1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
3
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/dma-direct.h> /* for bus_dma_region */
17
18 #include "of_private.h"
19
20 /* Max address size we deal with */
21 #define OF_MAX_ADDR_CELLS 4
22 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
23 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
24
25 /* Debug utility */
26 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)27 static void of_dump_addr(const char *s, const __be32 *addr, int na)
28 {
29 pr_debug("%s", s);
30 while (na--)
31 pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 pr_cont("\n");
33 }
34 #else
of_dump_addr(const char * s,const __be32 * addr,int na)35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36 #endif
37
38 /* Callbacks for bus specific translators */
39 struct of_bus {
40 const char *name;
41 const char *addresses;
42 int (*match)(struct device_node *parent);
43 void (*count_cells)(struct device_node *child,
44 int *addrc, int *sizec);
45 u64 (*map)(__be32 *addr, const __be32 *range,
46 int na, int ns, int pna);
47 int (*translate)(__be32 *addr, u64 offset, int na);
48 bool has_flags;
49 unsigned int (*get_flags)(const __be32 *addr);
50 };
51
52 /*
53 * Default translator (generic bus)
54 */
55
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)56 static void of_bus_default_count_cells(struct device_node *dev,
57 int *addrc, int *sizec)
58 {
59 if (addrc)
60 *addrc = of_n_addr_cells(dev);
61 if (sizec)
62 *sizec = of_n_size_cells(dev);
63 }
64
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)65 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
66 int na, int ns, int pna)
67 {
68 u64 cp, s, da;
69
70 cp = of_read_number(range, na);
71 s = of_read_number(range + na + pna, ns);
72 da = of_read_number(addr, na);
73
74 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
75
76 if (da < cp || da >= (cp + s))
77 return OF_BAD_ADDR;
78 return da - cp;
79 }
80
of_bus_default_translate(__be32 * addr,u64 offset,int na)81 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
82 {
83 u64 a = of_read_number(addr, na);
84 memset(addr, 0, na * 4);
85 a += offset;
86 if (na > 1)
87 addr[na - 2] = cpu_to_be32(a >> 32);
88 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
89
90 return 0;
91 }
92
of_bus_default_flags_get_flags(const __be32 * addr)93 static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
94 {
95 return of_read_number(addr, 1);
96 }
97
of_bus_default_get_flags(const __be32 * addr)98 static unsigned int of_bus_default_get_flags(const __be32 *addr)
99 {
100 return IORESOURCE_MEM;
101 }
102
of_bus_default_flags_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)103 static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
104 int ns, int pna)
105 {
106 u64 cp, s, da;
107
108 /* Check that flags match */
109 if (*addr != *range)
110 return OF_BAD_ADDR;
111
112 /* Read address values, skipping high cell */
113 cp = of_read_number(range + 1, na - 1);
114 s = of_read_number(range + na + pna, ns);
115 da = of_read_number(addr + 1, na - 1);
116
117 pr_debug("default flags map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
118
119 if (da < cp || da >= (cp + s))
120 return OF_BAD_ADDR;
121 return da - cp;
122 }
123
of_bus_default_flags_translate(__be32 * addr,u64 offset,int na)124 static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
125 {
126 /* Keep "flags" part (high cell) in translated address */
127 return of_bus_default_translate(addr + 1, offset, na - 1);
128 }
129
130 #ifdef CONFIG_PCI
of_bus_pci_get_flags(const __be32 * addr)131 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
132 {
133 unsigned int flags = 0;
134 u32 w = be32_to_cpup(addr);
135
136 if (!IS_ENABLED(CONFIG_PCI))
137 return 0;
138
139 switch((w >> 24) & 0x03) {
140 case 0x01:
141 flags |= IORESOURCE_IO;
142 break;
143 case 0x02: /* 32 bits */
144 flags |= IORESOURCE_MEM;
145 break;
146
147 case 0x03: /* 64 bits */
148 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
149 break;
150 }
151 if (w & 0x40000000)
152 flags |= IORESOURCE_PREFETCH;
153 return flags;
154 }
155
156 /*
157 * PCI bus specific translator
158 */
159
of_node_is_pcie(struct device_node * np)160 static bool of_node_is_pcie(struct device_node *np)
161 {
162 bool is_pcie = of_node_name_eq(np, "pcie");
163
164 if (is_pcie)
165 pr_warn_once("%pOF: Missing device_type\n", np);
166
167 return is_pcie;
168 }
169
of_bus_pci_match(struct device_node * np)170 static int of_bus_pci_match(struct device_node *np)
171 {
172 /*
173 * "pciex" is PCI Express
174 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
175 * "ht" is hypertransport
176 *
177 * If none of the device_type match, and that the node name is
178 * "pcie", accept the device as PCI (with a warning).
179 */
180 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
181 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
182 of_node_is_pcie(np);
183 }
184
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)185 static void of_bus_pci_count_cells(struct device_node *np,
186 int *addrc, int *sizec)
187 {
188 if (addrc)
189 *addrc = 3;
190 if (sizec)
191 *sizec = 2;
192 }
193
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)194 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
195 int pna)
196 {
197 u64 cp, s, da;
198 unsigned int af, rf;
199
200 af = of_bus_pci_get_flags(addr);
201 rf = of_bus_pci_get_flags(range);
202
203 /* Check address type match */
204 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
205 return OF_BAD_ADDR;
206
207 /* Read address values, skipping high cell */
208 cp = of_read_number(range + 1, na - 1);
209 s = of_read_number(range + na + pna, ns);
210 da = of_read_number(addr + 1, na - 1);
211
212 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
213
214 if (da < cp || da >= (cp + s))
215 return OF_BAD_ADDR;
216 return da - cp;
217 }
218
of_bus_pci_translate(__be32 * addr,u64 offset,int na)219 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
220 {
221 return of_bus_default_translate(addr + 1, offset, na - 1);
222 }
223 #endif /* CONFIG_PCI */
224
225 /*
226 * of_pci_range_to_resource - Create a resource from an of_pci_range
227 * @range: the PCI range that describes the resource
228 * @np: device node where the range belongs to
229 * @res: pointer to a valid resource that will be updated to
230 * reflect the values contained in the range.
231 *
232 * Returns -EINVAL if the range cannot be converted to resource.
233 *
234 * Note that if the range is an IO range, the resource will be converted
235 * using pci_address_to_pio() which can fail if it is called too early or
236 * if the range cannot be matched to any host bridge IO space (our case here).
237 * To guard against that we try to register the IO range first.
238 * If that fails we know that pci_address_to_pio() will do too.
239 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)240 int of_pci_range_to_resource(struct of_pci_range *range,
241 struct device_node *np, struct resource *res)
242 {
243 int err;
244 res->flags = range->flags;
245 res->parent = res->child = res->sibling = NULL;
246 res->name = np->full_name;
247
248 if (res->flags & IORESOURCE_IO) {
249 unsigned long port;
250 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
251 range->size);
252 if (err)
253 goto invalid_range;
254 port = pci_address_to_pio(range->cpu_addr);
255 if (port == (unsigned long)-1) {
256 err = -EINVAL;
257 goto invalid_range;
258 }
259 res->start = port;
260 } else {
261 if ((sizeof(resource_size_t) < 8) &&
262 upper_32_bits(range->cpu_addr)) {
263 err = -EINVAL;
264 goto invalid_range;
265 }
266
267 res->start = range->cpu_addr;
268 }
269 res->end = res->start + range->size - 1;
270 return 0;
271
272 invalid_range:
273 res->start = (resource_size_t)OF_BAD_ADDR;
274 res->end = (resource_size_t)OF_BAD_ADDR;
275 return err;
276 }
277 EXPORT_SYMBOL(of_pci_range_to_resource);
278
279 /*
280 * of_range_to_resource - Create a resource from a ranges entry
281 * @np: device node where the range belongs to
282 * @index: the 'ranges' index to convert to a resource
283 * @res: pointer to a valid resource that will be updated to
284 * reflect the values contained in the range.
285 *
286 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
287 * converted to resource.
288 */
of_range_to_resource(struct device_node * np,int index,struct resource * res)289 int of_range_to_resource(struct device_node *np, int index, struct resource *res)
290 {
291 int ret, i = 0;
292 struct of_range_parser parser;
293 struct of_range range;
294
295 ret = of_range_parser_init(&parser, np);
296 if (ret)
297 return ret;
298
299 for_each_of_range(&parser, &range)
300 if (i++ == index)
301 return of_pci_range_to_resource(&range, np, res);
302
303 return -ENOENT;
304 }
305 EXPORT_SYMBOL(of_range_to_resource);
306
307 /*
308 * ISA bus specific translator
309 */
310
of_bus_isa_match(struct device_node * np)311 static int of_bus_isa_match(struct device_node *np)
312 {
313 return of_node_name_eq(np, "isa");
314 }
315
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)316 static void of_bus_isa_count_cells(struct device_node *child,
317 int *addrc, int *sizec)
318 {
319 if (addrc)
320 *addrc = 2;
321 if (sizec)
322 *sizec = 1;
323 }
324
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)325 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
326 int pna)
327 {
328 u64 cp, s, da;
329
330 /* Check address type match */
331 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
332 return OF_BAD_ADDR;
333
334 /* Read address values, skipping high cell */
335 cp = of_read_number(range + 1, na - 1);
336 s = of_read_number(range + na + pna, ns);
337 da = of_read_number(addr + 1, na - 1);
338
339 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
340
341 if (da < cp || da >= (cp + s))
342 return OF_BAD_ADDR;
343 return da - cp;
344 }
345
of_bus_isa_translate(__be32 * addr,u64 offset,int na)346 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
347 {
348 return of_bus_default_translate(addr + 1, offset, na - 1);
349 }
350
of_bus_isa_get_flags(const __be32 * addr)351 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
352 {
353 unsigned int flags = 0;
354 u32 w = be32_to_cpup(addr);
355
356 if (w & 1)
357 flags |= IORESOURCE_IO;
358 else
359 flags |= IORESOURCE_MEM;
360 return flags;
361 }
362
of_bus_default_flags_match(struct device_node * np)363 static int of_bus_default_flags_match(struct device_node *np)
364 {
365 return of_bus_n_addr_cells(np) == 3;
366 }
367
368 /*
369 * Array of bus specific translators
370 */
371
372 static struct of_bus of_busses[] = {
373 #ifdef CONFIG_PCI
374 /* PCI */
375 {
376 .name = "pci",
377 .addresses = "assigned-addresses",
378 .match = of_bus_pci_match,
379 .count_cells = of_bus_pci_count_cells,
380 .map = of_bus_pci_map,
381 .translate = of_bus_pci_translate,
382 .has_flags = true,
383 .get_flags = of_bus_pci_get_flags,
384 },
385 #endif /* CONFIG_PCI */
386 /* ISA */
387 {
388 .name = "isa",
389 .addresses = "reg",
390 .match = of_bus_isa_match,
391 .count_cells = of_bus_isa_count_cells,
392 .map = of_bus_isa_map,
393 .translate = of_bus_isa_translate,
394 .has_flags = true,
395 .get_flags = of_bus_isa_get_flags,
396 },
397 /* Default with flags cell */
398 {
399 .name = "default-flags",
400 .addresses = "reg",
401 .match = of_bus_default_flags_match,
402 .count_cells = of_bus_default_count_cells,
403 .map = of_bus_default_flags_map,
404 .translate = of_bus_default_flags_translate,
405 .has_flags = true,
406 .get_flags = of_bus_default_flags_get_flags,
407 },
408 /* Default */
409 {
410 .name = "default",
411 .addresses = "reg",
412 .match = NULL,
413 .count_cells = of_bus_default_count_cells,
414 .map = of_bus_default_map,
415 .translate = of_bus_default_translate,
416 .get_flags = of_bus_default_get_flags,
417 },
418 };
419
of_match_bus(struct device_node * np)420 static struct of_bus *of_match_bus(struct device_node *np)
421 {
422 int i;
423
424 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
425 if (!of_busses[i].match || of_busses[i].match(np))
426 return &of_busses[i];
427 BUG();
428 return NULL;
429 }
430
of_empty_ranges_quirk(struct device_node * np)431 static int of_empty_ranges_quirk(struct device_node *np)
432 {
433 if (IS_ENABLED(CONFIG_PPC)) {
434 /* To save cycles, we cache the result for global "Mac" setting */
435 static int quirk_state = -1;
436
437 /* PA-SEMI sdc DT bug */
438 if (of_device_is_compatible(np, "1682m-sdc"))
439 return true;
440
441 /* Make quirk cached */
442 if (quirk_state < 0)
443 quirk_state =
444 of_machine_is_compatible("Power Macintosh") ||
445 of_machine_is_compatible("MacRISC");
446 return quirk_state;
447 }
448 return false;
449 }
450
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)451 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
452 struct of_bus *pbus, __be32 *addr,
453 int na, int ns, int pna, const char *rprop)
454 {
455 const __be32 *ranges;
456 unsigned int rlen;
457 int rone;
458 u64 offset = OF_BAD_ADDR;
459
460 /*
461 * Normally, an absence of a "ranges" property means we are
462 * crossing a non-translatable boundary, and thus the addresses
463 * below the current cannot be converted to CPU physical ones.
464 * Unfortunately, while this is very clear in the spec, it's not
465 * what Apple understood, and they do have things like /uni-n or
466 * /ht nodes with no "ranges" property and a lot of perfectly
467 * useable mapped devices below them. Thus we treat the absence of
468 * "ranges" as equivalent to an empty "ranges" property which means
469 * a 1:1 translation at that level. It's up to the caller not to try
470 * to translate addresses that aren't supposed to be translated in
471 * the first place. --BenH.
472 *
473 * As far as we know, this damage only exists on Apple machines, so
474 * This code is only enabled on powerpc. --gcl
475 *
476 * This quirk also applies for 'dma-ranges' which frequently exist in
477 * child nodes without 'dma-ranges' in the parent nodes. --RobH
478 */
479 ranges = of_get_property(parent, rprop, &rlen);
480 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
481 strcmp(rprop, "dma-ranges")) {
482 pr_debug("no ranges; cannot translate\n");
483 return 1;
484 }
485 if (ranges == NULL || rlen == 0) {
486 offset = of_read_number(addr, na);
487 memset(addr, 0, pna * 4);
488 pr_debug("empty ranges; 1:1 translation\n");
489 goto finish;
490 }
491
492 pr_debug("walking ranges...\n");
493
494 /* Now walk through the ranges */
495 rlen /= 4;
496 rone = na + pna + ns;
497 for (; rlen >= rone; rlen -= rone, ranges += rone) {
498 offset = bus->map(addr, ranges, na, ns, pna);
499 if (offset != OF_BAD_ADDR)
500 break;
501 }
502 if (offset == OF_BAD_ADDR) {
503 pr_debug("not found !\n");
504 return 1;
505 }
506 memcpy(addr, ranges + na, 4 * pna);
507
508 finish:
509 of_dump_addr("parent translation for:", addr, pna);
510 pr_debug("with offset: %llx\n", offset);
511
512 /* Translate it into parent bus space */
513 return pbus->translate(addr, offset, pna);
514 }
515
516 /*
517 * Translate an address from the device-tree into a CPU physical address,
518 * this walks up the tree and applies the various bus mappings on the
519 * way.
520 *
521 * Note: We consider that crossing any level with #size-cells == 0 to mean
522 * that translation is impossible (that is we are not dealing with a value
523 * that can be mapped to a cpu physical address). This is not really specified
524 * that way, but this is traditionally the way IBM at least do things
525 *
526 * Whenever the translation fails, the *host pointer will be set to the
527 * device that had registered logical PIO mapping, and the return code is
528 * relative to that node.
529 */
__of_translate_address(struct device_node * dev,struct device_node * (* get_parent)(const struct device_node *),const __be32 * in_addr,const char * rprop,struct device_node ** host)530 static u64 __of_translate_address(struct device_node *dev,
531 struct device_node *(*get_parent)(const struct device_node *),
532 const __be32 *in_addr, const char *rprop,
533 struct device_node **host)
534 {
535 struct device_node *parent = NULL;
536 struct of_bus *bus, *pbus;
537 __be32 addr[OF_MAX_ADDR_CELLS];
538 int na, ns, pna, pns;
539 u64 result = OF_BAD_ADDR;
540
541 pr_debug("** translation for device %pOF **\n", dev);
542
543 /* Increase refcount at current level */
544 of_node_get(dev);
545
546 *host = NULL;
547 /* Get parent & match bus type */
548 parent = get_parent(dev);
549 if (parent == NULL)
550 goto bail;
551 bus = of_match_bus(parent);
552
553 /* Count address cells & copy address locally */
554 bus->count_cells(dev, &na, &ns);
555 if (!OF_CHECK_COUNTS(na, ns)) {
556 pr_debug("Bad cell count for %pOF\n", dev);
557 goto bail;
558 }
559 memcpy(addr, in_addr, na * 4);
560
561 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
562 bus->name, na, ns, parent);
563 of_dump_addr("translating address:", addr, na);
564
565 /* Translate */
566 for (;;) {
567 struct logic_pio_hwaddr *iorange;
568
569 /* Switch to parent bus */
570 of_node_put(dev);
571 dev = parent;
572 parent = get_parent(dev);
573
574 /* If root, we have finished */
575 if (parent == NULL) {
576 pr_debug("reached root node\n");
577 result = of_read_number(addr, na);
578 break;
579 }
580
581 /*
582 * For indirectIO device which has no ranges property, get
583 * the address from reg directly.
584 */
585 iorange = find_io_range_by_fwnode(&dev->fwnode);
586 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
587 result = of_read_number(addr + 1, na - 1);
588 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
589 dev, result);
590 *host = of_node_get(dev);
591 break;
592 }
593
594 /* Get new parent bus and counts */
595 pbus = of_match_bus(parent);
596 pbus->count_cells(dev, &pna, &pns);
597 if (!OF_CHECK_COUNTS(pna, pns)) {
598 pr_err("Bad cell count for %pOF\n", dev);
599 break;
600 }
601
602 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
603 pbus->name, pna, pns, parent);
604
605 /* Apply bus translation */
606 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
607 break;
608
609 /* Complete the move up one level */
610 na = pna;
611 ns = pns;
612 bus = pbus;
613
614 of_dump_addr("one level translation:", addr, na);
615 }
616 bail:
617 of_node_put(parent);
618 of_node_put(dev);
619
620 return result;
621 }
622
of_translate_address(struct device_node * dev,const __be32 * in_addr)623 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
624 {
625 struct device_node *host;
626 u64 ret;
627
628 ret = __of_translate_address(dev, of_get_parent,
629 in_addr, "ranges", &host);
630 if (host) {
631 of_node_put(host);
632 return OF_BAD_ADDR;
633 }
634
635 return ret;
636 }
637 EXPORT_SYMBOL(of_translate_address);
638
639 #ifdef CONFIG_HAS_DMA
__of_get_dma_parent(const struct device_node * np)640 struct device_node *__of_get_dma_parent(const struct device_node *np)
641 {
642 struct of_phandle_args args;
643 int ret, index;
644
645 index = of_property_match_string(np, "interconnect-names", "dma-mem");
646 if (index < 0)
647 return of_get_parent(np);
648
649 ret = of_parse_phandle_with_args(np, "interconnects",
650 "#interconnect-cells",
651 index, &args);
652 if (ret < 0)
653 return of_get_parent(np);
654
655 return of_node_get(args.np);
656 }
657 #endif
658
of_get_next_dma_parent(struct device_node * np)659 static struct device_node *of_get_next_dma_parent(struct device_node *np)
660 {
661 struct device_node *parent;
662
663 parent = __of_get_dma_parent(np);
664 of_node_put(np);
665
666 return parent;
667 }
668
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)669 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
670 {
671 struct device_node *host;
672 u64 ret;
673
674 ret = __of_translate_address(dev, __of_get_dma_parent,
675 in_addr, "dma-ranges", &host);
676
677 if (host) {
678 of_node_put(host);
679 return OF_BAD_ADDR;
680 }
681
682 return ret;
683 }
684 EXPORT_SYMBOL(of_translate_dma_address);
685
686 /**
687 * of_translate_dma_region - Translate device tree address and size tuple
688 * @dev: device tree node for which to translate
689 * @prop: pointer into array of cells
690 * @start: return value for the start of the DMA range
691 * @length: return value for the length of the DMA range
692 *
693 * Returns a pointer to the cell immediately following the translated DMA region.
694 */
of_translate_dma_region(struct device_node * dev,const __be32 * prop,phys_addr_t * start,size_t * length)695 const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
696 phys_addr_t *start, size_t *length)
697 {
698 struct device_node *parent;
699 u64 address, size;
700 int na, ns;
701
702 parent = __of_get_dma_parent(dev);
703 if (!parent)
704 return NULL;
705
706 na = of_bus_n_addr_cells(parent);
707 ns = of_bus_n_size_cells(parent);
708
709 of_node_put(parent);
710
711 address = of_translate_dma_address(dev, prop);
712 if (address == OF_BAD_ADDR)
713 return NULL;
714
715 size = of_read_number(prop + na, ns);
716
717 if (start)
718 *start = address;
719
720 if (length)
721 *length = size;
722
723 return prop + na + ns;
724 }
725 EXPORT_SYMBOL(of_translate_dma_region);
726
__of_get_address(struct device_node * dev,int index,int bar_no,u64 * size,unsigned int * flags)727 const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
728 u64 *size, unsigned int *flags)
729 {
730 const __be32 *prop;
731 unsigned int psize;
732 struct device_node *parent;
733 struct of_bus *bus;
734 int onesize, i, na, ns;
735
736 /* Get parent & match bus type */
737 parent = of_get_parent(dev);
738 if (parent == NULL)
739 return NULL;
740 bus = of_match_bus(parent);
741 if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
742 of_node_put(parent);
743 return NULL;
744 }
745 bus->count_cells(dev, &na, &ns);
746 of_node_put(parent);
747 if (!OF_CHECK_ADDR_COUNT(na))
748 return NULL;
749
750 /* Get "reg" or "assigned-addresses" property */
751 prop = of_get_property(dev, bus->addresses, &psize);
752 if (prop == NULL)
753 return NULL;
754 psize /= 4;
755
756 onesize = na + ns;
757 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
758 u32 val = be32_to_cpu(prop[0]);
759 /* PCI bus matches on BAR number instead of index */
760 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
761 ((index >= 0) && (i == index))) {
762 if (size)
763 *size = of_read_number(prop + na, ns);
764 if (flags)
765 *flags = bus->get_flags(prop);
766 return prop;
767 }
768 }
769 return NULL;
770 }
771 EXPORT_SYMBOL(__of_get_address);
772
773 /**
774 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
775 * @np: device tree node for which to retrieve "reg" from
776 * @idx: "reg" entry index to read
777 * @addr: return value for the untranslated address
778 * @size: return value for the entry size
779 *
780 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
781 * size values filled in.
782 */
of_property_read_reg(struct device_node * np,int idx,u64 * addr,u64 * size)783 int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
784 {
785 const __be32 *prop = of_get_address(np, idx, size, NULL);
786
787 if (!prop)
788 return -EINVAL;
789
790 *addr = of_read_number(prop, of_n_addr_cells(np));
791
792 return 0;
793 }
794 EXPORT_SYMBOL(of_property_read_reg);
795
parser_init(struct of_pci_range_parser * parser,struct device_node * node,const char * name)796 static int parser_init(struct of_pci_range_parser *parser,
797 struct device_node *node, const char *name)
798 {
799 int rlen;
800
801 parser->node = node;
802 parser->pna = of_n_addr_cells(node);
803 parser->na = of_bus_n_addr_cells(node);
804 parser->ns = of_bus_n_size_cells(node);
805 parser->dma = !strcmp(name, "dma-ranges");
806 parser->bus = of_match_bus(node);
807
808 parser->range = of_get_property(node, name, &rlen);
809 if (parser->range == NULL)
810 return -ENOENT;
811
812 parser->end = parser->range + rlen / sizeof(__be32);
813
814 return 0;
815 }
816
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)817 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
818 struct device_node *node)
819 {
820 return parser_init(parser, node, "ranges");
821 }
822 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
823
of_pci_dma_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)824 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
825 struct device_node *node)
826 {
827 return parser_init(parser, node, "dma-ranges");
828 }
829 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
830 #define of_dma_range_parser_init of_pci_dma_range_parser_init
831
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)832 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
833 struct of_pci_range *range)
834 {
835 int na = parser->na;
836 int ns = parser->ns;
837 int np = parser->pna + na + ns;
838 int busflag_na = 0;
839
840 if (!range)
841 return NULL;
842
843 if (!parser->range || parser->range + np > parser->end)
844 return NULL;
845
846 range->flags = parser->bus->get_flags(parser->range);
847
848 /* A extra cell for resource flags */
849 if (parser->bus->has_flags)
850 busflag_na = 1;
851
852 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
853
854 if (parser->dma)
855 range->cpu_addr = of_translate_dma_address(parser->node,
856 parser->range + na);
857 else
858 range->cpu_addr = of_translate_address(parser->node,
859 parser->range + na);
860 range->size = of_read_number(parser->range + parser->pna + na, ns);
861
862 parser->range += np;
863
864 /* Now consume following elements while they are contiguous */
865 while (parser->range + np <= parser->end) {
866 u32 flags = 0;
867 u64 bus_addr, cpu_addr, size;
868
869 flags = parser->bus->get_flags(parser->range);
870 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
871 if (parser->dma)
872 cpu_addr = of_translate_dma_address(parser->node,
873 parser->range + na);
874 else
875 cpu_addr = of_translate_address(parser->node,
876 parser->range + na);
877 size = of_read_number(parser->range + parser->pna + na, ns);
878
879 if (flags != range->flags)
880 break;
881 if (bus_addr != range->bus_addr + range->size ||
882 cpu_addr != range->cpu_addr + range->size)
883 break;
884
885 range->size += size;
886 parser->range += np;
887 }
888
889 return range;
890 }
891 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
892
of_translate_ioport(struct device_node * dev,const __be32 * in_addr,u64 size)893 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
894 u64 size)
895 {
896 u64 taddr;
897 unsigned long port;
898 struct device_node *host;
899
900 taddr = __of_translate_address(dev, of_get_parent,
901 in_addr, "ranges", &host);
902 if (host) {
903 /* host-specific port access */
904 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
905 of_node_put(host);
906 } else {
907 /* memory-mapped I/O range */
908 port = pci_address_to_pio(taddr);
909 }
910
911 if (port == (unsigned long)-1)
912 return OF_BAD_ADDR;
913
914 return port;
915 }
916
917 #ifdef CONFIG_HAS_DMA
918 /**
919 * of_dma_get_range - Get DMA range info and put it into a map array
920 * @np: device node to get DMA range info
921 * @map: dma range structure to return
922 *
923 * Look in bottom up direction for the first "dma-ranges" property
924 * and parse it. Put the information into a DMA offset map array.
925 *
926 * dma-ranges format:
927 * DMA addr (dma_addr) : naddr cells
928 * CPU addr (phys_addr_t) : pna cells
929 * size : nsize cells
930 *
931 * It returns -ENODEV if "dma-ranges" property was not found for this
932 * device in the DT.
933 */
of_dma_get_range(struct device_node * np,const struct bus_dma_region ** map)934 int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
935 {
936 struct device_node *node = of_node_get(np);
937 const __be32 *ranges = NULL;
938 bool found_dma_ranges = false;
939 struct of_range_parser parser;
940 struct of_range range;
941 struct bus_dma_region *r;
942 int len, num_ranges = 0;
943 int ret = 0;
944
945 while (node) {
946 ranges = of_get_property(node, "dma-ranges", &len);
947
948 /* Ignore empty ranges, they imply no translation required */
949 if (ranges && len > 0)
950 break;
951
952 /* Once we find 'dma-ranges', then a missing one is an error */
953 if (found_dma_ranges && !ranges) {
954 ret = -ENODEV;
955 goto out;
956 }
957 found_dma_ranges = true;
958
959 node = of_get_next_dma_parent(node);
960 }
961
962 if (!node || !ranges) {
963 pr_debug("no dma-ranges found for node(%pOF)\n", np);
964 ret = -ENODEV;
965 goto out;
966 }
967
968 of_dma_range_parser_init(&parser, node);
969 for_each_of_range(&parser, &range) {
970 if (range.cpu_addr == OF_BAD_ADDR) {
971 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
972 range.bus_addr, node);
973 continue;
974 }
975 num_ranges++;
976 }
977
978 if (!num_ranges) {
979 ret = -EINVAL;
980 goto out;
981 }
982
983 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
984 if (!r) {
985 ret = -ENOMEM;
986 goto out;
987 }
988
989 /*
990 * Record all info in the generic DMA ranges array for struct device,
991 * returning an error if we don't find any parsable ranges.
992 */
993 *map = r;
994 of_dma_range_parser_init(&parser, node);
995 for_each_of_range(&parser, &range) {
996 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
997 range.bus_addr, range.cpu_addr, range.size);
998 if (range.cpu_addr == OF_BAD_ADDR)
999 continue;
1000 r->cpu_start = range.cpu_addr;
1001 r->dma_start = range.bus_addr;
1002 r->size = range.size;
1003 r->offset = range.cpu_addr - range.bus_addr;
1004 r++;
1005 }
1006 out:
1007 of_node_put(node);
1008 return ret;
1009 }
1010 #endif /* CONFIG_HAS_DMA */
1011
1012 /**
1013 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
1014 * @np: The node to start searching from or NULL to start from the root
1015 *
1016 * Gets the highest CPU physical address that is addressable by all DMA masters
1017 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
1018 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
1019 */
of_dma_get_max_cpu_address(struct device_node * np)1020 phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
1021 {
1022 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
1023 struct of_range_parser parser;
1024 phys_addr_t subtree_max_addr;
1025 struct device_node *child;
1026 struct of_range range;
1027 const __be32 *ranges;
1028 u64 cpu_end = 0;
1029 int len;
1030
1031 if (!np)
1032 np = of_root;
1033
1034 ranges = of_get_property(np, "dma-ranges", &len);
1035 if (ranges && len) {
1036 of_dma_range_parser_init(&parser, np);
1037 for_each_of_range(&parser, &range)
1038 if (range.cpu_addr + range.size > cpu_end)
1039 cpu_end = range.cpu_addr + range.size - 1;
1040
1041 if (max_cpu_addr > cpu_end)
1042 max_cpu_addr = cpu_end;
1043 }
1044
1045 for_each_available_child_of_node(np, child) {
1046 subtree_max_addr = of_dma_get_max_cpu_address(child);
1047 if (max_cpu_addr > subtree_max_addr)
1048 max_cpu_addr = subtree_max_addr;
1049 }
1050
1051 return max_cpu_addr;
1052 }
1053
1054 /**
1055 * of_dma_is_coherent - Check if device is coherent
1056 * @np: device node
1057 *
1058 * It returns true if "dma-coherent" property was found
1059 * for this device in the DT, or if DMA is coherent by
1060 * default for OF devices on the current platform and no
1061 * "dma-noncoherent" property was found for this device.
1062 */
of_dma_is_coherent(struct device_node * np)1063 bool of_dma_is_coherent(struct device_node *np)
1064 {
1065 struct device_node *node;
1066 bool is_coherent = dma_default_coherent;
1067
1068 node = of_node_get(np);
1069
1070 while (node) {
1071 if (of_property_read_bool(node, "dma-coherent")) {
1072 is_coherent = true;
1073 break;
1074 }
1075 if (of_property_read_bool(node, "dma-noncoherent")) {
1076 is_coherent = false;
1077 break;
1078 }
1079 node = of_get_next_dma_parent(node);
1080 }
1081 of_node_put(node);
1082 return is_coherent;
1083 }
1084 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1085
1086 /**
1087 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1088 * @np: device node
1089 *
1090 * Returns true if the "nonposted-mmio" property was found for
1091 * the device's bus.
1092 *
1093 * This is currently only enabled on builds that support Apple ARM devices, as
1094 * an optimization.
1095 */
of_mmio_is_nonposted(struct device_node * np)1096 static bool of_mmio_is_nonposted(struct device_node *np)
1097 {
1098 struct device_node *parent;
1099 bool nonposted;
1100
1101 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1102 return false;
1103
1104 parent = of_get_parent(np);
1105 if (!parent)
1106 return false;
1107
1108 nonposted = of_property_read_bool(parent, "nonposted-mmio");
1109
1110 of_node_put(parent);
1111 return nonposted;
1112 }
1113
__of_address_to_resource(struct device_node * dev,int index,int bar_no,struct resource * r)1114 static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1115 struct resource *r)
1116 {
1117 u64 taddr;
1118 const __be32 *addrp;
1119 u64 size;
1120 unsigned int flags;
1121 const char *name = NULL;
1122
1123 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1124 if (addrp == NULL)
1125 return -EINVAL;
1126
1127 /* Get optional "reg-names" property to add a name to a resource */
1128 if (index >= 0)
1129 of_property_read_string_index(dev, "reg-names", index, &name);
1130
1131 if (flags & IORESOURCE_MEM)
1132 taddr = of_translate_address(dev, addrp);
1133 else if (flags & IORESOURCE_IO)
1134 taddr = of_translate_ioport(dev, addrp, size);
1135 else
1136 return -EINVAL;
1137
1138 if (taddr == OF_BAD_ADDR)
1139 return -EINVAL;
1140 memset(r, 0, sizeof(struct resource));
1141
1142 if (of_mmio_is_nonposted(dev))
1143 flags |= IORESOURCE_MEM_NONPOSTED;
1144
1145 r->start = taddr;
1146 r->end = taddr + size - 1;
1147 r->flags = flags;
1148 r->name = name ? name : dev->full_name;
1149
1150 return 0;
1151 }
1152
1153 /**
1154 * of_address_to_resource - Translate device tree address and return as resource
1155 * @dev: Caller's Device Node
1156 * @index: Index into the array
1157 * @r: Pointer to resource array
1158 *
1159 * Returns -EINVAL if the range cannot be converted to resource.
1160 *
1161 * Note that if your address is a PIO address, the conversion will fail if
1162 * the physical address can't be internally converted to an IO token with
1163 * pci_address_to_pio(), that is because it's either called too early or it
1164 * can't be matched to any host bridge IO space
1165 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)1166 int of_address_to_resource(struct device_node *dev, int index,
1167 struct resource *r)
1168 {
1169 return __of_address_to_resource(dev, index, -1, r);
1170 }
1171 EXPORT_SYMBOL_GPL(of_address_to_resource);
1172
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)1173 int of_pci_address_to_resource(struct device_node *dev, int bar,
1174 struct resource *r)
1175 {
1176
1177 if (!IS_ENABLED(CONFIG_PCI))
1178 return -ENOSYS;
1179
1180 return __of_address_to_resource(dev, -1, bar, r);
1181 }
1182 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1183
1184 /**
1185 * of_iomap - Maps the memory mapped IO for a given device_node
1186 * @np: the device whose io range will be mapped
1187 * @index: index of the io range
1188 *
1189 * Returns a pointer to the mapped memory
1190 */
of_iomap(struct device_node * np,int index)1191 void __iomem *of_iomap(struct device_node *np, int index)
1192 {
1193 struct resource res;
1194
1195 if (of_address_to_resource(np, index, &res))
1196 return NULL;
1197
1198 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1199 return ioremap_np(res.start, resource_size(&res));
1200 else
1201 return ioremap(res.start, resource_size(&res));
1202 }
1203 EXPORT_SYMBOL(of_iomap);
1204
1205 /*
1206 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1207 * for a given device_node
1208 * @device: the device whose io range will be mapped
1209 * @index: index of the io range
1210 * @name: name "override" for the memory region request or NULL
1211 *
1212 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1213 * error code on failure. Usage example:
1214 *
1215 * base = of_io_request_and_map(node, 0, "foo");
1216 * if (IS_ERR(base))
1217 * return PTR_ERR(base);
1218 */
of_io_request_and_map(struct device_node * np,int index,const char * name)1219 void __iomem *of_io_request_and_map(struct device_node *np, int index,
1220 const char *name)
1221 {
1222 struct resource res;
1223 void __iomem *mem;
1224
1225 if (of_address_to_resource(np, index, &res))
1226 return IOMEM_ERR_PTR(-EINVAL);
1227
1228 if (!name)
1229 name = res.name;
1230 if (!request_mem_region(res.start, resource_size(&res), name))
1231 return IOMEM_ERR_PTR(-EBUSY);
1232
1233 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1234 mem = ioremap_np(res.start, resource_size(&res));
1235 else
1236 mem = ioremap(res.start, resource_size(&res));
1237
1238 if (!mem) {
1239 release_mem_region(res.start, resource_size(&res));
1240 return IOMEM_ERR_PTR(-ENOMEM);
1241 }
1242
1243 return mem;
1244 }
1245 EXPORT_SYMBOL(of_io_request_and_map);
1246