• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/console.h>
20 #include <linux/ctype.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_graph.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/proc_fs.h>
30 
31 #include "of_private.h"
32 
33 LIST_HEAD(aliases_lookup);
34 
35 struct device_node *of_root;
36 EXPORT_SYMBOL(of_root);
37 struct device_node *of_chosen;
38 EXPORT_SYMBOL(of_chosen);
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
of_node_name_eq(const struct device_node * np,const char * name)58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
of_node_name_prefix(const struct device_node * np,const char * prefix)73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
__of_node_is_type(const struct device_node * np,const char * type)82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
of_bus_n_addr_cells(struct device_node * np)89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	for (; np; np = np->parent)
94 		if (!of_property_read_u32(np, "#address-cells", &cells))
95 			return cells;
96 
97 	/* No #address-cells property for the root node */
98 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100 
of_n_addr_cells(struct device_node * np)101 int of_n_addr_cells(struct device_node *np)
102 {
103 	if (np->parent)
104 		np = np->parent;
105 
106 	return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109 
of_bus_n_size_cells(struct device_node * np)110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 	u32 cells;
113 
114 	for (; np; np = np->parent)
115 		if (!of_property_read_u32(np, "#size-cells", &cells))
116 			return cells;
117 
118 	/* No #size-cells property for the root node */
119 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121 
of_n_size_cells(struct device_node * np)122 int of_n_size_cells(struct device_node *np)
123 {
124 	if (np->parent)
125 		np = np->parent;
126 
127 	return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130 
131 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 	return NUMA_NO_NODE;
135 }
136 #endif
137 
138 #define OF_PHANDLE_CACHE_BITS	7
139 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
140 
141 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142 
of_phandle_cache_hash(phandle handle)143 static u32 of_phandle_cache_hash(phandle handle)
144 {
145 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146 }
147 
148 /*
149  * Caller must hold devtree_lock.
150  */
__of_phandle_cache_inv_entry(phandle handle)151 void __of_phandle_cache_inv_entry(phandle handle)
152 {
153 	u32 handle_hash;
154 	struct device_node *np;
155 
156 	if (!handle)
157 		return;
158 
159 	handle_hash = of_phandle_cache_hash(handle);
160 
161 	np = phandle_cache[handle_hash];
162 	if (np && handle == np->phandle)
163 		phandle_cache[handle_hash] = NULL;
164 }
165 
of_core_init(void)166 void __init of_core_init(void)
167 {
168 	struct device_node *np;
169 
170 	of_platform_register_reconfig_notifier();
171 
172 	/* Create the kset, and register existing nodes */
173 	mutex_lock(&of_mutex);
174 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 	if (!of_kset) {
176 		mutex_unlock(&of_mutex);
177 		pr_err("failed to register existing nodes\n");
178 		return;
179 	}
180 	for_each_of_allnodes(np) {
181 		__of_attach_node_sysfs(np);
182 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 	}
185 	mutex_unlock(&of_mutex);
186 
187 	/* Symlink in /proc as required by userspace ABI */
188 	if (of_root)
189 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190 }
191 
__of_find_property(const struct device_node * np,const char * name,int * lenp)192 static struct property *__of_find_property(const struct device_node *np,
193 					   const char *name, int *lenp)
194 {
195 	struct property *pp;
196 
197 	if (!np)
198 		return NULL;
199 
200 	for (pp = np->properties; pp; pp = pp->next) {
201 		if (of_prop_cmp(pp->name, name) == 0) {
202 			if (lenp)
203 				*lenp = pp->length;
204 			break;
205 		}
206 	}
207 
208 	return pp;
209 }
210 
of_find_property(const struct device_node * np,const char * name,int * lenp)211 struct property *of_find_property(const struct device_node *np,
212 				  const char *name,
213 				  int *lenp)
214 {
215 	struct property *pp;
216 	unsigned long flags;
217 
218 	raw_spin_lock_irqsave(&devtree_lock, flags);
219 	pp = __of_find_property(np, name, lenp);
220 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
221 
222 	return pp;
223 }
224 EXPORT_SYMBOL(of_find_property);
225 
__of_find_all_nodes(struct device_node * prev)226 struct device_node *__of_find_all_nodes(struct device_node *prev)
227 {
228 	struct device_node *np;
229 	if (!prev) {
230 		np = of_root;
231 	} else if (prev->child) {
232 		np = prev->child;
233 	} else {
234 		/* Walk back up looking for a sibling, or the end of the structure */
235 		np = prev;
236 		while (np->parent && !np->sibling)
237 			np = np->parent;
238 		np = np->sibling; /* Might be null at the end of the tree */
239 	}
240 	return np;
241 }
242 
243 /**
244  * of_find_all_nodes - Get next node in global list
245  * @prev:	Previous node or NULL to start iteration
246  *		of_node_put() will be called on it
247  *
248  * Return: A node pointer with refcount incremented, use
249  * of_node_put() on it when done.
250  */
of_find_all_nodes(struct device_node * prev)251 struct device_node *of_find_all_nodes(struct device_node *prev)
252 {
253 	struct device_node *np;
254 	unsigned long flags;
255 
256 	raw_spin_lock_irqsave(&devtree_lock, flags);
257 	np = __of_find_all_nodes(prev);
258 	of_node_get(np);
259 	of_node_put(prev);
260 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 	return np;
262 }
263 EXPORT_SYMBOL(of_find_all_nodes);
264 
265 /*
266  * Find a property with a given name for a given node
267  * and return the value.
268  */
__of_get_property(const struct device_node * np,const char * name,int * lenp)269 const void *__of_get_property(const struct device_node *np,
270 			      const char *name, int *lenp)
271 {
272 	struct property *pp = __of_find_property(np, name, lenp);
273 
274 	return pp ? pp->value : NULL;
275 }
276 
277 /*
278  * Find a property with a given name for a given node
279  * and return the value.
280  */
of_get_property(const struct device_node * np,const char * name,int * lenp)281 const void *of_get_property(const struct device_node *np, const char *name,
282 			    int *lenp)
283 {
284 	struct property *pp = of_find_property(np, name, lenp);
285 
286 	return pp ? pp->value : NULL;
287 }
288 EXPORT_SYMBOL(of_get_property);
289 
290 /**
291  * __of_device_is_compatible() - Check if the node matches given constraints
292  * @device: pointer to node
293  * @compat: required compatible string, NULL or "" for any match
294  * @type: required device_type value, NULL or "" for any match
295  * @name: required node name, NULL or "" for any match
296  *
297  * Checks if the given @compat, @type and @name strings match the
298  * properties of the given @device. A constraints can be skipped by
299  * passing NULL or an empty string as the constraint.
300  *
301  * Returns 0 for no match, and a positive integer on match. The return
302  * value is a relative score with larger values indicating better
303  * matches. The score is weighted for the most specific compatible value
304  * to get the highest score. Matching type is next, followed by matching
305  * name. Practically speaking, this results in the following priority
306  * order for matches:
307  *
308  * 1. specific compatible && type && name
309  * 2. specific compatible && type
310  * 3. specific compatible && name
311  * 4. specific compatible
312  * 5. general compatible && type && name
313  * 6. general compatible && type
314  * 7. general compatible && name
315  * 8. general compatible
316  * 9. type && name
317  * 10. type
318  * 11. name
319  */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)320 static int __of_device_is_compatible(const struct device_node *device,
321 				     const char *compat, const char *type, const char *name)
322 {
323 	struct property *prop;
324 	const char *cp;
325 	int index = 0, score = 0;
326 
327 	/* Compatible match has highest priority */
328 	if (compat && compat[0]) {
329 		prop = __of_find_property(device, "compatible", NULL);
330 		for (cp = of_prop_next_string(prop, NULL); cp;
331 		     cp = of_prop_next_string(prop, cp), index++) {
332 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
333 				score = INT_MAX/2 - (index << 2);
334 				break;
335 			}
336 		}
337 		if (!score)
338 			return 0;
339 	}
340 
341 	/* Matching type is better than matching name */
342 	if (type && type[0]) {
343 		if (!__of_node_is_type(device, type))
344 			return 0;
345 		score += 2;
346 	}
347 
348 	/* Matching name is a bit better than not */
349 	if (name && name[0]) {
350 		if (!of_node_name_eq(device, name))
351 			return 0;
352 		score++;
353 	}
354 
355 	return score;
356 }
357 
358 /** Checks if the given "compat" string matches one of the strings in
359  * the device's "compatible" property
360  */
of_device_is_compatible(const struct device_node * device,const char * compat)361 int of_device_is_compatible(const struct device_node *device,
362 		const char *compat)
363 {
364 	unsigned long flags;
365 	int res;
366 
367 	raw_spin_lock_irqsave(&devtree_lock, flags);
368 	res = __of_device_is_compatible(device, compat, NULL, NULL);
369 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
370 	return res;
371 }
372 EXPORT_SYMBOL(of_device_is_compatible);
373 
374 /** Checks if the device is compatible with any of the entries in
375  *  a NULL terminated array of strings. Returns the best match
376  *  score or 0.
377  */
of_device_compatible_match(const struct device_node * device,const char * const * compat)378 int of_device_compatible_match(const struct device_node *device,
379 			       const char *const *compat)
380 {
381 	unsigned int tmp, score = 0;
382 
383 	if (!compat)
384 		return 0;
385 
386 	while (*compat) {
387 		tmp = of_device_is_compatible(device, *compat);
388 		if (tmp > score)
389 			score = tmp;
390 		compat++;
391 	}
392 
393 	return score;
394 }
395 EXPORT_SYMBOL_GPL(of_device_compatible_match);
396 
397 /**
398  * of_machine_compatible_match - Test root of device tree against a compatible array
399  * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
400  *
401  * Returns true if the root node has any of the given compatible values in its
402  * compatible property.
403  */
of_machine_compatible_match(const char * const * compats)404 bool of_machine_compatible_match(const char *const *compats)
405 {
406 	struct device_node *root;
407 	int rc = 0;
408 
409 	root = of_find_node_by_path("/");
410 	if (root) {
411 		rc = of_device_compatible_match(root, compats);
412 		of_node_put(root);
413 	}
414 
415 	return rc != 0;
416 }
417 EXPORT_SYMBOL(of_machine_compatible_match);
418 
419 /**
420  *  __of_device_is_available - check if a device is available for use
421  *
422  *  @device: Node to check for availability, with locks already held
423  *
424  *  Return: True if the status property is absent or set to "okay" or "ok",
425  *  false otherwise
426  */
__of_device_is_available(const struct device_node * device)427 static bool __of_device_is_available(const struct device_node *device)
428 {
429 	const char *status;
430 	int statlen;
431 
432 	if (!device)
433 		return false;
434 
435 	status = __of_get_property(device, "status", &statlen);
436 	if (status == NULL)
437 		return true;
438 
439 	if (statlen > 0) {
440 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
441 			return true;
442 	}
443 
444 	return false;
445 }
446 
447 /**
448  *  of_device_is_available - check if a device is available for use
449  *
450  *  @device: Node to check for availability
451  *
452  *  Return: True if the status property is absent or set to "okay" or "ok",
453  *  false otherwise
454  */
of_device_is_available(const struct device_node * device)455 bool of_device_is_available(const struct device_node *device)
456 {
457 	unsigned long flags;
458 	bool res;
459 
460 	raw_spin_lock_irqsave(&devtree_lock, flags);
461 	res = __of_device_is_available(device);
462 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
463 	return res;
464 
465 }
466 EXPORT_SYMBOL(of_device_is_available);
467 
468 /**
469  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
470  *
471  *  @device: Node to check status for, with locks already held
472  *
473  *  Return: True if the status property is set to "fail" or "fail-..." (for any
474  *  error code suffix), false otherwise
475  */
__of_device_is_fail(const struct device_node * device)476 static bool __of_device_is_fail(const struct device_node *device)
477 {
478 	const char *status;
479 
480 	if (!device)
481 		return false;
482 
483 	status = __of_get_property(device, "status", NULL);
484 	if (status == NULL)
485 		return false;
486 
487 	return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
488 }
489 
490 /**
491  *  of_device_is_big_endian - check if a device has BE registers
492  *
493  *  @device: Node to check for endianness
494  *
495  *  Return: True if the device has a "big-endian" property, or if the kernel
496  *  was compiled for BE *and* the device has a "native-endian" property.
497  *  Returns false otherwise.
498  *
499  *  Callers would nominally use ioread32be/iowrite32be if
500  *  of_device_is_big_endian() == true, or readl/writel otherwise.
501  */
of_device_is_big_endian(const struct device_node * device)502 bool of_device_is_big_endian(const struct device_node *device)
503 {
504 	if (of_property_read_bool(device, "big-endian"))
505 		return true;
506 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
507 	    of_property_read_bool(device, "native-endian"))
508 		return true;
509 	return false;
510 }
511 EXPORT_SYMBOL(of_device_is_big_endian);
512 
513 /**
514  * of_get_parent - Get a node's parent if any
515  * @node:	Node to get parent
516  *
517  * Return: A node pointer with refcount incremented, use
518  * of_node_put() on it when done.
519  */
of_get_parent(const struct device_node * node)520 struct device_node *of_get_parent(const struct device_node *node)
521 {
522 	struct device_node *np;
523 	unsigned long flags;
524 
525 	if (!node)
526 		return NULL;
527 
528 	raw_spin_lock_irqsave(&devtree_lock, flags);
529 	np = of_node_get(node->parent);
530 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
531 	return np;
532 }
533 EXPORT_SYMBOL(of_get_parent);
534 
535 /**
536  * of_get_next_parent - Iterate to a node's parent
537  * @node:	Node to get parent of
538  *
539  * This is like of_get_parent() except that it drops the
540  * refcount on the passed node, making it suitable for iterating
541  * through a node's parents.
542  *
543  * Return: A node pointer with refcount incremented, use
544  * of_node_put() on it when done.
545  */
of_get_next_parent(struct device_node * node)546 struct device_node *of_get_next_parent(struct device_node *node)
547 {
548 	struct device_node *parent;
549 	unsigned long flags;
550 
551 	if (!node)
552 		return NULL;
553 
554 	raw_spin_lock_irqsave(&devtree_lock, flags);
555 	parent = of_node_get(node->parent);
556 	of_node_put(node);
557 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
558 	return parent;
559 }
560 EXPORT_SYMBOL(of_get_next_parent);
561 
__of_get_next_child(const struct device_node * node,struct device_node * prev)562 static struct device_node *__of_get_next_child(const struct device_node *node,
563 						struct device_node *prev)
564 {
565 	struct device_node *next;
566 
567 	if (!node)
568 		return NULL;
569 
570 	next = prev ? prev->sibling : node->child;
571 	of_node_get(next);
572 	of_node_put(prev);
573 	return next;
574 }
575 #define __for_each_child_of_node(parent, child) \
576 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
577 	     child = __of_get_next_child(parent, child))
578 
579 /**
580  * of_get_next_child - Iterate a node childs
581  * @node:	parent node
582  * @prev:	previous child of the parent node, or NULL to get first
583  *
584  * Return: A node pointer with refcount incremented, use of_node_put() on
585  * it when done. Returns NULL when prev is the last child. Decrements the
586  * refcount of prev.
587  */
of_get_next_child(const struct device_node * node,struct device_node * prev)588 struct device_node *of_get_next_child(const struct device_node *node,
589 	struct device_node *prev)
590 {
591 	struct device_node *next;
592 	unsigned long flags;
593 
594 	raw_spin_lock_irqsave(&devtree_lock, flags);
595 	next = __of_get_next_child(node, prev);
596 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
597 	return next;
598 }
599 EXPORT_SYMBOL(of_get_next_child);
600 
601 /**
602  * of_get_next_available_child - Find the next available child node
603  * @node:	parent node
604  * @prev:	previous child of the parent node, or NULL to get first
605  *
606  * This function is like of_get_next_child(), except that it
607  * automatically skips any disabled nodes (i.e. status = "disabled").
608  */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)609 struct device_node *of_get_next_available_child(const struct device_node *node,
610 	struct device_node *prev)
611 {
612 	struct device_node *next;
613 	unsigned long flags;
614 
615 	if (!node)
616 		return NULL;
617 
618 	raw_spin_lock_irqsave(&devtree_lock, flags);
619 	next = prev ? prev->sibling : node->child;
620 	for (; next; next = next->sibling) {
621 		if (!__of_device_is_available(next))
622 			continue;
623 		if (of_node_get(next))
624 			break;
625 	}
626 	of_node_put(prev);
627 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
628 	return next;
629 }
630 EXPORT_SYMBOL(of_get_next_available_child);
631 
632 /**
633  * of_get_next_cpu_node - Iterate on cpu nodes
634  * @prev:	previous child of the /cpus node, or NULL to get first
635  *
636  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
637  * will be skipped.
638  *
639  * Return: A cpu node pointer with refcount incremented, use of_node_put()
640  * on it when done. Returns NULL when prev is the last child. Decrements
641  * the refcount of prev.
642  */
of_get_next_cpu_node(struct device_node * prev)643 struct device_node *of_get_next_cpu_node(struct device_node *prev)
644 {
645 	struct device_node *next = NULL;
646 	unsigned long flags;
647 	struct device_node *node;
648 
649 	if (!prev)
650 		node = of_find_node_by_path("/cpus");
651 
652 	raw_spin_lock_irqsave(&devtree_lock, flags);
653 	if (prev)
654 		next = prev->sibling;
655 	else if (node) {
656 		next = node->child;
657 		of_node_put(node);
658 	}
659 	for (; next; next = next->sibling) {
660 		if (__of_device_is_fail(next))
661 			continue;
662 		if (!(of_node_name_eq(next, "cpu") ||
663 		      __of_node_is_type(next, "cpu")))
664 			continue;
665 		if (of_node_get(next))
666 			break;
667 	}
668 	of_node_put(prev);
669 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
670 	return next;
671 }
672 EXPORT_SYMBOL(of_get_next_cpu_node);
673 
674 /**
675  * of_get_compatible_child - Find compatible child node
676  * @parent:	parent node
677  * @compatible:	compatible string
678  *
679  * Lookup child node whose compatible property contains the given compatible
680  * string.
681  *
682  * Return: a node pointer with refcount incremented, use of_node_put() on it
683  * when done; or NULL if not found.
684  */
of_get_compatible_child(const struct device_node * parent,const char * compatible)685 struct device_node *of_get_compatible_child(const struct device_node *parent,
686 				const char *compatible)
687 {
688 	struct device_node *child;
689 
690 	for_each_child_of_node(parent, child) {
691 		if (of_device_is_compatible(child, compatible))
692 			break;
693 	}
694 
695 	return child;
696 }
697 EXPORT_SYMBOL(of_get_compatible_child);
698 
699 /**
700  * of_get_child_by_name - Find the child node by name for a given parent
701  * @node:	parent node
702  * @name:	child name to look for.
703  *
704  * This function looks for child node for given matching name
705  *
706  * Return: A node pointer if found, with refcount incremented, use
707  * of_node_put() on it when done.
708  * Returns NULL if node is not found.
709  */
of_get_child_by_name(const struct device_node * node,const char * name)710 struct device_node *of_get_child_by_name(const struct device_node *node,
711 				const char *name)
712 {
713 	struct device_node *child;
714 
715 	for_each_child_of_node(node, child)
716 		if (of_node_name_eq(child, name))
717 			break;
718 	return child;
719 }
720 EXPORT_SYMBOL(of_get_child_by_name);
721 
__of_find_node_by_path(struct device_node * parent,const char * path)722 struct device_node *__of_find_node_by_path(struct device_node *parent,
723 						const char *path)
724 {
725 	struct device_node *child;
726 	int len;
727 
728 	len = strcspn(path, "/:");
729 	if (!len)
730 		return NULL;
731 
732 	__for_each_child_of_node(parent, child) {
733 		const char *name = kbasename(child->full_name);
734 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
735 			return child;
736 	}
737 	return NULL;
738 }
739 
__of_find_node_by_full_path(struct device_node * node,const char * path)740 struct device_node *__of_find_node_by_full_path(struct device_node *node,
741 						const char *path)
742 {
743 	const char *separator = strchr(path, ':');
744 
745 	while (node && *path == '/') {
746 		struct device_node *tmp = node;
747 
748 		path++; /* Increment past '/' delimiter */
749 		node = __of_find_node_by_path(node, path);
750 		of_node_put(tmp);
751 		path = strchrnul(path, '/');
752 		if (separator && separator < path)
753 			break;
754 	}
755 	return node;
756 }
757 
758 /**
759  * of_find_node_opts_by_path - Find a node matching a full OF path
760  * @path: Either the full path to match, or if the path does not
761  *       start with '/', the name of a property of the /aliases
762  *       node (an alias).  In the case of an alias, the node
763  *       matching the alias' value will be returned.
764  * @opts: Address of a pointer into which to store the start of
765  *       an options string appended to the end of the path with
766  *       a ':' separator.
767  *
768  * Valid paths:
769  *  * /foo/bar	Full path
770  *  * foo	Valid alias
771  *  * foo/bar	Valid alias + relative path
772  *
773  * Return: A node pointer with refcount incremented, use
774  * of_node_put() on it when done.
775  */
of_find_node_opts_by_path(const char * path,const char ** opts)776 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
777 {
778 	struct device_node *np = NULL;
779 	struct property *pp;
780 	unsigned long flags;
781 	const char *separator = strchr(path, ':');
782 
783 	if (opts)
784 		*opts = separator ? separator + 1 : NULL;
785 
786 	if (strcmp(path, "/") == 0)
787 		return of_node_get(of_root);
788 
789 	/* The path could begin with an alias */
790 	if (*path != '/') {
791 		int len;
792 		const char *p = separator;
793 
794 		if (!p)
795 			p = strchrnul(path, '/');
796 		len = p - path;
797 
798 		/* of_aliases must not be NULL */
799 		if (!of_aliases)
800 			return NULL;
801 
802 		for_each_property_of_node(of_aliases, pp) {
803 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
804 				np = of_find_node_by_path(pp->value);
805 				break;
806 			}
807 		}
808 		if (!np)
809 			return NULL;
810 		path = p;
811 	}
812 
813 	/* Step down the tree matching path components */
814 	raw_spin_lock_irqsave(&devtree_lock, flags);
815 	if (!np)
816 		np = of_node_get(of_root);
817 	np = __of_find_node_by_full_path(np, path);
818 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
819 	return np;
820 }
821 EXPORT_SYMBOL(of_find_node_opts_by_path);
822 
823 /**
824  * of_find_node_by_name - Find a node by its "name" property
825  * @from:	The node to start searching from or NULL; the node
826  *		you pass will not be searched, only the next one
827  *		will. Typically, you pass what the previous call
828  *		returned. of_node_put() will be called on @from.
829  * @name:	The name string to match against
830  *
831  * Return: A node pointer with refcount incremented, use
832  * of_node_put() on it when done.
833  */
of_find_node_by_name(struct device_node * from,const char * name)834 struct device_node *of_find_node_by_name(struct device_node *from,
835 	const char *name)
836 {
837 	struct device_node *np;
838 	unsigned long flags;
839 
840 	raw_spin_lock_irqsave(&devtree_lock, flags);
841 	for_each_of_allnodes_from(from, np)
842 		if (of_node_name_eq(np, name) && of_node_get(np))
843 			break;
844 	of_node_put(from);
845 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
846 	return np;
847 }
848 EXPORT_SYMBOL(of_find_node_by_name);
849 
850 /**
851  * of_find_node_by_type - Find a node by its "device_type" property
852  * @from:	The node to start searching from, or NULL to start searching
853  *		the entire device tree. The node you pass will not be
854  *		searched, only the next one will; typically, you pass
855  *		what the previous call returned. of_node_put() will be
856  *		called on from for you.
857  * @type:	The type string to match against
858  *
859  * Return: A node pointer with refcount incremented, use
860  * of_node_put() on it when done.
861  */
of_find_node_by_type(struct device_node * from,const char * type)862 struct device_node *of_find_node_by_type(struct device_node *from,
863 	const char *type)
864 {
865 	struct device_node *np;
866 	unsigned long flags;
867 
868 	raw_spin_lock_irqsave(&devtree_lock, flags);
869 	for_each_of_allnodes_from(from, np)
870 		if (__of_node_is_type(np, type) && of_node_get(np))
871 			break;
872 	of_node_put(from);
873 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
874 	return np;
875 }
876 EXPORT_SYMBOL(of_find_node_by_type);
877 
878 /**
879  * of_find_compatible_node - Find a node based on type and one of the
880  *                                tokens in its "compatible" property
881  * @from:	The node to start searching from or NULL, the node
882  *		you pass will not be searched, only the next one
883  *		will; typically, you pass what the previous call
884  *		returned. of_node_put() will be called on it
885  * @type:	The type string to match "device_type" or NULL to ignore
886  * @compatible:	The string to match to one of the tokens in the device
887  *		"compatible" list.
888  *
889  * Return: A node pointer with refcount incremented, use
890  * of_node_put() on it when done.
891  */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)892 struct device_node *of_find_compatible_node(struct device_node *from,
893 	const char *type, const char *compatible)
894 {
895 	struct device_node *np;
896 	unsigned long flags;
897 
898 	raw_spin_lock_irqsave(&devtree_lock, flags);
899 	for_each_of_allnodes_from(from, np)
900 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
901 		    of_node_get(np))
902 			break;
903 	of_node_put(from);
904 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
905 	return np;
906 }
907 EXPORT_SYMBOL(of_find_compatible_node);
908 
909 /**
910  * of_find_node_with_property - Find a node which has a property with
911  *                              the given name.
912  * @from:	The node to start searching from or NULL, the node
913  *		you pass will not be searched, only the next one
914  *		will; typically, you pass what the previous call
915  *		returned. of_node_put() will be called on it
916  * @prop_name:	The name of the property to look for.
917  *
918  * Return: A node pointer with refcount incremented, use
919  * of_node_put() on it when done.
920  */
of_find_node_with_property(struct device_node * from,const char * prop_name)921 struct device_node *of_find_node_with_property(struct device_node *from,
922 	const char *prop_name)
923 {
924 	struct device_node *np;
925 	struct property *pp;
926 	unsigned long flags;
927 
928 	raw_spin_lock_irqsave(&devtree_lock, flags);
929 	for_each_of_allnodes_from(from, np) {
930 		for (pp = np->properties; pp; pp = pp->next) {
931 			if (of_prop_cmp(pp->name, prop_name) == 0) {
932 				of_node_get(np);
933 				goto out;
934 			}
935 		}
936 	}
937 out:
938 	of_node_put(from);
939 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
940 	return np;
941 }
942 EXPORT_SYMBOL(of_find_node_with_property);
943 
944 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)945 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
946 					   const struct device_node *node)
947 {
948 	const struct of_device_id *best_match = NULL;
949 	int score, best_score = 0;
950 
951 	if (!matches)
952 		return NULL;
953 
954 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
955 		score = __of_device_is_compatible(node, matches->compatible,
956 						  matches->type, matches->name);
957 		if (score > best_score) {
958 			best_match = matches;
959 			best_score = score;
960 		}
961 	}
962 
963 	return best_match;
964 }
965 
966 /**
967  * of_match_node - Tell if a device_node has a matching of_match structure
968  * @matches:	array of of device match structures to search in
969  * @node:	the of device structure to match against
970  *
971  * Low level utility function used by device matching.
972  */
of_match_node(const struct of_device_id * matches,const struct device_node * node)973 const struct of_device_id *of_match_node(const struct of_device_id *matches,
974 					 const struct device_node *node)
975 {
976 	const struct of_device_id *match;
977 	unsigned long flags;
978 
979 	raw_spin_lock_irqsave(&devtree_lock, flags);
980 	match = __of_match_node(matches, node);
981 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
982 	return match;
983 }
984 EXPORT_SYMBOL(of_match_node);
985 
986 /**
987  * of_find_matching_node_and_match - Find a node based on an of_device_id
988  *				     match table.
989  * @from:	The node to start searching from or NULL, the node
990  *		you pass will not be searched, only the next one
991  *		will; typically, you pass what the previous call
992  *		returned. of_node_put() will be called on it
993  * @matches:	array of of device match structures to search in
994  * @match:	Updated to point at the matches entry which matched
995  *
996  * Return: A node pointer with refcount incremented, use
997  * of_node_put() on it when done.
998  */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)999 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1000 					const struct of_device_id *matches,
1001 					const struct of_device_id **match)
1002 {
1003 	struct device_node *np;
1004 	const struct of_device_id *m;
1005 	unsigned long flags;
1006 
1007 	if (match)
1008 		*match = NULL;
1009 
1010 	raw_spin_lock_irqsave(&devtree_lock, flags);
1011 	for_each_of_allnodes_from(from, np) {
1012 		m = __of_match_node(matches, np);
1013 		if (m && of_node_get(np)) {
1014 			if (match)
1015 				*match = m;
1016 			break;
1017 		}
1018 	}
1019 	of_node_put(from);
1020 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1021 	return np;
1022 }
1023 EXPORT_SYMBOL(of_find_matching_node_and_match);
1024 
1025 /**
1026  * of_alias_from_compatible - Lookup appropriate alias for a device node
1027  *			      depending on compatible
1028  * @node:	pointer to a device tree node
1029  * @alias:	Pointer to buffer that alias value will be copied into
1030  * @len:	Length of alias value
1031  *
1032  * Based on the value of the compatible property, this routine will attempt
1033  * to choose an appropriate alias value for a particular device tree node.
1034  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1035  * from the first entry in the compatible list property.
1036  *
1037  * Note: The matching on just the "product" side of the compatible is a relic
1038  * from I2C and SPI. Please do not add any new user.
1039  *
1040  * Return: This routine returns 0 on success, <0 on failure.
1041  */
of_alias_from_compatible(const struct device_node * node,char * alias,int len)1042 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1043 {
1044 	const char *compatible, *p;
1045 	int cplen;
1046 
1047 	compatible = of_get_property(node, "compatible", &cplen);
1048 	if (!compatible || strlen(compatible) > cplen)
1049 		return -ENODEV;
1050 	p = strchr(compatible, ',');
1051 	strscpy(alias, p ? p + 1 : compatible, len);
1052 	return 0;
1053 }
1054 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1055 
1056 /**
1057  * of_find_node_by_phandle - Find a node given a phandle
1058  * @handle:	phandle of the node to find
1059  *
1060  * Return: A node pointer with refcount incremented, use
1061  * of_node_put() on it when done.
1062  */
of_find_node_by_phandle(phandle handle)1063 struct device_node *of_find_node_by_phandle(phandle handle)
1064 {
1065 	struct device_node *np = NULL;
1066 	unsigned long flags;
1067 	u32 handle_hash;
1068 
1069 	if (!handle)
1070 		return NULL;
1071 
1072 	handle_hash = of_phandle_cache_hash(handle);
1073 
1074 	raw_spin_lock_irqsave(&devtree_lock, flags);
1075 
1076 	if (phandle_cache[handle_hash] &&
1077 	    handle == phandle_cache[handle_hash]->phandle)
1078 		np = phandle_cache[handle_hash];
1079 
1080 	if (!np) {
1081 		for_each_of_allnodes(np)
1082 			if (np->phandle == handle &&
1083 			    !of_node_check_flag(np, OF_DETACHED)) {
1084 				phandle_cache[handle_hash] = np;
1085 				break;
1086 			}
1087 	}
1088 
1089 	of_node_get(np);
1090 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1091 	return np;
1092 }
1093 EXPORT_SYMBOL(of_find_node_by_phandle);
1094 
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1095 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1096 {
1097 	int i;
1098 	printk("%s %pOF", msg, args->np);
1099 	for (i = 0; i < args->args_count; i++) {
1100 		const char delim = i ? ',' : ':';
1101 
1102 		pr_cont("%c%08x", delim, args->args[i]);
1103 	}
1104 	pr_cont("\n");
1105 }
1106 
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1107 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1108 		const struct device_node *np,
1109 		const char *list_name,
1110 		const char *cells_name,
1111 		int cell_count)
1112 {
1113 	const __be32 *list;
1114 	int size;
1115 
1116 	memset(it, 0, sizeof(*it));
1117 
1118 	/*
1119 	 * one of cell_count or cells_name must be provided to determine the
1120 	 * argument length.
1121 	 */
1122 	if (cell_count < 0 && !cells_name)
1123 		return -EINVAL;
1124 
1125 	list = of_get_property(np, list_name, &size);
1126 	if (!list)
1127 		return -ENOENT;
1128 
1129 	it->cells_name = cells_name;
1130 	it->cell_count = cell_count;
1131 	it->parent = np;
1132 	it->list_end = list + size / sizeof(*list);
1133 	it->phandle_end = list;
1134 	it->cur = list;
1135 
1136 	return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1139 
of_phandle_iterator_next(struct of_phandle_iterator * it)1140 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1141 {
1142 	uint32_t count = 0;
1143 
1144 	if (it->node) {
1145 		of_node_put(it->node);
1146 		it->node = NULL;
1147 	}
1148 
1149 	if (!it->cur || it->phandle_end >= it->list_end)
1150 		return -ENOENT;
1151 
1152 	it->cur = it->phandle_end;
1153 
1154 	/* If phandle is 0, then it is an empty entry with no arguments. */
1155 	it->phandle = be32_to_cpup(it->cur++);
1156 
1157 	if (it->phandle) {
1158 
1159 		/*
1160 		 * Find the provider node and parse the #*-cells property to
1161 		 * determine the argument length.
1162 		 */
1163 		it->node = of_find_node_by_phandle(it->phandle);
1164 
1165 		if (it->cells_name) {
1166 			if (!it->node) {
1167 				pr_err("%pOF: could not find phandle %d\n",
1168 				       it->parent, it->phandle);
1169 				goto err;
1170 			}
1171 
1172 			if (of_property_read_u32(it->node, it->cells_name,
1173 						 &count)) {
1174 				/*
1175 				 * If both cell_count and cells_name is given,
1176 				 * fall back to cell_count in absence
1177 				 * of the cells_name property
1178 				 */
1179 				if (it->cell_count >= 0) {
1180 					count = it->cell_count;
1181 				} else {
1182 					pr_err("%pOF: could not get %s for %pOF\n",
1183 					       it->parent,
1184 					       it->cells_name,
1185 					       it->node);
1186 					goto err;
1187 				}
1188 			}
1189 		} else {
1190 			count = it->cell_count;
1191 		}
1192 
1193 		/*
1194 		 * Make sure that the arguments actually fit in the remaining
1195 		 * property data length
1196 		 */
1197 		if (it->cur + count > it->list_end) {
1198 			if (it->cells_name)
1199 				pr_err("%pOF: %s = %d found %td\n",
1200 					it->parent, it->cells_name,
1201 					count, it->list_end - it->cur);
1202 			else
1203 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1204 					it->parent, of_node_full_name(it->node),
1205 					count, it->list_end - it->cur);
1206 			goto err;
1207 		}
1208 	}
1209 
1210 	it->phandle_end = it->cur + count;
1211 	it->cur_count = count;
1212 
1213 	return 0;
1214 
1215 err:
1216 	if (it->node) {
1217 		of_node_put(it->node);
1218 		it->node = NULL;
1219 	}
1220 
1221 	return -EINVAL;
1222 }
1223 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1224 
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1225 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1226 			     uint32_t *args,
1227 			     int size)
1228 {
1229 	int i, count;
1230 
1231 	count = it->cur_count;
1232 
1233 	if (WARN_ON(size < count))
1234 		count = size;
1235 
1236 	for (i = 0; i < count; i++)
1237 		args[i] = be32_to_cpup(it->cur++);
1238 
1239 	return count;
1240 }
1241 
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1242 int __of_parse_phandle_with_args(const struct device_node *np,
1243 				 const char *list_name,
1244 				 const char *cells_name,
1245 				 int cell_count, int index,
1246 				 struct of_phandle_args *out_args)
1247 {
1248 	struct of_phandle_iterator it;
1249 	int rc, cur_index = 0;
1250 
1251 	if (index < 0)
1252 		return -EINVAL;
1253 
1254 	/* Loop over the phandles until all the requested entry is found */
1255 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1256 		/*
1257 		 * All of the error cases bail out of the loop, so at
1258 		 * this point, the parsing is successful. If the requested
1259 		 * index matches, then fill the out_args structure and return,
1260 		 * or return -ENOENT for an empty entry.
1261 		 */
1262 		rc = -ENOENT;
1263 		if (cur_index == index) {
1264 			if (!it.phandle)
1265 				goto err;
1266 
1267 			if (out_args) {
1268 				int c;
1269 
1270 				c = of_phandle_iterator_args(&it,
1271 							     out_args->args,
1272 							     MAX_PHANDLE_ARGS);
1273 				out_args->np = it.node;
1274 				out_args->args_count = c;
1275 			} else {
1276 				of_node_put(it.node);
1277 			}
1278 
1279 			/* Found it! return success */
1280 			return 0;
1281 		}
1282 
1283 		cur_index++;
1284 	}
1285 
1286 	/*
1287 	 * Unlock node before returning result; will be one of:
1288 	 * -ENOENT : index is for empty phandle
1289 	 * -EINVAL : parsing error on data
1290 	 */
1291 
1292  err:
1293 	of_node_put(it.node);
1294 	return rc;
1295 }
1296 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1297 
1298 /**
1299  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1300  * @np:		pointer to a device tree node containing a list
1301  * @list_name:	property name that contains a list
1302  * @stem_name:	stem of property names that specify phandles' arguments count
1303  * @index:	index of a phandle to parse out
1304  * @out_args:	optional pointer to output arguments structure (will be filled)
1305  *
1306  * This function is useful to parse lists of phandles and their arguments.
1307  * Returns 0 on success and fills out_args, on error returns appropriate errno
1308  * value. The difference between this function and of_parse_phandle_with_args()
1309  * is that this API remaps a phandle if the node the phandle points to has
1310  * a <@stem_name>-map property.
1311  *
1312  * Caller is responsible to call of_node_put() on the returned out_args->np
1313  * pointer.
1314  *
1315  * Example::
1316  *
1317  *  phandle1: node1 {
1318  *  	#list-cells = <2>;
1319  *  };
1320  *
1321  *  phandle2: node2 {
1322  *  	#list-cells = <1>;
1323  *  };
1324  *
1325  *  phandle3: node3 {
1326  *  	#list-cells = <1>;
1327  *  	list-map = <0 &phandle2 3>,
1328  *  		   <1 &phandle2 2>,
1329  *  		   <2 &phandle1 5 1>;
1330  *  	list-map-mask = <0x3>;
1331  *  };
1332  *
1333  *  node4 {
1334  *  	list = <&phandle1 1 2 &phandle3 0>;
1335  *  };
1336  *
1337  * To get a device_node of the ``node2`` node you may call this:
1338  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1339  */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1340 int of_parse_phandle_with_args_map(const struct device_node *np,
1341 				   const char *list_name,
1342 				   const char *stem_name,
1343 				   int index, struct of_phandle_args *out_args)
1344 {
1345 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1346 	char *pass_name = NULL;
1347 	struct device_node *cur, *new = NULL;
1348 	const __be32 *map, *mask, *pass;
1349 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1350 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1351 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1352 	const __be32 *match_array = initial_match_array;
1353 	int i, ret, map_len, match;
1354 	u32 list_size, new_size;
1355 
1356 	if (index < 0)
1357 		return -EINVAL;
1358 
1359 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1360 	if (!cells_name)
1361 		return -ENOMEM;
1362 
1363 	ret = -ENOMEM;
1364 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1365 	if (!map_name)
1366 		goto free;
1367 
1368 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1369 	if (!mask_name)
1370 		goto free;
1371 
1372 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1373 	if (!pass_name)
1374 		goto free;
1375 
1376 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1377 					   out_args);
1378 	if (ret)
1379 		goto free;
1380 
1381 	/* Get the #<list>-cells property */
1382 	cur = out_args->np;
1383 	ret = of_property_read_u32(cur, cells_name, &list_size);
1384 	if (ret < 0)
1385 		goto put;
1386 
1387 	/* Precalculate the match array - this simplifies match loop */
1388 	for (i = 0; i < list_size; i++)
1389 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1390 
1391 	ret = -EINVAL;
1392 	while (cur) {
1393 		/* Get the <list>-map property */
1394 		map = of_get_property(cur, map_name, &map_len);
1395 		if (!map) {
1396 			ret = 0;
1397 			goto free;
1398 		}
1399 		map_len /= sizeof(u32);
1400 
1401 		/* Get the <list>-map-mask property (optional) */
1402 		mask = of_get_property(cur, mask_name, NULL);
1403 		if (!mask)
1404 			mask = dummy_mask;
1405 		/* Iterate through <list>-map property */
1406 		match = 0;
1407 		while (map_len > (list_size + 1) && !match) {
1408 			/* Compare specifiers */
1409 			match = 1;
1410 			for (i = 0; i < list_size; i++, map_len--)
1411 				match &= !((match_array[i] ^ *map++) & mask[i]);
1412 
1413 			of_node_put(new);
1414 			new = of_find_node_by_phandle(be32_to_cpup(map));
1415 			map++;
1416 			map_len--;
1417 
1418 			/* Check if not found */
1419 			if (!new)
1420 				goto put;
1421 
1422 			if (!of_device_is_available(new))
1423 				match = 0;
1424 
1425 			ret = of_property_read_u32(new, cells_name, &new_size);
1426 			if (ret)
1427 				goto put;
1428 
1429 			/* Check for malformed properties */
1430 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1431 				goto put;
1432 			if (map_len < new_size)
1433 				goto put;
1434 
1435 			/* Move forward by new node's #<list>-cells amount */
1436 			map += new_size;
1437 			map_len -= new_size;
1438 		}
1439 		if (!match)
1440 			goto put;
1441 
1442 		/* Get the <list>-map-pass-thru property (optional) */
1443 		pass = of_get_property(cur, pass_name, NULL);
1444 		if (!pass)
1445 			pass = dummy_pass;
1446 
1447 		/*
1448 		 * Successfully parsed a <list>-map translation; copy new
1449 		 * specifier into the out_args structure, keeping the
1450 		 * bits specified in <list>-map-pass-thru.
1451 		 */
1452 		match_array = map - new_size;
1453 		for (i = 0; i < new_size; i++) {
1454 			__be32 val = *(map - new_size + i);
1455 
1456 			if (i < list_size) {
1457 				val &= ~pass[i];
1458 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1459 			}
1460 
1461 			out_args->args[i] = be32_to_cpu(val);
1462 		}
1463 		out_args->args_count = list_size = new_size;
1464 		/* Iterate again with new provider */
1465 		out_args->np = new;
1466 		of_node_put(cur);
1467 		cur = new;
1468 		new = NULL;
1469 	}
1470 put:
1471 	of_node_put(cur);
1472 	of_node_put(new);
1473 free:
1474 	kfree(mask_name);
1475 	kfree(map_name);
1476 	kfree(cells_name);
1477 	kfree(pass_name);
1478 
1479 	return ret;
1480 }
1481 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1482 
1483 /**
1484  * of_count_phandle_with_args() - Find the number of phandles references in a property
1485  * @np:		pointer to a device tree node containing a list
1486  * @list_name:	property name that contains a list
1487  * @cells_name:	property name that specifies phandles' arguments count
1488  *
1489  * Return: The number of phandle + argument tuples within a property. It
1490  * is a typical pattern to encode a list of phandle and variable
1491  * arguments into a single property. The number of arguments is encoded
1492  * by a property in the phandle-target node. For example, a gpios
1493  * property would contain a list of GPIO specifies consisting of a
1494  * phandle and 1 or more arguments. The number of arguments are
1495  * determined by the #gpio-cells property in the node pointed to by the
1496  * phandle.
1497  */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1498 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1499 				const char *cells_name)
1500 {
1501 	struct of_phandle_iterator it;
1502 	int rc, cur_index = 0;
1503 
1504 	/*
1505 	 * If cells_name is NULL we assume a cell count of 0. This makes
1506 	 * counting the phandles trivial as each 32bit word in the list is a
1507 	 * phandle and no arguments are to consider. So we don't iterate through
1508 	 * the list but just use the length to determine the phandle count.
1509 	 */
1510 	if (!cells_name) {
1511 		const __be32 *list;
1512 		int size;
1513 
1514 		list = of_get_property(np, list_name, &size);
1515 		if (!list)
1516 			return -ENOENT;
1517 
1518 		return size / sizeof(*list);
1519 	}
1520 
1521 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1522 	if (rc)
1523 		return rc;
1524 
1525 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1526 		cur_index += 1;
1527 
1528 	if (rc != -ENOENT)
1529 		return rc;
1530 
1531 	return cur_index;
1532 }
1533 EXPORT_SYMBOL(of_count_phandle_with_args);
1534 
__of_remove_property_from_list(struct property ** list,struct property * prop)1535 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1536 {
1537 	struct property **next;
1538 
1539 	for (next = list; *next; next = &(*next)->next) {
1540 		if (*next == prop) {
1541 			*next = prop->next;
1542 			prop->next = NULL;
1543 			return prop;
1544 		}
1545 	}
1546 	return NULL;
1547 }
1548 
1549 /**
1550  * __of_add_property - Add a property to a node without lock operations
1551  * @np:		Caller's Device Node
1552  * @prop:	Property to add
1553  */
__of_add_property(struct device_node * np,struct property * prop)1554 int __of_add_property(struct device_node *np, struct property *prop)
1555 {
1556 	int rc = 0;
1557 	unsigned long flags;
1558 	struct property **next;
1559 
1560 	raw_spin_lock_irqsave(&devtree_lock, flags);
1561 
1562 	__of_remove_property_from_list(&np->deadprops, prop);
1563 
1564 	prop->next = NULL;
1565 	next = &np->properties;
1566 	while (*next) {
1567 		if (strcmp(prop->name, (*next)->name) == 0) {
1568 			/* duplicate ! don't insert it */
1569 			rc = -EEXIST;
1570 			goto out_unlock;
1571 		}
1572 		next = &(*next)->next;
1573 	}
1574 	*next = prop;
1575 
1576 out_unlock:
1577 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1578 	if (rc)
1579 		return rc;
1580 
1581 	__of_add_property_sysfs(np, prop);
1582 	return 0;
1583 }
1584 
1585 /**
1586  * of_add_property - Add a property to a node
1587  * @np:		Caller's Device Node
1588  * @prop:	Property to add
1589  */
of_add_property(struct device_node * np,struct property * prop)1590 int of_add_property(struct device_node *np, struct property *prop)
1591 {
1592 	int rc;
1593 
1594 	mutex_lock(&of_mutex);
1595 	rc = __of_add_property(np, prop);
1596 	mutex_unlock(&of_mutex);
1597 
1598 	if (!rc)
1599 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1600 
1601 	return rc;
1602 }
1603 EXPORT_SYMBOL_GPL(of_add_property);
1604 
__of_remove_property(struct device_node * np,struct property * prop)1605 int __of_remove_property(struct device_node *np, struct property *prop)
1606 {
1607 	unsigned long flags;
1608 	int rc = -ENODEV;
1609 
1610 	raw_spin_lock_irqsave(&devtree_lock, flags);
1611 
1612 	if (__of_remove_property_from_list(&np->properties, prop)) {
1613 		/* Found the property, add it to deadprops list */
1614 		prop->next = np->deadprops;
1615 		np->deadprops = prop;
1616 		rc = 0;
1617 	}
1618 
1619 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1620 	if (rc)
1621 		return rc;
1622 
1623 	__of_remove_property_sysfs(np, prop);
1624 	return 0;
1625 }
1626 
1627 /**
1628  * of_remove_property - Remove a property from a node.
1629  * @np:		Caller's Device Node
1630  * @prop:	Property to remove
1631  *
1632  * Note that we don't actually remove it, since we have given out
1633  * who-knows-how-many pointers to the data using get-property.
1634  * Instead we just move the property to the "dead properties"
1635  * list, so it won't be found any more.
1636  */
of_remove_property(struct device_node * np,struct property * prop)1637 int of_remove_property(struct device_node *np, struct property *prop)
1638 {
1639 	int rc;
1640 
1641 	if (!prop)
1642 		return -ENODEV;
1643 
1644 	mutex_lock(&of_mutex);
1645 	rc = __of_remove_property(np, prop);
1646 	mutex_unlock(&of_mutex);
1647 
1648 	if (!rc)
1649 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1650 
1651 	return rc;
1652 }
1653 EXPORT_SYMBOL_GPL(of_remove_property);
1654 
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1655 int __of_update_property(struct device_node *np, struct property *newprop,
1656 		struct property **oldpropp)
1657 {
1658 	struct property **next, *oldprop;
1659 	unsigned long flags;
1660 
1661 	raw_spin_lock_irqsave(&devtree_lock, flags);
1662 
1663 	__of_remove_property_from_list(&np->deadprops, newprop);
1664 
1665 	for (next = &np->properties; *next; next = &(*next)->next) {
1666 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1667 			break;
1668 	}
1669 	*oldpropp = oldprop = *next;
1670 
1671 	if (oldprop) {
1672 		/* replace the node */
1673 		newprop->next = oldprop->next;
1674 		*next = newprop;
1675 		oldprop->next = np->deadprops;
1676 		np->deadprops = oldprop;
1677 	} else {
1678 		/* new node */
1679 		newprop->next = NULL;
1680 		*next = newprop;
1681 	}
1682 
1683 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1684 
1685 	__of_update_property_sysfs(np, newprop, oldprop);
1686 
1687 	return 0;
1688 }
1689 
1690 /*
1691  * of_update_property - Update a property in a node, if the property does
1692  * not exist, add it.
1693  *
1694  * Note that we don't actually remove it, since we have given out
1695  * who-knows-how-many pointers to the data using get-property.
1696  * Instead we just move the property to the "dead properties" list,
1697  * and add the new property to the property list
1698  */
of_update_property(struct device_node * np,struct property * newprop)1699 int of_update_property(struct device_node *np, struct property *newprop)
1700 {
1701 	struct property *oldprop;
1702 	int rc;
1703 
1704 	if (!newprop->name)
1705 		return -EINVAL;
1706 
1707 	mutex_lock(&of_mutex);
1708 	rc = __of_update_property(np, newprop, &oldprop);
1709 	mutex_unlock(&of_mutex);
1710 
1711 	if (!rc)
1712 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1713 
1714 	return rc;
1715 }
1716 
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1717 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1718 			 int id, const char *stem, int stem_len)
1719 {
1720 	ap->np = np;
1721 	ap->id = id;
1722 	strscpy(ap->stem, stem, stem_len + 1);
1723 	list_add_tail(&ap->link, &aliases_lookup);
1724 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1725 		 ap->alias, ap->stem, ap->id, np);
1726 }
1727 
1728 /**
1729  * of_alias_scan - Scan all properties of the 'aliases' node
1730  * @dt_alloc:	An allocator that provides a virtual address to memory
1731  *		for storing the resulting tree
1732  *
1733  * The function scans all the properties of the 'aliases' node and populates
1734  * the global lookup table with the properties.  It returns the
1735  * number of alias properties found, or an error code in case of failure.
1736  */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1737 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1738 {
1739 	struct property *pp;
1740 
1741 	of_aliases = of_find_node_by_path("/aliases");
1742 	of_chosen = of_find_node_by_path("/chosen");
1743 	if (of_chosen == NULL)
1744 		of_chosen = of_find_node_by_path("/chosen@0");
1745 
1746 	if (of_chosen) {
1747 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1748 		const char *name = NULL;
1749 
1750 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1751 			of_property_read_string(of_chosen, "linux,stdout-path",
1752 						&name);
1753 		if (IS_ENABLED(CONFIG_PPC) && !name)
1754 			of_property_read_string(of_aliases, "stdout", &name);
1755 		if (name)
1756 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1757 		if (of_stdout)
1758 			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1759 	}
1760 
1761 	if (!of_aliases)
1762 		return;
1763 
1764 	for_each_property_of_node(of_aliases, pp) {
1765 		const char *start = pp->name;
1766 		const char *end = start + strlen(start);
1767 		struct device_node *np;
1768 		struct alias_prop *ap;
1769 		int id, len;
1770 
1771 		/* Skip those we do not want to proceed */
1772 		if (!strcmp(pp->name, "name") ||
1773 		    !strcmp(pp->name, "phandle") ||
1774 		    !strcmp(pp->name, "linux,phandle"))
1775 			continue;
1776 
1777 		np = of_find_node_by_path(pp->value);
1778 		if (!np)
1779 			continue;
1780 
1781 		/* walk the alias backwards to extract the id and work out
1782 		 * the 'stem' string */
1783 		while (isdigit(*(end-1)) && end > start)
1784 			end--;
1785 		len = end - start;
1786 
1787 		if (kstrtoint(end, 10, &id) < 0)
1788 			continue;
1789 
1790 		/* Allocate an alias_prop with enough space for the stem */
1791 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1792 		if (!ap)
1793 			continue;
1794 		memset(ap, 0, sizeof(*ap) + len + 1);
1795 		ap->alias = start;
1796 		of_alias_add(ap, np, id, start, len);
1797 	}
1798 }
1799 
1800 /**
1801  * of_alias_get_id - Get alias id for the given device_node
1802  * @np:		Pointer to the given device_node
1803  * @stem:	Alias stem of the given device_node
1804  *
1805  * The function travels the lookup table to get the alias id for the given
1806  * device_node and alias stem.
1807  *
1808  * Return: The alias id if found.
1809  */
of_alias_get_id(struct device_node * np,const char * stem)1810 int of_alias_get_id(struct device_node *np, const char *stem)
1811 {
1812 	struct alias_prop *app;
1813 	int id = -ENODEV;
1814 
1815 	mutex_lock(&of_mutex);
1816 	list_for_each_entry(app, &aliases_lookup, link) {
1817 		if (strcmp(app->stem, stem) != 0)
1818 			continue;
1819 
1820 		if (np == app->np) {
1821 			id = app->id;
1822 			break;
1823 		}
1824 	}
1825 	mutex_unlock(&of_mutex);
1826 
1827 	return id;
1828 }
1829 EXPORT_SYMBOL_GPL(of_alias_get_id);
1830 
1831 /**
1832  * of_alias_get_highest_id - Get highest alias id for the given stem
1833  * @stem:	Alias stem to be examined
1834  *
1835  * The function travels the lookup table to get the highest alias id for the
1836  * given alias stem.  It returns the alias id if found.
1837  */
of_alias_get_highest_id(const char * stem)1838 int of_alias_get_highest_id(const char *stem)
1839 {
1840 	struct alias_prop *app;
1841 	int id = -ENODEV;
1842 
1843 	mutex_lock(&of_mutex);
1844 	list_for_each_entry(app, &aliases_lookup, link) {
1845 		if (strcmp(app->stem, stem) != 0)
1846 			continue;
1847 
1848 		if (app->id > id)
1849 			id = app->id;
1850 	}
1851 	mutex_unlock(&of_mutex);
1852 
1853 	return id;
1854 }
1855 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1856 
1857 /**
1858  * of_console_check() - Test and setup console for DT setup
1859  * @dn: Pointer to device node
1860  * @name: Name to use for preferred console without index. ex. "ttyS"
1861  * @index: Index to use for preferred console.
1862  *
1863  * Check if the given device node matches the stdout-path property in the
1864  * /chosen node. If it does then register it as the preferred console.
1865  *
1866  * Return: TRUE if console successfully setup. Otherwise return FALSE.
1867  */
of_console_check(struct device_node * dn,char * name,int index)1868 bool of_console_check(struct device_node *dn, char *name, int index)
1869 {
1870 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1871 		return false;
1872 
1873 	/*
1874 	 * XXX: cast `options' to char pointer to suppress complication
1875 	 * warnings: printk, UART and console drivers expect char pointer.
1876 	 */
1877 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1878 }
1879 EXPORT_SYMBOL_GPL(of_console_check);
1880 
1881 /**
1882  * of_find_next_cache_node - Find a node's subsidiary cache
1883  * @np:	node of type "cpu" or "cache"
1884  *
1885  * Return: A node pointer with refcount incremented, use
1886  * of_node_put() on it when done.  Caller should hold a reference
1887  * to np.
1888  */
of_find_next_cache_node(const struct device_node * np)1889 struct device_node *of_find_next_cache_node(const struct device_node *np)
1890 {
1891 	struct device_node *child, *cache_node;
1892 
1893 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1894 	if (!cache_node)
1895 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1896 
1897 	if (cache_node)
1898 		return cache_node;
1899 
1900 	/* OF on pmac has nodes instead of properties named "l2-cache"
1901 	 * beneath CPU nodes.
1902 	 */
1903 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1904 		for_each_child_of_node(np, child)
1905 			if (of_node_is_type(child, "cache"))
1906 				return child;
1907 
1908 	return NULL;
1909 }
1910 
1911 /**
1912  * of_find_last_cache_level - Find the level at which the last cache is
1913  * 		present for the given logical cpu
1914  *
1915  * @cpu: cpu number(logical index) for which the last cache level is needed
1916  *
1917  * Return: The level at which the last cache is present. It is exactly
1918  * same as  the total number of cache levels for the given logical cpu.
1919  */
of_find_last_cache_level(unsigned int cpu)1920 int of_find_last_cache_level(unsigned int cpu)
1921 {
1922 	u32 cache_level = 0;
1923 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1924 
1925 	while (np) {
1926 		of_node_put(prev);
1927 		prev = np;
1928 		np = of_find_next_cache_node(np);
1929 	}
1930 
1931 	of_property_read_u32(prev, "cache-level", &cache_level);
1932 	of_node_put(prev);
1933 
1934 	return cache_level;
1935 }
1936 
1937 /**
1938  * of_map_id - Translate an ID through a downstream mapping.
1939  * @np: root complex device node.
1940  * @id: device ID to map.
1941  * @map_name: property name of the map to use.
1942  * @map_mask_name: optional property name of the mask to use.
1943  * @target: optional pointer to a target device node.
1944  * @id_out: optional pointer to receive the translated ID.
1945  *
1946  * Given a device ID, look up the appropriate implementation-defined
1947  * platform ID and/or the target device which receives transactions on that
1948  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
1949  * @id_out may be NULL if only the other is required. If @target points to
1950  * a non-NULL device node pointer, only entries targeting that node will be
1951  * matched; if it points to a NULL value, it will receive the device node of
1952  * the first matching target phandle, with a reference held.
1953  *
1954  * Return: 0 on success or a standard error code on failure.
1955  */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)1956 int of_map_id(struct device_node *np, u32 id,
1957 	       const char *map_name, const char *map_mask_name,
1958 	       struct device_node **target, u32 *id_out)
1959 {
1960 	u32 map_mask, masked_id;
1961 	int map_len;
1962 	const __be32 *map = NULL;
1963 
1964 	if (!np || !map_name || (!target && !id_out))
1965 		return -EINVAL;
1966 
1967 	map = of_get_property(np, map_name, &map_len);
1968 	if (!map) {
1969 		if (target)
1970 			return -ENODEV;
1971 		/* Otherwise, no map implies no translation */
1972 		*id_out = id;
1973 		return 0;
1974 	}
1975 
1976 	if (!map_len || map_len % (4 * sizeof(*map))) {
1977 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
1978 			map_name, map_len);
1979 		return -EINVAL;
1980 	}
1981 
1982 	/* The default is to select all bits. */
1983 	map_mask = 0xffffffff;
1984 
1985 	/*
1986 	 * Can be overridden by "{iommu,msi}-map-mask" property.
1987 	 * If of_property_read_u32() fails, the default is used.
1988 	 */
1989 	if (map_mask_name)
1990 		of_property_read_u32(np, map_mask_name, &map_mask);
1991 
1992 	masked_id = map_mask & id;
1993 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
1994 		struct device_node *phandle_node;
1995 		u32 id_base = be32_to_cpup(map + 0);
1996 		u32 phandle = be32_to_cpup(map + 1);
1997 		u32 out_base = be32_to_cpup(map + 2);
1998 		u32 id_len = be32_to_cpup(map + 3);
1999 
2000 		if (id_base & ~map_mask) {
2001 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2002 				np, map_name, map_name,
2003 				map_mask, id_base);
2004 			return -EFAULT;
2005 		}
2006 
2007 		if (masked_id < id_base || masked_id >= id_base + id_len)
2008 			continue;
2009 
2010 		phandle_node = of_find_node_by_phandle(phandle);
2011 		if (!phandle_node)
2012 			return -ENODEV;
2013 
2014 		if (target) {
2015 			if (*target)
2016 				of_node_put(phandle_node);
2017 			else
2018 				*target = phandle_node;
2019 
2020 			if (*target != phandle_node)
2021 				continue;
2022 		}
2023 
2024 		if (id_out)
2025 			*id_out = masked_id - id_base + out_base;
2026 
2027 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2028 			np, map_name, map_mask, id_base, out_base,
2029 			id_len, id, masked_id - id_base + out_base);
2030 		return 0;
2031 	}
2032 
2033 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2034 		id, target && *target ? *target : NULL);
2035 
2036 	/* Bypasses translation */
2037 	if (id_out)
2038 		*id_out = id;
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(of_map_id);
2042