1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 CLST ino, struct rb_node *ins)
22 {
23 struct rb_node **p = &tree->rb_node;
24 struct rb_node *pr = NULL;
25
26 while (*p) {
27 struct mft_inode *mi;
28
29 pr = *p;
30 mi = rb_entry(pr, struct mft_inode, node);
31 if (mi->rno > ino)
32 p = &pr->rb_left;
33 else if (mi->rno < ino)
34 p = &pr->rb_right;
35 else
36 return mi;
37 }
38
39 if (!ins)
40 return NULL;
41
42 rb_link_node(ins, pr, p);
43 rb_insert_color(ins, tree);
44 return rb_entry(ins, struct mft_inode, node);
45 }
46
47 /*
48 * ni_find_mi - Find mft_inode by record number.
49 */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54
55 /*
56 * ni_add_mi - Add new mft_inode into ntfs_inode.
57 */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62
63 /*
64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
65 */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 rb_erase(&mi->node, &ni->mi_tree);
69 }
70
71 /*
72 * ni_std - Return: Pointer into std_info from primary record.
73 */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 const struct ATTRIB *attr;
77
78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80 NULL;
81 }
82
83 /*
84 * ni_std5
85 *
86 * Return: Pointer into std_info from primary record.
87 */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 const struct ATTRIB *attr;
91
92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93
94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95 NULL;
96 }
97
98 /*
99 * ni_clear - Clear resources allocated by ntfs_inode.
100 */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 struct rb_node *node;
104
105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec))
106 ni_delete_all(ni);
107
108 al_destroy(ni);
109
110 for (node = rb_first(&ni->mi_tree); node;) {
111 struct rb_node *next = rb_next(node);
112 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
113
114 rb_erase(node, &ni->mi_tree);
115 mi_put(mi);
116 node = next;
117 }
118
119 /* Bad inode always has mode == S_IFREG. */
120 if (ni->ni_flags & NI_FLAG_DIR)
121 indx_clear(&ni->dir);
122 else {
123 run_close(&ni->file.run);
124 #ifdef CONFIG_NTFS3_LZX_XPRESS
125 if (ni->file.offs_page) {
126 /* On-demand allocated page for offsets. */
127 put_page(ni->file.offs_page);
128 ni->file.offs_page = NULL;
129 }
130 #endif
131 }
132
133 mi_clear(&ni->mi);
134 }
135
136 /*
137 * ni_load_mi_ex - Find mft_inode by record number.
138 */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
140 {
141 int err;
142 struct mft_inode *r;
143
144 r = ni_find_mi(ni, rno);
145 if (r)
146 goto out;
147
148 err = mi_get(ni->mi.sbi, rno, &r);
149 if (err)
150 return err;
151
152 ni_add_mi(ni, r);
153
154 out:
155 if (mi)
156 *mi = r;
157 return 0;
158 }
159
160 /*
161 * ni_load_mi - Load mft_inode corresponded list_entry.
162 */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
164 struct mft_inode **mi)
165 {
166 CLST rno;
167
168 if (!le) {
169 *mi = &ni->mi;
170 return 0;
171 }
172
173 rno = ino_get(&le->ref);
174 if (rno == ni->mi.rno) {
175 *mi = &ni->mi;
176 return 0;
177 }
178 return ni_load_mi_ex(ni, rno, mi);
179 }
180
181 /*
182 * ni_find_attr
183 *
184 * Return: Attribute and record this attribute belongs to.
185 */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
187 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
188 const __le16 *name, u8 name_len, const CLST *vcn,
189 struct mft_inode **mi)
190 {
191 struct ATTR_LIST_ENTRY *le;
192 struct mft_inode *m;
193
194 if (!ni->attr_list.size ||
195 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
196 if (le_o)
197 *le_o = NULL;
198 if (mi)
199 *mi = &ni->mi;
200
201 /* Look for required attribute in primary record. */
202 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
203 }
204
205 /* First look for list entry of required type. */
206 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
207 if (!le)
208 return NULL;
209
210 if (le_o)
211 *le_o = le;
212
213 /* Load record that contains this attribute. */
214 if (ni_load_mi(ni, le, &m))
215 return NULL;
216
217 /* Look for required attribute. */
218 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
219
220 if (!attr)
221 goto out;
222
223 if (!attr->non_res) {
224 if (vcn && *vcn)
225 goto out;
226 } else if (!vcn) {
227 if (attr->nres.svcn)
228 goto out;
229 } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
230 *vcn > le64_to_cpu(attr->nres.evcn)) {
231 goto out;
232 }
233
234 if (mi)
235 *mi = m;
236 return attr;
237
238 out:
239 ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record");
240 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
241 return NULL;
242 }
243
244 /*
245 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
246 */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)247 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
248 struct ATTR_LIST_ENTRY **le,
249 struct mft_inode **mi)
250 {
251 struct mft_inode *mi2;
252 struct ATTR_LIST_ENTRY *le2;
253
254 /* Do we have an attribute list? */
255 if (!ni->attr_list.size) {
256 *le = NULL;
257 if (mi)
258 *mi = &ni->mi;
259 /* Enum attributes in primary record. */
260 return mi_enum_attr(&ni->mi, attr);
261 }
262
263 /* Get next list entry. */
264 le2 = *le = al_enumerate(ni, attr ? *le : NULL);
265 if (!le2)
266 return NULL;
267
268 /* Load record that contains the required attribute. */
269 if (ni_load_mi(ni, le2, &mi2))
270 return NULL;
271
272 if (mi)
273 *mi = mi2;
274
275 /* Find attribute in loaded record. */
276 return rec_find_attr_le(mi2, le2);
277 }
278
279 /*
280 * ni_load_attr - Load attribute that contains given VCN.
281 */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)282 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
283 const __le16 *name, u8 name_len, CLST vcn,
284 struct mft_inode **pmi)
285 {
286 struct ATTR_LIST_ENTRY *le;
287 struct ATTRIB *attr;
288 struct mft_inode *mi;
289 struct ATTR_LIST_ENTRY *next;
290
291 if (!ni->attr_list.size) {
292 if (pmi)
293 *pmi = &ni->mi;
294 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
295 }
296
297 le = al_find_ex(ni, NULL, type, name, name_len, NULL);
298 if (!le)
299 return NULL;
300
301 /*
302 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
303 * So to find the ATTRIB segment that contains 'vcn' we should
304 * enumerate some entries.
305 */
306 if (vcn) {
307 for (;; le = next) {
308 next = al_find_ex(ni, le, type, name, name_len, NULL);
309 if (!next || le64_to_cpu(next->vcn) > vcn)
310 break;
311 }
312 }
313
314 if (ni_load_mi(ni, le, &mi))
315 return NULL;
316
317 if (pmi)
318 *pmi = mi;
319
320 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
321 if (!attr)
322 return NULL;
323
324 if (!attr->non_res)
325 return attr;
326
327 if (le64_to_cpu(attr->nres.svcn) <= vcn &&
328 vcn <= le64_to_cpu(attr->nres.evcn))
329 return attr;
330
331 return NULL;
332 }
333
334 /*
335 * ni_load_all_mi - Load all subrecords.
336 */
ni_load_all_mi(struct ntfs_inode * ni)337 int ni_load_all_mi(struct ntfs_inode *ni)
338 {
339 int err;
340 struct ATTR_LIST_ENTRY *le;
341
342 if (!ni->attr_list.size)
343 return 0;
344
345 le = NULL;
346
347 while ((le = al_enumerate(ni, le))) {
348 CLST rno = ino_get(&le->ref);
349
350 if (rno == ni->mi.rno)
351 continue;
352
353 err = ni_load_mi_ex(ni, rno, NULL);
354 if (err)
355 return err;
356 }
357
358 return 0;
359 }
360
361 /*
362 * ni_add_subrecord - Allocate + format + attach a new subrecord.
363 */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)364 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
365 {
366 struct mft_inode *m;
367
368 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
369 if (!m)
370 return false;
371
372 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
373 mi_put(m);
374 return false;
375 }
376
377 mi_get_ref(&ni->mi, &m->mrec->parent_ref);
378
379 ni_add_mi(ni, m);
380 *mi = m;
381 return true;
382 }
383
384 /*
385 * ni_remove_attr - Remove all attributes for the given type/name/id.
386 */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,bool base_only,const __le16 * id)387 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
388 const __le16 *name, u8 name_len, bool base_only,
389 const __le16 *id)
390 {
391 int err;
392 struct ATTRIB *attr;
393 struct ATTR_LIST_ENTRY *le;
394 struct mft_inode *mi;
395 u32 type_in;
396 int diff;
397
398 if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
399 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
400 if (!attr)
401 return -ENOENT;
402
403 mi_remove_attr(ni, &ni->mi, attr);
404 return 0;
405 }
406
407 type_in = le32_to_cpu(type);
408 le = NULL;
409
410 for (;;) {
411 le = al_enumerate(ni, le);
412 if (!le)
413 return 0;
414
415 next_le2:
416 diff = le32_to_cpu(le->type) - type_in;
417 if (diff < 0)
418 continue;
419
420 if (diff > 0)
421 return 0;
422
423 if (le->name_len != name_len)
424 continue;
425
426 if (name_len &&
427 memcmp(le_name(le), name, name_len * sizeof(short)))
428 continue;
429
430 if (id && le->id != *id)
431 continue;
432 err = ni_load_mi(ni, le, &mi);
433 if (err)
434 return err;
435
436 al_remove_le(ni, le);
437
438 attr = mi_find_attr(mi, NULL, type, name, name_len, id);
439 if (!attr)
440 return -ENOENT;
441
442 mi_remove_attr(ni, mi, attr);
443
444 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
445 return 0;
446 goto next_le2;
447 }
448 }
449
450 /*
451 * ni_ins_new_attr - Insert the attribute into record.
452 *
453 * Return: Not full constructed attribute or NULL if not possible to create.
454 */
455 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)456 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
457 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
458 const __le16 *name, u8 name_len, u32 asize, u16 name_off,
459 CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
460 {
461 int err;
462 struct ATTRIB *attr;
463 bool le_added = false;
464 struct MFT_REF ref;
465
466 mi_get_ref(mi, &ref);
467
468 if (type != ATTR_LIST && !le && ni->attr_list.size) {
469 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
470 &ref, &le);
471 if (err) {
472 /* No memory or no space. */
473 return ERR_PTR(err);
474 }
475 le_added = true;
476
477 /*
478 * al_add_le -> attr_set_size (list) -> ni_expand_list
479 * which moves some attributes out of primary record
480 * this means that name may point into moved memory
481 * reinit 'name' from le.
482 */
483 name = le->name;
484 }
485
486 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
487 if (!attr) {
488 if (le_added)
489 al_remove_le(ni, le);
490 return NULL;
491 }
492
493 if (type == ATTR_LIST) {
494 /* Attr list is not in list entry array. */
495 goto out;
496 }
497
498 if (!le)
499 goto out;
500
501 /* Update ATTRIB Id and record reference. */
502 le->id = attr->id;
503 ni->attr_list.dirty = true;
504 le->ref = ref;
505
506 out:
507 if (ins_le)
508 *ins_le = le;
509 return attr;
510 }
511
512 /*
513 * ni_repack
514 *
515 * Random write access to sparsed or compressed file may result to
516 * not optimized packed runs.
517 * Here is the place to optimize it.
518 */
ni_repack(struct ntfs_inode * ni)519 static int ni_repack(struct ntfs_inode *ni)
520 {
521 #if 1
522 return 0;
523 #else
524 int err = 0;
525 struct ntfs_sb_info *sbi = ni->mi.sbi;
526 struct mft_inode *mi, *mi_p = NULL;
527 struct ATTRIB *attr = NULL, *attr_p;
528 struct ATTR_LIST_ENTRY *le = NULL, *le_p;
529 CLST alloc = 0;
530 u8 cluster_bits = sbi->cluster_bits;
531 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
532 u32 roff, rs = sbi->record_size;
533 struct runs_tree run;
534
535 run_init(&run);
536
537 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
538 if (!attr->non_res)
539 continue;
540
541 svcn = le64_to_cpu(attr->nres.svcn);
542 if (svcn != le64_to_cpu(le->vcn)) {
543 err = -EINVAL;
544 break;
545 }
546
547 if (!svcn) {
548 alloc = le64_to_cpu(attr->nres.alloc_size) >>
549 cluster_bits;
550 mi_p = NULL;
551 } else if (svcn != evcn + 1) {
552 err = -EINVAL;
553 break;
554 }
555
556 evcn = le64_to_cpu(attr->nres.evcn);
557
558 if (svcn > evcn + 1) {
559 err = -EINVAL;
560 break;
561 }
562
563 if (!mi_p) {
564 /* Do not try if not enough free space. */
565 if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
566 continue;
567
568 /* Do not try if last attribute segment. */
569 if (evcn + 1 == alloc)
570 continue;
571 run_close(&run);
572 }
573
574 roff = le16_to_cpu(attr->nres.run_off);
575
576 if (roff > le32_to_cpu(attr->size)) {
577 err = -EINVAL;
578 break;
579 }
580
581 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
582 Add2Ptr(attr, roff),
583 le32_to_cpu(attr->size) - roff);
584 if (err < 0)
585 break;
586
587 if (!mi_p) {
588 mi_p = mi;
589 attr_p = attr;
590 svcn_p = svcn;
591 evcn_p = evcn;
592 le_p = le;
593 err = 0;
594 continue;
595 }
596
597 /*
598 * Run contains data from two records: mi_p and mi
599 * Try to pack in one.
600 */
601 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
602 if (err)
603 break;
604
605 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
606
607 if (next_svcn >= evcn + 1) {
608 /* We can remove this attribute segment. */
609 al_remove_le(ni, le);
610 mi_remove_attr(NULL, mi, attr);
611 le = le_p;
612 continue;
613 }
614
615 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
616 mi->dirty = true;
617 ni->attr_list.dirty = true;
618
619 if (evcn + 1 == alloc) {
620 err = mi_pack_runs(mi, attr, &run,
621 evcn + 1 - next_svcn);
622 if (err)
623 break;
624 mi_p = NULL;
625 } else {
626 mi_p = mi;
627 attr_p = attr;
628 svcn_p = next_svcn;
629 evcn_p = evcn;
630 le_p = le;
631 run_truncate_head(&run, next_svcn);
632 }
633 }
634
635 if (err) {
636 ntfs_inode_warn(&ni->vfs_inode, "repack problem");
637 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
638
639 /* Pack loaded but not packed runs. */
640 if (mi_p)
641 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
642 }
643
644 run_close(&run);
645 return err;
646 #endif
647 }
648
649 /*
650 * ni_try_remove_attr_list
651 *
652 * Can we remove attribute list?
653 * Check the case when primary record contains enough space for all attributes.
654 */
ni_try_remove_attr_list(struct ntfs_inode * ni)655 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
656 {
657 int err = 0;
658 struct ntfs_sb_info *sbi = ni->mi.sbi;
659 struct ATTRIB *attr, *attr_list, *attr_ins;
660 struct ATTR_LIST_ENTRY *le;
661 struct mft_inode *mi;
662 u32 asize, free;
663 struct MFT_REF ref;
664 struct MFT_REC *mrec;
665 __le16 id;
666
667 if (!ni->attr_list.dirty)
668 return 0;
669
670 err = ni_repack(ni);
671 if (err)
672 return err;
673
674 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
675 if (!attr_list)
676 return 0;
677
678 asize = le32_to_cpu(attr_list->size);
679
680 /* Free space in primary record without attribute list. */
681 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
682 mi_get_ref(&ni->mi, &ref);
683
684 le = NULL;
685 while ((le = al_enumerate(ni, le))) {
686 if (!memcmp(&le->ref, &ref, sizeof(ref)))
687 continue;
688
689 if (le->vcn)
690 return 0;
691
692 mi = ni_find_mi(ni, ino_get(&le->ref));
693 if (!mi)
694 return 0;
695
696 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
697 le->name_len, &le->id);
698 if (!attr)
699 return 0;
700
701 asize = le32_to_cpu(attr->size);
702 if (asize > free)
703 return 0;
704
705 free -= asize;
706 }
707
708 /* Make a copy of primary record to restore if error. */
709 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
710 if (!mrec)
711 return 0; /* Not critical. */
712
713 /* It seems that attribute list can be removed from primary record. */
714 mi_remove_attr(NULL, &ni->mi, attr_list);
715
716 /*
717 * Repeat the cycle above and copy all attributes to primary record.
718 * Do not remove original attributes from subrecords!
719 * It should be success!
720 */
721 le = NULL;
722 while ((le = al_enumerate(ni, le))) {
723 if (!memcmp(&le->ref, &ref, sizeof(ref)))
724 continue;
725
726 mi = ni_find_mi(ni, ino_get(&le->ref));
727 if (!mi) {
728 /* Should never happened, 'cause already checked. */
729 goto out;
730 }
731
732 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
733 le->name_len, &le->id);
734 if (!attr) {
735 /* Should never happened, 'cause already checked. */
736 goto out;
737 }
738 asize = le32_to_cpu(attr->size);
739
740 /* Insert into primary record. */
741 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
742 le->name_len, asize,
743 le16_to_cpu(attr->name_off));
744 if (!attr_ins) {
745 /*
746 * No space in primary record (already checked).
747 */
748 goto out;
749 }
750
751 /* Copy all except id. */
752 id = attr_ins->id;
753 memcpy(attr_ins, attr, asize);
754 attr_ins->id = id;
755 }
756
757 /*
758 * Repeat the cycle above and remove all attributes from subrecords.
759 */
760 le = NULL;
761 while ((le = al_enumerate(ni, le))) {
762 if (!memcmp(&le->ref, &ref, sizeof(ref)))
763 continue;
764
765 mi = ni_find_mi(ni, ino_get(&le->ref));
766 if (!mi)
767 continue;
768
769 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
770 le->name_len, &le->id);
771 if (!attr)
772 continue;
773
774 /* Remove from original record. */
775 mi_remove_attr(NULL, mi, attr);
776 }
777
778 run_deallocate(sbi, &ni->attr_list.run, true);
779 run_close(&ni->attr_list.run);
780 ni->attr_list.size = 0;
781 kvfree(ni->attr_list.le);
782 ni->attr_list.le = NULL;
783 ni->attr_list.dirty = false;
784
785 kfree(mrec);
786 return 0;
787 out:
788 /* Restore primary record. */
789 swap(mrec, ni->mi.mrec);
790 kfree(mrec);
791 return 0;
792 }
793
794 /*
795 * ni_create_attr_list - Generates an attribute list for this primary record.
796 */
ni_create_attr_list(struct ntfs_inode * ni)797 int ni_create_attr_list(struct ntfs_inode *ni)
798 {
799 struct ntfs_sb_info *sbi = ni->mi.sbi;
800 int err;
801 u32 lsize;
802 struct ATTRIB *attr;
803 struct ATTRIB *arr_move[7];
804 struct ATTR_LIST_ENTRY *le, *le_b[7];
805 struct MFT_REC *rec;
806 bool is_mft;
807 CLST rno = 0;
808 struct mft_inode *mi;
809 u32 free_b, nb, to_free, rs;
810 u16 sz;
811
812 is_mft = ni->mi.rno == MFT_REC_MFT;
813 rec = ni->mi.mrec;
814 rs = sbi->record_size;
815
816 /*
817 * Skip estimating exact memory requirement.
818 * Looks like one record_size is always enough.
819 */
820 le = kmalloc(al_aligned(rs), GFP_NOFS);
821 if (!le)
822 return -ENOMEM;
823
824 mi_get_ref(&ni->mi, &le->ref);
825 ni->attr_list.le = le;
826
827 attr = NULL;
828 nb = 0;
829 free_b = 0;
830 attr = NULL;
831
832 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
833 sz = le_size(attr->name_len);
834 le->type = attr->type;
835 le->size = cpu_to_le16(sz);
836 le->name_len = attr->name_len;
837 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
838 le->vcn = 0;
839 if (le != ni->attr_list.le)
840 le->ref = ni->attr_list.le->ref;
841 le->id = attr->id;
842
843 if (attr->name_len)
844 memcpy(le->name, attr_name(attr),
845 sizeof(short) * attr->name_len);
846 else if (attr->type == ATTR_STD)
847 continue;
848 else if (attr->type == ATTR_LIST)
849 continue;
850 else if (is_mft && attr->type == ATTR_DATA)
851 continue;
852
853 if (!nb || nb < ARRAY_SIZE(arr_move)) {
854 le_b[nb] = le;
855 arr_move[nb++] = attr;
856 free_b += le32_to_cpu(attr->size);
857 }
858 }
859
860 lsize = PtrOffset(ni->attr_list.le, le);
861 ni->attr_list.size = lsize;
862
863 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
864 if (to_free <= rs) {
865 to_free = 0;
866 } else {
867 to_free -= rs;
868
869 if (to_free > free_b) {
870 err = -EINVAL;
871 goto out;
872 }
873 }
874
875 /* Allocate child MFT. */
876 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
877 if (err)
878 goto out;
879
880 err = -EINVAL;
881 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
882 while (to_free > 0) {
883 struct ATTRIB *b = arr_move[--nb];
884 u32 asize = le32_to_cpu(b->size);
885 u16 name_off = le16_to_cpu(b->name_off);
886
887 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
888 b->name_len, asize, name_off);
889 if (!attr)
890 goto out;
891
892 mi_get_ref(mi, &le_b[nb]->ref);
893 le_b[nb]->id = attr->id;
894
895 /* Copy all except id. */
896 memcpy(attr, b, asize);
897 attr->id = le_b[nb]->id;
898
899 /* Remove from primary record. */
900 if (!mi_remove_attr(NULL, &ni->mi, b))
901 goto out;
902
903 if (to_free <= asize)
904 break;
905 to_free -= asize;
906 if (!nb)
907 goto out;
908 }
909
910 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
911 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
912 if (!attr)
913 goto out;
914
915 attr->non_res = 0;
916 attr->flags = 0;
917 attr->res.data_size = cpu_to_le32(lsize);
918 attr->res.data_off = SIZEOF_RESIDENT_LE;
919 attr->res.flags = 0;
920 attr->res.res = 0;
921
922 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
923
924 ni->attr_list.dirty = false;
925
926 mark_inode_dirty(&ni->vfs_inode);
927 return 0;
928
929 out:
930 kvfree(ni->attr_list.le);
931 ni->attr_list.le = NULL;
932 ni->attr_list.size = 0;
933 return err;
934 }
935
936 /*
937 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
938 */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)939 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
940 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
941 u32 asize, CLST svcn, u16 name_off, bool force_ext,
942 struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
943 struct ATTR_LIST_ENTRY **ins_le)
944 {
945 struct ATTRIB *attr;
946 struct mft_inode *mi;
947 CLST rno;
948 u64 vbo;
949 struct rb_node *node;
950 int err;
951 bool is_mft, is_mft_data;
952 struct ntfs_sb_info *sbi = ni->mi.sbi;
953
954 is_mft = ni->mi.rno == MFT_REC_MFT;
955 is_mft_data = is_mft && type == ATTR_DATA && !name_len;
956
957 if (asize > sbi->max_bytes_per_attr) {
958 err = -EINVAL;
959 goto out;
960 }
961
962 /*
963 * Standard information and attr_list cannot be made external.
964 * The Log File cannot have any external attributes.
965 */
966 if (type == ATTR_STD || type == ATTR_LIST ||
967 ni->mi.rno == MFT_REC_LOG) {
968 err = -EINVAL;
969 goto out;
970 }
971
972 /* Create attribute list if it is not already existed. */
973 if (!ni->attr_list.size) {
974 err = ni_create_attr_list(ni);
975 if (err)
976 goto out;
977 }
978
979 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
980
981 if (force_ext)
982 goto insert_ext;
983
984 /* Load all subrecords into memory. */
985 err = ni_load_all_mi(ni);
986 if (err)
987 goto out;
988
989 /* Check each of loaded subrecord. */
990 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
991 mi = rb_entry(node, struct mft_inode, node);
992
993 if (is_mft_data &&
994 (mi_enum_attr(mi, NULL) ||
995 vbo <= ((u64)mi->rno << sbi->record_bits))) {
996 /* We can't accept this record 'cause MFT's bootstrapping. */
997 continue;
998 }
999 if (is_mft &&
1000 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1001 /*
1002 * This child record already has a ATTR_DATA.
1003 * So it can't accept any other records.
1004 */
1005 continue;
1006 }
1007
1008 if ((type != ATTR_NAME || name_len) &&
1009 mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1010 /* Only indexed attributes can share same record. */
1011 continue;
1012 }
1013
1014 /*
1015 * Do not try to insert this attribute
1016 * if there is no room in record.
1017 */
1018 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1019 continue;
1020
1021 /* Try to insert attribute into this subrecord. */
1022 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1023 name_off, svcn, ins_le);
1024 if (!attr)
1025 continue;
1026 if (IS_ERR(attr))
1027 return PTR_ERR(attr);
1028
1029 if (ins_attr)
1030 *ins_attr = attr;
1031 if (ins_mi)
1032 *ins_mi = mi;
1033 return 0;
1034 }
1035
1036 insert_ext:
1037 /* We have to allocate a new child subrecord. */
1038 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1039 if (err)
1040 goto out;
1041
1042 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1043 err = -EINVAL;
1044 goto out1;
1045 }
1046
1047 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1048 name_off, svcn, ins_le);
1049 if (!attr) {
1050 err = -EINVAL;
1051 goto out2;
1052 }
1053
1054 if (IS_ERR(attr)) {
1055 err = PTR_ERR(attr);
1056 goto out2;
1057 }
1058
1059 if (ins_attr)
1060 *ins_attr = attr;
1061 if (ins_mi)
1062 *ins_mi = mi;
1063
1064 return 0;
1065
1066 out2:
1067 ni_remove_mi(ni, mi);
1068 mi_put(mi);
1069
1070 out1:
1071 ntfs_mark_rec_free(sbi, rno, is_mft);
1072
1073 out:
1074 return err;
1075 }
1076
1077 /*
1078 * ni_insert_attr - Insert an attribute into the file.
1079 *
1080 * If the primary record has room, it will just insert the attribute.
1081 * If not, it may make the attribute external.
1082 * For $MFT::Data it may make room for the attribute by
1083 * making other attributes external.
1084 *
1085 * NOTE:
1086 * The ATTR_LIST and ATTR_STD cannot be made external.
1087 * This function does not fill new attribute full.
1088 * It only fills 'size'/'type'/'id'/'name_len' fields.
1089 */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1090 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1091 const __le16 *name, u8 name_len, u32 asize,
1092 u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1093 struct mft_inode **ins_mi,
1094 struct ATTR_LIST_ENTRY **ins_le)
1095 {
1096 struct ntfs_sb_info *sbi = ni->mi.sbi;
1097 int err;
1098 struct ATTRIB *attr, *eattr;
1099 struct MFT_REC *rec;
1100 bool is_mft;
1101 struct ATTR_LIST_ENTRY *le;
1102 u32 list_reserve, max_free, free, used, t32;
1103 __le16 id;
1104 u16 t16;
1105
1106 is_mft = ni->mi.rno == MFT_REC_MFT;
1107 rec = ni->mi.mrec;
1108
1109 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1110 used = le32_to_cpu(rec->used);
1111 free = sbi->record_size - used;
1112
1113 if (is_mft && type != ATTR_LIST) {
1114 /* Reserve space for the ATTRIB list. */
1115 if (free < list_reserve)
1116 free = 0;
1117 else
1118 free -= list_reserve;
1119 }
1120
1121 if (asize <= free) {
1122 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1123 asize, name_off, svcn, ins_le);
1124 if (IS_ERR(attr)) {
1125 err = PTR_ERR(attr);
1126 goto out;
1127 }
1128
1129 if (attr) {
1130 if (ins_attr)
1131 *ins_attr = attr;
1132 if (ins_mi)
1133 *ins_mi = &ni->mi;
1134 err = 0;
1135 goto out;
1136 }
1137 }
1138
1139 if (!is_mft || type != ATTR_DATA || svcn) {
1140 /* This ATTRIB will be external. */
1141 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1142 svcn, name_off, false, ins_attr, ins_mi,
1143 ins_le);
1144 goto out;
1145 }
1146
1147 /*
1148 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1149 *
1150 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1151 * Evict as many other attributes as possible.
1152 */
1153 max_free = free;
1154
1155 /* Estimate the result of moving all possible attributes away. */
1156 attr = NULL;
1157
1158 while ((attr = mi_enum_attr(&ni->mi, attr))) {
1159 if (attr->type == ATTR_STD)
1160 continue;
1161 if (attr->type == ATTR_LIST)
1162 continue;
1163 max_free += le32_to_cpu(attr->size);
1164 }
1165
1166 if (max_free < asize + list_reserve) {
1167 /* Impossible to insert this attribute into primary record. */
1168 err = -EINVAL;
1169 goto out;
1170 }
1171
1172 /* Start real attribute moving. */
1173 attr = NULL;
1174
1175 for (;;) {
1176 attr = mi_enum_attr(&ni->mi, attr);
1177 if (!attr) {
1178 /* We should never be here 'cause we have already check this case. */
1179 err = -EINVAL;
1180 goto out;
1181 }
1182
1183 /* Skip attributes that MUST be primary record. */
1184 if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1185 continue;
1186
1187 le = NULL;
1188 if (ni->attr_list.size) {
1189 le = al_find_le(ni, NULL, attr);
1190 if (!le) {
1191 /* Really this is a serious bug. */
1192 err = -EINVAL;
1193 goto out;
1194 }
1195 }
1196
1197 t32 = le32_to_cpu(attr->size);
1198 t16 = le16_to_cpu(attr->name_off);
1199 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1200 attr->name_len, t32, attr_svcn(attr), t16,
1201 false, &eattr, NULL, NULL);
1202 if (err)
1203 return err;
1204
1205 id = eattr->id;
1206 memcpy(eattr, attr, t32);
1207 eattr->id = id;
1208
1209 /* Remove from primary record. */
1210 mi_remove_attr(NULL, &ni->mi, attr);
1211
1212 /* attr now points to next attribute. */
1213 if (attr->type == ATTR_END)
1214 goto out;
1215 }
1216 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1217 ;
1218
1219 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1220 name_off, svcn, ins_le);
1221 if (!attr) {
1222 err = -EINVAL;
1223 goto out;
1224 }
1225
1226 if (IS_ERR(attr)) {
1227 err = PTR_ERR(attr);
1228 goto out;
1229 }
1230
1231 if (ins_attr)
1232 *ins_attr = attr;
1233 if (ins_mi)
1234 *ins_mi = &ni->mi;
1235
1236 out:
1237 return err;
1238 }
1239
1240 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1241 static int ni_expand_mft_list(struct ntfs_inode *ni)
1242 {
1243 int err = 0;
1244 struct runs_tree *run = &ni->file.run;
1245 u32 asize, run_size, done = 0;
1246 struct ATTRIB *attr;
1247 struct rb_node *node;
1248 CLST mft_min, mft_new, svcn, evcn, plen;
1249 struct mft_inode *mi, *mi_min, *mi_new;
1250 struct ntfs_sb_info *sbi = ni->mi.sbi;
1251
1252 /* Find the nearest MFT. */
1253 mft_min = 0;
1254 mft_new = 0;
1255 mi_min = NULL;
1256
1257 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1258 mi = rb_entry(node, struct mft_inode, node);
1259
1260 attr = mi_enum_attr(mi, NULL);
1261
1262 if (!attr) {
1263 mft_min = mi->rno;
1264 mi_min = mi;
1265 break;
1266 }
1267 }
1268
1269 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1270 mft_new = 0;
1271 /* Really this is not critical. */
1272 } else if (mft_min > mft_new) {
1273 mft_min = mft_new;
1274 mi_min = mi_new;
1275 } else {
1276 ntfs_mark_rec_free(sbi, mft_new, true);
1277 mft_new = 0;
1278 ni_remove_mi(ni, mi_new);
1279 }
1280
1281 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1282 if (!attr) {
1283 err = -EINVAL;
1284 goto out;
1285 }
1286
1287 asize = le32_to_cpu(attr->size);
1288
1289 evcn = le64_to_cpu(attr->nres.evcn);
1290 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1291 if (evcn + 1 >= svcn) {
1292 err = -EINVAL;
1293 goto out;
1294 }
1295
1296 /*
1297 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1298 *
1299 * Update first part of ATTR_DATA in 'primary MFT.
1300 */
1301 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1302 asize - SIZEOF_NONRESIDENT, &plen);
1303 if (err < 0)
1304 goto out;
1305
1306 run_size = ALIGN(err, 8);
1307 err = 0;
1308
1309 if (plen < svcn) {
1310 err = -EINVAL;
1311 goto out;
1312 }
1313
1314 attr->nres.evcn = cpu_to_le64(svcn - 1);
1315 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1316 /* 'done' - How many bytes of primary MFT becomes free. */
1317 done = asize - run_size - SIZEOF_NONRESIDENT;
1318 le32_sub_cpu(&ni->mi.mrec->used, done);
1319
1320 /* Estimate packed size (run_buf=NULL). */
1321 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1322 &plen);
1323 if (err < 0)
1324 goto out;
1325
1326 run_size = ALIGN(err, 8);
1327 err = 0;
1328
1329 if (plen < evcn + 1 - svcn) {
1330 err = -EINVAL;
1331 goto out;
1332 }
1333
1334 /*
1335 * This function may implicitly call expand attr_list.
1336 * Insert second part of ATTR_DATA in 'mi_min'.
1337 */
1338 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1339 SIZEOF_NONRESIDENT + run_size,
1340 SIZEOF_NONRESIDENT, svcn, NULL);
1341 if (!attr) {
1342 err = -EINVAL;
1343 goto out;
1344 }
1345
1346 if (IS_ERR(attr)) {
1347 err = PTR_ERR(attr);
1348 goto out;
1349 }
1350
1351 attr->non_res = 1;
1352 attr->name_off = SIZEOF_NONRESIDENT_LE;
1353 attr->flags = 0;
1354
1355 /* This function can't fail - cause already checked above. */
1356 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1357 run_size, &plen);
1358
1359 attr->nres.svcn = cpu_to_le64(svcn);
1360 attr->nres.evcn = cpu_to_le64(evcn);
1361 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1362
1363 out:
1364 if (mft_new) {
1365 ntfs_mark_rec_free(sbi, mft_new, true);
1366 ni_remove_mi(ni, mi_new);
1367 }
1368
1369 return !err && !done ? -EOPNOTSUPP : err;
1370 }
1371
1372 /*
1373 * ni_expand_list - Move all possible attributes out of primary record.
1374 */
ni_expand_list(struct ntfs_inode * ni)1375 int ni_expand_list(struct ntfs_inode *ni)
1376 {
1377 int err = 0;
1378 u32 asize, done = 0;
1379 struct ATTRIB *attr, *ins_attr;
1380 struct ATTR_LIST_ENTRY *le;
1381 bool is_mft = ni->mi.rno == MFT_REC_MFT;
1382 struct MFT_REF ref;
1383
1384 mi_get_ref(&ni->mi, &ref);
1385 le = NULL;
1386
1387 while ((le = al_enumerate(ni, le))) {
1388 if (le->type == ATTR_STD)
1389 continue;
1390
1391 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1392 continue;
1393
1394 if (is_mft && le->type == ATTR_DATA)
1395 continue;
1396
1397 /* Find attribute in primary record. */
1398 attr = rec_find_attr_le(&ni->mi, le);
1399 if (!attr) {
1400 err = -EINVAL;
1401 goto out;
1402 }
1403
1404 asize = le32_to_cpu(attr->size);
1405
1406 /* Always insert into new record to avoid collisions (deep recursive). */
1407 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1408 attr->name_len, asize, attr_svcn(attr),
1409 le16_to_cpu(attr->name_off), true,
1410 &ins_attr, NULL, NULL);
1411
1412 if (err)
1413 goto out;
1414
1415 memcpy(ins_attr, attr, asize);
1416 ins_attr->id = le->id;
1417 /* Remove from primary record. */
1418 mi_remove_attr(NULL, &ni->mi, attr);
1419
1420 done += asize;
1421 goto out;
1422 }
1423
1424 if (!is_mft) {
1425 err = -EFBIG; /* Attr list is too big(?) */
1426 goto out;
1427 }
1428
1429 /* Split MFT data as much as possible. */
1430 err = ni_expand_mft_list(ni);
1431
1432 out:
1433 return !err && !done ? -EOPNOTSUPP : err;
1434 }
1435
1436 /*
1437 * ni_insert_nonresident - Insert new nonresident attribute.
1438 */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1439 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1440 const __le16 *name, u8 name_len,
1441 const struct runs_tree *run, CLST svcn, CLST len,
1442 __le16 flags, struct ATTRIB **new_attr,
1443 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1444 {
1445 int err;
1446 CLST plen;
1447 struct ATTRIB *attr;
1448 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1449 !svcn;
1450 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1451 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1452 u32 run_off = name_off + name_size;
1453 u32 run_size, asize;
1454 struct ntfs_sb_info *sbi = ni->mi.sbi;
1455
1456 /* Estimate packed size (run_buf=NULL). */
1457 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1458 &plen);
1459 if (err < 0)
1460 goto out;
1461
1462 run_size = ALIGN(err, 8);
1463
1464 if (plen < len) {
1465 err = -EINVAL;
1466 goto out;
1467 }
1468
1469 asize = run_off + run_size;
1470
1471 if (asize > sbi->max_bytes_per_attr) {
1472 err = -EINVAL;
1473 goto out;
1474 }
1475
1476 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1477 &attr, mi, le);
1478
1479 if (err)
1480 goto out;
1481
1482 attr->non_res = 1;
1483 attr->name_off = cpu_to_le16(name_off);
1484 attr->flags = flags;
1485
1486 /* This function can't fail - cause already checked above. */
1487 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1488
1489 attr->nres.svcn = cpu_to_le64(svcn);
1490 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1491
1492 if (new_attr)
1493 *new_attr = attr;
1494
1495 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1496
1497 attr->nres.alloc_size =
1498 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1499 attr->nres.data_size = attr->nres.alloc_size;
1500 attr->nres.valid_size = attr->nres.alloc_size;
1501
1502 if (is_ext) {
1503 if (flags & ATTR_FLAG_COMPRESSED)
1504 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1505 attr->nres.total_size = attr->nres.alloc_size;
1506 }
1507
1508 out:
1509 return err;
1510 }
1511
1512 /*
1513 * ni_insert_resident - Inserts new resident attribute.
1514 */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1515 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1516 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1517 struct ATTRIB **new_attr, struct mft_inode **mi,
1518 struct ATTR_LIST_ENTRY **le)
1519 {
1520 int err;
1521 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1522 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1523 struct ATTRIB *attr;
1524
1525 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1526 0, &attr, mi, le);
1527 if (err)
1528 return err;
1529
1530 attr->non_res = 0;
1531 attr->flags = 0;
1532
1533 attr->res.data_size = cpu_to_le32(data_size);
1534 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1535 if (type == ATTR_NAME) {
1536 attr->res.flags = RESIDENT_FLAG_INDEXED;
1537
1538 /* is_attr_indexed(attr)) == true */
1539 le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1540 ni->mi.dirty = true;
1541 }
1542 attr->res.res = 0;
1543
1544 if (new_attr)
1545 *new_attr = attr;
1546
1547 return 0;
1548 }
1549
1550 /*
1551 * ni_remove_attr_le - Remove attribute from record.
1552 */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1553 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1554 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1555 {
1556 mi_remove_attr(ni, mi, attr);
1557
1558 if (le)
1559 al_remove_le(ni, le);
1560 }
1561
1562 /*
1563 * ni_delete_all - Remove all attributes and frees allocates space.
1564 *
1565 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1566 */
ni_delete_all(struct ntfs_inode * ni)1567 int ni_delete_all(struct ntfs_inode *ni)
1568 {
1569 int err;
1570 struct ATTR_LIST_ENTRY *le = NULL;
1571 struct ATTRIB *attr = NULL;
1572 struct rb_node *node;
1573 u16 roff;
1574 u32 asize;
1575 CLST svcn, evcn;
1576 struct ntfs_sb_info *sbi = ni->mi.sbi;
1577 bool nt3 = is_ntfs3(sbi);
1578 struct MFT_REF ref;
1579
1580 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1581 if (!nt3 || attr->name_len) {
1582 ;
1583 } else if (attr->type == ATTR_REPARSE) {
1584 mi_get_ref(&ni->mi, &ref);
1585 ntfs_remove_reparse(sbi, 0, &ref);
1586 } else if (attr->type == ATTR_ID && !attr->non_res &&
1587 le32_to_cpu(attr->res.data_size) >=
1588 sizeof(struct GUID)) {
1589 ntfs_objid_remove(sbi, resident_data(attr));
1590 }
1591
1592 if (!attr->non_res)
1593 continue;
1594
1595 svcn = le64_to_cpu(attr->nres.svcn);
1596 evcn = le64_to_cpu(attr->nres.evcn);
1597
1598 if (evcn + 1 <= svcn)
1599 continue;
1600
1601 asize = le32_to_cpu(attr->size);
1602 roff = le16_to_cpu(attr->nres.run_off);
1603
1604 if (roff > asize)
1605 return -EINVAL;
1606
1607 /* run==1 means unpack and deallocate. */
1608 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1609 Add2Ptr(attr, roff), asize - roff);
1610 }
1611
1612 if (ni->attr_list.size) {
1613 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1614 al_destroy(ni);
1615 }
1616
1617 /* Free all subrecords. */
1618 for (node = rb_first(&ni->mi_tree); node;) {
1619 struct rb_node *next = rb_next(node);
1620 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1621
1622 clear_rec_inuse(mi->mrec);
1623 mi->dirty = true;
1624 mi_write(mi, 0);
1625
1626 ntfs_mark_rec_free(sbi, mi->rno, false);
1627 ni_remove_mi(ni, mi);
1628 mi_put(mi);
1629 node = next;
1630 }
1631
1632 /* Free base record. */
1633 clear_rec_inuse(ni->mi.mrec);
1634 ni->mi.dirty = true;
1635 err = mi_write(&ni->mi, 0);
1636
1637 ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1638
1639 return err;
1640 }
1641
1642 /* ni_fname_name
1643 *
1644 * Return: File name attribute by its value.
1645 */
ni_fname_name(struct ntfs_inode * ni,const struct le_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1646 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1647 const struct le_str *uni,
1648 const struct MFT_REF *home_dir,
1649 struct mft_inode **mi,
1650 struct ATTR_LIST_ENTRY **le)
1651 {
1652 struct ATTRIB *attr = NULL;
1653 struct ATTR_FILE_NAME *fname;
1654
1655 if (le)
1656 *le = NULL;
1657
1658 /* Enumerate all names. */
1659 next:
1660 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1661 if (!attr)
1662 return NULL;
1663
1664 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1665 if (!fname)
1666 goto next;
1667
1668 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1669 goto next;
1670
1671 if (!uni)
1672 return fname;
1673
1674 if (uni->len != fname->name_len)
1675 goto next;
1676
1677 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1678 false))
1679 goto next;
1680 return fname;
1681 }
1682
1683 /*
1684 * ni_fname_type
1685 *
1686 * Return: File name attribute with given type.
1687 */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1688 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1689 struct mft_inode **mi,
1690 struct ATTR_LIST_ENTRY **le)
1691 {
1692 struct ATTRIB *attr = NULL;
1693 struct ATTR_FILE_NAME *fname;
1694
1695 *le = NULL;
1696
1697 if (name_type == FILE_NAME_POSIX)
1698 return NULL;
1699
1700 /* Enumerate all names. */
1701 for (;;) {
1702 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1703 if (!attr)
1704 return NULL;
1705
1706 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1707 if (fname && name_type == fname->type)
1708 return fname;
1709 }
1710 }
1711
1712 /*
1713 * ni_new_attr_flags
1714 *
1715 * Process compressed/sparsed in special way.
1716 * NOTE: You need to set ni->std_fa = new_fa
1717 * after this function to keep internal structures in consistency.
1718 */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1719 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1720 {
1721 struct ATTRIB *attr;
1722 struct mft_inode *mi;
1723 __le16 new_aflags;
1724 u32 new_asize;
1725
1726 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1727 if (!attr)
1728 return -EINVAL;
1729
1730 new_aflags = attr->flags;
1731
1732 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1733 new_aflags |= ATTR_FLAG_SPARSED;
1734 else
1735 new_aflags &= ~ATTR_FLAG_SPARSED;
1736
1737 if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1738 new_aflags |= ATTR_FLAG_COMPRESSED;
1739 else
1740 new_aflags &= ~ATTR_FLAG_COMPRESSED;
1741
1742 if (new_aflags == attr->flags)
1743 return 0;
1744
1745 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1746 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1747 ntfs_inode_warn(&ni->vfs_inode,
1748 "file can't be sparsed and compressed");
1749 return -EOPNOTSUPP;
1750 }
1751
1752 if (!attr->non_res)
1753 goto out;
1754
1755 if (attr->nres.data_size) {
1756 ntfs_inode_warn(
1757 &ni->vfs_inode,
1758 "one can change sparsed/compressed only for empty files");
1759 return -EOPNOTSUPP;
1760 }
1761
1762 /* Resize nonresident empty attribute in-place only. */
1763 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1764 (SIZEOF_NONRESIDENT_EX + 8) :
1765 (SIZEOF_NONRESIDENT + 8);
1766
1767 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1768 return -EOPNOTSUPP;
1769
1770 if (new_aflags & ATTR_FLAG_SPARSED) {
1771 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1772 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1773 attr->nres.c_unit = 0;
1774 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1775 } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1776 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1777 /* The only allowed: 16 clusters per frame. */
1778 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1779 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1780 } else {
1781 attr->name_off = SIZEOF_NONRESIDENT_LE;
1782 /* Normal files. */
1783 attr->nres.c_unit = 0;
1784 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1785 }
1786 attr->nres.run_off = attr->name_off;
1787 out:
1788 attr->flags = new_aflags;
1789 mi->dirty = true;
1790
1791 return 0;
1792 }
1793
1794 /*
1795 * ni_parse_reparse
1796 *
1797 * buffer - memory for reparse buffer header
1798 */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1799 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1800 struct REPARSE_DATA_BUFFER *buffer)
1801 {
1802 const struct REPARSE_DATA_BUFFER *rp = NULL;
1803 u8 bits;
1804 u16 len;
1805 typeof(rp->CompressReparseBuffer) *cmpr;
1806
1807 /* Try to estimate reparse point. */
1808 if (!attr->non_res) {
1809 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1810 } else if (le64_to_cpu(attr->nres.data_size) >=
1811 sizeof(struct REPARSE_DATA_BUFFER)) {
1812 struct runs_tree run;
1813
1814 run_init(&run);
1815
1816 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1817 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1818 sizeof(struct REPARSE_DATA_BUFFER),
1819 NULL)) {
1820 rp = buffer;
1821 }
1822
1823 run_close(&run);
1824 }
1825
1826 if (!rp)
1827 return REPARSE_NONE;
1828
1829 len = le16_to_cpu(rp->ReparseDataLength);
1830 switch (rp->ReparseTag) {
1831 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1832 break; /* Symbolic link. */
1833 case IO_REPARSE_TAG_MOUNT_POINT:
1834 break; /* Mount points and junctions. */
1835 case IO_REPARSE_TAG_SYMLINK:
1836 break;
1837 case IO_REPARSE_TAG_COMPRESS:
1838 /*
1839 * WOF - Windows Overlay Filter - Used to compress files with
1840 * LZX/Xpress.
1841 *
1842 * Unlike native NTFS file compression, the Windows
1843 * Overlay Filter supports only read operations. This means
1844 * that it doesn't need to sector-align each compressed chunk,
1845 * so the compressed data can be packed more tightly together.
1846 * If you open the file for writing, the WOF just decompresses
1847 * the entire file, turning it back into a plain file.
1848 *
1849 * Ntfs3 driver decompresses the entire file only on write or
1850 * change size requests.
1851 */
1852
1853 cmpr = &rp->CompressReparseBuffer;
1854 if (len < sizeof(*cmpr) ||
1855 cmpr->WofVersion != WOF_CURRENT_VERSION ||
1856 cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1857 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1858 return REPARSE_NONE;
1859 }
1860
1861 switch (cmpr->CompressionFormat) {
1862 case WOF_COMPRESSION_XPRESS4K:
1863 bits = 0xc; // 4k
1864 break;
1865 case WOF_COMPRESSION_XPRESS8K:
1866 bits = 0xd; // 8k
1867 break;
1868 case WOF_COMPRESSION_XPRESS16K:
1869 bits = 0xe; // 16k
1870 break;
1871 case WOF_COMPRESSION_LZX32K:
1872 bits = 0xf; // 32k
1873 break;
1874 default:
1875 bits = 0x10; // 64k
1876 break;
1877 }
1878 ni_set_ext_compress_bits(ni, bits);
1879 return REPARSE_COMPRESSED;
1880
1881 case IO_REPARSE_TAG_DEDUP:
1882 ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1883 return REPARSE_DEDUPLICATED;
1884
1885 default:
1886 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1887 break;
1888
1889 return REPARSE_NONE;
1890 }
1891
1892 if (buffer != rp)
1893 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1894
1895 /* Looks like normal symlink. */
1896 return REPARSE_LINK;
1897 }
1898
1899 /*
1900 * fiemap_fill_next_extent_k - a copy of fiemap_fill_next_extent
1901 * but it accepts kernel address for fi_extents_start
1902 */
fiemap_fill_next_extent_k(struct fiemap_extent_info * fieinfo,u64 logical,u64 phys,u64 len,u32 flags)1903 static int fiemap_fill_next_extent_k(struct fiemap_extent_info *fieinfo,
1904 u64 logical, u64 phys, u64 len, u32 flags)
1905 {
1906 struct fiemap_extent extent;
1907 struct fiemap_extent __user *dest = fieinfo->fi_extents_start;
1908
1909 /* only count the extents */
1910 if (fieinfo->fi_extents_max == 0) {
1911 fieinfo->fi_extents_mapped++;
1912 return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0;
1913 }
1914
1915 if (fieinfo->fi_extents_mapped >= fieinfo->fi_extents_max)
1916 return 1;
1917
1918 if (flags & FIEMAP_EXTENT_DELALLOC)
1919 flags |= FIEMAP_EXTENT_UNKNOWN;
1920 if (flags & FIEMAP_EXTENT_DATA_ENCRYPTED)
1921 flags |= FIEMAP_EXTENT_ENCODED;
1922 if (flags & (FIEMAP_EXTENT_DATA_TAIL | FIEMAP_EXTENT_DATA_INLINE))
1923 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
1924
1925 memset(&extent, 0, sizeof(extent));
1926 extent.fe_logical = logical;
1927 extent.fe_physical = phys;
1928 extent.fe_length = len;
1929 extent.fe_flags = flags;
1930
1931 dest += fieinfo->fi_extents_mapped;
1932 memcpy(dest, &extent, sizeof(extent));
1933
1934 fieinfo->fi_extents_mapped++;
1935 if (fieinfo->fi_extents_mapped == fieinfo->fi_extents_max)
1936 return 1;
1937 return (flags & FIEMAP_EXTENT_LAST) ? 1 : 0;
1938 }
1939
1940 /*
1941 * ni_fiemap - Helper for file_fiemap().
1942 *
1943 * Assumed ni_lock.
1944 * TODO: Less aggressive locks.
1945 */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1946 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1947 __u64 vbo, __u64 len)
1948 {
1949 int err = 0;
1950 struct fiemap_extent __user *fe_u = fieinfo->fi_extents_start;
1951 struct fiemap_extent *fe_k = NULL;
1952 struct ntfs_sb_info *sbi = ni->mi.sbi;
1953 u8 cluster_bits = sbi->cluster_bits;
1954 struct runs_tree *run;
1955 struct rw_semaphore *run_lock;
1956 struct ATTRIB *attr;
1957 CLST vcn = vbo >> cluster_bits;
1958 CLST lcn, clen;
1959 u64 valid = ni->i_valid;
1960 u64 lbo, bytes;
1961 u64 end, alloc_size;
1962 size_t idx = -1;
1963 u32 flags;
1964 bool ok;
1965
1966 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1967 run = &ni->dir.alloc_run;
1968 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1969 ARRAY_SIZE(I30_NAME), NULL, NULL);
1970 run_lock = &ni->dir.run_lock;
1971 } else {
1972 run = &ni->file.run;
1973 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1974 NULL);
1975 if (!attr) {
1976 err = -EINVAL;
1977 goto out;
1978 }
1979 if (is_attr_compressed(attr)) {
1980 /* Unfortunately cp -r incorrectly treats compressed clusters. */
1981 err = -EOPNOTSUPP;
1982 ntfs_inode_warn(
1983 &ni->vfs_inode,
1984 "fiemap is not supported for compressed file (cp -r)");
1985 goto out;
1986 }
1987 run_lock = &ni->file.run_lock;
1988 }
1989
1990 if (!attr || !attr->non_res) {
1991 err = fiemap_fill_next_extent(
1992 fieinfo, 0, 0,
1993 attr ? le32_to_cpu(attr->res.data_size) : 0,
1994 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1995 FIEMAP_EXTENT_MERGED);
1996 goto out;
1997 }
1998
1999 /*
2000 * To avoid lock problems replace pointer to user memory by pointer to kernel memory.
2001 */
2002 fe_k = kmalloc_array(fieinfo->fi_extents_max,
2003 sizeof(struct fiemap_extent),
2004 GFP_NOFS | __GFP_ZERO);
2005 if (!fe_k) {
2006 err = -ENOMEM;
2007 goto out;
2008 }
2009 fieinfo->fi_extents_start = fe_k;
2010
2011 end = vbo + len;
2012 alloc_size = le64_to_cpu(attr->nres.alloc_size);
2013 if (end > alloc_size)
2014 end = alloc_size;
2015
2016 down_read(run_lock);
2017
2018 while (vbo < end) {
2019 if (idx == -1) {
2020 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
2021 } else {
2022 CLST vcn_next = vcn;
2023
2024 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
2025 vcn == vcn_next;
2026 if (!ok)
2027 vcn = vcn_next;
2028 }
2029
2030 if (!ok) {
2031 up_read(run_lock);
2032 down_write(run_lock);
2033
2034 err = attr_load_runs_vcn(ni, attr->type,
2035 attr_name(attr),
2036 attr->name_len, run, vcn);
2037
2038 up_write(run_lock);
2039 down_read(run_lock);
2040
2041 if (err)
2042 break;
2043
2044 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
2045
2046 if (!ok) {
2047 err = -EINVAL;
2048 break;
2049 }
2050 }
2051
2052 if (!clen) {
2053 err = -EINVAL; // ?
2054 break;
2055 }
2056
2057 if (lcn == SPARSE_LCN) {
2058 vcn += clen;
2059 vbo = (u64)vcn << cluster_bits;
2060 continue;
2061 }
2062
2063 flags = FIEMAP_EXTENT_MERGED;
2064 if (S_ISDIR(ni->vfs_inode.i_mode)) {
2065 ;
2066 } else if (is_attr_compressed(attr)) {
2067 CLST clst_data;
2068
2069 err = attr_is_frame_compressed(
2070 ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2071 if (err)
2072 break;
2073 if (clst_data < NTFS_LZNT_CLUSTERS)
2074 flags |= FIEMAP_EXTENT_ENCODED;
2075 } else if (is_attr_encrypted(attr)) {
2076 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2077 }
2078
2079 vbo = (u64)vcn << cluster_bits;
2080 bytes = (u64)clen << cluster_bits;
2081 lbo = (u64)lcn << cluster_bits;
2082
2083 vcn += clen;
2084
2085 if (vbo + bytes >= end)
2086 bytes = end - vbo;
2087
2088 if (vbo + bytes <= valid) {
2089 ;
2090 } else if (vbo >= valid) {
2091 flags |= FIEMAP_EXTENT_UNWRITTEN;
2092 } else {
2093 /* vbo < valid && valid < vbo + bytes */
2094 u64 dlen = valid - vbo;
2095
2096 if (vbo + dlen >= end)
2097 flags |= FIEMAP_EXTENT_LAST;
2098
2099 err = fiemap_fill_next_extent_k(fieinfo, vbo, lbo, dlen,
2100 flags);
2101
2102 if (err < 0)
2103 break;
2104 if (err == 1) {
2105 err = 0;
2106 break;
2107 }
2108
2109 vbo = valid;
2110 bytes -= dlen;
2111 if (!bytes)
2112 continue;
2113
2114 lbo += dlen;
2115 flags |= FIEMAP_EXTENT_UNWRITTEN;
2116 }
2117
2118 if (vbo + bytes >= end)
2119 flags |= FIEMAP_EXTENT_LAST;
2120
2121 err = fiemap_fill_next_extent_k(fieinfo, vbo, lbo, bytes,
2122 flags);
2123 if (err < 0)
2124 break;
2125 if (err == 1) {
2126 err = 0;
2127 break;
2128 }
2129
2130 vbo += bytes;
2131 }
2132
2133 up_read(run_lock);
2134
2135 /*
2136 * Copy to user memory out of lock
2137 */
2138 if (copy_to_user(fe_u, fe_k,
2139 fieinfo->fi_extents_max *
2140 sizeof(struct fiemap_extent))) {
2141 err = -EFAULT;
2142 }
2143
2144 out:
2145 /* Restore original pointer. */
2146 fieinfo->fi_extents_start = fe_u;
2147 kfree(fe_k);
2148 return err;
2149 }
2150
2151 /*
2152 * ni_readpage_cmpr
2153 *
2154 * When decompressing, we typically obtain more than one page per reference.
2155 * We inject the additional pages into the page cache.
2156 */
ni_readpage_cmpr(struct ntfs_inode * ni,struct page * page)2157 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2158 {
2159 int err;
2160 struct ntfs_sb_info *sbi = ni->mi.sbi;
2161 struct address_space *mapping = page->mapping;
2162 pgoff_t index = page->index;
2163 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2164 struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2165 u8 frame_bits;
2166 CLST frame;
2167 u32 i, idx, frame_size, pages_per_frame;
2168 gfp_t gfp_mask;
2169 struct page *pg;
2170
2171 if (vbo >= i_size_read(&ni->vfs_inode)) {
2172 SetPageUptodate(page);
2173 err = 0;
2174 goto out;
2175 }
2176
2177 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2178 /* Xpress or LZX. */
2179 frame_bits = ni_ext_compress_bits(ni);
2180 } else {
2181 /* LZNT compression. */
2182 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2183 }
2184 frame_size = 1u << frame_bits;
2185 frame = vbo >> frame_bits;
2186 frame_vbo = (u64)frame << frame_bits;
2187 idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2188
2189 pages_per_frame = frame_size >> PAGE_SHIFT;
2190 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2191 if (!pages) {
2192 err = -ENOMEM;
2193 goto out;
2194 }
2195
2196 pages[idx] = page;
2197 index = frame_vbo >> PAGE_SHIFT;
2198 gfp_mask = mapping_gfp_mask(mapping);
2199
2200 for (i = 0; i < pages_per_frame; i++, index++) {
2201 if (i == idx)
2202 continue;
2203
2204 pg = find_or_create_page(mapping, index, gfp_mask);
2205 if (!pg) {
2206 err = -ENOMEM;
2207 goto out1;
2208 }
2209 pages[i] = pg;
2210 }
2211
2212 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2213
2214 out1:
2215 if (err)
2216 SetPageError(page);
2217
2218 for (i = 0; i < pages_per_frame; i++) {
2219 pg = pages[i];
2220 if (i == idx || !pg)
2221 continue;
2222 unlock_page(pg);
2223 put_page(pg);
2224 }
2225
2226 out:
2227 /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2228 kfree(pages);
2229 unlock_page(page);
2230
2231 return err;
2232 }
2233
2234 #ifdef CONFIG_NTFS3_LZX_XPRESS
2235 /*
2236 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2237 *
2238 * Remove ATTR_DATA::WofCompressedData.
2239 * Remove ATTR_REPARSE.
2240 */
ni_decompress_file(struct ntfs_inode * ni)2241 int ni_decompress_file(struct ntfs_inode *ni)
2242 {
2243 struct ntfs_sb_info *sbi = ni->mi.sbi;
2244 struct inode *inode = &ni->vfs_inode;
2245 loff_t i_size = i_size_read(inode);
2246 struct address_space *mapping = inode->i_mapping;
2247 gfp_t gfp_mask = mapping_gfp_mask(mapping);
2248 struct page **pages = NULL;
2249 struct ATTR_LIST_ENTRY *le;
2250 struct ATTRIB *attr;
2251 CLST vcn, cend, lcn, clen, end;
2252 pgoff_t index;
2253 u64 vbo;
2254 u8 frame_bits;
2255 u32 i, frame_size, pages_per_frame, bytes;
2256 struct mft_inode *mi;
2257 int err;
2258
2259 /* Clusters for decompressed data. */
2260 cend = bytes_to_cluster(sbi, i_size);
2261
2262 if (!i_size)
2263 goto remove_wof;
2264
2265 /* Check in advance. */
2266 if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2267 err = -ENOSPC;
2268 goto out;
2269 }
2270
2271 frame_bits = ni_ext_compress_bits(ni);
2272 frame_size = 1u << frame_bits;
2273 pages_per_frame = frame_size >> PAGE_SHIFT;
2274 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2275 if (!pages) {
2276 err = -ENOMEM;
2277 goto out;
2278 }
2279
2280 /*
2281 * Step 1: Decompress data and copy to new allocated clusters.
2282 */
2283 index = 0;
2284 for (vbo = 0; vbo < i_size; vbo += bytes) {
2285 u32 nr_pages;
2286 bool new;
2287
2288 if (vbo + frame_size > i_size) {
2289 bytes = i_size - vbo;
2290 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2291 } else {
2292 nr_pages = pages_per_frame;
2293 bytes = frame_size;
2294 }
2295
2296 end = bytes_to_cluster(sbi, vbo + bytes);
2297
2298 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2299 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2300 &clen, &new, false);
2301 if (err)
2302 goto out;
2303 }
2304
2305 for (i = 0; i < pages_per_frame; i++, index++) {
2306 struct page *pg;
2307
2308 pg = find_or_create_page(mapping, index, gfp_mask);
2309 if (!pg) {
2310 while (i--) {
2311 unlock_page(pages[i]);
2312 put_page(pages[i]);
2313 }
2314 err = -ENOMEM;
2315 goto out;
2316 }
2317 pages[i] = pg;
2318 }
2319
2320 err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2321
2322 if (!err) {
2323 down_read(&ni->file.run_lock);
2324 err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2325 nr_pages, vbo, bytes,
2326 REQ_OP_WRITE);
2327 up_read(&ni->file.run_lock);
2328 }
2329
2330 for (i = 0; i < pages_per_frame; i++) {
2331 unlock_page(pages[i]);
2332 put_page(pages[i]);
2333 }
2334
2335 if (err)
2336 goto out;
2337
2338 cond_resched();
2339 }
2340
2341 remove_wof:
2342 /*
2343 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2344 * and ATTR_REPARSE.
2345 */
2346 attr = NULL;
2347 le = NULL;
2348 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2349 CLST svcn, evcn;
2350 u32 asize, roff;
2351
2352 if (attr->type == ATTR_REPARSE) {
2353 struct MFT_REF ref;
2354
2355 mi_get_ref(&ni->mi, &ref);
2356 ntfs_remove_reparse(sbi, 0, &ref);
2357 }
2358
2359 if (!attr->non_res)
2360 continue;
2361
2362 if (attr->type != ATTR_REPARSE &&
2363 (attr->type != ATTR_DATA ||
2364 attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2365 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2366 continue;
2367
2368 svcn = le64_to_cpu(attr->nres.svcn);
2369 evcn = le64_to_cpu(attr->nres.evcn);
2370
2371 if (evcn + 1 <= svcn)
2372 continue;
2373
2374 asize = le32_to_cpu(attr->size);
2375 roff = le16_to_cpu(attr->nres.run_off);
2376
2377 if (roff > asize) {
2378 err = -EINVAL;
2379 goto out;
2380 }
2381
2382 /*run==1 Means unpack and deallocate. */
2383 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2384 Add2Ptr(attr, roff), asize - roff);
2385 }
2386
2387 /*
2388 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2389 */
2390 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2391 false, NULL);
2392 if (err)
2393 goto out;
2394
2395 /*
2396 * Step 4: Remove ATTR_REPARSE.
2397 */
2398 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2399 if (err)
2400 goto out;
2401
2402 /*
2403 * Step 5: Remove sparse flag from data attribute.
2404 */
2405 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2406 if (!attr) {
2407 err = -EINVAL;
2408 goto out;
2409 }
2410
2411 if (attr->non_res && is_attr_sparsed(attr)) {
2412 /* Sparsed attribute header is 8 bytes bigger than normal. */
2413 struct MFT_REC *rec = mi->mrec;
2414 u32 used = le32_to_cpu(rec->used);
2415 u32 asize = le32_to_cpu(attr->size);
2416 u16 roff = le16_to_cpu(attr->nres.run_off);
2417 char *rbuf = Add2Ptr(attr, roff);
2418
2419 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2420 attr->size = cpu_to_le32(asize - 8);
2421 attr->flags &= ~ATTR_FLAG_SPARSED;
2422 attr->nres.run_off = cpu_to_le16(roff - 8);
2423 attr->nres.c_unit = 0;
2424 rec->used = cpu_to_le32(used - 8);
2425 mi->dirty = true;
2426 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2427 FILE_ATTRIBUTE_REPARSE_POINT);
2428
2429 mark_inode_dirty(inode);
2430 }
2431
2432 /* Clear cached flag. */
2433 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2434 if (ni->file.offs_page) {
2435 put_page(ni->file.offs_page);
2436 ni->file.offs_page = NULL;
2437 }
2438 mapping->a_ops = &ntfs_aops;
2439
2440 out:
2441 kfree(pages);
2442 if (err)
2443 _ntfs_bad_inode(inode);
2444
2445 return err;
2446 }
2447
2448 /*
2449 * decompress_lzx_xpress - External compression LZX/Xpress.
2450 */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2451 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2452 size_t cmpr_size, void *unc, size_t unc_size,
2453 u32 frame_size)
2454 {
2455 int err;
2456 void *ctx;
2457
2458 if (cmpr_size == unc_size) {
2459 /* Frame not compressed. */
2460 memcpy(unc, cmpr, unc_size);
2461 return 0;
2462 }
2463
2464 err = 0;
2465 if (frame_size == 0x8000) {
2466 mutex_lock(&sbi->compress.mtx_lzx);
2467 /* LZX: Frame compressed. */
2468 ctx = sbi->compress.lzx;
2469 if (!ctx) {
2470 /* Lazy initialize LZX decompress context. */
2471 ctx = lzx_allocate_decompressor();
2472 if (!ctx) {
2473 err = -ENOMEM;
2474 goto out1;
2475 }
2476
2477 sbi->compress.lzx = ctx;
2478 }
2479
2480 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2481 /* Treat all errors as "invalid argument". */
2482 err = -EINVAL;
2483 }
2484 out1:
2485 mutex_unlock(&sbi->compress.mtx_lzx);
2486 } else {
2487 /* XPRESS: Frame compressed. */
2488 mutex_lock(&sbi->compress.mtx_xpress);
2489 ctx = sbi->compress.xpress;
2490 if (!ctx) {
2491 /* Lazy initialize Xpress decompress context. */
2492 ctx = xpress_allocate_decompressor();
2493 if (!ctx) {
2494 err = -ENOMEM;
2495 goto out2;
2496 }
2497
2498 sbi->compress.xpress = ctx;
2499 }
2500
2501 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2502 /* Treat all errors as "invalid argument". */
2503 err = -EINVAL;
2504 }
2505 out2:
2506 mutex_unlock(&sbi->compress.mtx_xpress);
2507 }
2508 return err;
2509 }
2510 #endif
2511
2512 /*
2513 * ni_read_frame
2514 *
2515 * Pages - Array of locked pages.
2516 */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2517 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2518 u32 pages_per_frame)
2519 {
2520 int err;
2521 struct ntfs_sb_info *sbi = ni->mi.sbi;
2522 u8 cluster_bits = sbi->cluster_bits;
2523 char *frame_ondisk = NULL;
2524 char *frame_mem = NULL;
2525 struct page **pages_disk = NULL;
2526 struct ATTR_LIST_ENTRY *le = NULL;
2527 struct runs_tree *run = &ni->file.run;
2528 u64 valid_size = ni->i_valid;
2529 u64 vbo_disk;
2530 size_t unc_size;
2531 u32 frame_size, i, npages_disk, ondisk_size;
2532 struct page *pg;
2533 struct ATTRIB *attr;
2534 CLST frame, clst_data;
2535
2536 /*
2537 * To simplify decompress algorithm do vmap for source
2538 * and target pages.
2539 */
2540 for (i = 0; i < pages_per_frame; i++)
2541 kmap(pages[i]);
2542
2543 frame_size = pages_per_frame << PAGE_SHIFT;
2544 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2545 if (!frame_mem) {
2546 err = -ENOMEM;
2547 goto out;
2548 }
2549
2550 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2551 if (!attr) {
2552 err = -ENOENT;
2553 goto out1;
2554 }
2555
2556 if (!attr->non_res) {
2557 u32 data_size = le32_to_cpu(attr->res.data_size);
2558
2559 memset(frame_mem, 0, frame_size);
2560 if (frame_vbo < data_size) {
2561 ondisk_size = data_size - frame_vbo;
2562 memcpy(frame_mem, resident_data(attr) + frame_vbo,
2563 min(ondisk_size, frame_size));
2564 }
2565 err = 0;
2566 goto out1;
2567 }
2568
2569 if (frame_vbo >= valid_size) {
2570 memset(frame_mem, 0, frame_size);
2571 err = 0;
2572 goto out1;
2573 }
2574
2575 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2576 #ifndef CONFIG_NTFS3_LZX_XPRESS
2577 err = -EOPNOTSUPP;
2578 goto out1;
2579 #else
2580 loff_t i_size = i_size_read(&ni->vfs_inode);
2581 u32 frame_bits = ni_ext_compress_bits(ni);
2582 u64 frame64 = frame_vbo >> frame_bits;
2583 u64 frames, vbo_data;
2584
2585 if (frame_size != (1u << frame_bits)) {
2586 err = -EINVAL;
2587 goto out1;
2588 }
2589 switch (frame_size) {
2590 case 0x1000:
2591 case 0x2000:
2592 case 0x4000:
2593 case 0x8000:
2594 break;
2595 default:
2596 /* Unknown compression. */
2597 err = -EOPNOTSUPP;
2598 goto out1;
2599 }
2600
2601 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2602 ARRAY_SIZE(WOF_NAME), NULL, NULL);
2603 if (!attr) {
2604 ntfs_inode_err(
2605 &ni->vfs_inode,
2606 "external compressed file should contains data attribute \"WofCompressedData\"");
2607 err = -EINVAL;
2608 goto out1;
2609 }
2610
2611 if (!attr->non_res) {
2612 run = NULL;
2613 } else {
2614 run = run_alloc();
2615 if (!run) {
2616 err = -ENOMEM;
2617 goto out1;
2618 }
2619 }
2620
2621 frames = (i_size - 1) >> frame_bits;
2622
2623 err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2624 frame_bits, &ondisk_size, &vbo_data);
2625 if (err)
2626 goto out2;
2627
2628 if (frame64 == frames) {
2629 unc_size = 1 + ((i_size - 1) & (frame_size - 1));
2630 ondisk_size = attr_size(attr) - vbo_data;
2631 } else {
2632 unc_size = frame_size;
2633 }
2634
2635 if (ondisk_size > frame_size) {
2636 err = -EINVAL;
2637 goto out2;
2638 }
2639
2640 if (!attr->non_res) {
2641 if (vbo_data + ondisk_size >
2642 le32_to_cpu(attr->res.data_size)) {
2643 err = -EINVAL;
2644 goto out1;
2645 }
2646
2647 err = decompress_lzx_xpress(
2648 sbi, Add2Ptr(resident_data(attr), vbo_data),
2649 ondisk_size, frame_mem, unc_size, frame_size);
2650 goto out1;
2651 }
2652 vbo_disk = vbo_data;
2653 /* Load all runs to read [vbo_disk-vbo_to). */
2654 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2655 ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2656 vbo_data + ondisk_size);
2657 if (err)
2658 goto out2;
2659 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2660 PAGE_SIZE - 1) >>
2661 PAGE_SHIFT;
2662 #endif
2663 } else if (is_attr_compressed(attr)) {
2664 /* LZNT compression. */
2665 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2666 err = -EOPNOTSUPP;
2667 goto out1;
2668 }
2669
2670 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2671 err = -EOPNOTSUPP;
2672 goto out1;
2673 }
2674
2675 down_write(&ni->file.run_lock);
2676 run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2677 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2678 err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2679 up_write(&ni->file.run_lock);
2680 if (err)
2681 goto out1;
2682
2683 if (!clst_data) {
2684 memset(frame_mem, 0, frame_size);
2685 goto out1;
2686 }
2687
2688 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2689 ondisk_size = clst_data << cluster_bits;
2690
2691 if (clst_data >= NTFS_LZNT_CLUSTERS) {
2692 /* Frame is not compressed. */
2693 down_read(&ni->file.run_lock);
2694 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2695 frame_vbo, ondisk_size,
2696 REQ_OP_READ);
2697 up_read(&ni->file.run_lock);
2698 goto out1;
2699 }
2700 vbo_disk = frame_vbo;
2701 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2702 } else {
2703 __builtin_unreachable();
2704 err = -EINVAL;
2705 goto out1;
2706 }
2707
2708 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2709 if (!pages_disk) {
2710 err = -ENOMEM;
2711 goto out2;
2712 }
2713
2714 for (i = 0; i < npages_disk; i++) {
2715 pg = alloc_page(GFP_KERNEL);
2716 if (!pg) {
2717 err = -ENOMEM;
2718 goto out3;
2719 }
2720 pages_disk[i] = pg;
2721 lock_page(pg);
2722 kmap(pg);
2723 }
2724
2725 /* Read 'ondisk_size' bytes from disk. */
2726 down_read(&ni->file.run_lock);
2727 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2728 ondisk_size, REQ_OP_READ);
2729 up_read(&ni->file.run_lock);
2730 if (err)
2731 goto out3;
2732
2733 /*
2734 * To simplify decompress algorithm do vmap for source and target pages.
2735 */
2736 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2737 if (!frame_ondisk) {
2738 err = -ENOMEM;
2739 goto out3;
2740 }
2741
2742 /* Decompress: Frame_ondisk -> frame_mem. */
2743 #ifdef CONFIG_NTFS3_LZX_XPRESS
2744 if (run != &ni->file.run) {
2745 /* LZX or XPRESS */
2746 err = decompress_lzx_xpress(
2747 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2748 ondisk_size, frame_mem, unc_size, frame_size);
2749 } else
2750 #endif
2751 {
2752 /* LZNT - Native NTFS compression. */
2753 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2754 frame_size);
2755 if ((ssize_t)unc_size < 0)
2756 err = unc_size;
2757 else if (!unc_size || unc_size > frame_size)
2758 err = -EINVAL;
2759 }
2760 if (!err && valid_size < frame_vbo + frame_size) {
2761 size_t ok = valid_size - frame_vbo;
2762
2763 memset(frame_mem + ok, 0, frame_size - ok);
2764 }
2765
2766 vunmap(frame_ondisk);
2767
2768 out3:
2769 for (i = 0; i < npages_disk; i++) {
2770 pg = pages_disk[i];
2771 if (pg) {
2772 kunmap(pg);
2773 unlock_page(pg);
2774 put_page(pg);
2775 }
2776 }
2777 kfree(pages_disk);
2778
2779 out2:
2780 #ifdef CONFIG_NTFS3_LZX_XPRESS
2781 if (run != &ni->file.run)
2782 run_free(run);
2783 #endif
2784 out1:
2785 vunmap(frame_mem);
2786 out:
2787 for (i = 0; i < pages_per_frame; i++) {
2788 pg = pages[i];
2789 kunmap(pg);
2790 ClearPageError(pg);
2791 SetPageUptodate(pg);
2792 }
2793
2794 return err;
2795 }
2796
2797 /*
2798 * ni_write_frame
2799 *
2800 * Pages - Array of locked pages.
2801 */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2802 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2803 u32 pages_per_frame)
2804 {
2805 int err;
2806 struct ntfs_sb_info *sbi = ni->mi.sbi;
2807 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2808 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2809 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2810 CLST frame = frame_vbo >> frame_bits;
2811 char *frame_ondisk = NULL;
2812 struct page **pages_disk = NULL;
2813 struct ATTR_LIST_ENTRY *le = NULL;
2814 char *frame_mem;
2815 struct ATTRIB *attr;
2816 struct mft_inode *mi;
2817 u32 i;
2818 struct page *pg;
2819 size_t compr_size, ondisk_size;
2820 struct lznt *lznt;
2821
2822 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2823 if (!attr) {
2824 err = -ENOENT;
2825 goto out;
2826 }
2827
2828 if (WARN_ON(!is_attr_compressed(attr))) {
2829 err = -EINVAL;
2830 goto out;
2831 }
2832
2833 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2834 err = -EOPNOTSUPP;
2835 goto out;
2836 }
2837
2838 if (!attr->non_res) {
2839 down_write(&ni->file.run_lock);
2840 err = attr_make_nonresident(ni, attr, le, mi,
2841 le32_to_cpu(attr->res.data_size),
2842 &ni->file.run, &attr, pages[0]);
2843 up_write(&ni->file.run_lock);
2844 if (err)
2845 goto out;
2846 }
2847
2848 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2849 err = -EOPNOTSUPP;
2850 goto out;
2851 }
2852
2853 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2854 if (!pages_disk) {
2855 err = -ENOMEM;
2856 goto out;
2857 }
2858
2859 for (i = 0; i < pages_per_frame; i++) {
2860 pg = alloc_page(GFP_KERNEL);
2861 if (!pg) {
2862 err = -ENOMEM;
2863 goto out1;
2864 }
2865 pages_disk[i] = pg;
2866 lock_page(pg);
2867 kmap(pg);
2868 }
2869
2870 /* To simplify compress algorithm do vmap for source and target pages. */
2871 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2872 if (!frame_ondisk) {
2873 err = -ENOMEM;
2874 goto out1;
2875 }
2876
2877 for (i = 0; i < pages_per_frame; i++)
2878 kmap(pages[i]);
2879
2880 /* Map in-memory frame for read-only. */
2881 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2882 if (!frame_mem) {
2883 err = -ENOMEM;
2884 goto out2;
2885 }
2886
2887 mutex_lock(&sbi->compress.mtx_lznt);
2888 lznt = NULL;
2889 if (!sbi->compress.lznt) {
2890 /*
2891 * LZNT implements two levels of compression:
2892 * 0 - Standard compression
2893 * 1 - Best compression, requires a lot of cpu
2894 * use mount option?
2895 */
2896 lznt = get_lznt_ctx(0);
2897 if (!lznt) {
2898 mutex_unlock(&sbi->compress.mtx_lznt);
2899 err = -ENOMEM;
2900 goto out3;
2901 }
2902
2903 sbi->compress.lznt = lznt;
2904 lznt = NULL;
2905 }
2906
2907 /* Compress: frame_mem -> frame_ondisk */
2908 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2909 frame_size, sbi->compress.lznt);
2910 mutex_unlock(&sbi->compress.mtx_lznt);
2911 kfree(lznt);
2912
2913 if (compr_size + sbi->cluster_size > frame_size) {
2914 /* Frame is not compressed. */
2915 compr_size = frame_size;
2916 ondisk_size = frame_size;
2917 } else if (compr_size) {
2918 /* Frame is compressed. */
2919 ondisk_size = ntfs_up_cluster(sbi, compr_size);
2920 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2921 } else {
2922 /* Frame is sparsed. */
2923 ondisk_size = 0;
2924 }
2925
2926 down_write(&ni->file.run_lock);
2927 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2928 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2929 up_write(&ni->file.run_lock);
2930 if (err)
2931 goto out2;
2932
2933 if (!ondisk_size)
2934 goto out2;
2935
2936 down_read(&ni->file.run_lock);
2937 err = ntfs_bio_pages(sbi, &ni->file.run,
2938 ondisk_size < frame_size ? pages_disk : pages,
2939 pages_per_frame, frame_vbo, ondisk_size,
2940 REQ_OP_WRITE);
2941 up_read(&ni->file.run_lock);
2942
2943 out3:
2944 vunmap(frame_mem);
2945
2946 out2:
2947 for (i = 0; i < pages_per_frame; i++)
2948 kunmap(pages[i]);
2949
2950 vunmap(frame_ondisk);
2951 out1:
2952 for (i = 0; i < pages_per_frame; i++) {
2953 pg = pages_disk[i];
2954 if (pg) {
2955 kunmap(pg);
2956 unlock_page(pg);
2957 put_page(pg);
2958 }
2959 }
2960 kfree(pages_disk);
2961 out:
2962 return err;
2963 }
2964
2965 /*
2966 * ni_remove_name - Removes name 'de' from MFT and from directory.
2967 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2968 */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2969 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2970 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2971 {
2972 int err;
2973 struct ntfs_sb_info *sbi = ni->mi.sbi;
2974 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2975 struct ATTR_FILE_NAME *fname;
2976 struct ATTR_LIST_ENTRY *le;
2977 struct mft_inode *mi;
2978 u16 de_key_size = le16_to_cpu(de->key_size);
2979 u8 name_type;
2980
2981 *undo_step = 0;
2982
2983 /* Find name in record. */
2984 mi_get_ref(&dir_ni->mi, &de_name->home);
2985
2986 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2987 &de_name->home, &mi, &le);
2988 if (!fname)
2989 return -ENOENT;
2990
2991 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2992 name_type = paired_name(fname->type);
2993
2994 /* Mark ntfs as dirty. It will be cleared at umount. */
2995 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2996
2997 /* Step 1: Remove name from directory. */
2998 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2999 if (err)
3000 return err;
3001
3002 /* Step 2: Remove name from MFT. */
3003 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
3004
3005 *undo_step = 2;
3006
3007 /* Get paired name. */
3008 fname = ni_fname_type(ni, name_type, &mi, &le);
3009 if (fname) {
3010 u16 de2_key_size = fname_full_size(fname);
3011
3012 *de2 = Add2Ptr(de, 1024);
3013 (*de2)->key_size = cpu_to_le16(de2_key_size);
3014
3015 memcpy(*de2 + 1, fname, de2_key_size);
3016
3017 /* Step 3: Remove paired name from directory. */
3018 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
3019 de2_key_size, sbi);
3020 if (err)
3021 return err;
3022
3023 /* Step 4: Remove paired name from MFT. */
3024 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
3025
3026 *undo_step = 4;
3027 }
3028 return 0;
3029 }
3030
3031 /*
3032 * ni_remove_name_undo - Paired function for ni_remove_name.
3033 *
3034 * Return: True if ok
3035 */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)3036 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3037 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
3038 {
3039 struct ntfs_sb_info *sbi = ni->mi.sbi;
3040 struct ATTRIB *attr;
3041 u16 de_key_size;
3042
3043 switch (undo_step) {
3044 case 4:
3045 de_key_size = le16_to_cpu(de2->key_size);
3046 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
3047 &attr, NULL, NULL))
3048 return false;
3049 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
3050
3051 mi_get_ref(&ni->mi, &de2->ref);
3052 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
3053 sizeof(struct NTFS_DE));
3054 de2->flags = 0;
3055 de2->res = 0;
3056
3057 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
3058 return false;
3059 fallthrough;
3060
3061 case 2:
3062 de_key_size = le16_to_cpu(de->key_size);
3063
3064 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
3065 &attr, NULL, NULL))
3066 return false;
3067
3068 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
3069 mi_get_ref(&ni->mi, &de->ref);
3070
3071 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3072 return false;
3073 }
3074
3075 return true;
3076 }
3077
3078 /*
3079 * ni_add_name - Add new name into MFT and into directory.
3080 */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)3081 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3082 struct NTFS_DE *de)
3083 {
3084 int err;
3085 struct ntfs_sb_info *sbi = ni->mi.sbi;
3086 struct ATTRIB *attr;
3087 struct ATTR_LIST_ENTRY *le;
3088 struct mft_inode *mi;
3089 struct ATTR_FILE_NAME *fname;
3090 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3091 u16 de_key_size = le16_to_cpu(de->key_size);
3092
3093 if (sbi->options->windows_names &&
3094 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3095 return -EINVAL;
3096
3097 /* If option "hide_dot_files" then set hidden attribute for dot files. */
3098 if (ni->mi.sbi->options->hide_dot_files) {
3099 if (de_name->name_len > 0 &&
3100 le16_to_cpu(de_name->name[0]) == '.')
3101 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3102 else
3103 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3104 }
3105
3106 mi_get_ref(&ni->mi, &de->ref);
3107 mi_get_ref(&dir_ni->mi, &de_name->home);
3108
3109 /* Fill duplicate from any ATTR_NAME. */
3110 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3111 if (fname)
3112 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3113 de_name->dup.fa = ni->std_fa;
3114
3115 /* Insert new name into MFT. */
3116 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3117 &mi, &le);
3118 if (err)
3119 return err;
3120
3121 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3122
3123 /* Insert new name into directory. */
3124 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3125 if (err)
3126 ni_remove_attr_le(ni, attr, mi, le);
3127
3128 return err;
3129 }
3130
3131 /*
3132 * ni_rename - Remove one name and insert new name.
3133 */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3134 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3135 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3136 bool *is_bad)
3137 {
3138 int err;
3139 struct NTFS_DE *de2 = NULL;
3140 int undo = 0;
3141
3142 /*
3143 * There are two possible ways to rename:
3144 * 1) Add new name and remove old name.
3145 * 2) Remove old name and add new name.
3146 *
3147 * In most cases (not all!) adding new name into MFT and into directory can
3148 * allocate additional cluster(s).
3149 * Second way may result to bad inode if we can't add new name
3150 * and then can't restore (add) old name.
3151 */
3152
3153 /*
3154 * Way 1 - Add new + remove old.
3155 */
3156 err = ni_add_name(new_dir_ni, ni, new_de);
3157 if (!err) {
3158 err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3159 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3160 *is_bad = true;
3161 }
3162
3163 /*
3164 * Way 2 - Remove old + add new.
3165 */
3166 /*
3167 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3168 * if (!err) {
3169 * err = ni_add_name(new_dir_ni, ni, new_de);
3170 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3171 * *is_bad = true;
3172 * }
3173 */
3174
3175 return err;
3176 }
3177
3178 /*
3179 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3180 */
ni_is_dirty(struct inode * inode)3181 bool ni_is_dirty(struct inode *inode)
3182 {
3183 struct ntfs_inode *ni = ntfs_i(inode);
3184 struct rb_node *node;
3185
3186 if (ni->mi.dirty || ni->attr_list.dirty ||
3187 (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3188 return true;
3189
3190 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3191 if (rb_entry(node, struct mft_inode, node)->dirty)
3192 return true;
3193 }
3194
3195 return false;
3196 }
3197
3198 /*
3199 * ni_update_parent
3200 *
3201 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3202 */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3203 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3204 int sync)
3205 {
3206 struct ATTRIB *attr;
3207 struct mft_inode *mi;
3208 struct ATTR_LIST_ENTRY *le = NULL;
3209 struct ntfs_sb_info *sbi = ni->mi.sbi;
3210 struct super_block *sb = sbi->sb;
3211 bool re_dirty = false;
3212
3213 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3214 dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3215 attr = NULL;
3216 dup->alloc_size = 0;
3217 dup->data_size = 0;
3218 } else {
3219 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3220
3221 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3222 &mi);
3223 if (!attr) {
3224 dup->alloc_size = dup->data_size = 0;
3225 } else if (!attr->non_res) {
3226 u32 data_size = le32_to_cpu(attr->res.data_size);
3227
3228 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3229 dup->data_size = cpu_to_le64(data_size);
3230 } else {
3231 u64 new_valid = ni->i_valid;
3232 u64 data_size = le64_to_cpu(attr->nres.data_size);
3233 __le64 valid_le;
3234
3235 dup->alloc_size = is_attr_ext(attr) ?
3236 attr->nres.total_size :
3237 attr->nres.alloc_size;
3238 dup->data_size = attr->nres.data_size;
3239
3240 if (new_valid > data_size)
3241 new_valid = data_size;
3242
3243 valid_le = cpu_to_le64(new_valid);
3244 if (valid_le != attr->nres.valid_size) {
3245 attr->nres.valid_size = valid_le;
3246 mi->dirty = true;
3247 }
3248 }
3249 }
3250
3251 /* TODO: Fill reparse info. */
3252 dup->reparse = 0;
3253 dup->ea_size = 0;
3254
3255 if (ni->ni_flags & NI_FLAG_EA) {
3256 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3257 NULL);
3258 if (attr) {
3259 const struct EA_INFO *info;
3260
3261 info = resident_data_ex(attr, sizeof(struct EA_INFO));
3262 /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3263 if (info)
3264 dup->ea_size = info->size_pack;
3265 }
3266 }
3267
3268 attr = NULL;
3269 le = NULL;
3270
3271 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3272 &mi))) {
3273 struct inode *dir;
3274 struct ATTR_FILE_NAME *fname;
3275
3276 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3277 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3278 continue;
3279
3280 /* Check simple case when parent inode equals current inode. */
3281 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3282 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3283 continue;
3284 }
3285
3286 /* ntfs_iget5 may sleep. */
3287 dir = ntfs_iget5(sb, &fname->home, NULL);
3288 if (IS_ERR(dir)) {
3289 ntfs_inode_warn(
3290 &ni->vfs_inode,
3291 "failed to open parent directory r=%lx to update",
3292 (long)ino_get(&fname->home));
3293 continue;
3294 }
3295
3296 if (!is_bad_inode(dir)) {
3297 struct ntfs_inode *dir_ni = ntfs_i(dir);
3298
3299 if (!ni_trylock(dir_ni)) {
3300 re_dirty = true;
3301 } else {
3302 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3303 ni_unlock(dir_ni);
3304 memcpy(&fname->dup, dup, sizeof(fname->dup));
3305 mi->dirty = true;
3306 }
3307 }
3308 iput(dir);
3309 }
3310
3311 return re_dirty;
3312 }
3313
3314 /*
3315 * ni_write_inode - Write MFT base record and all subrecords to disk.
3316 */
ni_write_inode(struct inode * inode,int sync,const char * hint)3317 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3318 {
3319 int err = 0, err2;
3320 struct ntfs_inode *ni = ntfs_i(inode);
3321 struct super_block *sb = inode->i_sb;
3322 struct ntfs_sb_info *sbi = sb->s_fs_info;
3323 bool re_dirty = false;
3324 struct ATTR_STD_INFO *std;
3325 struct rb_node *node, *next;
3326 struct NTFS_DUP_INFO dup;
3327
3328 if (is_bad_inode(inode) || sb_rdonly(sb))
3329 return 0;
3330
3331 if (unlikely(ntfs3_forced_shutdown(sb)))
3332 return -EIO;
3333
3334 if (!ni_trylock(ni)) {
3335 /* 'ni' is under modification, skip for now. */
3336 mark_inode_dirty_sync(inode);
3337 return 0;
3338 }
3339
3340 if (!ni->mi.mrec)
3341 goto out;
3342
3343 if (is_rec_inuse(ni->mi.mrec) &&
3344 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3345 bool modified = false;
3346 struct timespec64 ctime = inode_get_ctime(inode);
3347
3348 /* Update times in standard attribute. */
3349 std = ni_std(ni);
3350 if (!std) {
3351 err = -EINVAL;
3352 goto out;
3353 }
3354
3355 /* Update the access times if they have changed. */
3356 dup.m_time = kernel2nt(&inode->i_mtime);
3357 if (std->m_time != dup.m_time) {
3358 std->m_time = dup.m_time;
3359 modified = true;
3360 }
3361
3362 dup.c_time = kernel2nt(&ctime);
3363 if (std->c_time != dup.c_time) {
3364 std->c_time = dup.c_time;
3365 modified = true;
3366 }
3367
3368 dup.a_time = kernel2nt(&inode->i_atime);
3369 if (std->a_time != dup.a_time) {
3370 std->a_time = dup.a_time;
3371 modified = true;
3372 }
3373
3374 dup.fa = ni->std_fa;
3375 if (std->fa != dup.fa) {
3376 std->fa = dup.fa;
3377 modified = true;
3378 }
3379
3380 /* std attribute is always in primary MFT record. */
3381 if (modified)
3382 ni->mi.dirty = true;
3383
3384 if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3385 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3386 /* Avoid __wait_on_freeing_inode(inode). */
3387 && (sb->s_flags & SB_ACTIVE)) {
3388 dup.cr_time = std->cr_time;
3389 /* Not critical if this function fail. */
3390 re_dirty = ni_update_parent(ni, &dup, sync);
3391
3392 if (re_dirty)
3393 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3394 else
3395 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3396 }
3397
3398 /* Update attribute list. */
3399 if (ni->attr_list.size && ni->attr_list.dirty) {
3400 if (inode->i_ino != MFT_REC_MFT || sync) {
3401 err = ni_try_remove_attr_list(ni);
3402 if (err)
3403 goto out;
3404 }
3405
3406 err = al_update(ni, sync);
3407 if (err)
3408 goto out;
3409 }
3410 }
3411
3412 for (node = rb_first(&ni->mi_tree); node; node = next) {
3413 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3414 bool is_empty;
3415
3416 next = rb_next(node);
3417
3418 if (!mi->dirty)
3419 continue;
3420
3421 is_empty = !mi_enum_attr(mi, NULL);
3422
3423 if (is_empty)
3424 clear_rec_inuse(mi->mrec);
3425
3426 err2 = mi_write(mi, sync);
3427 if (!err && err2)
3428 err = err2;
3429
3430 if (is_empty) {
3431 ntfs_mark_rec_free(sbi, mi->rno, false);
3432 rb_erase(node, &ni->mi_tree);
3433 mi_put(mi);
3434 }
3435 }
3436
3437 if (ni->mi.dirty) {
3438 err2 = mi_write(&ni->mi, sync);
3439 if (!err && err2)
3440 err = err2;
3441 }
3442 out:
3443 ni_unlock(ni);
3444
3445 if (err) {
3446 ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3447 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3448 return err;
3449 }
3450
3451 if (re_dirty)
3452 mark_inode_dirty_sync(inode);
3453
3454 return 0;
3455 }
3456