• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44 
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47 #include <trace/hooks/mm.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is not
81  *   on any list except per cpu partial list. The processor that froze the
82  *   slab is the one who can perform list operations on the slab. Other
83  *   processors may put objects onto the freelist but the processor that
84  *   froze the slab is the only one that can retrieve the objects from the
85  *   slab's freelist.
86  *
87  *   list_lock
88  *
89  *   The list_lock protects the partial and full list on each node and
90  *   the partial slab counter. If taken then no new slabs may be added or
91  *   removed from the lists nor make the number of partial slabs be modified.
92  *   (Note that the total number of slabs is an atomic value that may be
93  *   modified without taking the list lock).
94  *
95  *   The list_lock is a centralized lock and thus we avoid taking it as
96  *   much as possible. As long as SLUB does not have to handle partial
97  *   slabs, operations can continue without any centralized lock. F.e.
98  *   allocating a long series of objects that fill up slabs does not require
99  *   the list lock.
100  *
101  *   For debug caches, all allocations are forced to go through a list_lock
102  *   protected region to serialize against concurrent validation.
103  *
104  *   cpu_slab->lock local lock
105  *
106  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
107  *   except the stat counters. This is a percpu structure manipulated only by
108  *   the local cpu, so the lock protects against being preempted or interrupted
109  *   by an irq. Fast path operations rely on lockless operations instead.
110  *
111  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
112  *   which means the lockless fastpath cannot be used as it might interfere with
113  *   an in-progress slow path operations. In this case the local lock is always
114  *   taken but it still utilizes the freelist for the common operations.
115  *
116  *   lockless fastpaths
117  *
118  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
119  *   are fully lockless when satisfied from the percpu slab (and when
120  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
121  *   They also don't disable preemption or migration or irqs. They rely on
122  *   the transaction id (tid) field to detect being preempted or moved to
123  *   another cpu.
124  *
125  *   irq, preemption, migration considerations
126  *
127  *   Interrupts are disabled as part of list_lock or local_lock operations, or
128  *   around the slab_lock operation, in order to make the slab allocator safe
129  *   to use in the context of an irq.
130  *
131  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
132  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
133  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
134  *   doesn't have to be revalidated in each section protected by the local lock.
135  *
136  * SLUB assigns one slab for allocation to each processor.
137  * Allocations only occur from these slabs called cpu slabs.
138  *
139  * Slabs with free elements are kept on a partial list and during regular
140  * operations no list for full slabs is used. If an object in a full slab is
141  * freed then the slab will show up again on the partial lists.
142  * We track full slabs for debugging purposes though because otherwise we
143  * cannot scan all objects.
144  *
145  * Slabs are freed when they become empty. Teardown and setup is
146  * minimal so we rely on the page allocators per cpu caches for
147  * fast frees and allocs.
148  *
149  * slab->frozen		The slab is frozen and exempt from list processing.
150  * 			This means that the slab is dedicated to a purpose
151  * 			such as satisfying allocations for a specific
152  * 			processor. Objects may be freed in the slab while
153  * 			it is frozen but slab_free will then skip the usual
154  * 			list operations. It is up to the processor holding
155  * 			the slab to integrate the slab into the slab lists
156  * 			when the slab is no longer needed.
157  *
158  * 			One use of this flag is to mark slabs that are
159  * 			used for allocations. Then such a slab becomes a cpu
160  * 			slab. The cpu slab may be equipped with an additional
161  * 			freelist that allows lockless access to
162  * 			free objects in addition to the regular freelist
163  * 			that requires the slab lock.
164  *
165  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
166  * 			options set. This moves	slab handling out of
167  * 			the fast path and disables lockless freelists.
168  */
169 
170 /*
171  * We could simply use migrate_disable()/enable() but as long as it's a
172  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
173  */
174 #ifndef CONFIG_PREEMPT_RT
175 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
176 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
177 #define USE_LOCKLESS_FAST_PATH()	(true)
178 #else
179 #define slub_get_cpu_ptr(var)		\
180 ({					\
181 	migrate_disable();		\
182 	this_cpu_ptr(var);		\
183 })
184 #define slub_put_cpu_ptr(var)		\
185 do {					\
186 	(void)(var);			\
187 	migrate_enable();		\
188 } while (0)
189 #define USE_LOCKLESS_FAST_PATH()	(false)
190 #endif
191 
192 #ifndef CONFIG_SLUB_TINY
193 #define __fastpath_inline __always_inline
194 #else
195 #define __fastpath_inline
196 #endif
197 
198 #ifdef CONFIG_SLUB_DEBUG
199 #ifdef CONFIG_SLUB_DEBUG_ON
200 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
201 #else
202 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
203 #endif
204 #endif		/* CONFIG_SLUB_DEBUG */
205 
206 /* Structure holding parameters for get_partial() call chain */
207 struct partial_context {
208 	struct slab **slab;
209 	gfp_t flags;
210 	unsigned int orig_size;
211 };
212 
kmem_cache_debug(struct kmem_cache * s)213 static inline bool kmem_cache_debug(struct kmem_cache *s)
214 {
215 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
216 }
217 
slub_debug_orig_size(struct kmem_cache * s)218 static inline bool slub_debug_orig_size(struct kmem_cache *s)
219 {
220 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
221 			(s->flags & SLAB_KMALLOC));
222 }
223 
fixup_red_left(struct kmem_cache * s,void * p)224 void *fixup_red_left(struct kmem_cache *s, void *p)
225 {
226 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
227 		p += s->red_left_pad;
228 
229 	return p;
230 }
231 
kmem_cache_has_cpu_partial(struct kmem_cache * s)232 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
233 {
234 #ifdef CONFIG_SLUB_CPU_PARTIAL
235 	return !kmem_cache_debug(s);
236 #else
237 	return false;
238 #endif
239 }
240 
241 /*
242  * Issues still to be resolved:
243  *
244  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
245  *
246  * - Variable sizing of the per node arrays
247  */
248 
249 /* Enable to log cmpxchg failures */
250 #undef SLUB_DEBUG_CMPXCHG
251 
252 #ifndef CONFIG_SLUB_TINY
253 /*
254  * Minimum number of partial slabs. These will be left on the partial
255  * lists even if they are empty. kmem_cache_shrink may reclaim them.
256  */
257 #define MIN_PARTIAL 5
258 
259 /*
260  * Maximum number of desirable partial slabs.
261  * The existence of more partial slabs makes kmem_cache_shrink
262  * sort the partial list by the number of objects in use.
263  */
264 #define MAX_PARTIAL 10
265 #else
266 #define MIN_PARTIAL 0
267 #define MAX_PARTIAL 0
268 #endif
269 
270 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
271 				SLAB_POISON | SLAB_STORE_USER)
272 
273 /*
274  * These debug flags cannot use CMPXCHG because there might be consistency
275  * issues when checking or reading debug information
276  */
277 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
278 				SLAB_TRACE)
279 
280 
281 /*
282  * Debugging flags that require metadata to be stored in the slab.  These get
283  * disabled when slub_debug=O is used and a cache's min order increases with
284  * metadata.
285  */
286 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
287 
288 #define OO_SHIFT	16
289 #define OO_MASK		((1 << OO_SHIFT) - 1)
290 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
291 
292 /* Internal SLUB flags */
293 /* Poison object */
294 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
295 /* Use cmpxchg_double */
296 
297 #ifdef system_has_freelist_aba
298 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
299 #else
300 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0U)
301 #endif
302 
303 #ifdef SLAB_SUPPORTS_SYSFS
304 static int sysfs_slab_add(struct kmem_cache *);
305 static int sysfs_slab_alias(struct kmem_cache *, const char *);
306 #else
sysfs_slab_add(struct kmem_cache * s)307 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)308 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
309 							{ return 0; }
310 #endif
311 
312 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
313 static void debugfs_slab_add(struct kmem_cache *);
314 #else
debugfs_slab_add(struct kmem_cache * s)315 static inline void debugfs_slab_add(struct kmem_cache *s) { }
316 #endif
317 
stat(const struct kmem_cache * s,enum stat_item si)318 static inline void stat(const struct kmem_cache *s, enum stat_item si)
319 {
320 #ifdef CONFIG_SLUB_STATS
321 	/*
322 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
323 	 * avoid this_cpu_add()'s irq-disable overhead.
324 	 */
325 	raw_cpu_inc(s->cpu_slab->stat[si]);
326 #endif
327 }
328 
329 /*
330  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
331  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
332  * differ during memory hotplug/hotremove operations.
333  * Protected by slab_mutex.
334  */
335 static nodemask_t slab_nodes;
336 
337 #ifndef CONFIG_SLUB_TINY
338 /*
339  * Workqueue used for flush_cpu_slab().
340  */
341 static struct workqueue_struct *flushwq;
342 #endif
343 
344 /********************************************************************
345  * 			Core slab cache functions
346  *******************************************************************/
347 
348 /*
349  * freeptr_t represents a SLUB freelist pointer, which might be encoded
350  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
351  */
352 typedef struct { unsigned long v; } freeptr_t;
353 
354 /*
355  * Returns freelist pointer (ptr). With hardening, this is obfuscated
356  * with an XOR of the address where the pointer is held and a per-cache
357  * random number.
358  */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)359 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
360 					    void *ptr, unsigned long ptr_addr)
361 {
362 	unsigned long encoded;
363 
364 #ifdef CONFIG_SLAB_FREELIST_HARDENED
365 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
366 #else
367 	encoded = (unsigned long)ptr;
368 #endif
369 	return (freeptr_t){.v = encoded};
370 }
371 
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)372 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
373 					freeptr_t ptr, unsigned long ptr_addr)
374 {
375 	void *decoded;
376 
377 #ifdef CONFIG_SLAB_FREELIST_HARDENED
378 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
379 #else
380 	decoded = (void *)ptr.v;
381 #endif
382 	return decoded;
383 }
384 
get_freepointer(struct kmem_cache * s,void * object)385 static inline void *get_freepointer(struct kmem_cache *s, void *object)
386 {
387 	unsigned long ptr_addr;
388 	freeptr_t p;
389 
390 	object = kasan_reset_tag(object);
391 	ptr_addr = (unsigned long)object + s->offset;
392 	p = *(freeptr_t *)(ptr_addr);
393 	return freelist_ptr_decode(s, p, ptr_addr);
394 }
395 
396 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)397 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
398 {
399 	prefetchw(object + s->offset);
400 }
401 #endif
402 
403 /*
404  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
405  * pointer value in the case the current thread loses the race for the next
406  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
407  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
408  * KMSAN will still check all arguments of cmpxchg because of imperfect
409  * handling of inline assembly.
410  * To work around this problem, we apply __no_kmsan_checks to ensure that
411  * get_freepointer_safe() returns initialized memory.
412  */
413 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)414 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
415 {
416 	unsigned long freepointer_addr;
417 	freeptr_t p;
418 
419 	if (!debug_pagealloc_enabled_static())
420 		return get_freepointer(s, object);
421 
422 	object = kasan_reset_tag(object);
423 	freepointer_addr = (unsigned long)object + s->offset;
424 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
425 	return freelist_ptr_decode(s, p, freepointer_addr);
426 }
427 
set_freepointer(struct kmem_cache * s,void * object,void * fp)428 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
429 {
430 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
431 
432 #ifdef CONFIG_SLAB_FREELIST_HARDENED
433 	BUG_ON(object == fp); /* naive detection of double free or corruption */
434 #endif
435 
436 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
437 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
438 }
439 
440 /* Loop over all objects in a slab */
441 #define for_each_object(__p, __s, __addr, __objects) \
442 	for (__p = fixup_red_left(__s, __addr); \
443 		__p < (__addr) + (__objects) * (__s)->size; \
444 		__p += (__s)->size)
445 
order_objects(unsigned int order,unsigned int size)446 static inline unsigned int order_objects(unsigned int order, unsigned int size)
447 {
448 	return ((unsigned int)PAGE_SIZE << order) / size;
449 }
450 
oo_make(unsigned int order,unsigned int size)451 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
452 		unsigned int size)
453 {
454 	struct kmem_cache_order_objects x = {
455 		(order << OO_SHIFT) + order_objects(order, size)
456 	};
457 
458 	return x;
459 }
460 
oo_order(struct kmem_cache_order_objects x)461 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
462 {
463 	return x.x >> OO_SHIFT;
464 }
465 
oo_objects(struct kmem_cache_order_objects x)466 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
467 {
468 	return x.x & OO_MASK;
469 }
470 
471 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)472 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
473 {
474 	unsigned int nr_slabs;
475 
476 	s->cpu_partial = nr_objects;
477 
478 	/*
479 	 * We take the number of objects but actually limit the number of
480 	 * slabs on the per cpu partial list, in order to limit excessive
481 	 * growth of the list. For simplicity we assume that the slabs will
482 	 * be half-full.
483 	 */
484 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
485 	s->cpu_partial_slabs = nr_slabs;
486 }
487 #else
488 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)489 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
490 {
491 }
492 #endif /* CONFIG_SLUB_CPU_PARTIAL */
493 
494 /*
495  * Per slab locking using the pagelock
496  */
slab_lock(struct slab * slab)497 static __always_inline void slab_lock(struct slab *slab)
498 {
499 	struct page *page = slab_page(slab);
500 
501 	VM_BUG_ON_PAGE(PageTail(page), page);
502 	bit_spin_lock(PG_locked, &page->flags);
503 }
504 
slab_unlock(struct slab * slab)505 static __always_inline void slab_unlock(struct slab *slab)
506 {
507 	struct page *page = slab_page(slab);
508 
509 	VM_BUG_ON_PAGE(PageTail(page), page);
510 	__bit_spin_unlock(PG_locked, &page->flags);
511 }
512 
513 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)514 __update_freelist_fast(struct slab *slab,
515 		      void *freelist_old, unsigned long counters_old,
516 		      void *freelist_new, unsigned long counters_new)
517 {
518 #ifdef system_has_freelist_aba
519 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
520 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
521 
522 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
523 #else
524 	return false;
525 #endif
526 }
527 
528 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)529 __update_freelist_slow(struct slab *slab,
530 		      void *freelist_old, unsigned long counters_old,
531 		      void *freelist_new, unsigned long counters_new)
532 {
533 	bool ret = false;
534 
535 	slab_lock(slab);
536 	if (slab->freelist == freelist_old &&
537 	    slab->counters == counters_old) {
538 		slab->freelist = freelist_new;
539 		slab->counters = counters_new;
540 		ret = true;
541 	}
542 	slab_unlock(slab);
543 
544 	return ret;
545 }
546 
547 /*
548  * Interrupts must be disabled (for the fallback code to work right), typically
549  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
550  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
551  * allocation/ free operation in hardirq context. Therefore nothing can
552  * interrupt the operation.
553  */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)554 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
555 		void *freelist_old, unsigned long counters_old,
556 		void *freelist_new, unsigned long counters_new,
557 		const char *n)
558 {
559 	bool ret;
560 
561 	if (USE_LOCKLESS_FAST_PATH())
562 		lockdep_assert_irqs_disabled();
563 
564 	if (s->flags & __CMPXCHG_DOUBLE) {
565 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
566 				            freelist_new, counters_new);
567 	} else {
568 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
569 				            freelist_new, counters_new);
570 	}
571 	if (likely(ret))
572 		return true;
573 
574 	cpu_relax();
575 	stat(s, CMPXCHG_DOUBLE_FAIL);
576 
577 #ifdef SLUB_DEBUG_CMPXCHG
578 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
579 #endif
580 
581 	return false;
582 }
583 
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)584 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
585 		void *freelist_old, unsigned long counters_old,
586 		void *freelist_new, unsigned long counters_new,
587 		const char *n)
588 {
589 	bool ret;
590 
591 	if (s->flags & __CMPXCHG_DOUBLE) {
592 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
593 				            freelist_new, counters_new);
594 	} else {
595 		unsigned long flags;
596 
597 		local_irq_save(flags);
598 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
599 				            freelist_new, counters_new);
600 		local_irq_restore(flags);
601 	}
602 	if (likely(ret))
603 		return true;
604 
605 	cpu_relax();
606 	stat(s, CMPXCHG_DOUBLE_FAIL);
607 
608 #ifdef SLUB_DEBUG_CMPXCHG
609 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
610 #endif
611 
612 	return false;
613 }
614 
615 #ifdef CONFIG_SLUB_DEBUG
616 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
617 static DEFINE_SPINLOCK(object_map_lock);
618 
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)619 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
620 		       struct slab *slab)
621 {
622 	void *addr = slab_address(slab);
623 	void *p;
624 
625 	bitmap_zero(obj_map, slab->objects);
626 
627 	for (p = slab->freelist; p; p = get_freepointer(s, p))
628 		set_bit(__obj_to_index(s, addr, p), obj_map);
629 }
630 
631 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)632 static bool slab_add_kunit_errors(void)
633 {
634 	struct kunit_resource *resource;
635 
636 	if (!kunit_get_current_test())
637 		return false;
638 
639 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
640 	if (!resource)
641 		return false;
642 
643 	(*(int *)resource->data)++;
644 	kunit_put_resource(resource);
645 	return true;
646 }
647 #else
slab_add_kunit_errors(void)648 static inline bool slab_add_kunit_errors(void) { return false; }
649 #endif
650 
size_from_object(struct kmem_cache * s)651 static inline unsigned int size_from_object(struct kmem_cache *s)
652 {
653 	if (s->flags & SLAB_RED_ZONE)
654 		return s->size - s->red_left_pad;
655 
656 	return s->size;
657 }
658 
restore_red_left(struct kmem_cache * s,void * p)659 static inline void *restore_red_left(struct kmem_cache *s, void *p)
660 {
661 	if (s->flags & SLAB_RED_ZONE)
662 		p -= s->red_left_pad;
663 
664 	return p;
665 }
666 
667 /*
668  * Debug settings:
669  */
670 #if defined(CONFIG_SLUB_DEBUG_ON)
671 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
672 #else
673 static slab_flags_t slub_debug;
674 #endif
675 
676 static char *slub_debug_string;
677 static int disable_higher_order_debug;
678 
679 /*
680  * slub is about to manipulate internal object metadata.  This memory lies
681  * outside the range of the allocated object, so accessing it would normally
682  * be reported by kasan as a bounds error.  metadata_access_enable() is used
683  * to tell kasan that these accesses are OK.
684  */
metadata_access_enable(void)685 static inline void metadata_access_enable(void)
686 {
687 	kasan_disable_current();
688 }
689 
metadata_access_disable(void)690 static inline void metadata_access_disable(void)
691 {
692 	kasan_enable_current();
693 }
694 
695 /*
696  * Object debugging
697  */
698 
699 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)700 static inline int check_valid_pointer(struct kmem_cache *s,
701 				struct slab *slab, void *object)
702 {
703 	void *base;
704 
705 	if (!object)
706 		return 1;
707 
708 	base = slab_address(slab);
709 	object = kasan_reset_tag(object);
710 	object = restore_red_left(s, object);
711 	if (object < base || object >= base + slab->objects * s->size ||
712 		(object - base) % s->size) {
713 		return 0;
714 	}
715 
716 	return 1;
717 }
718 
print_section(char * level,char * text,u8 * addr,unsigned int length)719 static void print_section(char *level, char *text, u8 *addr,
720 			  unsigned int length)
721 {
722 	metadata_access_enable();
723 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
724 			16, 1, kasan_reset_tag((void *)addr), length, 1);
725 	metadata_access_disable();
726 }
727 
728 /*
729  * See comment in calculate_sizes().
730  */
freeptr_outside_object(struct kmem_cache * s)731 static inline bool freeptr_outside_object(struct kmem_cache *s)
732 {
733 	return s->offset >= s->inuse;
734 }
735 
736 /*
737  * Return offset of the end of info block which is inuse + free pointer if
738  * not overlapping with object.
739  */
get_info_end(struct kmem_cache * s)740 static inline unsigned int get_info_end(struct kmem_cache *s)
741 {
742 	if (freeptr_outside_object(s))
743 		return s->inuse + sizeof(void *);
744 	else
745 		return s->inuse;
746 }
747 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)748 static struct track *get_track(struct kmem_cache *s, void *object,
749 	enum track_item alloc)
750 {
751 	struct track *p;
752 
753 	p = object + get_info_end(s);
754 
755 	return kasan_reset_tag(p + alloc);
756 }
757 
758 /*
759  * This function will be used to loop through all the slab objects in
760  * a page to give track structure for each object, the function fn will
761  * be using this track structure and extract required info into its private
762  * data, the return value will be the number of track structures that are
763  * processed.
764  */
get_each_object_track(struct kmem_cache * s,struct slab * slab,enum track_item alloc,int (* fn)(const struct kmem_cache *,const void *,const struct track *,void *),void * private)765 unsigned long get_each_object_track(struct kmem_cache *s,
766 		struct slab *slab, enum track_item alloc,
767 		int (*fn)(const struct kmem_cache *, const void *,
768 		const struct track *, void *), void *private)
769 {
770 	void *p;
771 	struct track *t;
772 	int ret;
773 	unsigned long num_track = 0;
774 
775 	if (!slub_debug || !(s->flags & SLAB_STORE_USER) || !slab)
776 		return 0;
777 
778 	slab_lock(slab);
779 	for_each_object(p, s, slab_address(slab), slab->objects) {
780 		t = get_track(s, p, alloc);
781 		metadata_access_enable();
782 		ret = fn(s, p, t, private);
783 		metadata_access_disable();
784 		if (ret < 0)
785 			break;
786 		num_track += 1;
787 	}
788 	slab_unlock(slab);
789 	return num_track;
790 }
791 EXPORT_SYMBOL_NS_GPL(get_each_object_track, MINIDUMP);
792 
793 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)794 static noinline depot_stack_handle_t set_track_prepare(void)
795 {
796 	depot_stack_handle_t handle;
797 	unsigned long entries[TRACK_ADDRS_COUNT];
798 	unsigned int nr_entries;
799 
800 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
801 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
802 
803 	return handle;
804 }
805 #else
set_track_prepare(void)806 static inline depot_stack_handle_t set_track_prepare(void)
807 {
808 	return 0;
809 }
810 #endif
811 
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)812 static void set_track_update(struct kmem_cache *s, void *object,
813 			     enum track_item alloc, unsigned long addr,
814 			     depot_stack_handle_t handle)
815 {
816 	struct track *p = get_track(s, object, alloc);
817 
818 #ifdef CONFIG_STACKDEPOT
819 	p->handle = handle;
820 #endif
821 	p->addr = addr;
822 	p->cpu = smp_processor_id();
823 	p->pid = current->pid;
824 	p->when = jiffies;
825 	trace_android_vh_save_track_hash(alloc == TRACK_ALLOC, p);
826 }
827 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)828 static __always_inline void set_track(struct kmem_cache *s, void *object,
829 				      enum track_item alloc, unsigned long addr)
830 {
831 	depot_stack_handle_t handle = set_track_prepare();
832 
833 	set_track_update(s, object, alloc, addr, handle);
834 }
835 
init_tracking(struct kmem_cache * s,void * object)836 static void init_tracking(struct kmem_cache *s, void *object)
837 {
838 	struct track *p;
839 
840 	if (!(s->flags & SLAB_STORE_USER))
841 		return;
842 
843 	p = get_track(s, object, TRACK_ALLOC);
844 	memset(p, 0, 2*sizeof(struct track));
845 }
846 
print_track(const char * s,struct track * t,unsigned long pr_time)847 static void print_track(const char *s, struct track *t, unsigned long pr_time)
848 {
849 	depot_stack_handle_t handle __maybe_unused;
850 
851 	if (!t->addr)
852 		return;
853 
854 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
855 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
856 #ifdef CONFIG_STACKDEPOT
857 	handle = READ_ONCE(t->handle);
858 	if (handle)
859 		stack_depot_print(handle);
860 	else
861 		pr_err("object allocation/free stack trace missing\n");
862 #endif
863 }
864 
print_tracking(struct kmem_cache * s,void * object)865 void print_tracking(struct kmem_cache *s, void *object)
866 {
867 	unsigned long pr_time = jiffies;
868 	if (!(s->flags & SLAB_STORE_USER))
869 		return;
870 
871 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
872 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
873 }
874 
print_slab_info(const struct slab * slab)875 static void print_slab_info(const struct slab *slab)
876 {
877 	struct folio *folio = (struct folio *)slab_folio(slab);
878 
879 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
880 	       slab, slab->objects, slab->inuse, slab->freelist,
881 	       folio_flags(folio, 0));
882 }
883 
884 /*
885  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
886  * family will round up the real request size to these fixed ones, so
887  * there could be an extra area than what is requested. Save the original
888  * request size in the meta data area, for better debug and sanity check.
889  */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)890 static inline void set_orig_size(struct kmem_cache *s,
891 				void *object, unsigned int orig_size)
892 {
893 	void *p = kasan_reset_tag(object);
894 
895 	if (!slub_debug_orig_size(s))
896 		return;
897 
898 #ifdef CONFIG_KASAN_GENERIC
899 	/*
900 	 * KASAN could save its free meta data in object's data area at
901 	 * offset 0, if the size is larger than 'orig_size', it will
902 	 * overlap the data redzone in [orig_size+1, object_size], and
903 	 * the check should be skipped.
904 	 */
905 	if (kasan_metadata_size(s, true) > orig_size)
906 		orig_size = s->object_size;
907 #endif
908 
909 	p += get_info_end(s);
910 	p += sizeof(struct track) * 2;
911 
912 	*(unsigned int *)p = orig_size;
913 }
914 
get_orig_size(struct kmem_cache * s,void * object)915 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
916 {
917 	void *p = kasan_reset_tag(object);
918 
919 	if (!slub_debug_orig_size(s))
920 		return s->object_size;
921 
922 	p += get_info_end(s);
923 	p += sizeof(struct track) * 2;
924 
925 	return *(unsigned int *)p;
926 }
927 
skip_orig_size_check(struct kmem_cache * s,const void * object)928 void skip_orig_size_check(struct kmem_cache *s, const void *object)
929 {
930 	set_orig_size(s, (void *)object, s->object_size);
931 }
932 
slab_bug(struct kmem_cache * s,char * fmt,...)933 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
934 {
935 	struct va_format vaf;
936 	va_list args;
937 
938 	va_start(args, fmt);
939 	vaf.fmt = fmt;
940 	vaf.va = &args;
941 	pr_err("=============================================================================\n");
942 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
943 	pr_err("-----------------------------------------------------------------------------\n\n");
944 	va_end(args);
945 }
946 
947 __printf(2, 3)
slab_fix(struct kmem_cache * s,char * fmt,...)948 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
949 {
950 	struct va_format vaf;
951 	va_list args;
952 
953 	if (slab_add_kunit_errors())
954 		return;
955 
956 	va_start(args, fmt);
957 	vaf.fmt = fmt;
958 	vaf.va = &args;
959 	pr_err("FIX %s: %pV\n", s->name, &vaf);
960 	va_end(args);
961 }
962 
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)963 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
964 {
965 	unsigned int off;	/* Offset of last byte */
966 	u8 *addr = slab_address(slab);
967 
968 	print_tracking(s, p);
969 
970 	print_slab_info(slab);
971 
972 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
973 	       p, p - addr, get_freepointer(s, p));
974 
975 	if (s->flags & SLAB_RED_ZONE)
976 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
977 			      s->red_left_pad);
978 	else if (p > addr + 16)
979 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
980 
981 	print_section(KERN_ERR,         "Object   ", p,
982 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
983 	if (s->flags & SLAB_RED_ZONE)
984 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
985 			s->inuse - s->object_size);
986 
987 	off = get_info_end(s);
988 
989 	if (s->flags & SLAB_STORE_USER)
990 		off += 2 * sizeof(struct track);
991 
992 	if (slub_debug_orig_size(s))
993 		off += sizeof(unsigned int);
994 
995 	off += kasan_metadata_size(s, false);
996 
997 	if (off != size_from_object(s))
998 		/* Beginning of the filler is the free pointer */
999 		print_section(KERN_ERR, "Padding  ", p + off,
1000 			      size_from_object(s) - off);
1001 
1002 	dump_stack();
1003 }
1004 
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,char * reason)1005 static void object_err(struct kmem_cache *s, struct slab *slab,
1006 			u8 *object, char *reason)
1007 {
1008 	if (slab_add_kunit_errors())
1009 		return;
1010 
1011 	slab_bug(s, "%s", reason);
1012 	print_trailer(s, slab, object);
1013 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1014 }
1015 
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1016 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1017 			       void **freelist, void *nextfree)
1018 {
1019 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1020 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1021 		object_err(s, slab, *freelist, "Freechain corrupt");
1022 		*freelist = NULL;
1023 		slab_fix(s, "Isolate corrupted freechain");
1024 		return true;
1025 	}
1026 
1027 	return false;
1028 }
1029 
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1030 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1031 			const char *fmt, ...)
1032 {
1033 	va_list args;
1034 	char buf[100];
1035 
1036 	if (slab_add_kunit_errors())
1037 		return;
1038 
1039 	va_start(args, fmt);
1040 	vsnprintf(buf, sizeof(buf), fmt, args);
1041 	va_end(args);
1042 	slab_bug(s, "%s", buf);
1043 	print_slab_info(slab);
1044 	dump_stack();
1045 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1046 }
1047 
init_object(struct kmem_cache * s,void * object,u8 val)1048 static void init_object(struct kmem_cache *s, void *object, u8 val)
1049 {
1050 	u8 *p = kasan_reset_tag(object);
1051 	unsigned int poison_size = s->object_size;
1052 
1053 	if (s->flags & SLAB_RED_ZONE) {
1054 		memset(p - s->red_left_pad, val, s->red_left_pad);
1055 
1056 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1057 			/*
1058 			 * Redzone the extra allocated space by kmalloc than
1059 			 * requested, and the poison size will be limited to
1060 			 * the original request size accordingly.
1061 			 */
1062 			poison_size = get_orig_size(s, object);
1063 		}
1064 	}
1065 
1066 	if (s->flags & __OBJECT_POISON) {
1067 		memset(p, POISON_FREE, poison_size - 1);
1068 		p[poison_size - 1] = POISON_END;
1069 	}
1070 
1071 	if (s->flags & SLAB_RED_ZONE)
1072 		memset(p + poison_size, val, s->inuse - poison_size);
1073 }
1074 
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)1075 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1076 						void *from, void *to)
1077 {
1078 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1079 	memset(from, data, to - from);
1080 }
1081 
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)1082 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1083 			u8 *object, char *what,
1084 			u8 *start, unsigned int value, unsigned int bytes)
1085 {
1086 	u8 *fault;
1087 	u8 *end;
1088 	u8 *addr = slab_address(slab);
1089 
1090 	metadata_access_enable();
1091 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1092 	metadata_access_disable();
1093 	if (!fault)
1094 		return 1;
1095 
1096 	end = start + bytes;
1097 	while (end > fault && end[-1] == value)
1098 		end--;
1099 
1100 	if (slab_add_kunit_errors())
1101 		goto skip_bug_print;
1102 
1103 	slab_bug(s, "%s overwritten", what);
1104 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1105 					fault, end - 1, fault - addr,
1106 					fault[0], value);
1107 	print_trailer(s, slab, object);
1108 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1109 
1110 skip_bug_print:
1111 	restore_bytes(s, what, value, fault, end);
1112 	return 0;
1113 }
1114 
1115 /*
1116  * Object layout:
1117  *
1118  * object address
1119  * 	Bytes of the object to be managed.
1120  * 	If the freepointer may overlay the object then the free
1121  *	pointer is at the middle of the object.
1122  *
1123  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1124  * 	0xa5 (POISON_END)
1125  *
1126  * object + s->object_size
1127  * 	Padding to reach word boundary. This is also used for Redzoning.
1128  * 	Padding is extended by another word if Redzoning is enabled and
1129  * 	object_size == inuse.
1130  *
1131  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1132  * 	0xcc (RED_ACTIVE) for objects in use.
1133  *
1134  * object + s->inuse
1135  * 	Meta data starts here.
1136  *
1137  * 	A. Free pointer (if we cannot overwrite object on free)
1138  * 	B. Tracking data for SLAB_STORE_USER
1139  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1140  *	D. Padding to reach required alignment boundary or at minimum
1141  * 		one word if debugging is on to be able to detect writes
1142  * 		before the word boundary.
1143  *
1144  *	Padding is done using 0x5a (POISON_INUSE)
1145  *
1146  * object + s->size
1147  * 	Nothing is used beyond s->size.
1148  *
1149  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1150  * ignored. And therefore no slab options that rely on these boundaries
1151  * may be used with merged slabcaches.
1152  */
1153 
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1154 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1155 {
1156 	unsigned long off = get_info_end(s);	/* The end of info */
1157 
1158 	if (s->flags & SLAB_STORE_USER) {
1159 		/* We also have user information there */
1160 		off += 2 * sizeof(struct track);
1161 
1162 		if (s->flags & SLAB_KMALLOC)
1163 			off += sizeof(unsigned int);
1164 	}
1165 
1166 	off += kasan_metadata_size(s, false);
1167 
1168 	if (size_from_object(s) == off)
1169 		return 1;
1170 
1171 	return check_bytes_and_report(s, slab, p, "Object padding",
1172 			p + off, POISON_INUSE, size_from_object(s) - off);
1173 }
1174 
1175 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct slab * slab)1176 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1177 {
1178 	u8 *start;
1179 	u8 *fault;
1180 	u8 *end;
1181 	u8 *pad;
1182 	int length;
1183 	int remainder;
1184 
1185 	if (!(s->flags & SLAB_POISON))
1186 		return;
1187 
1188 	start = slab_address(slab);
1189 	length = slab_size(slab);
1190 	end = start + length;
1191 	remainder = length % s->size;
1192 	if (!remainder)
1193 		return;
1194 
1195 	pad = end - remainder;
1196 	metadata_access_enable();
1197 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1198 	metadata_access_disable();
1199 	if (!fault)
1200 		return;
1201 	while (end > fault && end[-1] == POISON_INUSE)
1202 		end--;
1203 
1204 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1205 			fault, end - 1, fault - start);
1206 	print_section(KERN_ERR, "Padding ", pad, remainder);
1207 
1208 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1209 }
1210 
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1211 static int check_object(struct kmem_cache *s, struct slab *slab,
1212 					void *object, u8 val)
1213 {
1214 	u8 *p = object;
1215 	u8 *endobject = object + s->object_size;
1216 	unsigned int orig_size;
1217 
1218 	if (s->flags & SLAB_RED_ZONE) {
1219 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1220 			object - s->red_left_pad, val, s->red_left_pad))
1221 			return 0;
1222 
1223 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1224 			endobject, val, s->inuse - s->object_size))
1225 			return 0;
1226 
1227 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1228 			orig_size = get_orig_size(s, object);
1229 
1230 			if (s->object_size > orig_size  &&
1231 				!check_bytes_and_report(s, slab, object,
1232 					"kmalloc Redzone", p + orig_size,
1233 					val, s->object_size - orig_size)) {
1234 				return 0;
1235 			}
1236 		}
1237 	} else {
1238 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1239 			check_bytes_and_report(s, slab, p, "Alignment padding",
1240 				endobject, POISON_INUSE,
1241 				s->inuse - s->object_size);
1242 		}
1243 	}
1244 
1245 	if (s->flags & SLAB_POISON) {
1246 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1247 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1248 					POISON_FREE, s->object_size - 1) ||
1249 			 !check_bytes_and_report(s, slab, p, "End Poison",
1250 				p + s->object_size - 1, POISON_END, 1)))
1251 			return 0;
1252 		/*
1253 		 * check_pad_bytes cleans up on its own.
1254 		 */
1255 		check_pad_bytes(s, slab, p);
1256 	}
1257 
1258 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1259 		/*
1260 		 * Object and freepointer overlap. Cannot check
1261 		 * freepointer while object is allocated.
1262 		 */
1263 		return 1;
1264 
1265 	/* Check free pointer validity */
1266 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1267 		object_err(s, slab, p, "Freepointer corrupt");
1268 		/*
1269 		 * No choice but to zap it and thus lose the remainder
1270 		 * of the free objects in this slab. May cause
1271 		 * another error because the object count is now wrong.
1272 		 */
1273 		set_freepointer(s, p, NULL);
1274 		return 0;
1275 	}
1276 	return 1;
1277 }
1278 
check_slab(struct kmem_cache * s,struct slab * slab)1279 static int check_slab(struct kmem_cache *s, struct slab *slab)
1280 {
1281 	int maxobj;
1282 
1283 	if (!folio_test_slab(slab_folio(slab))) {
1284 		slab_err(s, slab, "Not a valid slab page");
1285 		return 0;
1286 	}
1287 
1288 	maxobj = order_objects(slab_order(slab), s->size);
1289 	if (slab->objects > maxobj) {
1290 		slab_err(s, slab, "objects %u > max %u",
1291 			slab->objects, maxobj);
1292 		return 0;
1293 	}
1294 	if (slab->inuse > slab->objects) {
1295 		slab_err(s, slab, "inuse %u > max %u",
1296 			slab->inuse, slab->objects);
1297 		return 0;
1298 	}
1299 	/* Slab_pad_check fixes things up after itself */
1300 	slab_pad_check(s, slab);
1301 	return 1;
1302 }
1303 
1304 /*
1305  * Determine if a certain object in a slab is on the freelist. Must hold the
1306  * slab lock to guarantee that the chains are in a consistent state.
1307  */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1308 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1309 {
1310 	int nr = 0;
1311 	void *fp;
1312 	void *object = NULL;
1313 	int max_objects;
1314 
1315 	fp = slab->freelist;
1316 	while (fp && nr <= slab->objects) {
1317 		if (fp == search)
1318 			return 1;
1319 		if (!check_valid_pointer(s, slab, fp)) {
1320 			if (object) {
1321 				object_err(s, slab, object,
1322 					"Freechain corrupt");
1323 				set_freepointer(s, object, NULL);
1324 			} else {
1325 				slab_err(s, slab, "Freepointer corrupt");
1326 				slab->freelist = NULL;
1327 				slab->inuse = slab->objects;
1328 				slab_fix(s, "Freelist cleared");
1329 				return 0;
1330 			}
1331 			break;
1332 		}
1333 		object = fp;
1334 		fp = get_freepointer(s, object);
1335 		nr++;
1336 	}
1337 
1338 	max_objects = order_objects(slab_order(slab), s->size);
1339 	if (max_objects > MAX_OBJS_PER_PAGE)
1340 		max_objects = MAX_OBJS_PER_PAGE;
1341 
1342 	if (slab->objects != max_objects) {
1343 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1344 			 slab->objects, max_objects);
1345 		slab->objects = max_objects;
1346 		slab_fix(s, "Number of objects adjusted");
1347 	}
1348 	if (slab->inuse != slab->objects - nr) {
1349 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1350 			 slab->inuse, slab->objects - nr);
1351 		slab->inuse = slab->objects - nr;
1352 		slab_fix(s, "Object count adjusted");
1353 	}
1354 	return search == NULL;
1355 }
1356 
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1357 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1358 								int alloc)
1359 {
1360 	if (s->flags & SLAB_TRACE) {
1361 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1362 			s->name,
1363 			alloc ? "alloc" : "free",
1364 			object, slab->inuse,
1365 			slab->freelist);
1366 
1367 		if (!alloc)
1368 			print_section(KERN_INFO, "Object ", (void *)object,
1369 					s->object_size);
1370 
1371 		dump_stack();
1372 	}
1373 }
1374 
1375 /*
1376  * Tracking of fully allocated slabs for debugging purposes.
1377  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1378 static void add_full(struct kmem_cache *s,
1379 	struct kmem_cache_node *n, struct slab *slab)
1380 {
1381 	if (!(s->flags & SLAB_STORE_USER))
1382 		return;
1383 
1384 	lockdep_assert_held(&n->list_lock);
1385 	list_add(&slab->slab_list, &n->full);
1386 }
1387 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1388 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1389 {
1390 	if (!(s->flags & SLAB_STORE_USER))
1391 		return;
1392 
1393 	lockdep_assert_held(&n->list_lock);
1394 	list_del(&slab->slab_list);
1395 }
1396 
node_nr_slabs(struct kmem_cache_node * n)1397 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1398 {
1399 	return atomic_long_read(&n->nr_slabs);
1400 }
1401 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1402 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1403 {
1404 	struct kmem_cache_node *n = get_node(s, node);
1405 
1406 	/*
1407 	 * May be called early in order to allocate a slab for the
1408 	 * kmem_cache_node structure. Solve the chicken-egg
1409 	 * dilemma by deferring the increment of the count during
1410 	 * bootstrap (see early_kmem_cache_node_alloc).
1411 	 */
1412 	if (likely(n)) {
1413 		atomic_long_inc(&n->nr_slabs);
1414 		atomic_long_add(objects, &n->total_objects);
1415 	}
1416 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1417 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1418 {
1419 	struct kmem_cache_node *n = get_node(s, node);
1420 
1421 	atomic_long_dec(&n->nr_slabs);
1422 	atomic_long_sub(objects, &n->total_objects);
1423 }
1424 
1425 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1426 static void setup_object_debug(struct kmem_cache *s, void *object)
1427 {
1428 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1429 		return;
1430 
1431 	init_object(s, object, SLUB_RED_INACTIVE);
1432 	init_tracking(s, object);
1433 }
1434 
1435 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1436 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1437 {
1438 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1439 		return;
1440 
1441 	metadata_access_enable();
1442 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1443 	metadata_access_disable();
1444 }
1445 
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1446 static inline int alloc_consistency_checks(struct kmem_cache *s,
1447 					struct slab *slab, void *object)
1448 {
1449 	if (!check_slab(s, slab))
1450 		return 0;
1451 
1452 	if (!check_valid_pointer(s, slab, object)) {
1453 		object_err(s, slab, object, "Freelist Pointer check fails");
1454 		return 0;
1455 	}
1456 
1457 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1458 		return 0;
1459 
1460 	return 1;
1461 }
1462 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1463 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1464 			struct slab *slab, void *object, int orig_size)
1465 {
1466 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1467 		if (!alloc_consistency_checks(s, slab, object))
1468 			goto bad;
1469 	}
1470 
1471 	/* Success. Perform special debug activities for allocs */
1472 	trace(s, slab, object, 1);
1473 	set_orig_size(s, object, orig_size);
1474 	init_object(s, object, SLUB_RED_ACTIVE);
1475 	return true;
1476 
1477 bad:
1478 	if (folio_test_slab(slab_folio(slab))) {
1479 		/*
1480 		 * If this is a slab page then lets do the best we can
1481 		 * to avoid issues in the future. Marking all objects
1482 		 * as used avoids touching the remaining objects.
1483 		 */
1484 		slab_fix(s, "Marking all objects used");
1485 		slab->inuse = slab->objects;
1486 		slab->freelist = NULL;
1487 	}
1488 	return false;
1489 }
1490 
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1491 static inline int free_consistency_checks(struct kmem_cache *s,
1492 		struct slab *slab, void *object, unsigned long addr)
1493 {
1494 	if (!check_valid_pointer(s, slab, object)) {
1495 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1496 		return 0;
1497 	}
1498 
1499 	if (on_freelist(s, slab, object)) {
1500 		object_err(s, slab, object, "Object already free");
1501 		return 0;
1502 	}
1503 
1504 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1505 		return 0;
1506 
1507 	if (unlikely(s != slab->slab_cache)) {
1508 		if (!folio_test_slab(slab_folio(slab))) {
1509 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1510 				 object);
1511 		} else if (!slab->slab_cache) {
1512 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1513 			       object);
1514 			dump_stack();
1515 		} else
1516 			object_err(s, slab, object,
1517 					"page slab pointer corrupt.");
1518 		return 0;
1519 	}
1520 	return 1;
1521 }
1522 
1523 /*
1524  * Parse a block of slub_debug options. Blocks are delimited by ';'
1525  *
1526  * @str:    start of block
1527  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1528  * @slabs:  return start of list of slabs, or NULL when there's no list
1529  * @init:   assume this is initial parsing and not per-kmem-create parsing
1530  *
1531  * returns the start of next block if there's any, or NULL
1532  */
1533 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1534 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1535 {
1536 	bool higher_order_disable = false;
1537 
1538 	/* Skip any completely empty blocks */
1539 	while (*str && *str == ';')
1540 		str++;
1541 
1542 	if (*str == ',') {
1543 		/*
1544 		 * No options but restriction on slabs. This means full
1545 		 * debugging for slabs matching a pattern.
1546 		 */
1547 		*flags = DEBUG_DEFAULT_FLAGS;
1548 		goto check_slabs;
1549 	}
1550 	*flags = 0;
1551 
1552 	/* Determine which debug features should be switched on */
1553 	for (; *str && *str != ',' && *str != ';'; str++) {
1554 		switch (tolower(*str)) {
1555 		case '-':
1556 			*flags = 0;
1557 			break;
1558 		case 'f':
1559 			*flags |= SLAB_CONSISTENCY_CHECKS;
1560 			break;
1561 		case 'z':
1562 			*flags |= SLAB_RED_ZONE;
1563 			break;
1564 		case 'p':
1565 			*flags |= SLAB_POISON;
1566 			break;
1567 		case 'u':
1568 			*flags |= SLAB_STORE_USER;
1569 			break;
1570 		case 't':
1571 			*flags |= SLAB_TRACE;
1572 			break;
1573 		case 'a':
1574 			*flags |= SLAB_FAILSLAB;
1575 			break;
1576 		case 'o':
1577 			/*
1578 			 * Avoid enabling debugging on caches if its minimum
1579 			 * order would increase as a result.
1580 			 */
1581 			higher_order_disable = true;
1582 			break;
1583 		default:
1584 			if (init)
1585 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1586 		}
1587 	}
1588 check_slabs:
1589 	if (*str == ',')
1590 		*slabs = ++str;
1591 	else
1592 		*slabs = NULL;
1593 
1594 	/* Skip over the slab list */
1595 	while (*str && *str != ';')
1596 		str++;
1597 
1598 	/* Skip any completely empty blocks */
1599 	while (*str && *str == ';')
1600 		str++;
1601 
1602 	if (init && higher_order_disable)
1603 		disable_higher_order_debug = 1;
1604 
1605 	if (*str)
1606 		return str;
1607 	else
1608 		return NULL;
1609 }
1610 
setup_slub_debug(char * str)1611 static int __init setup_slub_debug(char *str)
1612 {
1613 	slab_flags_t flags;
1614 	slab_flags_t global_flags;
1615 	char *saved_str;
1616 	char *slab_list;
1617 	bool global_slub_debug_changed = false;
1618 	bool slab_list_specified = false;
1619 
1620 	global_flags = DEBUG_DEFAULT_FLAGS;
1621 	if (*str++ != '=' || !*str)
1622 		/*
1623 		 * No options specified. Switch on full debugging.
1624 		 */
1625 		goto out;
1626 
1627 	saved_str = str;
1628 	while (str) {
1629 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1630 
1631 		if (!slab_list) {
1632 			global_flags = flags;
1633 			global_slub_debug_changed = true;
1634 		} else {
1635 			slab_list_specified = true;
1636 			if (flags & SLAB_STORE_USER)
1637 				stack_depot_request_early_init();
1638 		}
1639 	}
1640 
1641 	/*
1642 	 * For backwards compatibility, a single list of flags with list of
1643 	 * slabs means debugging is only changed for those slabs, so the global
1644 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1645 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1646 	 * long as there is no option specifying flags without a slab list.
1647 	 */
1648 	if (slab_list_specified) {
1649 		if (!global_slub_debug_changed)
1650 			global_flags = slub_debug;
1651 		slub_debug_string = saved_str;
1652 	}
1653 out:
1654 	slub_debug = global_flags;
1655 	if (slub_debug & SLAB_STORE_USER)
1656 		stack_depot_request_early_init();
1657 	if (slub_debug != 0 || slub_debug_string)
1658 		static_branch_enable(&slub_debug_enabled);
1659 	else
1660 		static_branch_disable(&slub_debug_enabled);
1661 	if ((static_branch_unlikely(&init_on_alloc) ||
1662 	     static_branch_unlikely(&init_on_free)) &&
1663 	    (slub_debug & SLAB_POISON))
1664 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1665 	return 1;
1666 }
1667 
1668 __setup("slub_debug", setup_slub_debug);
1669 
1670 /*
1671  * kmem_cache_flags - apply debugging options to the cache
1672  * @object_size:	the size of an object without meta data
1673  * @flags:		flags to set
1674  * @name:		name of the cache
1675  *
1676  * Debug option(s) are applied to @flags. In addition to the debug
1677  * option(s), if a slab name (or multiple) is specified i.e.
1678  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1679  * then only the select slabs will receive the debug option(s).
1680  */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1681 slab_flags_t kmem_cache_flags(unsigned int object_size,
1682 	slab_flags_t flags, const char *name)
1683 {
1684 	char *iter;
1685 	size_t len;
1686 	char *next_block;
1687 	slab_flags_t block_flags;
1688 	slab_flags_t slub_debug_local = slub_debug;
1689 
1690 	if (flags & SLAB_NO_USER_FLAGS)
1691 		return flags;
1692 
1693 	/*
1694 	 * If the slab cache is for debugging (e.g. kmemleak) then
1695 	 * don't store user (stack trace) information by default,
1696 	 * but let the user enable it via the command line below.
1697 	 */
1698 	if (flags & SLAB_NOLEAKTRACE)
1699 		slub_debug_local &= ~SLAB_STORE_USER;
1700 
1701 	len = strlen(name);
1702 	next_block = slub_debug_string;
1703 	/* Go through all blocks of debug options, see if any matches our slab's name */
1704 	while (next_block) {
1705 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1706 		if (!iter)
1707 			continue;
1708 		/* Found a block that has a slab list, search it */
1709 		while (*iter) {
1710 			char *end, *glob;
1711 			size_t cmplen;
1712 
1713 			end = strchrnul(iter, ',');
1714 			if (next_block && next_block < end)
1715 				end = next_block - 1;
1716 
1717 			glob = strnchr(iter, end - iter, '*');
1718 			if (glob)
1719 				cmplen = glob - iter;
1720 			else
1721 				cmplen = max_t(size_t, len, (end - iter));
1722 
1723 			if (!strncmp(name, iter, cmplen)) {
1724 				flags |= block_flags;
1725 				return flags;
1726 			}
1727 
1728 			if (!*end || *end == ';')
1729 				break;
1730 			iter = end + 1;
1731 		}
1732 	}
1733 
1734 	return flags | slub_debug_local;
1735 }
1736 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1737 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1738 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1739 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1740 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1741 static inline bool alloc_debug_processing(struct kmem_cache *s,
1742 	struct slab *slab, void *object, int orig_size) { return true; }
1743 
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1744 static inline bool free_debug_processing(struct kmem_cache *s,
1745 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1746 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1747 
slab_pad_check(struct kmem_cache * s,struct slab * slab)1748 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1749 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1750 			void *object, u8 val) { return 1; }
set_track_prepare(void)1751 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)1752 static inline void set_track(struct kmem_cache *s, void *object,
1753 			     enum track_item alloc, unsigned long addr) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1754 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1755 					struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1756 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1757 					struct slab *slab) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1758 slab_flags_t kmem_cache_flags(unsigned int object_size,
1759 	slab_flags_t flags, const char *name)
1760 {
1761 	return flags;
1762 }
1763 #define slub_debug 0
1764 
1765 #define disable_higher_order_debug 0
1766 
node_nr_slabs(struct kmem_cache_node * n)1767 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1768 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1769 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1770 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1771 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1772 							int objects) {}
1773 
1774 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1775 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1776 			       void **freelist, void *nextfree)
1777 {
1778 	return false;
1779 }
1780 #endif
1781 #endif /* CONFIG_SLUB_DEBUG */
1782 
1783 /*
1784  * Hooks for other subsystems that check memory allocations. In a typical
1785  * production configuration these hooks all should produce no code at all.
1786  */
slab_free_hook(struct kmem_cache * s,void * x,bool init)1787 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1788 						void *x, bool init)
1789 {
1790 	kmemleak_free_recursive(x, s->flags);
1791 	kmsan_slab_free(s, x);
1792 
1793 	debug_check_no_locks_freed(x, s->object_size);
1794 
1795 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1796 		debug_check_no_obj_freed(x, s->object_size);
1797 
1798 	/* Use KCSAN to help debug racy use-after-free. */
1799 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1800 		__kcsan_check_access(x, s->object_size,
1801 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1802 
1803 	/*
1804 	 * As memory initialization might be integrated into KASAN,
1805 	 * kasan_slab_free and initialization memset's must be
1806 	 * kept together to avoid discrepancies in behavior.
1807 	 *
1808 	 * The initialization memset's clear the object and the metadata,
1809 	 * but don't touch the SLAB redzone.
1810 	 */
1811 	if (init) {
1812 		int rsize;
1813 
1814 		if (!kasan_has_integrated_init())
1815 			memset(kasan_reset_tag(x), 0, s->object_size);
1816 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1817 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1818 		       s->size - s->inuse - rsize);
1819 	}
1820 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1821 	return kasan_slab_free(s, x, init);
1822 }
1823 
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)1824 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1825 					   void **head, void **tail,
1826 					   int *cnt)
1827 {
1828 
1829 	void *object;
1830 	void *next = *head;
1831 	void *old_tail = *tail ? *tail : *head;
1832 
1833 	if (is_kfence_address(next)) {
1834 		slab_free_hook(s, next, false);
1835 		return true;
1836 	}
1837 
1838 	/* Head and tail of the reconstructed freelist */
1839 	*head = NULL;
1840 	*tail = NULL;
1841 
1842 	do {
1843 		object = next;
1844 		next = get_freepointer(s, object);
1845 
1846 		/* If object's reuse doesn't have to be delayed */
1847 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1848 			/* Move object to the new freelist */
1849 			set_freepointer(s, object, *head);
1850 			*head = object;
1851 			if (!*tail)
1852 				*tail = object;
1853 		} else {
1854 			/*
1855 			 * Adjust the reconstructed freelist depth
1856 			 * accordingly if object's reuse is delayed.
1857 			 */
1858 			--(*cnt);
1859 		}
1860 	} while (object != old_tail);
1861 
1862 	if (*head == *tail)
1863 		*tail = NULL;
1864 
1865 	return *head != NULL;
1866 }
1867 
setup_object(struct kmem_cache * s,void * object)1868 static void *setup_object(struct kmem_cache *s, void *object)
1869 {
1870 	setup_object_debug(s, object);
1871 	object = kasan_init_slab_obj(s, object);
1872 	if (unlikely(s->ctor)) {
1873 		kasan_unpoison_object_data(s, object);
1874 		s->ctor(object);
1875 		kasan_poison_object_data(s, object);
1876 	}
1877 	return object;
1878 }
1879 
1880 /*
1881  * Slab allocation and freeing
1882  */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)1883 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1884 		struct kmem_cache_order_objects oo)
1885 {
1886 	struct folio *folio;
1887 	struct slab *slab;
1888 	unsigned int order = oo_order(oo);
1889 
1890 	if (node == NUMA_NO_NODE)
1891 		folio = (struct folio *)alloc_pages(flags, order);
1892 	else
1893 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1894 
1895 	if (!folio)
1896 		return NULL;
1897 
1898 	slab = folio_slab(folio);
1899 	__folio_set_slab(folio);
1900 	/* Make the flag visible before any changes to folio->mapping */
1901 	smp_wmb();
1902 	if (folio_is_pfmemalloc(folio))
1903 		slab_set_pfmemalloc(slab);
1904 
1905 	trace_android_vh_slab_folio_alloced(order, flags);
1906 
1907 	return slab;
1908 }
1909 
1910 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1911 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1912 static int init_cache_random_seq(struct kmem_cache *s)
1913 {
1914 	unsigned int count = oo_objects(s->oo);
1915 	int err;
1916 
1917 	/* Bailout if already initialised */
1918 	if (s->random_seq)
1919 		return 0;
1920 
1921 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1922 	if (err) {
1923 		pr_err("SLUB: Unable to initialize free list for %s\n",
1924 			s->name);
1925 		return err;
1926 	}
1927 
1928 	/* Transform to an offset on the set of pages */
1929 	if (s->random_seq) {
1930 		unsigned int i;
1931 
1932 		for (i = 0; i < count; i++)
1933 			s->random_seq[i] *= s->size;
1934 	}
1935 	return 0;
1936 }
1937 
1938 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1939 static void __init init_freelist_randomization(void)
1940 {
1941 	struct kmem_cache *s;
1942 
1943 	mutex_lock(&slab_mutex);
1944 
1945 	list_for_each_entry(s, &slab_caches, list)
1946 		init_cache_random_seq(s);
1947 
1948 	mutex_unlock(&slab_mutex);
1949 }
1950 
1951 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct slab * slab,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1952 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1953 				unsigned long *pos, void *start,
1954 				unsigned long page_limit,
1955 				unsigned long freelist_count)
1956 {
1957 	unsigned int idx;
1958 
1959 	/*
1960 	 * If the target page allocation failed, the number of objects on the
1961 	 * page might be smaller than the usual size defined by the cache.
1962 	 */
1963 	do {
1964 		idx = s->random_seq[*pos];
1965 		*pos += 1;
1966 		if (*pos >= freelist_count)
1967 			*pos = 0;
1968 	} while (unlikely(idx >= page_limit));
1969 
1970 	return (char *)start + idx;
1971 }
1972 
1973 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)1974 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1975 {
1976 	void *start;
1977 	void *cur;
1978 	void *next;
1979 	unsigned long idx, pos, page_limit, freelist_count;
1980 
1981 	if (slab->objects < 2 || !s->random_seq)
1982 		return false;
1983 
1984 	freelist_count = oo_objects(s->oo);
1985 	pos = get_random_u32_below(freelist_count);
1986 
1987 	page_limit = slab->objects * s->size;
1988 	start = fixup_red_left(s, slab_address(slab));
1989 
1990 	/* First entry is used as the base of the freelist */
1991 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1992 				freelist_count);
1993 	cur = setup_object(s, cur);
1994 	slab->freelist = cur;
1995 
1996 	for (idx = 1; idx < slab->objects; idx++) {
1997 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1998 			freelist_count);
1999 		next = setup_object(s, next);
2000 		set_freepointer(s, cur, next);
2001 		cur = next;
2002 	}
2003 	set_freepointer(s, cur, NULL);
2004 
2005 	return true;
2006 }
2007 #else
init_cache_random_seq(struct kmem_cache * s)2008 static inline int init_cache_random_seq(struct kmem_cache *s)
2009 {
2010 	return 0;
2011 }
init_freelist_randomization(void)2012 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2013 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2014 {
2015 	return false;
2016 }
2017 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2018 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2019 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2020 {
2021 	struct slab *slab;
2022 	struct kmem_cache_order_objects oo = s->oo;
2023 	gfp_t alloc_gfp;
2024 	void *start, *p, *next;
2025 	int idx;
2026 	bool shuffle;
2027 
2028 	flags &= gfp_allowed_mask;
2029 
2030 	flags |= s->allocflags;
2031 
2032 	/*
2033 	 * Let the initial higher-order allocation fail under memory pressure
2034 	 * so we fall-back to the minimum order allocation.
2035 	 */
2036 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2037 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2038 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2039 
2040 	slab = alloc_slab_page(alloc_gfp, node, oo);
2041 	if (unlikely(!slab)) {
2042 		oo = s->min;
2043 		alloc_gfp = flags;
2044 		/*
2045 		 * Allocation may have failed due to fragmentation.
2046 		 * Try a lower order alloc if possible
2047 		 */
2048 		slab = alloc_slab_page(alloc_gfp, node, oo);
2049 		if (unlikely(!slab))
2050 			return NULL;
2051 		stat(s, ORDER_FALLBACK);
2052 	}
2053 
2054 	slab->objects = oo_objects(oo);
2055 	slab->inuse = 0;
2056 	slab->frozen = 0;
2057 
2058 	account_slab(slab, oo_order(oo), s, flags);
2059 
2060 	slab->slab_cache = s;
2061 
2062 	kasan_poison_slab(slab);
2063 
2064 	start = slab_address(slab);
2065 
2066 	setup_slab_debug(s, slab, start);
2067 
2068 	shuffle = shuffle_freelist(s, slab);
2069 
2070 	if (!shuffle) {
2071 		start = fixup_red_left(s, start);
2072 		start = setup_object(s, start);
2073 		slab->freelist = start;
2074 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2075 			next = p + s->size;
2076 			next = setup_object(s, next);
2077 			set_freepointer(s, p, next);
2078 			p = next;
2079 		}
2080 		set_freepointer(s, p, NULL);
2081 	}
2082 
2083 	return slab;
2084 }
2085 
new_slab(struct kmem_cache * s,gfp_t flags,int node)2086 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2087 {
2088 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2089 		flags = kmalloc_fix_flags(flags);
2090 
2091 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2092 
2093 	return allocate_slab(s,
2094 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2095 }
2096 
__free_slab(struct kmem_cache * s,struct slab * slab)2097 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2098 {
2099 	struct folio *folio = slab_folio(slab);
2100 	int order = folio_order(folio);
2101 	int pages = 1 << order;
2102 
2103 	__slab_clear_pfmemalloc(slab);
2104 	folio->mapping = NULL;
2105 	/* Make the mapping reset visible before clearing the flag */
2106 	smp_wmb();
2107 	__folio_clear_slab(folio);
2108 	mm_account_reclaimed_pages(pages);
2109 	unaccount_slab(slab, order, s);
2110 	__free_pages(&folio->page, order);
2111 }
2112 
rcu_free_slab(struct rcu_head * h)2113 static void rcu_free_slab(struct rcu_head *h)
2114 {
2115 	struct slab *slab = container_of(h, struct slab, rcu_head);
2116 
2117 	__free_slab(slab->slab_cache, slab);
2118 }
2119 
free_slab(struct kmem_cache * s,struct slab * slab)2120 static void free_slab(struct kmem_cache *s, struct slab *slab)
2121 {
2122 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2123 		void *p;
2124 
2125 		slab_pad_check(s, slab);
2126 		for_each_object(p, s, slab_address(slab), slab->objects)
2127 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2128 	}
2129 
2130 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2131 		call_rcu(&slab->rcu_head, rcu_free_slab);
2132 	else
2133 		__free_slab(s, slab);
2134 }
2135 
discard_slab(struct kmem_cache * s,struct slab * slab)2136 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2137 {
2138 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2139 	free_slab(s, slab);
2140 }
2141 
2142 /*
2143  * Management of partially allocated slabs.
2144  */
2145 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2146 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2147 {
2148 	n->nr_partial++;
2149 	if (tail == DEACTIVATE_TO_TAIL)
2150 		list_add_tail(&slab->slab_list, &n->partial);
2151 	else
2152 		list_add(&slab->slab_list, &n->partial);
2153 }
2154 
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2155 static inline void add_partial(struct kmem_cache_node *n,
2156 				struct slab *slab, int tail)
2157 {
2158 	lockdep_assert_held(&n->list_lock);
2159 	__add_partial(n, slab, tail);
2160 }
2161 
remove_partial(struct kmem_cache_node * n,struct slab * slab)2162 static inline void remove_partial(struct kmem_cache_node *n,
2163 					struct slab *slab)
2164 {
2165 	lockdep_assert_held(&n->list_lock);
2166 	list_del(&slab->slab_list);
2167 	n->nr_partial--;
2168 }
2169 
2170 /*
2171  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2172  * slab from the n->partial list. Remove only a single object from the slab, do
2173  * the alloc_debug_processing() checks and leave the slab on the list, or move
2174  * it to full list if it was the last free object.
2175  */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2176 static void *alloc_single_from_partial(struct kmem_cache *s,
2177 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2178 {
2179 	void *object;
2180 
2181 	lockdep_assert_held(&n->list_lock);
2182 
2183 	object = slab->freelist;
2184 	slab->freelist = get_freepointer(s, object);
2185 	slab->inuse++;
2186 
2187 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2188 		remove_partial(n, slab);
2189 		return NULL;
2190 	}
2191 
2192 	if (slab->inuse == slab->objects) {
2193 		remove_partial(n, slab);
2194 		add_full(s, n, slab);
2195 	}
2196 
2197 	return object;
2198 }
2199 
2200 /*
2201  * Called only for kmem_cache_debug() caches to allocate from a freshly
2202  * allocated slab. Allocate a single object instead of whole freelist
2203  * and put the slab to the partial (or full) list.
2204  */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2205 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2206 					struct slab *slab, int orig_size)
2207 {
2208 	int nid = slab_nid(slab);
2209 	struct kmem_cache_node *n = get_node(s, nid);
2210 	unsigned long flags;
2211 	void *object;
2212 
2213 
2214 	object = slab->freelist;
2215 	slab->freelist = get_freepointer(s, object);
2216 	slab->inuse = 1;
2217 
2218 	if (!alloc_debug_processing(s, slab, object, orig_size))
2219 		/*
2220 		 * It's not really expected that this would fail on a
2221 		 * freshly allocated slab, but a concurrent memory
2222 		 * corruption in theory could cause that.
2223 		 */
2224 		return NULL;
2225 
2226 	spin_lock_irqsave(&n->list_lock, flags);
2227 
2228 	if (slab->inuse == slab->objects)
2229 		add_full(s, n, slab);
2230 	else
2231 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2232 
2233 	inc_slabs_node(s, nid, slab->objects);
2234 	spin_unlock_irqrestore(&n->list_lock, flags);
2235 
2236 	return object;
2237 }
2238 
2239 /*
2240  * Remove slab from the partial list, freeze it and
2241  * return the pointer to the freelist.
2242  *
2243  * Returns a list of objects or NULL if it fails.
2244  */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int mode)2245 static inline void *acquire_slab(struct kmem_cache *s,
2246 		struct kmem_cache_node *n, struct slab *slab,
2247 		int mode)
2248 {
2249 	void *freelist;
2250 	unsigned long counters;
2251 	struct slab new;
2252 
2253 	lockdep_assert_held(&n->list_lock);
2254 
2255 	/*
2256 	 * Zap the freelist and set the frozen bit.
2257 	 * The old freelist is the list of objects for the
2258 	 * per cpu allocation list.
2259 	 */
2260 	freelist = slab->freelist;
2261 	counters = slab->counters;
2262 	new.counters = counters;
2263 	if (mode) {
2264 		new.inuse = slab->objects;
2265 		new.freelist = NULL;
2266 	} else {
2267 		new.freelist = freelist;
2268 	}
2269 
2270 	VM_BUG_ON(new.frozen);
2271 	new.frozen = 1;
2272 
2273 	if (!__slab_update_freelist(s, slab,
2274 			freelist, counters,
2275 			new.freelist, new.counters,
2276 			"acquire_slab"))
2277 		return NULL;
2278 
2279 	remove_partial(n, slab);
2280 	WARN_ON(!freelist);
2281 	return freelist;
2282 }
2283 
2284 #ifdef CONFIG_SLUB_CPU_PARTIAL
2285 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2286 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2287 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2288 				   int drain) { }
2289 #endif
2290 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2291 
2292 /*
2293  * Try to allocate a partial slab from a specific node.
2294  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2295 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2296 			      struct partial_context *pc)
2297 {
2298 	struct slab *slab, *slab2;
2299 	void *object = NULL;
2300 	unsigned long flags;
2301 	unsigned int partial_slabs = 0;
2302 
2303 	/*
2304 	 * Racy check. If we mistakenly see no partial slabs then we
2305 	 * just allocate an empty slab. If we mistakenly try to get a
2306 	 * partial slab and there is none available then get_partial()
2307 	 * will return NULL.
2308 	 */
2309 	if (!n || !n->nr_partial)
2310 		return NULL;
2311 
2312 	spin_lock_irqsave(&n->list_lock, flags);
2313 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2314 		void *t;
2315 
2316 		if (!pfmemalloc_match(slab, pc->flags))
2317 			continue;
2318 
2319 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2320 			object = alloc_single_from_partial(s, n, slab,
2321 							pc->orig_size);
2322 			if (object)
2323 				break;
2324 			continue;
2325 		}
2326 
2327 		t = acquire_slab(s, n, slab, object == NULL);
2328 		if (!t)
2329 			break;
2330 
2331 		if (!object) {
2332 			*pc->slab = slab;
2333 			stat(s, ALLOC_FROM_PARTIAL);
2334 			object = t;
2335 		} else {
2336 			put_cpu_partial(s, slab, 0);
2337 			stat(s, CPU_PARTIAL_NODE);
2338 			partial_slabs++;
2339 		}
2340 #ifdef CONFIG_SLUB_CPU_PARTIAL
2341 		if (!kmem_cache_has_cpu_partial(s)
2342 			|| partial_slabs > s->cpu_partial_slabs / 2)
2343 			break;
2344 #else
2345 		break;
2346 #endif
2347 
2348 	}
2349 	spin_unlock_irqrestore(&n->list_lock, flags);
2350 	return object;
2351 }
2352 
2353 /*
2354  * Get a slab from somewhere. Search in increasing NUMA distances.
2355  */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2356 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2357 {
2358 #ifdef CONFIG_NUMA
2359 	struct zonelist *zonelist;
2360 	struct zoneref *z;
2361 	struct zone *zone;
2362 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2363 	void *object;
2364 	unsigned int cpuset_mems_cookie;
2365 
2366 	/*
2367 	 * The defrag ratio allows a configuration of the tradeoffs between
2368 	 * inter node defragmentation and node local allocations. A lower
2369 	 * defrag_ratio increases the tendency to do local allocations
2370 	 * instead of attempting to obtain partial slabs from other nodes.
2371 	 *
2372 	 * If the defrag_ratio is set to 0 then kmalloc() always
2373 	 * returns node local objects. If the ratio is higher then kmalloc()
2374 	 * may return off node objects because partial slabs are obtained
2375 	 * from other nodes and filled up.
2376 	 *
2377 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2378 	 * (which makes defrag_ratio = 1000) then every (well almost)
2379 	 * allocation will first attempt to defrag slab caches on other nodes.
2380 	 * This means scanning over all nodes to look for partial slabs which
2381 	 * may be expensive if we do it every time we are trying to find a slab
2382 	 * with available objects.
2383 	 */
2384 	if (!s->remote_node_defrag_ratio ||
2385 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2386 		return NULL;
2387 
2388 	do {
2389 		cpuset_mems_cookie = read_mems_allowed_begin();
2390 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2391 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2392 			struct kmem_cache_node *n;
2393 
2394 			n = get_node(s, zone_to_nid(zone));
2395 
2396 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2397 					n->nr_partial > s->min_partial) {
2398 				object = get_partial_node(s, n, pc);
2399 				if (object) {
2400 					/*
2401 					 * Don't check read_mems_allowed_retry()
2402 					 * here - if mems_allowed was updated in
2403 					 * parallel, that was a harmless race
2404 					 * between allocation and the cpuset
2405 					 * update
2406 					 */
2407 					return object;
2408 				}
2409 			}
2410 		}
2411 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2412 #endif	/* CONFIG_NUMA */
2413 	return NULL;
2414 }
2415 
2416 /*
2417  * Get a partial slab, lock it and return it.
2418  */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)2419 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2420 {
2421 	void *object;
2422 	int searchnode = node;
2423 
2424 	if (node == NUMA_NO_NODE)
2425 		searchnode = numa_mem_id();
2426 
2427 	object = get_partial_node(s, get_node(s, searchnode), pc);
2428 	if (object || node != NUMA_NO_NODE)
2429 		return object;
2430 
2431 	return get_any_partial(s, pc);
2432 }
2433 
2434 #ifndef CONFIG_SLUB_TINY
2435 
2436 #ifdef CONFIG_PREEMPTION
2437 /*
2438  * Calculate the next globally unique transaction for disambiguation
2439  * during cmpxchg. The transactions start with the cpu number and are then
2440  * incremented by CONFIG_NR_CPUS.
2441  */
2442 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2443 #else
2444 /*
2445  * No preemption supported therefore also no need to check for
2446  * different cpus.
2447  */
2448 #define TID_STEP 1
2449 #endif /* CONFIG_PREEMPTION */
2450 
next_tid(unsigned long tid)2451 static inline unsigned long next_tid(unsigned long tid)
2452 {
2453 	return tid + TID_STEP;
2454 }
2455 
2456 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2457 static inline unsigned int tid_to_cpu(unsigned long tid)
2458 {
2459 	return tid % TID_STEP;
2460 }
2461 
tid_to_event(unsigned long tid)2462 static inline unsigned long tid_to_event(unsigned long tid)
2463 {
2464 	return tid / TID_STEP;
2465 }
2466 #endif
2467 
init_tid(int cpu)2468 static inline unsigned int init_tid(int cpu)
2469 {
2470 	return cpu;
2471 }
2472 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2473 static inline void note_cmpxchg_failure(const char *n,
2474 		const struct kmem_cache *s, unsigned long tid)
2475 {
2476 #ifdef SLUB_DEBUG_CMPXCHG
2477 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2478 
2479 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2480 
2481 #ifdef CONFIG_PREEMPTION
2482 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2483 		pr_warn("due to cpu change %d -> %d\n",
2484 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2485 	else
2486 #endif
2487 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2488 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2489 			tid_to_event(tid), tid_to_event(actual_tid));
2490 	else
2491 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2492 			actual_tid, tid, next_tid(tid));
2493 #endif
2494 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2495 }
2496 
init_kmem_cache_cpus(struct kmem_cache * s)2497 static void init_kmem_cache_cpus(struct kmem_cache *s)
2498 {
2499 	int cpu;
2500 	struct kmem_cache_cpu *c;
2501 
2502 	for_each_possible_cpu(cpu) {
2503 		c = per_cpu_ptr(s->cpu_slab, cpu);
2504 		local_lock_init(&c->lock);
2505 		c->tid = init_tid(cpu);
2506 	}
2507 }
2508 
2509 /*
2510  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2511  * unfreezes the slabs and puts it on the proper list.
2512  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2513  * by the caller.
2514  */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)2515 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2516 			    void *freelist)
2517 {
2518 	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2519 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2520 	int free_delta = 0;
2521 	enum slab_modes mode = M_NONE;
2522 	void *nextfree, *freelist_iter, *freelist_tail;
2523 	int tail = DEACTIVATE_TO_HEAD;
2524 	unsigned long flags = 0;
2525 	struct slab new;
2526 	struct slab old;
2527 
2528 	if (slab->freelist) {
2529 		stat(s, DEACTIVATE_REMOTE_FREES);
2530 		tail = DEACTIVATE_TO_TAIL;
2531 	}
2532 
2533 	/*
2534 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2535 	 * remember the last object in freelist_tail for later splicing.
2536 	 */
2537 	freelist_tail = NULL;
2538 	freelist_iter = freelist;
2539 	while (freelist_iter) {
2540 		nextfree = get_freepointer(s, freelist_iter);
2541 
2542 		/*
2543 		 * If 'nextfree' is invalid, it is possible that the object at
2544 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2545 		 * starting at 'freelist_iter' by skipping them.
2546 		 */
2547 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2548 			break;
2549 
2550 		freelist_tail = freelist_iter;
2551 		free_delta++;
2552 
2553 		freelist_iter = nextfree;
2554 	}
2555 
2556 	/*
2557 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2558 	 * freelist to the head of slab's freelist.
2559 	 *
2560 	 * Ensure that the slab is unfrozen while the list presence
2561 	 * reflects the actual number of objects during unfreeze.
2562 	 *
2563 	 * We first perform cmpxchg holding lock and insert to list
2564 	 * when it succeed. If there is mismatch then the slab is not
2565 	 * unfrozen and number of objects in the slab may have changed.
2566 	 * Then release lock and retry cmpxchg again.
2567 	 */
2568 redo:
2569 
2570 	old.freelist = READ_ONCE(slab->freelist);
2571 	old.counters = READ_ONCE(slab->counters);
2572 	VM_BUG_ON(!old.frozen);
2573 
2574 	/* Determine target state of the slab */
2575 	new.counters = old.counters;
2576 	if (freelist_tail) {
2577 		new.inuse -= free_delta;
2578 		set_freepointer(s, freelist_tail, old.freelist);
2579 		new.freelist = freelist;
2580 	} else
2581 		new.freelist = old.freelist;
2582 
2583 	new.frozen = 0;
2584 
2585 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2586 		mode = M_FREE;
2587 	} else if (new.freelist) {
2588 		mode = M_PARTIAL;
2589 		/*
2590 		 * Taking the spinlock removes the possibility that
2591 		 * acquire_slab() will see a slab that is frozen
2592 		 */
2593 		spin_lock_irqsave(&n->list_lock, flags);
2594 	} else {
2595 		mode = M_FULL_NOLIST;
2596 	}
2597 
2598 
2599 	if (!slab_update_freelist(s, slab,
2600 				old.freelist, old.counters,
2601 				new.freelist, new.counters,
2602 				"unfreezing slab")) {
2603 		if (mode == M_PARTIAL)
2604 			spin_unlock_irqrestore(&n->list_lock, flags);
2605 		goto redo;
2606 	}
2607 
2608 
2609 	if (mode == M_PARTIAL) {
2610 		add_partial(n, slab, tail);
2611 		spin_unlock_irqrestore(&n->list_lock, flags);
2612 		stat(s, tail);
2613 	} else if (mode == M_FREE) {
2614 		stat(s, DEACTIVATE_EMPTY);
2615 		discard_slab(s, slab);
2616 		stat(s, FREE_SLAB);
2617 	} else if (mode == M_FULL_NOLIST) {
2618 		stat(s, DEACTIVATE_FULL);
2619 	}
2620 }
2621 
2622 #ifdef CONFIG_SLUB_CPU_PARTIAL
__unfreeze_partials(struct kmem_cache * s,struct slab * partial_slab)2623 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2624 {
2625 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2626 	struct slab *slab, *slab_to_discard = NULL;
2627 	unsigned long flags = 0;
2628 
2629 	while (partial_slab) {
2630 		struct slab new;
2631 		struct slab old;
2632 
2633 		slab = partial_slab;
2634 		partial_slab = slab->next;
2635 
2636 		n2 = get_node(s, slab_nid(slab));
2637 		if (n != n2) {
2638 			if (n)
2639 				spin_unlock_irqrestore(&n->list_lock, flags);
2640 
2641 			n = n2;
2642 			spin_lock_irqsave(&n->list_lock, flags);
2643 		}
2644 
2645 		do {
2646 
2647 			old.freelist = slab->freelist;
2648 			old.counters = slab->counters;
2649 			VM_BUG_ON(!old.frozen);
2650 
2651 			new.counters = old.counters;
2652 			new.freelist = old.freelist;
2653 
2654 			new.frozen = 0;
2655 
2656 		} while (!__slab_update_freelist(s, slab,
2657 				old.freelist, old.counters,
2658 				new.freelist, new.counters,
2659 				"unfreezing slab"));
2660 
2661 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2662 			slab->next = slab_to_discard;
2663 			slab_to_discard = slab;
2664 		} else {
2665 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2666 			stat(s, FREE_ADD_PARTIAL);
2667 		}
2668 	}
2669 
2670 	if (n)
2671 		spin_unlock_irqrestore(&n->list_lock, flags);
2672 
2673 	while (slab_to_discard) {
2674 		slab = slab_to_discard;
2675 		slab_to_discard = slab_to_discard->next;
2676 
2677 		stat(s, DEACTIVATE_EMPTY);
2678 		discard_slab(s, slab);
2679 		stat(s, FREE_SLAB);
2680 	}
2681 }
2682 
2683 /*
2684  * Unfreeze all the cpu partial slabs.
2685  */
unfreeze_partials(struct kmem_cache * s)2686 static void unfreeze_partials(struct kmem_cache *s)
2687 {
2688 	struct slab *partial_slab;
2689 	unsigned long flags;
2690 
2691 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2692 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2693 	this_cpu_write(s->cpu_slab->partial, NULL);
2694 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2695 
2696 	if (partial_slab)
2697 		__unfreeze_partials(s, partial_slab);
2698 }
2699 
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2700 static void unfreeze_partials_cpu(struct kmem_cache *s,
2701 				  struct kmem_cache_cpu *c)
2702 {
2703 	struct slab *partial_slab;
2704 
2705 	partial_slab = slub_percpu_partial(c);
2706 	c->partial = NULL;
2707 
2708 	if (partial_slab)
2709 		__unfreeze_partials(s, partial_slab);
2710 }
2711 
2712 /*
2713  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2714  * partial slab slot if available.
2715  *
2716  * If we did not find a slot then simply move all the partials to the
2717  * per node partial list.
2718  */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2719 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2720 {
2721 	struct slab *oldslab;
2722 	struct slab *slab_to_unfreeze = NULL;
2723 	unsigned long flags;
2724 	int slabs = 0;
2725 
2726 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2727 
2728 	oldslab = this_cpu_read(s->cpu_slab->partial);
2729 
2730 	if (oldslab) {
2731 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2732 			/*
2733 			 * Partial array is full. Move the existing set to the
2734 			 * per node partial list. Postpone the actual unfreezing
2735 			 * outside of the critical section.
2736 			 */
2737 			slab_to_unfreeze = oldslab;
2738 			oldslab = NULL;
2739 		} else {
2740 			slabs = oldslab->slabs;
2741 		}
2742 	}
2743 
2744 	slabs++;
2745 
2746 	slab->slabs = slabs;
2747 	slab->next = oldslab;
2748 
2749 	this_cpu_write(s->cpu_slab->partial, slab);
2750 
2751 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2752 
2753 	if (slab_to_unfreeze) {
2754 		__unfreeze_partials(s, slab_to_unfreeze);
2755 		stat(s, CPU_PARTIAL_DRAIN);
2756 	}
2757 }
2758 
2759 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2760 
unfreeze_partials(struct kmem_cache * s)2761 static inline void unfreeze_partials(struct kmem_cache *s) { }
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2762 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2763 				  struct kmem_cache_cpu *c) { }
2764 
2765 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2766 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2767 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2768 {
2769 	unsigned long flags;
2770 	struct slab *slab;
2771 	void *freelist;
2772 
2773 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2774 
2775 	slab = c->slab;
2776 	freelist = c->freelist;
2777 
2778 	c->slab = NULL;
2779 	c->freelist = NULL;
2780 	c->tid = next_tid(c->tid);
2781 
2782 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2783 
2784 	if (slab) {
2785 		deactivate_slab(s, slab, freelist);
2786 		stat(s, CPUSLAB_FLUSH);
2787 	}
2788 }
2789 
__flush_cpu_slab(struct kmem_cache * s,int cpu)2790 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2791 {
2792 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2793 	void *freelist = c->freelist;
2794 	struct slab *slab = c->slab;
2795 
2796 	c->slab = NULL;
2797 	c->freelist = NULL;
2798 	c->tid = next_tid(c->tid);
2799 
2800 	if (slab) {
2801 		deactivate_slab(s, slab, freelist);
2802 		stat(s, CPUSLAB_FLUSH);
2803 	}
2804 
2805 	unfreeze_partials_cpu(s, c);
2806 }
2807 
2808 struct slub_flush_work {
2809 	struct work_struct work;
2810 	struct kmem_cache *s;
2811 	bool skip;
2812 };
2813 
2814 /*
2815  * Flush cpu slab.
2816  *
2817  * Called from CPU work handler with migration disabled.
2818  */
flush_cpu_slab(struct work_struct * w)2819 static void flush_cpu_slab(struct work_struct *w)
2820 {
2821 	struct kmem_cache *s;
2822 	struct kmem_cache_cpu *c;
2823 	struct slub_flush_work *sfw;
2824 
2825 	sfw = container_of(w, struct slub_flush_work, work);
2826 
2827 	s = sfw->s;
2828 	c = this_cpu_ptr(s->cpu_slab);
2829 
2830 	if (c->slab)
2831 		flush_slab(s, c);
2832 
2833 	unfreeze_partials(s);
2834 }
2835 
has_cpu_slab(int cpu,struct kmem_cache * s)2836 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2837 {
2838 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2839 
2840 	return c->slab || slub_percpu_partial(c);
2841 }
2842 
2843 static DEFINE_MUTEX(flush_lock);
2844 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2845 
flush_all_cpus_locked(struct kmem_cache * s)2846 static void flush_all_cpus_locked(struct kmem_cache *s)
2847 {
2848 	struct slub_flush_work *sfw;
2849 	unsigned int cpu;
2850 
2851 	lockdep_assert_cpus_held();
2852 	mutex_lock(&flush_lock);
2853 
2854 	for_each_online_cpu(cpu) {
2855 		sfw = &per_cpu(slub_flush, cpu);
2856 		if (!has_cpu_slab(cpu, s)) {
2857 			sfw->skip = true;
2858 			continue;
2859 		}
2860 		INIT_WORK(&sfw->work, flush_cpu_slab);
2861 		sfw->skip = false;
2862 		sfw->s = s;
2863 		queue_work_on(cpu, flushwq, &sfw->work);
2864 	}
2865 
2866 	for_each_online_cpu(cpu) {
2867 		sfw = &per_cpu(slub_flush, cpu);
2868 		if (sfw->skip)
2869 			continue;
2870 		flush_work(&sfw->work);
2871 	}
2872 
2873 	mutex_unlock(&flush_lock);
2874 }
2875 
flush_all(struct kmem_cache * s)2876 static void flush_all(struct kmem_cache *s)
2877 {
2878 	cpus_read_lock();
2879 	flush_all_cpus_locked(s);
2880 	cpus_read_unlock();
2881 }
2882 
2883 /*
2884  * Use the cpu notifier to insure that the cpu slabs are flushed when
2885  * necessary.
2886  */
slub_cpu_dead(unsigned int cpu)2887 static int slub_cpu_dead(unsigned int cpu)
2888 {
2889 	struct kmem_cache *s;
2890 
2891 	mutex_lock(&slab_mutex);
2892 	list_for_each_entry(s, &slab_caches, list)
2893 		__flush_cpu_slab(s, cpu);
2894 	mutex_unlock(&slab_mutex);
2895 	return 0;
2896 }
2897 
2898 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)2899 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)2900 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)2901 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)2902 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2903 #endif /* CONFIG_SLUB_TINY */
2904 
2905 /*
2906  * Check if the objects in a per cpu structure fit numa
2907  * locality expectations.
2908  */
node_match(struct slab * slab,int node)2909 static inline int node_match(struct slab *slab, int node)
2910 {
2911 #ifdef CONFIG_NUMA
2912 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2913 		return 0;
2914 #endif
2915 	return 1;
2916 }
2917 
2918 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)2919 static int count_free(struct slab *slab)
2920 {
2921 	return slab->objects - slab->inuse;
2922 }
2923 
node_nr_objs(struct kmem_cache_node * n)2924 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2925 {
2926 	return atomic_long_read(&n->total_objects);
2927 }
2928 
2929 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)2930 static inline bool free_debug_processing(struct kmem_cache *s,
2931 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2932 	unsigned long addr, depot_stack_handle_t handle)
2933 {
2934 	bool checks_ok = false;
2935 	void *object = head;
2936 	int cnt = 0;
2937 
2938 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2939 		if (!check_slab(s, slab))
2940 			goto out;
2941 	}
2942 
2943 	if (slab->inuse < *bulk_cnt) {
2944 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2945 			 slab->inuse, *bulk_cnt);
2946 		goto out;
2947 	}
2948 
2949 next_object:
2950 
2951 	if (++cnt > *bulk_cnt)
2952 		goto out_cnt;
2953 
2954 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2955 		if (!free_consistency_checks(s, slab, object, addr))
2956 			goto out;
2957 	}
2958 
2959 	if (s->flags & SLAB_STORE_USER)
2960 		set_track_update(s, object, TRACK_FREE, addr, handle);
2961 	trace(s, slab, object, 0);
2962 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2963 	init_object(s, object, SLUB_RED_INACTIVE);
2964 
2965 	/* Reached end of constructed freelist yet? */
2966 	if (object != tail) {
2967 		object = get_freepointer(s, object);
2968 		goto next_object;
2969 	}
2970 	checks_ok = true;
2971 
2972 out_cnt:
2973 	if (cnt != *bulk_cnt) {
2974 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2975 			 *bulk_cnt, cnt);
2976 		*bulk_cnt = cnt;
2977 	}
2978 
2979 out:
2980 
2981 	if (!checks_ok)
2982 		slab_fix(s, "Object at 0x%p not freed", object);
2983 
2984 	return checks_ok;
2985 }
2986 #endif /* CONFIG_SLUB_DEBUG */
2987 
2988 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))2989 static unsigned long count_partial(struct kmem_cache_node *n,
2990 					int (*get_count)(struct slab *))
2991 {
2992 	unsigned long flags;
2993 	unsigned long x = 0;
2994 	struct slab *slab;
2995 
2996 	spin_lock_irqsave(&n->list_lock, flags);
2997 	list_for_each_entry(slab, &n->partial, slab_list)
2998 		x += get_count(slab);
2999 	spin_unlock_irqrestore(&n->list_lock, flags);
3000 	return x;
3001 }
3002 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3003 
3004 #ifdef CONFIG_SLUB_DEBUG
3005 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3006 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3007 {
3008 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3009 				      DEFAULT_RATELIMIT_BURST);
3010 	int node;
3011 	struct kmem_cache_node *n;
3012 
3013 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3014 		return;
3015 
3016 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3017 		nid, gfpflags, &gfpflags);
3018 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3019 		s->name, s->object_size, s->size, oo_order(s->oo),
3020 		oo_order(s->min));
3021 
3022 	if (oo_order(s->min) > get_order(s->object_size))
3023 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
3024 			s->name);
3025 
3026 	for_each_kmem_cache_node(s, node, n) {
3027 		unsigned long nr_slabs;
3028 		unsigned long nr_objs;
3029 		unsigned long nr_free;
3030 
3031 		nr_free  = count_partial(n, count_free);
3032 		nr_slabs = node_nr_slabs(n);
3033 		nr_objs  = node_nr_objs(n);
3034 
3035 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3036 			node, nr_slabs, nr_objs, nr_free);
3037 	}
3038 }
3039 #else /* CONFIG_SLUB_DEBUG */
3040 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3041 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3042 #endif
3043 
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3044 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3045 {
3046 	if (unlikely(slab_test_pfmemalloc(slab)))
3047 		return gfp_pfmemalloc_allowed(gfpflags);
3048 
3049 	return true;
3050 }
3051 
3052 #ifndef CONFIG_SLUB_TINY
3053 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3054 __update_cpu_freelist_fast(struct kmem_cache *s,
3055 			   void *freelist_old, void *freelist_new,
3056 			   unsigned long tid)
3057 {
3058 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3059 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3060 
3061 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3062 					     &old.full, new.full);
3063 }
3064 
3065 /*
3066  * Check the slab->freelist and either transfer the freelist to the
3067  * per cpu freelist or deactivate the slab.
3068  *
3069  * The slab is still frozen if the return value is not NULL.
3070  *
3071  * If this function returns NULL then the slab has been unfrozen.
3072  */
get_freelist(struct kmem_cache * s,struct slab * slab)3073 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3074 {
3075 	struct slab new;
3076 	unsigned long counters;
3077 	void *freelist;
3078 
3079 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3080 
3081 	do {
3082 		freelist = slab->freelist;
3083 		counters = slab->counters;
3084 
3085 		new.counters = counters;
3086 		VM_BUG_ON(!new.frozen);
3087 
3088 		new.inuse = slab->objects;
3089 		new.frozen = freelist != NULL;
3090 
3091 	} while (!__slab_update_freelist(s, slab,
3092 		freelist, counters,
3093 		NULL, new.counters,
3094 		"get_freelist"));
3095 
3096 	return freelist;
3097 }
3098 
3099 /*
3100  * Slow path. The lockless freelist is empty or we need to perform
3101  * debugging duties.
3102  *
3103  * Processing is still very fast if new objects have been freed to the
3104  * regular freelist. In that case we simply take over the regular freelist
3105  * as the lockless freelist and zap the regular freelist.
3106  *
3107  * If that is not working then we fall back to the partial lists. We take the
3108  * first element of the freelist as the object to allocate now and move the
3109  * rest of the freelist to the lockless freelist.
3110  *
3111  * And if we were unable to get a new slab from the partial slab lists then
3112  * we need to allocate a new slab. This is the slowest path since it involves
3113  * a call to the page allocator and the setup of a new slab.
3114  *
3115  * Version of __slab_alloc to use when we know that preemption is
3116  * already disabled (which is the case for bulk allocation).
3117  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3118 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3119 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3120 {
3121 	void *freelist;
3122 	struct slab *slab;
3123 	unsigned long flags;
3124 	struct partial_context pc;
3125 
3126 	stat(s, ALLOC_SLOWPATH);
3127 
3128 reread_slab:
3129 
3130 	slab = READ_ONCE(c->slab);
3131 	if (!slab) {
3132 		/*
3133 		 * if the node is not online or has no normal memory, just
3134 		 * ignore the node constraint
3135 		 */
3136 		if (unlikely(node != NUMA_NO_NODE &&
3137 			     !node_isset(node, slab_nodes)))
3138 			node = NUMA_NO_NODE;
3139 		goto new_slab;
3140 	}
3141 redo:
3142 
3143 	if (unlikely(!node_match(slab, node))) {
3144 		/*
3145 		 * same as above but node_match() being false already
3146 		 * implies node != NUMA_NO_NODE
3147 		 */
3148 		if (!node_isset(node, slab_nodes)) {
3149 			node = NUMA_NO_NODE;
3150 		} else {
3151 			stat(s, ALLOC_NODE_MISMATCH);
3152 			goto deactivate_slab;
3153 		}
3154 	}
3155 
3156 	/*
3157 	 * By rights, we should be searching for a slab page that was
3158 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3159 	 * information when the page leaves the per-cpu allocator
3160 	 */
3161 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3162 		goto deactivate_slab;
3163 
3164 	/* must check again c->slab in case we got preempted and it changed */
3165 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3166 	if (unlikely(slab != c->slab)) {
3167 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3168 		goto reread_slab;
3169 	}
3170 	freelist = c->freelist;
3171 	if (freelist)
3172 		goto load_freelist;
3173 
3174 	freelist = get_freelist(s, slab);
3175 
3176 	if (!freelist) {
3177 		c->slab = NULL;
3178 		c->tid = next_tid(c->tid);
3179 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3180 		stat(s, DEACTIVATE_BYPASS);
3181 		goto new_slab;
3182 	}
3183 
3184 	stat(s, ALLOC_REFILL);
3185 
3186 load_freelist:
3187 
3188 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3189 
3190 	/*
3191 	 * freelist is pointing to the list of objects to be used.
3192 	 * slab is pointing to the slab from which the objects are obtained.
3193 	 * That slab must be frozen for per cpu allocations to work.
3194 	 */
3195 	VM_BUG_ON(!c->slab->frozen);
3196 	c->freelist = get_freepointer(s, freelist);
3197 	c->tid = next_tid(c->tid);
3198 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3199 	return freelist;
3200 
3201 deactivate_slab:
3202 
3203 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3204 	if (slab != c->slab) {
3205 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3206 		goto reread_slab;
3207 	}
3208 	freelist = c->freelist;
3209 	c->slab = NULL;
3210 	c->freelist = NULL;
3211 	c->tid = next_tid(c->tid);
3212 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3213 	deactivate_slab(s, slab, freelist);
3214 
3215 new_slab:
3216 
3217 	if (slub_percpu_partial(c)) {
3218 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3219 		if (unlikely(c->slab)) {
3220 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3221 			goto reread_slab;
3222 		}
3223 		if (unlikely(!slub_percpu_partial(c))) {
3224 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3225 			/* we were preempted and partial list got empty */
3226 			goto new_objects;
3227 		}
3228 
3229 		slab = c->slab = slub_percpu_partial(c);
3230 		slub_set_percpu_partial(c, slab);
3231 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3232 		stat(s, CPU_PARTIAL_ALLOC);
3233 		goto redo;
3234 	}
3235 
3236 new_objects:
3237 
3238 	pc.flags = gfpflags;
3239 	pc.slab = &slab;
3240 	pc.orig_size = orig_size;
3241 	freelist = get_partial(s, node, &pc);
3242 	if (freelist)
3243 		goto check_new_slab;
3244 
3245 	slub_put_cpu_ptr(s->cpu_slab);
3246 	slab = new_slab(s, gfpflags, node);
3247 	c = slub_get_cpu_ptr(s->cpu_slab);
3248 
3249 	if (unlikely(!slab)) {
3250 		slab_out_of_memory(s, gfpflags, node);
3251 		return NULL;
3252 	}
3253 
3254 	stat(s, ALLOC_SLAB);
3255 
3256 	if (kmem_cache_debug(s)) {
3257 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3258 
3259 		if (unlikely(!freelist))
3260 			goto new_objects;
3261 
3262 		if (s->flags & SLAB_STORE_USER)
3263 			set_track(s, freelist, TRACK_ALLOC, addr);
3264 
3265 		return freelist;
3266 	}
3267 
3268 	/*
3269 	 * No other reference to the slab yet so we can
3270 	 * muck around with it freely without cmpxchg
3271 	 */
3272 	freelist = slab->freelist;
3273 	slab->freelist = NULL;
3274 	slab->inuse = slab->objects;
3275 	slab->frozen = 1;
3276 
3277 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3278 
3279 check_new_slab:
3280 
3281 	if (kmem_cache_debug(s)) {
3282 		/*
3283 		 * For debug caches here we had to go through
3284 		 * alloc_single_from_partial() so just store the tracking info
3285 		 * and return the object
3286 		 */
3287 		if (s->flags & SLAB_STORE_USER)
3288 			set_track(s, freelist, TRACK_ALLOC, addr);
3289 
3290 		return freelist;
3291 	}
3292 
3293 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3294 		/*
3295 		 * For !pfmemalloc_match() case we don't load freelist so that
3296 		 * we don't make further mismatched allocations easier.
3297 		 */
3298 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3299 		return freelist;
3300 	}
3301 
3302 retry_load_slab:
3303 
3304 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3305 	if (unlikely(c->slab)) {
3306 		void *flush_freelist = c->freelist;
3307 		struct slab *flush_slab = c->slab;
3308 
3309 		c->slab = NULL;
3310 		c->freelist = NULL;
3311 		c->tid = next_tid(c->tid);
3312 
3313 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3314 
3315 		deactivate_slab(s, flush_slab, flush_freelist);
3316 
3317 		stat(s, CPUSLAB_FLUSH);
3318 
3319 		goto retry_load_slab;
3320 	}
3321 	c->slab = slab;
3322 
3323 	goto load_freelist;
3324 }
3325 
3326 /*
3327  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3328  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3329  * pointer.
3330  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3331 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3332 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3333 {
3334 	void *p;
3335 
3336 #ifdef CONFIG_PREEMPT_COUNT
3337 	/*
3338 	 * We may have been preempted and rescheduled on a different
3339 	 * cpu before disabling preemption. Need to reload cpu area
3340 	 * pointer.
3341 	 */
3342 	c = slub_get_cpu_ptr(s->cpu_slab);
3343 #endif
3344 
3345 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3346 #ifdef CONFIG_PREEMPT_COUNT
3347 	slub_put_cpu_ptr(s->cpu_slab);
3348 #endif
3349 	return p;
3350 }
3351 
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3352 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3353 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3354 {
3355 	struct kmem_cache_cpu *c;
3356 	struct slab *slab;
3357 	unsigned long tid;
3358 	void *object;
3359 
3360 redo:
3361 	/*
3362 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3363 	 * enabled. We may switch back and forth between cpus while
3364 	 * reading from one cpu area. That does not matter as long
3365 	 * as we end up on the original cpu again when doing the cmpxchg.
3366 	 *
3367 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3368 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3369 	 * the tid. If we are preempted and switched to another cpu between the
3370 	 * two reads, it's OK as the two are still associated with the same cpu
3371 	 * and cmpxchg later will validate the cpu.
3372 	 */
3373 	c = raw_cpu_ptr(s->cpu_slab);
3374 	tid = READ_ONCE(c->tid);
3375 
3376 	/*
3377 	 * Irqless object alloc/free algorithm used here depends on sequence
3378 	 * of fetching cpu_slab's data. tid should be fetched before anything
3379 	 * on c to guarantee that object and slab associated with previous tid
3380 	 * won't be used with current tid. If we fetch tid first, object and
3381 	 * slab could be one associated with next tid and our alloc/free
3382 	 * request will be failed. In this case, we will retry. So, no problem.
3383 	 */
3384 	barrier();
3385 
3386 	/*
3387 	 * The transaction ids are globally unique per cpu and per operation on
3388 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3389 	 * occurs on the right processor and that there was no operation on the
3390 	 * linked list in between.
3391 	 */
3392 
3393 	object = c->freelist;
3394 	slab = c->slab;
3395 
3396 	if (!USE_LOCKLESS_FAST_PATH() ||
3397 	    unlikely(!object || !slab || !node_match(slab, node))) {
3398 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3399 	} else {
3400 		void *next_object = get_freepointer_safe(s, object);
3401 
3402 		/*
3403 		 * The cmpxchg will only match if there was no additional
3404 		 * operation and if we are on the right processor.
3405 		 *
3406 		 * The cmpxchg does the following atomically (without lock
3407 		 * semantics!)
3408 		 * 1. Relocate first pointer to the current per cpu area.
3409 		 * 2. Verify that tid and freelist have not been changed
3410 		 * 3. If they were not changed replace tid and freelist
3411 		 *
3412 		 * Since this is without lock semantics the protection is only
3413 		 * against code executing on this cpu *not* from access by
3414 		 * other cpus.
3415 		 */
3416 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3417 			note_cmpxchg_failure("slab_alloc", s, tid);
3418 			goto redo;
3419 		}
3420 		prefetch_freepointer(s, next_object);
3421 		stat(s, ALLOC_FASTPATH);
3422 	}
3423 
3424 	return object;
3425 }
3426 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3427 static void *__slab_alloc_node(struct kmem_cache *s,
3428 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3429 {
3430 	struct partial_context pc;
3431 	struct slab *slab;
3432 	void *object;
3433 
3434 	pc.flags = gfpflags;
3435 	pc.slab = &slab;
3436 	pc.orig_size = orig_size;
3437 	object = get_partial(s, node, &pc);
3438 
3439 	if (object)
3440 		return object;
3441 
3442 	slab = new_slab(s, gfpflags, node);
3443 	if (unlikely(!slab)) {
3444 		slab_out_of_memory(s, gfpflags, node);
3445 		return NULL;
3446 	}
3447 
3448 	object = alloc_single_from_new_slab(s, slab, orig_size);
3449 
3450 	return object;
3451 }
3452 #endif /* CONFIG_SLUB_TINY */
3453 
3454 /*
3455  * If the object has been wiped upon free, make sure it's fully initialized by
3456  * zeroing out freelist pointer.
3457  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)3458 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3459 						   void *obj)
3460 {
3461 	if (unlikely(slab_want_init_on_free(s)) && obj)
3462 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3463 			0, sizeof(void *));
3464 }
3465 
3466 /*
3467  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3468  * have the fastpath folded into their functions. So no function call
3469  * overhead for requests that can be satisfied on the fastpath.
3470  *
3471  * The fastpath works by first checking if the lockless freelist can be used.
3472  * If not then __slab_alloc is called for slow processing.
3473  *
3474  * Otherwise we can simply pick the next object from the lockless free list.
3475  */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3476 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3477 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3478 {
3479 	void *object;
3480 	struct obj_cgroup *objcg = NULL;
3481 	bool init = false;
3482 
3483 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3484 	if (!s)
3485 		return NULL;
3486 
3487 	object = kfence_alloc(s, orig_size, gfpflags);
3488 	if (unlikely(object))
3489 		goto out;
3490 
3491 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3492 
3493 	maybe_wipe_obj_freeptr(s, object);
3494 	init = slab_want_init_on_alloc(gfpflags, s);
3495 
3496 out:
3497 	/*
3498 	 * When init equals 'true', like for kzalloc() family, only
3499 	 * @orig_size bytes might be zeroed instead of s->object_size
3500 	 */
3501 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3502 
3503 	trace_android_vh_slab_alloc_node(object, addr, s);
3504 
3505 	return object;
3506 }
3507 
slab_alloc(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,unsigned long addr,size_t orig_size)3508 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3509 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3510 {
3511 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3512 }
3513 
3514 static __fastpath_inline
__kmem_cache_alloc_lru(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)3515 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3516 			     gfp_t gfpflags)
3517 {
3518 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3519 
3520 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3521 
3522 	return ret;
3523 }
3524 
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)3525 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3526 {
3527 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3528 }
3529 EXPORT_SYMBOL(kmem_cache_alloc);
3530 
kmem_cache_alloc_lru(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)3531 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3532 			   gfp_t gfpflags)
3533 {
3534 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3535 }
3536 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3537 
__kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,size_t orig_size,unsigned long caller)3538 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3539 			      int node, size_t orig_size,
3540 			      unsigned long caller)
3541 {
3542 	return slab_alloc_node(s, NULL, gfpflags, node,
3543 			       caller, orig_size);
3544 }
3545 
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)3546 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3547 {
3548 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3549 
3550 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3551 
3552 	return ret;
3553 }
3554 EXPORT_SYMBOL(kmem_cache_alloc_node);
3555 
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)3556 static noinline void free_to_partial_list(
3557 	struct kmem_cache *s, struct slab *slab,
3558 	void *head, void *tail, int bulk_cnt,
3559 	unsigned long addr)
3560 {
3561 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3562 	struct slab *slab_free = NULL;
3563 	int cnt = bulk_cnt;
3564 	unsigned long flags;
3565 	depot_stack_handle_t handle = 0;
3566 
3567 	if (s->flags & SLAB_STORE_USER)
3568 		handle = set_track_prepare();
3569 
3570 	spin_lock_irqsave(&n->list_lock, flags);
3571 
3572 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3573 		void *prior = slab->freelist;
3574 
3575 		/* Perform the actual freeing while we still hold the locks */
3576 		slab->inuse -= cnt;
3577 		set_freepointer(s, tail, prior);
3578 		slab->freelist = head;
3579 
3580 		/*
3581 		 * If the slab is empty, and node's partial list is full,
3582 		 * it should be discarded anyway no matter it's on full or
3583 		 * partial list.
3584 		 */
3585 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3586 			slab_free = slab;
3587 
3588 		if (!prior) {
3589 			/* was on full list */
3590 			remove_full(s, n, slab);
3591 			if (!slab_free) {
3592 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3593 				stat(s, FREE_ADD_PARTIAL);
3594 			}
3595 		} else if (slab_free) {
3596 			remove_partial(n, slab);
3597 			stat(s, FREE_REMOVE_PARTIAL);
3598 		}
3599 	}
3600 
3601 	if (slab_free) {
3602 		/*
3603 		 * Update the counters while still holding n->list_lock to
3604 		 * prevent spurious validation warnings
3605 		 */
3606 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3607 	}
3608 
3609 	spin_unlock_irqrestore(&n->list_lock, flags);
3610 
3611 	if (slab_free) {
3612 		stat(s, FREE_SLAB);
3613 		free_slab(s, slab_free);
3614 	}
3615 }
3616 
3617 /*
3618  * Slow path handling. This may still be called frequently since objects
3619  * have a longer lifetime than the cpu slabs in most processing loads.
3620  *
3621  * So we still attempt to reduce cache line usage. Just take the slab
3622  * lock and free the item. If there is no additional partial slab
3623  * handling required then we can return immediately.
3624  */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3625 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3626 			void *head, void *tail, int cnt,
3627 			unsigned long addr)
3628 
3629 {
3630 	void *prior;
3631 	int was_frozen;
3632 	struct slab new;
3633 	unsigned long counters;
3634 	struct kmem_cache_node *n = NULL;
3635 	unsigned long flags;
3636 
3637 	stat(s, FREE_SLOWPATH);
3638 
3639 	if (kfence_free(head))
3640 		return;
3641 
3642 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3643 		free_to_partial_list(s, slab, head, tail, cnt, addr);
3644 		return;
3645 	}
3646 
3647 	do {
3648 		if (unlikely(n)) {
3649 			spin_unlock_irqrestore(&n->list_lock, flags);
3650 			n = NULL;
3651 		}
3652 		prior = slab->freelist;
3653 		counters = slab->counters;
3654 		set_freepointer(s, tail, prior);
3655 		new.counters = counters;
3656 		was_frozen = new.frozen;
3657 		new.inuse -= cnt;
3658 		if ((!new.inuse || !prior) && !was_frozen) {
3659 
3660 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3661 
3662 				/*
3663 				 * Slab was on no list before and will be
3664 				 * partially empty
3665 				 * We can defer the list move and instead
3666 				 * freeze it.
3667 				 */
3668 				new.frozen = 1;
3669 
3670 			} else { /* Needs to be taken off a list */
3671 
3672 				n = get_node(s, slab_nid(slab));
3673 				/*
3674 				 * Speculatively acquire the list_lock.
3675 				 * If the cmpxchg does not succeed then we may
3676 				 * drop the list_lock without any processing.
3677 				 *
3678 				 * Otherwise the list_lock will synchronize with
3679 				 * other processors updating the list of slabs.
3680 				 */
3681 				spin_lock_irqsave(&n->list_lock, flags);
3682 
3683 			}
3684 		}
3685 
3686 	} while (!slab_update_freelist(s, slab,
3687 		prior, counters,
3688 		head, new.counters,
3689 		"__slab_free"));
3690 
3691 	if (likely(!n)) {
3692 
3693 		if (likely(was_frozen)) {
3694 			/*
3695 			 * The list lock was not taken therefore no list
3696 			 * activity can be necessary.
3697 			 */
3698 			stat(s, FREE_FROZEN);
3699 		} else if (new.frozen) {
3700 			/*
3701 			 * If we just froze the slab then put it onto the
3702 			 * per cpu partial list.
3703 			 */
3704 			put_cpu_partial(s, slab, 1);
3705 			stat(s, CPU_PARTIAL_FREE);
3706 		}
3707 
3708 		return;
3709 	}
3710 
3711 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3712 		goto slab_empty;
3713 
3714 	/*
3715 	 * Objects left in the slab. If it was not on the partial list before
3716 	 * then add it.
3717 	 */
3718 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3719 		remove_full(s, n, slab);
3720 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3721 		stat(s, FREE_ADD_PARTIAL);
3722 	}
3723 	spin_unlock_irqrestore(&n->list_lock, flags);
3724 	return;
3725 
3726 slab_empty:
3727 	if (prior) {
3728 		/*
3729 		 * Slab on the partial list.
3730 		 */
3731 		remove_partial(n, slab);
3732 		stat(s, FREE_REMOVE_PARTIAL);
3733 	} else {
3734 		/* Slab must be on the full list */
3735 		remove_full(s, n, slab);
3736 	}
3737 
3738 	spin_unlock_irqrestore(&n->list_lock, flags);
3739 	stat(s, FREE_SLAB);
3740 	discard_slab(s, slab);
3741 }
3742 
3743 #ifndef CONFIG_SLUB_TINY
3744 /*
3745  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3746  * can perform fastpath freeing without additional function calls.
3747  *
3748  * The fastpath is only possible if we are freeing to the current cpu slab
3749  * of this processor. This typically the case if we have just allocated
3750  * the item before.
3751  *
3752  * If fastpath is not possible then fall back to __slab_free where we deal
3753  * with all sorts of special processing.
3754  *
3755  * Bulk free of a freelist with several objects (all pointing to the
3756  * same slab) possible by specifying head and tail ptr, plus objects
3757  * count (cnt). Bulk free indicated by tail pointer being set.
3758  */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3759 static __always_inline void do_slab_free(struct kmem_cache *s,
3760 				struct slab *slab, void *head, void *tail,
3761 				int cnt, unsigned long addr)
3762 {
3763 	void *tail_obj = tail ? : head;
3764 	struct kmem_cache_cpu *c;
3765 	unsigned long tid;
3766 	void **freelist;
3767 
3768 redo:
3769 	/*
3770 	 * Determine the currently cpus per cpu slab.
3771 	 * The cpu may change afterward. However that does not matter since
3772 	 * data is retrieved via this pointer. If we are on the same cpu
3773 	 * during the cmpxchg then the free will succeed.
3774 	 */
3775 	c = raw_cpu_ptr(s->cpu_slab);
3776 	tid = READ_ONCE(c->tid);
3777 
3778 	/* Same with comment on barrier() in slab_alloc_node() */
3779 	barrier();
3780 
3781 	if (unlikely(slab != c->slab)) {
3782 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3783 		return;
3784 	}
3785 
3786 	if (USE_LOCKLESS_FAST_PATH()) {
3787 		freelist = READ_ONCE(c->freelist);
3788 
3789 		set_freepointer(s, tail_obj, freelist);
3790 
3791 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3792 			note_cmpxchg_failure("slab_free", s, tid);
3793 			goto redo;
3794 		}
3795 	} else {
3796 		/* Update the free list under the local lock */
3797 		local_lock(&s->cpu_slab->lock);
3798 		c = this_cpu_ptr(s->cpu_slab);
3799 		if (unlikely(slab != c->slab)) {
3800 			local_unlock(&s->cpu_slab->lock);
3801 			goto redo;
3802 		}
3803 		tid = c->tid;
3804 		freelist = c->freelist;
3805 
3806 		set_freepointer(s, tail_obj, freelist);
3807 		c->freelist = head;
3808 		c->tid = next_tid(tid);
3809 
3810 		local_unlock(&s->cpu_slab->lock);
3811 	}
3812 	stat(s, FREE_FASTPATH);
3813 }
3814 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)3815 static void do_slab_free(struct kmem_cache *s,
3816 				struct slab *slab, void *head, void *tail,
3817 				int cnt, unsigned long addr)
3818 {
3819 	void *tail_obj = tail ? : head;
3820 
3821 	__slab_free(s, slab, head, tail_obj, cnt, addr);
3822 }
3823 #endif /* CONFIG_SLUB_TINY */
3824 
slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)3825 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3826 				      void *head, void *tail, void **p, int cnt,
3827 				      unsigned long addr)
3828 {
3829 	memcg_slab_free_hook(s, slab, p, cnt);
3830 	/*
3831 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3832 	 * to remove objects, whose reuse must be delayed.
3833 	 */
3834 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3835 		do_slab_free(s, slab, head, tail, cnt, addr);
3836 
3837 	trace_android_vh_slab_free(addr, s);
3838 
3839 }
3840 
3841 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3842 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3843 {
3844 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3845 }
3846 #endif
3847 
__kmem_cache_free(struct kmem_cache * s,void * x,unsigned long caller)3848 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3849 {
3850 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3851 }
3852 
kmem_cache_free(struct kmem_cache * s,void * x)3853 void kmem_cache_free(struct kmem_cache *s, void *x)
3854 {
3855 	s = cache_from_obj(s, x);
3856 	if (!s)
3857 		return;
3858 	trace_kmem_cache_free(_RET_IP_, x, s);
3859 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3860 }
3861 EXPORT_SYMBOL(kmem_cache_free);
3862 
3863 struct detached_freelist {
3864 	struct slab *slab;
3865 	void *tail;
3866 	void *freelist;
3867 	int cnt;
3868 	struct kmem_cache *s;
3869 };
3870 
3871 /*
3872  * This function progressively scans the array with free objects (with
3873  * a limited look ahead) and extract objects belonging to the same
3874  * slab.  It builds a detached freelist directly within the given
3875  * slab/objects.  This can happen without any need for
3876  * synchronization, because the objects are owned by running process.
3877  * The freelist is build up as a single linked list in the objects.
3878  * The idea is, that this detached freelist can then be bulk
3879  * transferred to the real freelist(s), but only requiring a single
3880  * synchronization primitive.  Look ahead in the array is limited due
3881  * to performance reasons.
3882  */
3883 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3884 int build_detached_freelist(struct kmem_cache *s, size_t size,
3885 			    void **p, struct detached_freelist *df)
3886 {
3887 	int lookahead = 3;
3888 	void *object;
3889 	struct folio *folio;
3890 	size_t same;
3891 
3892 	object = p[--size];
3893 	folio = virt_to_folio(object);
3894 	if (!s) {
3895 		/* Handle kalloc'ed objects */
3896 		if (unlikely(!folio_test_slab(folio))) {
3897 			free_large_kmalloc(folio, object);
3898 			df->slab = NULL;
3899 			return size;
3900 		}
3901 		/* Derive kmem_cache from object */
3902 		df->slab = folio_slab(folio);
3903 		df->s = df->slab->slab_cache;
3904 	} else {
3905 		df->slab = folio_slab(folio);
3906 		df->s = cache_from_obj(s, object); /* Support for memcg */
3907 	}
3908 
3909 	/* Start new detached freelist */
3910 	df->tail = object;
3911 	df->freelist = object;
3912 	df->cnt = 1;
3913 
3914 	if (is_kfence_address(object))
3915 		return size;
3916 
3917 	set_freepointer(df->s, object, NULL);
3918 
3919 	same = size;
3920 	while (size) {
3921 		object = p[--size];
3922 		/* df->slab is always set at this point */
3923 		if (df->slab == virt_to_slab(object)) {
3924 			/* Opportunity build freelist */
3925 			set_freepointer(df->s, object, df->freelist);
3926 			df->freelist = object;
3927 			df->cnt++;
3928 			same--;
3929 			if (size != same)
3930 				swap(p[size], p[same]);
3931 			continue;
3932 		}
3933 
3934 		/* Limit look ahead search */
3935 		if (!--lookahead)
3936 			break;
3937 	}
3938 
3939 	return same;
3940 }
3941 
3942 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3943 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3944 {
3945 	if (!size)
3946 		return;
3947 
3948 	do {
3949 		struct detached_freelist df;
3950 
3951 		size = build_detached_freelist(s, size, p, &df);
3952 		if (!df.slab)
3953 			continue;
3954 
3955 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3956 			  _RET_IP_);
3957 	} while (likely(size));
3958 }
3959 EXPORT_SYMBOL(kmem_cache_free_bulk);
3960 
3961 #ifndef CONFIG_SLUB_TINY
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p,struct obj_cgroup * objcg)3962 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3963 			size_t size, void **p, struct obj_cgroup *objcg)
3964 {
3965 	struct kmem_cache_cpu *c;
3966 	unsigned long irqflags;
3967 	int i;
3968 
3969 	/*
3970 	 * Drain objects in the per cpu slab, while disabling local
3971 	 * IRQs, which protects against PREEMPT and interrupts
3972 	 * handlers invoking normal fastpath.
3973 	 */
3974 	c = slub_get_cpu_ptr(s->cpu_slab);
3975 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3976 
3977 	for (i = 0; i < size; i++) {
3978 		void *object = kfence_alloc(s, s->object_size, flags);
3979 
3980 		if (unlikely(object)) {
3981 			p[i] = object;
3982 			continue;
3983 		}
3984 
3985 		object = c->freelist;
3986 		if (unlikely(!object)) {
3987 			/*
3988 			 * We may have removed an object from c->freelist using
3989 			 * the fastpath in the previous iteration; in that case,
3990 			 * c->tid has not been bumped yet.
3991 			 * Since ___slab_alloc() may reenable interrupts while
3992 			 * allocating memory, we should bump c->tid now.
3993 			 */
3994 			c->tid = next_tid(c->tid);
3995 
3996 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3997 
3998 			/*
3999 			 * Invoking slow path likely have side-effect
4000 			 * of re-populating per CPU c->freelist
4001 			 */
4002 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4003 					    _RET_IP_, c, s->object_size);
4004 			if (unlikely(!p[i]))
4005 				goto error;
4006 
4007 			c = this_cpu_ptr(s->cpu_slab);
4008 			maybe_wipe_obj_freeptr(s, p[i]);
4009 
4010 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4011 
4012 			continue; /* goto for-loop */
4013 		}
4014 		c->freelist = get_freepointer(s, object);
4015 		p[i] = object;
4016 		maybe_wipe_obj_freeptr(s, p[i]);
4017 	}
4018 	c->tid = next_tid(c->tid);
4019 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4020 	slub_put_cpu_ptr(s->cpu_slab);
4021 
4022 	return i;
4023 
4024 error:
4025 	slub_put_cpu_ptr(s->cpu_slab);
4026 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4027 	kmem_cache_free_bulk(s, i, p);
4028 	return 0;
4029 
4030 }
4031 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p,struct obj_cgroup * objcg)4032 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4033 			size_t size, void **p, struct obj_cgroup *objcg)
4034 {
4035 	int i;
4036 
4037 	for (i = 0; i < size; i++) {
4038 		void *object = kfence_alloc(s, s->object_size, flags);
4039 
4040 		if (unlikely(object)) {
4041 			p[i] = object;
4042 			continue;
4043 		}
4044 
4045 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4046 					 _RET_IP_, s->object_size);
4047 		if (unlikely(!p[i]))
4048 			goto error;
4049 
4050 		maybe_wipe_obj_freeptr(s, p[i]);
4051 	}
4052 
4053 	return i;
4054 
4055 error:
4056 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4057 	kmem_cache_free_bulk(s, i, p);
4058 	return 0;
4059 }
4060 #endif /* CONFIG_SLUB_TINY */
4061 
4062 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)4063 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4064 			  void **p)
4065 {
4066 	int i;
4067 	struct obj_cgroup *objcg = NULL;
4068 
4069 	if (!size)
4070 		return 0;
4071 
4072 	/* memcg and kmem_cache debug support */
4073 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4074 	if (unlikely(!s))
4075 		return 0;
4076 
4077 	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4078 
4079 	/*
4080 	 * memcg and kmem_cache debug support and memory initialization.
4081 	 * Done outside of the IRQ disabled fastpath loop.
4082 	 */
4083 	if (i != 0)
4084 		slab_post_alloc_hook(s, objcg, flags, size, p,
4085 			slab_want_init_on_alloc(flags, s), s->object_size);
4086 	return i;
4087 }
4088 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4089 
4090 
4091 /*
4092  * Object placement in a slab is made very easy because we always start at
4093  * offset 0. If we tune the size of the object to the alignment then we can
4094  * get the required alignment by putting one properly sized object after
4095  * another.
4096  *
4097  * Notice that the allocation order determines the sizes of the per cpu
4098  * caches. Each processor has always one slab available for allocations.
4099  * Increasing the allocation order reduces the number of times that slabs
4100  * must be moved on and off the partial lists and is therefore a factor in
4101  * locking overhead.
4102  */
4103 
4104 /*
4105  * Minimum / Maximum order of slab pages. This influences locking overhead
4106  * and slab fragmentation. A higher order reduces the number of partial slabs
4107  * and increases the number of allocations possible without having to
4108  * take the list_lock.
4109  */
4110 static unsigned int slub_min_order;
4111 static unsigned int slub_max_order =
4112 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4113 static unsigned int slub_min_objects;
4114 
4115 /*
4116  * Calculate the order of allocation given an slab object size.
4117  *
4118  * The order of allocation has significant impact on performance and other
4119  * system components. Generally order 0 allocations should be preferred since
4120  * order 0 does not cause fragmentation in the page allocator. Larger objects
4121  * be problematic to put into order 0 slabs because there may be too much
4122  * unused space left. We go to a higher order if more than 1/16th of the slab
4123  * would be wasted.
4124  *
4125  * In order to reach satisfactory performance we must ensure that a minimum
4126  * number of objects is in one slab. Otherwise we may generate too much
4127  * activity on the partial lists which requires taking the list_lock. This is
4128  * less a concern for large slabs though which are rarely used.
4129  *
4130  * slub_max_order specifies the order where we begin to stop considering the
4131  * number of objects in a slab as critical. If we reach slub_max_order then
4132  * we try to keep the page order as low as possible. So we accept more waste
4133  * of space in favor of a small page order.
4134  *
4135  * Higher order allocations also allow the placement of more objects in a
4136  * slab and thereby reduce object handling overhead. If the user has
4137  * requested a higher minimum order then we start with that one instead of
4138  * the smallest order which will fit the object.
4139  */
calc_slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)4140 static inline unsigned int calc_slab_order(unsigned int size,
4141 		unsigned int min_objects, unsigned int max_order,
4142 		unsigned int fract_leftover)
4143 {
4144 	unsigned int min_order = slub_min_order;
4145 	unsigned int order;
4146 
4147 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4148 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4149 
4150 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4151 			order <= max_order; order++) {
4152 
4153 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4154 		unsigned int rem;
4155 
4156 		rem = slab_size % size;
4157 
4158 		if (rem <= slab_size / fract_leftover)
4159 			break;
4160 	}
4161 
4162 	return order;
4163 }
4164 
calculate_order(unsigned int size)4165 static inline int calculate_order(unsigned int size)
4166 {
4167 	unsigned int order;
4168 	unsigned int min_objects;
4169 	unsigned int max_objects;
4170 	unsigned int nr_cpus;
4171 
4172 	/*
4173 	 * Attempt to find best configuration for a slab. This
4174 	 * works by first attempting to generate a layout with
4175 	 * the best configuration and backing off gradually.
4176 	 *
4177 	 * First we increase the acceptable waste in a slab. Then
4178 	 * we reduce the minimum objects required in a slab.
4179 	 */
4180 	min_objects = slub_min_objects;
4181 	if (!min_objects) {
4182 		/*
4183 		 * Some architectures will only update present cpus when
4184 		 * onlining them, so don't trust the number if it's just 1. But
4185 		 * we also don't want to use nr_cpu_ids always, as on some other
4186 		 * architectures, there can be many possible cpus, but never
4187 		 * onlined. Here we compromise between trying to avoid too high
4188 		 * order on systems that appear larger than they are, and too
4189 		 * low order on systems that appear smaller than they are.
4190 		 */
4191 		nr_cpus = num_present_cpus();
4192 		if (nr_cpus <= 1)
4193 			nr_cpus = nr_cpu_ids;
4194 		min_objects = 4 * (fls(nr_cpus) + 1);
4195 	}
4196 	max_objects = order_objects(slub_max_order, size);
4197 	min_objects = min(min_objects, max_objects);
4198 
4199 	while (min_objects > 1) {
4200 		unsigned int fraction;
4201 
4202 		fraction = 16;
4203 		while (fraction >= 4) {
4204 			order = calc_slab_order(size, min_objects,
4205 					slub_max_order, fraction);
4206 			if (order <= slub_max_order)
4207 				return order;
4208 			fraction /= 2;
4209 		}
4210 		min_objects--;
4211 	}
4212 
4213 	/*
4214 	 * We were unable to place multiple objects in a slab. Now
4215 	 * lets see if we can place a single object there.
4216 	 */
4217 	order = calc_slab_order(size, 1, slub_max_order, 1);
4218 	if (order <= slub_max_order)
4219 		return order;
4220 
4221 	/*
4222 	 * Doh this slab cannot be placed using slub_max_order.
4223 	 */
4224 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4225 	if (order <= MAX_ORDER)
4226 		return order;
4227 	return -ENOSYS;
4228 }
4229 
4230 static void
init_kmem_cache_node(struct kmem_cache_node * n)4231 init_kmem_cache_node(struct kmem_cache_node *n)
4232 {
4233 	n->nr_partial = 0;
4234 	spin_lock_init(&n->list_lock);
4235 	INIT_LIST_HEAD(&n->partial);
4236 #ifdef CONFIG_SLUB_DEBUG
4237 	atomic_long_set(&n->nr_slabs, 0);
4238 	atomic_long_set(&n->total_objects, 0);
4239 	INIT_LIST_HEAD(&n->full);
4240 #endif
4241 }
4242 
4243 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)4244 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4245 {
4246 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4247 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4248 			sizeof(struct kmem_cache_cpu));
4249 
4250 	/*
4251 	 * Must align to double word boundary for the double cmpxchg
4252 	 * instructions to work; see __pcpu_double_call_return_bool().
4253 	 */
4254 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4255 				     2 * sizeof(void *));
4256 
4257 	if (!s->cpu_slab)
4258 		return 0;
4259 
4260 	init_kmem_cache_cpus(s);
4261 
4262 	return 1;
4263 }
4264 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)4265 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4266 {
4267 	return 1;
4268 }
4269 #endif /* CONFIG_SLUB_TINY */
4270 
4271 static struct kmem_cache *kmem_cache_node;
4272 
4273 /*
4274  * No kmalloc_node yet so do it by hand. We know that this is the first
4275  * slab on the node for this slabcache. There are no concurrent accesses
4276  * possible.
4277  *
4278  * Note that this function only works on the kmem_cache_node
4279  * when allocating for the kmem_cache_node. This is used for bootstrapping
4280  * memory on a fresh node that has no slab structures yet.
4281  */
early_kmem_cache_node_alloc(int node)4282 static void early_kmem_cache_node_alloc(int node)
4283 {
4284 	struct slab *slab;
4285 	struct kmem_cache_node *n;
4286 
4287 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4288 
4289 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4290 
4291 	BUG_ON(!slab);
4292 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4293 	if (slab_nid(slab) != node) {
4294 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4295 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4296 	}
4297 
4298 	n = slab->freelist;
4299 	BUG_ON(!n);
4300 #ifdef CONFIG_SLUB_DEBUG
4301 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4302 	init_tracking(kmem_cache_node, n);
4303 #endif
4304 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4305 	slab->freelist = get_freepointer(kmem_cache_node, n);
4306 	slab->inuse = 1;
4307 	kmem_cache_node->node[node] = n;
4308 	init_kmem_cache_node(n);
4309 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4310 
4311 	/*
4312 	 * No locks need to be taken here as it has just been
4313 	 * initialized and there is no concurrent access.
4314 	 */
4315 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4316 }
4317 
free_kmem_cache_nodes(struct kmem_cache * s)4318 static void free_kmem_cache_nodes(struct kmem_cache *s)
4319 {
4320 	int node;
4321 	struct kmem_cache_node *n;
4322 
4323 	for_each_kmem_cache_node(s, node, n) {
4324 		s->node[node] = NULL;
4325 		kmem_cache_free(kmem_cache_node, n);
4326 	}
4327 }
4328 
__kmem_cache_release(struct kmem_cache * s)4329 void __kmem_cache_release(struct kmem_cache *s)
4330 {
4331 	cache_random_seq_destroy(s);
4332 #ifndef CONFIG_SLUB_TINY
4333 	free_percpu(s->cpu_slab);
4334 #endif
4335 	free_kmem_cache_nodes(s);
4336 }
4337 
init_kmem_cache_nodes(struct kmem_cache * s)4338 static int init_kmem_cache_nodes(struct kmem_cache *s)
4339 {
4340 	int node;
4341 
4342 	for_each_node_mask(node, slab_nodes) {
4343 		struct kmem_cache_node *n;
4344 
4345 		if (slab_state == DOWN) {
4346 			early_kmem_cache_node_alloc(node);
4347 			continue;
4348 		}
4349 		n = kmem_cache_alloc_node(kmem_cache_node,
4350 						GFP_KERNEL, node);
4351 
4352 		if (!n) {
4353 			free_kmem_cache_nodes(s);
4354 			return 0;
4355 		}
4356 
4357 		init_kmem_cache_node(n);
4358 		s->node[node] = n;
4359 	}
4360 	return 1;
4361 }
4362 
set_cpu_partial(struct kmem_cache * s)4363 static void set_cpu_partial(struct kmem_cache *s)
4364 {
4365 #ifdef CONFIG_SLUB_CPU_PARTIAL
4366 	unsigned int nr_objects;
4367 
4368 	/*
4369 	 * cpu_partial determined the maximum number of objects kept in the
4370 	 * per cpu partial lists of a processor.
4371 	 *
4372 	 * Per cpu partial lists mainly contain slabs that just have one
4373 	 * object freed. If they are used for allocation then they can be
4374 	 * filled up again with minimal effort. The slab will never hit the
4375 	 * per node partial lists and therefore no locking will be required.
4376 	 *
4377 	 * For backwards compatibility reasons, this is determined as number
4378 	 * of objects, even though we now limit maximum number of pages, see
4379 	 * slub_set_cpu_partial()
4380 	 */
4381 	if (!kmem_cache_has_cpu_partial(s))
4382 		nr_objects = 0;
4383 	else if (s->size >= PAGE_SIZE)
4384 		nr_objects = 6;
4385 	else if (s->size >= 1024)
4386 		nr_objects = 24;
4387 	else if (s->size >= 256)
4388 		nr_objects = 52;
4389 	else
4390 		nr_objects = 120;
4391 
4392 	slub_set_cpu_partial(s, nr_objects);
4393 #endif
4394 }
4395 
4396 /*
4397  * calculate_sizes() determines the order and the distribution of data within
4398  * a slab object.
4399  */
calculate_sizes(struct kmem_cache * s)4400 static int calculate_sizes(struct kmem_cache *s)
4401 {
4402 	slab_flags_t flags = s->flags;
4403 	unsigned int size = s->object_size;
4404 	unsigned int order;
4405 
4406 	/*
4407 	 * Round up object size to the next word boundary. We can only
4408 	 * place the free pointer at word boundaries and this determines
4409 	 * the possible location of the free pointer.
4410 	 */
4411 	size = ALIGN(size, sizeof(void *));
4412 
4413 #ifdef CONFIG_SLUB_DEBUG
4414 	/*
4415 	 * Determine if we can poison the object itself. If the user of
4416 	 * the slab may touch the object after free or before allocation
4417 	 * then we should never poison the object itself.
4418 	 */
4419 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4420 			!s->ctor)
4421 		s->flags |= __OBJECT_POISON;
4422 	else
4423 		s->flags &= ~__OBJECT_POISON;
4424 
4425 
4426 	/*
4427 	 * If we are Redzoning then check if there is some space between the
4428 	 * end of the object and the free pointer. If not then add an
4429 	 * additional word to have some bytes to store Redzone information.
4430 	 */
4431 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4432 		size += sizeof(void *);
4433 #endif
4434 
4435 	/*
4436 	 * With that we have determined the number of bytes in actual use
4437 	 * by the object and redzoning.
4438 	 */
4439 	s->inuse = size;
4440 
4441 	if (slub_debug_orig_size(s) ||
4442 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4443 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4444 	    s->ctor) {
4445 		/*
4446 		 * Relocate free pointer after the object if it is not
4447 		 * permitted to overwrite the first word of the object on
4448 		 * kmem_cache_free.
4449 		 *
4450 		 * This is the case if we do RCU, have a constructor or
4451 		 * destructor, are poisoning the objects, or are
4452 		 * redzoning an object smaller than sizeof(void *).
4453 		 *
4454 		 * The assumption that s->offset >= s->inuse means free
4455 		 * pointer is outside of the object is used in the
4456 		 * freeptr_outside_object() function. If that is no
4457 		 * longer true, the function needs to be modified.
4458 		 */
4459 		s->offset = size;
4460 		size += sizeof(void *);
4461 	} else {
4462 		/*
4463 		 * Store freelist pointer near middle of object to keep
4464 		 * it away from the edges of the object to avoid small
4465 		 * sized over/underflows from neighboring allocations.
4466 		 */
4467 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4468 	}
4469 
4470 #ifdef CONFIG_SLUB_DEBUG
4471 	if (flags & SLAB_STORE_USER) {
4472 		/*
4473 		 * Need to store information about allocs and frees after
4474 		 * the object.
4475 		 */
4476 		size += 2 * sizeof(struct track);
4477 
4478 		/* Save the original kmalloc request size */
4479 		if (flags & SLAB_KMALLOC)
4480 			size += sizeof(unsigned int);
4481 	}
4482 #endif
4483 
4484 	kasan_cache_create(s, &size, &s->flags);
4485 #ifdef CONFIG_SLUB_DEBUG
4486 	if (flags & SLAB_RED_ZONE) {
4487 		/*
4488 		 * Add some empty padding so that we can catch
4489 		 * overwrites from earlier objects rather than let
4490 		 * tracking information or the free pointer be
4491 		 * corrupted if a user writes before the start
4492 		 * of the object.
4493 		 */
4494 		size += sizeof(void *);
4495 
4496 		s->red_left_pad = sizeof(void *);
4497 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4498 		size += s->red_left_pad;
4499 	}
4500 #endif
4501 
4502 	/*
4503 	 * SLUB stores one object immediately after another beginning from
4504 	 * offset 0. In order to align the objects we have to simply size
4505 	 * each object to conform to the alignment.
4506 	 */
4507 	size = ALIGN(size, s->align);
4508 	s->size = size;
4509 	s->reciprocal_size = reciprocal_value(size);
4510 	order = calculate_order(size);
4511 
4512 	if ((int)order < 0)
4513 		return 0;
4514 
4515 	s->allocflags = 0;
4516 	if (order)
4517 		s->allocflags |= __GFP_COMP;
4518 
4519 	if (s->flags & SLAB_CACHE_DMA)
4520 		s->allocflags |= GFP_DMA;
4521 
4522 	if (s->flags & SLAB_CACHE_DMA32)
4523 		s->allocflags |= GFP_DMA32;
4524 
4525 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4526 		s->allocflags |= __GFP_RECLAIMABLE;
4527 
4528 	/*
4529 	 * Determine the number of objects per slab
4530 	 */
4531 	s->oo = oo_make(order, size);
4532 	s->min = oo_make(get_order(size), size);
4533 
4534 	return !!oo_objects(s->oo);
4535 }
4536 
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)4537 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4538 {
4539 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4540 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4541 	s->random = get_random_long();
4542 #endif
4543 
4544 	if (!calculate_sizes(s))
4545 		goto error;
4546 	if (disable_higher_order_debug) {
4547 		/*
4548 		 * Disable debugging flags that store metadata if the min slab
4549 		 * order increased.
4550 		 */
4551 		if (get_order(s->size) > get_order(s->object_size)) {
4552 			s->flags &= ~DEBUG_METADATA_FLAGS;
4553 			s->offset = 0;
4554 			if (!calculate_sizes(s))
4555 				goto error;
4556 		}
4557 	}
4558 
4559 #ifdef system_has_freelist_aba
4560 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4561 		/* Enable fast mode */
4562 		s->flags |= __CMPXCHG_DOUBLE;
4563 	}
4564 #endif
4565 
4566 	/*
4567 	 * The larger the object size is, the more slabs we want on the partial
4568 	 * list to avoid pounding the page allocator excessively.
4569 	 */
4570 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4571 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4572 
4573 	set_cpu_partial(s);
4574 
4575 #ifdef CONFIG_NUMA
4576 	s->remote_node_defrag_ratio = 1000;
4577 #endif
4578 
4579 	/* Initialize the pre-computed randomized freelist if slab is up */
4580 	if (slab_state >= UP) {
4581 		if (init_cache_random_seq(s))
4582 			goto error;
4583 	}
4584 
4585 	if (!init_kmem_cache_nodes(s))
4586 		goto error;
4587 
4588 	if (alloc_kmem_cache_cpus(s))
4589 		return 0;
4590 
4591 error:
4592 	__kmem_cache_release(s);
4593 	return -EINVAL;
4594 }
4595 
list_slab_objects(struct kmem_cache * s,struct slab * slab,const char * text)4596 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4597 			      const char *text)
4598 {
4599 #ifdef CONFIG_SLUB_DEBUG
4600 	void *addr = slab_address(slab);
4601 	void *p;
4602 
4603 	slab_err(s, slab, text, s->name);
4604 
4605 	spin_lock(&object_map_lock);
4606 	__fill_map(object_map, s, slab);
4607 
4608 	for_each_object(p, s, addr, slab->objects) {
4609 
4610 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4611 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4612 			print_tracking(s, p);
4613 		}
4614 	}
4615 	spin_unlock(&object_map_lock);
4616 #endif
4617 }
4618 
4619 /*
4620  * Attempt to free all partial slabs on a node.
4621  * This is called from __kmem_cache_shutdown(). We must take list_lock
4622  * because sysfs file might still access partial list after the shutdowning.
4623  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)4624 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4625 {
4626 	LIST_HEAD(discard);
4627 	struct slab *slab, *h;
4628 
4629 	BUG_ON(irqs_disabled());
4630 	spin_lock_irq(&n->list_lock);
4631 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4632 		if (!slab->inuse) {
4633 			remove_partial(n, slab);
4634 			list_add(&slab->slab_list, &discard);
4635 		} else {
4636 			list_slab_objects(s, slab,
4637 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4638 		}
4639 	}
4640 	spin_unlock_irq(&n->list_lock);
4641 
4642 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4643 		discard_slab(s, slab);
4644 }
4645 
__kmem_cache_empty(struct kmem_cache * s)4646 bool __kmem_cache_empty(struct kmem_cache *s)
4647 {
4648 	int node;
4649 	struct kmem_cache_node *n;
4650 
4651 	for_each_kmem_cache_node(s, node, n)
4652 		if (n->nr_partial || node_nr_slabs(n))
4653 			return false;
4654 	return true;
4655 }
4656 
4657 /*
4658  * Release all resources used by a slab cache.
4659  */
__kmem_cache_shutdown(struct kmem_cache * s)4660 int __kmem_cache_shutdown(struct kmem_cache *s)
4661 {
4662 	int node;
4663 	struct kmem_cache_node *n;
4664 
4665 	flush_all_cpus_locked(s);
4666 	/* Attempt to free all objects */
4667 	for_each_kmem_cache_node(s, node, n) {
4668 		free_partial(s, n);
4669 		if (n->nr_partial || node_nr_slabs(n))
4670 			return 1;
4671 	}
4672 	return 0;
4673 }
4674 
4675 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)4676 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4677 {
4678 	void *base;
4679 	int __maybe_unused i;
4680 	unsigned int objnr;
4681 	void *objp;
4682 	void *objp0;
4683 	struct kmem_cache *s = slab->slab_cache;
4684 	struct track __maybe_unused *trackp;
4685 
4686 	kpp->kp_ptr = object;
4687 	kpp->kp_slab = slab;
4688 	kpp->kp_slab_cache = s;
4689 	base = slab_address(slab);
4690 	objp0 = kasan_reset_tag(object);
4691 #ifdef CONFIG_SLUB_DEBUG
4692 	objp = restore_red_left(s, objp0);
4693 #else
4694 	objp = objp0;
4695 #endif
4696 	objnr = obj_to_index(s, slab, objp);
4697 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4698 	objp = base + s->size * objnr;
4699 	kpp->kp_objp = objp;
4700 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4701 			 || (objp - base) % s->size) ||
4702 	    !(s->flags & SLAB_STORE_USER))
4703 		return;
4704 #ifdef CONFIG_SLUB_DEBUG
4705 	objp = fixup_red_left(s, objp);
4706 	trackp = get_track(s, objp, TRACK_ALLOC);
4707 	kpp->kp_ret = (void *)trackp->addr;
4708 #ifdef CONFIG_STACKDEPOT
4709 	{
4710 		depot_stack_handle_t handle;
4711 		unsigned long *entries;
4712 		unsigned int nr_entries;
4713 
4714 		handle = READ_ONCE(trackp->handle);
4715 		if (handle) {
4716 			nr_entries = stack_depot_fetch(handle, &entries);
4717 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4718 				kpp->kp_stack[i] = (void *)entries[i];
4719 		}
4720 
4721 		trackp = get_track(s, objp, TRACK_FREE);
4722 		handle = READ_ONCE(trackp->handle);
4723 		if (handle) {
4724 			nr_entries = stack_depot_fetch(handle, &entries);
4725 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4726 				kpp->kp_free_stack[i] = (void *)entries[i];
4727 		}
4728 	}
4729 #endif
4730 #endif
4731 }
4732 #endif
4733 
4734 /********************************************************************
4735  *		Kmalloc subsystem
4736  *******************************************************************/
4737 
setup_slub_min_order(char * str)4738 static int __init setup_slub_min_order(char *str)
4739 {
4740 	get_option(&str, (int *)&slub_min_order);
4741 
4742 	return 1;
4743 }
4744 
4745 __setup("slub_min_order=", setup_slub_min_order);
4746 
setup_slub_max_order(char * str)4747 static int __init setup_slub_max_order(char *str)
4748 {
4749 	get_option(&str, (int *)&slub_max_order);
4750 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4751 
4752 	return 1;
4753 }
4754 
4755 __setup("slub_max_order=", setup_slub_max_order);
4756 
setup_slub_min_objects(char * str)4757 static int __init setup_slub_min_objects(char *str)
4758 {
4759 	get_option(&str, (int *)&slub_min_objects);
4760 
4761 	return 1;
4762 }
4763 
4764 __setup("slub_min_objects=", setup_slub_min_objects);
4765 
4766 #ifdef CONFIG_HARDENED_USERCOPY
4767 /*
4768  * Rejects incorrectly sized objects and objects that are to be copied
4769  * to/from userspace but do not fall entirely within the containing slab
4770  * cache's usercopy region.
4771  *
4772  * Returns NULL if check passes, otherwise const char * to name of cache
4773  * to indicate an error.
4774  */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)4775 void __check_heap_object(const void *ptr, unsigned long n,
4776 			 const struct slab *slab, bool to_user)
4777 {
4778 	struct kmem_cache *s;
4779 	unsigned int offset;
4780 	bool is_kfence = is_kfence_address(ptr);
4781 
4782 	ptr = kasan_reset_tag(ptr);
4783 
4784 	/* Find object and usable object size. */
4785 	s = slab->slab_cache;
4786 
4787 	/* Reject impossible pointers. */
4788 	if (ptr < slab_address(slab))
4789 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4790 			       to_user, 0, n);
4791 
4792 	/* Find offset within object. */
4793 	if (is_kfence)
4794 		offset = ptr - kfence_object_start(ptr);
4795 	else
4796 		offset = (ptr - slab_address(slab)) % s->size;
4797 
4798 	/* Adjust for redzone and reject if within the redzone. */
4799 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4800 		if (offset < s->red_left_pad)
4801 			usercopy_abort("SLUB object in left red zone",
4802 				       s->name, to_user, offset, n);
4803 		offset -= s->red_left_pad;
4804 	}
4805 
4806 	/* Allow address range falling entirely within usercopy region. */
4807 	if (offset >= s->useroffset &&
4808 	    offset - s->useroffset <= s->usersize &&
4809 	    n <= s->useroffset - offset + s->usersize)
4810 		return;
4811 
4812 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4813 }
4814 #endif /* CONFIG_HARDENED_USERCOPY */
4815 
4816 #define SHRINK_PROMOTE_MAX 32
4817 
4818 /*
4819  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4820  * up most to the head of the partial lists. New allocations will then
4821  * fill those up and thus they can be removed from the partial lists.
4822  *
4823  * The slabs with the least items are placed last. This results in them
4824  * being allocated from last increasing the chance that the last objects
4825  * are freed in them.
4826  */
__kmem_cache_do_shrink(struct kmem_cache * s)4827 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4828 {
4829 	int node;
4830 	int i;
4831 	struct kmem_cache_node *n;
4832 	struct slab *slab;
4833 	struct slab *t;
4834 	struct list_head discard;
4835 	struct list_head promote[SHRINK_PROMOTE_MAX];
4836 	unsigned long flags;
4837 	int ret = 0;
4838 
4839 	for_each_kmem_cache_node(s, node, n) {
4840 		INIT_LIST_HEAD(&discard);
4841 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4842 			INIT_LIST_HEAD(promote + i);
4843 
4844 		spin_lock_irqsave(&n->list_lock, flags);
4845 
4846 		/*
4847 		 * Build lists of slabs to discard or promote.
4848 		 *
4849 		 * Note that concurrent frees may occur while we hold the
4850 		 * list_lock. slab->inuse here is the upper limit.
4851 		 */
4852 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4853 			int free = slab->objects - slab->inuse;
4854 
4855 			/* Do not reread slab->inuse */
4856 			barrier();
4857 
4858 			/* We do not keep full slabs on the list */
4859 			BUG_ON(free <= 0);
4860 
4861 			if (free == slab->objects) {
4862 				list_move(&slab->slab_list, &discard);
4863 				n->nr_partial--;
4864 				dec_slabs_node(s, node, slab->objects);
4865 			} else if (free <= SHRINK_PROMOTE_MAX)
4866 				list_move(&slab->slab_list, promote + free - 1);
4867 		}
4868 
4869 		/*
4870 		 * Promote the slabs filled up most to the head of the
4871 		 * partial list.
4872 		 */
4873 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4874 			list_splice(promote + i, &n->partial);
4875 
4876 		spin_unlock_irqrestore(&n->list_lock, flags);
4877 
4878 		/* Release empty slabs */
4879 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4880 			free_slab(s, slab);
4881 
4882 		if (node_nr_slabs(n))
4883 			ret = 1;
4884 	}
4885 
4886 	return ret;
4887 }
4888 
__kmem_cache_shrink(struct kmem_cache * s)4889 int __kmem_cache_shrink(struct kmem_cache *s)
4890 {
4891 	flush_all(s);
4892 	return __kmem_cache_do_shrink(s);
4893 }
4894 
slab_mem_going_offline_callback(void * arg)4895 static int slab_mem_going_offline_callback(void *arg)
4896 {
4897 	struct kmem_cache *s;
4898 
4899 	mutex_lock(&slab_mutex);
4900 	list_for_each_entry(s, &slab_caches, list) {
4901 		flush_all_cpus_locked(s);
4902 		__kmem_cache_do_shrink(s);
4903 	}
4904 	mutex_unlock(&slab_mutex);
4905 
4906 	return 0;
4907 }
4908 
slab_mem_offline_callback(void * arg)4909 static void slab_mem_offline_callback(void *arg)
4910 {
4911 	struct memory_notify *marg = arg;
4912 	int offline_node;
4913 
4914 	offline_node = marg->status_change_nid_normal;
4915 
4916 	/*
4917 	 * If the node still has available memory. we need kmem_cache_node
4918 	 * for it yet.
4919 	 */
4920 	if (offline_node < 0)
4921 		return;
4922 
4923 	mutex_lock(&slab_mutex);
4924 	node_clear(offline_node, slab_nodes);
4925 	/*
4926 	 * We no longer free kmem_cache_node structures here, as it would be
4927 	 * racy with all get_node() users, and infeasible to protect them with
4928 	 * slab_mutex.
4929 	 */
4930 	mutex_unlock(&slab_mutex);
4931 }
4932 
slab_mem_going_online_callback(void * arg)4933 static int slab_mem_going_online_callback(void *arg)
4934 {
4935 	struct kmem_cache_node *n;
4936 	struct kmem_cache *s;
4937 	struct memory_notify *marg = arg;
4938 	int nid = marg->status_change_nid_normal;
4939 	int ret = 0;
4940 
4941 	/*
4942 	 * If the node's memory is already available, then kmem_cache_node is
4943 	 * already created. Nothing to do.
4944 	 */
4945 	if (nid < 0)
4946 		return 0;
4947 
4948 	/*
4949 	 * We are bringing a node online. No memory is available yet. We must
4950 	 * allocate a kmem_cache_node structure in order to bring the node
4951 	 * online.
4952 	 */
4953 	mutex_lock(&slab_mutex);
4954 	list_for_each_entry(s, &slab_caches, list) {
4955 		/*
4956 		 * The structure may already exist if the node was previously
4957 		 * onlined and offlined.
4958 		 */
4959 		if (get_node(s, nid))
4960 			continue;
4961 		/*
4962 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4963 		 *      since memory is not yet available from the node that
4964 		 *      is brought up.
4965 		 */
4966 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4967 		if (!n) {
4968 			ret = -ENOMEM;
4969 			goto out;
4970 		}
4971 		init_kmem_cache_node(n);
4972 		s->node[nid] = n;
4973 	}
4974 	/*
4975 	 * Any cache created after this point will also have kmem_cache_node
4976 	 * initialized for the new node.
4977 	 */
4978 	node_set(nid, slab_nodes);
4979 out:
4980 	mutex_unlock(&slab_mutex);
4981 	return ret;
4982 }
4983 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4984 static int slab_memory_callback(struct notifier_block *self,
4985 				unsigned long action, void *arg)
4986 {
4987 	int ret = 0;
4988 
4989 	switch (action) {
4990 	case MEM_GOING_ONLINE:
4991 		ret = slab_mem_going_online_callback(arg);
4992 		break;
4993 	case MEM_GOING_OFFLINE:
4994 		ret = slab_mem_going_offline_callback(arg);
4995 		break;
4996 	case MEM_OFFLINE:
4997 	case MEM_CANCEL_ONLINE:
4998 		slab_mem_offline_callback(arg);
4999 		break;
5000 	case MEM_ONLINE:
5001 	case MEM_CANCEL_OFFLINE:
5002 		break;
5003 	}
5004 	if (ret)
5005 		ret = notifier_from_errno(ret);
5006 	else
5007 		ret = NOTIFY_OK;
5008 	return ret;
5009 }
5010 
5011 /********************************************************************
5012  *			Basic setup of slabs
5013  *******************************************************************/
5014 
5015 /*
5016  * Used for early kmem_cache structures that were allocated using
5017  * the page allocator. Allocate them properly then fix up the pointers
5018  * that may be pointing to the wrong kmem_cache structure.
5019  */
5020 
bootstrap(struct kmem_cache * static_cache)5021 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5022 {
5023 	int node;
5024 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5025 	struct kmem_cache_node *n;
5026 
5027 	memcpy(s, static_cache, kmem_cache->object_size);
5028 
5029 	/*
5030 	 * This runs very early, and only the boot processor is supposed to be
5031 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5032 	 * IPIs around.
5033 	 */
5034 	__flush_cpu_slab(s, smp_processor_id());
5035 	for_each_kmem_cache_node(s, node, n) {
5036 		struct slab *p;
5037 
5038 		list_for_each_entry(p, &n->partial, slab_list)
5039 			p->slab_cache = s;
5040 
5041 #ifdef CONFIG_SLUB_DEBUG
5042 		list_for_each_entry(p, &n->full, slab_list)
5043 			p->slab_cache = s;
5044 #endif
5045 	}
5046 	list_add(&s->list, &slab_caches);
5047 	return s;
5048 }
5049 
kmem_cache_init(void)5050 void __init kmem_cache_init(void)
5051 {
5052 	static __initdata struct kmem_cache boot_kmem_cache,
5053 		boot_kmem_cache_node;
5054 	int node;
5055 
5056 	if (debug_guardpage_minorder())
5057 		slub_max_order = 0;
5058 
5059 	/* Print slub debugging pointers without hashing */
5060 	if (__slub_debug_enabled())
5061 		no_hash_pointers_enable(NULL);
5062 
5063 	kmem_cache_node = &boot_kmem_cache_node;
5064 	kmem_cache = &boot_kmem_cache;
5065 
5066 	/*
5067 	 * Initialize the nodemask for which we will allocate per node
5068 	 * structures. Here we don't need taking slab_mutex yet.
5069 	 */
5070 	for_each_node_state(node, N_NORMAL_MEMORY)
5071 		node_set(node, slab_nodes);
5072 
5073 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5074 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5075 
5076 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5077 
5078 	/* Able to allocate the per node structures */
5079 	slab_state = PARTIAL;
5080 
5081 	create_boot_cache(kmem_cache, "kmem_cache",
5082 			offsetof(struct kmem_cache, node) +
5083 				nr_node_ids * sizeof(struct kmem_cache_node *),
5084 		       SLAB_HWCACHE_ALIGN, 0, 0);
5085 
5086 	kmem_cache = bootstrap(&boot_kmem_cache);
5087 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5088 
5089 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5090 	setup_kmalloc_cache_index_table();
5091 	create_kmalloc_caches(0);
5092 
5093 	/* Setup random freelists for each cache */
5094 	init_freelist_randomization();
5095 
5096 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5097 				  slub_cpu_dead);
5098 
5099 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5100 		cache_line_size(),
5101 		slub_min_order, slub_max_order, slub_min_objects,
5102 		nr_cpu_ids, nr_node_ids);
5103 }
5104 
kmem_cache_init_late(void)5105 void __init kmem_cache_init_late(void)
5106 {
5107 #ifndef CONFIG_SLUB_TINY
5108 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5109 	WARN_ON(!flushwq);
5110 #endif
5111 }
5112 
5113 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))5114 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5115 		   slab_flags_t flags, void (*ctor)(void *))
5116 {
5117 	struct kmem_cache *s;
5118 
5119 	s = find_mergeable(size, align, flags, name, ctor);
5120 	if (s) {
5121 		if (sysfs_slab_alias(s, name))
5122 			return NULL;
5123 
5124 		s->refcount++;
5125 
5126 		/*
5127 		 * Adjust the object sizes so that we clear
5128 		 * the complete object on kzalloc.
5129 		 */
5130 		s->object_size = max(s->object_size, size);
5131 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5132 	}
5133 
5134 	return s;
5135 }
5136 
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)5137 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5138 {
5139 	int err;
5140 
5141 	err = kmem_cache_open(s, flags);
5142 	if (err)
5143 		return err;
5144 
5145 	/* Mutex is not taken during early boot */
5146 	if (slab_state <= UP)
5147 		return 0;
5148 
5149 	err = sysfs_slab_add(s);
5150 	if (err) {
5151 		__kmem_cache_release(s);
5152 		return err;
5153 	}
5154 
5155 	if (s->flags & SLAB_STORE_USER)
5156 		debugfs_slab_add(s);
5157 
5158 	return 0;
5159 }
5160 
5161 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)5162 static int count_inuse(struct slab *slab)
5163 {
5164 	return slab->inuse;
5165 }
5166 
count_total(struct slab * slab)5167 static int count_total(struct slab *slab)
5168 {
5169 	return slab->objects;
5170 }
5171 #endif
5172 
5173 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)5174 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5175 			  unsigned long *obj_map)
5176 {
5177 	void *p;
5178 	void *addr = slab_address(slab);
5179 
5180 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5181 		return;
5182 
5183 	/* Now we know that a valid freelist exists */
5184 	__fill_map(obj_map, s, slab);
5185 	for_each_object(p, s, addr, slab->objects) {
5186 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5187 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5188 
5189 		if (!check_object(s, slab, p, val))
5190 			break;
5191 	}
5192 }
5193 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)5194 static int validate_slab_node(struct kmem_cache *s,
5195 		struct kmem_cache_node *n, unsigned long *obj_map)
5196 {
5197 	unsigned long count = 0;
5198 	struct slab *slab;
5199 	unsigned long flags;
5200 
5201 	spin_lock_irqsave(&n->list_lock, flags);
5202 
5203 	list_for_each_entry(slab, &n->partial, slab_list) {
5204 		validate_slab(s, slab, obj_map);
5205 		count++;
5206 	}
5207 	if (count != n->nr_partial) {
5208 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5209 		       s->name, count, n->nr_partial);
5210 		slab_add_kunit_errors();
5211 	}
5212 
5213 	if (!(s->flags & SLAB_STORE_USER))
5214 		goto out;
5215 
5216 	list_for_each_entry(slab, &n->full, slab_list) {
5217 		validate_slab(s, slab, obj_map);
5218 		count++;
5219 	}
5220 	if (count != node_nr_slabs(n)) {
5221 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5222 		       s->name, count, node_nr_slabs(n));
5223 		slab_add_kunit_errors();
5224 	}
5225 
5226 out:
5227 	spin_unlock_irqrestore(&n->list_lock, flags);
5228 	return count;
5229 }
5230 
validate_slab_cache(struct kmem_cache * s)5231 long validate_slab_cache(struct kmem_cache *s)
5232 {
5233 	int node;
5234 	unsigned long count = 0;
5235 	struct kmem_cache_node *n;
5236 	unsigned long *obj_map;
5237 
5238 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5239 	if (!obj_map)
5240 		return -ENOMEM;
5241 
5242 	flush_all(s);
5243 	for_each_kmem_cache_node(s, node, n)
5244 		count += validate_slab_node(s, n, obj_map);
5245 
5246 	bitmap_free(obj_map);
5247 
5248 	return count;
5249 }
5250 EXPORT_SYMBOL(validate_slab_cache);
5251 
5252 #ifdef CONFIG_DEBUG_FS
5253 /*
5254  * Generate lists of code addresses where slabcache objects are allocated
5255  * and freed.
5256  */
5257 
5258 struct location {
5259 	depot_stack_handle_t handle;
5260 	unsigned long count;
5261 	unsigned long addr;
5262 	unsigned long waste;
5263 	long long sum_time;
5264 	long min_time;
5265 	long max_time;
5266 	long min_pid;
5267 	long max_pid;
5268 	DECLARE_BITMAP(cpus, NR_CPUS);
5269 	nodemask_t nodes;
5270 };
5271 
5272 struct loc_track {
5273 	unsigned long max;
5274 	unsigned long count;
5275 	struct location *loc;
5276 	loff_t idx;
5277 };
5278 
5279 static struct dentry *slab_debugfs_root;
5280 
free_loc_track(struct loc_track * t)5281 static void free_loc_track(struct loc_track *t)
5282 {
5283 	if (t->max)
5284 		free_pages((unsigned long)t->loc,
5285 			get_order(sizeof(struct location) * t->max));
5286 }
5287 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)5288 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5289 {
5290 	struct location *l;
5291 	int order;
5292 
5293 	order = get_order(sizeof(struct location) * max);
5294 
5295 	l = (void *)__get_free_pages(flags, order);
5296 	if (!l)
5297 		return 0;
5298 
5299 	if (t->count) {
5300 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5301 		free_loc_track(t);
5302 	}
5303 	t->max = max;
5304 	t->loc = l;
5305 	return 1;
5306 }
5307 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)5308 static int add_location(struct loc_track *t, struct kmem_cache *s,
5309 				const struct track *track,
5310 				unsigned int orig_size)
5311 {
5312 	long start, end, pos;
5313 	struct location *l;
5314 	unsigned long caddr, chandle, cwaste;
5315 	unsigned long age = jiffies - track->when;
5316 	depot_stack_handle_t handle = 0;
5317 	unsigned int waste = s->object_size - orig_size;
5318 
5319 #ifdef CONFIG_STACKDEPOT
5320 	handle = READ_ONCE(track->handle);
5321 #endif
5322 	start = -1;
5323 	end = t->count;
5324 
5325 	for ( ; ; ) {
5326 		pos = start + (end - start + 1) / 2;
5327 
5328 		/*
5329 		 * There is nothing at "end". If we end up there
5330 		 * we need to add something to before end.
5331 		 */
5332 		if (pos == end)
5333 			break;
5334 
5335 		l = &t->loc[pos];
5336 		caddr = l->addr;
5337 		chandle = l->handle;
5338 		cwaste = l->waste;
5339 		if ((track->addr == caddr) && (handle == chandle) &&
5340 			(waste == cwaste)) {
5341 
5342 			l->count++;
5343 			if (track->when) {
5344 				l->sum_time += age;
5345 				if (age < l->min_time)
5346 					l->min_time = age;
5347 				if (age > l->max_time)
5348 					l->max_time = age;
5349 
5350 				if (track->pid < l->min_pid)
5351 					l->min_pid = track->pid;
5352 				if (track->pid > l->max_pid)
5353 					l->max_pid = track->pid;
5354 
5355 				cpumask_set_cpu(track->cpu,
5356 						to_cpumask(l->cpus));
5357 			}
5358 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5359 			return 1;
5360 		}
5361 
5362 		if (track->addr < caddr)
5363 			end = pos;
5364 		else if (track->addr == caddr && handle < chandle)
5365 			end = pos;
5366 		else if (track->addr == caddr && handle == chandle &&
5367 				waste < cwaste)
5368 			end = pos;
5369 		else
5370 			start = pos;
5371 	}
5372 
5373 	/*
5374 	 * Not found. Insert new tracking element.
5375 	 */
5376 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5377 		return 0;
5378 
5379 	l = t->loc + pos;
5380 	if (pos < t->count)
5381 		memmove(l + 1, l,
5382 			(t->count - pos) * sizeof(struct location));
5383 	t->count++;
5384 	l->count = 1;
5385 	l->addr = track->addr;
5386 	l->sum_time = age;
5387 	l->min_time = age;
5388 	l->max_time = age;
5389 	l->min_pid = track->pid;
5390 	l->max_pid = track->pid;
5391 	l->handle = handle;
5392 	l->waste = waste;
5393 	cpumask_clear(to_cpumask(l->cpus));
5394 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5395 	nodes_clear(l->nodes);
5396 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5397 	return 1;
5398 }
5399 
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)5400 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5401 		struct slab *slab, enum track_item alloc,
5402 		unsigned long *obj_map)
5403 {
5404 	void *addr = slab_address(slab);
5405 	bool is_alloc = (alloc == TRACK_ALLOC);
5406 	void *p;
5407 
5408 	__fill_map(obj_map, s, slab);
5409 
5410 	for_each_object(p, s, addr, slab->objects)
5411 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5412 			add_location(t, s, get_track(s, p, alloc),
5413 				     is_alloc ? get_orig_size(s, p) :
5414 						s->object_size);
5415 }
5416 #endif  /* CONFIG_DEBUG_FS   */
5417 #endif	/* CONFIG_SLUB_DEBUG */
5418 
5419 #ifdef SLAB_SUPPORTS_SYSFS
5420 enum slab_stat_type {
5421 	SL_ALL,			/* All slabs */
5422 	SL_PARTIAL,		/* Only partially allocated slabs */
5423 	SL_CPU,			/* Only slabs used for cpu caches */
5424 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5425 	SL_TOTAL		/* Determine object capacity not slabs */
5426 };
5427 
5428 #define SO_ALL		(1 << SL_ALL)
5429 #define SO_PARTIAL	(1 << SL_PARTIAL)
5430 #define SO_CPU		(1 << SL_CPU)
5431 #define SO_OBJECTS	(1 << SL_OBJECTS)
5432 #define SO_TOTAL	(1 << SL_TOTAL)
5433 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)5434 static ssize_t show_slab_objects(struct kmem_cache *s,
5435 				 char *buf, unsigned long flags)
5436 {
5437 	unsigned long total = 0;
5438 	int node;
5439 	int x;
5440 	unsigned long *nodes;
5441 	int len = 0;
5442 
5443 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5444 	if (!nodes)
5445 		return -ENOMEM;
5446 
5447 	if (flags & SO_CPU) {
5448 		int cpu;
5449 
5450 		for_each_possible_cpu(cpu) {
5451 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5452 							       cpu);
5453 			int node;
5454 			struct slab *slab;
5455 
5456 			slab = READ_ONCE(c->slab);
5457 			if (!slab)
5458 				continue;
5459 
5460 			node = slab_nid(slab);
5461 			if (flags & SO_TOTAL)
5462 				x = slab->objects;
5463 			else if (flags & SO_OBJECTS)
5464 				x = slab->inuse;
5465 			else
5466 				x = 1;
5467 
5468 			total += x;
5469 			nodes[node] += x;
5470 
5471 #ifdef CONFIG_SLUB_CPU_PARTIAL
5472 			slab = slub_percpu_partial_read_once(c);
5473 			if (slab) {
5474 				node = slab_nid(slab);
5475 				if (flags & SO_TOTAL)
5476 					WARN_ON_ONCE(1);
5477 				else if (flags & SO_OBJECTS)
5478 					WARN_ON_ONCE(1);
5479 				else
5480 					x = slab->slabs;
5481 				total += x;
5482 				nodes[node] += x;
5483 			}
5484 #endif
5485 		}
5486 	}
5487 
5488 	/*
5489 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5490 	 * already held which will conflict with an existing lock order:
5491 	 *
5492 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5493 	 *
5494 	 * We don't really need mem_hotplug_lock (to hold off
5495 	 * slab_mem_going_offline_callback) here because slab's memory hot
5496 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5497 	 */
5498 
5499 #ifdef CONFIG_SLUB_DEBUG
5500 	if (flags & SO_ALL) {
5501 		struct kmem_cache_node *n;
5502 
5503 		for_each_kmem_cache_node(s, node, n) {
5504 
5505 			if (flags & SO_TOTAL)
5506 				x = node_nr_objs(n);
5507 			else if (flags & SO_OBJECTS)
5508 				x = node_nr_objs(n) - count_partial(n, count_free);
5509 			else
5510 				x = node_nr_slabs(n);
5511 			total += x;
5512 			nodes[node] += x;
5513 		}
5514 
5515 	} else
5516 #endif
5517 	if (flags & SO_PARTIAL) {
5518 		struct kmem_cache_node *n;
5519 
5520 		for_each_kmem_cache_node(s, node, n) {
5521 			if (flags & SO_TOTAL)
5522 				x = count_partial(n, count_total);
5523 			else if (flags & SO_OBJECTS)
5524 				x = count_partial(n, count_inuse);
5525 			else
5526 				x = n->nr_partial;
5527 			total += x;
5528 			nodes[node] += x;
5529 		}
5530 	}
5531 
5532 	len += sysfs_emit_at(buf, len, "%lu", total);
5533 #ifdef CONFIG_NUMA
5534 	for (node = 0; node < nr_node_ids; node++) {
5535 		if (nodes[node])
5536 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5537 					     node, nodes[node]);
5538 	}
5539 #endif
5540 	len += sysfs_emit_at(buf, len, "\n");
5541 	kfree(nodes);
5542 
5543 	return len;
5544 }
5545 
5546 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5547 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5548 
5549 struct slab_attribute {
5550 	struct attribute attr;
5551 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5552 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5553 };
5554 
5555 #define SLAB_ATTR_RO(_name) \
5556 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5557 
5558 #define SLAB_ATTR(_name) \
5559 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5560 
slab_size_show(struct kmem_cache * s,char * buf)5561 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5562 {
5563 	return sysfs_emit(buf, "%u\n", s->size);
5564 }
5565 SLAB_ATTR_RO(slab_size);
5566 
align_show(struct kmem_cache * s,char * buf)5567 static ssize_t align_show(struct kmem_cache *s, char *buf)
5568 {
5569 	return sysfs_emit(buf, "%u\n", s->align);
5570 }
5571 SLAB_ATTR_RO(align);
5572 
object_size_show(struct kmem_cache * s,char * buf)5573 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5574 {
5575 	return sysfs_emit(buf, "%u\n", s->object_size);
5576 }
5577 SLAB_ATTR_RO(object_size);
5578 
objs_per_slab_show(struct kmem_cache * s,char * buf)5579 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5580 {
5581 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5582 }
5583 SLAB_ATTR_RO(objs_per_slab);
5584 
order_show(struct kmem_cache * s,char * buf)5585 static ssize_t order_show(struct kmem_cache *s, char *buf)
5586 {
5587 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5588 }
5589 SLAB_ATTR_RO(order);
5590 
min_partial_show(struct kmem_cache * s,char * buf)5591 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5592 {
5593 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5594 }
5595 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)5596 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5597 				 size_t length)
5598 {
5599 	unsigned long min;
5600 	int err;
5601 
5602 	err = kstrtoul(buf, 10, &min);
5603 	if (err)
5604 		return err;
5605 
5606 	s->min_partial = min;
5607 	return length;
5608 }
5609 SLAB_ATTR(min_partial);
5610 
cpu_partial_show(struct kmem_cache * s,char * buf)5611 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5612 {
5613 	unsigned int nr_partial = 0;
5614 #ifdef CONFIG_SLUB_CPU_PARTIAL
5615 	nr_partial = s->cpu_partial;
5616 #endif
5617 
5618 	return sysfs_emit(buf, "%u\n", nr_partial);
5619 }
5620 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)5621 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5622 				 size_t length)
5623 {
5624 	unsigned int objects;
5625 	int err;
5626 
5627 	err = kstrtouint(buf, 10, &objects);
5628 	if (err)
5629 		return err;
5630 	if (objects && !kmem_cache_has_cpu_partial(s))
5631 		return -EINVAL;
5632 
5633 	slub_set_cpu_partial(s, objects);
5634 	flush_all(s);
5635 	return length;
5636 }
5637 SLAB_ATTR(cpu_partial);
5638 
ctor_show(struct kmem_cache * s,char * buf)5639 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5640 {
5641 	if (!s->ctor)
5642 		return 0;
5643 	return sysfs_emit(buf, "%pS\n", s->ctor);
5644 }
5645 SLAB_ATTR_RO(ctor);
5646 
aliases_show(struct kmem_cache * s,char * buf)5647 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5648 {
5649 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5650 }
5651 SLAB_ATTR_RO(aliases);
5652 
partial_show(struct kmem_cache * s,char * buf)5653 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5654 {
5655 	return show_slab_objects(s, buf, SO_PARTIAL);
5656 }
5657 SLAB_ATTR_RO(partial);
5658 
cpu_slabs_show(struct kmem_cache * s,char * buf)5659 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5660 {
5661 	return show_slab_objects(s, buf, SO_CPU);
5662 }
5663 SLAB_ATTR_RO(cpu_slabs);
5664 
objects_partial_show(struct kmem_cache * s,char * buf)5665 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5666 {
5667 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5668 }
5669 SLAB_ATTR_RO(objects_partial);
5670 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5671 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5672 {
5673 	int objects = 0;
5674 	int slabs = 0;
5675 	int cpu __maybe_unused;
5676 	int len = 0;
5677 
5678 #ifdef CONFIG_SLUB_CPU_PARTIAL
5679 	for_each_online_cpu(cpu) {
5680 		struct slab *slab;
5681 
5682 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5683 
5684 		if (slab)
5685 			slabs += slab->slabs;
5686 	}
5687 #endif
5688 
5689 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5690 	objects = (slabs * oo_objects(s->oo)) / 2;
5691 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5692 
5693 #ifdef CONFIG_SLUB_CPU_PARTIAL
5694 	for_each_online_cpu(cpu) {
5695 		struct slab *slab;
5696 
5697 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5698 		if (slab) {
5699 			slabs = READ_ONCE(slab->slabs);
5700 			objects = (slabs * oo_objects(s->oo)) / 2;
5701 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5702 					     cpu, objects, slabs);
5703 		}
5704 	}
5705 #endif
5706 	len += sysfs_emit_at(buf, len, "\n");
5707 
5708 	return len;
5709 }
5710 SLAB_ATTR_RO(slabs_cpu_partial);
5711 
reclaim_account_show(struct kmem_cache * s,char * buf)5712 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5713 {
5714 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5715 }
5716 SLAB_ATTR_RO(reclaim_account);
5717 
hwcache_align_show(struct kmem_cache * s,char * buf)5718 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5719 {
5720 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5721 }
5722 SLAB_ATTR_RO(hwcache_align);
5723 
5724 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5725 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5726 {
5727 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5728 }
5729 SLAB_ATTR_RO(cache_dma);
5730 #endif
5731 
5732 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)5733 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5734 {
5735 	return sysfs_emit(buf, "%u\n", s->usersize);
5736 }
5737 SLAB_ATTR_RO(usersize);
5738 #endif
5739 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5740 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5741 {
5742 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5743 }
5744 SLAB_ATTR_RO(destroy_by_rcu);
5745 
5746 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5747 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5748 {
5749 	return show_slab_objects(s, buf, SO_ALL);
5750 }
5751 SLAB_ATTR_RO(slabs);
5752 
total_objects_show(struct kmem_cache * s,char * buf)5753 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5754 {
5755 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5756 }
5757 SLAB_ATTR_RO(total_objects);
5758 
objects_show(struct kmem_cache * s,char * buf)5759 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5760 {
5761 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5762 }
5763 SLAB_ATTR_RO(objects);
5764 
sanity_checks_show(struct kmem_cache * s,char * buf)5765 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5766 {
5767 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5768 }
5769 SLAB_ATTR_RO(sanity_checks);
5770 
trace_show(struct kmem_cache * s,char * buf)5771 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5772 {
5773 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5774 }
5775 SLAB_ATTR_RO(trace);
5776 
red_zone_show(struct kmem_cache * s,char * buf)5777 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5778 {
5779 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5780 }
5781 
5782 SLAB_ATTR_RO(red_zone);
5783 
poison_show(struct kmem_cache * s,char * buf)5784 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5785 {
5786 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5787 }
5788 
5789 SLAB_ATTR_RO(poison);
5790 
store_user_show(struct kmem_cache * s,char * buf)5791 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5792 {
5793 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5794 }
5795 
5796 SLAB_ATTR_RO(store_user);
5797 
validate_show(struct kmem_cache * s,char * buf)5798 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5799 {
5800 	return 0;
5801 }
5802 
validate_store(struct kmem_cache * s,const char * buf,size_t length)5803 static ssize_t validate_store(struct kmem_cache *s,
5804 			const char *buf, size_t length)
5805 {
5806 	int ret = -EINVAL;
5807 
5808 	if (buf[0] == '1' && kmem_cache_debug(s)) {
5809 		ret = validate_slab_cache(s);
5810 		if (ret >= 0)
5811 			ret = length;
5812 	}
5813 	return ret;
5814 }
5815 SLAB_ATTR(validate);
5816 
5817 #endif /* CONFIG_SLUB_DEBUG */
5818 
5819 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5820 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5821 {
5822 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5823 }
5824 
failslab_store(struct kmem_cache * s,const char * buf,size_t length)5825 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5826 				size_t length)
5827 {
5828 	if (s->refcount > 1)
5829 		return -EINVAL;
5830 
5831 	if (buf[0] == '1')
5832 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5833 	else
5834 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5835 
5836 	return length;
5837 }
5838 SLAB_ATTR(failslab);
5839 #endif
5840 
shrink_show(struct kmem_cache * s,char * buf)5841 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5842 {
5843 	return 0;
5844 }
5845 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5846 static ssize_t shrink_store(struct kmem_cache *s,
5847 			const char *buf, size_t length)
5848 {
5849 	if (buf[0] == '1')
5850 		kmem_cache_shrink(s);
5851 	else
5852 		return -EINVAL;
5853 	return length;
5854 }
5855 SLAB_ATTR(shrink);
5856 
5857 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5858 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5859 {
5860 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5861 }
5862 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5863 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5864 				const char *buf, size_t length)
5865 {
5866 	unsigned int ratio;
5867 	int err;
5868 
5869 	err = kstrtouint(buf, 10, &ratio);
5870 	if (err)
5871 		return err;
5872 	if (ratio > 100)
5873 		return -ERANGE;
5874 
5875 	s->remote_node_defrag_ratio = ratio * 10;
5876 
5877 	return length;
5878 }
5879 SLAB_ATTR(remote_node_defrag_ratio);
5880 #endif
5881 
5882 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5883 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5884 {
5885 	unsigned long sum  = 0;
5886 	int cpu;
5887 	int len = 0;
5888 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5889 
5890 	if (!data)
5891 		return -ENOMEM;
5892 
5893 	for_each_online_cpu(cpu) {
5894 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5895 
5896 		data[cpu] = x;
5897 		sum += x;
5898 	}
5899 
5900 	len += sysfs_emit_at(buf, len, "%lu", sum);
5901 
5902 #ifdef CONFIG_SMP
5903 	for_each_online_cpu(cpu) {
5904 		if (data[cpu])
5905 			len += sysfs_emit_at(buf, len, " C%d=%u",
5906 					     cpu, data[cpu]);
5907 	}
5908 #endif
5909 	kfree(data);
5910 	len += sysfs_emit_at(buf, len, "\n");
5911 
5912 	return len;
5913 }
5914 
clear_stat(struct kmem_cache * s,enum stat_item si)5915 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5916 {
5917 	int cpu;
5918 
5919 	for_each_online_cpu(cpu)
5920 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5921 }
5922 
5923 #define STAT_ATTR(si, text) 					\
5924 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5925 {								\
5926 	return show_stat(s, buf, si);				\
5927 }								\
5928 static ssize_t text##_store(struct kmem_cache *s,		\
5929 				const char *buf, size_t length)	\
5930 {								\
5931 	if (buf[0] != '0')					\
5932 		return -EINVAL;					\
5933 	clear_stat(s, si);					\
5934 	return length;						\
5935 }								\
5936 SLAB_ATTR(text);						\
5937 
5938 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5939 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5940 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5941 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5942 STAT_ATTR(FREE_FROZEN, free_frozen);
5943 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5944 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5945 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5946 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5947 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5948 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5949 STAT_ATTR(FREE_SLAB, free_slab);
5950 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5951 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5952 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5953 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5954 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5955 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5956 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5957 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5958 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5959 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5960 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5961 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5962 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5963 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5964 #endif	/* CONFIG_SLUB_STATS */
5965 
5966 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)5967 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5968 {
5969 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5970 }
5971 
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)5972 static ssize_t skip_kfence_store(struct kmem_cache *s,
5973 			const char *buf, size_t length)
5974 {
5975 	int ret = length;
5976 
5977 	if (buf[0] == '0')
5978 		s->flags &= ~SLAB_SKIP_KFENCE;
5979 	else if (buf[0] == '1')
5980 		s->flags |= SLAB_SKIP_KFENCE;
5981 	else
5982 		ret = -EINVAL;
5983 
5984 	return ret;
5985 }
5986 SLAB_ATTR(skip_kfence);
5987 #endif
5988 
5989 static struct attribute *slab_attrs[] = {
5990 	&slab_size_attr.attr,
5991 	&object_size_attr.attr,
5992 	&objs_per_slab_attr.attr,
5993 	&order_attr.attr,
5994 	&min_partial_attr.attr,
5995 	&cpu_partial_attr.attr,
5996 	&objects_partial_attr.attr,
5997 	&partial_attr.attr,
5998 	&cpu_slabs_attr.attr,
5999 	&ctor_attr.attr,
6000 	&aliases_attr.attr,
6001 	&align_attr.attr,
6002 	&hwcache_align_attr.attr,
6003 	&reclaim_account_attr.attr,
6004 	&destroy_by_rcu_attr.attr,
6005 	&shrink_attr.attr,
6006 	&slabs_cpu_partial_attr.attr,
6007 #ifdef CONFIG_SLUB_DEBUG
6008 	&total_objects_attr.attr,
6009 	&objects_attr.attr,
6010 	&slabs_attr.attr,
6011 	&sanity_checks_attr.attr,
6012 	&trace_attr.attr,
6013 	&red_zone_attr.attr,
6014 	&poison_attr.attr,
6015 	&store_user_attr.attr,
6016 	&validate_attr.attr,
6017 #endif
6018 #ifdef CONFIG_ZONE_DMA
6019 	&cache_dma_attr.attr,
6020 #endif
6021 #ifdef CONFIG_NUMA
6022 	&remote_node_defrag_ratio_attr.attr,
6023 #endif
6024 #ifdef CONFIG_SLUB_STATS
6025 	&alloc_fastpath_attr.attr,
6026 	&alloc_slowpath_attr.attr,
6027 	&free_fastpath_attr.attr,
6028 	&free_slowpath_attr.attr,
6029 	&free_frozen_attr.attr,
6030 	&free_add_partial_attr.attr,
6031 	&free_remove_partial_attr.attr,
6032 	&alloc_from_partial_attr.attr,
6033 	&alloc_slab_attr.attr,
6034 	&alloc_refill_attr.attr,
6035 	&alloc_node_mismatch_attr.attr,
6036 	&free_slab_attr.attr,
6037 	&cpuslab_flush_attr.attr,
6038 	&deactivate_full_attr.attr,
6039 	&deactivate_empty_attr.attr,
6040 	&deactivate_to_head_attr.attr,
6041 	&deactivate_to_tail_attr.attr,
6042 	&deactivate_remote_frees_attr.attr,
6043 	&deactivate_bypass_attr.attr,
6044 	&order_fallback_attr.attr,
6045 	&cmpxchg_double_fail_attr.attr,
6046 	&cmpxchg_double_cpu_fail_attr.attr,
6047 	&cpu_partial_alloc_attr.attr,
6048 	&cpu_partial_free_attr.attr,
6049 	&cpu_partial_node_attr.attr,
6050 	&cpu_partial_drain_attr.attr,
6051 #endif
6052 #ifdef CONFIG_FAILSLAB
6053 	&failslab_attr.attr,
6054 #endif
6055 #ifdef CONFIG_HARDENED_USERCOPY
6056 	&usersize_attr.attr,
6057 #endif
6058 #ifdef CONFIG_KFENCE
6059 	&skip_kfence_attr.attr,
6060 #endif
6061 
6062 	NULL
6063 };
6064 
6065 static const struct attribute_group slab_attr_group = {
6066 	.attrs = slab_attrs,
6067 };
6068 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)6069 static ssize_t slab_attr_show(struct kobject *kobj,
6070 				struct attribute *attr,
6071 				char *buf)
6072 {
6073 	struct slab_attribute *attribute;
6074 	struct kmem_cache *s;
6075 
6076 	attribute = to_slab_attr(attr);
6077 	s = to_slab(kobj);
6078 
6079 	if (!attribute->show)
6080 		return -EIO;
6081 
6082 	return attribute->show(s, buf);
6083 }
6084 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)6085 static ssize_t slab_attr_store(struct kobject *kobj,
6086 				struct attribute *attr,
6087 				const char *buf, size_t len)
6088 {
6089 	struct slab_attribute *attribute;
6090 	struct kmem_cache *s;
6091 
6092 	attribute = to_slab_attr(attr);
6093 	s = to_slab(kobj);
6094 
6095 	if (!attribute->store)
6096 		return -EIO;
6097 
6098 	return attribute->store(s, buf, len);
6099 }
6100 
kmem_cache_release(struct kobject * k)6101 static void kmem_cache_release(struct kobject *k)
6102 {
6103 	slab_kmem_cache_release(to_slab(k));
6104 }
6105 
6106 static const struct sysfs_ops slab_sysfs_ops = {
6107 	.show = slab_attr_show,
6108 	.store = slab_attr_store,
6109 };
6110 
6111 static const struct kobj_type slab_ktype = {
6112 	.sysfs_ops = &slab_sysfs_ops,
6113 	.release = kmem_cache_release,
6114 };
6115 
6116 static struct kset *slab_kset;
6117 
cache_kset(struct kmem_cache * s)6118 static inline struct kset *cache_kset(struct kmem_cache *s)
6119 {
6120 	return slab_kset;
6121 }
6122 
6123 #define ID_STR_LENGTH 32
6124 
6125 /* Create a unique string id for a slab cache:
6126  *
6127  * Format	:[flags-]size
6128  */
create_unique_id(struct kmem_cache * s)6129 static char *create_unique_id(struct kmem_cache *s)
6130 {
6131 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6132 	char *p = name;
6133 
6134 	if (!name)
6135 		return ERR_PTR(-ENOMEM);
6136 
6137 	*p++ = ':';
6138 	/*
6139 	 * First flags affecting slabcache operations. We will only
6140 	 * get here for aliasable slabs so we do not need to support
6141 	 * too many flags. The flags here must cover all flags that
6142 	 * are matched during merging to guarantee that the id is
6143 	 * unique.
6144 	 */
6145 	if (s->flags & SLAB_CACHE_DMA)
6146 		*p++ = 'd';
6147 	if (s->flags & SLAB_CACHE_DMA32)
6148 		*p++ = 'D';
6149 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6150 		*p++ = 'a';
6151 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6152 		*p++ = 'F';
6153 	if (s->flags & SLAB_ACCOUNT)
6154 		*p++ = 'A';
6155 	if (p != name + 1)
6156 		*p++ = '-';
6157 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6158 
6159 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6160 		kfree(name);
6161 		return ERR_PTR(-EINVAL);
6162 	}
6163 	kmsan_unpoison_memory(name, p - name);
6164 	return name;
6165 }
6166 
sysfs_slab_add(struct kmem_cache * s)6167 static int sysfs_slab_add(struct kmem_cache *s)
6168 {
6169 	int err;
6170 	const char *name;
6171 	struct kset *kset = cache_kset(s);
6172 	int unmergeable = slab_unmergeable(s);
6173 
6174 	if (!unmergeable && disable_higher_order_debug &&
6175 			(slub_debug & DEBUG_METADATA_FLAGS))
6176 		unmergeable = 1;
6177 
6178 	if (unmergeable) {
6179 		/*
6180 		 * Slabcache can never be merged so we can use the name proper.
6181 		 * This is typically the case for debug situations. In that
6182 		 * case we can catch duplicate names easily.
6183 		 */
6184 		sysfs_remove_link(&slab_kset->kobj, s->name);
6185 		name = s->name;
6186 	} else {
6187 		/*
6188 		 * Create a unique name for the slab as a target
6189 		 * for the symlinks.
6190 		 */
6191 		name = create_unique_id(s);
6192 		if (IS_ERR(name))
6193 			return PTR_ERR(name);
6194 	}
6195 
6196 	s->kobj.kset = kset;
6197 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6198 	if (err)
6199 		goto out;
6200 
6201 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6202 	if (err)
6203 		goto out_del_kobj;
6204 
6205 	if (!unmergeable) {
6206 		/* Setup first alias */
6207 		sysfs_slab_alias(s, s->name);
6208 	}
6209 out:
6210 	if (!unmergeable)
6211 		kfree(name);
6212 	return err;
6213 out_del_kobj:
6214 	kobject_del(&s->kobj);
6215 	goto out;
6216 }
6217 
sysfs_slab_unlink(struct kmem_cache * s)6218 void sysfs_slab_unlink(struct kmem_cache *s)
6219 {
6220 	if (slab_state >= FULL)
6221 		kobject_del(&s->kobj);
6222 }
6223 
sysfs_slab_release(struct kmem_cache * s)6224 void sysfs_slab_release(struct kmem_cache *s)
6225 {
6226 	if (slab_state >= FULL)
6227 		kobject_put(&s->kobj);
6228 }
6229 
6230 /*
6231  * Need to buffer aliases during bootup until sysfs becomes
6232  * available lest we lose that information.
6233  */
6234 struct saved_alias {
6235 	struct kmem_cache *s;
6236 	const char *name;
6237 	struct saved_alias *next;
6238 };
6239 
6240 static struct saved_alias *alias_list;
6241 
sysfs_slab_alias(struct kmem_cache * s,const char * name)6242 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6243 {
6244 	struct saved_alias *al;
6245 
6246 	if (slab_state == FULL) {
6247 		/*
6248 		 * If we have a leftover link then remove it.
6249 		 */
6250 		sysfs_remove_link(&slab_kset->kobj, name);
6251 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6252 	}
6253 
6254 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6255 	if (!al)
6256 		return -ENOMEM;
6257 
6258 	al->s = s;
6259 	al->name = name;
6260 	al->next = alias_list;
6261 	alias_list = al;
6262 	kmsan_unpoison_memory(al, sizeof(*al));
6263 	return 0;
6264 }
6265 
slab_sysfs_init(void)6266 static int __init slab_sysfs_init(void)
6267 {
6268 	struct kmem_cache *s;
6269 	int err;
6270 
6271 	mutex_lock(&slab_mutex);
6272 
6273 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6274 	if (!slab_kset) {
6275 		mutex_unlock(&slab_mutex);
6276 		pr_err("Cannot register slab subsystem.\n");
6277 		return -ENOMEM;
6278 	}
6279 
6280 	slab_state = FULL;
6281 
6282 	list_for_each_entry(s, &slab_caches, list) {
6283 		err = sysfs_slab_add(s);
6284 		if (err)
6285 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6286 			       s->name);
6287 	}
6288 
6289 	while (alias_list) {
6290 		struct saved_alias *al = alias_list;
6291 
6292 		alias_list = alias_list->next;
6293 		err = sysfs_slab_alias(al->s, al->name);
6294 		if (err)
6295 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6296 			       al->name);
6297 		kfree(al);
6298 	}
6299 
6300 	mutex_unlock(&slab_mutex);
6301 	return 0;
6302 }
6303 late_initcall(slab_sysfs_init);
6304 #endif /* SLAB_SUPPORTS_SYSFS */
6305 
6306 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)6307 static int slab_debugfs_show(struct seq_file *seq, void *v)
6308 {
6309 	struct loc_track *t = seq->private;
6310 	struct location *l;
6311 	unsigned long idx;
6312 
6313 	idx = (unsigned long) t->idx;
6314 	if (idx < t->count) {
6315 		l = &t->loc[idx];
6316 
6317 		seq_printf(seq, "%7ld ", l->count);
6318 
6319 		if (l->addr)
6320 			seq_printf(seq, "%pS", (void *)l->addr);
6321 		else
6322 			seq_puts(seq, "<not-available>");
6323 
6324 		if (l->waste)
6325 			seq_printf(seq, " waste=%lu/%lu",
6326 				l->count * l->waste, l->waste);
6327 
6328 		if (l->sum_time != l->min_time) {
6329 			seq_printf(seq, " age=%ld/%llu/%ld",
6330 				l->min_time, div_u64(l->sum_time, l->count),
6331 				l->max_time);
6332 		} else
6333 			seq_printf(seq, " age=%ld", l->min_time);
6334 
6335 		if (l->min_pid != l->max_pid)
6336 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6337 		else
6338 			seq_printf(seq, " pid=%ld",
6339 				l->min_pid);
6340 
6341 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6342 			seq_printf(seq, " cpus=%*pbl",
6343 				 cpumask_pr_args(to_cpumask(l->cpus)));
6344 
6345 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6346 			seq_printf(seq, " nodes=%*pbl",
6347 				 nodemask_pr_args(&l->nodes));
6348 
6349 #ifdef CONFIG_STACKDEPOT
6350 		{
6351 			depot_stack_handle_t handle;
6352 			unsigned long *entries;
6353 			unsigned int nr_entries, j;
6354 
6355 			handle = READ_ONCE(l->handle);
6356 			if (handle) {
6357 				nr_entries = stack_depot_fetch(handle, &entries);
6358 				seq_puts(seq, "\n");
6359 				for (j = 0; j < nr_entries; j++)
6360 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6361 			}
6362 		}
6363 #endif
6364 		seq_puts(seq, "\n");
6365 	}
6366 
6367 	if (!idx && !t->count)
6368 		seq_puts(seq, "No data\n");
6369 
6370 	return 0;
6371 }
6372 
slab_debugfs_stop(struct seq_file * seq,void * v)6373 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6374 {
6375 }
6376 
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)6377 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6378 {
6379 	struct loc_track *t = seq->private;
6380 
6381 	t->idx = ++(*ppos);
6382 	if (*ppos <= t->count)
6383 		return ppos;
6384 
6385 	return NULL;
6386 }
6387 
cmp_loc_by_count(const void * a,const void * b,const void * data)6388 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6389 {
6390 	struct location *loc1 = (struct location *)a;
6391 	struct location *loc2 = (struct location *)b;
6392 
6393 	if (loc1->count > loc2->count)
6394 		return -1;
6395 	else
6396 		return 1;
6397 }
6398 
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)6399 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6400 {
6401 	struct loc_track *t = seq->private;
6402 
6403 	t->idx = *ppos;
6404 	return ppos;
6405 }
6406 
6407 static const struct seq_operations slab_debugfs_sops = {
6408 	.start  = slab_debugfs_start,
6409 	.next   = slab_debugfs_next,
6410 	.stop   = slab_debugfs_stop,
6411 	.show   = slab_debugfs_show,
6412 };
6413 
slab_debug_trace_open(struct inode * inode,struct file * filep)6414 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6415 {
6416 
6417 	struct kmem_cache_node *n;
6418 	enum track_item alloc;
6419 	int node;
6420 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6421 						sizeof(struct loc_track));
6422 	struct kmem_cache *s = file_inode(filep)->i_private;
6423 	unsigned long *obj_map;
6424 
6425 	if (!t)
6426 		return -ENOMEM;
6427 
6428 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6429 	if (!obj_map) {
6430 		seq_release_private(inode, filep);
6431 		return -ENOMEM;
6432 	}
6433 
6434 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6435 		alloc = TRACK_ALLOC;
6436 	else
6437 		alloc = TRACK_FREE;
6438 
6439 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6440 		bitmap_free(obj_map);
6441 		seq_release_private(inode, filep);
6442 		return -ENOMEM;
6443 	}
6444 
6445 	for_each_kmem_cache_node(s, node, n) {
6446 		unsigned long flags;
6447 		struct slab *slab;
6448 
6449 		if (!node_nr_slabs(n))
6450 			continue;
6451 
6452 		spin_lock_irqsave(&n->list_lock, flags);
6453 		list_for_each_entry(slab, &n->partial, slab_list)
6454 			process_slab(t, s, slab, alloc, obj_map);
6455 		list_for_each_entry(slab, &n->full, slab_list)
6456 			process_slab(t, s, slab, alloc, obj_map);
6457 		spin_unlock_irqrestore(&n->list_lock, flags);
6458 	}
6459 
6460 	/* Sort locations by count */
6461 	sort_r(t->loc, t->count, sizeof(struct location),
6462 		cmp_loc_by_count, NULL, NULL);
6463 
6464 	bitmap_free(obj_map);
6465 	return 0;
6466 }
6467 
slab_debug_trace_release(struct inode * inode,struct file * file)6468 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6469 {
6470 	struct seq_file *seq = file->private_data;
6471 	struct loc_track *t = seq->private;
6472 
6473 	free_loc_track(t);
6474 	return seq_release_private(inode, file);
6475 }
6476 
6477 static const struct file_operations slab_debugfs_fops = {
6478 	.open    = slab_debug_trace_open,
6479 	.read    = seq_read,
6480 	.llseek  = seq_lseek,
6481 	.release = slab_debug_trace_release,
6482 };
6483 
debugfs_slab_add(struct kmem_cache * s)6484 static void debugfs_slab_add(struct kmem_cache *s)
6485 {
6486 	struct dentry *slab_cache_dir;
6487 
6488 	if (unlikely(!slab_debugfs_root))
6489 		return;
6490 
6491 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6492 
6493 	debugfs_create_file("alloc_traces", 0400,
6494 		slab_cache_dir, s, &slab_debugfs_fops);
6495 
6496 	debugfs_create_file("free_traces", 0400,
6497 		slab_cache_dir, s, &slab_debugfs_fops);
6498 }
6499 
debugfs_slab_release(struct kmem_cache * s)6500 void debugfs_slab_release(struct kmem_cache *s)
6501 {
6502 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6503 }
6504 
slab_debugfs_init(void)6505 static int __init slab_debugfs_init(void)
6506 {
6507 	struct kmem_cache *s;
6508 
6509 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6510 
6511 	list_for_each_entry(s, &slab_caches, list)
6512 		if (s->flags & SLAB_STORE_USER)
6513 			debugfs_slab_add(s);
6514 
6515 	return 0;
6516 
6517 }
6518 __initcall(slab_debugfs_init);
6519 #endif
6520 /*
6521  * The /proc/slabinfo ABI
6522  */
6523 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)6524 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6525 {
6526 	unsigned long nr_slabs = 0;
6527 	unsigned long nr_objs = 0;
6528 	unsigned long nr_free = 0;
6529 	int node;
6530 	struct kmem_cache_node *n;
6531 
6532 	for_each_kmem_cache_node(s, node, n) {
6533 		nr_slabs += node_nr_slabs(n);
6534 		nr_objs += node_nr_objs(n);
6535 		nr_free += count_partial(n, count_free);
6536 	}
6537 
6538 	sinfo->active_objs = nr_objs - nr_free;
6539 	sinfo->num_objs = nr_objs;
6540 	sinfo->active_slabs = nr_slabs;
6541 	sinfo->num_slabs = nr_slabs;
6542 	sinfo->objects_per_slab = oo_objects(s->oo);
6543 	sinfo->cache_order = oo_order(s->oo);
6544 }
6545 EXPORT_SYMBOL_NS_GPL(get_slabinfo, MINIDUMP);
6546 
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)6547 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6548 {
6549 }
6550 
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)6551 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6552 		       size_t count, loff_t *ppos)
6553 {
6554 	return -EIO;
6555 }
6556 #endif /* CONFIG_SLUB_DEBUG */
6557