1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include "extent_map.h"
12 #include "extent_io.h"
13 #include "ordered-data.h"
14 #include "delayed-inode.h"
15
16 /*
17 * Since we search a directory based on f_pos (struct dir_context::pos) we have
18 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so
19 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()).
20 */
21 #define BTRFS_DIR_START_INDEX 2
22
23 /*
24 * ordered_data_close is set by truncate when a file that used
25 * to have good data has been truncated to zero. When it is set
26 * the btrfs file release call will add this inode to the
27 * ordered operations list so that we make sure to flush out any
28 * new data the application may have written before commit.
29 */
30 enum {
31 BTRFS_INODE_FLUSH_ON_CLOSE,
32 BTRFS_INODE_DUMMY,
33 BTRFS_INODE_IN_DEFRAG,
34 BTRFS_INODE_HAS_ASYNC_EXTENT,
35 /*
36 * Always set under the VFS' inode lock, otherwise it can cause races
37 * during fsync (we start as a fast fsync and then end up in a full
38 * fsync racing with ordered extent completion).
39 */
40 BTRFS_INODE_NEEDS_FULL_SYNC,
41 BTRFS_INODE_COPY_EVERYTHING,
42 BTRFS_INODE_IN_DELALLOC_LIST,
43 BTRFS_INODE_HAS_PROPS,
44 BTRFS_INODE_SNAPSHOT_FLUSH,
45 /*
46 * Set and used when logging an inode and it serves to signal that an
47 * inode does not have xattrs, so subsequent fsyncs can avoid searching
48 * for xattrs to log. This bit must be cleared whenever a xattr is added
49 * to an inode.
50 */
51 BTRFS_INODE_NO_XATTRS,
52 /*
53 * Set when we are in a context where we need to start a transaction and
54 * have dirty pages with the respective file range locked. This is to
55 * ensure that when reserving space for the transaction, if we are low
56 * on available space and need to flush delalloc, we will not flush
57 * delalloc for this inode, because that could result in a deadlock (on
58 * the file range, inode's io_tree).
59 */
60 BTRFS_INODE_NO_DELALLOC_FLUSH,
61 /*
62 * Set when we are working on enabling verity for a file. Computing and
63 * writing the whole Merkle tree can take a while so we want to prevent
64 * races where two separate tasks attempt to simultaneously start verity
65 * on the same file.
66 */
67 BTRFS_INODE_VERITY_IN_PROGRESS,
68 /* Set when this inode is a free space inode. */
69 BTRFS_INODE_FREE_SPACE_INODE,
70 };
71
72 /* in memory btrfs inode */
73 struct btrfs_inode {
74 /* which subvolume this inode belongs to */
75 struct btrfs_root *root;
76
77 /* key used to find this inode on disk. This is used by the code
78 * to read in roots of subvolumes
79 */
80 struct btrfs_key location;
81
82 /*
83 * Lock for counters and all fields used to determine if the inode is in
84 * the log or not (last_trans, last_sub_trans, last_log_commit,
85 * logged_trans), to access/update new_delalloc_bytes and to update the
86 * VFS' inode number of bytes used.
87 */
88 spinlock_t lock;
89
90 /* the extent_tree has caches of all the extent mappings to disk */
91 struct extent_map_tree extent_tree;
92
93 /* the io_tree does range state (DIRTY, LOCKED etc) */
94 struct extent_io_tree io_tree;
95
96 /*
97 * Keep track of where the inode has extent items mapped in order to
98 * make sure the i_size adjustments are accurate
99 */
100 struct extent_io_tree file_extent_tree;
101
102 /* held while logging the inode in tree-log.c */
103 struct mutex log_mutex;
104
105 /* used to order data wrt metadata */
106 struct btrfs_ordered_inode_tree ordered_tree;
107
108 /* list of all the delalloc inodes in the FS. There are times we need
109 * to write all the delalloc pages to disk, and this list is used
110 * to walk them all.
111 */
112 struct list_head delalloc_inodes;
113
114 /* node for the red-black tree that links inodes in subvolume root */
115 struct rb_node rb_node;
116
117 unsigned long runtime_flags;
118
119 /* full 64 bit generation number, struct vfs_inode doesn't have a big
120 * enough field for this.
121 */
122 u64 generation;
123
124 /*
125 * transid of the trans_handle that last modified this inode
126 */
127 u64 last_trans;
128
129 /*
130 * transid that last logged this inode
131 */
132 u64 logged_trans;
133
134 /*
135 * log transid when this inode was last modified
136 */
137 int last_sub_trans;
138
139 /* a local copy of root's last_log_commit */
140 int last_log_commit;
141
142 union {
143 /*
144 * Total number of bytes pending delalloc, used by stat to
145 * calculate the real block usage of the file. This is used
146 * only for files.
147 */
148 u64 delalloc_bytes;
149 /*
150 * The lowest possible index of the next dir index key which
151 * points to an inode that needs to be logged.
152 * This is used only for directories.
153 * Use the helpers btrfs_get_first_dir_index_to_log() and
154 * btrfs_set_first_dir_index_to_log() to access this field.
155 */
156 u64 first_dir_index_to_log;
157 };
158
159 union {
160 /*
161 * Total number of bytes pending delalloc that fall within a file
162 * range that is either a hole or beyond EOF (and no prealloc extent
163 * exists in the range). This is always <= delalloc_bytes and this
164 * is used only for files.
165 */
166 u64 new_delalloc_bytes;
167 /*
168 * The offset of the last dir index key that was logged.
169 * This is used only for directories.
170 */
171 u64 last_dir_index_offset;
172 };
173
174 /*
175 * total number of bytes pending defrag, used by stat to check whether
176 * it needs COW.
177 */
178 u64 defrag_bytes;
179
180 /*
181 * the size of the file stored in the metadata on disk. data=ordered
182 * means the in-memory i_size might be larger than the size on disk
183 * because not all the blocks are written yet.
184 */
185 u64 disk_i_size;
186
187 /*
188 * If this is a directory then index_cnt is the counter for the index
189 * number for new files that are created. For an empty directory, this
190 * must be initialized to BTRFS_DIR_START_INDEX.
191 */
192 u64 index_cnt;
193
194 /* Cache the directory index number to speed the dir/file remove */
195 u64 dir_index;
196
197 /* the fsync log has some corner cases that mean we have to check
198 * directories to see if any unlinks have been done before
199 * the directory was logged. See tree-log.c for all the
200 * details
201 */
202 u64 last_unlink_trans;
203
204 /*
205 * The id/generation of the last transaction where this inode was
206 * either the source or the destination of a clone/dedupe operation.
207 * Used when logging an inode to know if there are shared extents that
208 * need special care when logging checksum items, to avoid duplicate
209 * checksum items in a log (which can lead to a corruption where we end
210 * up with missing checksum ranges after log replay).
211 * Protected by the vfs inode lock.
212 */
213 u64 last_reflink_trans;
214
215 /*
216 * Number of bytes outstanding that are going to need csums. This is
217 * used in ENOSPC accounting.
218 */
219 u64 csum_bytes;
220
221 /* Backwards incompatible flags, lower half of inode_item::flags */
222 u32 flags;
223 /* Read-only compatibility flags, upper half of inode_item::flags */
224 u32 ro_flags;
225
226 /*
227 * Counters to keep track of the number of extent item's we may use due
228 * to delalloc and such. outstanding_extents is the number of extent
229 * items we think we'll end up using, and reserved_extents is the number
230 * of extent items we've reserved metadata for.
231 */
232 unsigned outstanding_extents;
233
234 struct btrfs_block_rsv block_rsv;
235
236 /*
237 * Cached values of inode properties
238 */
239 unsigned prop_compress; /* per-file compression algorithm */
240 /*
241 * Force compression on the file using the defrag ioctl, could be
242 * different from prop_compress and takes precedence if set
243 */
244 unsigned defrag_compress;
245
246 struct btrfs_delayed_node *delayed_node;
247
248 /* File creation time. */
249 struct timespec64 i_otime;
250
251 /* Hook into fs_info->delayed_iputs */
252 struct list_head delayed_iput;
253
254 struct rw_semaphore i_mmap_lock;
255 struct inode vfs_inode;
256 };
257
btrfs_get_first_dir_index_to_log(const struct btrfs_inode * inode)258 static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode)
259 {
260 return READ_ONCE(inode->first_dir_index_to_log);
261 }
262
btrfs_set_first_dir_index_to_log(struct btrfs_inode * inode,u64 index)263 static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode,
264 u64 index)
265 {
266 WRITE_ONCE(inode->first_dir_index_to_log, index);
267 }
268
BTRFS_I(const struct inode * inode)269 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
270 {
271 return container_of(inode, struct btrfs_inode, vfs_inode);
272 }
273
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)274 static inline unsigned long btrfs_inode_hash(u64 objectid,
275 const struct btrfs_root *root)
276 {
277 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
278
279 #if BITS_PER_LONG == 32
280 h = (h >> 32) ^ (h & 0xffffffff);
281 #endif
282
283 return (unsigned long)h;
284 }
285
286 #if BITS_PER_LONG == 32
287
288 /*
289 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so
290 * we use the inode's location objectid which is a u64 to avoid truncation.
291 */
btrfs_ino(const struct btrfs_inode * inode)292 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
293 {
294 u64 ino = inode->location.objectid;
295
296 /* type == BTRFS_ROOT_ITEM_KEY: subvol dir */
297 if (inode->location.type == BTRFS_ROOT_ITEM_KEY)
298 ino = inode->vfs_inode.i_ino;
299 return ino;
300 }
301
302 #else
303
btrfs_ino(const struct btrfs_inode * inode)304 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
305 {
306 return inode->vfs_inode.i_ino;
307 }
308
309 #endif
310
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)311 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
312 {
313 i_size_write(&inode->vfs_inode, size);
314 inode->disk_i_size = size;
315 }
316
btrfs_is_free_space_inode(struct btrfs_inode * inode)317 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
318 {
319 return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags);
320 }
321
is_data_inode(struct inode * inode)322 static inline bool is_data_inode(struct inode *inode)
323 {
324 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
325 }
326
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)327 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
328 int mod)
329 {
330 lockdep_assert_held(&inode->lock);
331 inode->outstanding_extents += mod;
332 if (btrfs_is_free_space_inode(inode))
333 return;
334 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
335 mod, inode->outstanding_extents);
336 }
337
338 /*
339 * Called every time after doing a buffered, direct IO or memory mapped write.
340 *
341 * This is to ensure that if we write to a file that was previously fsynced in
342 * the current transaction, then try to fsync it again in the same transaction,
343 * we will know that there were changes in the file and that it needs to be
344 * logged.
345 */
btrfs_set_inode_last_sub_trans(struct btrfs_inode * inode)346 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
347 {
348 spin_lock(&inode->lock);
349 inode->last_sub_trans = inode->root->log_transid;
350 spin_unlock(&inode->lock);
351 }
352
353 /*
354 * Should be called while holding the inode's VFS lock in exclusive mode or in a
355 * context where no one else can access the inode concurrently (during inode
356 * creation or when loading an inode from disk).
357 */
btrfs_set_inode_full_sync(struct btrfs_inode * inode)358 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode)
359 {
360 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
361 /*
362 * The inode may have been part of a reflink operation in the last
363 * transaction that modified it, and then a fsync has reset the
364 * last_reflink_trans to avoid subsequent fsyncs in the same
365 * transaction to do unnecessary work. So update last_reflink_trans
366 * to the last_trans value (we have to be pessimistic and assume a
367 * reflink happened).
368 *
369 * The ->last_trans is protected by the inode's spinlock and we can
370 * have a concurrent ordered extent completion update it. Also set
371 * last_reflink_trans to ->last_trans only if the former is less than
372 * the later, because we can be called in a context where
373 * last_reflink_trans was set to the current transaction generation
374 * while ->last_trans was not yet updated in the current transaction,
375 * and therefore has a lower value.
376 */
377 spin_lock(&inode->lock);
378 if (inode->last_reflink_trans < inode->last_trans)
379 inode->last_reflink_trans = inode->last_trans;
380 spin_unlock(&inode->lock);
381 }
382
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)383 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
384 {
385 bool ret = false;
386
387 spin_lock(&inode->lock);
388 if (inode->logged_trans == generation &&
389 inode->last_sub_trans <= inode->last_log_commit &&
390 inode->last_sub_trans <= inode->root->last_log_commit)
391 ret = true;
392 spin_unlock(&inode->lock);
393 return ret;
394 }
395
396 /*
397 * Check if the inode has flags compatible with compression
398 */
btrfs_inode_can_compress(const struct btrfs_inode * inode)399 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode)
400 {
401 if (inode->flags & BTRFS_INODE_NODATACOW ||
402 inode->flags & BTRFS_INODE_NODATASUM)
403 return false;
404 return true;
405 }
406
407 /* Array of bytes with variable length, hexadecimal format 0x1234 */
408 #define CSUM_FMT "0x%*phN"
409 #define CSUM_FMT_VALUE(size, bytes) size, bytes
410
411 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
412 u32 pgoff, u8 *csum, const u8 * const csum_expected);
413 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
414 u32 bio_offset, struct bio_vec *bv);
415 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
416 u64 *orig_start, u64 *orig_block_len,
417 u64 *ram_bytes, bool nowait, bool strict);
418
419 void __btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode);
420 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
421 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
422 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
423 struct btrfs_inode *dir, struct btrfs_inode *inode,
424 const struct fscrypt_str *name);
425 int btrfs_add_link(struct btrfs_trans_handle *trans,
426 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
427 const struct fscrypt_str *name, int add_backref, u64 index);
428 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry);
429 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
430 int front);
431
432 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
433 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
434 bool in_reclaim_context);
435 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
436 unsigned int extra_bits,
437 struct extent_state **cached_state);
438
439 struct btrfs_new_inode_args {
440 /* Input */
441 struct inode *dir;
442 struct dentry *dentry;
443 struct inode *inode;
444 bool orphan;
445 bool subvol;
446
447 /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */
448 struct posix_acl *default_acl;
449 struct posix_acl *acl;
450 struct fscrypt_name fname;
451 };
452
453 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
454 unsigned int *trans_num_items);
455 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
456 struct btrfs_new_inode_args *args);
457 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
458 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
459 struct inode *dir);
460 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
461 u32 bits);
462 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
463 struct extent_state *state, u32 bits);
464 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
465 struct extent_state *other);
466 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
467 struct extent_state *orig, u64 split);
468 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
469 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
470 void btrfs_evict_inode(struct inode *inode);
471 struct inode *btrfs_alloc_inode(struct super_block *sb);
472 void btrfs_destroy_inode(struct inode *inode);
473 void btrfs_free_inode(struct inode *inode);
474 int btrfs_drop_inode(struct inode *inode);
475 int __init btrfs_init_cachep(void);
476 void __cold btrfs_destroy_cachep(void);
477 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
478 struct btrfs_root *root, struct btrfs_path *path);
479 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
480 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
481 struct page *page, size_t pg_offset,
482 u64 start, u64 end);
483 int btrfs_update_inode(struct btrfs_trans_handle *trans,
484 struct btrfs_root *root, struct btrfs_inode *inode);
485 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
486 struct btrfs_root *root, struct btrfs_inode *inode);
487 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode);
488 int btrfs_orphan_cleanup(struct btrfs_root *root);
489 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
490 void btrfs_add_delayed_iput(struct btrfs_inode *inode);
491 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
492 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
493 int btrfs_prealloc_file_range(struct inode *inode, int mode,
494 u64 start, u64 num_bytes, u64 min_size,
495 loff_t actual_len, u64 *alloc_hint);
496 int btrfs_prealloc_file_range_trans(struct inode *inode,
497 struct btrfs_trans_handle *trans, int mode,
498 u64 start, u64 num_bytes, u64 min_size,
499 loff_t actual_len, u64 *alloc_hint);
500 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
501 u64 start, u64 end, struct writeback_control *wbc);
502 int btrfs_writepage_cow_fixup(struct page *page);
503 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
504 int compress_type);
505 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
506 u64 file_offset, u64 disk_bytenr,
507 u64 disk_io_size,
508 struct page **pages);
509 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
510 struct btrfs_ioctl_encoded_io_args *encoded);
511 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
512 const struct btrfs_ioctl_encoded_io_args *encoded);
513
514 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter,
515 size_t done_before);
516 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
517 size_t done_before);
518
519 extern const struct dentry_operations btrfs_dentry_operations;
520
521 /* Inode locking type flags, by default the exclusive lock is taken. */
522 enum btrfs_ilock_type {
523 ENUM_BIT(BTRFS_ILOCK_SHARED),
524 ENUM_BIT(BTRFS_ILOCK_TRY),
525 ENUM_BIT(BTRFS_ILOCK_MMAP),
526 };
527
528 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags);
529 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags);
530 void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes,
531 const u64 del_bytes);
532 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
533
534 #endif
535