1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/android_kabi.h>
26 #include <asm/page.h>
27
28 /* Free memory management - zoned buddy allocator. */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_ORDER 10
31 #else
32 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
35
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37
38 #define NR_PAGE_ORDERS (MAX_ORDER + 1)
39
40 /*
41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42 * costly to service. That is between allocation orders which should
43 * coalesce naturally under reasonable reclaim pressure and those which
44 * will not.
45 */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47
48 enum migratetype {
49 MIGRATE_UNMOVABLE,
50 MIGRATE_MOVABLE,
51 MIGRATE_RECLAIMABLE,
52 /* the number of types that have fallbacks */
53 MIGRATE_FALLBACKS,
54 #ifdef CONFIG_CMA
55 /*
56 * MIGRATE_CMA migration type is designed to mimic the way
57 * ZONE_MOVABLE works. Only movable pages can be allocated
58 * from MIGRATE_CMA pageblocks and page allocator never
59 * implicitly change migration type of MIGRATE_CMA pageblock.
60 *
61 * The way to use it is to change migratetype of a range of
62 * pageblocks to MIGRATE_CMA which can be done by
63 * __free_pageblock_cma() function.
64 */
65 MIGRATE_CMA = MIGRATE_FALLBACKS,
66 MIGRATE_PCPTYPES,
67 #else
68 /* the number of types on the pcp lists */
69 MIGRATE_PCPTYPES = MIGRATE_FALLBACKS,
70 #endif
71 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
72 #ifdef CONFIG_MEMORY_ISOLATION
73 MIGRATE_ISOLATE, /* can't allocate from here */
74 #endif
75 MIGRATE_TYPES
76 };
77
78 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
79 extern const char * const migratetype_names[MIGRATE_TYPES];
80
81 #ifdef CONFIG_CMA
82 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
83 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
84 # define get_cma_migrate_type() MIGRATE_CMA
85 #else
86 # define is_migrate_cma(migratetype) false
87 # define is_migrate_cma_page(_page) false
88 # define get_cma_migrate_type() MIGRATE_MOVABLE
89 #endif
90
is_migrate_movable(int mt)91 static inline bool is_migrate_movable(int mt)
92 {
93 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
94 }
95
96 /*
97 * Check whether a migratetype can be merged with another migratetype.
98 *
99 * It is only mergeable when it can fall back to other migratetypes for
100 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
101 */
migratetype_is_mergeable(int mt)102 static inline bool migratetype_is_mergeable(int mt)
103 {
104 return mt < MIGRATE_FALLBACKS;
105 }
106
107 #define for_each_migratetype_order(order, type) \
108 for (order = 0; order < NR_PAGE_ORDERS; order++) \
109 for (type = 0; type < MIGRATE_TYPES; type++)
110
111 extern int page_group_by_mobility_disabled;
112
113 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
114
115 #define get_pageblock_migratetype(page) \
116 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
117
118 #define folio_migratetype(folio) \
119 get_pfnblock_flags_mask(&folio->page, folio_pfn(folio), \
120 MIGRATETYPE_MASK)
121 struct free_area {
122 struct list_head free_list[MIGRATE_TYPES];
123 unsigned long nr_free;
124 };
125
126 struct pglist_data;
127
128 #ifdef CONFIG_NUMA
129 enum numa_stat_item {
130 NUMA_HIT, /* allocated in intended node */
131 NUMA_MISS, /* allocated in non intended node */
132 NUMA_FOREIGN, /* was intended here, hit elsewhere */
133 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
134 NUMA_LOCAL, /* allocation from local node */
135 NUMA_OTHER, /* allocation from other node */
136 NR_VM_NUMA_EVENT_ITEMS
137 };
138 #else
139 #define NR_VM_NUMA_EVENT_ITEMS 0
140 #endif
141
142 enum zone_stat_item {
143 /* First 128 byte cacheline (assuming 64 bit words) */
144 NR_FREE_PAGES,
145 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
146 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
147 NR_ZONE_ACTIVE_ANON,
148 NR_ZONE_INACTIVE_FILE,
149 NR_ZONE_ACTIVE_FILE,
150 NR_ZONE_UNEVICTABLE,
151 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
152 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
153 /* Second 128 byte cacheline */
154 NR_BOUNCE,
155 NR_ZSPAGES, /* allocated in zsmalloc */
156 NR_FREE_CMA_PAGES,
157 #ifdef CONFIG_UNACCEPTED_MEMORY
158 NR_UNACCEPTED,
159 #endif
160 NR_VM_ZONE_STAT_ITEMS };
161
162 enum node_stat_item {
163 NR_LRU_BASE,
164 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
165 NR_ACTIVE_ANON, /* " " " " " */
166 NR_INACTIVE_FILE, /* " " " " " */
167 NR_ACTIVE_FILE, /* " " " " " */
168 NR_UNEVICTABLE, /* " " " " " */
169 NR_SLAB_RECLAIMABLE_B,
170 NR_SLAB_UNRECLAIMABLE_B,
171 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
172 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
173 WORKINGSET_NODES,
174 WORKINGSET_REFAULT_BASE,
175 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
176 WORKINGSET_REFAULT_FILE,
177 WORKINGSET_ACTIVATE_BASE,
178 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
179 WORKINGSET_ACTIVATE_FILE,
180 WORKINGSET_RESTORE_BASE,
181 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
182 WORKINGSET_RESTORE_FILE,
183 WORKINGSET_NODERECLAIM,
184 NR_ANON_MAPPED, /* Mapped anonymous pages */
185 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
186 only modified from process context */
187 NR_FILE_PAGES,
188 NR_FILE_DIRTY,
189 NR_WRITEBACK,
190 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
191 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
192 NR_SHMEM_THPS,
193 NR_SHMEM_PMDMAPPED,
194 NR_FILE_THPS,
195 NR_FILE_PMDMAPPED,
196 NR_ANON_THPS,
197 NR_VMSCAN_WRITE,
198 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
199 NR_DIRTIED, /* page dirtyings since bootup */
200 NR_WRITTEN, /* page writings since bootup */
201 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */
202 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
203 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
204 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
205 NR_KERNEL_STACK_KB, /* measured in KiB */
206 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
207 NR_KERNEL_SCS_KB, /* measured in KiB */
208 #endif
209 NR_PAGETABLE, /* used for pagetables */
210 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
211 #ifdef CONFIG_SWAP
212 NR_SWAPCACHE,
213 #endif
214 #ifdef CONFIG_NUMA_BALANCING
215 PGPROMOTE_SUCCESS, /* promote successfully */
216 PGPROMOTE_CANDIDATE, /* candidate pages to promote */
217 #endif
218 NR_VM_NODE_STAT_ITEMS
219 };
220
221 /*
222 * Returns true if the item should be printed in THPs (/proc/vmstat
223 * currently prints number of anon, file and shmem THPs. But the item
224 * is charged in pages).
225 */
vmstat_item_print_in_thp(enum node_stat_item item)226 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
227 {
228 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
229 return false;
230
231 return item == NR_ANON_THPS ||
232 item == NR_FILE_THPS ||
233 item == NR_SHMEM_THPS ||
234 item == NR_SHMEM_PMDMAPPED ||
235 item == NR_FILE_PMDMAPPED;
236 }
237
238 /*
239 * Returns true if the value is measured in bytes (most vmstat values are
240 * measured in pages). This defines the API part, the internal representation
241 * might be different.
242 */
vmstat_item_in_bytes(int idx)243 static __always_inline bool vmstat_item_in_bytes(int idx)
244 {
245 /*
246 * Global and per-node slab counters track slab pages.
247 * It's expected that changes are multiples of PAGE_SIZE.
248 * Internally values are stored in pages.
249 *
250 * Per-memcg and per-lruvec counters track memory, consumed
251 * by individual slab objects. These counters are actually
252 * byte-precise.
253 */
254 return (idx == NR_SLAB_RECLAIMABLE_B ||
255 idx == NR_SLAB_UNRECLAIMABLE_B);
256 }
257
258 /*
259 * We do arithmetic on the LRU lists in various places in the code,
260 * so it is important to keep the active lists LRU_ACTIVE higher in
261 * the array than the corresponding inactive lists, and to keep
262 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
263 *
264 * This has to be kept in sync with the statistics in zone_stat_item
265 * above and the descriptions in vmstat_text in mm/vmstat.c
266 */
267 #define LRU_BASE 0
268 #define LRU_ACTIVE 1
269 #define LRU_FILE 2
270
271 enum lru_list {
272 LRU_INACTIVE_ANON = LRU_BASE,
273 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
274 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
275 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
276 LRU_UNEVICTABLE,
277 NR_LRU_LISTS
278 };
279
280 enum vmscan_throttle_state {
281 VMSCAN_THROTTLE_WRITEBACK,
282 VMSCAN_THROTTLE_ISOLATED,
283 VMSCAN_THROTTLE_NOPROGRESS,
284 VMSCAN_THROTTLE_CONGESTED,
285 NR_VMSCAN_THROTTLE,
286 };
287
288 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
289
290 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
291
is_file_lru(enum lru_list lru)292 static inline bool is_file_lru(enum lru_list lru)
293 {
294 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
295 }
296
is_active_lru(enum lru_list lru)297 static inline bool is_active_lru(enum lru_list lru)
298 {
299 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
300 }
301
302 #define WORKINGSET_ANON 0
303 #define WORKINGSET_FILE 1
304 #define ANON_AND_FILE 2
305
306 enum lruvec_flags {
307 /*
308 * An lruvec has many dirty pages backed by a congested BDI:
309 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
310 * It can be cleared by cgroup reclaim or kswapd.
311 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
312 * It can only be cleared by kswapd.
313 *
314 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
315 * reclaim, but not vice versa. This only applies to the root cgroup.
316 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
317 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
318 * by kswapd).
319 */
320 LRUVEC_CGROUP_CONGESTED,
321 LRUVEC_NODE_CONGESTED,
322 };
323
324 #endif /* !__GENERATING_BOUNDS_H */
325
326 /*
327 * Evictable pages are divided into multiple generations. The youngest and the
328 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
329 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
330 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
331 * corresponding generation. The gen counter in folio->flags stores gen+1 while
332 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
333 *
334 * A page is added to the youngest generation on faulting. The aging needs to
335 * check the accessed bit at least twice before handing this page over to the
336 * eviction. The first check takes care of the accessed bit set on the initial
337 * fault; the second check makes sure this page hasn't been used since then.
338 * This process, AKA second chance, requires a minimum of two generations,
339 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
340 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
341 * rest of generations, if they exist, are considered inactive. See
342 * lru_gen_is_active().
343 *
344 * PG_active is always cleared while a page is on one of lrugen->folios[] so
345 * that the aging needs not to worry about it. And it's set again when a page
346 * considered active is isolated for non-reclaiming purposes, e.g., migration.
347 * See lru_gen_add_folio() and lru_gen_del_folio().
348 *
349 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
350 * number of categories of the active/inactive LRU when keeping track of
351 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
352 * in folio->flags.
353 */
354 #define MIN_NR_GENS 2U
355 #define MAX_NR_GENS 4U
356
357 /*
358 * Each generation is divided into multiple tiers. A page accessed N times
359 * through file descriptors is in tier order_base_2(N). A page in the first tier
360 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
361 * tables or read ahead. A page in any other tier (N>1) is marked by
362 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
363 * supported without using additional bits in folio->flags.
364 *
365 * In contrast to moving across generations which requires the LRU lock, moving
366 * across tiers only involves atomic operations on folio->flags and therefore
367 * has a negligible cost in the buffered access path. In the eviction path,
368 * comparisons of refaulted/(evicted+protected) from the first tier and the
369 * rest infer whether pages accessed multiple times through file descriptors
370 * are statistically hot and thus worth protecting.
371 *
372 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
373 * number of categories of the active/inactive LRU when keeping track of
374 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
375 * folio->flags.
376 */
377 #define MAX_NR_TIERS 4U
378
379 #ifndef __GENERATING_BOUNDS_H
380
381 struct lruvec;
382 struct page_vma_mapped_walk;
383
384 #define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
385 #define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
386
387 #ifdef CONFIG_LRU_GEN
388
389 enum {
390 LRU_GEN_ANON,
391 LRU_GEN_FILE,
392 };
393
394 enum {
395 LRU_GEN_CORE,
396 LRU_GEN_MM_WALK,
397 LRU_GEN_NONLEAF_YOUNG,
398 NR_LRU_GEN_CAPS
399 };
400
401 #define MIN_LRU_BATCH BITS_PER_LONG
402 #define MAX_LRU_BATCH (MIN_LRU_BATCH * 64)
403
404 /* whether to keep historical stats from evicted generations */
405 #ifdef CONFIG_LRU_GEN_STATS
406 #define NR_HIST_GENS MAX_NR_GENS
407 #else
408 #define NR_HIST_GENS 1U
409 #endif
410
411 /*
412 * The youngest generation number is stored in max_seq for both anon and file
413 * types as they are aged on an equal footing. The oldest generation numbers are
414 * stored in min_seq[] separately for anon and file types as clean file pages
415 * can be evicted regardless of swap constraints.
416 *
417 * Normally anon and file min_seq are in sync. But if swapping is constrained,
418 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
419 * min_seq behind.
420 *
421 * The number of pages in each generation is eventually consistent and therefore
422 * can be transiently negative when reset_batch_size() is pending.
423 */
424 struct lru_gen_folio {
425 /* the aging increments the youngest generation number */
426 unsigned long max_seq;
427 /* the eviction increments the oldest generation numbers */
428 unsigned long min_seq[ANON_AND_FILE];
429 /* the birth time of each generation in jiffies */
430 unsigned long timestamps[MAX_NR_GENS];
431 /* the multi-gen LRU lists, lazily sorted on eviction */
432 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
433 /* the multi-gen LRU sizes, eventually consistent */
434 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
435 /* the exponential moving average of refaulted */
436 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
437 /* the exponential moving average of evicted+protected */
438 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
439 /* the first tier doesn't need protection, hence the minus one */
440 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
441 /* can be modified without holding the LRU lock */
442 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
443 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
444 /* whether the multi-gen LRU is enabled */
445 bool enabled;
446 #ifdef CONFIG_MEMCG
447 /* the memcg generation this lru_gen_folio belongs to */
448 u8 gen;
449 /* the list segment this lru_gen_folio belongs to */
450 u8 seg;
451 /* per-node lru_gen_folio list for global reclaim */
452 struct hlist_nulls_node list;
453 #endif
454
455 ANDROID_KABI_RESERVE(1);
456 ANDROID_KABI_RESERVE(2);
457 };
458
459 enum {
460 MM_LEAF_TOTAL, /* total leaf entries */
461 MM_LEAF_OLD, /* old leaf entries */
462 MM_LEAF_YOUNG, /* young leaf entries */
463 MM_NONLEAF_TOTAL, /* total non-leaf entries */
464 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */
465 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */
466 NR_MM_STATS
467 };
468
469 /* double-buffering Bloom filters */
470 #define NR_BLOOM_FILTERS 2
471
472 struct lru_gen_mm_state {
473 /* set to max_seq after each iteration */
474 unsigned long seq;
475 /* where the current iteration continues after */
476 struct list_head *head;
477 /* where the last iteration ended before */
478 struct list_head *tail;
479 /* Bloom filters flip after each iteration */
480 unsigned long *filters[NR_BLOOM_FILTERS];
481 /* the mm stats for debugging */
482 unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
483
484 ANDROID_KABI_RESERVE(1);
485 };
486
487 struct lru_gen_mm_walk {
488 /* the lruvec under reclaim */
489 struct lruvec *lruvec;
490 /* unstable max_seq from lru_gen_folio */
491 unsigned long max_seq;
492 /* the next address within an mm to scan */
493 unsigned long next_addr;
494 /* to batch promoted pages */
495 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
496 /* to batch the mm stats */
497 int mm_stats[NR_MM_STATS];
498 /* total batched items */
499 int batched;
500 bool can_swap;
501 bool force_scan;
502
503 ANDROID_KABI_RESERVE(1);
504 };
505
506 void lru_gen_init_lruvec(struct lruvec *lruvec);
507 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
508
509 #ifdef CONFIG_MEMCG
510
511 /*
512 * For each node, memcgs are divided into two generations: the old and the
513 * young. For each generation, memcgs are randomly sharded into multiple bins
514 * to improve scalability. For each bin, the hlist_nulls is virtually divided
515 * into three segments: the head, the tail and the default.
516 *
517 * An onlining memcg is added to the tail of a random bin in the old generation.
518 * The eviction starts at the head of a random bin in the old generation. The
519 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
520 * the old generation, is incremented when all its bins become empty.
521 *
522 * There are four operations:
523 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
524 * current generation (old or young) and updates its "seg" to "head";
525 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
526 * current generation (old or young) and updates its "seg" to "tail";
527 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
528 * generation, updates its "gen" to "old" and resets its "seg" to "default";
529 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
530 * young generation, updates its "gen" to "young" and resets its "seg" to
531 * "default".
532 *
533 * The events that trigger the above operations are:
534 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
535 * 2. The first attempt to reclaim a memcg below low, which triggers
536 * MEMCG_LRU_TAIL;
537 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
538 * threshold, which triggers MEMCG_LRU_TAIL;
539 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
540 * threshold, which triggers MEMCG_LRU_YOUNG;
541 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
542 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
543 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
544 *
545 * Notes:
546 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
547 * of their max_seq counters ensures the eventual fairness to all eligible
548 * memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
549 * 2. There are only two valid generations: old (seq) and young (seq+1).
550 * MEMCG_NR_GENS is set to three so that when reading the generation counter
551 * locklessly, a stale value (seq-1) does not wraparound to young.
552 */
553 #define MEMCG_NR_GENS 3
554 #define MEMCG_NR_BINS 8
555
556 struct lru_gen_memcg {
557 /* the per-node memcg generation counter */
558 unsigned long seq;
559 /* each memcg has one lru_gen_folio per node */
560 unsigned long nr_memcgs[MEMCG_NR_GENS];
561 /* per-node lru_gen_folio list for global reclaim */
562 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
563 /* protects the above */
564 spinlock_t lock;
565 };
566
567 void lru_gen_init_pgdat(struct pglist_data *pgdat);
568
569 void lru_gen_init_memcg(struct mem_cgroup *memcg);
570 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
571 void lru_gen_online_memcg(struct mem_cgroup *memcg);
572 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
573 void lru_gen_release_memcg(struct mem_cgroup *memcg);
574 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
575
576 #else /* !CONFIG_MEMCG */
577
578 #define MEMCG_NR_GENS 1
579
580 struct lru_gen_memcg {
581 };
582
lru_gen_init_pgdat(struct pglist_data * pgdat)583 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
584 {
585 }
586
587 #endif /* CONFIG_MEMCG */
588
589 #else /* !CONFIG_LRU_GEN */
590
lru_gen_init_pgdat(struct pglist_data * pgdat)591 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
592 {
593 }
594
lru_gen_init_lruvec(struct lruvec * lruvec)595 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
596 {
597 }
598
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)599 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
600 {
601 }
602
603 #ifdef CONFIG_MEMCG
604
lru_gen_init_memcg(struct mem_cgroup * memcg)605 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
606 {
607 }
608
lru_gen_exit_memcg(struct mem_cgroup * memcg)609 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
610 {
611 }
612
lru_gen_online_memcg(struct mem_cgroup * memcg)613 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
614 {
615 }
616
lru_gen_offline_memcg(struct mem_cgroup * memcg)617 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
618 {
619 }
620
lru_gen_release_memcg(struct mem_cgroup * memcg)621 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
622 {
623 }
624
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)625 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
626 {
627 }
628
629 #endif /* CONFIG_MEMCG */
630
631 #endif /* CONFIG_LRU_GEN */
632
633 struct lruvec {
634 struct list_head lists[NR_LRU_LISTS];
635 /* per lruvec lru_lock for memcg */
636 spinlock_t lru_lock;
637 /*
638 * These track the cost of reclaiming one LRU - file or anon -
639 * over the other. As the observed cost of reclaiming one LRU
640 * increases, the reclaim scan balance tips toward the other.
641 */
642 unsigned long anon_cost;
643 unsigned long file_cost;
644 /* Non-resident age, driven by LRU movement */
645 atomic_long_t nonresident_age;
646 /* Refaults at the time of last reclaim cycle */
647 unsigned long refaults[ANON_AND_FILE];
648 /* Various lruvec state flags (enum lruvec_flags) */
649 unsigned long flags;
650 #ifdef CONFIG_LRU_GEN
651 /* evictable pages divided into generations */
652 struct lru_gen_folio lrugen;
653 /* to concurrently iterate lru_gen_mm_list */
654 struct lru_gen_mm_state mm_state;
655 #endif
656 #ifdef CONFIG_MEMCG
657 struct pglist_data *pgdat;
658 #endif
659 };
660
661 /* Isolate unmapped pages */
662 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
663 /* Isolate for asynchronous migration */
664 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
665 /* Isolate unevictable pages */
666 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
667
668 /* LRU Isolation modes. */
669 typedef unsigned __bitwise isolate_mode_t;
670
671 enum zone_watermarks {
672 WMARK_MIN,
673 WMARK_LOW,
674 WMARK_HIGH,
675 WMARK_PROMO,
676 NR_WMARK
677 };
678
679 /*
680 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
681 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
682 * it should not contribute to serious fragmentation causing THP allocation
683 * failures.
684 */
685 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
686 #define NR_PCP_THP 1
687 #else
688 #define NR_PCP_THP 0
689 #endif
690 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
691 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
692
693 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
694 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
695 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
696 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
697
698 struct per_cpu_pages {
699 spinlock_t lock; /* Protects lists field */
700 int count; /* number of pages in the list */
701 int high; /* high watermark, emptying needed */
702 int batch; /* chunk size for buddy add/remove */
703 short free_factor; /* batch scaling factor during free */
704 #ifdef CONFIG_NUMA
705 short expire; /* When 0, remote pagesets are drained */
706 #endif
707
708 /* Lists of pages, one per migrate type stored on the pcp-lists */
709 struct list_head lists[NR_PCP_LISTS];
710 } ____cacheline_aligned_in_smp;
711
712 struct per_cpu_zonestat {
713 #ifdef CONFIG_SMP
714 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
715 s8 stat_threshold;
716 #endif
717 #ifdef CONFIG_NUMA
718 /*
719 * Low priority inaccurate counters that are only folded
720 * on demand. Use a large type to avoid the overhead of
721 * folding during refresh_cpu_vm_stats.
722 */
723 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
724 #endif
725 };
726
727 struct per_cpu_nodestat {
728 s8 stat_threshold;
729 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
730 };
731
732 #endif /* !__GENERATING_BOUNDS.H */
733
734 enum zone_type {
735 /*
736 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
737 * to DMA to all of the addressable memory (ZONE_NORMAL).
738 * On architectures where this area covers the whole 32 bit address
739 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
740 * DMA addressing constraints. This distinction is important as a 32bit
741 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
742 * platforms may need both zones as they support peripherals with
743 * different DMA addressing limitations.
744 */
745 #ifdef CONFIG_ZONE_DMA
746 ZONE_DMA,
747 #endif
748 #ifdef CONFIG_ZONE_DMA32
749 ZONE_DMA32,
750 #endif
751 /*
752 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
753 * performed on pages in ZONE_NORMAL if the DMA devices support
754 * transfers to all addressable memory.
755 */
756 ZONE_NORMAL,
757 #ifdef CONFIG_HIGHMEM
758 /*
759 * A memory area that is only addressable by the kernel through
760 * mapping portions into its own address space. This is for example
761 * used by i386 to allow the kernel to address the memory beyond
762 * 900MB. The kernel will set up special mappings (page
763 * table entries on i386) for each page that the kernel needs to
764 * access.
765 */
766 ZONE_HIGHMEM,
767 #endif
768 /*
769 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
770 * movable pages with few exceptional cases described below. Main use
771 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
772 * likely to succeed, and to locally limit unmovable allocations - e.g.,
773 * to increase the number of THP/huge pages. Notable special cases are:
774 *
775 * 1. Pinned pages: (long-term) pinning of movable pages might
776 * essentially turn such pages unmovable. Therefore, we do not allow
777 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
778 * faulted, they come from the right zone right away. However, it is
779 * still possible that address space already has pages in
780 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has
781 * touches that memory before pinning). In such case we migrate them
782 * to a different zone. When migration fails - pinning fails.
783 * 2. memblock allocations: kernelcore/movablecore setups might create
784 * situations where ZONE_MOVABLE contains unmovable allocations
785 * after boot. Memory offlining and allocations fail early.
786 * 3. Memory holes: kernelcore/movablecore setups might create very rare
787 * situations where ZONE_MOVABLE contains memory holes after boot,
788 * for example, if we have sections that are only partially
789 * populated. Memory offlining and allocations fail early.
790 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
791 * memory offlining, such pages cannot be allocated.
792 * 5. Unmovable PG_offline pages: in paravirtualized environments,
793 * hotplugged memory blocks might only partially be managed by the
794 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
795 * parts not manged by the buddy are unmovable PG_offline pages. In
796 * some cases (virtio-mem), such pages can be skipped during
797 * memory offlining, however, cannot be moved/allocated. These
798 * techniques might use alloc_contig_range() to hide previously
799 * exposed pages from the buddy again (e.g., to implement some sort
800 * of memory unplug in virtio-mem).
801 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
802 * situations where ZERO_PAGE(0) which is allocated differently
803 * on different platforms may end up in a movable zone. ZERO_PAGE(0)
804 * cannot be migrated.
805 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
806 * memory to the MOVABLE zone, the vmemmap pages are also placed in
807 * such zone. Such pages cannot be really moved around as they are
808 * self-stored in the range, but they are treated as movable when
809 * the range they describe is about to be offlined.
810 *
811 * In general, no unmovable allocations that degrade memory offlining
812 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
813 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
814 * if has_unmovable_pages() states that there are no unmovable pages,
815 * there can be false negatives).
816 */
817 ZONE_MOVABLE,
818 ZONE_NOSPLIT,
819 ZONE_NOMERGE,
820 #ifdef CONFIG_ZONE_DEVICE
821 ZONE_DEVICE,
822 #endif
823 __MAX_NR_ZONES,
824
825 LAST_PHYS_ZONE = ZONE_MOVABLE - 1,
826 LAST_VIRT_ZONE = ZONE_NOMERGE,
827 };
828
829 #ifndef __GENERATING_BOUNDS_H
830
831 #define ASYNC_AND_SYNC 2
832
833 struct zone {
834 /* Read-mostly fields */
835
836 /* zone watermarks, access with *_wmark_pages(zone) macros */
837 unsigned long _watermark[NR_WMARK];
838 unsigned long watermark_boost;
839
840 unsigned long nr_reserved_highatomic;
841
842 /*
843 * We don't know if the memory that we're going to allocate will be
844 * freeable or/and it will be released eventually, so to avoid totally
845 * wasting several GB of ram we must reserve some of the lower zone
846 * memory (otherwise we risk to run OOM on the lower zones despite
847 * there being tons of freeable ram on the higher zones). This array is
848 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
849 * changes.
850 */
851 long lowmem_reserve[MAX_NR_ZONES];
852
853 #ifdef CONFIG_NUMA
854 int node;
855 #endif
856 struct pglist_data *zone_pgdat;
857 struct per_cpu_pages __percpu *per_cpu_pageset;
858 struct per_cpu_zonestat __percpu *per_cpu_zonestats;
859 /*
860 * the high and batch values are copied to individual pagesets for
861 * faster access
862 */
863 int pageset_high;
864 int pageset_batch;
865
866 #ifndef CONFIG_SPARSEMEM
867 /*
868 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
869 * In SPARSEMEM, this map is stored in struct mem_section
870 */
871 unsigned long *pageblock_flags;
872 #endif /* CONFIG_SPARSEMEM */
873
874 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
875 unsigned long zone_start_pfn;
876
877 /*
878 * spanned_pages is the total pages spanned by the zone, including
879 * holes, which is calculated as:
880 * spanned_pages = zone_end_pfn - zone_start_pfn;
881 *
882 * present_pages is physical pages existing within the zone, which
883 * is calculated as:
884 * present_pages = spanned_pages - absent_pages(pages in holes);
885 *
886 * present_early_pages is present pages existing within the zone
887 * located on memory available since early boot, excluding hotplugged
888 * memory.
889 *
890 * managed_pages is present pages managed by the buddy system, which
891 * is calculated as (reserved_pages includes pages allocated by the
892 * bootmem allocator):
893 * managed_pages = present_pages - reserved_pages;
894 *
895 * cma pages is present pages that are assigned for CMA use
896 * (MIGRATE_CMA).
897 *
898 * So present_pages may be used by memory hotplug or memory power
899 * management logic to figure out unmanaged pages by checking
900 * (present_pages - managed_pages). And managed_pages should be used
901 * by page allocator and vm scanner to calculate all kinds of watermarks
902 * and thresholds.
903 *
904 * Locking rules:
905 *
906 * zone_start_pfn and spanned_pages are protected by span_seqlock.
907 * It is a seqlock because it has to be read outside of zone->lock,
908 * and it is done in the main allocator path. But, it is written
909 * quite infrequently.
910 *
911 * The span_seq lock is declared along with zone->lock because it is
912 * frequently read in proximity to zone->lock. It's good to
913 * give them a chance of being in the same cacheline.
914 *
915 * Write access to present_pages at runtime should be protected by
916 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
917 * present_pages should use get_online_mems() to get a stable value.
918 */
919 atomic_long_t managed_pages;
920 unsigned long spanned_pages;
921 unsigned long present_pages;
922 #if defined(CONFIG_MEMORY_HOTPLUG)
923 unsigned long present_early_pages;
924 #endif
925 #ifdef CONFIG_CMA
926 unsigned long cma_pages;
927 #endif
928
929 const char *name;
930
931 #ifdef CONFIG_MEMORY_ISOLATION
932 /*
933 * Number of isolated pageblock. It is used to solve incorrect
934 * freepage counting problem due to racy retrieving migratetype
935 * of pageblock. Protected by zone->lock.
936 */
937 unsigned long nr_isolate_pageblock;
938 #endif
939
940 #ifdef CONFIG_MEMORY_HOTPLUG
941 /* see spanned/present_pages for more description */
942 seqlock_t span_seqlock;
943 #endif
944
945 int order;
946
947 int initialized;
948
949 /* Write-intensive fields used from the page allocator */
950 CACHELINE_PADDING(_pad1_);
951
952 /* free areas of different sizes */
953 struct free_area free_area[NR_PAGE_ORDERS];
954
955 #ifdef CONFIG_UNACCEPTED_MEMORY
956 /* Pages to be accepted. All pages on the list are MAX_ORDER */
957 struct list_head unaccepted_pages;
958 #endif
959
960 /* zone flags, see below */
961 unsigned long flags;
962
963 /* Primarily protects free_area */
964 spinlock_t lock;
965
966 /* Write-intensive fields used by compaction and vmstats. */
967 CACHELINE_PADDING(_pad2_);
968
969 /*
970 * When free pages are below this point, additional steps are taken
971 * when reading the number of free pages to avoid per-cpu counter
972 * drift allowing watermarks to be breached
973 */
974 unsigned long percpu_drift_mark;
975
976 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
977 /* pfn where compaction free scanner should start */
978 unsigned long compact_cached_free_pfn;
979 /* pfn where compaction migration scanner should start */
980 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC];
981 unsigned long compact_init_migrate_pfn;
982 unsigned long compact_init_free_pfn;
983 #endif
984
985 #ifdef CONFIG_COMPACTION
986 /*
987 * On compaction failure, 1<<compact_defer_shift compactions
988 * are skipped before trying again. The number attempted since
989 * last failure is tracked with compact_considered.
990 * compact_order_failed is the minimum compaction failed order.
991 */
992 unsigned int compact_considered;
993 unsigned int compact_defer_shift;
994 int compact_order_failed;
995 #endif
996
997 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
998 /* Set to true when the PG_migrate_skip bits should be cleared */
999 bool compact_blockskip_flush;
1000 #endif
1001
1002 bool contiguous;
1003
1004 CACHELINE_PADDING(_pad3_);
1005 /* Zone statistics */
1006 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
1007 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1008 } ____cacheline_internodealigned_in_smp;
1009
1010 enum pgdat_flags {
1011 PGDAT_DIRTY, /* reclaim scanning has recently found
1012 * many dirty file pages at the tail
1013 * of the LRU.
1014 */
1015 PGDAT_WRITEBACK, /* reclaim scanning has recently found
1016 * many pages under writeback
1017 */
1018 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
1019 };
1020
1021 enum zone_flags {
1022 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
1023 * Cleared when kswapd is woken.
1024 */
1025 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */
1026 };
1027
zone_managed_pages(struct zone * zone)1028 static inline unsigned long zone_managed_pages(struct zone *zone)
1029 {
1030 return (unsigned long)atomic_long_read(&zone->managed_pages);
1031 }
1032
zone_cma_pages(struct zone * zone)1033 static inline unsigned long zone_cma_pages(struct zone *zone)
1034 {
1035 #ifdef CONFIG_CMA
1036 return zone->cma_pages;
1037 #else
1038 return 0;
1039 #endif
1040 }
1041
zone_end_pfn(const struct zone * zone)1042 static inline unsigned long zone_end_pfn(const struct zone *zone)
1043 {
1044 return zone->zone_start_pfn + zone->spanned_pages;
1045 }
1046
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1047 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1048 {
1049 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1050 }
1051
zone_is_initialized(struct zone * zone)1052 static inline bool zone_is_initialized(struct zone *zone)
1053 {
1054 return zone->initialized;
1055 }
1056
zone_is_empty(struct zone * zone)1057 static inline bool zone_is_empty(struct zone *zone)
1058 {
1059 return zone->spanned_pages == 0;
1060 }
1061
1062 #ifndef BUILD_VDSO32_64
1063 /*
1064 * The zone field is never updated after free_area_init_core()
1065 * sets it, so none of the operations on it need to be atomic.
1066 */
1067
1068 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1069 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1070 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1071 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1072 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1073 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1074 #define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1075 #define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1076
1077 /*
1078 * Define the bit shifts to access each section. For non-existent
1079 * sections we define the shift as 0; that plus a 0 mask ensures
1080 * the compiler will optimise away reference to them.
1081 */
1082 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1083 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1084 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1085 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1086 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1087
1088 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1089 #ifdef NODE_NOT_IN_PAGE_FLAGS
1090 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1091 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1092 SECTIONS_PGOFF : ZONES_PGOFF)
1093 #else
1094 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1095 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \
1096 NODES_PGOFF : ZONES_PGOFF)
1097 #endif
1098
1099 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1100
1101 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1102 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1103 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1104 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1105 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1106 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1107
page_zonenum(const struct page * page)1108 static inline enum zone_type page_zonenum(const struct page *page)
1109 {
1110 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1111 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1112 }
1113
folio_zonenum(const struct folio * folio)1114 static inline enum zone_type folio_zonenum(const struct folio *folio)
1115 {
1116 return page_zonenum(&folio->page);
1117 }
1118
1119 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1120 static inline bool is_zone_device_page(const struct page *page)
1121 {
1122 return page_zonenum(page) == ZONE_DEVICE;
1123 }
1124
1125 /*
1126 * Consecutive zone device pages should not be merged into the same sgl
1127 * or bvec segment with other types of pages or if they belong to different
1128 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1129 * without scanning the entire segment. This helper returns true either if
1130 * both pages are not zone device pages or both pages are zone device pages
1131 * with the same pgmap.
1132 */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1133 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1134 const struct page *b)
1135 {
1136 if (is_zone_device_page(a) != is_zone_device_page(b))
1137 return false;
1138 if (!is_zone_device_page(a))
1139 return true;
1140 return a->pgmap == b->pgmap;
1141 }
1142
1143 extern void memmap_init_zone_device(struct zone *, unsigned long,
1144 unsigned long, struct dev_pagemap *);
1145 #else
is_zone_device_page(const struct page * page)1146 static inline bool is_zone_device_page(const struct page *page)
1147 {
1148 return false;
1149 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1150 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1151 const struct page *b)
1152 {
1153 return true;
1154 }
1155 #endif
1156
folio_is_zone_device(const struct folio * folio)1157 static inline bool folio_is_zone_device(const struct folio *folio)
1158 {
1159 return is_zone_device_page(&folio->page);
1160 }
1161
is_zone_movable_page(const struct page * page)1162 static inline bool is_zone_movable_page(const struct page *page)
1163 {
1164 return page_zonenum(page) >= ZONE_MOVABLE;
1165 }
1166
folio_is_zone_movable(const struct folio * folio)1167 static inline bool folio_is_zone_movable(const struct folio *folio)
1168 {
1169 return folio_zonenum(folio) >= ZONE_MOVABLE;
1170 }
1171
page_can_split(struct page * page)1172 static inline bool page_can_split(struct page *page)
1173 {
1174 return page_zonenum(page) < ZONE_NOSPLIT;
1175 }
1176
folio_can_split(struct folio * folio)1177 static inline bool folio_can_split(struct folio *folio)
1178 {
1179 return folio_zonenum(folio) < ZONE_NOSPLIT;
1180 }
1181 #endif
1182
1183 /*
1184 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1185 * intersection with the given zone
1186 */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1187 static inline bool zone_intersects(struct zone *zone,
1188 unsigned long start_pfn, unsigned long nr_pages)
1189 {
1190 if (zone_is_empty(zone))
1191 return false;
1192 if (start_pfn >= zone_end_pfn(zone) ||
1193 start_pfn + nr_pages <= zone->zone_start_pfn)
1194 return false;
1195
1196 return true;
1197 }
1198
1199 /*
1200 * The "priority" of VM scanning is how much of the queues we will scan in one
1201 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1202 * queues ("queue_length >> 12") during an aging round.
1203 */
1204 #define DEF_PRIORITY 12
1205
1206 /* Maximum number of zones on a zonelist */
1207 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1208
1209 enum {
1210 ZONELIST_FALLBACK, /* zonelist with fallback */
1211 #ifdef CONFIG_NUMA
1212 /*
1213 * The NUMA zonelists are doubled because we need zonelists that
1214 * restrict the allocations to a single node for __GFP_THISNODE.
1215 */
1216 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
1217 #endif
1218 MAX_ZONELISTS
1219 };
1220
1221 /*
1222 * This struct contains information about a zone in a zonelist. It is stored
1223 * here to avoid dereferences into large structures and lookups of tables
1224 */
1225 struct zoneref {
1226 struct zone *zone; /* Pointer to actual zone */
1227 int zone_idx; /* zone_idx(zoneref->zone) */
1228 };
1229
1230 /*
1231 * One allocation request operates on a zonelist. A zonelist
1232 * is a list of zones, the first one is the 'goal' of the
1233 * allocation, the other zones are fallback zones, in decreasing
1234 * priority.
1235 *
1236 * To speed the reading of the zonelist, the zonerefs contain the zone index
1237 * of the entry being read. Helper functions to access information given
1238 * a struct zoneref are
1239 *
1240 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
1241 * zonelist_zone_idx() - Return the index of the zone for an entry
1242 * zonelist_node_idx() - Return the index of the node for an entry
1243 */
1244 struct zonelist {
1245 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1246 };
1247
1248 /*
1249 * The array of struct pages for flatmem.
1250 * It must be declared for SPARSEMEM as well because there are configurations
1251 * that rely on that.
1252 */
1253 extern struct page *mem_map;
1254
1255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1256 struct deferred_split {
1257 spinlock_t split_queue_lock;
1258 struct list_head split_queue;
1259 unsigned long split_queue_len;
1260 };
1261 #endif
1262
1263 #ifdef CONFIG_MEMORY_FAILURE
1264 /*
1265 * Per NUMA node memory failure handling statistics.
1266 */
1267 struct memory_failure_stats {
1268 /*
1269 * Number of raw pages poisoned.
1270 * Cases not accounted: memory outside kernel control, offline page,
1271 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1272 * error events, and unpoison actions from hwpoison_unpoison.
1273 */
1274 unsigned long total;
1275 /*
1276 * Recovery results of poisoned raw pages handled by memory_failure,
1277 * in sync with mf_result.
1278 * total = ignored + failed + delayed + recovered.
1279 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1280 */
1281 unsigned long ignored;
1282 unsigned long failed;
1283 unsigned long delayed;
1284 unsigned long recovered;
1285 };
1286 #endif
1287
1288 /*
1289 * On NUMA machines, each NUMA node would have a pg_data_t to describe
1290 * it's memory layout. On UMA machines there is a single pglist_data which
1291 * describes the whole memory.
1292 *
1293 * Memory statistics and page replacement data structures are maintained on a
1294 * per-zone basis.
1295 */
1296 typedef struct pglist_data {
1297 /*
1298 * node_zones contains just the zones for THIS node. Not all of the
1299 * zones may be populated, but it is the full list. It is referenced by
1300 * this node's node_zonelists as well as other node's node_zonelists.
1301 */
1302 struct zone node_zones[MAX_NR_ZONES];
1303
1304 /*
1305 * node_zonelists contains references to all zones in all nodes.
1306 * Generally the first zones will be references to this node's
1307 * node_zones.
1308 */
1309 struct zonelist node_zonelists[MAX_ZONELISTS];
1310
1311 int nr_zones; /* number of populated zones in this node */
1312 #ifdef CONFIG_FLATMEM /* means !SPARSEMEM */
1313 struct page *node_mem_map;
1314 #ifdef CONFIG_PAGE_EXTENSION
1315 struct page_ext *node_page_ext;
1316 #endif
1317 #endif
1318 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1319 /*
1320 * Must be held any time you expect node_start_pfn,
1321 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1322 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1323 * init.
1324 *
1325 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1326 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1327 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1328 *
1329 * Nests above zone->lock and zone->span_seqlock
1330 */
1331 spinlock_t node_size_lock;
1332 #endif
1333 unsigned long node_start_pfn;
1334 unsigned long node_present_pages; /* total number of physical pages */
1335 unsigned long node_spanned_pages; /* total size of physical page
1336 range, including holes */
1337 int node_id;
1338 wait_queue_head_t kswapd_wait;
1339 wait_queue_head_t pfmemalloc_wait;
1340
1341 /* workqueues for throttling reclaim for different reasons. */
1342 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1343
1344 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1345 unsigned long nr_reclaim_start; /* nr pages written while throttled
1346 * when throttling started. */
1347 #ifdef CONFIG_MEMORY_HOTPLUG
1348 struct mutex kswapd_lock;
1349 #endif
1350 struct task_struct *kswapd; /* Protected by kswapd_lock */
1351 int kswapd_order;
1352 enum zone_type kswapd_highest_zoneidx;
1353
1354 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
1355
1356 ANDROID_OEM_DATA(1);
1357 #ifdef CONFIG_COMPACTION
1358 int kcompactd_max_order;
1359 enum zone_type kcompactd_highest_zoneidx;
1360 wait_queue_head_t kcompactd_wait;
1361 struct task_struct *kcompactd;
1362 bool proactive_compact_trigger;
1363 #endif
1364 /*
1365 * This is a per-node reserve of pages that are not available
1366 * to userspace allocations.
1367 */
1368 unsigned long totalreserve_pages;
1369
1370 #ifdef CONFIG_NUMA
1371 /*
1372 * node reclaim becomes active if more unmapped pages exist.
1373 */
1374 unsigned long min_unmapped_pages;
1375 unsigned long min_slab_pages;
1376 #endif /* CONFIG_NUMA */
1377
1378 /* Write-intensive fields used by page reclaim */
1379 CACHELINE_PADDING(_pad1_);
1380
1381 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1382 /*
1383 * If memory initialisation on large machines is deferred then this
1384 * is the first PFN that needs to be initialised.
1385 */
1386 unsigned long first_deferred_pfn;
1387 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1388
1389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1390 struct deferred_split deferred_split_queue;
1391 #endif
1392
1393 #ifdef CONFIG_NUMA_BALANCING
1394 /* start time in ms of current promote rate limit period */
1395 unsigned int nbp_rl_start;
1396 /* number of promote candidate pages at start time of current rate limit period */
1397 unsigned long nbp_rl_nr_cand;
1398 /* promote threshold in ms */
1399 unsigned int nbp_threshold;
1400 /* start time in ms of current promote threshold adjustment period */
1401 unsigned int nbp_th_start;
1402 /*
1403 * number of promote candidate pages at start time of current promote
1404 * threshold adjustment period
1405 */
1406 unsigned long nbp_th_nr_cand;
1407 #endif
1408 /* Fields commonly accessed by the page reclaim scanner */
1409
1410 /*
1411 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1412 *
1413 * Use mem_cgroup_lruvec() to look up lruvecs.
1414 */
1415 struct lruvec __lruvec;
1416
1417 unsigned long flags;
1418
1419 #ifdef CONFIG_LRU_GEN
1420 /* kswap mm walk data */
1421 struct lru_gen_mm_walk mm_walk;
1422 /* lru_gen_folio list */
1423 struct lru_gen_memcg memcg_lru;
1424 #endif
1425
1426 CACHELINE_PADDING(_pad2_);
1427
1428 /* Per-node vmstats */
1429 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1430 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1431 #ifdef CONFIG_NUMA
1432 struct memory_tier __rcu *memtier;
1433 #endif
1434 #ifdef CONFIG_MEMORY_FAILURE
1435 struct memory_failure_stats mf_stats;
1436 #endif
1437
1438 ANDROID_KABI_RESERVE(1);
1439 } pg_data_t;
1440
1441 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1442 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1443
1444 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
1445 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1446
pgdat_end_pfn(pg_data_t * pgdat)1447 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1448 {
1449 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1450 }
1451
1452 #include <linux/memory_hotplug.h>
1453
1454 void build_all_zonelists(pg_data_t *pgdat);
1455 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1456 enum zone_type highest_zoneidx);
1457 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1458 int highest_zoneidx, unsigned int alloc_flags,
1459 long free_pages);
1460 bool zone_watermark_ok(struct zone *z, unsigned int order,
1461 unsigned long mark, int highest_zoneidx,
1462 unsigned int alloc_flags);
1463 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1464 unsigned long mark, int highest_zoneidx);
1465 /*
1466 * Memory initialization context, use to differentiate memory added by
1467 * the platform statically or via memory hotplug interface.
1468 */
1469 enum meminit_context {
1470 MEMINIT_EARLY,
1471 MEMINIT_HOTPLUG,
1472 };
1473
1474 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1475 unsigned long size);
1476
1477 extern void lruvec_init(struct lruvec *lruvec);
1478
lruvec_pgdat(struct lruvec * lruvec)1479 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1480 {
1481 #ifdef CONFIG_MEMCG
1482 return lruvec->pgdat;
1483 #else
1484 return container_of(lruvec, struct pglist_data, __lruvec);
1485 #endif
1486 }
1487
1488 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1489 int local_memory_node(int node_id);
1490 #else
local_memory_node(int node_id)1491 static inline int local_memory_node(int node_id) { return node_id; };
1492 #endif
1493
1494 /*
1495 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1496 */
1497 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
1498
zid_is_virt(enum zone_type zid)1499 static inline bool zid_is_virt(enum zone_type zid)
1500 {
1501 return zid > LAST_PHYS_ZONE && zid <= LAST_VIRT_ZONE;
1502 }
1503
zone_can_frag(struct zone * zone)1504 static inline bool zone_can_frag(struct zone *zone)
1505 {
1506 VM_WARN_ON_ONCE(zone->order && zone_idx(zone) < ZONE_NOSPLIT);
1507
1508 return zone_idx(zone) < ZONE_NOSPLIT;
1509 }
1510
zone_is_suitable(struct zone * zone,int order)1511 static inline bool zone_is_suitable(struct zone *zone, int order)
1512 {
1513 int zid = zone_idx(zone);
1514
1515 if (zid < ZONE_NOSPLIT)
1516 return true;
1517
1518 if (!zone->order)
1519 return false;
1520
1521 return (zid == ZONE_NOSPLIT && order >= zone->order) ||
1522 (zid == ZONE_NOMERGE && order == zone->order);
1523 }
1524
1525 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1526 static inline bool zone_is_zone_device(struct zone *zone)
1527 {
1528 return zone_idx(zone) == ZONE_DEVICE;
1529 }
1530 #else
zone_is_zone_device(struct zone * zone)1531 static inline bool zone_is_zone_device(struct zone *zone)
1532 {
1533 return false;
1534 }
1535 #endif
1536
1537 /*
1538 * Returns true if a zone has pages managed by the buddy allocator.
1539 * All the reclaim decisions have to use this function rather than
1540 * populated_zone(). If the whole zone is reserved then we can easily
1541 * end up with populated_zone() && !managed_zone().
1542 */
managed_zone(struct zone * zone)1543 static inline bool managed_zone(struct zone *zone)
1544 {
1545 return zone_managed_pages(zone);
1546 }
1547
1548 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1549 static inline bool populated_zone(struct zone *zone)
1550 {
1551 return zone->present_pages;
1552 }
1553
1554 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1555 static inline int zone_to_nid(struct zone *zone)
1556 {
1557 return zone->node;
1558 }
1559
zone_set_nid(struct zone * zone,int nid)1560 static inline void zone_set_nid(struct zone *zone, int nid)
1561 {
1562 zone->node = nid;
1563 }
1564 #else
zone_to_nid(struct zone * zone)1565 static inline int zone_to_nid(struct zone *zone)
1566 {
1567 return 0;
1568 }
1569
zone_set_nid(struct zone * zone,int nid)1570 static inline void zone_set_nid(struct zone *zone, int nid) {}
1571 #endif
1572
1573 extern int virt_zone;
1574
is_highmem_idx(enum zone_type idx)1575 static inline int is_highmem_idx(enum zone_type idx)
1576 {
1577 #ifdef CONFIG_HIGHMEM
1578 return (idx == ZONE_HIGHMEM ||
1579 (zid_is_virt(idx) && virt_zone == ZONE_HIGHMEM));
1580 #else
1581 return 0;
1582 #endif
1583 }
1584
1585 /**
1586 * is_highmem - helper function to quickly check if a struct zone is a
1587 * highmem zone or not. This is an attempt to keep references
1588 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1589 * @zone: pointer to struct zone variable
1590 * Return: 1 for a highmem zone, 0 otherwise
1591 */
is_highmem(struct zone * zone)1592 static inline int is_highmem(struct zone *zone)
1593 {
1594 return is_highmem_idx(zone_idx(zone));
1595 }
1596
1597 #ifdef CONFIG_ZONE_DMA
1598 bool has_managed_dma(void);
1599 #else
has_managed_dma(void)1600 static inline bool has_managed_dma(void)
1601 {
1602 return false;
1603 }
1604 #endif
1605
1606
1607 #ifndef CONFIG_NUMA
1608
1609 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1610 static inline struct pglist_data *NODE_DATA(int nid)
1611 {
1612 return &contig_page_data;
1613 }
1614
1615 #else /* CONFIG_NUMA */
1616
1617 #include <asm/mmzone.h>
1618
1619 #endif /* !CONFIG_NUMA */
1620
1621 extern struct pglist_data *first_online_pgdat(void);
1622 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1623 extern struct zone *next_zone(struct zone *zone);
1624 extern int isolate_anon_lru_page(struct page *page);
1625
1626 /**
1627 * for_each_online_pgdat - helper macro to iterate over all online nodes
1628 * @pgdat: pointer to a pg_data_t variable
1629 */
1630 #define for_each_online_pgdat(pgdat) \
1631 for (pgdat = first_online_pgdat(); \
1632 pgdat; \
1633 pgdat = next_online_pgdat(pgdat))
1634 /**
1635 * for_each_zone - helper macro to iterate over all memory zones
1636 * @zone: pointer to struct zone variable
1637 *
1638 * The user only needs to declare the zone variable, for_each_zone
1639 * fills it in.
1640 */
1641 #define for_each_zone(zone) \
1642 for (zone = (first_online_pgdat())->node_zones; \
1643 zone; \
1644 zone = next_zone(zone))
1645
1646 #define for_each_populated_zone(zone) \
1647 for (zone = (first_online_pgdat())->node_zones; \
1648 zone; \
1649 zone = next_zone(zone)) \
1650 if (!populated_zone(zone)) \
1651 ; /* do nothing */ \
1652 else
1653
zonelist_zone(struct zoneref * zoneref)1654 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1655 {
1656 return zoneref->zone;
1657 }
1658
zonelist_zone_idx(struct zoneref * zoneref)1659 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1660 {
1661 return zoneref->zone_idx;
1662 }
1663
zonelist_node_idx(struct zoneref * zoneref)1664 static inline int zonelist_node_idx(struct zoneref *zoneref)
1665 {
1666 return zone_to_nid(zoneref->zone);
1667 }
1668
1669 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1670 enum zone_type highest_zoneidx,
1671 nodemask_t *nodes);
1672
1673 /**
1674 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1675 * @z: The cursor used as a starting point for the search
1676 * @highest_zoneidx: The zone index of the highest zone to return
1677 * @nodes: An optional nodemask to filter the zonelist with
1678 *
1679 * This function returns the next zone at or below a given zone index that is
1680 * within the allowed nodemask using a cursor as the starting point for the
1681 * search. The zoneref returned is a cursor that represents the current zone
1682 * being examined. It should be advanced by one before calling
1683 * next_zones_zonelist again.
1684 *
1685 * Return: the next zone at or below highest_zoneidx within the allowed
1686 * nodemask using a cursor within a zonelist as a starting point
1687 */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1688 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1689 enum zone_type highest_zoneidx,
1690 nodemask_t *nodes)
1691 {
1692 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1693 return z;
1694 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1695 }
1696
1697 /**
1698 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1699 * @zonelist: The zonelist to search for a suitable zone
1700 * @highest_zoneidx: The zone index of the highest zone to return
1701 * @nodes: An optional nodemask to filter the zonelist with
1702 *
1703 * This function returns the first zone at or below a given zone index that is
1704 * within the allowed nodemask. The zoneref returned is a cursor that can be
1705 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1706 * one before calling.
1707 *
1708 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1709 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1710 * update due to cpuset modification.
1711 *
1712 * Return: Zoneref pointer for the first suitable zone found
1713 */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1714 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1715 enum zone_type highest_zoneidx,
1716 nodemask_t *nodes)
1717 {
1718 return next_zones_zonelist(zonelist->_zonerefs,
1719 highest_zoneidx, nodes);
1720 }
1721
1722 /**
1723 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1724 * @zone: The current zone in the iterator
1725 * @z: The current pointer within zonelist->_zonerefs being iterated
1726 * @zlist: The zonelist being iterated
1727 * @highidx: The zone index of the highest zone to return
1728 * @nodemask: Nodemask allowed by the allocator
1729 *
1730 * This iterator iterates though all zones at or below a given zone index and
1731 * within a given nodemask
1732 */
1733 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1734 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1735 zone; \
1736 z = next_zones_zonelist(++z, highidx, nodemask), \
1737 zone = zonelist_zone(z))
1738
1739 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1740 for (zone = z->zone; \
1741 zone; \
1742 z = next_zones_zonelist(++z, highidx, nodemask), \
1743 zone = zonelist_zone(z))
1744
1745
1746 /**
1747 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1748 * @zone: The current zone in the iterator
1749 * @z: The current pointer within zonelist->zones being iterated
1750 * @zlist: The zonelist being iterated
1751 * @highidx: The zone index of the highest zone to return
1752 *
1753 * This iterator iterates though all zones at or below a given zone index.
1754 */
1755 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1756 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1757
1758 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1759 static inline bool movable_only_nodes(nodemask_t *nodes)
1760 {
1761 struct zonelist *zonelist;
1762 struct zoneref *z;
1763 int nid;
1764
1765 if (nodes_empty(*nodes))
1766 return false;
1767
1768 /*
1769 * We can chose arbitrary node from the nodemask to get a
1770 * zonelist as they are interlinked. We just need to find
1771 * at least one zone that can satisfy kernel allocations.
1772 */
1773 nid = first_node(*nodes);
1774 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1775 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1776 return (!z->zone) ? true : false;
1777 }
1778
1779
1780 #ifdef CONFIG_SPARSEMEM
1781 #include <asm/sparsemem.h>
1782 #endif
1783
1784 #ifdef CONFIG_FLATMEM
1785 #define pfn_to_nid(pfn) (0)
1786 #endif
1787
1788 #ifdef CONFIG_SPARSEMEM
1789
1790 /*
1791 * PA_SECTION_SHIFT physical address to/from section number
1792 * PFN_SECTION_SHIFT pfn to/from section number
1793 */
1794 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1795 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1796
1797 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1798
1799 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1800 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1801
1802 #define SECTION_BLOCKFLAGS_BITS \
1803 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1804
1805 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1806 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1807 #endif
1808
pfn_to_section_nr(unsigned long pfn)1809 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1810 {
1811 return pfn >> PFN_SECTION_SHIFT;
1812 }
section_nr_to_pfn(unsigned long sec)1813 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1814 {
1815 return sec << PFN_SECTION_SHIFT;
1816 }
1817
1818 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1819 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1820
1821 #define SUBSECTION_SHIFT 21
1822 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1823
1824 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1825 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1826 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1827
1828 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1829 #error Subsection size exceeds section size
1830 #else
1831 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1832 #endif
1833
1834 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1835 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1836
1837 struct mem_section_usage {
1838 struct rcu_head rcu;
1839 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1840 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1841 #endif
1842 /* See declaration of similar field in struct zone */
1843 unsigned long pageblock_flags[0];
1844 };
1845
1846 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1847
1848 struct page;
1849 struct page_ext;
1850 struct mem_section {
1851 /*
1852 * This is, logically, a pointer to an array of struct
1853 * pages. However, it is stored with some other magic.
1854 * (see sparse.c::sparse_init_one_section())
1855 *
1856 * Additionally during early boot we encode node id of
1857 * the location of the section here to guide allocation.
1858 * (see sparse.c::memory_present())
1859 *
1860 * Making it a UL at least makes someone do a cast
1861 * before using it wrong.
1862 */
1863 unsigned long section_mem_map;
1864
1865 struct mem_section_usage *usage;
1866 #ifdef CONFIG_PAGE_EXTENSION
1867 /*
1868 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1869 * section. (see page_ext.h about this.)
1870 */
1871 struct page_ext *page_ext;
1872 unsigned long pad;
1873 #endif
1874 /*
1875 * WARNING: mem_section must be a power-of-2 in size for the
1876 * calculation and use of SECTION_ROOT_MASK to make sense.
1877 */
1878 };
1879
1880 #ifdef CONFIG_SPARSEMEM_EXTREME
1881 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1882 #else
1883 #define SECTIONS_PER_ROOT 1
1884 #endif
1885
1886 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1887 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1888 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1889
1890 #ifdef CONFIG_SPARSEMEM_EXTREME
1891 extern struct mem_section **mem_section;
1892 #else
1893 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1894 #endif
1895
section_to_usemap(struct mem_section * ms)1896 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1897 {
1898 return ms->usage->pageblock_flags;
1899 }
1900
__nr_to_section(unsigned long nr)1901 static inline struct mem_section *__nr_to_section(unsigned long nr)
1902 {
1903 unsigned long root = SECTION_NR_TO_ROOT(nr);
1904
1905 if (unlikely(root >= NR_SECTION_ROOTS))
1906 return NULL;
1907
1908 #ifdef CONFIG_SPARSEMEM_EXTREME
1909 if (!mem_section || !mem_section[root])
1910 return NULL;
1911 #endif
1912 return &mem_section[root][nr & SECTION_ROOT_MASK];
1913 }
1914 extern size_t mem_section_usage_size(void);
1915
1916 /*
1917 * We use the lower bits of the mem_map pointer to store
1918 * a little bit of information. The pointer is calculated
1919 * as mem_map - section_nr_to_pfn(pnum). The result is
1920 * aligned to the minimum alignment of the two values:
1921 * 1. All mem_map arrays are page-aligned.
1922 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1923 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1924 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1925 * worst combination is powerpc with 256k pages,
1926 * which results in PFN_SECTION_SHIFT equal 6.
1927 * To sum it up, at least 6 bits are available on all architectures.
1928 * However, we can exceed 6 bits on some other architectures except
1929 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1930 * with the worst case of 64K pages on arm64) if we make sure the
1931 * exceeded bit is not applicable to powerpc.
1932 */
1933 enum {
1934 SECTION_MARKED_PRESENT_BIT,
1935 SECTION_HAS_MEM_MAP_BIT,
1936 SECTION_IS_ONLINE_BIT,
1937 SECTION_IS_EARLY_BIT,
1938 #ifdef CONFIG_ZONE_DEVICE
1939 SECTION_TAINT_ZONE_DEVICE_BIT,
1940 #endif
1941 SECTION_MAP_LAST_BIT,
1942 };
1943
1944 #define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT)
1945 #define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT)
1946 #define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT)
1947 #define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT)
1948 #ifdef CONFIG_ZONE_DEVICE
1949 #define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1950 #endif
1951 #define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1952 #define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT
1953
__section_mem_map_addr(struct mem_section * section)1954 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1955 {
1956 unsigned long map = section->section_mem_map;
1957 map &= SECTION_MAP_MASK;
1958 return (struct page *)map;
1959 }
1960
present_section(struct mem_section * section)1961 static inline int present_section(struct mem_section *section)
1962 {
1963 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1964 }
1965
present_section_nr(unsigned long nr)1966 static inline int present_section_nr(unsigned long nr)
1967 {
1968 return present_section(__nr_to_section(nr));
1969 }
1970
valid_section(struct mem_section * section)1971 static inline int valid_section(struct mem_section *section)
1972 {
1973 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1974 }
1975
early_section(struct mem_section * section)1976 static inline int early_section(struct mem_section *section)
1977 {
1978 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1979 }
1980
valid_section_nr(unsigned long nr)1981 static inline int valid_section_nr(unsigned long nr)
1982 {
1983 return valid_section(__nr_to_section(nr));
1984 }
1985
online_section(struct mem_section * section)1986 static inline int online_section(struct mem_section *section)
1987 {
1988 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1989 }
1990
1991 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1992 static inline int online_device_section(struct mem_section *section)
1993 {
1994 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1995
1996 return section && ((section->section_mem_map & flags) == flags);
1997 }
1998 #else
online_device_section(struct mem_section * section)1999 static inline int online_device_section(struct mem_section *section)
2000 {
2001 return 0;
2002 }
2003 #endif
2004
online_section_nr(unsigned long nr)2005 static inline int online_section_nr(unsigned long nr)
2006 {
2007 return online_section(__nr_to_section(nr));
2008 }
2009
2010 #ifdef CONFIG_MEMORY_HOTPLUG
2011 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2012 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2013 #endif
2014
__pfn_to_section(unsigned long pfn)2015 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2016 {
2017 return __nr_to_section(pfn_to_section_nr(pfn));
2018 }
2019
2020 extern unsigned long __highest_present_section_nr;
2021
subsection_map_index(unsigned long pfn)2022 static inline int subsection_map_index(unsigned long pfn)
2023 {
2024 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2025 }
2026
2027 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2028 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2029 {
2030 int idx = subsection_map_index(pfn);
2031 struct mem_section_usage *usage = READ_ONCE(ms->usage);
2032
2033 return usage ? test_bit(idx, usage->subsection_map) : 0;
2034 }
2035 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2036 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2037 {
2038 return 1;
2039 }
2040 #endif
2041
2042 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2043 /**
2044 * pfn_valid - check if there is a valid memory map entry for a PFN
2045 * @pfn: the page frame number to check
2046 *
2047 * Check if there is a valid memory map entry aka struct page for the @pfn.
2048 * Note, that availability of the memory map entry does not imply that
2049 * there is actual usable memory at that @pfn. The struct page may
2050 * represent a hole or an unusable page frame.
2051 *
2052 * Return: 1 for PFNs that have memory map entries and 0 otherwise
2053 */
pfn_valid(unsigned long pfn)2054 static inline int pfn_valid(unsigned long pfn)
2055 {
2056 struct mem_section *ms;
2057 int ret;
2058
2059 /*
2060 * Ensure the upper PAGE_SHIFT bits are clear in the
2061 * pfn. Else it might lead to false positives when
2062 * some of the upper bits are set, but the lower bits
2063 * match a valid pfn.
2064 */
2065 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2066 return 0;
2067
2068 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2069 return 0;
2070 ms = __pfn_to_section(pfn);
2071 rcu_read_lock_sched();
2072 if (!valid_section(ms)) {
2073 rcu_read_unlock_sched();
2074 return 0;
2075 }
2076 /*
2077 * Traditionally early sections always returned pfn_valid() for
2078 * the entire section-sized span.
2079 */
2080 ret = early_section(ms) || pfn_section_valid(ms, pfn);
2081 rcu_read_unlock_sched();
2082
2083 return ret;
2084 }
2085 #endif
2086
pfn_in_present_section(unsigned long pfn)2087 static inline int pfn_in_present_section(unsigned long pfn)
2088 {
2089 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2090 return 0;
2091 return present_section(__pfn_to_section(pfn));
2092 }
2093
next_present_section_nr(unsigned long section_nr)2094 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2095 {
2096 while (++section_nr <= __highest_present_section_nr) {
2097 if (present_section_nr(section_nr))
2098 return section_nr;
2099 }
2100
2101 return -1;
2102 }
2103
2104 /*
2105 * These are _only_ used during initialisation, therefore they
2106 * can use __initdata ... They could have names to indicate
2107 * this restriction.
2108 */
2109 #ifdef CONFIG_NUMA
2110 #define pfn_to_nid(pfn) \
2111 ({ \
2112 unsigned long __pfn_to_nid_pfn = (pfn); \
2113 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
2114 })
2115 #else
2116 #define pfn_to_nid(pfn) (0)
2117 #endif
2118
2119 void sparse_init(void);
2120 #else
2121 #define sparse_init() do {} while (0)
2122 #define sparse_index_init(_sec, _nid) do {} while (0)
2123 #define pfn_in_present_section pfn_valid
2124 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2125 #endif /* CONFIG_SPARSEMEM */
2126
2127 #endif /* !__GENERATING_BOUNDS.H */
2128 #endif /* !__ASSEMBLY__ */
2129 #endif /* _LINUX_MMZONE_H */
2130