1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Dave Airlie
30 */
31
32 #include <linux/atomic.h>
33 #include <linux/firmware.h>
34 #include <linux/kref.h>
35 #include <linux/sched/signal.h>
36 #include <linux/seq_file.h>
37 #include <linux/slab.h>
38 #include <linux/wait.h>
39
40 #include <drm/drm_device.h>
41 #include <drm/drm_file.h>
42
43 #include "radeon.h"
44 #include "radeon_reg.h"
45 #include "radeon_trace.h"
46
47 /*
48 * Fences
49 * Fences mark an event in the GPUs pipeline and are used
50 * for GPU/CPU synchronization. When the fence is written,
51 * it is expected that all buffers associated with that fence
52 * are no longer in use by the associated ring on the GPU and
53 * that the relevant GPU caches have been flushed. Whether
54 * we use a scratch register or memory location depends on the asic
55 * and whether writeback is enabled.
56 */
57
58 /**
59 * radeon_fence_write - write a fence value
60 *
61 * @rdev: radeon_device pointer
62 * @seq: sequence number to write
63 * @ring: ring index the fence is associated with
64 *
65 * Writes a fence value to memory or a scratch register (all asics).
66 */
radeon_fence_write(struct radeon_device * rdev,u32 seq,int ring)67 static void radeon_fence_write(struct radeon_device *rdev, u32 seq, int ring)
68 {
69 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
70 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
71 if (drv->cpu_addr) {
72 *drv->cpu_addr = cpu_to_le32(seq);
73 }
74 } else {
75 WREG32(drv->scratch_reg, seq);
76 }
77 }
78
79 /**
80 * radeon_fence_read - read a fence value
81 *
82 * @rdev: radeon_device pointer
83 * @ring: ring index the fence is associated with
84 *
85 * Reads a fence value from memory or a scratch register (all asics).
86 * Returns the value of the fence read from memory or register.
87 */
radeon_fence_read(struct radeon_device * rdev,int ring)88 static u32 radeon_fence_read(struct radeon_device *rdev, int ring)
89 {
90 struct radeon_fence_driver *drv = &rdev->fence_drv[ring];
91 u32 seq = 0;
92
93 if (likely(rdev->wb.enabled || !drv->scratch_reg)) {
94 if (drv->cpu_addr) {
95 seq = le32_to_cpu(*drv->cpu_addr);
96 } else {
97 seq = lower_32_bits(atomic64_read(&drv->last_seq));
98 }
99 } else {
100 seq = RREG32(drv->scratch_reg);
101 }
102 return seq;
103 }
104
105 /**
106 * radeon_fence_schedule_check - schedule lockup check
107 *
108 * @rdev: radeon_device pointer
109 * @ring: ring index we should work with
110 *
111 * Queues a delayed work item to check for lockups.
112 */
radeon_fence_schedule_check(struct radeon_device * rdev,int ring)113 static void radeon_fence_schedule_check(struct radeon_device *rdev, int ring)
114 {
115 /*
116 * Do not reset the timer here with mod_delayed_work,
117 * this can livelock in an interaction with TTM delayed destroy.
118 */
119 queue_delayed_work(system_power_efficient_wq,
120 &rdev->fence_drv[ring].lockup_work,
121 RADEON_FENCE_JIFFIES_TIMEOUT);
122 }
123
124 /**
125 * radeon_fence_emit - emit a fence on the requested ring
126 *
127 * @rdev: radeon_device pointer
128 * @fence: radeon fence object
129 * @ring: ring index the fence is associated with
130 *
131 * Emits a fence command on the requested ring (all asics).
132 * Returns 0 on success, -ENOMEM on failure.
133 */
radeon_fence_emit(struct radeon_device * rdev,struct radeon_fence ** fence,int ring)134 int radeon_fence_emit(struct radeon_device *rdev,
135 struct radeon_fence **fence,
136 int ring)
137 {
138 u64 seq;
139
140 /* we are protected by the ring emission mutex */
141 *fence = kmalloc(sizeof(struct radeon_fence), GFP_KERNEL);
142 if ((*fence) == NULL) {
143 return -ENOMEM;
144 }
145 (*fence)->rdev = rdev;
146 (*fence)->seq = seq = ++rdev->fence_drv[ring].sync_seq[ring];
147 (*fence)->ring = ring;
148 (*fence)->is_vm_update = false;
149 dma_fence_init(&(*fence)->base, &radeon_fence_ops,
150 &rdev->fence_queue.lock,
151 rdev->fence_context + ring,
152 seq);
153 radeon_fence_ring_emit(rdev, ring, *fence);
154 trace_radeon_fence_emit(rdev->ddev, ring, (*fence)->seq);
155 radeon_fence_schedule_check(rdev, ring);
156 return 0;
157 }
158
159 /*
160 * radeon_fence_check_signaled - callback from fence_queue
161 *
162 * this function is called with fence_queue lock held, which is also used
163 * for the fence locking itself, so unlocked variants are used for
164 * fence_signal, and remove_wait_queue.
165 */
radeon_fence_check_signaled(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)166 static int radeon_fence_check_signaled(wait_queue_entry_t *wait, unsigned mode, int flags, void *key)
167 {
168 struct radeon_fence *fence;
169 u64 seq;
170
171 fence = container_of(wait, struct radeon_fence, fence_wake);
172
173 /*
174 * We cannot use radeon_fence_process here because we're already
175 * in the waitqueue, in a call from wake_up_all.
176 */
177 seq = atomic64_read(&fence->rdev->fence_drv[fence->ring].last_seq);
178 if (seq >= fence->seq) {
179 dma_fence_signal_locked(&fence->base);
180 radeon_irq_kms_sw_irq_put(fence->rdev, fence->ring);
181 __remove_wait_queue(&fence->rdev->fence_queue, &fence->fence_wake);
182 dma_fence_put(&fence->base);
183 }
184 return 0;
185 }
186
187 /**
188 * radeon_fence_activity - check for fence activity
189 *
190 * @rdev: radeon_device pointer
191 * @ring: ring index the fence is associated with
192 *
193 * Checks the current fence value and calculates the last
194 * signalled fence value. Returns true if activity occured
195 * on the ring, and the fence_queue should be waken up.
196 */
radeon_fence_activity(struct radeon_device * rdev,int ring)197 static bool radeon_fence_activity(struct radeon_device *rdev, int ring)
198 {
199 uint64_t seq, last_seq, last_emitted;
200 unsigned count_loop = 0;
201 bool wake = false;
202
203 /* Note there is a scenario here for an infinite loop but it's
204 * very unlikely to happen. For it to happen, the current polling
205 * process need to be interrupted by another process and another
206 * process needs to update the last_seq btw the atomic read and
207 * xchg of the current process.
208 *
209 * More over for this to go in infinite loop there need to be
210 * continuously new fence signaled ie radeon_fence_read needs
211 * to return a different value each time for both the currently
212 * polling process and the other process that xchg the last_seq
213 * btw atomic read and xchg of the current process. And the
214 * value the other process set as last seq must be higher than
215 * the seq value we just read. Which means that current process
216 * need to be interrupted after radeon_fence_read and before
217 * atomic xchg.
218 *
219 * To be even more safe we count the number of time we loop and
220 * we bail after 10 loop just accepting the fact that we might
221 * have temporarly set the last_seq not to the true real last
222 * seq but to an older one.
223 */
224 last_seq = atomic64_read(&rdev->fence_drv[ring].last_seq);
225 do {
226 last_emitted = rdev->fence_drv[ring].sync_seq[ring];
227 seq = radeon_fence_read(rdev, ring);
228 seq |= last_seq & 0xffffffff00000000LL;
229 if (seq < last_seq) {
230 seq &= 0xffffffff;
231 seq |= last_emitted & 0xffffffff00000000LL;
232 }
233
234 if (seq <= last_seq || seq > last_emitted) {
235 break;
236 }
237 /* If we loop over we don't want to return without
238 * checking if a fence is signaled as it means that the
239 * seq we just read is different from the previous on.
240 */
241 wake = true;
242 last_seq = seq;
243 if ((count_loop++) > 10) {
244 /* We looped over too many time leave with the
245 * fact that we might have set an older fence
246 * seq then the current real last seq as signaled
247 * by the hw.
248 */
249 break;
250 }
251 } while (atomic64_xchg(&rdev->fence_drv[ring].last_seq, seq) > seq);
252
253 if (seq < last_emitted)
254 radeon_fence_schedule_check(rdev, ring);
255
256 return wake;
257 }
258
259 /**
260 * radeon_fence_check_lockup - check for hardware lockup
261 *
262 * @work: delayed work item
263 *
264 * Checks for fence activity and if there is none probe
265 * the hardware if a lockup occured.
266 */
radeon_fence_check_lockup(struct work_struct * work)267 static void radeon_fence_check_lockup(struct work_struct *work)
268 {
269 struct radeon_fence_driver *fence_drv;
270 struct radeon_device *rdev;
271 int ring;
272
273 fence_drv = container_of(work, struct radeon_fence_driver,
274 lockup_work.work);
275 rdev = fence_drv->rdev;
276 ring = fence_drv - &rdev->fence_drv[0];
277
278 if (!down_read_trylock(&rdev->exclusive_lock)) {
279 /* just reschedule the check if a reset is going on */
280 radeon_fence_schedule_check(rdev, ring);
281 return;
282 }
283
284 if (fence_drv->delayed_irq && rdev->irq.installed) {
285 unsigned long irqflags;
286
287 fence_drv->delayed_irq = false;
288 spin_lock_irqsave(&rdev->irq.lock, irqflags);
289 radeon_irq_set(rdev);
290 spin_unlock_irqrestore(&rdev->irq.lock, irqflags);
291 }
292
293 if (radeon_fence_activity(rdev, ring))
294 wake_up_all(&rdev->fence_queue);
295
296 else if (radeon_ring_is_lockup(rdev, ring, &rdev->ring[ring])) {
297
298 /* good news we believe it's a lockup */
299 dev_warn(rdev->dev, "GPU lockup (current fence id "
300 "0x%016llx last fence id 0x%016llx on ring %d)\n",
301 (uint64_t)atomic64_read(&fence_drv->last_seq),
302 fence_drv->sync_seq[ring], ring);
303
304 /* remember that we need an reset */
305 rdev->needs_reset = true;
306 wake_up_all(&rdev->fence_queue);
307 }
308 up_read(&rdev->exclusive_lock);
309 }
310
311 /**
312 * radeon_fence_process - process a fence
313 *
314 * @rdev: radeon_device pointer
315 * @ring: ring index the fence is associated with
316 *
317 * Checks the current fence value and wakes the fence queue
318 * if the sequence number has increased (all asics).
319 */
radeon_fence_process(struct radeon_device * rdev,int ring)320 void radeon_fence_process(struct radeon_device *rdev, int ring)
321 {
322 if (radeon_fence_activity(rdev, ring))
323 wake_up_all(&rdev->fence_queue);
324 }
325
326 /**
327 * radeon_fence_seq_signaled - check if a fence sequence number has signaled
328 *
329 * @rdev: radeon device pointer
330 * @seq: sequence number
331 * @ring: ring index the fence is associated with
332 *
333 * Check if the last signaled fence sequnce number is >= the requested
334 * sequence number (all asics).
335 * Returns true if the fence has signaled (current fence value
336 * is >= requested value) or false if it has not (current fence
337 * value is < the requested value. Helper function for
338 * radeon_fence_signaled().
339 */
radeon_fence_seq_signaled(struct radeon_device * rdev,u64 seq,unsigned ring)340 static bool radeon_fence_seq_signaled(struct radeon_device *rdev,
341 u64 seq, unsigned ring)
342 {
343 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
344 return true;
345 }
346 /* poll new last sequence at least once */
347 radeon_fence_process(rdev, ring);
348 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
349 return true;
350 }
351 return false;
352 }
353
radeon_fence_is_signaled(struct dma_fence * f)354 static bool radeon_fence_is_signaled(struct dma_fence *f)
355 {
356 struct radeon_fence *fence = to_radeon_fence(f);
357 struct radeon_device *rdev = fence->rdev;
358 unsigned ring = fence->ring;
359 u64 seq = fence->seq;
360
361 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
362 return true;
363 }
364
365 if (down_read_trylock(&rdev->exclusive_lock)) {
366 radeon_fence_process(rdev, ring);
367 up_read(&rdev->exclusive_lock);
368
369 if (atomic64_read(&rdev->fence_drv[ring].last_seq) >= seq) {
370 return true;
371 }
372 }
373 return false;
374 }
375
376 /**
377 * radeon_fence_enable_signaling - enable signalling on fence
378 * @f: fence
379 *
380 * This function is called with fence_queue lock held, and adds a callback
381 * to fence_queue that checks if this fence is signaled, and if so it
382 * signals the fence and removes itself.
383 */
radeon_fence_enable_signaling(struct dma_fence * f)384 static bool radeon_fence_enable_signaling(struct dma_fence *f)
385 {
386 struct radeon_fence *fence = to_radeon_fence(f);
387 struct radeon_device *rdev = fence->rdev;
388
389 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq)
390 return false;
391
392 if (down_read_trylock(&rdev->exclusive_lock)) {
393 radeon_irq_kms_sw_irq_get(rdev, fence->ring);
394
395 if (radeon_fence_activity(rdev, fence->ring))
396 wake_up_all_locked(&rdev->fence_queue);
397
398 /* did fence get signaled after we enabled the sw irq? */
399 if (atomic64_read(&rdev->fence_drv[fence->ring].last_seq) >= fence->seq) {
400 radeon_irq_kms_sw_irq_put(rdev, fence->ring);
401 up_read(&rdev->exclusive_lock);
402 return false;
403 }
404
405 up_read(&rdev->exclusive_lock);
406 } else {
407 /* we're probably in a lockup, lets not fiddle too much */
408 if (radeon_irq_kms_sw_irq_get_delayed(rdev, fence->ring))
409 rdev->fence_drv[fence->ring].delayed_irq = true;
410 radeon_fence_schedule_check(rdev, fence->ring);
411 }
412
413 fence->fence_wake.flags = 0;
414 fence->fence_wake.private = NULL;
415 fence->fence_wake.func = radeon_fence_check_signaled;
416 __add_wait_queue(&rdev->fence_queue, &fence->fence_wake);
417 dma_fence_get(f);
418 return true;
419 }
420
421 /**
422 * radeon_fence_signaled - check if a fence has signaled
423 *
424 * @fence: radeon fence object
425 *
426 * Check if the requested fence has signaled (all asics).
427 * Returns true if the fence has signaled or false if it has not.
428 */
radeon_fence_signaled(struct radeon_fence * fence)429 bool radeon_fence_signaled(struct radeon_fence *fence)
430 {
431 if (!fence)
432 return true;
433
434 if (radeon_fence_seq_signaled(fence->rdev, fence->seq, fence->ring)) {
435 dma_fence_signal(&fence->base);
436 return true;
437 }
438 return false;
439 }
440
441 /**
442 * radeon_fence_any_seq_signaled - check if any sequence number is signaled
443 *
444 * @rdev: radeon device pointer
445 * @seq: sequence numbers
446 *
447 * Check if the last signaled fence sequnce number is >= the requested
448 * sequence number (all asics).
449 * Returns true if any has signaled (current value is >= requested value)
450 * or false if it has not. Helper function for radeon_fence_wait_seq.
451 */
radeon_fence_any_seq_signaled(struct radeon_device * rdev,u64 * seq)452 static bool radeon_fence_any_seq_signaled(struct radeon_device *rdev, u64 *seq)
453 {
454 unsigned i;
455
456 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
457 if (seq[i] && radeon_fence_seq_signaled(rdev, seq[i], i))
458 return true;
459 }
460 return false;
461 }
462
463 /**
464 * radeon_fence_wait_seq_timeout - wait for a specific sequence numbers
465 *
466 * @rdev: radeon device pointer
467 * @target_seq: sequence number(s) we want to wait for
468 * @intr: use interruptable sleep
469 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
470 *
471 * Wait for the requested sequence number(s) to be written by any ring
472 * (all asics). Sequnce number array is indexed by ring id.
473 * @intr selects whether to use interruptable (true) or non-interruptable
474 * (false) sleep when waiting for the sequence number. Helper function
475 * for radeon_fence_wait_*().
476 * Returns remaining time if the sequence number has passed, 0 when
477 * the wait timeout, or an error for all other cases.
478 * -EDEADLK is returned when a GPU lockup has been detected.
479 */
radeon_fence_wait_seq_timeout(struct radeon_device * rdev,u64 * target_seq,bool intr,long timeout)480 static long radeon_fence_wait_seq_timeout(struct radeon_device *rdev,
481 u64 *target_seq, bool intr,
482 long timeout)
483 {
484 long r;
485 int i;
486
487 if (radeon_fence_any_seq_signaled(rdev, target_seq))
488 return timeout;
489
490 /* enable IRQs and tracing */
491 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
492 if (!target_seq[i])
493 continue;
494
495 trace_radeon_fence_wait_begin(rdev->ddev, i, target_seq[i]);
496 radeon_irq_kms_sw_irq_get(rdev, i);
497 }
498
499 if (intr) {
500 r = wait_event_interruptible_timeout(rdev->fence_queue, (
501 radeon_fence_any_seq_signaled(rdev, target_seq)
502 || rdev->needs_reset), timeout);
503 } else {
504 r = wait_event_timeout(rdev->fence_queue, (
505 radeon_fence_any_seq_signaled(rdev, target_seq)
506 || rdev->needs_reset), timeout);
507 }
508
509 if (rdev->needs_reset)
510 r = -EDEADLK;
511
512 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
513 if (!target_seq[i])
514 continue;
515
516 radeon_irq_kms_sw_irq_put(rdev, i);
517 trace_radeon_fence_wait_end(rdev->ddev, i, target_seq[i]);
518 }
519
520 return r;
521 }
522
523 /**
524 * radeon_fence_wait_timeout - wait for a fence to signal with timeout
525 *
526 * @fence: radeon fence object
527 * @intr: use interruptible sleep
528 *
529 * Wait for the requested fence to signal (all asics).
530 * @intr selects whether to use interruptable (true) or non-interruptable
531 * (false) sleep when waiting for the fence.
532 * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
533 * Returns remaining time if the sequence number has passed, 0 when
534 * the wait timeout, or an error for all other cases.
535 */
radeon_fence_wait_timeout(struct radeon_fence * fence,bool intr,long timeout)536 long radeon_fence_wait_timeout(struct radeon_fence *fence, bool intr, long timeout)
537 {
538 uint64_t seq[RADEON_NUM_RINGS] = {};
539 long r;
540
541 /*
542 * This function should not be called on !radeon fences.
543 * If this is the case, it would mean this function can
544 * also be called on radeon fences belonging to another card.
545 * exclusive_lock is not held in that case.
546 */
547 if (WARN_ON_ONCE(!to_radeon_fence(&fence->base)))
548 return dma_fence_wait(&fence->base, intr);
549
550 seq[fence->ring] = fence->seq;
551 r = radeon_fence_wait_seq_timeout(fence->rdev, seq, intr, timeout);
552 if (r <= 0) {
553 return r;
554 }
555
556 dma_fence_signal(&fence->base);
557 return r;
558 }
559
560 /**
561 * radeon_fence_wait - wait for a fence to signal
562 *
563 * @fence: radeon fence object
564 * @intr: use interruptible sleep
565 *
566 * Wait for the requested fence to signal (all asics).
567 * @intr selects whether to use interruptable (true) or non-interruptable
568 * (false) sleep when waiting for the fence.
569 * Returns 0 if the fence has passed, error for all other cases.
570 */
radeon_fence_wait(struct radeon_fence * fence,bool intr)571 int radeon_fence_wait(struct radeon_fence *fence, bool intr)
572 {
573 long r = radeon_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
574 if (r > 0) {
575 return 0;
576 } else {
577 return r;
578 }
579 }
580
581 /**
582 * radeon_fence_wait_any - wait for a fence to signal on any ring
583 *
584 * @rdev: radeon device pointer
585 * @fences: radeon fence object(s)
586 * @intr: use interruptable sleep
587 *
588 * Wait for any requested fence to signal (all asics). Fence
589 * array is indexed by ring id. @intr selects whether to use
590 * interruptable (true) or non-interruptable (false) sleep when
591 * waiting for the fences. Used by the suballocator.
592 * Returns 0 if any fence has passed, error for all other cases.
593 */
radeon_fence_wait_any(struct radeon_device * rdev,struct radeon_fence ** fences,bool intr)594 int radeon_fence_wait_any(struct radeon_device *rdev,
595 struct radeon_fence **fences,
596 bool intr)
597 {
598 uint64_t seq[RADEON_NUM_RINGS];
599 unsigned i, num_rings = 0;
600 long r;
601
602 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
603 seq[i] = 0;
604
605 if (!fences[i]) {
606 continue;
607 }
608
609 seq[i] = fences[i]->seq;
610 ++num_rings;
611 }
612
613 /* nothing to wait for ? */
614 if (num_rings == 0)
615 return -ENOENT;
616
617 r = radeon_fence_wait_seq_timeout(rdev, seq, intr, MAX_SCHEDULE_TIMEOUT);
618 if (r < 0) {
619 return r;
620 }
621 return 0;
622 }
623
624 /**
625 * radeon_fence_wait_next - wait for the next fence to signal
626 *
627 * @rdev: radeon device pointer
628 * @ring: ring index the fence is associated with
629 *
630 * Wait for the next fence on the requested ring to signal (all asics).
631 * Returns 0 if the next fence has passed, error for all other cases.
632 * Caller must hold ring lock.
633 */
radeon_fence_wait_next(struct radeon_device * rdev,int ring)634 int radeon_fence_wait_next(struct radeon_device *rdev, int ring)
635 {
636 uint64_t seq[RADEON_NUM_RINGS] = {};
637 long r;
638
639 seq[ring] = atomic64_read(&rdev->fence_drv[ring].last_seq) + 1ULL;
640 if (seq[ring] >= rdev->fence_drv[ring].sync_seq[ring]) {
641 /* nothing to wait for, last_seq is
642 already the last emited fence */
643 return -ENOENT;
644 }
645 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
646 if (r < 0)
647 return r;
648 return 0;
649 }
650
651 /**
652 * radeon_fence_wait_empty - wait for all fences to signal
653 *
654 * @rdev: radeon device pointer
655 * @ring: ring index the fence is associated with
656 *
657 * Wait for all fences on the requested ring to signal (all asics).
658 * Returns 0 if the fences have passed, error for all other cases.
659 * Caller must hold ring lock.
660 */
radeon_fence_wait_empty(struct radeon_device * rdev,int ring)661 int radeon_fence_wait_empty(struct radeon_device *rdev, int ring)
662 {
663 uint64_t seq[RADEON_NUM_RINGS] = {};
664 long r;
665
666 seq[ring] = rdev->fence_drv[ring].sync_seq[ring];
667 if (!seq[ring])
668 return 0;
669
670 r = radeon_fence_wait_seq_timeout(rdev, seq, false, MAX_SCHEDULE_TIMEOUT);
671 if (r < 0) {
672 if (r == -EDEADLK)
673 return -EDEADLK;
674
675 dev_err(rdev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
676 ring, r);
677 }
678 return 0;
679 }
680
681 /**
682 * radeon_fence_ref - take a ref on a fence
683 *
684 * @fence: radeon fence object
685 *
686 * Take a reference on a fence (all asics).
687 * Returns the fence.
688 */
radeon_fence_ref(struct radeon_fence * fence)689 struct radeon_fence *radeon_fence_ref(struct radeon_fence *fence)
690 {
691 dma_fence_get(&fence->base);
692 return fence;
693 }
694
695 /**
696 * radeon_fence_unref - remove a ref on a fence
697 *
698 * @fence: radeon fence object
699 *
700 * Remove a reference on a fence (all asics).
701 */
radeon_fence_unref(struct radeon_fence ** fence)702 void radeon_fence_unref(struct radeon_fence **fence)
703 {
704 struct radeon_fence *tmp = *fence;
705
706 *fence = NULL;
707 if (tmp) {
708 dma_fence_put(&tmp->base);
709 }
710 }
711
712 /**
713 * radeon_fence_count_emitted - get the count of emitted fences
714 *
715 * @rdev: radeon device pointer
716 * @ring: ring index the fence is associated with
717 *
718 * Get the number of fences emitted on the requested ring (all asics).
719 * Returns the number of emitted fences on the ring. Used by the
720 * dynpm code to ring track activity.
721 */
radeon_fence_count_emitted(struct radeon_device * rdev,int ring)722 unsigned radeon_fence_count_emitted(struct radeon_device *rdev, int ring)
723 {
724 uint64_t emitted;
725
726 /* We are not protected by ring lock when reading the last sequence
727 * but it's ok to report slightly wrong fence count here.
728 */
729 radeon_fence_process(rdev, ring);
730 emitted = rdev->fence_drv[ring].sync_seq[ring]
731 - atomic64_read(&rdev->fence_drv[ring].last_seq);
732 /* to avoid 32bits warp around */
733 if (emitted > 0x10000000) {
734 emitted = 0x10000000;
735 }
736 return (unsigned)emitted;
737 }
738
739 /**
740 * radeon_fence_need_sync - do we need a semaphore
741 *
742 * @fence: radeon fence object
743 * @dst_ring: which ring to check against
744 *
745 * Check if the fence needs to be synced against another ring
746 * (all asics). If so, we need to emit a semaphore.
747 * Returns true if we need to sync with another ring, false if
748 * not.
749 */
radeon_fence_need_sync(struct radeon_fence * fence,int dst_ring)750 bool radeon_fence_need_sync(struct radeon_fence *fence, int dst_ring)
751 {
752 struct radeon_fence_driver *fdrv;
753
754 if (!fence) {
755 return false;
756 }
757
758 if (fence->ring == dst_ring) {
759 return false;
760 }
761
762 /* we are protected by the ring mutex */
763 fdrv = &fence->rdev->fence_drv[dst_ring];
764 if (fence->seq <= fdrv->sync_seq[fence->ring]) {
765 return false;
766 }
767
768 return true;
769 }
770
771 /**
772 * radeon_fence_note_sync - record the sync point
773 *
774 * @fence: radeon fence object
775 * @dst_ring: which ring to check against
776 *
777 * Note the sequence number at which point the fence will
778 * be synced with the requested ring (all asics).
779 */
radeon_fence_note_sync(struct radeon_fence * fence,int dst_ring)780 void radeon_fence_note_sync(struct radeon_fence *fence, int dst_ring)
781 {
782 struct radeon_fence_driver *dst, *src;
783 unsigned i;
784
785 if (!fence) {
786 return;
787 }
788
789 if (fence->ring == dst_ring) {
790 return;
791 }
792
793 /* we are protected by the ring mutex */
794 src = &fence->rdev->fence_drv[fence->ring];
795 dst = &fence->rdev->fence_drv[dst_ring];
796 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
797 if (i == dst_ring) {
798 continue;
799 }
800 dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
801 }
802 }
803
804 /**
805 * radeon_fence_driver_start_ring - make the fence driver
806 * ready for use on the requested ring.
807 *
808 * @rdev: radeon device pointer
809 * @ring: ring index to start the fence driver on
810 *
811 * Make the fence driver ready for processing (all asics).
812 * Not all asics have all rings, so each asic will only
813 * start the fence driver on the rings it has.
814 * Returns 0 for success, errors for failure.
815 */
radeon_fence_driver_start_ring(struct radeon_device * rdev,int ring)816 int radeon_fence_driver_start_ring(struct radeon_device *rdev, int ring)
817 {
818 uint64_t index;
819 int r;
820
821 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
822 if (rdev->wb.use_event || !radeon_ring_supports_scratch_reg(rdev, &rdev->ring[ring])) {
823 rdev->fence_drv[ring].scratch_reg = 0;
824 if (ring != R600_RING_TYPE_UVD_INDEX) {
825 index = R600_WB_EVENT_OFFSET + ring * 4;
826 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
827 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr +
828 index;
829
830 } else {
831 /* put fence directly behind firmware */
832 index = ALIGN(rdev->uvd_fw->size, 8);
833 rdev->fence_drv[ring].cpu_addr = rdev->uvd.cpu_addr + index;
834 rdev->fence_drv[ring].gpu_addr = rdev->uvd.gpu_addr + index;
835 }
836
837 } else {
838 r = radeon_scratch_get(rdev, &rdev->fence_drv[ring].scratch_reg);
839 if (r) {
840 dev_err(rdev->dev, "fence failed to get scratch register\n");
841 return r;
842 }
843 index = RADEON_WB_SCRATCH_OFFSET +
844 rdev->fence_drv[ring].scratch_reg -
845 rdev->scratch.reg_base;
846 rdev->fence_drv[ring].cpu_addr = &rdev->wb.wb[index/4];
847 rdev->fence_drv[ring].gpu_addr = rdev->wb.gpu_addr + index;
848 }
849 radeon_fence_write(rdev, atomic64_read(&rdev->fence_drv[ring].last_seq), ring);
850 rdev->fence_drv[ring].initialized = true;
851 dev_info(rdev->dev, "fence driver on ring %d use gpu addr 0x%016llx\n",
852 ring, rdev->fence_drv[ring].gpu_addr);
853 return 0;
854 }
855
856 /**
857 * radeon_fence_driver_init_ring - init the fence driver
858 * for the requested ring.
859 *
860 * @rdev: radeon device pointer
861 * @ring: ring index to start the fence driver on
862 *
863 * Init the fence driver for the requested ring (all asics).
864 * Helper function for radeon_fence_driver_init().
865 */
radeon_fence_driver_init_ring(struct radeon_device * rdev,int ring)866 static void radeon_fence_driver_init_ring(struct radeon_device *rdev, int ring)
867 {
868 int i;
869
870 rdev->fence_drv[ring].scratch_reg = -1;
871 rdev->fence_drv[ring].cpu_addr = NULL;
872 rdev->fence_drv[ring].gpu_addr = 0;
873 for (i = 0; i < RADEON_NUM_RINGS; ++i)
874 rdev->fence_drv[ring].sync_seq[i] = 0;
875 atomic64_set(&rdev->fence_drv[ring].last_seq, 0);
876 rdev->fence_drv[ring].initialized = false;
877 INIT_DELAYED_WORK(&rdev->fence_drv[ring].lockup_work,
878 radeon_fence_check_lockup);
879 rdev->fence_drv[ring].rdev = rdev;
880 }
881
882 /**
883 * radeon_fence_driver_init - init the fence driver
884 * for all possible rings.
885 *
886 * @rdev: radeon device pointer
887 *
888 * Init the fence driver for all possible rings (all asics).
889 * Not all asics have all rings, so each asic will only
890 * start the fence driver on the rings it has using
891 * radeon_fence_driver_start_ring().
892 */
radeon_fence_driver_init(struct radeon_device * rdev)893 void radeon_fence_driver_init(struct radeon_device *rdev)
894 {
895 int ring;
896
897 init_waitqueue_head(&rdev->fence_queue);
898 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
899 radeon_fence_driver_init_ring(rdev, ring);
900 }
901
902 radeon_debugfs_fence_init(rdev);
903 }
904
905 /**
906 * radeon_fence_driver_fini - tear down the fence driver
907 * for all possible rings.
908 *
909 * @rdev: radeon device pointer
910 *
911 * Tear down the fence driver for all possible rings (all asics).
912 */
radeon_fence_driver_fini(struct radeon_device * rdev)913 void radeon_fence_driver_fini(struct radeon_device *rdev)
914 {
915 int ring, r;
916
917 mutex_lock(&rdev->ring_lock);
918 for (ring = 0; ring < RADEON_NUM_RINGS; ring++) {
919 if (!rdev->fence_drv[ring].initialized)
920 continue;
921 r = radeon_fence_wait_empty(rdev, ring);
922 if (r) {
923 /* no need to trigger GPU reset as we are unloading */
924 radeon_fence_driver_force_completion(rdev, ring);
925 }
926 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
927 wake_up_all(&rdev->fence_queue);
928 radeon_scratch_free(rdev, rdev->fence_drv[ring].scratch_reg);
929 rdev->fence_drv[ring].initialized = false;
930 }
931 mutex_unlock(&rdev->ring_lock);
932 }
933
934 /**
935 * radeon_fence_driver_force_completion - force all fence waiter to complete
936 *
937 * @rdev: radeon device pointer
938 * @ring: the ring to complete
939 *
940 * In case of GPU reset failure make sure no process keep waiting on fence
941 * that will never complete.
942 */
radeon_fence_driver_force_completion(struct radeon_device * rdev,int ring)943 void radeon_fence_driver_force_completion(struct radeon_device *rdev, int ring)
944 {
945 if (rdev->fence_drv[ring].initialized) {
946 radeon_fence_write(rdev, rdev->fence_drv[ring].sync_seq[ring], ring);
947 cancel_delayed_work_sync(&rdev->fence_drv[ring].lockup_work);
948 }
949 }
950
951
952 /*
953 * Fence debugfs
954 */
955 #if defined(CONFIG_DEBUG_FS)
radeon_debugfs_fence_info_show(struct seq_file * m,void * data)956 static int radeon_debugfs_fence_info_show(struct seq_file *m, void *data)
957 {
958 struct radeon_device *rdev = m->private;
959 int i, j;
960
961 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
962 if (!rdev->fence_drv[i].initialized)
963 continue;
964
965 radeon_fence_process(rdev, i);
966
967 seq_printf(m, "--- ring %d ---\n", i);
968 seq_printf(m, "Last signaled fence 0x%016llx\n",
969 (unsigned long long)atomic64_read(&rdev->fence_drv[i].last_seq));
970 seq_printf(m, "Last emitted 0x%016llx\n",
971 rdev->fence_drv[i].sync_seq[i]);
972
973 for (j = 0; j < RADEON_NUM_RINGS; ++j) {
974 if (i != j && rdev->fence_drv[j].initialized)
975 seq_printf(m, "Last sync to ring %d 0x%016llx\n",
976 j, rdev->fence_drv[i].sync_seq[j]);
977 }
978 }
979 return 0;
980 }
981
982 /*
983 * radeon_debugfs_gpu_reset - manually trigger a gpu reset
984 *
985 * Manually trigger a gpu reset at the next fence wait.
986 */
radeon_debugfs_gpu_reset(void * data,u64 * val)987 static int radeon_debugfs_gpu_reset(void *data, u64 *val)
988 {
989 struct radeon_device *rdev = (struct radeon_device *)data;
990
991 down_read(&rdev->exclusive_lock);
992 *val = rdev->needs_reset;
993 rdev->needs_reset = true;
994 wake_up_all(&rdev->fence_queue);
995 up_read(&rdev->exclusive_lock);
996
997 return 0;
998 }
999 DEFINE_SHOW_ATTRIBUTE(radeon_debugfs_fence_info);
1000 DEFINE_DEBUGFS_ATTRIBUTE(radeon_debugfs_gpu_reset_fops,
1001 radeon_debugfs_gpu_reset, NULL, "%lld\n");
1002 #endif
1003
radeon_debugfs_fence_init(struct radeon_device * rdev)1004 void radeon_debugfs_fence_init(struct radeon_device *rdev)
1005 {
1006 #if defined(CONFIG_DEBUG_FS)
1007 struct dentry *root = rdev->ddev->primary->debugfs_root;
1008
1009 debugfs_create_file("radeon_gpu_reset", 0444, root, rdev,
1010 &radeon_debugfs_gpu_reset_fops);
1011 debugfs_create_file("radeon_fence_info", 0444, root, rdev,
1012 &radeon_debugfs_fence_info_fops);
1013
1014
1015 #endif
1016 }
1017
radeon_fence_get_driver_name(struct dma_fence * fence)1018 static const char *radeon_fence_get_driver_name(struct dma_fence *fence)
1019 {
1020 return "radeon";
1021 }
1022
radeon_fence_get_timeline_name(struct dma_fence * f)1023 static const char *radeon_fence_get_timeline_name(struct dma_fence *f)
1024 {
1025 struct radeon_fence *fence = to_radeon_fence(f);
1026 switch (fence->ring) {
1027 case RADEON_RING_TYPE_GFX_INDEX: return "radeon.gfx";
1028 case CAYMAN_RING_TYPE_CP1_INDEX: return "radeon.cp1";
1029 case CAYMAN_RING_TYPE_CP2_INDEX: return "radeon.cp2";
1030 case R600_RING_TYPE_DMA_INDEX: return "radeon.dma";
1031 case CAYMAN_RING_TYPE_DMA1_INDEX: return "radeon.dma1";
1032 case R600_RING_TYPE_UVD_INDEX: return "radeon.uvd";
1033 case TN_RING_TYPE_VCE1_INDEX: return "radeon.vce1";
1034 case TN_RING_TYPE_VCE2_INDEX: return "radeon.vce2";
1035 default: WARN_ON_ONCE(1); return "radeon.unk";
1036 }
1037 }
1038
radeon_test_signaled(struct radeon_fence * fence)1039 static inline bool radeon_test_signaled(struct radeon_fence *fence)
1040 {
1041 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
1042 }
1043
1044 struct radeon_wait_cb {
1045 struct dma_fence_cb base;
1046 struct task_struct *task;
1047 };
1048
1049 static void
radeon_fence_wait_cb(struct dma_fence * fence,struct dma_fence_cb * cb)1050 radeon_fence_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
1051 {
1052 struct radeon_wait_cb *wait =
1053 container_of(cb, struct radeon_wait_cb, base);
1054
1055 wake_up_process(wait->task);
1056 }
1057
radeon_fence_default_wait(struct dma_fence * f,bool intr,signed long t)1058 static signed long radeon_fence_default_wait(struct dma_fence *f, bool intr,
1059 signed long t)
1060 {
1061 struct radeon_fence *fence = to_radeon_fence(f);
1062 struct radeon_device *rdev = fence->rdev;
1063 struct radeon_wait_cb cb;
1064
1065 cb.task = current;
1066
1067 if (dma_fence_add_callback(f, &cb.base, radeon_fence_wait_cb))
1068 return t;
1069
1070 while (t > 0) {
1071 if (intr)
1072 set_current_state(TASK_INTERRUPTIBLE);
1073 else
1074 set_current_state(TASK_UNINTERRUPTIBLE);
1075
1076 /*
1077 * radeon_test_signaled must be called after
1078 * set_current_state to prevent a race with wake_up_process
1079 */
1080 if (radeon_test_signaled(fence))
1081 break;
1082
1083 if (rdev->needs_reset) {
1084 t = -EDEADLK;
1085 break;
1086 }
1087
1088 t = schedule_timeout(t);
1089
1090 if (t > 0 && intr && signal_pending(current))
1091 t = -ERESTARTSYS;
1092 }
1093
1094 __set_current_state(TASK_RUNNING);
1095 dma_fence_remove_callback(f, &cb.base);
1096
1097 return t;
1098 }
1099
1100 const struct dma_fence_ops radeon_fence_ops = {
1101 .get_driver_name = radeon_fence_get_driver_name,
1102 .get_timeline_name = radeon_fence_get_timeline_name,
1103 .enable_signaling = radeon_fence_enable_signaling,
1104 .signaled = radeon_fence_is_signaled,
1105 .wait = radeon_fence_default_wait,
1106 .release = NULL,
1107 };
1108