1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17
18 #include <cluster/masklog.h>
19
20 #include "ocfs2.h"
21
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 struct buffer_head *bh_result, int create)
42 {
43 int err = -EIO;
44 int status;
45 struct ocfs2_dinode *fe = NULL;
46 struct buffer_head *bh = NULL;
47 struct buffer_head *buffer_cache_bh = NULL;
48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 void *kaddr;
50
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode)->ip_blkno,
53 (unsigned long long)iblock, bh_result, create);
54
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock);
60 goto bail;
61 }
62
63 status = ocfs2_read_inode_block(inode, &bh);
64 if (status < 0) {
65 mlog_errno(status);
66 goto bail;
67 }
68 fe = (struct ocfs2_dinode *) bh->b_data;
69
70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 le32_to_cpu(fe->i_clusters))) {
72 err = -ENOMEM;
73 mlog(ML_ERROR, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock);
75 goto bail;
76 }
77
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 iblock;
83 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 if (!buffer_cache_bh) {
85 err = -ENOMEM;
86 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 goto bail;
88 }
89
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh)
95 && ocfs2_inode_is_new(inode)) {
96 kaddr = kmap_atomic(bh_result->b_page);
97 if (!kaddr) {
98 mlog(ML_ERROR, "couldn't kmap!\n");
99 goto bail;
100 }
101 memcpy(kaddr + (bh_result->b_size * iblock),
102 buffer_cache_bh->b_data,
103 bh_result->b_size);
104 kunmap_atomic(kaddr);
105 set_buffer_uptodate(bh_result);
106 }
107 brelse(buffer_cache_bh);
108 }
109
110 map_bh(bh_result, inode->i_sb,
111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113 err = 0;
114
115 bail:
116 brelse(bh);
117
118 return err;
119 }
120
ocfs2_lock_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 struct buffer_head *bh_result, int create)
123 {
124 int ret = 0;
125 struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127 down_read(&oi->ip_alloc_sem);
128 ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 up_read(&oi->ip_alloc_sem);
130
131 return ret;
132 }
133
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh_result, int create)
136 {
137 int err = 0;
138 unsigned int ext_flags;
139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 u64 p_blkno, count, past_eof;
141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 (unsigned long long)iblock, bh_result, create);
145
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
149
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 goto bail;
154 }
155
156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 &ext_flags);
158 if (err) {
159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 (unsigned long long)p_blkno);
162 goto bail;
163 }
164
165 if (max_blocks < count)
166 count = max_blocks;
167
168 /*
169 * ocfs2 never allocates in this function - the only time we
170 * need to use BH_New is when we're extending i_size on a file
171 * system which doesn't support holes, in which case BH_New
172 * allows __block_write_begin() to zero.
173 *
174 * If we see this on a sparse file system, then a truncate has
175 * raced us and removed the cluster. In this case, we clear
176 * the buffers dirty and uptodate bits and let the buffer code
177 * ignore it as a hole.
178 */
179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 clear_buffer_dirty(bh_result);
181 clear_buffer_uptodate(bh_result);
182 goto bail;
183 }
184
185 /* Treat the unwritten extent as a hole for zeroing purposes. */
186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187 map_bh(bh_result, inode->i_sb, p_blkno);
188
189 bh_result->b_size = count << inode->i_blkbits;
190
191 if (!ocfs2_sparse_alloc(osb)) {
192 if (p_blkno == 0) {
193 err = -EIO;
194 mlog(ML_ERROR,
195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 (unsigned long long)iblock,
197 (unsigned long long)p_blkno,
198 (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
200 dump_stack();
201 goto bail;
202 }
203 }
204
205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
206
207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 (unsigned long long)past_eof);
209 if (create && (iblock >= past_eof))
210 set_buffer_new(bh_result);
211
212 bail:
213 if (err < 0)
214 err = -EIO;
215
216 return err;
217 }
218
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)219 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 struct buffer_head *di_bh)
221 {
222 void *kaddr;
223 loff_t size;
224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
225
226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228 (unsigned long long)OCFS2_I(inode)->ip_blkno);
229 return -EROFS;
230 }
231
232 size = i_size_read(inode);
233
234 if (size > PAGE_SIZE ||
235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236 ocfs2_error(inode->i_sb,
237 "Inode %llu has with inline data has bad size: %Lu\n",
238 (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 (unsigned long long)size);
240 return -EROFS;
241 }
242
243 kaddr = kmap_atomic(page);
244 if (size)
245 memcpy(kaddr, di->id2.i_data.id_data, size);
246 /* Clear the remaining part of the page */
247 memset(kaddr + size, 0, PAGE_SIZE - size);
248 flush_dcache_page(page);
249 kunmap_atomic(kaddr);
250
251 SetPageUptodate(page);
252
253 return 0;
254 }
255
ocfs2_readpage_inline(struct inode * inode,struct page * page)256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
257 {
258 int ret;
259 struct buffer_head *di_bh = NULL;
260
261 BUG_ON(!PageLocked(page));
262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
263
264 ret = ocfs2_read_inode_block(inode, &di_bh);
265 if (ret) {
266 mlog_errno(ret);
267 goto out;
268 }
269
270 ret = ocfs2_read_inline_data(inode, page, di_bh);
271 out:
272 unlock_page(page);
273
274 brelse(di_bh);
275 return ret;
276 }
277
ocfs2_read_folio(struct file * file,struct folio * folio)278 static int ocfs2_read_folio(struct file *file, struct folio *folio)
279 {
280 struct inode *inode = folio->mapping->host;
281 struct ocfs2_inode_info *oi = OCFS2_I(inode);
282 loff_t start = folio_pos(folio);
283 int ret, unlock = 1;
284
285 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
286
287 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
288 if (ret != 0) {
289 if (ret == AOP_TRUNCATED_PAGE)
290 unlock = 0;
291 mlog_errno(ret);
292 goto out;
293 }
294
295 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
296 /*
297 * Unlock the folio and cycle ip_alloc_sem so that we don't
298 * busyloop waiting for ip_alloc_sem to unlock
299 */
300 ret = AOP_TRUNCATED_PAGE;
301 folio_unlock(folio);
302 unlock = 0;
303 down_read(&oi->ip_alloc_sem);
304 up_read(&oi->ip_alloc_sem);
305 goto out_inode_unlock;
306 }
307
308 /*
309 * i_size might have just been updated as we grabed the meta lock. We
310 * might now be discovering a truncate that hit on another node.
311 * block_read_full_folio->get_block freaks out if it is asked to read
312 * beyond the end of a file, so we check here. Callers
313 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
314 * and notice that the folio they just read isn't needed.
315 *
316 * XXX sys_readahead() seems to get that wrong?
317 */
318 if (start >= i_size_read(inode)) {
319 folio_zero_segment(folio, 0, folio_size(folio));
320 folio_mark_uptodate(folio);
321 ret = 0;
322 goto out_alloc;
323 }
324
325 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
326 ret = ocfs2_readpage_inline(inode, &folio->page);
327 else
328 ret = block_read_full_folio(folio, ocfs2_get_block);
329 unlock = 0;
330
331 out_alloc:
332 up_read(&oi->ip_alloc_sem);
333 out_inode_unlock:
334 ocfs2_inode_unlock(inode, 0);
335 out:
336 if (unlock)
337 folio_unlock(folio);
338 return ret;
339 }
340
341 /*
342 * This is used only for read-ahead. Failures or difficult to handle
343 * situations are safe to ignore.
344 *
345 * Right now, we don't bother with BH_Boundary - in-inode extent lists
346 * are quite large (243 extents on 4k blocks), so most inodes don't
347 * grow out to a tree. If need be, detecting boundary extents could
348 * trivially be added in a future version of ocfs2_get_block().
349 */
ocfs2_readahead(struct readahead_control * rac)350 static void ocfs2_readahead(struct readahead_control *rac)
351 {
352 int ret;
353 struct inode *inode = rac->mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
365 goto out_unlock;
366
367 /*
368 * Don't bother with inline-data. There isn't anything
369 * to read-ahead in that case anyway...
370 */
371 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
372 goto out_up;
373
374 /*
375 * Check whether a remote node truncated this file - we just
376 * drop out in that case as it's not worth handling here.
377 */
378 if (readahead_pos(rac) >= i_size_read(inode))
379 goto out_up;
380
381 mpage_readahead(rac, ocfs2_get_block);
382
383 out_up:
384 up_read(&oi->ip_alloc_sem);
385 out_unlock:
386 ocfs2_inode_unlock(inode, 0);
387 }
388
389 /* Note: Because we don't support holes, our allocation has
390 * already happened (allocation writes zeros to the file data)
391 * so we don't have to worry about ordered writes in
392 * ocfs2_writepage.
393 *
394 * ->writepage is called during the process of invalidating the page cache
395 * during blocked lock processing. It can't block on any cluster locks
396 * to during block mapping. It's relying on the fact that the block
397 * mapping can't have disappeared under the dirty pages that it is
398 * being asked to write back.
399 */
ocfs2_writepage(struct page * page,struct writeback_control * wbc)400 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
401 {
402 trace_ocfs2_writepage(
403 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
404 page->index);
405
406 return block_write_full_page(page, ocfs2_get_block, wbc);
407 }
408
409 /* Taken from ext3. We don't necessarily need the full blown
410 * functionality yet, but IMHO it's better to cut and paste the whole
411 * thing so we can avoid introducing our own bugs (and easily pick up
412 * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))413 int walk_page_buffers( handle_t *handle,
414 struct buffer_head *head,
415 unsigned from,
416 unsigned to,
417 int *partial,
418 int (*fn)( handle_t *handle,
419 struct buffer_head *bh))
420 {
421 struct buffer_head *bh;
422 unsigned block_start, block_end;
423 unsigned blocksize = head->b_size;
424 int err, ret = 0;
425 struct buffer_head *next;
426
427 for ( bh = head, block_start = 0;
428 ret == 0 && (bh != head || !block_start);
429 block_start = block_end, bh = next)
430 {
431 next = bh->b_this_page;
432 block_end = block_start + blocksize;
433 if (block_end <= from || block_start >= to) {
434 if (partial && !buffer_uptodate(bh))
435 *partial = 1;
436 continue;
437 }
438 err = (*fn)(handle, bh);
439 if (!ret)
440 ret = err;
441 }
442 return ret;
443 }
444
ocfs2_bmap(struct address_space * mapping,sector_t block)445 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
446 {
447 sector_t status;
448 u64 p_blkno = 0;
449 int err = 0;
450 struct inode *inode = mapping->host;
451
452 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
453 (unsigned long long)block);
454
455 /*
456 * The swap code (ab-)uses ->bmap to get a block mapping and then
457 * bypasseѕ the file system for actual I/O. We really can't allow
458 * that on refcounted inodes, so we have to skip out here. And yes,
459 * 0 is the magic code for a bmap error..
460 */
461 if (ocfs2_is_refcount_inode(inode))
462 return 0;
463
464 /* We don't need to lock journal system files, since they aren't
465 * accessed concurrently from multiple nodes.
466 */
467 if (!INODE_JOURNAL(inode)) {
468 err = ocfs2_inode_lock(inode, NULL, 0);
469 if (err) {
470 if (err != -ENOENT)
471 mlog_errno(err);
472 goto bail;
473 }
474 down_read(&OCFS2_I(inode)->ip_alloc_sem);
475 }
476
477 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
478 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
479 NULL);
480
481 if (!INODE_JOURNAL(inode)) {
482 up_read(&OCFS2_I(inode)->ip_alloc_sem);
483 ocfs2_inode_unlock(inode, 0);
484 }
485
486 if (err) {
487 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
488 (unsigned long long)block);
489 mlog_errno(err);
490 goto bail;
491 }
492
493 bail:
494 status = err ? 0 : p_blkno;
495
496 return status;
497 }
498
ocfs2_release_folio(struct folio * folio,gfp_t wait)499 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
500 {
501 if (!folio_buffers(folio))
502 return false;
503 return try_to_free_buffers(folio);
504 }
505
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)506 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
507 u32 cpos,
508 unsigned int *start,
509 unsigned int *end)
510 {
511 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
512
513 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
514 unsigned int cpp;
515
516 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
517
518 cluster_start = cpos % cpp;
519 cluster_start = cluster_start << osb->s_clustersize_bits;
520
521 cluster_end = cluster_start + osb->s_clustersize;
522 }
523
524 BUG_ON(cluster_start > PAGE_SIZE);
525 BUG_ON(cluster_end > PAGE_SIZE);
526
527 if (start)
528 *start = cluster_start;
529 if (end)
530 *end = cluster_end;
531 }
532
533 /*
534 * 'from' and 'to' are the region in the page to avoid zeroing.
535 *
536 * If pagesize > clustersize, this function will avoid zeroing outside
537 * of the cluster boundary.
538 *
539 * from == to == 0 is code for "zero the entire cluster region"
540 */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)541 static void ocfs2_clear_page_regions(struct page *page,
542 struct ocfs2_super *osb, u32 cpos,
543 unsigned from, unsigned to)
544 {
545 void *kaddr;
546 unsigned int cluster_start, cluster_end;
547
548 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
549
550 kaddr = kmap_atomic(page);
551
552 if (from || to) {
553 if (from > cluster_start)
554 memset(kaddr + cluster_start, 0, from - cluster_start);
555 if (to < cluster_end)
556 memset(kaddr + to, 0, cluster_end - to);
557 } else {
558 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
559 }
560
561 kunmap_atomic(kaddr);
562 }
563
564 /*
565 * Nonsparse file systems fully allocate before we get to the write
566 * code. This prevents ocfs2_write() from tagging the write as an
567 * allocating one, which means ocfs2_map_page_blocks() might try to
568 * read-in the blocks at the tail of our file. Avoid reading them by
569 * testing i_size against each block offset.
570 */
ocfs2_should_read_blk(struct inode * inode,struct page * page,unsigned int block_start)571 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
572 unsigned int block_start)
573 {
574 u64 offset = page_offset(page) + block_start;
575
576 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
577 return 1;
578
579 if (i_size_read(inode) > offset)
580 return 1;
581
582 return 0;
583 }
584
585 /*
586 * Some of this taken from __block_write_begin(). We already have our
587 * mapping by now though, and the entire write will be allocating or
588 * it won't, so not much need to use BH_New.
589 *
590 * This will also skip zeroing, which is handled externally.
591 */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)592 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
593 struct inode *inode, unsigned int from,
594 unsigned int to, int new)
595 {
596 int ret = 0;
597 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
598 unsigned int block_end, block_start;
599 unsigned int bsize = i_blocksize(inode);
600
601 if (!page_has_buffers(page))
602 create_empty_buffers(page, bsize, 0);
603
604 head = page_buffers(page);
605 for (bh = head, block_start = 0; bh != head || !block_start;
606 bh = bh->b_this_page, block_start += bsize) {
607 block_end = block_start + bsize;
608
609 clear_buffer_new(bh);
610
611 /*
612 * Ignore blocks outside of our i/o range -
613 * they may belong to unallocated clusters.
614 */
615 if (block_start >= to || block_end <= from) {
616 if (PageUptodate(page))
617 set_buffer_uptodate(bh);
618 continue;
619 }
620
621 /*
622 * For an allocating write with cluster size >= page
623 * size, we always write the entire page.
624 */
625 if (new)
626 set_buffer_new(bh);
627
628 if (!buffer_mapped(bh)) {
629 map_bh(bh, inode->i_sb, *p_blkno);
630 clean_bdev_bh_alias(bh);
631 }
632
633 if (PageUptodate(page)) {
634 set_buffer_uptodate(bh);
635 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
636 !buffer_new(bh) &&
637 ocfs2_should_read_blk(inode, page, block_start) &&
638 (block_start < from || block_end > to)) {
639 bh_read_nowait(bh, 0);
640 *wait_bh++=bh;
641 }
642
643 *p_blkno = *p_blkno + 1;
644 }
645
646 /*
647 * If we issued read requests - let them complete.
648 */
649 while(wait_bh > wait) {
650 wait_on_buffer(*--wait_bh);
651 if (!buffer_uptodate(*wait_bh))
652 ret = -EIO;
653 }
654
655 if (ret == 0 || !new)
656 return ret;
657
658 /*
659 * If we get -EIO above, zero out any newly allocated blocks
660 * to avoid exposing stale data.
661 */
662 bh = head;
663 block_start = 0;
664 do {
665 block_end = block_start + bsize;
666 if (block_end <= from)
667 goto next_bh;
668 if (block_start >= to)
669 break;
670
671 zero_user(page, block_start, bh->b_size);
672 set_buffer_uptodate(bh);
673 mark_buffer_dirty(bh);
674
675 next_bh:
676 block_start = block_end;
677 bh = bh->b_this_page;
678 } while (bh != head);
679
680 return ret;
681 }
682
683 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
684 #define OCFS2_MAX_CTXT_PAGES 1
685 #else
686 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
687 #endif
688
689 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
690
691 struct ocfs2_unwritten_extent {
692 struct list_head ue_node;
693 struct list_head ue_ip_node;
694 u32 ue_cpos;
695 u32 ue_phys;
696 };
697
698 /*
699 * Describe the state of a single cluster to be written to.
700 */
701 struct ocfs2_write_cluster_desc {
702 u32 c_cpos;
703 u32 c_phys;
704 /*
705 * Give this a unique field because c_phys eventually gets
706 * filled.
707 */
708 unsigned c_new;
709 unsigned c_clear_unwritten;
710 unsigned c_needs_zero;
711 };
712
713 struct ocfs2_write_ctxt {
714 /* Logical cluster position / len of write */
715 u32 w_cpos;
716 u32 w_clen;
717
718 /* First cluster allocated in a nonsparse extend */
719 u32 w_first_new_cpos;
720
721 /* Type of caller. Must be one of buffer, mmap, direct. */
722 ocfs2_write_type_t w_type;
723
724 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
725
726 /*
727 * This is true if page_size > cluster_size.
728 *
729 * It triggers a set of special cases during write which might
730 * have to deal with allocating writes to partial pages.
731 */
732 unsigned int w_large_pages;
733
734 /*
735 * Pages involved in this write.
736 *
737 * w_target_page is the page being written to by the user.
738 *
739 * w_pages is an array of pages which always contains
740 * w_target_page, and in the case of an allocating write with
741 * page_size < cluster size, it will contain zero'd and mapped
742 * pages adjacent to w_target_page which need to be written
743 * out in so that future reads from that region will get
744 * zero's.
745 */
746 unsigned int w_num_pages;
747 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
748 struct page *w_target_page;
749
750 /*
751 * w_target_locked is used for page_mkwrite path indicating no unlocking
752 * against w_target_page in ocfs2_write_end_nolock.
753 */
754 unsigned int w_target_locked:1;
755
756 /*
757 * ocfs2_write_end() uses this to know what the real range to
758 * write in the target should be.
759 */
760 unsigned int w_target_from;
761 unsigned int w_target_to;
762
763 /*
764 * We could use journal_current_handle() but this is cleaner,
765 * IMHO -Mark
766 */
767 handle_t *w_handle;
768
769 struct buffer_head *w_di_bh;
770
771 struct ocfs2_cached_dealloc_ctxt w_dealloc;
772
773 struct list_head w_unwritten_list;
774 unsigned int w_unwritten_count;
775 };
776
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)777 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
778 {
779 int i;
780
781 for(i = 0; i < num_pages; i++) {
782 if (pages[i]) {
783 unlock_page(pages[i]);
784 mark_page_accessed(pages[i]);
785 put_page(pages[i]);
786 }
787 }
788 }
789
ocfs2_unlock_pages(struct ocfs2_write_ctxt * wc)790 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
791 {
792 int i;
793
794 /*
795 * w_target_locked is only set to true in the page_mkwrite() case.
796 * The intent is to allow us to lock the target page from write_begin()
797 * to write_end(). The caller must hold a ref on w_target_page.
798 */
799 if (wc->w_target_locked) {
800 BUG_ON(!wc->w_target_page);
801 for (i = 0; i < wc->w_num_pages; i++) {
802 if (wc->w_target_page == wc->w_pages[i]) {
803 wc->w_pages[i] = NULL;
804 break;
805 }
806 }
807 mark_page_accessed(wc->w_target_page);
808 put_page(wc->w_target_page);
809 }
810 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
811 }
812
ocfs2_free_unwritten_list(struct inode * inode,struct list_head * head)813 static void ocfs2_free_unwritten_list(struct inode *inode,
814 struct list_head *head)
815 {
816 struct ocfs2_inode_info *oi = OCFS2_I(inode);
817 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
818
819 list_for_each_entry_safe(ue, tmp, head, ue_node) {
820 list_del(&ue->ue_node);
821 spin_lock(&oi->ip_lock);
822 list_del(&ue->ue_ip_node);
823 spin_unlock(&oi->ip_lock);
824 kfree(ue);
825 }
826 }
827
ocfs2_free_write_ctxt(struct inode * inode,struct ocfs2_write_ctxt * wc)828 static void ocfs2_free_write_ctxt(struct inode *inode,
829 struct ocfs2_write_ctxt *wc)
830 {
831 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
832 ocfs2_unlock_pages(wc);
833 brelse(wc->w_di_bh);
834 kfree(wc);
835 }
836
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,ocfs2_write_type_t type,struct buffer_head * di_bh)837 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
838 struct ocfs2_super *osb, loff_t pos,
839 unsigned len, ocfs2_write_type_t type,
840 struct buffer_head *di_bh)
841 {
842 u32 cend;
843 struct ocfs2_write_ctxt *wc;
844
845 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
846 if (!wc)
847 return -ENOMEM;
848
849 wc->w_cpos = pos >> osb->s_clustersize_bits;
850 wc->w_first_new_cpos = UINT_MAX;
851 cend = (pos + len - 1) >> osb->s_clustersize_bits;
852 wc->w_clen = cend - wc->w_cpos + 1;
853 get_bh(di_bh);
854 wc->w_di_bh = di_bh;
855 wc->w_type = type;
856
857 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
858 wc->w_large_pages = 1;
859 else
860 wc->w_large_pages = 0;
861
862 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
863 INIT_LIST_HEAD(&wc->w_unwritten_list);
864
865 *wcp = wc;
866
867 return 0;
868 }
869
870 /*
871 * If a page has any new buffers, zero them out here, and mark them uptodate
872 * and dirty so they'll be written out (in order to prevent uninitialised
873 * block data from leaking). And clear the new bit.
874 */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)875 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
876 {
877 unsigned int block_start, block_end;
878 struct buffer_head *head, *bh;
879
880 BUG_ON(!PageLocked(page));
881 if (!page_has_buffers(page))
882 return;
883
884 bh = head = page_buffers(page);
885 block_start = 0;
886 do {
887 block_end = block_start + bh->b_size;
888
889 if (buffer_new(bh)) {
890 if (block_end > from && block_start < to) {
891 if (!PageUptodate(page)) {
892 unsigned start, end;
893
894 start = max(from, block_start);
895 end = min(to, block_end);
896
897 zero_user_segment(page, start, end);
898 set_buffer_uptodate(bh);
899 }
900
901 clear_buffer_new(bh);
902 mark_buffer_dirty(bh);
903 }
904 }
905
906 block_start = block_end;
907 bh = bh->b_this_page;
908 } while (bh != head);
909 }
910
911 /*
912 * Only called when we have a failure during allocating write to write
913 * zero's to the newly allocated region.
914 */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)915 static void ocfs2_write_failure(struct inode *inode,
916 struct ocfs2_write_ctxt *wc,
917 loff_t user_pos, unsigned user_len)
918 {
919 int i;
920 unsigned from = user_pos & (PAGE_SIZE - 1),
921 to = user_pos + user_len;
922 struct page *tmppage;
923
924 if (wc->w_target_page)
925 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
926
927 for(i = 0; i < wc->w_num_pages; i++) {
928 tmppage = wc->w_pages[i];
929
930 if (tmppage && page_has_buffers(tmppage)) {
931 if (ocfs2_should_order_data(inode))
932 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
933 user_pos, user_len);
934
935 block_commit_write(tmppage, from, to);
936 }
937 }
938 }
939
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)940 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
941 struct ocfs2_write_ctxt *wc,
942 struct page *page, u32 cpos,
943 loff_t user_pos, unsigned user_len,
944 int new)
945 {
946 int ret;
947 unsigned int map_from = 0, map_to = 0;
948 unsigned int cluster_start, cluster_end;
949 unsigned int user_data_from = 0, user_data_to = 0;
950
951 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
952 &cluster_start, &cluster_end);
953
954 /* treat the write as new if the a hole/lseek spanned across
955 * the page boundary.
956 */
957 new = new | ((i_size_read(inode) <= page_offset(page)) &&
958 (page_offset(page) <= user_pos));
959
960 if (page == wc->w_target_page) {
961 map_from = user_pos & (PAGE_SIZE - 1);
962 map_to = map_from + user_len;
963
964 if (new)
965 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
966 cluster_start, cluster_end,
967 new);
968 else
969 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
970 map_from, map_to, new);
971 if (ret) {
972 mlog_errno(ret);
973 goto out;
974 }
975
976 user_data_from = map_from;
977 user_data_to = map_to;
978 if (new) {
979 map_from = cluster_start;
980 map_to = cluster_end;
981 }
982 } else {
983 /*
984 * If we haven't allocated the new page yet, we
985 * shouldn't be writing it out without copying user
986 * data. This is likely a math error from the caller.
987 */
988 BUG_ON(!new);
989
990 map_from = cluster_start;
991 map_to = cluster_end;
992
993 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
994 cluster_start, cluster_end, new);
995 if (ret) {
996 mlog_errno(ret);
997 goto out;
998 }
999 }
1000
1001 /*
1002 * Parts of newly allocated pages need to be zero'd.
1003 *
1004 * Above, we have also rewritten 'to' and 'from' - as far as
1005 * the rest of the function is concerned, the entire cluster
1006 * range inside of a page needs to be written.
1007 *
1008 * We can skip this if the page is up to date - it's already
1009 * been zero'd from being read in as a hole.
1010 */
1011 if (new && !PageUptodate(page))
1012 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1013 cpos, user_data_from, user_data_to);
1014
1015 flush_dcache_page(page);
1016
1017 out:
1018 return ret;
1019 }
1020
1021 /*
1022 * This function will only grab one clusters worth of pages.
1023 */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1024 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1025 struct ocfs2_write_ctxt *wc,
1026 u32 cpos, loff_t user_pos,
1027 unsigned user_len, int new,
1028 struct page *mmap_page)
1029 {
1030 int ret = 0, i;
1031 unsigned long start, target_index, end_index, index;
1032 struct inode *inode = mapping->host;
1033 loff_t last_byte;
1034
1035 target_index = user_pos >> PAGE_SHIFT;
1036
1037 /*
1038 * Figure out how many pages we'll be manipulating here. For
1039 * non allocating write, we just change the one
1040 * page. Otherwise, we'll need a whole clusters worth. If we're
1041 * writing past i_size, we only need enough pages to cover the
1042 * last page of the write.
1043 */
1044 if (new) {
1045 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1046 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1047 /*
1048 * We need the index *past* the last page we could possibly
1049 * touch. This is the page past the end of the write or
1050 * i_size, whichever is greater.
1051 */
1052 last_byte = max(user_pos + user_len, i_size_read(inode));
1053 BUG_ON(last_byte < 1);
1054 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1055 if ((start + wc->w_num_pages) > end_index)
1056 wc->w_num_pages = end_index - start;
1057 } else {
1058 wc->w_num_pages = 1;
1059 start = target_index;
1060 }
1061 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1062
1063 for(i = 0; i < wc->w_num_pages; i++) {
1064 index = start + i;
1065
1066 if (index >= target_index && index <= end_index &&
1067 wc->w_type == OCFS2_WRITE_MMAP) {
1068 /*
1069 * ocfs2_pagemkwrite() is a little different
1070 * and wants us to directly use the page
1071 * passed in.
1072 */
1073 lock_page(mmap_page);
1074
1075 /* Exit and let the caller retry */
1076 if (mmap_page->mapping != mapping) {
1077 WARN_ON(mmap_page->mapping);
1078 unlock_page(mmap_page);
1079 ret = -EAGAIN;
1080 goto out;
1081 }
1082
1083 get_page(mmap_page);
1084 wc->w_pages[i] = mmap_page;
1085 wc->w_target_locked = true;
1086 } else if (index >= target_index && index <= end_index &&
1087 wc->w_type == OCFS2_WRITE_DIRECT) {
1088 /* Direct write has no mapping page. */
1089 wc->w_pages[i] = NULL;
1090 continue;
1091 } else {
1092 wc->w_pages[i] = find_or_create_page(mapping, index,
1093 GFP_NOFS);
1094 if (!wc->w_pages[i]) {
1095 ret = -ENOMEM;
1096 mlog_errno(ret);
1097 goto out;
1098 }
1099 }
1100 wait_for_stable_page(wc->w_pages[i]);
1101
1102 if (index == target_index)
1103 wc->w_target_page = wc->w_pages[i];
1104 }
1105 out:
1106 if (ret)
1107 wc->w_target_locked = false;
1108 return ret;
1109 }
1110
1111 /*
1112 * Prepare a single cluster for write one cluster into the file.
1113 */
ocfs2_write_cluster(struct address_space * mapping,u32 * phys,unsigned int new,unsigned int clear_unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1114 static int ocfs2_write_cluster(struct address_space *mapping,
1115 u32 *phys, unsigned int new,
1116 unsigned int clear_unwritten,
1117 unsigned int should_zero,
1118 struct ocfs2_alloc_context *data_ac,
1119 struct ocfs2_alloc_context *meta_ac,
1120 struct ocfs2_write_ctxt *wc, u32 cpos,
1121 loff_t user_pos, unsigned user_len)
1122 {
1123 int ret, i;
1124 u64 p_blkno;
1125 struct inode *inode = mapping->host;
1126 struct ocfs2_extent_tree et;
1127 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1128
1129 if (new) {
1130 u32 tmp_pos;
1131
1132 /*
1133 * This is safe to call with the page locks - it won't take
1134 * any additional semaphores or cluster locks.
1135 */
1136 tmp_pos = cpos;
1137 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1138 &tmp_pos, 1, !clear_unwritten,
1139 wc->w_di_bh, wc->w_handle,
1140 data_ac, meta_ac, NULL);
1141 /*
1142 * This shouldn't happen because we must have already
1143 * calculated the correct meta data allocation required. The
1144 * internal tree allocation code should know how to increase
1145 * transaction credits itself.
1146 *
1147 * If need be, we could handle -EAGAIN for a
1148 * RESTART_TRANS here.
1149 */
1150 mlog_bug_on_msg(ret == -EAGAIN,
1151 "Inode %llu: EAGAIN return during allocation.\n",
1152 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1153 if (ret < 0) {
1154 mlog_errno(ret);
1155 goto out;
1156 }
1157 } else if (clear_unwritten) {
1158 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1159 wc->w_di_bh);
1160 ret = ocfs2_mark_extent_written(inode, &et,
1161 wc->w_handle, cpos, 1, *phys,
1162 meta_ac, &wc->w_dealloc);
1163 if (ret < 0) {
1164 mlog_errno(ret);
1165 goto out;
1166 }
1167 }
1168
1169 /*
1170 * The only reason this should fail is due to an inability to
1171 * find the extent added.
1172 */
1173 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1174 if (ret < 0) {
1175 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1176 "at logical cluster %u",
1177 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1178 goto out;
1179 }
1180
1181 BUG_ON(*phys == 0);
1182
1183 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1184 if (!should_zero)
1185 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1186
1187 for(i = 0; i < wc->w_num_pages; i++) {
1188 int tmpret;
1189
1190 /* This is the direct io target page. */
1191 if (wc->w_pages[i] == NULL) {
1192 p_blkno++;
1193 continue;
1194 }
1195
1196 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1197 wc->w_pages[i], cpos,
1198 user_pos, user_len,
1199 should_zero);
1200 if (tmpret) {
1201 mlog_errno(tmpret);
1202 if (ret == 0)
1203 ret = tmpret;
1204 }
1205 }
1206
1207 /*
1208 * We only have cleanup to do in case of allocating write.
1209 */
1210 if (ret && new)
1211 ocfs2_write_failure(inode, wc, user_pos, user_len);
1212
1213 out:
1214
1215 return ret;
1216 }
1217
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1218 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1219 struct ocfs2_alloc_context *data_ac,
1220 struct ocfs2_alloc_context *meta_ac,
1221 struct ocfs2_write_ctxt *wc,
1222 loff_t pos, unsigned len)
1223 {
1224 int ret, i;
1225 loff_t cluster_off;
1226 unsigned int local_len = len;
1227 struct ocfs2_write_cluster_desc *desc;
1228 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1229
1230 for (i = 0; i < wc->w_clen; i++) {
1231 desc = &wc->w_desc[i];
1232
1233 /*
1234 * We have to make sure that the total write passed in
1235 * doesn't extend past a single cluster.
1236 */
1237 local_len = len;
1238 cluster_off = pos & (osb->s_clustersize - 1);
1239 if ((cluster_off + local_len) > osb->s_clustersize)
1240 local_len = osb->s_clustersize - cluster_off;
1241
1242 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1243 desc->c_new,
1244 desc->c_clear_unwritten,
1245 desc->c_needs_zero,
1246 data_ac, meta_ac,
1247 wc, desc->c_cpos, pos, local_len);
1248 if (ret) {
1249 mlog_errno(ret);
1250 goto out;
1251 }
1252
1253 len -= local_len;
1254 pos += local_len;
1255 }
1256
1257 ret = 0;
1258 out:
1259 return ret;
1260 }
1261
1262 /*
1263 * ocfs2_write_end() wants to know which parts of the target page it
1264 * should complete the write on. It's easiest to compute them ahead of
1265 * time when a more complete view of the write is available.
1266 */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1267 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1268 struct ocfs2_write_ctxt *wc,
1269 loff_t pos, unsigned len, int alloc)
1270 {
1271 struct ocfs2_write_cluster_desc *desc;
1272
1273 wc->w_target_from = pos & (PAGE_SIZE - 1);
1274 wc->w_target_to = wc->w_target_from + len;
1275
1276 if (alloc == 0)
1277 return;
1278
1279 /*
1280 * Allocating write - we may have different boundaries based
1281 * on page size and cluster size.
1282 *
1283 * NOTE: We can no longer compute one value from the other as
1284 * the actual write length and user provided length may be
1285 * different.
1286 */
1287
1288 if (wc->w_large_pages) {
1289 /*
1290 * We only care about the 1st and last cluster within
1291 * our range and whether they should be zero'd or not. Either
1292 * value may be extended out to the start/end of a
1293 * newly allocated cluster.
1294 */
1295 desc = &wc->w_desc[0];
1296 if (desc->c_needs_zero)
1297 ocfs2_figure_cluster_boundaries(osb,
1298 desc->c_cpos,
1299 &wc->w_target_from,
1300 NULL);
1301
1302 desc = &wc->w_desc[wc->w_clen - 1];
1303 if (desc->c_needs_zero)
1304 ocfs2_figure_cluster_boundaries(osb,
1305 desc->c_cpos,
1306 NULL,
1307 &wc->w_target_to);
1308 } else {
1309 wc->w_target_from = 0;
1310 wc->w_target_to = PAGE_SIZE;
1311 }
1312 }
1313
1314 /*
1315 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1316 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1317 * by the direct io procedure.
1318 * If this is a new extent that allocated by direct io, we should mark it in
1319 * the ip_unwritten_list.
1320 */
ocfs2_unwritten_check(struct inode * inode,struct ocfs2_write_ctxt * wc,struct ocfs2_write_cluster_desc * desc)1321 static int ocfs2_unwritten_check(struct inode *inode,
1322 struct ocfs2_write_ctxt *wc,
1323 struct ocfs2_write_cluster_desc *desc)
1324 {
1325 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1326 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1327 int ret = 0;
1328
1329 if (!desc->c_needs_zero)
1330 return 0;
1331
1332 retry:
1333 spin_lock(&oi->ip_lock);
1334 /* Needs not to zero no metter buffer or direct. The one who is zero
1335 * the cluster is doing zero. And he will clear unwritten after all
1336 * cluster io finished. */
1337 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1338 if (desc->c_cpos == ue->ue_cpos) {
1339 BUG_ON(desc->c_new);
1340 desc->c_needs_zero = 0;
1341 desc->c_clear_unwritten = 0;
1342 goto unlock;
1343 }
1344 }
1345
1346 if (wc->w_type != OCFS2_WRITE_DIRECT)
1347 goto unlock;
1348
1349 if (new == NULL) {
1350 spin_unlock(&oi->ip_lock);
1351 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1352 GFP_NOFS);
1353 if (new == NULL) {
1354 ret = -ENOMEM;
1355 goto out;
1356 }
1357 goto retry;
1358 }
1359 /* This direct write will doing zero. */
1360 new->ue_cpos = desc->c_cpos;
1361 new->ue_phys = desc->c_phys;
1362 desc->c_clear_unwritten = 0;
1363 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1364 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1365 wc->w_unwritten_count++;
1366 new = NULL;
1367 unlock:
1368 spin_unlock(&oi->ip_lock);
1369 out:
1370 kfree(new);
1371 return ret;
1372 }
1373
1374 /*
1375 * Populate each single-cluster write descriptor in the write context
1376 * with information about the i/o to be done.
1377 *
1378 * Returns the number of clusters that will have to be allocated, as
1379 * well as a worst case estimate of the number of extent records that
1380 * would have to be created during a write to an unwritten region.
1381 */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1382 static int ocfs2_populate_write_desc(struct inode *inode,
1383 struct ocfs2_write_ctxt *wc,
1384 unsigned int *clusters_to_alloc,
1385 unsigned int *extents_to_split)
1386 {
1387 int ret;
1388 struct ocfs2_write_cluster_desc *desc;
1389 unsigned int num_clusters = 0;
1390 unsigned int ext_flags = 0;
1391 u32 phys = 0;
1392 int i;
1393
1394 *clusters_to_alloc = 0;
1395 *extents_to_split = 0;
1396
1397 for (i = 0; i < wc->w_clen; i++) {
1398 desc = &wc->w_desc[i];
1399 desc->c_cpos = wc->w_cpos + i;
1400
1401 if (num_clusters == 0) {
1402 /*
1403 * Need to look up the next extent record.
1404 */
1405 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1406 &num_clusters, &ext_flags);
1407 if (ret) {
1408 mlog_errno(ret);
1409 goto out;
1410 }
1411
1412 /* We should already CoW the refcountd extent. */
1413 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1414
1415 /*
1416 * Assume worst case - that we're writing in
1417 * the middle of the extent.
1418 *
1419 * We can assume that the write proceeds from
1420 * left to right, in which case the extent
1421 * insert code is smart enough to coalesce the
1422 * next splits into the previous records created.
1423 */
1424 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1425 *extents_to_split = *extents_to_split + 2;
1426 } else if (phys) {
1427 /*
1428 * Only increment phys if it doesn't describe
1429 * a hole.
1430 */
1431 phys++;
1432 }
1433
1434 /*
1435 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1436 * file that got extended. w_first_new_cpos tells us
1437 * where the newly allocated clusters are so we can
1438 * zero them.
1439 */
1440 if (desc->c_cpos >= wc->w_first_new_cpos) {
1441 BUG_ON(phys == 0);
1442 desc->c_needs_zero = 1;
1443 }
1444
1445 desc->c_phys = phys;
1446 if (phys == 0) {
1447 desc->c_new = 1;
1448 desc->c_needs_zero = 1;
1449 desc->c_clear_unwritten = 1;
1450 *clusters_to_alloc = *clusters_to_alloc + 1;
1451 }
1452
1453 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1454 desc->c_clear_unwritten = 1;
1455 desc->c_needs_zero = 1;
1456 }
1457
1458 ret = ocfs2_unwritten_check(inode, wc, desc);
1459 if (ret) {
1460 mlog_errno(ret);
1461 goto out;
1462 }
1463
1464 num_clusters--;
1465 }
1466
1467 ret = 0;
1468 out:
1469 return ret;
1470 }
1471
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1472 static int ocfs2_write_begin_inline(struct address_space *mapping,
1473 struct inode *inode,
1474 struct ocfs2_write_ctxt *wc)
1475 {
1476 int ret;
1477 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1478 struct page *page;
1479 handle_t *handle;
1480 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1481
1482 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1483 if (IS_ERR(handle)) {
1484 ret = PTR_ERR(handle);
1485 mlog_errno(ret);
1486 goto out;
1487 }
1488
1489 page = find_or_create_page(mapping, 0, GFP_NOFS);
1490 if (!page) {
1491 ocfs2_commit_trans(osb, handle);
1492 ret = -ENOMEM;
1493 mlog_errno(ret);
1494 goto out;
1495 }
1496 /*
1497 * If we don't set w_num_pages then this page won't get unlocked
1498 * and freed on cleanup of the write context.
1499 */
1500 wc->w_pages[0] = wc->w_target_page = page;
1501 wc->w_num_pages = 1;
1502
1503 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1504 OCFS2_JOURNAL_ACCESS_WRITE);
1505 if (ret) {
1506 ocfs2_commit_trans(osb, handle);
1507
1508 mlog_errno(ret);
1509 goto out;
1510 }
1511
1512 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1513 ocfs2_set_inode_data_inline(inode, di);
1514
1515 if (!PageUptodate(page)) {
1516 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1517 if (ret) {
1518 ocfs2_commit_trans(osb, handle);
1519
1520 goto out;
1521 }
1522 }
1523
1524 wc->w_handle = handle;
1525 out:
1526 return ret;
1527 }
1528
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1529 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1530 {
1531 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1532
1533 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1534 return 1;
1535 return 0;
1536 }
1537
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1538 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1539 struct inode *inode, loff_t pos,
1540 unsigned len, struct page *mmap_page,
1541 struct ocfs2_write_ctxt *wc)
1542 {
1543 int ret, written = 0;
1544 loff_t end = pos + len;
1545 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1546 struct ocfs2_dinode *di = NULL;
1547
1548 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1549 len, (unsigned long long)pos,
1550 oi->ip_dyn_features);
1551
1552 /*
1553 * Handle inodes which already have inline data 1st.
1554 */
1555 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1556 if (mmap_page == NULL &&
1557 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1558 goto do_inline_write;
1559
1560 /*
1561 * The write won't fit - we have to give this inode an
1562 * inline extent list now.
1563 */
1564 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1565 if (ret)
1566 mlog_errno(ret);
1567 goto out;
1568 }
1569
1570 /*
1571 * Check whether the inode can accept inline data.
1572 */
1573 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1574 return 0;
1575
1576 /*
1577 * Check whether the write can fit.
1578 */
1579 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1580 if (mmap_page ||
1581 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1582 return 0;
1583
1584 do_inline_write:
1585 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1586 if (ret) {
1587 mlog_errno(ret);
1588 goto out;
1589 }
1590
1591 /*
1592 * This signals to the caller that the data can be written
1593 * inline.
1594 */
1595 written = 1;
1596 out:
1597 return written ? written : ret;
1598 }
1599
1600 /*
1601 * This function only does anything for file systems which can't
1602 * handle sparse files.
1603 *
1604 * What we want to do here is fill in any hole between the current end
1605 * of allocation and the end of our write. That way the rest of the
1606 * write path can treat it as an non-allocating write, which has no
1607 * special case code for sparse/nonsparse files.
1608 */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)1609 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1610 struct buffer_head *di_bh,
1611 loff_t pos, unsigned len,
1612 struct ocfs2_write_ctxt *wc)
1613 {
1614 int ret;
1615 loff_t newsize = pos + len;
1616
1617 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1618
1619 if (newsize <= i_size_read(inode))
1620 return 0;
1621
1622 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1623 if (ret)
1624 mlog_errno(ret);
1625
1626 /* There is no wc if this is call from direct. */
1627 if (wc)
1628 wc->w_first_new_cpos =
1629 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1630
1631 return ret;
1632 }
1633
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)1634 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1635 loff_t pos)
1636 {
1637 int ret = 0;
1638
1639 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1640 if (pos > i_size_read(inode))
1641 ret = ocfs2_zero_extend(inode, di_bh, pos);
1642
1643 return ret;
1644 }
1645
ocfs2_write_begin_nolock(struct address_space * mapping,loff_t pos,unsigned len,ocfs2_write_type_t type,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)1646 int ocfs2_write_begin_nolock(struct address_space *mapping,
1647 loff_t pos, unsigned len, ocfs2_write_type_t type,
1648 struct page **pagep, void **fsdata,
1649 struct buffer_head *di_bh, struct page *mmap_page)
1650 {
1651 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1652 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1653 struct ocfs2_write_ctxt *wc;
1654 struct inode *inode = mapping->host;
1655 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1656 struct ocfs2_dinode *di;
1657 struct ocfs2_alloc_context *data_ac = NULL;
1658 struct ocfs2_alloc_context *meta_ac = NULL;
1659 handle_t *handle;
1660 struct ocfs2_extent_tree et;
1661 int try_free = 1, ret1;
1662
1663 try_again:
1664 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1665 if (ret) {
1666 mlog_errno(ret);
1667 return ret;
1668 }
1669
1670 if (ocfs2_supports_inline_data(osb)) {
1671 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1672 mmap_page, wc);
1673 if (ret == 1) {
1674 ret = 0;
1675 goto success;
1676 }
1677 if (ret < 0) {
1678 mlog_errno(ret);
1679 goto out;
1680 }
1681 }
1682
1683 /* Direct io change i_size late, should not zero tail here. */
1684 if (type != OCFS2_WRITE_DIRECT) {
1685 if (ocfs2_sparse_alloc(osb))
1686 ret = ocfs2_zero_tail(inode, di_bh, pos);
1687 else
1688 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1689 len, wc);
1690 if (ret) {
1691 mlog_errno(ret);
1692 goto out;
1693 }
1694 }
1695
1696 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1697 if (ret < 0) {
1698 mlog_errno(ret);
1699 goto out;
1700 } else if (ret == 1) {
1701 clusters_need = wc->w_clen;
1702 ret = ocfs2_refcount_cow(inode, di_bh,
1703 wc->w_cpos, wc->w_clen, UINT_MAX);
1704 if (ret) {
1705 mlog_errno(ret);
1706 goto out;
1707 }
1708 }
1709
1710 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1711 &extents_to_split);
1712 if (ret) {
1713 mlog_errno(ret);
1714 goto out;
1715 }
1716 clusters_need += clusters_to_alloc;
1717
1718 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1719
1720 trace_ocfs2_write_begin_nolock(
1721 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1722 (long long)i_size_read(inode),
1723 le32_to_cpu(di->i_clusters),
1724 pos, len, type, mmap_page,
1725 clusters_to_alloc, extents_to_split);
1726
1727 /*
1728 * We set w_target_from, w_target_to here so that
1729 * ocfs2_write_end() knows which range in the target page to
1730 * write out. An allocation requires that we write the entire
1731 * cluster range.
1732 */
1733 if (clusters_to_alloc || extents_to_split) {
1734 /*
1735 * XXX: We are stretching the limits of
1736 * ocfs2_lock_allocators(). It greatly over-estimates
1737 * the work to be done.
1738 */
1739 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1740 wc->w_di_bh);
1741 ret = ocfs2_lock_allocators(inode, &et,
1742 clusters_to_alloc, extents_to_split,
1743 &data_ac, &meta_ac);
1744 if (ret) {
1745 mlog_errno(ret);
1746 goto out;
1747 }
1748
1749 if (data_ac)
1750 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1751
1752 credits = ocfs2_calc_extend_credits(inode->i_sb,
1753 &di->id2.i_list);
1754 } else if (type == OCFS2_WRITE_DIRECT)
1755 /* direct write needs not to start trans if no extents alloc. */
1756 goto success;
1757
1758 /*
1759 * We have to zero sparse allocated clusters, unwritten extent clusters,
1760 * and non-sparse clusters we just extended. For non-sparse writes,
1761 * we know zeros will only be needed in the first and/or last cluster.
1762 */
1763 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1764 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1765 cluster_of_pages = 1;
1766 else
1767 cluster_of_pages = 0;
1768
1769 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1770
1771 handle = ocfs2_start_trans(osb, credits);
1772 if (IS_ERR(handle)) {
1773 ret = PTR_ERR(handle);
1774 mlog_errno(ret);
1775 goto out;
1776 }
1777
1778 wc->w_handle = handle;
1779
1780 if (clusters_to_alloc) {
1781 ret = dquot_alloc_space_nodirty(inode,
1782 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1783 if (ret)
1784 goto out_commit;
1785 }
1786
1787 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1788 OCFS2_JOURNAL_ACCESS_WRITE);
1789 if (ret) {
1790 mlog_errno(ret);
1791 goto out_quota;
1792 }
1793
1794 /*
1795 * Fill our page array first. That way we've grabbed enough so
1796 * that we can zero and flush if we error after adding the
1797 * extent.
1798 */
1799 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1800 cluster_of_pages, mmap_page);
1801 if (ret) {
1802 /*
1803 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1804 * the target page. In this case, we exit with no error and no target
1805 * page. This will trigger the caller, page_mkwrite(), to re-try
1806 * the operation.
1807 */
1808 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1809 BUG_ON(wc->w_target_page);
1810 ret = 0;
1811 goto out_quota;
1812 }
1813
1814 mlog_errno(ret);
1815 goto out_quota;
1816 }
1817
1818 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1819 len);
1820 if (ret) {
1821 mlog_errno(ret);
1822 goto out_quota;
1823 }
1824
1825 if (data_ac)
1826 ocfs2_free_alloc_context(data_ac);
1827 if (meta_ac)
1828 ocfs2_free_alloc_context(meta_ac);
1829
1830 success:
1831 if (pagep)
1832 *pagep = wc->w_target_page;
1833 *fsdata = wc;
1834 return 0;
1835 out_quota:
1836 if (clusters_to_alloc)
1837 dquot_free_space(inode,
1838 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1839 out_commit:
1840 ocfs2_commit_trans(osb, handle);
1841
1842 out:
1843 /*
1844 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1845 * even in case of error here like ENOSPC and ENOMEM. So, we need
1846 * to unlock the target page manually to prevent deadlocks when
1847 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1848 * to VM code.
1849 */
1850 if (wc->w_target_locked)
1851 unlock_page(mmap_page);
1852
1853 ocfs2_free_write_ctxt(inode, wc);
1854
1855 if (data_ac) {
1856 ocfs2_free_alloc_context(data_ac);
1857 data_ac = NULL;
1858 }
1859 if (meta_ac) {
1860 ocfs2_free_alloc_context(meta_ac);
1861 meta_ac = NULL;
1862 }
1863
1864 if (ret == -ENOSPC && try_free) {
1865 /*
1866 * Try to free some truncate log so that we can have enough
1867 * clusters to allocate.
1868 */
1869 try_free = 0;
1870
1871 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1872 if (ret1 == 1)
1873 goto try_again;
1874
1875 if (ret1 < 0)
1876 mlog_errno(ret1);
1877 }
1878
1879 return ret;
1880 }
1881
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1882 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1883 loff_t pos, unsigned len,
1884 struct page **pagep, void **fsdata)
1885 {
1886 int ret;
1887 struct buffer_head *di_bh = NULL;
1888 struct inode *inode = mapping->host;
1889
1890 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1891 if (ret) {
1892 mlog_errno(ret);
1893 return ret;
1894 }
1895
1896 /*
1897 * Take alloc sem here to prevent concurrent lookups. That way
1898 * the mapping, zeroing and tree manipulation within
1899 * ocfs2_write() will be safe against ->read_folio(). This
1900 * should also serve to lock out allocation from a shared
1901 * writeable region.
1902 */
1903 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1904
1905 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1906 pagep, fsdata, di_bh, NULL);
1907 if (ret) {
1908 mlog_errno(ret);
1909 goto out_fail;
1910 }
1911
1912 brelse(di_bh);
1913
1914 return 0;
1915
1916 out_fail:
1917 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1918
1919 brelse(di_bh);
1920 ocfs2_inode_unlock(inode, 1);
1921
1922 return ret;
1923 }
1924
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)1925 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1926 unsigned len, unsigned *copied,
1927 struct ocfs2_dinode *di,
1928 struct ocfs2_write_ctxt *wc)
1929 {
1930 void *kaddr;
1931
1932 if (unlikely(*copied < len)) {
1933 if (!PageUptodate(wc->w_target_page)) {
1934 *copied = 0;
1935 return;
1936 }
1937 }
1938
1939 kaddr = kmap_atomic(wc->w_target_page);
1940 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1941 kunmap_atomic(kaddr);
1942
1943 trace_ocfs2_write_end_inline(
1944 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1945 (unsigned long long)pos, *copied,
1946 le16_to_cpu(di->id2.i_data.id_count),
1947 le16_to_cpu(di->i_dyn_features));
1948 }
1949
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,void * fsdata)1950 int ocfs2_write_end_nolock(struct address_space *mapping,
1951 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1952 {
1953 int i, ret;
1954 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1955 struct inode *inode = mapping->host;
1956 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1957 struct ocfs2_write_ctxt *wc = fsdata;
1958 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1959 handle_t *handle = wc->w_handle;
1960 struct page *tmppage;
1961
1962 BUG_ON(!list_empty(&wc->w_unwritten_list));
1963
1964 if (handle) {
1965 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1966 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1967 if (ret) {
1968 copied = ret;
1969 mlog_errno(ret);
1970 goto out;
1971 }
1972 }
1973
1974 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1975 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1976 goto out_write_size;
1977 }
1978
1979 if (unlikely(copied < len) && wc->w_target_page) {
1980 loff_t new_isize;
1981
1982 if (!PageUptodate(wc->w_target_page))
1983 copied = 0;
1984
1985 new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1986 if (new_isize > page_offset(wc->w_target_page))
1987 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1988 start+len);
1989 else {
1990 /*
1991 * When page is fully beyond new isize (data copy
1992 * failed), do not bother zeroing the page. Invalidate
1993 * it instead so that writeback does not get confused
1994 * put page & buffer dirty bits into inconsistent
1995 * state.
1996 */
1997 block_invalidate_folio(page_folio(wc->w_target_page),
1998 0, PAGE_SIZE);
1999 }
2000 }
2001 if (wc->w_target_page)
2002 flush_dcache_page(wc->w_target_page);
2003
2004 for(i = 0; i < wc->w_num_pages; i++) {
2005 tmppage = wc->w_pages[i];
2006
2007 /* This is the direct io target page. */
2008 if (tmppage == NULL)
2009 continue;
2010
2011 if (tmppage == wc->w_target_page) {
2012 from = wc->w_target_from;
2013 to = wc->w_target_to;
2014
2015 BUG_ON(from > PAGE_SIZE ||
2016 to > PAGE_SIZE ||
2017 to < from);
2018 } else {
2019 /*
2020 * Pages adjacent to the target (if any) imply
2021 * a hole-filling write in which case we want
2022 * to flush their entire range.
2023 */
2024 from = 0;
2025 to = PAGE_SIZE;
2026 }
2027
2028 if (page_has_buffers(tmppage)) {
2029 if (handle && ocfs2_should_order_data(inode)) {
2030 loff_t start_byte =
2031 ((loff_t)tmppage->index << PAGE_SHIFT) +
2032 from;
2033 loff_t length = to - from;
2034 ocfs2_jbd2_inode_add_write(handle, inode,
2035 start_byte, length);
2036 }
2037 block_commit_write(tmppage, from, to);
2038 }
2039 }
2040
2041 out_write_size:
2042 /* Direct io do not update i_size here. */
2043 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2044 pos += copied;
2045 if (pos > i_size_read(inode)) {
2046 i_size_write(inode, pos);
2047 mark_inode_dirty(inode);
2048 }
2049 inode->i_blocks = ocfs2_inode_sector_count(inode);
2050 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2051 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2052 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2053 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2054 if (handle)
2055 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2056 }
2057 if (handle)
2058 ocfs2_journal_dirty(handle, wc->w_di_bh);
2059
2060 out:
2061 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2062 * lock, or it will cause a deadlock since journal commit threads holds
2063 * this lock and will ask for the page lock when flushing the data.
2064 * put it here to preserve the unlock order.
2065 */
2066 ocfs2_unlock_pages(wc);
2067
2068 if (handle)
2069 ocfs2_commit_trans(osb, handle);
2070
2071 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2072
2073 brelse(wc->w_di_bh);
2074 kfree(wc);
2075
2076 return copied;
2077 }
2078
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2079 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2080 loff_t pos, unsigned len, unsigned copied,
2081 struct page *page, void *fsdata)
2082 {
2083 int ret;
2084 struct inode *inode = mapping->host;
2085
2086 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2087
2088 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2089 ocfs2_inode_unlock(inode, 1);
2090
2091 return ret;
2092 }
2093
2094 struct ocfs2_dio_write_ctxt {
2095 struct list_head dw_zero_list;
2096 unsigned dw_zero_count;
2097 int dw_orphaned;
2098 pid_t dw_writer_pid;
2099 };
2100
2101 static struct ocfs2_dio_write_ctxt *
ocfs2_dio_alloc_write_ctx(struct buffer_head * bh,int * alloc)2102 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2103 {
2104 struct ocfs2_dio_write_ctxt *dwc = NULL;
2105
2106 if (bh->b_private)
2107 return bh->b_private;
2108
2109 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2110 if (dwc == NULL)
2111 return NULL;
2112 INIT_LIST_HEAD(&dwc->dw_zero_list);
2113 dwc->dw_zero_count = 0;
2114 dwc->dw_orphaned = 0;
2115 dwc->dw_writer_pid = task_pid_nr(current);
2116 bh->b_private = dwc;
2117 *alloc = 1;
2118
2119 return dwc;
2120 }
2121
ocfs2_dio_free_write_ctx(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc)2122 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2123 struct ocfs2_dio_write_ctxt *dwc)
2124 {
2125 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2126 kfree(dwc);
2127 }
2128
2129 /*
2130 * TODO: Make this into a generic get_blocks function.
2131 *
2132 * From do_direct_io in direct-io.c:
2133 * "So what we do is to permit the ->get_blocks function to populate
2134 * bh.b_size with the size of IO which is permitted at this offset and
2135 * this i_blkbits."
2136 *
2137 * This function is called directly from get_more_blocks in direct-io.c.
2138 *
2139 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2140 * fs_count, map_bh, dio->rw == WRITE);
2141 */
ocfs2_dio_wr_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2142 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2143 struct buffer_head *bh_result, int create)
2144 {
2145 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2146 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2147 struct ocfs2_write_ctxt *wc;
2148 struct ocfs2_write_cluster_desc *desc = NULL;
2149 struct ocfs2_dio_write_ctxt *dwc = NULL;
2150 struct buffer_head *di_bh = NULL;
2151 u64 p_blkno;
2152 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2153 loff_t pos = iblock << i_blkbits;
2154 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2155 unsigned len, total_len = bh_result->b_size;
2156 int ret = 0, first_get_block = 0;
2157
2158 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2159 len = min(total_len, len);
2160
2161 /*
2162 * bh_result->b_size is count in get_more_blocks according to write
2163 * "pos" and "end", we need map twice to return different buffer state:
2164 * 1. area in file size, not set NEW;
2165 * 2. area out file size, set NEW.
2166 *
2167 * iblock endblk
2168 * |--------|---------|---------|---------
2169 * |<-------area in file------->|
2170 */
2171
2172 if ((iblock <= endblk) &&
2173 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2174 len = (endblk - iblock + 1) << i_blkbits;
2175
2176 mlog(0, "get block of %lu at %llu:%u req %u\n",
2177 inode->i_ino, pos, len, total_len);
2178
2179 /*
2180 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2181 * we may need to add it to orphan dir. So can not fall to fast path
2182 * while file size will be changed.
2183 */
2184 if (pos + total_len <= i_size_read(inode)) {
2185
2186 /* This is the fast path for re-write. */
2187 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2188 if (buffer_mapped(bh_result) &&
2189 !buffer_new(bh_result) &&
2190 ret == 0)
2191 goto out;
2192
2193 /* Clear state set by ocfs2_get_block. */
2194 bh_result->b_state = 0;
2195 }
2196
2197 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2198 if (unlikely(dwc == NULL)) {
2199 ret = -ENOMEM;
2200 mlog_errno(ret);
2201 goto out;
2202 }
2203
2204 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2205 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2206 !dwc->dw_orphaned) {
2207 /*
2208 * when we are going to alloc extents beyond file size, add the
2209 * inode to orphan dir, so we can recall those spaces when
2210 * system crashed during write.
2211 */
2212 ret = ocfs2_add_inode_to_orphan(osb, inode);
2213 if (ret < 0) {
2214 mlog_errno(ret);
2215 goto out;
2216 }
2217 dwc->dw_orphaned = 1;
2218 }
2219
2220 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2221 if (ret) {
2222 mlog_errno(ret);
2223 goto out;
2224 }
2225
2226 down_write(&oi->ip_alloc_sem);
2227
2228 if (first_get_block) {
2229 if (ocfs2_sparse_alloc(osb))
2230 ret = ocfs2_zero_tail(inode, di_bh, pos);
2231 else
2232 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2233 total_len, NULL);
2234 if (ret < 0) {
2235 mlog_errno(ret);
2236 goto unlock;
2237 }
2238 }
2239
2240 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2241 OCFS2_WRITE_DIRECT, NULL,
2242 (void **)&wc, di_bh, NULL);
2243 if (ret) {
2244 mlog_errno(ret);
2245 goto unlock;
2246 }
2247
2248 desc = &wc->w_desc[0];
2249
2250 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2251 BUG_ON(p_blkno == 0);
2252 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2253
2254 map_bh(bh_result, inode->i_sb, p_blkno);
2255 bh_result->b_size = len;
2256 if (desc->c_needs_zero)
2257 set_buffer_new(bh_result);
2258
2259 if (iblock > endblk)
2260 set_buffer_new(bh_result);
2261
2262 /* May sleep in end_io. It should not happen in a irq context. So defer
2263 * it to dio work queue. */
2264 set_buffer_defer_completion(bh_result);
2265
2266 if (!list_empty(&wc->w_unwritten_list)) {
2267 struct ocfs2_unwritten_extent *ue = NULL;
2268
2269 ue = list_first_entry(&wc->w_unwritten_list,
2270 struct ocfs2_unwritten_extent,
2271 ue_node);
2272 BUG_ON(ue->ue_cpos != desc->c_cpos);
2273 /* The physical address may be 0, fill it. */
2274 ue->ue_phys = desc->c_phys;
2275
2276 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2277 dwc->dw_zero_count += wc->w_unwritten_count;
2278 }
2279
2280 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2281 BUG_ON(ret != len);
2282 ret = 0;
2283 unlock:
2284 up_write(&oi->ip_alloc_sem);
2285 ocfs2_inode_unlock(inode, 1);
2286 brelse(di_bh);
2287 out:
2288 if (ret < 0)
2289 ret = -EIO;
2290 return ret;
2291 }
2292
ocfs2_dio_end_io_write(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc,loff_t offset,ssize_t bytes)2293 static int ocfs2_dio_end_io_write(struct inode *inode,
2294 struct ocfs2_dio_write_ctxt *dwc,
2295 loff_t offset,
2296 ssize_t bytes)
2297 {
2298 struct ocfs2_cached_dealloc_ctxt dealloc;
2299 struct ocfs2_extent_tree et;
2300 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2301 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2302 struct ocfs2_unwritten_extent *ue = NULL;
2303 struct buffer_head *di_bh = NULL;
2304 struct ocfs2_dinode *di;
2305 struct ocfs2_alloc_context *data_ac = NULL;
2306 struct ocfs2_alloc_context *meta_ac = NULL;
2307 handle_t *handle = NULL;
2308 loff_t end = offset + bytes;
2309 int ret = 0, credits = 0;
2310
2311 ocfs2_init_dealloc_ctxt(&dealloc);
2312
2313 /* We do clear unwritten, delete orphan, change i_size here. If neither
2314 * of these happen, we can skip all this. */
2315 if (list_empty(&dwc->dw_zero_list) &&
2316 end <= i_size_read(inode) &&
2317 !dwc->dw_orphaned)
2318 goto out;
2319
2320 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2321 if (ret < 0) {
2322 mlog_errno(ret);
2323 goto out;
2324 }
2325
2326 down_write(&oi->ip_alloc_sem);
2327
2328 /* Delete orphan before acquire i_rwsem. */
2329 if (dwc->dw_orphaned) {
2330 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2331
2332 end = end > i_size_read(inode) ? end : 0;
2333
2334 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2335 !!end, end);
2336 if (ret < 0)
2337 mlog_errno(ret);
2338 }
2339
2340 di = (struct ocfs2_dinode *)di_bh->b_data;
2341
2342 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2343
2344 /* Attach dealloc with extent tree in case that we may reuse extents
2345 * which are already unlinked from current extent tree due to extent
2346 * rotation and merging.
2347 */
2348 et.et_dealloc = &dealloc;
2349
2350 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2351 &data_ac, &meta_ac);
2352 if (ret) {
2353 mlog_errno(ret);
2354 goto unlock;
2355 }
2356
2357 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2358
2359 handle = ocfs2_start_trans(osb, credits);
2360 if (IS_ERR(handle)) {
2361 ret = PTR_ERR(handle);
2362 mlog_errno(ret);
2363 goto unlock;
2364 }
2365 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2366 OCFS2_JOURNAL_ACCESS_WRITE);
2367 if (ret) {
2368 mlog_errno(ret);
2369 goto commit;
2370 }
2371
2372 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2373 ret = ocfs2_assure_trans_credits(handle, credits);
2374 if (ret < 0) {
2375 mlog_errno(ret);
2376 break;
2377 }
2378 ret = ocfs2_mark_extent_written(inode, &et, handle,
2379 ue->ue_cpos, 1,
2380 ue->ue_phys,
2381 meta_ac, &dealloc);
2382 if (ret < 0) {
2383 mlog_errno(ret);
2384 break;
2385 }
2386 }
2387
2388 if (end > i_size_read(inode)) {
2389 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2390 if (ret < 0)
2391 mlog_errno(ret);
2392 }
2393 commit:
2394 ocfs2_commit_trans(osb, handle);
2395 unlock:
2396 up_write(&oi->ip_alloc_sem);
2397 ocfs2_inode_unlock(inode, 1);
2398 brelse(di_bh);
2399 out:
2400 if (data_ac)
2401 ocfs2_free_alloc_context(data_ac);
2402 if (meta_ac)
2403 ocfs2_free_alloc_context(meta_ac);
2404 ocfs2_run_deallocs(osb, &dealloc);
2405 ocfs2_dio_free_write_ctx(inode, dwc);
2406
2407 return ret;
2408 }
2409
2410 /*
2411 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2412 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2413 * to protect io on one node from truncation on another.
2414 */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private)2415 static int ocfs2_dio_end_io(struct kiocb *iocb,
2416 loff_t offset,
2417 ssize_t bytes,
2418 void *private)
2419 {
2420 struct inode *inode = file_inode(iocb->ki_filp);
2421 int level;
2422 int ret = 0;
2423
2424 /* this io's submitter should not have unlocked this before we could */
2425 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2426
2427 if (bytes <= 0)
2428 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2429 (long long)bytes);
2430 if (private) {
2431 if (bytes > 0)
2432 ret = ocfs2_dio_end_io_write(inode, private, offset,
2433 bytes);
2434 else
2435 ocfs2_dio_free_write_ctx(inode, private);
2436 }
2437
2438 ocfs2_iocb_clear_rw_locked(iocb);
2439
2440 level = ocfs2_iocb_rw_locked_level(iocb);
2441 ocfs2_rw_unlock(inode, level);
2442 return ret;
2443 }
2444
ocfs2_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2445 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2446 {
2447 struct file *file = iocb->ki_filp;
2448 struct inode *inode = file->f_mapping->host;
2449 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2450 get_block_t *get_block;
2451
2452 /*
2453 * Fallback to buffered I/O if we see an inode without
2454 * extents.
2455 */
2456 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2457 return 0;
2458
2459 /* Fallback to buffered I/O if we do not support append dio. */
2460 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2461 !ocfs2_supports_append_dio(osb))
2462 return 0;
2463
2464 if (iov_iter_rw(iter) == READ)
2465 get_block = ocfs2_lock_get_block;
2466 else
2467 get_block = ocfs2_dio_wr_get_block;
2468
2469 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2470 iter, get_block,
2471 ocfs2_dio_end_io, 0);
2472 }
2473
2474 const struct address_space_operations ocfs2_aops = {
2475 .dirty_folio = block_dirty_folio,
2476 .read_folio = ocfs2_read_folio,
2477 .readahead = ocfs2_readahead,
2478 .writepage = ocfs2_writepage,
2479 .write_begin = ocfs2_write_begin,
2480 .write_end = ocfs2_write_end,
2481 .bmap = ocfs2_bmap,
2482 .direct_IO = ocfs2_direct_IO,
2483 .invalidate_folio = block_invalidate_folio,
2484 .release_folio = ocfs2_release_folio,
2485 .migrate_folio = buffer_migrate_folio,
2486 .is_partially_uptodate = block_is_partially_uptodate,
2487 .error_remove_page = generic_error_remove_page,
2488 };
2489