1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * journal.c
4 *
5 * Defines functions of journalling api
6 *
7 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
8 */
9
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
19
20 #include <cluster/masklog.h>
21
22 #include "ocfs2.h"
23
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
40
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
43
44 DEFINE_SPINLOCK(trans_inc_lock);
45
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50 int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55 int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57 int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59 int slot,
60 enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63 int slot_num,
64 struct ocfs2_dinode *la_dinode,
65 struct ocfs2_dinode *tl_dinode,
66 struct ocfs2_quota_recovery *qrec,
67 enum ocfs2_orphan_reco_type orphan_reco_type);
68
ocfs2_wait_on_mount(struct ocfs2_super * osb)69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71 return __ocfs2_wait_on_mount(osb, 0);
72 }
73
ocfs2_wait_on_quotas(struct ocfs2_super * osb)74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76 return __ocfs2_wait_on_mount(osb, 1);
77 }
78
79 /*
80 * This replay_map is to track online/offline slots, so we could recover
81 * offline slots during recovery and mount
82 */
83
84 enum ocfs2_replay_state {
85 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
86 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
87 REPLAY_DONE /* Replay was already queued */
88 };
89
90 struct ocfs2_replay_map {
91 unsigned int rm_slots;
92 enum ocfs2_replay_state rm_state;
93 unsigned char rm_replay_slots[];
94 };
95
ocfs2_replay_map_set_state(struct ocfs2_super * osb,int state)96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97 {
98 if (!osb->replay_map)
99 return;
100
101 /* If we've already queued the replay, we don't have any more to do */
102 if (osb->replay_map->rm_state == REPLAY_DONE)
103 return;
104
105 osb->replay_map->rm_state = state;
106 }
107
ocfs2_compute_replay_slots(struct ocfs2_super * osb)108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109 {
110 struct ocfs2_replay_map *replay_map;
111 int i, node_num;
112
113 /* If replay map is already set, we don't do it again */
114 if (osb->replay_map)
115 return 0;
116
117 replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118 osb->max_slots),
119 GFP_KERNEL);
120 if (!replay_map) {
121 mlog_errno(-ENOMEM);
122 return -ENOMEM;
123 }
124
125 spin_lock(&osb->osb_lock);
126
127 replay_map->rm_slots = osb->max_slots;
128 replay_map->rm_state = REPLAY_UNNEEDED;
129
130 /* set rm_replay_slots for offline slot(s) */
131 for (i = 0; i < replay_map->rm_slots; i++) {
132 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133 replay_map->rm_replay_slots[i] = 1;
134 }
135
136 osb->replay_map = replay_map;
137 spin_unlock(&osb->osb_lock);
138 return 0;
139 }
140
ocfs2_queue_replay_slots(struct ocfs2_super * osb,enum ocfs2_orphan_reco_type orphan_reco_type)141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142 enum ocfs2_orphan_reco_type orphan_reco_type)
143 {
144 struct ocfs2_replay_map *replay_map = osb->replay_map;
145 int i;
146
147 if (!replay_map)
148 return;
149
150 if (replay_map->rm_state != REPLAY_NEEDED)
151 return;
152
153 for (i = 0; i < replay_map->rm_slots; i++)
154 if (replay_map->rm_replay_slots[i])
155 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156 NULL, NULL,
157 orphan_reco_type);
158 replay_map->rm_state = REPLAY_DONE;
159 }
160
ocfs2_free_replay_slots(struct ocfs2_super * osb)161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162 {
163 struct ocfs2_replay_map *replay_map = osb->replay_map;
164
165 if (!osb->replay_map)
166 return;
167
168 kfree(replay_map);
169 osb->replay_map = NULL;
170 }
171
ocfs2_recovery_init(struct ocfs2_super * osb)172 int ocfs2_recovery_init(struct ocfs2_super *osb)
173 {
174 struct ocfs2_recovery_map *rm;
175
176 mutex_init(&osb->recovery_lock);
177 osb->disable_recovery = 0;
178 osb->recovery_thread_task = NULL;
179 init_waitqueue_head(&osb->recovery_event);
180
181 rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182 GFP_KERNEL);
183 if (!rm) {
184 mlog_errno(-ENOMEM);
185 return -ENOMEM;
186 }
187
188 osb->recovery_map = rm;
189
190 return 0;
191 }
192
193 /* we can't grab the goofy sem lock from inside wait_event, so we use
194 * memory barriers to make sure that we'll see the null task before
195 * being woken up */
ocfs2_recovery_thread_running(struct ocfs2_super * osb)196 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
197 {
198 mb();
199 return osb->recovery_thread_task != NULL;
200 }
201
ocfs2_recovery_exit(struct ocfs2_super * osb)202 void ocfs2_recovery_exit(struct ocfs2_super *osb)
203 {
204 struct ocfs2_recovery_map *rm;
205
206 /* disable any new recovery threads and wait for any currently
207 * running ones to exit. Do this before setting the vol_state. */
208 mutex_lock(&osb->recovery_lock);
209 osb->disable_recovery = 1;
210 mutex_unlock(&osb->recovery_lock);
211 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
212
213 /* At this point, we know that no more recovery threads can be
214 * launched, so wait for any recovery completion work to
215 * complete. */
216 if (osb->ocfs2_wq)
217 flush_workqueue(osb->ocfs2_wq);
218
219 /*
220 * Now that recovery is shut down, and the osb is about to be
221 * freed, the osb_lock is not taken here.
222 */
223 rm = osb->recovery_map;
224 /* XXX: Should we bug if there are dirty entries? */
225
226 kfree(rm);
227 }
228
__ocfs2_recovery_map_test(struct ocfs2_super * osb,unsigned int node_num)229 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
230 unsigned int node_num)
231 {
232 int i;
233 struct ocfs2_recovery_map *rm = osb->recovery_map;
234
235 assert_spin_locked(&osb->osb_lock);
236
237 for (i = 0; i < rm->rm_used; i++) {
238 if (rm->rm_entries[i] == node_num)
239 return 1;
240 }
241
242 return 0;
243 }
244
245 /* Behaves like test-and-set. Returns the previous value */
ocfs2_recovery_map_set(struct ocfs2_super * osb,unsigned int node_num)246 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
247 unsigned int node_num)
248 {
249 struct ocfs2_recovery_map *rm = osb->recovery_map;
250
251 spin_lock(&osb->osb_lock);
252 if (__ocfs2_recovery_map_test(osb, node_num)) {
253 spin_unlock(&osb->osb_lock);
254 return 1;
255 }
256
257 /* XXX: Can this be exploited? Not from o2dlm... */
258 BUG_ON(rm->rm_used >= osb->max_slots);
259
260 rm->rm_entries[rm->rm_used] = node_num;
261 rm->rm_used++;
262 spin_unlock(&osb->osb_lock);
263
264 return 0;
265 }
266
ocfs2_recovery_map_clear(struct ocfs2_super * osb,unsigned int node_num)267 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
268 unsigned int node_num)
269 {
270 int i;
271 struct ocfs2_recovery_map *rm = osb->recovery_map;
272
273 spin_lock(&osb->osb_lock);
274
275 for (i = 0; i < rm->rm_used; i++) {
276 if (rm->rm_entries[i] == node_num)
277 break;
278 }
279
280 if (i < rm->rm_used) {
281 /* XXX: be careful with the pointer math */
282 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
283 (rm->rm_used - i - 1) * sizeof(unsigned int));
284 rm->rm_used--;
285 }
286
287 spin_unlock(&osb->osb_lock);
288 }
289
ocfs2_commit_cache(struct ocfs2_super * osb)290 static int ocfs2_commit_cache(struct ocfs2_super *osb)
291 {
292 int status = 0;
293 unsigned int flushed;
294 struct ocfs2_journal *journal = NULL;
295
296 journal = osb->journal;
297
298 /* Flush all pending commits and checkpoint the journal. */
299 down_write(&journal->j_trans_barrier);
300
301 flushed = atomic_read(&journal->j_num_trans);
302 trace_ocfs2_commit_cache_begin(flushed);
303 if (flushed == 0) {
304 up_write(&journal->j_trans_barrier);
305 goto finally;
306 }
307
308 jbd2_journal_lock_updates(journal->j_journal);
309 status = jbd2_journal_flush(journal->j_journal, 0);
310 jbd2_journal_unlock_updates(journal->j_journal);
311 if (status < 0) {
312 up_write(&journal->j_trans_barrier);
313 mlog_errno(status);
314 goto finally;
315 }
316
317 ocfs2_inc_trans_id(journal);
318
319 flushed = atomic_read(&journal->j_num_trans);
320 atomic_set(&journal->j_num_trans, 0);
321 up_write(&journal->j_trans_barrier);
322
323 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
324
325 ocfs2_wake_downconvert_thread(osb);
326 wake_up(&journal->j_checkpointed);
327 finally:
328 return status;
329 }
330
ocfs2_start_trans(struct ocfs2_super * osb,int max_buffs)331 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
332 {
333 journal_t *journal = osb->journal->j_journal;
334 handle_t *handle;
335
336 BUG_ON(!osb || !osb->journal->j_journal);
337
338 if (ocfs2_is_hard_readonly(osb))
339 return ERR_PTR(-EROFS);
340
341 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
342 BUG_ON(max_buffs <= 0);
343
344 /* Nested transaction? Just return the handle... */
345 if (journal_current_handle())
346 return jbd2_journal_start(journal, max_buffs);
347
348 sb_start_intwrite(osb->sb);
349
350 down_read(&osb->journal->j_trans_barrier);
351
352 handle = jbd2_journal_start(journal, max_buffs);
353 if (IS_ERR(handle)) {
354 up_read(&osb->journal->j_trans_barrier);
355 sb_end_intwrite(osb->sb);
356
357 mlog_errno(PTR_ERR(handle));
358
359 if (is_journal_aborted(journal)) {
360 ocfs2_abort(osb->sb, "Detected aborted journal\n");
361 handle = ERR_PTR(-EROFS);
362 }
363 } else {
364 if (!ocfs2_mount_local(osb))
365 atomic_inc(&(osb->journal->j_num_trans));
366 }
367
368 return handle;
369 }
370
ocfs2_commit_trans(struct ocfs2_super * osb,handle_t * handle)371 int ocfs2_commit_trans(struct ocfs2_super *osb,
372 handle_t *handle)
373 {
374 int ret, nested;
375 struct ocfs2_journal *journal = osb->journal;
376
377 BUG_ON(!handle);
378
379 nested = handle->h_ref > 1;
380 ret = jbd2_journal_stop(handle);
381 if (ret < 0)
382 mlog_errno(ret);
383
384 if (!nested) {
385 up_read(&journal->j_trans_barrier);
386 sb_end_intwrite(osb->sb);
387 }
388
389 return ret;
390 }
391
392 /*
393 * 'nblocks' is what you want to add to the current transaction.
394 *
395 * This might call jbd2_journal_restart() which will commit dirty buffers
396 * and then restart the transaction. Before calling
397 * ocfs2_extend_trans(), any changed blocks should have been
398 * dirtied. After calling it, all blocks which need to be changed must
399 * go through another set of journal_access/journal_dirty calls.
400 *
401 * WARNING: This will not release any semaphores or disk locks taken
402 * during the transaction, so make sure they were taken *before*
403 * start_trans or we'll have ordering deadlocks.
404 *
405 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
406 * good because transaction ids haven't yet been recorded on the
407 * cluster locks associated with this handle.
408 */
ocfs2_extend_trans(handle_t * handle,int nblocks)409 int ocfs2_extend_trans(handle_t *handle, int nblocks)
410 {
411 int status, old_nblocks;
412
413 BUG_ON(!handle);
414 BUG_ON(nblocks < 0);
415
416 if (!nblocks)
417 return 0;
418
419 old_nblocks = jbd2_handle_buffer_credits(handle);
420
421 trace_ocfs2_extend_trans(old_nblocks, nblocks);
422
423 #ifdef CONFIG_OCFS2_DEBUG_FS
424 status = 1;
425 #else
426 status = jbd2_journal_extend(handle, nblocks, 0);
427 if (status < 0) {
428 mlog_errno(status);
429 goto bail;
430 }
431 #endif
432
433 if (status > 0) {
434 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
435 status = jbd2_journal_restart(handle,
436 old_nblocks + nblocks);
437 if (status < 0) {
438 mlog_errno(status);
439 goto bail;
440 }
441 }
442
443 status = 0;
444 bail:
445 return status;
446 }
447
448 /*
449 * Make sure handle has at least 'nblocks' credits available. If it does not
450 * have that many credits available, we will try to extend the handle to have
451 * enough credits. If that fails, we will restart transaction to have enough
452 * credits. Similar notes regarding data consistency and locking implications
453 * as for ocfs2_extend_trans() apply here.
454 */
ocfs2_assure_trans_credits(handle_t * handle,int nblocks)455 int ocfs2_assure_trans_credits(handle_t *handle, int nblocks)
456 {
457 int old_nblks = jbd2_handle_buffer_credits(handle);
458
459 trace_ocfs2_assure_trans_credits(old_nblks);
460 if (old_nblks >= nblocks)
461 return 0;
462 return ocfs2_extend_trans(handle, nblocks - old_nblks);
463 }
464
465 /*
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
470 */
ocfs2_allocate_extend_trans(handle_t * handle,int thresh)471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473 int status, old_nblks;
474
475 BUG_ON(!handle);
476
477 old_nblks = jbd2_handle_buffer_credits(handle);
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479
480 if (old_nblks < thresh)
481 return 0;
482
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
487 }
488
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
493 }
494
495 bail:
496 return status;
497 }
498
to_ocfs2_trigger(struct jbd2_buffer_trigger_type * triggers)499 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
500 {
501 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
502 }
503
ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)504 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
505 struct buffer_head *bh,
506 void *data, size_t size)
507 {
508 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
509
510 /*
511 * We aren't guaranteed to have the superblock here, so we
512 * must unconditionally compute the ecc data.
513 * __ocfs2_journal_access() will only set the triggers if
514 * metaecc is enabled.
515 */
516 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
517 }
518
519 /*
520 * Quota blocks have their own trigger because the struct ocfs2_block_check
521 * offset depends on the blocksize.
522 */
ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)523 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
524 struct buffer_head *bh,
525 void *data, size_t size)
526 {
527 struct ocfs2_disk_dqtrailer *dqt =
528 ocfs2_block_dqtrailer(size, data);
529
530 /*
531 * We aren't guaranteed to have the superblock here, so we
532 * must unconditionally compute the ecc data.
533 * __ocfs2_journal_access() will only set the triggers if
534 * metaecc is enabled.
535 */
536 ocfs2_block_check_compute(data, size, &dqt->dq_check);
537 }
538
539 /*
540 * Directory blocks also have their own trigger because the
541 * struct ocfs2_block_check offset depends on the blocksize.
542 */
ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh,void * data,size_t size)543 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
544 struct buffer_head *bh,
545 void *data, size_t size)
546 {
547 struct ocfs2_dir_block_trailer *trailer =
548 ocfs2_dir_trailer_from_size(size, data);
549
550 /*
551 * We aren't guaranteed to have the superblock here, so we
552 * must unconditionally compute the ecc data.
553 * __ocfs2_journal_access() will only set the triggers if
554 * metaecc is enabled.
555 */
556 ocfs2_block_check_compute(data, size, &trailer->db_check);
557 }
558
ocfs2_abort_trigger(struct jbd2_buffer_trigger_type * triggers,struct buffer_head * bh)559 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
560 struct buffer_head *bh)
561 {
562 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
563
564 mlog(ML_ERROR,
565 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
566 "bh->b_blocknr = %llu\n",
567 (unsigned long)bh,
568 (unsigned long long)bh->b_blocknr);
569
570 ocfs2_error(ot->sb,
571 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
572 }
573
ocfs2_setup_csum_triggers(struct super_block * sb,enum ocfs2_journal_trigger_type type,struct ocfs2_triggers * ot)574 static void ocfs2_setup_csum_triggers(struct super_block *sb,
575 enum ocfs2_journal_trigger_type type,
576 struct ocfs2_triggers *ot)
577 {
578 BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
579
580 switch (type) {
581 case OCFS2_JTR_DI:
582 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
583 ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
584 break;
585 case OCFS2_JTR_EB:
586 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
587 ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
588 break;
589 case OCFS2_JTR_RB:
590 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
591 ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
592 break;
593 case OCFS2_JTR_GD:
594 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
595 ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
596 break;
597 case OCFS2_JTR_DB:
598 ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
599 break;
600 case OCFS2_JTR_XB:
601 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
602 ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
603 break;
604 case OCFS2_JTR_DQ:
605 ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
606 break;
607 case OCFS2_JTR_DR:
608 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
609 ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
610 break;
611 case OCFS2_JTR_DL:
612 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
613 ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
614 break;
615 case OCFS2_JTR_NONE:
616 /* To make compiler happy... */
617 return;
618 }
619
620 ot->ot_triggers.t_abort = ocfs2_abort_trigger;
621 ot->sb = sb;
622 }
623
ocfs2_initialize_journal_triggers(struct super_block * sb,struct ocfs2_triggers triggers[])624 void ocfs2_initialize_journal_triggers(struct super_block *sb,
625 struct ocfs2_triggers triggers[])
626 {
627 enum ocfs2_journal_trigger_type type;
628
629 for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
630 ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
631 }
632
__ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,struct ocfs2_triggers * triggers,int type)633 static int __ocfs2_journal_access(handle_t *handle,
634 struct ocfs2_caching_info *ci,
635 struct buffer_head *bh,
636 struct ocfs2_triggers *triggers,
637 int type)
638 {
639 int status;
640 struct ocfs2_super *osb =
641 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642
643 BUG_ON(!ci || !ci->ci_ops);
644 BUG_ON(!handle);
645 BUG_ON(!bh);
646
647 trace_ocfs2_journal_access(
648 (unsigned long long)ocfs2_metadata_cache_owner(ci),
649 (unsigned long long)bh->b_blocknr, type, bh->b_size);
650
651 /* we can safely remove this assertion after testing. */
652 if (!buffer_uptodate(bh)) {
653 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655 (unsigned long long)bh->b_blocknr, bh->b_state);
656
657 lock_buffer(bh);
658 /*
659 * A previous transaction with a couple of buffer heads fail
660 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661 * For current transaction, the bh is just among those error
662 * bhs which previous transaction handle. We can't just clear
663 * its BH_Write_EIO and reuse directly, since other bhs are
664 * not written to disk yet and that will cause metadata
665 * inconsistency. So we should set fs read-only to avoid
666 * further damage.
667 */
668 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669 unlock_buffer(bh);
670 return ocfs2_error(osb->sb, "A previous attempt to "
671 "write this buffer head failed\n");
672 }
673 unlock_buffer(bh);
674 }
675
676 /* Set the current transaction information on the ci so
677 * that the locking code knows whether it can drop it's locks
678 * on this ci or not. We're protected from the commit
679 * thread updating the current transaction id until
680 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 * j_trans_barrier for us. */
682 ocfs2_set_ci_lock_trans(osb->journal, ci);
683
684 ocfs2_metadata_cache_io_lock(ci);
685 switch (type) {
686 case OCFS2_JOURNAL_ACCESS_CREATE:
687 case OCFS2_JOURNAL_ACCESS_WRITE:
688 status = jbd2_journal_get_write_access(handle, bh);
689 break;
690
691 case OCFS2_JOURNAL_ACCESS_UNDO:
692 status = jbd2_journal_get_undo_access(handle, bh);
693 break;
694
695 default:
696 status = -EINVAL;
697 mlog(ML_ERROR, "Unknown access type!\n");
698 }
699 if (!status && ocfs2_meta_ecc(osb) && triggers)
700 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701 ocfs2_metadata_cache_io_unlock(ci);
702
703 if (status < 0)
704 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 status, type);
706
707 return status;
708 }
709
ocfs2_journal_access_di(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 struct buffer_head *bh, int type)
712 {
713 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
714
715 return __ocfs2_journal_access(handle, ci, bh,
716 &osb->s_journal_triggers[OCFS2_JTR_DI],
717 type);
718 }
719
ocfs2_journal_access_eb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)720 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
721 struct buffer_head *bh, int type)
722 {
723 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
724
725 return __ocfs2_journal_access(handle, ci, bh,
726 &osb->s_journal_triggers[OCFS2_JTR_EB],
727 type);
728 }
729
ocfs2_journal_access_rb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)730 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
731 struct buffer_head *bh, int type)
732 {
733 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
734
735 return __ocfs2_journal_access(handle, ci, bh,
736 &osb->s_journal_triggers[OCFS2_JTR_RB],
737 type);
738 }
739
ocfs2_journal_access_gd(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)740 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
741 struct buffer_head *bh, int type)
742 {
743 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
744
745 return __ocfs2_journal_access(handle, ci, bh,
746 &osb->s_journal_triggers[OCFS2_JTR_GD],
747 type);
748 }
749
ocfs2_journal_access_db(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751 struct buffer_head *bh, int type)
752 {
753 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
754
755 return __ocfs2_journal_access(handle, ci, bh,
756 &osb->s_journal_triggers[OCFS2_JTR_DB],
757 type);
758 }
759
ocfs2_journal_access_xb(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)760 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
761 struct buffer_head *bh, int type)
762 {
763 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
764
765 return __ocfs2_journal_access(handle, ci, bh,
766 &osb->s_journal_triggers[OCFS2_JTR_XB],
767 type);
768 }
769
ocfs2_journal_access_dq(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)770 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
771 struct buffer_head *bh, int type)
772 {
773 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
774
775 return __ocfs2_journal_access(handle, ci, bh,
776 &osb->s_journal_triggers[OCFS2_JTR_DQ],
777 type);
778 }
779
ocfs2_journal_access_dr(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)780 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
781 struct buffer_head *bh, int type)
782 {
783 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
784
785 return __ocfs2_journal_access(handle, ci, bh,
786 &osb->s_journal_triggers[OCFS2_JTR_DR],
787 type);
788 }
789
ocfs2_journal_access_dl(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)790 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
791 struct buffer_head *bh, int type)
792 {
793 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
794
795 return __ocfs2_journal_access(handle, ci, bh,
796 &osb->s_journal_triggers[OCFS2_JTR_DL],
797 type);
798 }
799
ocfs2_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct buffer_head * bh,int type)800 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
801 struct buffer_head *bh, int type)
802 {
803 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
804 }
805
ocfs2_journal_dirty(handle_t * handle,struct buffer_head * bh)806 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
807 {
808 int status;
809
810 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
811
812 status = jbd2_journal_dirty_metadata(handle, bh);
813 if (status) {
814 mlog_errno(status);
815 if (!is_handle_aborted(handle)) {
816 journal_t *journal = handle->h_transaction->t_journal;
817
818 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
819 "handle type %u started at line %u, credits %u/%u "
820 "errcode %d. Aborting transaction and journal.\n",
821 handle->h_type, handle->h_line_no,
822 handle->h_requested_credits,
823 jbd2_handle_buffer_credits(handle), status);
824 handle->h_err = status;
825 jbd2_journal_abort_handle(handle);
826 jbd2_journal_abort(journal, status);
827 }
828 }
829 }
830
831 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
832
ocfs2_set_journal_params(struct ocfs2_super * osb)833 void ocfs2_set_journal_params(struct ocfs2_super *osb)
834 {
835 journal_t *journal = osb->journal->j_journal;
836 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
837
838 if (osb->osb_commit_interval)
839 commit_interval = osb->osb_commit_interval;
840
841 write_lock(&journal->j_state_lock);
842 journal->j_commit_interval = commit_interval;
843 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
844 journal->j_flags |= JBD2_BARRIER;
845 else
846 journal->j_flags &= ~JBD2_BARRIER;
847 write_unlock(&journal->j_state_lock);
848 }
849
850 /*
851 * alloc & initialize skeleton for journal structure.
852 * ocfs2_journal_init() will make fs have journal ability.
853 */
ocfs2_journal_alloc(struct ocfs2_super * osb)854 int ocfs2_journal_alloc(struct ocfs2_super *osb)
855 {
856 int status = 0;
857 struct ocfs2_journal *journal;
858
859 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
860 if (!journal) {
861 mlog(ML_ERROR, "unable to alloc journal\n");
862 status = -ENOMEM;
863 goto bail;
864 }
865 osb->journal = journal;
866 journal->j_osb = osb;
867
868 atomic_set(&journal->j_num_trans, 0);
869 init_rwsem(&journal->j_trans_barrier);
870 init_waitqueue_head(&journal->j_checkpointed);
871 spin_lock_init(&journal->j_lock);
872 journal->j_trans_id = 1UL;
873 INIT_LIST_HEAD(&journal->j_la_cleanups);
874 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
875 journal->j_state = OCFS2_JOURNAL_FREE;
876
877 bail:
878 return status;
879 }
880
ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)881 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
882 {
883 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
884 struct writeback_control wbc = {
885 .sync_mode = WB_SYNC_ALL,
886 .nr_to_write = mapping->nrpages * 2,
887 .range_start = jinode->i_dirty_start,
888 .range_end = jinode->i_dirty_end,
889 };
890
891 return filemap_fdatawrite_wbc(mapping, &wbc);
892 }
893
ocfs2_journal_init(struct ocfs2_super * osb,int * dirty)894 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
895 {
896 int status = -1;
897 struct inode *inode = NULL; /* the journal inode */
898 journal_t *j_journal = NULL;
899 struct ocfs2_journal *journal = osb->journal;
900 struct ocfs2_dinode *di = NULL;
901 struct buffer_head *bh = NULL;
902 int inode_lock = 0;
903
904 BUG_ON(!journal);
905 /* already have the inode for our journal */
906 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
907 osb->slot_num);
908 if (inode == NULL) {
909 status = -EACCES;
910 mlog_errno(status);
911 goto done;
912 }
913 if (is_bad_inode(inode)) {
914 mlog(ML_ERROR, "access error (bad inode)\n");
915 iput(inode);
916 inode = NULL;
917 status = -EACCES;
918 goto done;
919 }
920
921 SET_INODE_JOURNAL(inode);
922 OCFS2_I(inode)->ip_open_count++;
923
924 /* Skip recovery waits here - journal inode metadata never
925 * changes in a live cluster so it can be considered an
926 * exception to the rule. */
927 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
928 if (status < 0) {
929 if (status != -ERESTARTSYS)
930 mlog(ML_ERROR, "Could not get lock on journal!\n");
931 goto done;
932 }
933
934 inode_lock = 1;
935 di = (struct ocfs2_dinode *)bh->b_data;
936
937 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
938 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
939 i_size_read(inode));
940 status = -EINVAL;
941 goto done;
942 }
943
944 trace_ocfs2_journal_init(i_size_read(inode),
945 (unsigned long long)inode->i_blocks,
946 OCFS2_I(inode)->ip_clusters);
947
948 /* call the kernels journal init function now */
949 j_journal = jbd2_journal_init_inode(inode);
950 if (IS_ERR(j_journal)) {
951 mlog(ML_ERROR, "Linux journal layer error\n");
952 status = PTR_ERR(j_journal);
953 goto done;
954 }
955
956 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
957
958 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
959 OCFS2_JOURNAL_DIRTY_FL);
960
961 journal->j_journal = j_journal;
962 journal->j_journal->j_submit_inode_data_buffers =
963 ocfs2_journal_submit_inode_data_buffers;
964 journal->j_journal->j_finish_inode_data_buffers =
965 jbd2_journal_finish_inode_data_buffers;
966 journal->j_inode = inode;
967 journal->j_bh = bh;
968
969 ocfs2_set_journal_params(osb);
970
971 journal->j_state = OCFS2_JOURNAL_LOADED;
972
973 status = 0;
974 done:
975 if (status < 0) {
976 if (inode_lock)
977 ocfs2_inode_unlock(inode, 1);
978 brelse(bh);
979 if (inode) {
980 OCFS2_I(inode)->ip_open_count--;
981 iput(inode);
982 }
983 }
984
985 return status;
986 }
987
ocfs2_bump_recovery_generation(struct ocfs2_dinode * di)988 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
989 {
990 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
991 }
992
ocfs2_get_recovery_generation(struct ocfs2_dinode * di)993 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
994 {
995 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
996 }
997
ocfs2_journal_toggle_dirty(struct ocfs2_super * osb,int dirty,int replayed)998 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
999 int dirty, int replayed)
1000 {
1001 int status;
1002 unsigned int flags;
1003 struct ocfs2_journal *journal = osb->journal;
1004 struct buffer_head *bh = journal->j_bh;
1005 struct ocfs2_dinode *fe;
1006
1007 fe = (struct ocfs2_dinode *)bh->b_data;
1008
1009 /* The journal bh on the osb always comes from ocfs2_journal_init()
1010 * and was validated there inside ocfs2_inode_lock_full(). It's a
1011 * code bug if we mess it up. */
1012 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
1013
1014 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1015 if (dirty)
1016 flags |= OCFS2_JOURNAL_DIRTY_FL;
1017 else
1018 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1019 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1020
1021 if (replayed)
1022 ocfs2_bump_recovery_generation(fe);
1023
1024 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1025 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1026 if (status < 0)
1027 mlog_errno(status);
1028
1029 return status;
1030 }
1031
1032 /*
1033 * If the journal has been kmalloc'd it needs to be freed after this
1034 * call.
1035 */
ocfs2_journal_shutdown(struct ocfs2_super * osb)1036 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1037 {
1038 struct ocfs2_journal *journal = NULL;
1039 int status = 0;
1040 struct inode *inode = NULL;
1041 int num_running_trans = 0;
1042
1043 BUG_ON(!osb);
1044
1045 journal = osb->journal;
1046 if (!journal)
1047 goto done;
1048
1049 inode = journal->j_inode;
1050
1051 if (journal->j_state != OCFS2_JOURNAL_LOADED)
1052 goto done;
1053
1054 /* need to inc inode use count - jbd2_journal_destroy will iput. */
1055 if (!igrab(inode))
1056 BUG();
1057
1058 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
1059 trace_ocfs2_journal_shutdown(num_running_trans);
1060
1061 /* Do a commit_cache here. It will flush our journal, *and*
1062 * release any locks that are still held.
1063 * set the SHUTDOWN flag and release the trans lock.
1064 * the commit thread will take the trans lock for us below. */
1065 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1066
1067 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1068 * drop the trans_lock (which we want to hold until we
1069 * completely destroy the journal. */
1070 if (osb->commit_task) {
1071 /* Wait for the commit thread */
1072 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1073 kthread_stop(osb->commit_task);
1074 osb->commit_task = NULL;
1075 }
1076
1077 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1078
1079 if (ocfs2_mount_local(osb)) {
1080 jbd2_journal_lock_updates(journal->j_journal);
1081 status = jbd2_journal_flush(journal->j_journal, 0);
1082 jbd2_journal_unlock_updates(journal->j_journal);
1083 if (status < 0)
1084 mlog_errno(status);
1085 }
1086
1087 /* Shutdown the kernel journal system */
1088 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1089 /*
1090 * Do not toggle if flush was unsuccessful otherwise
1091 * will leave dirty metadata in a "clean" journal
1092 */
1093 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1094 if (status < 0)
1095 mlog_errno(status);
1096 }
1097 journal->j_journal = NULL;
1098
1099 OCFS2_I(inode)->ip_open_count--;
1100
1101 /* unlock our journal */
1102 ocfs2_inode_unlock(inode, 1);
1103
1104 brelse(journal->j_bh);
1105 journal->j_bh = NULL;
1106
1107 journal->j_state = OCFS2_JOURNAL_FREE;
1108
1109 done:
1110 iput(inode);
1111 kfree(journal);
1112 osb->journal = NULL;
1113 }
1114
ocfs2_clear_journal_error(struct super_block * sb,journal_t * journal,int slot)1115 static void ocfs2_clear_journal_error(struct super_block *sb,
1116 journal_t *journal,
1117 int slot)
1118 {
1119 int olderr;
1120
1121 olderr = jbd2_journal_errno(journal);
1122 if (olderr) {
1123 mlog(ML_ERROR, "File system error %d recorded in "
1124 "journal %u.\n", olderr, slot);
1125 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1126 sb->s_id);
1127
1128 jbd2_journal_ack_err(journal);
1129 jbd2_journal_clear_err(journal);
1130 }
1131 }
1132
ocfs2_journal_load(struct ocfs2_journal * journal,int local,int replayed)1133 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1134 {
1135 int status = 0;
1136 struct ocfs2_super *osb;
1137
1138 BUG_ON(!journal);
1139
1140 osb = journal->j_osb;
1141
1142 status = jbd2_journal_load(journal->j_journal);
1143 if (status < 0) {
1144 mlog(ML_ERROR, "Failed to load journal!\n");
1145 goto done;
1146 }
1147
1148 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1149
1150 if (replayed) {
1151 jbd2_journal_lock_updates(journal->j_journal);
1152 status = jbd2_journal_flush(journal->j_journal, 0);
1153 jbd2_journal_unlock_updates(journal->j_journal);
1154 if (status < 0)
1155 mlog_errno(status);
1156 }
1157
1158 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1159 if (status < 0) {
1160 mlog_errno(status);
1161 goto done;
1162 }
1163
1164 /* Launch the commit thread */
1165 if (!local) {
1166 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1167 "ocfs2cmt-%s", osb->uuid_str);
1168 if (IS_ERR(osb->commit_task)) {
1169 status = PTR_ERR(osb->commit_task);
1170 osb->commit_task = NULL;
1171 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1172 "error=%d", status);
1173 goto done;
1174 }
1175 } else
1176 osb->commit_task = NULL;
1177
1178 done:
1179 return status;
1180 }
1181
1182
1183 /* 'full' flag tells us whether we clear out all blocks or if we just
1184 * mark the journal clean */
ocfs2_journal_wipe(struct ocfs2_journal * journal,int full)1185 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1186 {
1187 int status;
1188
1189 BUG_ON(!journal);
1190
1191 status = jbd2_journal_wipe(journal->j_journal, full);
1192 if (status < 0) {
1193 mlog_errno(status);
1194 goto bail;
1195 }
1196
1197 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1198 if (status < 0)
1199 mlog_errno(status);
1200
1201 bail:
1202 return status;
1203 }
1204
ocfs2_recovery_completed(struct ocfs2_super * osb)1205 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1206 {
1207 int empty;
1208 struct ocfs2_recovery_map *rm = osb->recovery_map;
1209
1210 spin_lock(&osb->osb_lock);
1211 empty = (rm->rm_used == 0);
1212 spin_unlock(&osb->osb_lock);
1213
1214 return empty;
1215 }
1216
ocfs2_wait_for_recovery(struct ocfs2_super * osb)1217 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1218 {
1219 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1220 }
1221
1222 /*
1223 * JBD Might read a cached version of another nodes journal file. We
1224 * don't want this as this file changes often and we get no
1225 * notification on those changes. The only way to be sure that we've
1226 * got the most up to date version of those blocks then is to force
1227 * read them off disk. Just searching through the buffer cache won't
1228 * work as there may be pages backing this file which are still marked
1229 * up to date. We know things can't change on this file underneath us
1230 * as we have the lock by now :)
1231 */
ocfs2_force_read_journal(struct inode * inode)1232 static int ocfs2_force_read_journal(struct inode *inode)
1233 {
1234 int status = 0;
1235 int i;
1236 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1237 struct buffer_head *bh = NULL;
1238 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1239
1240 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1241 v_blkno = 0;
1242 while (v_blkno < num_blocks) {
1243 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1244 &p_blkno, &p_blocks, NULL);
1245 if (status < 0) {
1246 mlog_errno(status);
1247 goto bail;
1248 }
1249
1250 for (i = 0; i < p_blocks; i++, p_blkno++) {
1251 bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1252 osb->sb->s_blocksize);
1253 /* block not cached. */
1254 if (!bh)
1255 continue;
1256
1257 brelse(bh);
1258 bh = NULL;
1259 /* We are reading journal data which should not
1260 * be put in the uptodate cache.
1261 */
1262 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1263 if (status < 0) {
1264 mlog_errno(status);
1265 goto bail;
1266 }
1267
1268 brelse(bh);
1269 bh = NULL;
1270 }
1271
1272 v_blkno += p_blocks;
1273 }
1274
1275 bail:
1276 return status;
1277 }
1278
1279 struct ocfs2_la_recovery_item {
1280 struct list_head lri_list;
1281 int lri_slot;
1282 struct ocfs2_dinode *lri_la_dinode;
1283 struct ocfs2_dinode *lri_tl_dinode;
1284 struct ocfs2_quota_recovery *lri_qrec;
1285 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1286 };
1287
1288 /* Does the second half of the recovery process. By this point, the
1289 * node is marked clean and can actually be considered recovered,
1290 * hence it's no longer in the recovery map, but there's still some
1291 * cleanup we can do which shouldn't happen within the recovery thread
1292 * as locking in that context becomes very difficult if we are to take
1293 * recovering nodes into account.
1294 *
1295 * NOTE: This function can and will sleep on recovery of other nodes
1296 * during cluster locking, just like any other ocfs2 process.
1297 */
ocfs2_complete_recovery(struct work_struct * work)1298 void ocfs2_complete_recovery(struct work_struct *work)
1299 {
1300 int ret = 0;
1301 struct ocfs2_journal *journal =
1302 container_of(work, struct ocfs2_journal, j_recovery_work);
1303 struct ocfs2_super *osb = journal->j_osb;
1304 struct ocfs2_dinode *la_dinode, *tl_dinode;
1305 struct ocfs2_la_recovery_item *item, *n;
1306 struct ocfs2_quota_recovery *qrec;
1307 enum ocfs2_orphan_reco_type orphan_reco_type;
1308 LIST_HEAD(tmp_la_list);
1309
1310 trace_ocfs2_complete_recovery(
1311 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1312
1313 spin_lock(&journal->j_lock);
1314 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1315 spin_unlock(&journal->j_lock);
1316
1317 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1318 list_del_init(&item->lri_list);
1319
1320 ocfs2_wait_on_quotas(osb);
1321
1322 la_dinode = item->lri_la_dinode;
1323 tl_dinode = item->lri_tl_dinode;
1324 qrec = item->lri_qrec;
1325 orphan_reco_type = item->lri_orphan_reco_type;
1326
1327 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1328 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1329 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1330 qrec);
1331
1332 if (la_dinode) {
1333 ret = ocfs2_complete_local_alloc_recovery(osb,
1334 la_dinode);
1335 if (ret < 0)
1336 mlog_errno(ret);
1337
1338 kfree(la_dinode);
1339 }
1340
1341 if (tl_dinode) {
1342 ret = ocfs2_complete_truncate_log_recovery(osb,
1343 tl_dinode);
1344 if (ret < 0)
1345 mlog_errno(ret);
1346
1347 kfree(tl_dinode);
1348 }
1349
1350 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1351 orphan_reco_type);
1352 if (ret < 0)
1353 mlog_errno(ret);
1354
1355 if (qrec) {
1356 ret = ocfs2_finish_quota_recovery(osb, qrec,
1357 item->lri_slot);
1358 if (ret < 0)
1359 mlog_errno(ret);
1360 /* Recovery info is already freed now */
1361 }
1362
1363 kfree(item);
1364 }
1365
1366 trace_ocfs2_complete_recovery_end(ret);
1367 }
1368
1369 /* NOTE: This function always eats your references to la_dinode and
1370 * tl_dinode, either manually on error, or by passing them to
1371 * ocfs2_complete_recovery */
ocfs2_queue_recovery_completion(struct ocfs2_journal * journal,int slot_num,struct ocfs2_dinode * la_dinode,struct ocfs2_dinode * tl_dinode,struct ocfs2_quota_recovery * qrec,enum ocfs2_orphan_reco_type orphan_reco_type)1372 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1373 int slot_num,
1374 struct ocfs2_dinode *la_dinode,
1375 struct ocfs2_dinode *tl_dinode,
1376 struct ocfs2_quota_recovery *qrec,
1377 enum ocfs2_orphan_reco_type orphan_reco_type)
1378 {
1379 struct ocfs2_la_recovery_item *item;
1380
1381 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1382 if (!item) {
1383 /* Though we wish to avoid it, we are in fact safe in
1384 * skipping local alloc cleanup as fsck.ocfs2 is more
1385 * than capable of reclaiming unused space. */
1386 kfree(la_dinode);
1387 kfree(tl_dinode);
1388
1389 if (qrec)
1390 ocfs2_free_quota_recovery(qrec);
1391
1392 mlog_errno(-ENOMEM);
1393 return;
1394 }
1395
1396 INIT_LIST_HEAD(&item->lri_list);
1397 item->lri_la_dinode = la_dinode;
1398 item->lri_slot = slot_num;
1399 item->lri_tl_dinode = tl_dinode;
1400 item->lri_qrec = qrec;
1401 item->lri_orphan_reco_type = orphan_reco_type;
1402
1403 spin_lock(&journal->j_lock);
1404 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1405 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1406 spin_unlock(&journal->j_lock);
1407 }
1408
1409 /* Called by the mount code to queue recovery the last part of
1410 * recovery for it's own and offline slot(s). */
ocfs2_complete_mount_recovery(struct ocfs2_super * osb)1411 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1412 {
1413 struct ocfs2_journal *journal = osb->journal;
1414
1415 if (ocfs2_is_hard_readonly(osb))
1416 return;
1417
1418 /* No need to queue up our truncate_log as regular cleanup will catch
1419 * that */
1420 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1421 osb->local_alloc_copy, NULL, NULL,
1422 ORPHAN_NEED_TRUNCATE);
1423 ocfs2_schedule_truncate_log_flush(osb, 0);
1424
1425 osb->local_alloc_copy = NULL;
1426
1427 /* queue to recover orphan slots for all offline slots */
1428 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1429 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1430 ocfs2_free_replay_slots(osb);
1431 }
1432
ocfs2_complete_quota_recovery(struct ocfs2_super * osb)1433 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1434 {
1435 if (osb->quota_rec) {
1436 ocfs2_queue_recovery_completion(osb->journal,
1437 osb->slot_num,
1438 NULL,
1439 NULL,
1440 osb->quota_rec,
1441 ORPHAN_NEED_TRUNCATE);
1442 osb->quota_rec = NULL;
1443 }
1444 }
1445
__ocfs2_recovery_thread(void * arg)1446 static int __ocfs2_recovery_thread(void *arg)
1447 {
1448 int status, node_num, slot_num;
1449 struct ocfs2_super *osb = arg;
1450 struct ocfs2_recovery_map *rm = osb->recovery_map;
1451 int *rm_quota = NULL;
1452 int rm_quota_used = 0, i;
1453 struct ocfs2_quota_recovery *qrec;
1454
1455 /* Whether the quota supported. */
1456 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1457 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1458 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1459 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1460
1461 status = ocfs2_wait_on_mount(osb);
1462 if (status < 0) {
1463 goto bail;
1464 }
1465
1466 if (quota_enabled) {
1467 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1468 if (!rm_quota) {
1469 status = -ENOMEM;
1470 goto bail;
1471 }
1472 }
1473 restart:
1474 status = ocfs2_super_lock(osb, 1);
1475 if (status < 0) {
1476 mlog_errno(status);
1477 goto bail;
1478 }
1479
1480 status = ocfs2_compute_replay_slots(osb);
1481 if (status < 0)
1482 mlog_errno(status);
1483
1484 /* queue recovery for our own slot */
1485 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1486 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1487
1488 spin_lock(&osb->osb_lock);
1489 while (rm->rm_used) {
1490 /* It's always safe to remove entry zero, as we won't
1491 * clear it until ocfs2_recover_node() has succeeded. */
1492 node_num = rm->rm_entries[0];
1493 spin_unlock(&osb->osb_lock);
1494 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1495 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1496 if (slot_num == -ENOENT) {
1497 status = 0;
1498 goto skip_recovery;
1499 }
1500
1501 /* It is a bit subtle with quota recovery. We cannot do it
1502 * immediately because we have to obtain cluster locks from
1503 * quota files and we also don't want to just skip it because
1504 * then quota usage would be out of sync until some node takes
1505 * the slot. So we remember which nodes need quota recovery
1506 * and when everything else is done, we recover quotas. */
1507 if (quota_enabled) {
1508 for (i = 0; i < rm_quota_used
1509 && rm_quota[i] != slot_num; i++)
1510 ;
1511
1512 if (i == rm_quota_used)
1513 rm_quota[rm_quota_used++] = slot_num;
1514 }
1515
1516 status = ocfs2_recover_node(osb, node_num, slot_num);
1517 skip_recovery:
1518 if (!status) {
1519 ocfs2_recovery_map_clear(osb, node_num);
1520 } else {
1521 mlog(ML_ERROR,
1522 "Error %d recovering node %d on device (%u,%u)!\n",
1523 status, node_num,
1524 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1525 mlog(ML_ERROR, "Volume requires unmount.\n");
1526 }
1527
1528 spin_lock(&osb->osb_lock);
1529 }
1530 spin_unlock(&osb->osb_lock);
1531 trace_ocfs2_recovery_thread_end(status);
1532
1533 /* Refresh all journal recovery generations from disk */
1534 status = ocfs2_check_journals_nolocks(osb);
1535 status = (status == -EROFS) ? 0 : status;
1536 if (status < 0)
1537 mlog_errno(status);
1538
1539 /* Now it is right time to recover quotas... We have to do this under
1540 * superblock lock so that no one can start using the slot (and crash)
1541 * before we recover it */
1542 if (quota_enabled) {
1543 for (i = 0; i < rm_quota_used; i++) {
1544 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1545 if (IS_ERR(qrec)) {
1546 status = PTR_ERR(qrec);
1547 mlog_errno(status);
1548 continue;
1549 }
1550 ocfs2_queue_recovery_completion(osb->journal,
1551 rm_quota[i],
1552 NULL, NULL, qrec,
1553 ORPHAN_NEED_TRUNCATE);
1554 }
1555 }
1556
1557 ocfs2_super_unlock(osb, 1);
1558
1559 /* queue recovery for offline slots */
1560 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1561
1562 bail:
1563 mutex_lock(&osb->recovery_lock);
1564 if (!status && !ocfs2_recovery_completed(osb)) {
1565 mutex_unlock(&osb->recovery_lock);
1566 goto restart;
1567 }
1568
1569 ocfs2_free_replay_slots(osb);
1570 osb->recovery_thread_task = NULL;
1571 mb(); /* sync with ocfs2_recovery_thread_running */
1572 wake_up(&osb->recovery_event);
1573
1574 mutex_unlock(&osb->recovery_lock);
1575
1576 if (quota_enabled)
1577 kfree(rm_quota);
1578
1579 return status;
1580 }
1581
ocfs2_recovery_thread(struct ocfs2_super * osb,int node_num)1582 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1583 {
1584 mutex_lock(&osb->recovery_lock);
1585
1586 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1587 osb->disable_recovery, osb->recovery_thread_task,
1588 osb->disable_recovery ?
1589 -1 : ocfs2_recovery_map_set(osb, node_num));
1590
1591 if (osb->disable_recovery)
1592 goto out;
1593
1594 if (osb->recovery_thread_task)
1595 goto out;
1596
1597 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1598 "ocfs2rec-%s", osb->uuid_str);
1599 if (IS_ERR(osb->recovery_thread_task)) {
1600 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1601 osb->recovery_thread_task = NULL;
1602 }
1603
1604 out:
1605 mutex_unlock(&osb->recovery_lock);
1606 wake_up(&osb->recovery_event);
1607 }
1608
ocfs2_read_journal_inode(struct ocfs2_super * osb,int slot_num,struct buffer_head ** bh,struct inode ** ret_inode)1609 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1610 int slot_num,
1611 struct buffer_head **bh,
1612 struct inode **ret_inode)
1613 {
1614 int status = -EACCES;
1615 struct inode *inode = NULL;
1616
1617 BUG_ON(slot_num >= osb->max_slots);
1618
1619 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1620 slot_num);
1621 if (!inode || is_bad_inode(inode)) {
1622 mlog_errno(status);
1623 goto bail;
1624 }
1625 SET_INODE_JOURNAL(inode);
1626
1627 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1628 if (status < 0) {
1629 mlog_errno(status);
1630 goto bail;
1631 }
1632
1633 status = 0;
1634
1635 bail:
1636 if (inode) {
1637 if (status || !ret_inode)
1638 iput(inode);
1639 else
1640 *ret_inode = inode;
1641 }
1642 return status;
1643 }
1644
1645 /* Does the actual journal replay and marks the journal inode as
1646 * clean. Will only replay if the journal inode is marked dirty. */
ocfs2_replay_journal(struct ocfs2_super * osb,int node_num,int slot_num)1647 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1648 int node_num,
1649 int slot_num)
1650 {
1651 int status;
1652 int got_lock = 0;
1653 unsigned int flags;
1654 struct inode *inode = NULL;
1655 struct ocfs2_dinode *fe;
1656 journal_t *journal = NULL;
1657 struct buffer_head *bh = NULL;
1658 u32 slot_reco_gen;
1659
1660 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1661 if (status) {
1662 mlog_errno(status);
1663 goto done;
1664 }
1665
1666 fe = (struct ocfs2_dinode *)bh->b_data;
1667 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1668 brelse(bh);
1669 bh = NULL;
1670
1671 /*
1672 * As the fs recovery is asynchronous, there is a small chance that
1673 * another node mounted (and recovered) the slot before the recovery
1674 * thread could get the lock. To handle that, we dirty read the journal
1675 * inode for that slot to get the recovery generation. If it is
1676 * different than what we expected, the slot has been recovered.
1677 * If not, it needs recovery.
1678 */
1679 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1680 trace_ocfs2_replay_journal_recovered(slot_num,
1681 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1682 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1683 status = -EBUSY;
1684 goto done;
1685 }
1686
1687 /* Continue with recovery as the journal has not yet been recovered */
1688
1689 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1690 if (status < 0) {
1691 trace_ocfs2_replay_journal_lock_err(status);
1692 if (status != -ERESTARTSYS)
1693 mlog(ML_ERROR, "Could not lock journal!\n");
1694 goto done;
1695 }
1696 got_lock = 1;
1697
1698 fe = (struct ocfs2_dinode *) bh->b_data;
1699
1700 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1701 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1702
1703 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1704 trace_ocfs2_replay_journal_skip(node_num);
1705 /* Refresh recovery generation for the slot */
1706 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1707 goto done;
1708 }
1709
1710 /* we need to run complete recovery for offline orphan slots */
1711 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1712
1713 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1714 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1715 MINOR(osb->sb->s_dev));
1716
1717 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1718
1719 status = ocfs2_force_read_journal(inode);
1720 if (status < 0) {
1721 mlog_errno(status);
1722 goto done;
1723 }
1724
1725 journal = jbd2_journal_init_inode(inode);
1726 if (IS_ERR(journal)) {
1727 mlog(ML_ERROR, "Linux journal layer error\n");
1728 status = PTR_ERR(journal);
1729 goto done;
1730 }
1731
1732 status = jbd2_journal_load(journal);
1733 if (status < 0) {
1734 mlog_errno(status);
1735 BUG_ON(!igrab(inode));
1736 jbd2_journal_destroy(journal);
1737 goto done;
1738 }
1739
1740 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1741
1742 /* wipe the journal */
1743 jbd2_journal_lock_updates(journal);
1744 status = jbd2_journal_flush(journal, 0);
1745 jbd2_journal_unlock_updates(journal);
1746 if (status < 0)
1747 mlog_errno(status);
1748
1749 /* This will mark the node clean */
1750 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1751 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1752 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1753
1754 /* Increment recovery generation to indicate successful recovery */
1755 ocfs2_bump_recovery_generation(fe);
1756 osb->slot_recovery_generations[slot_num] =
1757 ocfs2_get_recovery_generation(fe);
1758
1759 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1760 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1761 if (status < 0)
1762 mlog_errno(status);
1763
1764 BUG_ON(!igrab(inode));
1765
1766 jbd2_journal_destroy(journal);
1767
1768 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1769 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1770 MINOR(osb->sb->s_dev));
1771 done:
1772 /* drop the lock on this nodes journal */
1773 if (got_lock)
1774 ocfs2_inode_unlock(inode, 1);
1775
1776 iput(inode);
1777 brelse(bh);
1778
1779 return status;
1780 }
1781
1782 /*
1783 * Do the most important parts of node recovery:
1784 * - Replay it's journal
1785 * - Stamp a clean local allocator file
1786 * - Stamp a clean truncate log
1787 * - Mark the node clean
1788 *
1789 * If this function completes without error, a node in OCFS2 can be
1790 * said to have been safely recovered. As a result, failure during the
1791 * second part of a nodes recovery process (local alloc recovery) is
1792 * far less concerning.
1793 */
ocfs2_recover_node(struct ocfs2_super * osb,int node_num,int slot_num)1794 static int ocfs2_recover_node(struct ocfs2_super *osb,
1795 int node_num, int slot_num)
1796 {
1797 int status = 0;
1798 struct ocfs2_dinode *la_copy = NULL;
1799 struct ocfs2_dinode *tl_copy = NULL;
1800
1801 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1802
1803 /* Should not ever be called to recover ourselves -- in that
1804 * case we should've called ocfs2_journal_load instead. */
1805 BUG_ON(osb->node_num == node_num);
1806
1807 status = ocfs2_replay_journal(osb, node_num, slot_num);
1808 if (status < 0) {
1809 if (status == -EBUSY) {
1810 trace_ocfs2_recover_node_skip(slot_num, node_num);
1811 status = 0;
1812 goto done;
1813 }
1814 mlog_errno(status);
1815 goto done;
1816 }
1817
1818 /* Stamp a clean local alloc file AFTER recovering the journal... */
1819 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1820 if (status < 0) {
1821 mlog_errno(status);
1822 goto done;
1823 }
1824
1825 /* An error from begin_truncate_log_recovery is not
1826 * serious enough to warrant halting the rest of
1827 * recovery. */
1828 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1829 if (status < 0)
1830 mlog_errno(status);
1831
1832 /* Likewise, this would be a strange but ultimately not so
1833 * harmful place to get an error... */
1834 status = ocfs2_clear_slot(osb, slot_num);
1835 if (status < 0)
1836 mlog_errno(status);
1837
1838 /* This will kfree the memory pointed to by la_copy and tl_copy */
1839 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1840 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1841
1842 status = 0;
1843 done:
1844
1845 return status;
1846 }
1847
1848 /* Test node liveness by trylocking his journal. If we get the lock,
1849 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1850 * still alive (we couldn't get the lock) and < 0 on error. */
ocfs2_trylock_journal(struct ocfs2_super * osb,int slot_num)1851 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1852 int slot_num)
1853 {
1854 int status, flags;
1855 struct inode *inode = NULL;
1856
1857 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1858 slot_num);
1859 if (inode == NULL) {
1860 mlog(ML_ERROR, "access error\n");
1861 status = -EACCES;
1862 goto bail;
1863 }
1864 if (is_bad_inode(inode)) {
1865 mlog(ML_ERROR, "access error (bad inode)\n");
1866 iput(inode);
1867 inode = NULL;
1868 status = -EACCES;
1869 goto bail;
1870 }
1871 SET_INODE_JOURNAL(inode);
1872
1873 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1874 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1875 if (status < 0) {
1876 if (status != -EAGAIN)
1877 mlog_errno(status);
1878 goto bail;
1879 }
1880
1881 ocfs2_inode_unlock(inode, 1);
1882 bail:
1883 iput(inode);
1884
1885 return status;
1886 }
1887
1888 /* Call this underneath ocfs2_super_lock. It also assumes that the
1889 * slot info struct has been updated from disk. */
ocfs2_mark_dead_nodes(struct ocfs2_super * osb)1890 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1891 {
1892 unsigned int node_num;
1893 int status, i;
1894 u32 gen;
1895 struct buffer_head *bh = NULL;
1896 struct ocfs2_dinode *di;
1897
1898 /* This is called with the super block cluster lock, so we
1899 * know that the slot map can't change underneath us. */
1900
1901 for (i = 0; i < osb->max_slots; i++) {
1902 /* Read journal inode to get the recovery generation */
1903 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1904 if (status) {
1905 mlog_errno(status);
1906 goto bail;
1907 }
1908 di = (struct ocfs2_dinode *)bh->b_data;
1909 gen = ocfs2_get_recovery_generation(di);
1910 brelse(bh);
1911 bh = NULL;
1912
1913 spin_lock(&osb->osb_lock);
1914 osb->slot_recovery_generations[i] = gen;
1915
1916 trace_ocfs2_mark_dead_nodes(i,
1917 osb->slot_recovery_generations[i]);
1918
1919 if (i == osb->slot_num) {
1920 spin_unlock(&osb->osb_lock);
1921 continue;
1922 }
1923
1924 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1925 if (status == -ENOENT) {
1926 spin_unlock(&osb->osb_lock);
1927 continue;
1928 }
1929
1930 if (__ocfs2_recovery_map_test(osb, node_num)) {
1931 spin_unlock(&osb->osb_lock);
1932 continue;
1933 }
1934 spin_unlock(&osb->osb_lock);
1935
1936 /* Ok, we have a slot occupied by another node which
1937 * is not in the recovery map. We trylock his journal
1938 * file here to test if he's alive. */
1939 status = ocfs2_trylock_journal(osb, i);
1940 if (!status) {
1941 /* Since we're called from mount, we know that
1942 * the recovery thread can't race us on
1943 * setting / checking the recovery bits. */
1944 ocfs2_recovery_thread(osb, node_num);
1945 } else if ((status < 0) && (status != -EAGAIN)) {
1946 mlog_errno(status);
1947 goto bail;
1948 }
1949 }
1950
1951 status = 0;
1952 bail:
1953 return status;
1954 }
1955
1956 /*
1957 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1958 * randomness to the timeout to minimize multple nodes firing the timer at the
1959 * same time.
1960 */
ocfs2_orphan_scan_timeout(void)1961 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1962 {
1963 unsigned long time;
1964
1965 get_random_bytes(&time, sizeof(time));
1966 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1967 return msecs_to_jiffies(time);
1968 }
1969
1970 /*
1971 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1972 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1973 * is done to catch any orphans that are left over in orphan directories.
1974 *
1975 * It scans all slots, even ones that are in use. It does so to handle the
1976 * case described below:
1977 *
1978 * Node 1 has an inode it was using. The dentry went away due to memory
1979 * pressure. Node 1 closes the inode, but it's on the free list. The node
1980 * has the open lock.
1981 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1982 * but node 1 has no dentry and doesn't get the message. It trylocks the
1983 * open lock, sees that another node has a PR, and does nothing.
1984 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1985 * open lock, sees the PR still, and does nothing.
1986 * Basically, we have to trigger an orphan iput on node 1. The only way
1987 * for this to happen is if node 1 runs node 2's orphan dir.
1988 *
1989 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1990 * seconds. It gets an EX lock on os_lockres and checks sequence number
1991 * stored in LVB. If the sequence number has changed, it means some other
1992 * node has done the scan. This node skips the scan and tracks the
1993 * sequence number. If the sequence number didn't change, it means a scan
1994 * hasn't happened. The node queues a scan and increments the
1995 * sequence number in the LVB.
1996 */
ocfs2_queue_orphan_scan(struct ocfs2_super * osb)1997 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1998 {
1999 struct ocfs2_orphan_scan *os;
2000 int status, i;
2001 u32 seqno = 0;
2002
2003 os = &osb->osb_orphan_scan;
2004
2005 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2006 goto out;
2007
2008 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
2009 atomic_read(&os->os_state));
2010
2011 status = ocfs2_orphan_scan_lock(osb, &seqno);
2012 if (status < 0) {
2013 if (status != -EAGAIN)
2014 mlog_errno(status);
2015 goto out;
2016 }
2017
2018 /* Do no queue the tasks if the volume is being umounted */
2019 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2020 goto unlock;
2021
2022 if (os->os_seqno != seqno) {
2023 os->os_seqno = seqno;
2024 goto unlock;
2025 }
2026
2027 for (i = 0; i < osb->max_slots; i++)
2028 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2029 NULL, ORPHAN_NO_NEED_TRUNCATE);
2030 /*
2031 * We queued a recovery on orphan slots, increment the sequence
2032 * number and update LVB so other node will skip the scan for a while
2033 */
2034 seqno++;
2035 os->os_count++;
2036 os->os_scantime = ktime_get_seconds();
2037 unlock:
2038 ocfs2_orphan_scan_unlock(osb, seqno);
2039 out:
2040 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2041 atomic_read(&os->os_state));
2042 return;
2043 }
2044
2045 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
ocfs2_orphan_scan_work(struct work_struct * work)2046 static void ocfs2_orphan_scan_work(struct work_struct *work)
2047 {
2048 struct ocfs2_orphan_scan *os;
2049 struct ocfs2_super *osb;
2050
2051 os = container_of(work, struct ocfs2_orphan_scan,
2052 os_orphan_scan_work.work);
2053 osb = os->os_osb;
2054
2055 mutex_lock(&os->os_lock);
2056 ocfs2_queue_orphan_scan(osb);
2057 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2058 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2059 ocfs2_orphan_scan_timeout());
2060 mutex_unlock(&os->os_lock);
2061 }
2062
ocfs2_orphan_scan_stop(struct ocfs2_super * osb)2063 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2064 {
2065 struct ocfs2_orphan_scan *os;
2066
2067 os = &osb->osb_orphan_scan;
2068 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2069 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2070 mutex_lock(&os->os_lock);
2071 cancel_delayed_work(&os->os_orphan_scan_work);
2072 mutex_unlock(&os->os_lock);
2073 }
2074 }
2075
ocfs2_orphan_scan_init(struct ocfs2_super * osb)2076 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2077 {
2078 struct ocfs2_orphan_scan *os;
2079
2080 os = &osb->osb_orphan_scan;
2081 os->os_osb = osb;
2082 os->os_count = 0;
2083 os->os_seqno = 0;
2084 mutex_init(&os->os_lock);
2085 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2086 }
2087
ocfs2_orphan_scan_start(struct ocfs2_super * osb)2088 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2089 {
2090 struct ocfs2_orphan_scan *os;
2091
2092 os = &osb->osb_orphan_scan;
2093 os->os_scantime = ktime_get_seconds();
2094 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2095 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2096 else {
2097 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2098 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2099 ocfs2_orphan_scan_timeout());
2100 }
2101 }
2102
2103 struct ocfs2_orphan_filldir_priv {
2104 struct dir_context ctx;
2105 struct inode *head;
2106 struct ocfs2_super *osb;
2107 enum ocfs2_orphan_reco_type orphan_reco_type;
2108 };
2109
ocfs2_orphan_filldir(struct dir_context * ctx,const char * name,int name_len,loff_t pos,u64 ino,unsigned type)2110 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2111 int name_len, loff_t pos, u64 ino,
2112 unsigned type)
2113 {
2114 struct ocfs2_orphan_filldir_priv *p =
2115 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2116 struct inode *iter;
2117
2118 if (name_len == 1 && !strncmp(".", name, 1))
2119 return true;
2120 if (name_len == 2 && !strncmp("..", name, 2))
2121 return true;
2122
2123 /* do not include dio entry in case of orphan scan */
2124 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2125 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2126 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2127 return true;
2128
2129 /* Skip bad inodes so that recovery can continue */
2130 iter = ocfs2_iget(p->osb, ino,
2131 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2132 if (IS_ERR(iter))
2133 return true;
2134
2135 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2136 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2137 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2138
2139 /* Skip inodes which are already added to recover list, since dio may
2140 * happen concurrently with unlink/rename */
2141 if (OCFS2_I(iter)->ip_next_orphan) {
2142 iput(iter);
2143 return true;
2144 }
2145
2146 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2147 /* No locking is required for the next_orphan queue as there
2148 * is only ever a single process doing orphan recovery. */
2149 OCFS2_I(iter)->ip_next_orphan = p->head;
2150 p->head = iter;
2151
2152 return true;
2153 }
2154
ocfs2_queue_orphans(struct ocfs2_super * osb,int slot,struct inode ** head,enum ocfs2_orphan_reco_type orphan_reco_type)2155 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2156 int slot,
2157 struct inode **head,
2158 enum ocfs2_orphan_reco_type orphan_reco_type)
2159 {
2160 int status;
2161 struct inode *orphan_dir_inode = NULL;
2162 struct ocfs2_orphan_filldir_priv priv = {
2163 .ctx.actor = ocfs2_orphan_filldir,
2164 .osb = osb,
2165 .head = *head,
2166 .orphan_reco_type = orphan_reco_type
2167 };
2168
2169 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2170 ORPHAN_DIR_SYSTEM_INODE,
2171 slot);
2172 if (!orphan_dir_inode) {
2173 status = -ENOENT;
2174 mlog_errno(status);
2175 return status;
2176 }
2177
2178 inode_lock(orphan_dir_inode);
2179 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2180 if (status < 0) {
2181 mlog_errno(status);
2182 goto out;
2183 }
2184
2185 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2186 if (status) {
2187 mlog_errno(status);
2188 goto out_cluster;
2189 }
2190
2191 *head = priv.head;
2192
2193 out_cluster:
2194 ocfs2_inode_unlock(orphan_dir_inode, 0);
2195 out:
2196 inode_unlock(orphan_dir_inode);
2197 iput(orphan_dir_inode);
2198 return status;
2199 }
2200
ocfs2_orphan_recovery_can_continue(struct ocfs2_super * osb,int slot)2201 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2202 int slot)
2203 {
2204 int ret;
2205
2206 spin_lock(&osb->osb_lock);
2207 ret = !osb->osb_orphan_wipes[slot];
2208 spin_unlock(&osb->osb_lock);
2209 return ret;
2210 }
2211
ocfs2_mark_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2212 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2213 int slot)
2214 {
2215 spin_lock(&osb->osb_lock);
2216 /* Mark ourselves such that new processes in delete_inode()
2217 * know to quit early. */
2218 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2219 while (osb->osb_orphan_wipes[slot]) {
2220 /* If any processes are already in the middle of an
2221 * orphan wipe on this dir, then we need to wait for
2222 * them. */
2223 spin_unlock(&osb->osb_lock);
2224 wait_event_interruptible(osb->osb_wipe_event,
2225 ocfs2_orphan_recovery_can_continue(osb, slot));
2226 spin_lock(&osb->osb_lock);
2227 }
2228 spin_unlock(&osb->osb_lock);
2229 }
2230
ocfs2_clear_recovering_orphan_dir(struct ocfs2_super * osb,int slot)2231 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2232 int slot)
2233 {
2234 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2235 }
2236
2237 /*
2238 * Orphan recovery. Each mounted node has it's own orphan dir which we
2239 * must run during recovery. Our strategy here is to build a list of
2240 * the inodes in the orphan dir and iget/iput them. The VFS does
2241 * (most) of the rest of the work.
2242 *
2243 * Orphan recovery can happen at any time, not just mount so we have a
2244 * couple of extra considerations.
2245 *
2246 * - We grab as many inodes as we can under the orphan dir lock -
2247 * doing iget() outside the orphan dir risks getting a reference on
2248 * an invalid inode.
2249 * - We must be sure not to deadlock with other processes on the
2250 * system wanting to run delete_inode(). This can happen when they go
2251 * to lock the orphan dir and the orphan recovery process attempts to
2252 * iget() inside the orphan dir lock. This can be avoided by
2253 * advertising our state to ocfs2_delete_inode().
2254 */
ocfs2_recover_orphans(struct ocfs2_super * osb,int slot,enum ocfs2_orphan_reco_type orphan_reco_type)2255 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2256 int slot,
2257 enum ocfs2_orphan_reco_type orphan_reco_type)
2258 {
2259 int ret = 0;
2260 struct inode *inode = NULL;
2261 struct inode *iter;
2262 struct ocfs2_inode_info *oi;
2263 struct buffer_head *di_bh = NULL;
2264 struct ocfs2_dinode *di = NULL;
2265
2266 trace_ocfs2_recover_orphans(slot);
2267
2268 ocfs2_mark_recovering_orphan_dir(osb, slot);
2269 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2270 ocfs2_clear_recovering_orphan_dir(osb, slot);
2271
2272 /* Error here should be noted, but we want to continue with as
2273 * many queued inodes as we've got. */
2274 if (ret)
2275 mlog_errno(ret);
2276
2277 while (inode) {
2278 oi = OCFS2_I(inode);
2279 trace_ocfs2_recover_orphans_iput(
2280 (unsigned long long)oi->ip_blkno);
2281
2282 iter = oi->ip_next_orphan;
2283 oi->ip_next_orphan = NULL;
2284
2285 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2286 inode_lock(inode);
2287 ret = ocfs2_rw_lock(inode, 1);
2288 if (ret < 0) {
2289 mlog_errno(ret);
2290 goto unlock_mutex;
2291 }
2292 /*
2293 * We need to take and drop the inode lock to
2294 * force read inode from disk.
2295 */
2296 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2297 if (ret) {
2298 mlog_errno(ret);
2299 goto unlock_rw;
2300 }
2301
2302 di = (struct ocfs2_dinode *)di_bh->b_data;
2303
2304 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2305 ret = ocfs2_truncate_file(inode, di_bh,
2306 i_size_read(inode));
2307 if (ret < 0) {
2308 if (ret != -ENOSPC)
2309 mlog_errno(ret);
2310 goto unlock_inode;
2311 }
2312
2313 ret = ocfs2_del_inode_from_orphan(osb, inode,
2314 di_bh, 0, 0);
2315 if (ret)
2316 mlog_errno(ret);
2317 }
2318 unlock_inode:
2319 ocfs2_inode_unlock(inode, 1);
2320 brelse(di_bh);
2321 di_bh = NULL;
2322 unlock_rw:
2323 ocfs2_rw_unlock(inode, 1);
2324 unlock_mutex:
2325 inode_unlock(inode);
2326
2327 /* clear dio flag in ocfs2_inode_info */
2328 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2329 } else {
2330 spin_lock(&oi->ip_lock);
2331 /* Set the proper information to get us going into
2332 * ocfs2_delete_inode. */
2333 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2334 spin_unlock(&oi->ip_lock);
2335 }
2336
2337 iput(inode);
2338 inode = iter;
2339 }
2340
2341 return ret;
2342 }
2343
__ocfs2_wait_on_mount(struct ocfs2_super * osb,int quota)2344 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2345 {
2346 /* This check is good because ocfs2 will wait on our recovery
2347 * thread before changing it to something other than MOUNTED
2348 * or DISABLED. */
2349 wait_event(osb->osb_mount_event,
2350 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2351 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2352 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2353
2354 /* If there's an error on mount, then we may never get to the
2355 * MOUNTED flag, but this is set right before
2356 * dismount_volume() so we can trust it. */
2357 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2358 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2359 mlog(0, "mount error, exiting!\n");
2360 return -EBUSY;
2361 }
2362
2363 return 0;
2364 }
2365
ocfs2_commit_thread(void * arg)2366 static int ocfs2_commit_thread(void *arg)
2367 {
2368 int status;
2369 struct ocfs2_super *osb = arg;
2370 struct ocfs2_journal *journal = osb->journal;
2371
2372 /* we can trust j_num_trans here because _should_stop() is only set in
2373 * shutdown and nobody other than ourselves should be able to start
2374 * transactions. committing on shutdown might take a few iterations
2375 * as final transactions put deleted inodes on the list */
2376 while (!(kthread_should_stop() &&
2377 atomic_read(&journal->j_num_trans) == 0)) {
2378
2379 wait_event_interruptible(osb->checkpoint_event,
2380 atomic_read(&journal->j_num_trans)
2381 || kthread_should_stop());
2382
2383 status = ocfs2_commit_cache(osb);
2384 if (status < 0) {
2385 static unsigned long abort_warn_time;
2386
2387 /* Warn about this once per minute */
2388 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2389 mlog(ML_ERROR, "status = %d, journal is "
2390 "already aborted.\n", status);
2391 /*
2392 * After ocfs2_commit_cache() fails, j_num_trans has a
2393 * non-zero value. Sleep here to avoid a busy-wait
2394 * loop.
2395 */
2396 msleep_interruptible(1000);
2397 }
2398
2399 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2400 mlog(ML_KTHREAD,
2401 "commit_thread: %u transactions pending on "
2402 "shutdown\n",
2403 atomic_read(&journal->j_num_trans));
2404 }
2405 }
2406
2407 return 0;
2408 }
2409
2410 /* Reads all the journal inodes without taking any cluster locks. Used
2411 * for hard readonly access to determine whether any journal requires
2412 * recovery. Also used to refresh the recovery generation numbers after
2413 * a journal has been recovered by another node.
2414 */
ocfs2_check_journals_nolocks(struct ocfs2_super * osb)2415 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2416 {
2417 int ret = 0;
2418 unsigned int slot;
2419 struct buffer_head *di_bh = NULL;
2420 struct ocfs2_dinode *di;
2421 int journal_dirty = 0;
2422
2423 for(slot = 0; slot < osb->max_slots; slot++) {
2424 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2425 if (ret) {
2426 mlog_errno(ret);
2427 goto out;
2428 }
2429
2430 di = (struct ocfs2_dinode *) di_bh->b_data;
2431
2432 osb->slot_recovery_generations[slot] =
2433 ocfs2_get_recovery_generation(di);
2434
2435 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2436 OCFS2_JOURNAL_DIRTY_FL)
2437 journal_dirty = 1;
2438
2439 brelse(di_bh);
2440 di_bh = NULL;
2441 }
2442
2443 out:
2444 if (journal_dirty)
2445 ret = -EROFS;
2446 return ret;
2447 }
2448