523 if (!list_empty(&list))
10524 rcu_barrier();
10525
10526 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10527 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10528 netdev_WARN(dev, "run_todo but not unregistering\n");
10529 list_del(&dev->todo_list);
10530 continue;
10531 }
10532
10533 write_lock(&dev_base_lock);
10534 dev->reg_state = NETREG_UNREGISTERED;
10535 write_unlock(&dev_base_lock);
10536 linkwatch_forget_dev(dev);
10537 }
10538
10539 while (!list_empty(&list)) {
10540 dev = netdev_wait_allrefs_any(&list);
10541 list_del(&dev->todo_list);
10542
10543 /* paranoia */
10544 BUG_ON(netdev_refcnt_read(dev) != 1);
10545 BUG_ON(!list_empty(&dev->ptype_all));
10546 BUG_ON(!list_empty(&dev->ptype_specific));
10547 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10548 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10549
10550 netdev_do_free_pcpu_stats(dev);
10551 if (dev->priv_destructor)
10552 dev->priv_destructor(dev);
10553 if (dev->needs_free_netdev)
10554 free_netdev(dev);
10555
10556 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10557 wake_up(&netdev_unregistering_wq);
10558
10559 /* Free network device */
10560 kobject_put(&dev->dev.kobj);
10561 }
10562 }
10563
10564 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10565 * all the same fields in the same order as net_device_stats, with only
10566 * the type differing, but rtnl_link_stats64 may have additional fields
10567 * at the end for newer counters.
10568 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10569 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10570 const struct net_device_stats *netdev_stats)
10571 {
10572 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10573 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10574 u64 *dst = (u64 *)stats64;
10575
10576 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10577 for (i = 0; i < n; i++)
10578 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10579 /* zero out counters that only exist in rtnl_link_stats64 */
10580 memset((char *)stats64 + n * sizeof(u64), 0,
10581 sizeof(*stats64) - n * sizeof(u64));
10582 }
10583 EXPORT_SYMBOL(netdev_stats_to_stats64);
10584
netdev_core_stats_alloc(struct net_device * dev)10585 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10586 {
10587 struct net_device_core_stats __percpu *p;
10588
10589 p = alloc_percpu_gfp(struct net_device_core_stats,
10590 GFP_ATOMIC | __GFP_NOWARN);
10591
10592 if (p && cmpxchg(&dev->core_stats, NULL, p))
10593 free_percpu(p);
10594
10595 /* This READ_ONCE() pairs with the cmpxchg() above */
10596 return READ_ONCE(dev->core_stats);
10597 }
10598 EXPORT_SYMBOL(netdev_core_stats_alloc);
10599
10600 /**
10601 * dev_get_stats - get network device statistics
10602 * @dev: device to get statistics from
10603 * @storage: place to store stats
10604 *
10605 * Get network statistics from device. Return @storage.
10606 * The device driver may provide its own method by setting
10607 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10608 * otherwise the internal statistics structure is used.
10609 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10610 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10611 struct rtnl_link_stats64 *storage)
10612 {
10613 const struct net_device_ops *ops = dev->netdev_ops;
10614 const struct net_device_core_stats __percpu *p;
10615
10616 if (ops->ndo_get_stats64) {
10617 memset(storage, 0, sizeof(*storage));
10618 ops->ndo_get_stats64(dev, storage);
10619 } else if (ops->ndo_get_stats) {
10620 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10621 } else {
10622 netdev_stats_to_stats64(storage, &dev->stats);
10623 }
10624
10625 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10626 p = READ_ONCE(dev->core_stats);
10627 if (p) {
10628 const struct net_device_core_stats *core_stats;
10629 int i;
10630
10631 for_each_possible_cpu(i) {
10632 core_stats = per_cpu_ptr(p, i);
10633 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10634 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10635 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10636 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10637 }
10638 }
10639 return storage;
10640 }
10641 EXPORT_SYMBOL(dev_get_stats);
10642
10643 /**
10644 * dev_fetch_sw_netstats - get per-cpu network device statistics
10645 * @s: place to store stats
10646 * @netstats: per-cpu network stats to read from
10647 *
10648 * Read per-cpu network statistics and populate the related fields in @s.
10649 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10650 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10651 const struct pcpu_sw_netstats __percpu *netstats)
10652 {
10653 int cpu;
10654
10655 for_each_possible_cpu(cpu) {
10656 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10657 const struct pcpu_sw_netstats *stats;
10658 unsigned int start;
10659
10660 stats = per_cpu_ptr(netstats, cpu);
10661 do {
10662 start = u64_stats_fetch_begin(&stats->syncp);
10663 rx_packets = u64_stats_read(&stats->rx_packets);
10664 rx_bytes = u64_stats_read(&stats->rx_bytes);
10665 tx_packets = u64_stats_read(&stats->tx_packets);
10666 tx_bytes = u64_stats_read(&stats->tx_bytes);
10667 } while (u64_stats_fetch_retry(&stats->syncp, start));
10668
10669 s->rx_packets += rx_packets;
10670 s->rx_bytes += rx_bytes;
10671 s->tx_packets += tx_packets;
10672 s->tx_bytes += tx_bytes;
10673 }
10674 }
10675 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10676
10677 /**
10678 * dev_get_tstats64 - ndo_get_stats64 implementation
10679 * @dev: device to get statistics from
10680 * @s: place to store stats
10681 *
10682 * Populate @s from dev->stats and dev->tstats. Can be used as
10683 * ndo_get_stats64() callback.
10684 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10685 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10686 {
10687 netdev_stats_to_stats64(s, &dev->stats);
10688 dev_fetch_sw_netstats(s, dev->tstats);
10689 }
10690 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10691
dev_ingress_queue_create(struct net_device * dev)10692 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10693 {
10694 struct netdev_queue *queue = dev_ingress_queue(dev);
10695
10696 #ifdef CONFIG_NET_CLS_ACT
10697 if (queue)
10698 return queue;
10699 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10700 if (!queue)
10701 return NULL;
10702 netdev_init_one_queue(dev, queue, NULL);
10703 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10704 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10705 rcu_assign_pointer(dev->ingress_queue, queue);
10706 #endif
10707 return queue;
10708 }
10709
10710 static const struct ethtool_ops default_ethtool_ops;
10711
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10712 void netdev_set_default_ethtool_ops(struct net_device *dev,
10713 const struct ethtool_ops *ops)
10714 {
10715 if (dev->ethtool_ops == &default_ethtool_ops)
10716 dev->ethtool_ops = ops;
10717 }
10718 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10719
10720 /**
10721 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10722 * @dev: netdev to enable the IRQ coalescing on
10723 *
10724 * Sets a conservative default for SW IRQ coalescing. Users can use
10725 * sysfs attributes to override the default values.
10726 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)10727 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10728 {
10729 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10730
10731 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10732 dev->gro_flush_timeout = 20000;
10733 dev->napi_defer_hard_irqs = 1;
10734 }
10735 }
10736 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10737
netdev_freemem(struct net_device * dev)10738 void netdev_freemem(struct net_device *dev)
10739 {
10740 char *addr = (char *)dev - dev->padded;
10741
10742 kvfree(addr);
10743 }
10744
10745 /**
10746 * alloc_netdev_mqs - allocate network device
10747 * @sizeof_priv: size of private data to allocate space for
10748 * @name: device name format string
10749 * @name_assign_type: origin of device name
10750 * @setup: callback to initialize device
10751 * @txqs: the number of TX subqueues to allocate
10752 * @rxqs: the number of RX subqueues to allocate
10753 *
10754 * Allocates a struct net_device with private data area for driver use
10755 * and performs basic initialization. Also allocates subqueue structs
10756 * for each queue on the device.
10757 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10758 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10759 unsigned char name_assign_type,
10760 void (*setup)(struct net_device *),
10761 unsigned int txqs, unsigned int rxqs)
10762 {
10763 struct net_device *dev;
10764 unsigned int alloc_size;
10765 struct net_device *p;
10766
10767 BUG_ON(strlen(name) >= sizeof(dev->name));
10768
10769 if (txqs < 1) {
10770 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10771 return NULL;
10772 }
10773
10774 if (rxqs < 1) {
10775 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10776 return NULL;
10777 }
10778
10779 alloc_size = sizeof(struct net_device);
10780 if (sizeof_priv) {
10781 /* ensure 32-byte alignment of private area */
10782 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10783 alloc_size += sizeof_priv;
10784 }
10785 /* ensure 32-byte alignment of whole construct */
10786 alloc_size += NETDEV_ALIGN - 1;
10787
10788 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10789 if (!p)
10790 return NULL;
10791
10792 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10793 dev->padded = (char *)dev - (char *)p;
10794
10795 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10796 #ifdef CONFIG_PCPU_DEV_REFCNT
10797 dev->pcpu_refcnt = alloc_percpu(int);
10798 if (!dev->pcpu_refcnt)
10799 goto free_dev;
10800 __dev_hold(dev);
10801 #else
10802 refcount_set(&dev->dev_refcnt, 1);
10803 #endif
10804
10805 if (dev_addr_init(dev))
10806 goto free_pcpu;
10807
10808 dev_mc_init(dev);
10809 dev_uc_init(dev);
10810
10811 dev_net_set(dev, &init_net);
10812
10813 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10814 dev->xdp_zc_max_segs = 1;
10815 dev->gso_max_segs = GSO_MAX_SEGS;
10816 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10817 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10818 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10819 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10820 dev->tso_max_segs = TSO_MAX_SEGS;
10821 dev->upper_level = 1;
10822 dev->lower_level = 1;
10823 #ifdef CONFIG_LOCKDEP
10824 dev->nested_level = 0;
10825 INIT_LIST_HEAD(&dev->unlink_list);
10826 #endif
10827
10828 INIT_LIST_HEAD(&dev->napi_list);
10829 INIT_LIST_HEAD(&dev->unreg_list);
10830 INIT_LIST_HEAD(&dev->close_list);
10831 INIT_LIST_HEAD(&dev->link_watch_list);
10832 INIT_LIST_HEAD(&dev->adj_list.upper);
10833 INIT_LIST_HEAD(&dev->adj_list.lower);
10834 INIT_LIST_HEAD(&dev->ptype_all);
10835 INIT_LIST_HEAD(&dev->ptype_specific);
10836 INIT_LIST_HEAD(&dev->net_notifier_list);
10837 #ifdef CONFIG_NET_SCHED
10838 hash_init(dev->qdisc_hash);
10839 #endif
10840 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10841 setup(dev);
10842
10843 if (!dev->tx_queue_len) {
10844 dev->priv_flags |= IFF_NO_QUEUE;
10845 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10846 }
10847
10848 dev->num_tx_queues = txqs;
10849 dev->real_num_tx_queues = txqs;
10850 if (netif_alloc_netdev_queues(dev))
10851 goto free_all;
10852
10853 dev->num_rx_queues = rxqs;
10854 dev->real_num_rx_queues = rxqs;
10855 if (netif_alloc_rx_queues(dev))
10856 goto free_all;
10857
10858 strcpy(dev->name, name);
10859 dev->name_assign_type = name_assign_type;
10860 dev->group = INIT_NETDEV_GROUP;
10861 if (!dev->ethtool_ops)
10862 dev->ethtool_ops = &default_ethtool_ops;
10863
10864 nf_hook_netdev_init(dev);
10865
10866 return dev;
10867
10868 free_all:
10869 free_netdev(dev);
10870 return NULL;
10871
10872 free_pcpu:
10873 #ifdef CONFIG_PCPU_DEV_REFCNT
10874 free_percpu(dev->pcpu_refcnt);
10875 free_dev:
10876 #endif
10877 netdev_freemem(dev);
10878 return NULL;
10879 }
10880 EXPORT_SYMBOL(alloc_netdev_mqs);
10881
10882 /**
10883 * free_netdev - free network device
10884 * @dev: device
10885 *
10886 * This function does the last stage of destroying an allocated device
10887 * interface. The reference to the device object is released. If this
10888 * is the last reference then it will be freed.Must be called in process
10889 * context.
10890 */
free_netdev(struct net_device * dev)10891 void free_netdev(struct net_device *dev)
10892 {
10893 struct napi_struct *p, *n;
10894
10895 might_sleep();
10896
10897 /* When called immediately after register_netdevice() failed the unwind
10898 * handling may still be dismantling the device. Handle that case by
10899 * deferring the free.
10900 */
10901 if (dev->reg_state == NETREG_UNREGISTERING) {
10902 ASSERT_RTNL();
10903 dev->needs_free_netdev = true;
10904 return;
10905 }
10906
10907 netif_free_tx_queues(dev);
10908 netif_free_rx_queues(dev);
10909
10910 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10911
10912 /* Flush device addresses */
10913 dev_addr_flush(dev);
10914
10915 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10916 netif_napi_del(p);
10917
10918 ref_tracker_dir_exit(&dev->refcnt_tracker);
10919 #ifdef CONFIG_PCPU_DEV_REFCNT
10920 free_percpu(dev->pcpu_refcnt);
10921 dev->pcpu_refcnt = NULL;
10922 #endif
10923 free_percpu(dev->core_stats);
10924 dev->core_stats = NULL;
10925 free_percpu(dev->xdp_bulkq);
10926 dev->xdp_bulkq = NULL;
10927
10928 /* Compatibility with error handling in drivers */
10929 if (dev->reg_state == NETREG_UNINITIALIZED) {
10930 netdev_freemem(dev);
10931 return;
10932 }
10933
10934 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10935 dev->reg_state = NETREG_RELEASED;
10936
10937 /* will free via device release */
10938 put_device(&dev->dev);
10939 }
10940 EXPORT_SYMBOL(free_netdev);
10941
10942 /**
10943 * synchronize_net - Synchronize with packet receive processing
10944 *
10945 * Wait for packets currently being received to be done.
10946 * Does not block later packets from starting.
10947 */
synchronize_net(void)10948 void synchronize_net(void)
10949 {
10950 might_sleep();
10951 if (rtnl_is_locked())
10952 synchronize_rcu_expedited();
10953 else
10954 synchronize_rcu();
10955 }
10956 EXPORT_SYMBOL(synchronize_net);
10957
10958 /**
10959 * unregister_netdevice_queue - remove device from the kernel
10960 * @dev: device
10961 * @head: list
10962 *
10963 * This function shuts down a device interface and removes it
10964 * from the kernel tables.
10965 * If head not NULL, device is queued to be unregistered later.
10966 *
10967 * Callers must hold the rtnl semaphore. You may want
10968 * unregister_netdev() instead of this.
10969 */
10970
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10971 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10972 {
10973 ASSERT_RTNL();
10974
10975 if (head) {
10976 list_move_tail(&dev->unreg_list, head);
10977 } else {
10978 LIST_HEAD(single);
10979
10980 list_add(&dev->unreg_list, &single);
10981 unregister_netdevice_many(&single);
10982 }
10983 }
10984 EXPORT_SYMBOL(unregister_netdevice_queue);
10985
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)10986 void unregister_netdevice_many_notify(struct list_head *head,
10987 u32 portid, const struct nlmsghdr *nlh)
10988 {
10989 struct net_device *dev, *tmp;
10990 LIST_HEAD(close_head);
10991
10992 BUG_ON(dev_boot_phase);
10993 ASSERT_RTNL();
10994
10995 if (list_empty(head))
10996 return;
10997
10998 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10999 /* Some devices call without registering
11000 * for initialization unwind. Remove those
11001 * devices and proceed with the remaining.
11002 */
11003 if (dev->reg_state == NETREG_UNINITIALIZED) {
11004 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11005 dev->name, dev);
11006
11007 WARN_ON(1);
11008 list_del(&dev->unreg_list);
11009 continue;
11010 }
11011 dev->dismantle = true;
11012 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11013 }
11014
11015 /* If device is running, close it first. */
11016 list_for_each_entry(dev, head, unreg_list)
11017 list_add_tail(&dev->close_list, &close_head);
11018 dev_close_many(&close_head, true);
11019
11020 list_for_each_entry(dev, head, unreg_list) {
11021 /* And unlink it from device chain. */
11022 write_lock(&dev_base_lock);
11023 unlist_netdevice(dev, false);
11024 dev->reg_state = NETREG_UNREGISTERING;
11025 write_unlock(&dev_base_lock);
11026 }
11027 flush_all_backlogs();
11028
11029 synchronize_net();
11030
11031 list_for_each_entry(dev, head, unreg_list) {
11032 struct sk_buff *skb = NULL;
11033
11034 /* Shutdown queueing discipline. */
11035 dev_shutdown(dev);
11036 dev_tcx_uninstall(dev);
11037 dev_xdp_uninstall(dev);
11038 bpf_dev_bound_netdev_unregister(dev);
11039
11040 netdev_offload_xstats_disable_all(dev);
11041
11042 /* Notify protocols, that we are about to destroy
11043 * this device. They should clean all the things.
11044 */
11045 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11046
11047 if (!dev->rtnl_link_ops ||
11048 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11049 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11050 GFP_KERNEL, NULL, 0,
11051 portid, nlh);
11052
11053 /*
11054 * Flush the unicast and multicast chains
11055 */
11056 dev_uc_flush(dev);
11057 dev_mc_flush(dev);
11058
11059 netdev_name_node_alt_flush(dev);
11060 netdev_name_node_free(dev->name_node);
11061
11062 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11063
11064 if (dev->netdev_ops->ndo_uninit)
11065 dev->netdev_ops->ndo_uninit(dev);
11066
11067 if (skb)
11068 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11069
11070 /* Notifier chain MUST detach us all upper devices. */
11071 WARN_ON(netdev_has_any_upper_dev(dev));
11072 WARN_ON(netdev_has_any_lower_dev(dev));
11073
11074 /* Remove entries from kobject tree */
11075 netdev_unregister_kobject(dev);
11076 #ifdef CONFIG_XPS
11077 /* Remove XPS queueing entries */
11078 netif_reset_xps_queues_gt(dev, 0);
11079 #endif
11080 }
11081
11082 synchronize_net();
11083
11084 list_for_each_entry(dev, head, unreg_list) {
11085 netdev_put(dev, &dev->dev_registered_tracker);
11086 net_set_todo(dev);
11087 }
11088
11089 list_del(head);
11090 }
11091
11092 /**
11093 * unregister_netdevice_many - unregister many devices
11094 * @head: list of devices
11095 *
11096 * Note: As most callers use a stack allocated list_head,
11097 * we force a list_del() to make sure stack wont be corrupted later.
11098 */
unregister_netdevice_many(struct list_head * head)11099 void unregister_netdevice_many(struct list_head *head)
11100 {
11101 unregister_netdevice_many_notify(head, 0, NULL);
11102 }
11103 EXPORT_SYMBOL(unregister_netdevice_many);
11104
11105 /**
11106 * unregister_netdev - remove device from the kernel
11107 * @dev: device
11108 *
11109 * This function shuts down a device interface and removes it
11110 * from the kernel tables.
11111 *
11112 * This is just a wrapper for unregister_netdevice that takes
11113 * the rtnl semaphore. In general you want to use this and not
11114 * unregister_netdevice.
11115 */
unregister_netdev(struct net_device * dev)11116 void unregister_netdev(struct net_device *dev)
11117 {
11118 rtnl_lock();
11119 unregister_netdevice(dev);
11120 rtnl_unlock();
11121 }
11122 EXPORT_SYMBOL(unregister_netdev);
11123
11124 /**
11125 * __dev_change_net_namespace - move device to different nethost namespace
11126 * @dev: device
11127 * @net: network namespace
11128 * @pat: If not NULL name pattern to try if the current device name
11129 * is already taken in the destination network namespace.
11130 * @new_ifindex: If not zero, specifies device index in the target
11131 * namespace.
11132 *
11133 * This function shuts down a device interface and moves it
11134 * to a new network namespace. On success 0 is returned, on
11135 * a failure a netagive errno code is returned.
11136 *
11137 * Callers must hold the rtnl semaphore.
11138 */
11139
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11140 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11141 const char *pat, int new_ifindex)
11142 {
11143 struct netdev_name_node *name_node;
11144 struct net *net_old = dev_net(dev);
11145 char new_name[IFNAMSIZ] = {};
11146 int err, new_nsid;
11147
11148 ASSERT_RTNL();
11149
11150 /* Don't allow namespace local devices to be moved. */
11151 err = -EINVAL;
11152 if (dev->features & NETIF_F_NETNS_LOCAL)
11153 goto out;
11154
11155 /* Ensure the device has been registrered */
11156 if (dev->reg_state != NETREG_REGISTERED)
11157 goto out;
11158
11159 /* Get out if there is nothing todo */
11160 err = 0;
11161 if (net_eq(net_old, net))
11162 goto out;
11163
11164 /* Pick the destination device name, and ensure
11165 * we can use it in the destination network namespace.
11166 */
11167 err = -EEXIST;
11168 if (netdev_name_in_use(net, dev->name)) {
11169 /* We get here if we can't use the current device name */
11170 if (!pat)
11171 goto out;
11172 err = dev_prep_valid_name(net, dev, pat, new_name);
11173 if (err < 0)
11174 goto out;
11175 }
11176 /* Check that none of the altnames conflicts. */
11177 err = -EEXIST;
11178 netdev_for_each_altname(dev, name_node)
11179 if (netdev_name_in_use(net, name_node->name))
11180 goto out;
11181
11182 /* Check that new_ifindex isn't used yet. */
11183 if (new_ifindex) {
11184 err = dev_index_reserve(net, new_ifindex);
11185 if (err < 0)
11186 goto out;
11187 } else {
11188 /* If there is an ifindex conflict assign a new one */
11189 err = dev_index_reserve(net, dev->ifindex);
11190 if (err == -EBUSY)
11191 err = dev_index_reserve(net, 0);
11192 if (err < 0)
11193 goto out;
11194 new_ifindex = err;
11195 }
11196
11197 /*
11198 * And now a mini version of register_netdevice unregister_netdevice.
11199 */
11200
11201 /* If device is running close it first. */
11202 dev_close(dev);
11203
11204 /* And unlink it from device chain */
11205 unlist_netdevice(dev, true);
11206
11207 synchronize_net();
11208
11209 /* Shutdown queueing discipline. */
11210 dev_shutdown(dev);
11211
11212 /* Notify protocols, that we are about to destroy
11213 * this device. They should clean all the things.
11214 *
11215 * Note that dev->reg_state stays at NETREG_REGISTERED.
11216 * This is wanted because this way 8021q and macvlan know
11217 * the device is just moving and can keep their slaves up.
11218 */
11219 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11220 rcu_barrier();
11221
11222 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11223
11224 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11225 new_ifindex);
11226
11227 /*
11228 * Flush the unicast and multicast chains
11229 */
11230 dev_uc_flush(dev);
11231 dev_mc_flush(dev);
11232
11233 /* Send a netdev-removed uevent to the old namespace */
11234 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11235 netdev_adjacent_del_links(dev);
11236
11237 /* Move per-net netdevice notifiers that are following the netdevice */
11238 move_netdevice_notifiers_dev_net(dev, net);
11239
11240 /* Actually switch the network namespace */
11241 dev_net_set(dev, net);
11242 dev->ifindex = new_ifindex;
11243
11244 /* Send a netdev-add uevent to the new namespace */
11245 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11246 netdev_adjacent_add_links(dev);
11247
11248 if (new_name[0]) /* Rename the netdev to prepared name */
11249 strscpy(dev->name, new_name, IFNAMSIZ);
11250
11251 /* Fixup kobjects */
11252 err = device_rename(&dev->dev, dev->name);
11253 WARN_ON(err);
11254
11255 /* Adapt owner in case owning user namespace of target network
11256 * namespace is different from the original one.
11257 */
11258 err = netdev_change_owner(dev, net_old, net);
11259 WARN_ON(err);
11260
11261 /* Add the device back in the hashes */
11262 list_netdevice(dev);
11263
11264 /* Notify protocols, that a new device appeared. */
11265 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11266
11267 /*
11268 * Prevent userspace races by waiting until the network
11269 * device is fully setup before sending notifications.
11270 */
11271 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11272
11273 synchronize_net();
11274 err = 0;
11275 out:
11276 return err;
11277 }
11278 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11279
dev_cpu_dead(unsigned int oldcpu)11280 static int dev_cpu_dead(unsigned int oldcpu)
11281 {
11282 struct sk_buff **list_skb;
11283 struct sk_buff *skb;
11284 unsigned int cpu;
11285 struct softnet_data *sd, *oldsd, *remsd = NULL;
11286
11287 local_irq_disable();
11288 cpu = smp_processor_id();
11289 sd = &per_cpu(softnet_data, cpu);
11290 oldsd = &per_cpu(softnet_data, oldcpu);
11291
11292 /* Find end of our completion_queue. */
11293 list_skb = &sd->completion_queue;
11294 while (*list_skb)
11295 list_skb = &(*list_skb)->next;
11296 /* Append completion queue from offline CPU. */
11297 *list_skb = oldsd->completion_queue;
11298 oldsd->completion_queue = NULL;
11299
11300 /* Append output queue from offline CPU. */
11301 if (oldsd->output_queue) {
11302 *sd->output_queue_tailp = oldsd->output_queue;
11303 sd->output_queue_tailp = oldsd->output_queue_tailp;
11304 oldsd->output_queue = NULL;
11305 oldsd->output_queue_tailp = &oldsd->output_queue;
11306 }
11307 /* Append NAPI poll list from offline CPU, with one exception :
11308 * process_backlog() must be called by cpu owning percpu backlog.
11309 * We properly handle process_queue & input_pkt_queue later.
11310 */
11311 while (!list_empty(&oldsd->poll_list)) {
11312 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11313 struct napi_struct,
11314 poll_list);
11315
11316 list_del_init(&napi->poll_list);
11317 if (napi->poll == process_backlog)
11318 napi->state = 0;
11319 else
11320 ____napi_schedule(sd, napi);
11321 }
11322
11323 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11324 local_irq_enable();
11325
11326 #ifdef CONFIG_RPS
11327 remsd = oldsd->rps_ipi_list;
11328 oldsd->rps_ipi_list = NULL;
11329 #endif
11330 /* send out pending IPI's on offline CPU */
11331 net_rps_send_ipi(remsd);
11332
11333 /* Process offline CPU's input_pkt_queue */
11334 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11335 netif_rx(skb);
11336 input_queue_head_incr(oldsd);
11337 }
11338 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11339 netif_rx(skb);
11340 input_queue_head_incr(oldsd);
11341 }
11342
11343 return 0;
11344 }
11345
11346 /**
11347 * netdev_increment_features - increment feature set by one
11348 * @all: current feature set
11349 * @one: new feature set
11350 * @mask: mask feature set
11351 *
11352 * Computes a new feature set after adding a device with feature set
11353 * @one to the master device with current feature set @all. Will not
11354 * enable anything that is off in @mask. Returns the new feature set.
11355 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11356 netdev_features_t netdev_increment_features(netdev_features_t all,
11357 netdev_features_t one, netdev_features_t mask)
11358 {
11359 if (mask & NETIF_F_HW_CSUM)
11360 mask |= NETIF_F_CSUM_MASK;
11361 mask |= NETIF_F_VLAN_CHALLENGED;
11362
11363 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11364 all &= one | ~NETIF_F_ALL_FOR_ALL;
11365
11366 /* If one device supports hw checksumming, set for all. */
11367 if (all & NETIF_F_HW_CSUM)
11368 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11369
11370 return all;
11371 }
11372 EXPORT_SYMBOL(netdev_increment_features);
11373
netdev_create_hash(void)11374 static struct hlist_head * __net_init netdev_create_hash(void)
11375 {
11376 int i;
11377 struct hlist_head *hash;
11378
11379 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11380 if (hash != NULL)
11381 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11382 INIT_HLIST_HEAD(&hash[i]);
11383
11384 return hash;
11385 }
11386
11387 /* Initialize per network namespace state */
netdev_init(struct net * net)11388 static int __net_init netdev_init(struct net *net)
11389 {
11390 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11391 8 * sizeof_field(struct napi_struct, gro_bitmask));
11392
11393 INIT_LIST_HEAD(&net->dev_base_head);
11394
11395 net->dev_name_head = netdev_create_hash();
11396 if (net->dev_name_head == NULL)
11397 goto err_name;
11398
11399 net->dev_index_head = netdev_create_hash();
11400 if (net->dev_index_head == NULL)
11401 goto err_idx;
11402
11403 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11404
11405 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11406
11407 return 0;
11408
11409 err_idx:
11410 kfree(net->dev_name_head);
11411 err_name:
11412 return -ENOMEM;
11413 }
11414
11415 /**
11416 * netdev_drivername - network driver for the device
11417 * @dev: network device
11418 *
11419 * Determine network driver for device.
11420 */
netdev_drivername(const struct net_device * dev)11421 const char *netdev_drivername(const struct net_device *dev)
11422 {
11423 const struct device_driver *driver;
11424 const struct device *parent;
11425 const char *empty = "";
11426
11427 parent = dev->dev.parent;
11428 if (!parent)
11429 return empty;
11430
11431 driver = parent->driver;
11432 if (driver && driver->name)
11433 return driver->name;
11434 return empty;
11435 }
11436
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11437 static void __netdev_printk(const char *level, const struct net_device *dev,
11438 struct va_format *vaf)
11439 {
11440 if (dev && dev->dev.parent) {
11441 dev_printk_emit(level[1] - '0',
11442 dev->dev.parent,
11443 "%s %s %s%s: %pV",
11444 dev_driver_string(dev->dev.parent),
11445 dev_name(dev->dev.parent),
11446 netdev_name(dev), netdev_reg_state(dev),
11447 vaf);
11448 } else if (dev) {
11449 printk("%s%s%s: %pV",
11450 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11451 } else {
11452 printk("%s(NULL net_device): %pV", level, vaf);
11453 }
11454 }
11455
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11456 void netdev_printk(const char *level, const struct net_device *dev,
11457 const char *format, ...)
11458 {
11459 struct va_format vaf;
11460 va_list args;
11461
11462 va_start(args, format);
11463
11464 vaf.fmt = format;
11465 vaf.va = &args;
11466
11467 __netdev_printk(level, dev, &vaf);
11468
11469 va_end(args);
11470 }
11471 EXPORT_SYMBOL(netdev_printk);
11472
11473 #define define_netdev_printk_level(func, level) \
11474 void func(const struct net_device *dev, const char *fmt, ...) \
11475 { \
11476 struct va_format vaf; \
11477 va_list args; \
11478 \
11479 va_start(args, fmt); \
11480 \
11481 vaf.fmt = fmt; \
11482 vaf.va = &args; \
11483 \
11484 __netdev_printk(level, dev, &vaf); \
11485 \
11486 va_end(args); \
11487 } \
11488 EXPORT_SYMBOL(func);
11489
11490 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11491 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11492 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11493 define_netdev_printk_level(netdev_err, KERN_ERR);
11494 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11495 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11496 define_netdev_printk_level(netdev_info, KERN_INFO);
11497
netdev_exit(struct net * net)11498 static void __net_exit netdev_exit(struct net *net)
11499 {
11500 kfree(net->dev_name_head);
11501 kfree(net->dev_index_head);
11502 xa_destroy(&net->dev_by_index);
11503 if (net != &init_net)
11504 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11505 }
11506
11507 static struct pernet_operations __net_initdata netdev_net_ops = {
11508 .init = netdev_init,
11509 .exit = netdev_exit,
11510 };
11511
default_device_exit_net(struct net * net)11512 static void __net_exit default_device_exit_net(struct net *net)
11513 {
11514 struct netdev_name_node *name_node, *tmp;
11515 struct net_device *dev, *aux;
11516 /*
11517 * Push all migratable network devices back to the
11518 * initial network namespace
11519 */
11520 ASSERT_RTNL();
11521 for_each_netdev_safe(net, dev, aux) {
11522 int err;
11523 char fb_name[IFNAMSIZ];
11524
11525 /* Ignore unmoveable devices (i.e. loopback) */
11526 if (dev->features & NETIF_F_NETNS_LOCAL)
11527 continue;
11528
11529 /* Leave virtual devices for the generic cleanup */
11530 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11531 continue;
11532
11533 /* Push remaining network devices to init_net */
11534 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11535 if (netdev_name_in_use(&init_net, fb_name))
11536 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11537
11538 netdev_for_each_altname_safe(dev, name_node, tmp)
11539 if (netdev_name_in_use(&init_net, name_node->name)) {
11540 netdev_name_node_del(name_node);
11541 synchronize_rcu();
11542 __netdev_name_node_alt_destroy(name_node);
11543 }
11544
11545 err = dev_change_net_namespace(dev, &init_net, fb_name);
11546 if (err) {
11547 pr_emerg("%s: failed to move %s to init_net: %d\n",
11548 __func__, dev->name, err);
11549 BUG();
11550 }
11551 }
11552 }
11553
default_device_exit_batch(struct list_head * net_list)11554 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11555 {
11556 /* At exit all network devices most be removed from a network
11557 * namespace. Do this in the reverse order of registration.
11558 * Do this across as many network namespaces as possible to
11559 * improve batching efficiency.
11560 */
11561 struct net_device *dev;
11562 struct net *net;
11563 LIST_HEAD(dev_kill_list);
11564
11565 rtnl_lock();
11566 list_for_each_entry(net, net_list, exit_list) {
11567 default_device_exit_net(net);
11568 cond_resched();
11569 }
11570
11571 list_for_each_entry(net, net_list, exit_list) {
11572 for_each_netdev_reverse(net, dev) {
11573 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11574 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11575 else
11576 unregister_netdevice_queue(dev, &dev_kill_list);
11577 }
11578 }
11579 unregister_netdevice_many(&dev_kill_list);
11580 rtnl_unlock();
11581 }
11582
11583 static struct pernet_operations __net_initdata default_device_ops = {
11584 .exit_batch = default_device_exit_batch,
11585 };
11586
11587 /*
11588 * Initialize the DEV module. At boot time this walks the device list and
11589 * unhooks any devices that fail to initialise (normally hardware not
11590 * present) and leaves us with a valid list of present and active devices.
11591 *
11592 */
11593
11594 /*
11595 * This is called single threaded during boot, so no need
11596 * to take the rtnl semaphore.
11597 */
net_dev_init(void)11598 static int __init net_dev_init(void)
11599 {
11600 int i, rc = -ENOMEM;
11601
11602 BUG_ON(!dev_boot_phase);
11603
11604 if (dev_proc_init())
11605 goto out;
11606
11607 if (netdev_kobject_init())
11608 goto out;
11609
11610 INIT_LIST_HEAD(&ptype_all);
11611 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11612 INIT_LIST_HEAD(&ptype_base[i]);
11613
11614 if (register_pernet_subsys(&netdev_net_ops))
11615 goto out;
11616
11617 /*
11618 * Initialise the packet receive queues.
11619 */
11620
11621 for_each_possible_cpu(i) {
11622 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11623 struct softnet_data *sd = &per_cpu(softnet_data, i);
11624
11625 INIT_WORK(flush, flush_backlog);
11626
11627 skb_queue_head_init(&sd->input_pkt_queue);
11628 skb_queue_head_init(&sd->process_queue);
11629 #ifdef CONFIG_XFRM_OFFLOAD
11630 skb_queue_head_init(&sd->xfrm_backlog);
11631 #endif
11632 INIT_LIST_HEAD(&sd->poll_list);
11633 sd->output_queue_tailp = &sd->output_queue;
11634 #ifdef CONFIG_RPS
11635 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11636 sd->cpu = i;
11637 #endif
11638 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11639 spin_lock_init(&sd->defer_lock);
11640
11641 init_gro_hash(&sd->backlog);
11642 sd->backlog.poll = process_backlog;
11643 sd->backlog.weight = weight_p;
11644 }
11645
11646 dev_boot_phase = 0;
11647
11648 /* The loopback device is special if any other network devices
11649 * is present in a network namespace the loopback device must
11650 * be present. Since we now dynamically allocate and free the
11651 * loopback device ensure this invariant is maintained by
11652 * keeping the loopback device as the first device on the
11653 * list of network devices. Ensuring the loopback devices
11654 * is the first device that appears and the last network device
11655 * that disappears.
11656 */
11657 if (register_pernet_device(&loopback_net_ops))
11658 goto out;
11659
11660 if (register_pernet_device(&default_device_ops))
11661 goto out;
11662
11663 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11664 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11665
11666 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11667 NULL, dev_cpu_dead);
11668 WARN_ON(rc < 0);
11669 rc = 0;
11670 out:
11671 return rc;
11672 }
11673
11674 subsys_initcall(net_dev_init);
11675