• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11 
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20 
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24 
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE	64
31 
32 struct nfsd_drc_bucket {
33 	struct rb_root rb_head;
34 	struct list_head lru_head;
35 	spinlock_t cache_lock;
36 };
37 
38 static struct kmem_cache	*drc_slab;
39 
40 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 					    struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 					   struct shrink_control *sc);
45 
46 /*
47  * Put a cap on the size of the DRC based on the amount of available
48  * low memory in the machine.
49  *
50  *  64MB:    8192
51  * 128MB:   11585
52  * 256MB:   16384
53  * 512MB:   23170
54  *   1GB:   32768
55  *   2GB:   46340
56  *   4GB:   65536
57  *   8GB:   92681
58  *  16GB:  131072
59  *
60  * ...with a hard cap of 256k entries. In the worst case, each entry will be
61  * ~1k, so the above numbers should give a rough max of the amount of memory
62  * used in k.
63  *
64  * XXX: these limits are per-container, so memory used will increase
65  * linearly with number of containers.  Maybe that's OK.
66  */
67 static unsigned int
nfsd_cache_size_limit(void)68 nfsd_cache_size_limit(void)
69 {
70 	unsigned int limit;
71 	unsigned long low_pages = totalram_pages() - totalhigh_pages();
72 
73 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 	return min_t(unsigned int, limit, 256*1024);
75 }
76 
77 /*
78  * Compute the number of hash buckets we need. Divide the max cachesize by
79  * the "target" max bucket size, and round up to next power of two.
80  */
81 static unsigned int
nfsd_hashsize(unsigned int limit)82 nfsd_hashsize(unsigned int limit)
83 {
84 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86 
87 static struct nfsd_cacherep *
nfsd_cacherep_alloc(struct svc_rqst * rqstp,__wsum csum,struct nfsd_net * nn)88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum,
89 		    struct nfsd_net *nn)
90 {
91 	struct nfsd_cacherep *rp;
92 
93 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94 	if (rp) {
95 		rp->c_state = RC_UNUSED;
96 		rp->c_type = RC_NOCACHE;
97 		RB_CLEAR_NODE(&rp->c_node);
98 		INIT_LIST_HEAD(&rp->c_lru);
99 
100 		memset(&rp->c_key, 0, sizeof(rp->c_key));
101 		rp->c_key.k_xid = rqstp->rq_xid;
102 		rp->c_key.k_proc = rqstp->rq_proc;
103 		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104 		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105 		rp->c_key.k_prot = rqstp->rq_prot;
106 		rp->c_key.k_vers = rqstp->rq_vers;
107 		rp->c_key.k_len = rqstp->rq_arg.len;
108 		rp->c_key.k_csum = csum;
109 	}
110 	return rp;
111 }
112 
nfsd_cacherep_free(struct nfsd_cacherep * rp)113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp)
114 {
115 	if (rp->c_type == RC_REPLBUFF)
116 		kfree(rp->c_replvec.iov_base);
117 	kmem_cache_free(drc_slab, rp);
118 }
119 
120 static unsigned long
nfsd_cacherep_dispose(struct list_head * dispose)121 nfsd_cacherep_dispose(struct list_head *dispose)
122 {
123 	struct nfsd_cacherep *rp;
124 	unsigned long freed = 0;
125 
126 	while (!list_empty(dispose)) {
127 		rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru);
128 		list_del(&rp->c_lru);
129 		nfsd_cacherep_free(rp);
130 		freed++;
131 	}
132 	return freed;
133 }
134 
135 static void
nfsd_cacherep_unlink_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
137 			    struct nfsd_cacherep *rp)
138 {
139 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base)
140 		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
141 	if (rp->c_state != RC_UNUSED) {
142 		rb_erase(&rp->c_node, &b->rb_head);
143 		list_del(&rp->c_lru);
144 		atomic_dec(&nn->num_drc_entries);
145 		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
146 	}
147 }
148 
149 static void
nfsd_reply_cache_free_locked(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
151 				struct nfsd_net *nn)
152 {
153 	nfsd_cacherep_unlink_locked(nn, b, rp);
154 	nfsd_cacherep_free(rp);
155 }
156 
157 static void
nfsd_reply_cache_free(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
159 			struct nfsd_net *nn)
160 {
161 	spin_lock(&b->cache_lock);
162 	nfsd_cacherep_unlink_locked(nn, b, rp);
163 	spin_unlock(&b->cache_lock);
164 	nfsd_cacherep_free(rp);
165 }
166 
nfsd_drc_slab_create(void)167 int nfsd_drc_slab_create(void)
168 {
169 	drc_slab = kmem_cache_create("nfsd_drc",
170 				sizeof(struct nfsd_cacherep), 0, 0, NULL);
171 	return drc_slab ? 0: -ENOMEM;
172 }
173 
nfsd_drc_slab_free(void)174 void nfsd_drc_slab_free(void)
175 {
176 	kmem_cache_destroy(drc_slab);
177 }
178 
nfsd_reply_cache_init(struct nfsd_net * nn)179 int nfsd_reply_cache_init(struct nfsd_net *nn)
180 {
181 	unsigned int hashsize;
182 	unsigned int i;
183 	int status = 0;
184 
185 	nn->max_drc_entries = nfsd_cache_size_limit();
186 	atomic_set(&nn->num_drc_entries, 0);
187 	hashsize = nfsd_hashsize(nn->max_drc_entries);
188 	nn->maskbits = ilog2(hashsize);
189 
190 	nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
191 	nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
192 	nn->nfsd_reply_cache_shrinker.seeks = 1;
193 	status = register_shrinker(&nn->nfsd_reply_cache_shrinker,
194 				   "nfsd-reply:%s", nn->nfsd_name);
195 	if (status)
196 		return status;
197 
198 	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
199 				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
200 	if (!nn->drc_hashtbl)
201 		goto out_shrinker;
202 
203 	for (i = 0; i < hashsize; i++) {
204 		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
205 		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
206 	}
207 	nn->drc_hashsize = hashsize;
208 
209 	return 0;
210 out_shrinker:
211 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
212 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
213 	return -ENOMEM;
214 }
215 
nfsd_reply_cache_shutdown(struct nfsd_net * nn)216 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
217 {
218 	struct nfsd_cacherep *rp;
219 	unsigned int i;
220 
221 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
222 
223 	for (i = 0; i < nn->drc_hashsize; i++) {
224 		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
225 		while (!list_empty(head)) {
226 			rp = list_first_entry(head, struct nfsd_cacherep, c_lru);
227 			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
228 									rp, nn);
229 		}
230 	}
231 
232 	kvfree(nn->drc_hashtbl);
233 	nn->drc_hashtbl = NULL;
234 	nn->drc_hashsize = 0;
235 
236 }
237 
238 /*
239  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
240  * not already scheduled.
241  */
242 static void
lru_put_end(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)243 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp)
244 {
245 	rp->c_timestamp = jiffies;
246 	list_move_tail(&rp->c_lru, &b->lru_head);
247 }
248 
249 static noinline struct nfsd_drc_bucket *
nfsd_cache_bucket_find(__be32 xid,struct nfsd_net * nn)250 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
251 {
252 	unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
253 
254 	return &nn->drc_hashtbl[hash];
255 }
256 
257 /*
258  * Remove and return no more than @max expired entries in bucket @b.
259  * If @max is zero, do not limit the number of removed entries.
260  */
261 static void
nfsd_prune_bucket_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,unsigned int max,struct list_head * dispose)262 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
263 			 unsigned int max, struct list_head *dispose)
264 {
265 	unsigned long expiry = jiffies - RC_EXPIRE;
266 	struct nfsd_cacherep *rp, *tmp;
267 	unsigned int freed = 0;
268 
269 	lockdep_assert_held(&b->cache_lock);
270 
271 	/* The bucket LRU is ordered oldest-first. */
272 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
273 		/*
274 		 * Don't free entries attached to calls that are still
275 		 * in-progress, but do keep scanning the list.
276 		 */
277 		if (rp->c_state == RC_INPROG)
278 			continue;
279 
280 		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
281 		    time_before(expiry, rp->c_timestamp))
282 			break;
283 
284 		nfsd_cacherep_unlink_locked(nn, b, rp);
285 		list_add(&rp->c_lru, dispose);
286 
287 		if (max && ++freed > max)
288 			break;
289 	}
290 }
291 
292 /**
293  * nfsd_reply_cache_count - count_objects method for the DRC shrinker
294  * @shrink: our registered shrinker context
295  * @sc: garbage collection parameters
296  *
297  * Returns the total number of entries in the duplicate reply cache. To
298  * keep things simple and quick, this is not the number of expired entries
299  * in the cache (ie, the number that would be removed by a call to
300  * nfsd_reply_cache_scan).
301  */
302 static unsigned long
nfsd_reply_cache_count(struct shrinker * shrink,struct shrink_control * sc)303 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
304 {
305 	struct nfsd_net *nn = container_of(shrink,
306 				struct nfsd_net, nfsd_reply_cache_shrinker);
307 
308 	return atomic_read(&nn->num_drc_entries);
309 }
310 
311 /**
312  * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
313  * @shrink: our registered shrinker context
314  * @sc: garbage collection parameters
315  *
316  * Free expired entries on each bucket's LRU list until we've released
317  * nr_to_scan freed objects. Nothing will be released if the cache
318  * has not exceeded it's max_drc_entries limit.
319  *
320  * Returns the number of entries released by this call.
321  */
322 static unsigned long
nfsd_reply_cache_scan(struct shrinker * shrink,struct shrink_control * sc)323 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
324 {
325 	struct nfsd_net *nn = container_of(shrink,
326 				struct nfsd_net, nfsd_reply_cache_shrinker);
327 	unsigned long freed = 0;
328 	LIST_HEAD(dispose);
329 	unsigned int i;
330 
331 	for (i = 0; i < nn->drc_hashsize; i++) {
332 		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
333 
334 		if (list_empty(&b->lru_head))
335 			continue;
336 
337 		spin_lock(&b->cache_lock);
338 		nfsd_prune_bucket_locked(nn, b, 0, &dispose);
339 		spin_unlock(&b->cache_lock);
340 
341 		freed += nfsd_cacherep_dispose(&dispose);
342 		if (freed > sc->nr_to_scan)
343 			break;
344 	}
345 
346 	trace_nfsd_drc_gc(nn, freed);
347 	return freed;
348 }
349 
350 /**
351  * nfsd_cache_csum - Checksum incoming NFS Call arguments
352  * @buf: buffer containing a whole RPC Call message
353  * @start: starting byte of the NFS Call header
354  * @remaining: size of the NFS Call header, in bytes
355  *
356  * Compute a weak checksum of the leading bytes of an NFS procedure
357  * call header to help verify that a retransmitted Call matches an
358  * entry in the duplicate reply cache.
359  *
360  * To avoid assumptions about how the RPC message is laid out in
361  * @buf and what else it might contain (eg, a GSS MIC suffix), the
362  * caller passes us the exact location and length of the NFS Call
363  * header.
364  *
365  * Returns a 32-bit checksum value, as defined in RFC 793.
366  */
nfsd_cache_csum(struct xdr_buf * buf,unsigned int start,unsigned int remaining)367 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
368 			      unsigned int remaining)
369 {
370 	unsigned int base, len;
371 	struct xdr_buf subbuf;
372 	__wsum csum = 0;
373 	void *p;
374 	int idx;
375 
376 	if (remaining > RC_CSUMLEN)
377 		remaining = RC_CSUMLEN;
378 	if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
379 		return csum;
380 
381 	/* rq_arg.head first */
382 	if (subbuf.head[0].iov_len) {
383 		len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
384 		csum = csum_partial(subbuf.head[0].iov_base, len, csum);
385 		remaining -= len;
386 	}
387 
388 	/* Continue into page array */
389 	idx = subbuf.page_base / PAGE_SIZE;
390 	base = subbuf.page_base & ~PAGE_MASK;
391 	while (remaining) {
392 		p = page_address(subbuf.pages[idx]) + base;
393 		len = min_t(unsigned int, PAGE_SIZE - base, remaining);
394 		csum = csum_partial(p, len, csum);
395 		remaining -= len;
396 		base = 0;
397 		++idx;
398 	}
399 	return csum;
400 }
401 
402 static int
nfsd_cache_key_cmp(const struct nfsd_cacherep * key,const struct nfsd_cacherep * rp,struct nfsd_net * nn)403 nfsd_cache_key_cmp(const struct nfsd_cacherep *key,
404 		   const struct nfsd_cacherep *rp, struct nfsd_net *nn)
405 {
406 	if (key->c_key.k_xid == rp->c_key.k_xid &&
407 	    key->c_key.k_csum != rp->c_key.k_csum) {
408 		nfsd_stats_payload_misses_inc(nn);
409 		trace_nfsd_drc_mismatch(nn, key, rp);
410 	}
411 
412 	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
413 }
414 
415 /*
416  * Search the request hash for an entry that matches the given rqstp.
417  * Must be called with cache_lock held. Returns the found entry or
418  * inserts an empty key on failure.
419  */
420 static struct nfsd_cacherep *
nfsd_cache_insert(struct nfsd_drc_bucket * b,struct nfsd_cacherep * key,struct nfsd_net * nn)421 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key,
422 			struct nfsd_net *nn)
423 {
424 	struct nfsd_cacherep	*rp, *ret = key;
425 	struct rb_node		**p = &b->rb_head.rb_node,
426 				*parent = NULL;
427 	unsigned int		entries = 0;
428 	int cmp;
429 
430 	while (*p != NULL) {
431 		++entries;
432 		parent = *p;
433 		rp = rb_entry(parent, struct nfsd_cacherep, c_node);
434 
435 		cmp = nfsd_cache_key_cmp(key, rp, nn);
436 		if (cmp < 0)
437 			p = &parent->rb_left;
438 		else if (cmp > 0)
439 			p = &parent->rb_right;
440 		else {
441 			ret = rp;
442 			goto out;
443 		}
444 	}
445 	rb_link_node(&key->c_node, parent, p);
446 	rb_insert_color(&key->c_node, &b->rb_head);
447 out:
448 	/* tally hash chain length stats */
449 	if (entries > nn->longest_chain) {
450 		nn->longest_chain = entries;
451 		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
452 	} else if (entries == nn->longest_chain) {
453 		/* prefer to keep the smallest cachesize possible here */
454 		nn->longest_chain_cachesize = min_t(unsigned int,
455 				nn->longest_chain_cachesize,
456 				atomic_read(&nn->num_drc_entries));
457 	}
458 
459 	lru_put_end(b, ret);
460 	return ret;
461 }
462 
463 /**
464  * nfsd_cache_lookup - Find an entry in the duplicate reply cache
465  * @rqstp: Incoming Call to find
466  * @start: starting byte in @rqstp->rq_arg of the NFS Call header
467  * @len: size of the NFS Call header, in bytes
468  * @cacherep: OUT: DRC entry for this request
469  *
470  * Try to find an entry matching the current call in the cache. When none
471  * is found, we try to grab the oldest expired entry off the LRU list. If
472  * a suitable one isn't there, then drop the cache_lock and allocate a
473  * new one, then search again in case one got inserted while this thread
474  * didn't hold the lock.
475  *
476  * Return values:
477  *   %RC_DOIT: Process the request normally
478  *   %RC_REPLY: Reply from cache
479  *   %RC_DROPIT: Do not process the request further
480  */
nfsd_cache_lookup(struct svc_rqst * rqstp,unsigned int start,unsigned int len,struct nfsd_cacherep ** cacherep)481 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
482 		      unsigned int len, struct nfsd_cacherep **cacherep)
483 {
484 	struct nfsd_net		*nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
485 	struct nfsd_cacherep	*rp, *found;
486 	__wsum			csum;
487 	struct nfsd_drc_bucket	*b;
488 	int type = rqstp->rq_cachetype;
489 	unsigned long freed;
490 	LIST_HEAD(dispose);
491 	int rtn = RC_DOIT;
492 
493 	if (type == RC_NOCACHE) {
494 		nfsd_stats_rc_nocache_inc(nn);
495 		goto out;
496 	}
497 
498 	csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
499 
500 	/*
501 	 * Since the common case is a cache miss followed by an insert,
502 	 * preallocate an entry.
503 	 */
504 	rp = nfsd_cacherep_alloc(rqstp, csum, nn);
505 	if (!rp)
506 		goto out;
507 
508 	b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
509 	spin_lock(&b->cache_lock);
510 	found = nfsd_cache_insert(b, rp, nn);
511 	if (found != rp)
512 		goto found_entry;
513 	*cacherep = rp;
514 	rp->c_state = RC_INPROG;
515 	nfsd_prune_bucket_locked(nn, b, 3, &dispose);
516 	spin_unlock(&b->cache_lock);
517 
518 	freed = nfsd_cacherep_dispose(&dispose);
519 	trace_nfsd_drc_gc(nn, freed);
520 
521 	nfsd_stats_rc_misses_inc(nn);
522 	atomic_inc(&nn->num_drc_entries);
523 	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
524 	goto out;
525 
526 found_entry:
527 	/* We found a matching entry which is either in progress or done. */
528 	nfsd_reply_cache_free_locked(NULL, rp, nn);
529 	nfsd_stats_rc_hits_inc(nn);
530 	rtn = RC_DROPIT;
531 	rp = found;
532 
533 	/* Request being processed */
534 	if (rp->c_state == RC_INPROG)
535 		goto out_trace;
536 
537 	/* From the hall of fame of impractical attacks:
538 	 * Is this a user who tries to snoop on the cache? */
539 	rtn = RC_DOIT;
540 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
541 		goto out_trace;
542 
543 	/* Compose RPC reply header */
544 	switch (rp->c_type) {
545 	case RC_NOCACHE:
546 		break;
547 	case RC_REPLSTAT:
548 		xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
549 		rtn = RC_REPLY;
550 		break;
551 	case RC_REPLBUFF:
552 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
553 			goto out_unlock; /* should not happen */
554 		rtn = RC_REPLY;
555 		break;
556 	default:
557 		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
558 	}
559 
560 out_trace:
561 	trace_nfsd_drc_found(nn, rqstp, rtn);
562 out_unlock:
563 	spin_unlock(&b->cache_lock);
564 out:
565 	return rtn;
566 }
567 
568 /**
569  * nfsd_cache_update - Update an entry in the duplicate reply cache.
570  * @rqstp: svc_rqst with a finished Reply
571  * @rp: IN: DRC entry for this request
572  * @cachetype: which cache to update
573  * @statp: pointer to Reply's NFS status code, or NULL
574  *
575  * This is called from nfsd_dispatch when the procedure has been
576  * executed and the complete reply is in rqstp->rq_res.
577  *
578  * We're copying around data here rather than swapping buffers because
579  * the toplevel loop requires max-sized buffers, which would be a waste
580  * of memory for a cache with a max reply size of 100 bytes (diropokres).
581  *
582  * If we should start to use different types of cache entries tailored
583  * specifically for attrstat and fh's, we may save even more space.
584  *
585  * Also note that a cachetype of RC_NOCACHE can legally be passed when
586  * nfsd failed to encode a reply that otherwise would have been cached.
587  * In this case, nfsd_cache_update is called with statp == NULL.
588  */
nfsd_cache_update(struct svc_rqst * rqstp,struct nfsd_cacherep * rp,int cachetype,__be32 * statp)589 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp,
590 		       int cachetype, __be32 *statp)
591 {
592 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
593 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
594 	struct nfsd_drc_bucket *b;
595 	int		len;
596 	size_t		bufsize = 0;
597 
598 	if (!rp)
599 		return;
600 
601 	b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
602 
603 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
604 	len >>= 2;
605 
606 	/* Don't cache excessive amounts of data and XDR failures */
607 	if (!statp || len > (256 >> 2)) {
608 		nfsd_reply_cache_free(b, rp, nn);
609 		return;
610 	}
611 
612 	switch (cachetype) {
613 	case RC_REPLSTAT:
614 		if (len != 1)
615 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
616 		rp->c_replstat = *statp;
617 		break;
618 	case RC_REPLBUFF:
619 		cachv = &rp->c_replvec;
620 		bufsize = len << 2;
621 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
622 		if (!cachv->iov_base) {
623 			nfsd_reply_cache_free(b, rp, nn);
624 			return;
625 		}
626 		cachv->iov_len = bufsize;
627 		memcpy(cachv->iov_base, statp, bufsize);
628 		break;
629 	case RC_NOCACHE:
630 		nfsd_reply_cache_free(b, rp, nn);
631 		return;
632 	}
633 	spin_lock(&b->cache_lock);
634 	nfsd_stats_drc_mem_usage_add(nn, bufsize);
635 	lru_put_end(b, rp);
636 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
637 	rp->c_type = cachetype;
638 	rp->c_state = RC_DONE;
639 	spin_unlock(&b->cache_lock);
640 	return;
641 }
642 
643 static int
nfsd_cache_append(struct svc_rqst * rqstp,struct kvec * data)644 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
645 {
646 	__be32 *p;
647 
648 	p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len);
649 	if (unlikely(!p))
650 		return false;
651 	memcpy(p, data->iov_base, data->iov_len);
652 	xdr_commit_encode(&rqstp->rq_res_stream);
653 	return true;
654 }
655 
656 /*
657  * Note that fields may be added, removed or reordered in the future. Programs
658  * scraping this file for info should test the labels to ensure they're
659  * getting the correct field.
660  */
nfsd_reply_cache_stats_show(struct seq_file * m,void * v)661 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
662 {
663 	struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
664 					  nfsd_net_id);
665 
666 	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
667 	seq_printf(m, "num entries:           %u\n",
668 		   atomic_read(&nn->num_drc_entries));
669 	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
670 	seq_printf(m, "mem usage:             %lld\n",
671 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_DRC_MEM_USAGE]));
672 	seq_printf(m, "cache hits:            %lld\n",
673 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_HITS]));
674 	seq_printf(m, "cache misses:          %lld\n",
675 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_MISSES]));
676 	seq_printf(m, "not cached:            %lld\n",
677 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_NOCACHE]));
678 	seq_printf(m, "payload misses:        %lld\n",
679 		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_PAYLOAD_MISSES]));
680 	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
681 	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
682 	return 0;
683 }
684