• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* folio_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include <linux/percpu-rwsem.h>
26 #include <linux/task_work.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/khugepaged.h>
29 
30 #include <linux/uprobes.h>
31 
32 #undef CREATE_TRACE_POINTS
33 #include <trace/hooks/mm.h>
34 
35 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
36 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
37 
38 static struct rb_root uprobes_tree = RB_ROOT;
39 /*
40  * allows us to skip the uprobe_mmap if there are no uprobe events active
41  * at this time.  Probably a fine grained per inode count is better?
42  */
43 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
44 
45 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
46 
47 #define UPROBES_HASH_SZ	13
48 /* serialize uprobe->pending_list */
49 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
50 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
51 
52 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
53 
54 /* Have a copy of original instruction */
55 #define UPROBE_COPY_INSN	0
56 
57 struct uprobe {
58 	struct rb_node		rb_node;	/* node in the rb tree */
59 	refcount_t		ref;
60 	struct rw_semaphore	register_rwsem;
61 	struct rw_semaphore	consumer_rwsem;
62 	struct list_head	pending_list;
63 	struct uprobe_consumer	*consumers;
64 	struct inode		*inode;		/* Also hold a ref to inode */
65 	loff_t			offset;
66 	loff_t			ref_ctr_offset;
67 	unsigned long		flags;
68 
69 	/*
70 	 * The generic code assumes that it has two members of unknown type
71 	 * owned by the arch-specific code:
72 	 *
73 	 * 	insn -	copy_insn() saves the original instruction here for
74 	 *		arch_uprobe_analyze_insn().
75 	 *
76 	 *	ixol -	potentially modified instruction to execute out of
77 	 *		line, copied to xol_area by xol_get_insn_slot().
78 	 */
79 	struct arch_uprobe	arch;
80 };
81 
82 struct delayed_uprobe {
83 	struct list_head list;
84 	struct uprobe *uprobe;
85 	struct mm_struct *mm;
86 };
87 
88 static DEFINE_MUTEX(delayed_uprobe_lock);
89 static LIST_HEAD(delayed_uprobe_list);
90 
91 /*
92  * Execute out of line area: anonymous executable mapping installed
93  * by the probed task to execute the copy of the original instruction
94  * mangled by set_swbp().
95  *
96  * On a breakpoint hit, thread contests for a slot.  It frees the
97  * slot after singlestep. Currently a fixed number of slots are
98  * allocated.
99  */
100 struct xol_area {
101 	wait_queue_head_t 		wq;		/* if all slots are busy */
102 	atomic_t 			slot_count;	/* number of in-use slots */
103 	unsigned long 			*bitmap;	/* 0 = free slot */
104 
105 	struct vm_special_mapping	xol_mapping;
106 	struct page 			*pages[2];
107 	/*
108 	 * We keep the vma's vm_start rather than a pointer to the vma
109 	 * itself.  The probed process or a naughty kernel module could make
110 	 * the vma go away, and we must handle that reasonably gracefully.
111 	 */
112 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
113 };
114 
115 /*
116  * valid_vma: Verify if the specified vma is an executable vma
117  * Relax restrictions while unregistering: vm_flags might have
118  * changed after breakpoint was inserted.
119  *	- is_register: indicates if we are in register context.
120  *	- Return 1 if the specified virtual address is in an
121  *	  executable vma.
122  */
valid_vma(struct vm_area_struct * vma,bool is_register)123 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
124 {
125 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
126 
127 	if (is_register)
128 		flags |= VM_WRITE;
129 
130 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
131 }
132 
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)133 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
134 {
135 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
136 }
137 
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)138 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
139 {
140 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
141 }
142 
143 /**
144  * __replace_page - replace page in vma by new page.
145  * based on replace_page in mm/ksm.c
146  *
147  * @vma:      vma that holds the pte pointing to page
148  * @addr:     address the old @page is mapped at
149  * @old_page: the page we are replacing by new_page
150  * @new_page: the modified page we replace page by
151  *
152  * If @new_page is NULL, only unmap @old_page.
153  *
154  * Returns 0 on success, negative error code otherwise.
155  */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)156 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
157 				struct page *old_page, struct page *new_page)
158 {
159 	struct folio *old_folio = page_folio(old_page);
160 	struct folio *new_folio;
161 	struct mm_struct *mm = vma->vm_mm;
162 	DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
163 	int err;
164 	struct mmu_notifier_range range;
165 
166 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
167 				addr + PAGE_SIZE);
168 
169 	if (new_page) {
170 		new_folio = page_folio(new_page);
171 		err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
172 		if (err)
173 			return err;
174 	}
175 
176 	/* For folio_free_swap() below */
177 	folio_lock(old_folio);
178 
179 	mmu_notifier_invalidate_range_start(&range);
180 	err = -EAGAIN;
181 	if (!page_vma_mapped_walk(&pvmw))
182 		goto unlock;
183 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
184 
185 	if (new_page) {
186 		folio_get(new_folio);
187 		folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE);
188 		folio_add_lru_vma(new_folio, vma);
189 		trace_android_vh_uprobes_replace_page(new_folio, old_folio);
190 	} else
191 		/* no new page, just dec_mm_counter for old_page */
192 		dec_mm_counter(mm, MM_ANONPAGES);
193 
194 	if (!folio_test_anon(old_folio)) {
195 		dec_mm_counter(mm, mm_counter_file(old_folio));
196 		inc_mm_counter(mm, MM_ANONPAGES);
197 	}
198 
199 	flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
200 	ptep_clear_flush(vma, addr, pvmw.pte);
201 	if (new_page)
202 		set_pte_at_notify(mm, addr, pvmw.pte,
203 				  mk_pte(new_page, vma->vm_page_prot));
204 
205 	folio_remove_rmap_pte(old_folio, old_page, vma);
206 	if (!folio_mapped(old_folio))
207 		folio_free_swap(old_folio);
208 	page_vma_mapped_walk_done(&pvmw);
209 	folio_put(old_folio);
210 
211 	err = 0;
212  unlock:
213 	mmu_notifier_invalidate_range_end(&range);
214 	folio_unlock(old_folio);
215 	return err;
216 }
217 
218 /**
219  * is_swbp_insn - check if instruction is breakpoint instruction.
220  * @insn: instruction to be checked.
221  * Default implementation of is_swbp_insn
222  * Returns true if @insn is a breakpoint instruction.
223  */
is_swbp_insn(uprobe_opcode_t * insn)224 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
225 {
226 	return *insn == UPROBE_SWBP_INSN;
227 }
228 
229 /**
230  * is_trap_insn - check if instruction is breakpoint instruction.
231  * @insn: instruction to be checked.
232  * Default implementation of is_trap_insn
233  * Returns true if @insn is a breakpoint instruction.
234  *
235  * This function is needed for the case where an architecture has multiple
236  * trap instructions (like powerpc).
237  */
is_trap_insn(uprobe_opcode_t * insn)238 bool __weak is_trap_insn(uprobe_opcode_t *insn)
239 {
240 	return is_swbp_insn(insn);
241 }
242 
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)243 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
244 {
245 	void *kaddr = kmap_atomic(page);
246 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
247 	kunmap_atomic(kaddr);
248 }
249 
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)250 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
251 {
252 	void *kaddr = kmap_atomic(page);
253 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
254 	kunmap_atomic(kaddr);
255 }
256 
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)257 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
258 {
259 	uprobe_opcode_t old_opcode;
260 	bool is_swbp;
261 
262 	/*
263 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
264 	 * We do not check if it is any other 'trap variant' which could
265 	 * be conditional trap instruction such as the one powerpc supports.
266 	 *
267 	 * The logic is that we do not care if the underlying instruction
268 	 * is a trap variant; uprobes always wins over any other (gdb)
269 	 * breakpoint.
270 	 */
271 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
272 	is_swbp = is_swbp_insn(&old_opcode);
273 
274 	if (is_swbp_insn(new_opcode)) {
275 		if (is_swbp)		/* register: already installed? */
276 			return 0;
277 	} else {
278 		if (!is_swbp)		/* unregister: was it changed by us? */
279 			return 0;
280 	}
281 
282 	return 1;
283 }
284 
285 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)286 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
287 {
288 	struct delayed_uprobe *du;
289 
290 	list_for_each_entry(du, &delayed_uprobe_list, list)
291 		if (du->uprobe == uprobe && du->mm == mm)
292 			return du;
293 	return NULL;
294 }
295 
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)296 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
297 {
298 	struct delayed_uprobe *du;
299 
300 	if (delayed_uprobe_check(uprobe, mm))
301 		return 0;
302 
303 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
304 	if (!du)
305 		return -ENOMEM;
306 
307 	du->uprobe = uprobe;
308 	du->mm = mm;
309 	list_add(&du->list, &delayed_uprobe_list);
310 	return 0;
311 }
312 
delayed_uprobe_delete(struct delayed_uprobe * du)313 static void delayed_uprobe_delete(struct delayed_uprobe *du)
314 {
315 	if (WARN_ON(!du))
316 		return;
317 	list_del(&du->list);
318 	kfree(du);
319 }
320 
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)321 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
322 {
323 	struct list_head *pos, *q;
324 	struct delayed_uprobe *du;
325 
326 	if (!uprobe && !mm)
327 		return;
328 
329 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
330 		du = list_entry(pos, struct delayed_uprobe, list);
331 
332 		if (uprobe && du->uprobe != uprobe)
333 			continue;
334 		if (mm && du->mm != mm)
335 			continue;
336 
337 		delayed_uprobe_delete(du);
338 	}
339 }
340 
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)341 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
342 			      struct vm_area_struct *vma)
343 {
344 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
345 
346 	return uprobe->ref_ctr_offset &&
347 		vma->vm_file &&
348 		file_inode(vma->vm_file) == uprobe->inode &&
349 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
350 		vma->vm_start <= vaddr &&
351 		vma->vm_end > vaddr;
352 }
353 
354 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)355 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
356 {
357 	VMA_ITERATOR(vmi, mm, 0);
358 	struct vm_area_struct *tmp;
359 
360 	for_each_vma(vmi, tmp)
361 		if (valid_ref_ctr_vma(uprobe, tmp))
362 			return tmp;
363 
364 	return NULL;
365 }
366 
367 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
369 {
370 	void *kaddr;
371 	struct page *page;
372 	int ret;
373 	short *ptr;
374 
375 	if (!vaddr || !d)
376 		return -EINVAL;
377 
378 	ret = get_user_pages_remote(mm, vaddr, 1,
379 				    FOLL_WRITE, &page, NULL);
380 	if (unlikely(ret <= 0)) {
381 		/*
382 		 * We are asking for 1 page. If get_user_pages_remote() fails,
383 		 * it may return 0, in that case we have to return error.
384 		 */
385 		return ret == 0 ? -EBUSY : ret;
386 	}
387 
388 	kaddr = kmap_atomic(page);
389 	ptr = kaddr + (vaddr & ~PAGE_MASK);
390 
391 	if (unlikely(*ptr + d < 0)) {
392 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
393 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
394 		ret = -EINVAL;
395 		goto out;
396 	}
397 
398 	*ptr += d;
399 	ret = 0;
400 out:
401 	kunmap_atomic(kaddr);
402 	put_page(page);
403 	return ret;
404 }
405 
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)406 static void update_ref_ctr_warn(struct uprobe *uprobe,
407 				struct mm_struct *mm, short d)
408 {
409 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
410 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
411 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
412 		(unsigned long long) uprobe->offset,
413 		(unsigned long long) uprobe->ref_ctr_offset, mm);
414 }
415 
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)416 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
417 			  short d)
418 {
419 	struct vm_area_struct *rc_vma;
420 	unsigned long rc_vaddr;
421 	int ret = 0;
422 
423 	rc_vma = find_ref_ctr_vma(uprobe, mm);
424 
425 	if (rc_vma) {
426 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
427 		ret = __update_ref_ctr(mm, rc_vaddr, d);
428 		if (ret)
429 			update_ref_ctr_warn(uprobe, mm, d);
430 
431 		if (d > 0)
432 			return ret;
433 	}
434 
435 	mutex_lock(&delayed_uprobe_lock);
436 	if (d > 0)
437 		ret = delayed_uprobe_add(uprobe, mm);
438 	else
439 		delayed_uprobe_remove(uprobe, mm);
440 	mutex_unlock(&delayed_uprobe_lock);
441 
442 	return ret;
443 }
444 
445 /*
446  * NOTE:
447  * Expect the breakpoint instruction to be the smallest size instruction for
448  * the architecture. If an arch has variable length instruction and the
449  * breakpoint instruction is not of the smallest length instruction
450  * supported by that architecture then we need to modify is_trap_at_addr and
451  * uprobe_write_opcode accordingly. This would never be a problem for archs
452  * that have fixed length instructions.
453  *
454  * uprobe_write_opcode - write the opcode at a given virtual address.
455  * @auprobe: arch specific probepoint information.
456  * @mm: the probed process address space.
457  * @vaddr: the virtual address to store the opcode.
458  * @opcode: opcode to be written at @vaddr.
459  *
460  * Called with mm->mmap_lock held for write.
461  * Return 0 (success) or a negative errno.
462  */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)463 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
464 			unsigned long vaddr, uprobe_opcode_t opcode)
465 {
466 	struct uprobe *uprobe;
467 	struct page *old_page, *new_page;
468 	struct vm_area_struct *vma;
469 	int ret, is_register, ref_ctr_updated = 0;
470 	bool orig_page_huge = false;
471 	unsigned int gup_flags = FOLL_FORCE;
472 
473 	is_register = is_swbp_insn(&opcode);
474 	uprobe = container_of(auprobe, struct uprobe, arch);
475 
476 retry:
477 	if (is_register)
478 		gup_flags |= FOLL_SPLIT_PMD;
479 	/* Read the page with vaddr into memory */
480 	old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
481 	if (IS_ERR_OR_NULL(old_page))
482 		return old_page ? PTR_ERR(old_page) : 0;
483 
484 	ret = verify_opcode(old_page, vaddr, &opcode);
485 	if (ret <= 0)
486 		goto put_old;
487 
488 	if (WARN(!is_register && PageCompound(old_page),
489 		 "uprobe unregister should never work on compound page\n")) {
490 		ret = -EINVAL;
491 		goto put_old;
492 	}
493 
494 	/* We are going to replace instruction, update ref_ctr. */
495 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
496 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
497 		if (ret)
498 			goto put_old;
499 
500 		ref_ctr_updated = 1;
501 	}
502 
503 	ret = 0;
504 	if (!is_register && !PageAnon(old_page))
505 		goto put_old;
506 
507 	ret = anon_vma_prepare(vma);
508 	if (ret)
509 		goto put_old;
510 
511 	ret = -ENOMEM;
512 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
513 	if (!new_page)
514 		goto put_old;
515 
516 	__SetPageUptodate(new_page);
517 	copy_highpage(new_page, old_page);
518 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
519 
520 	if (!is_register) {
521 		struct page *orig_page;
522 		pgoff_t index;
523 
524 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
525 
526 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
527 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
528 					  index);
529 
530 		if (orig_page) {
531 			if (PageUptodate(orig_page) &&
532 			    pages_identical(new_page, orig_page)) {
533 				/* let go new_page */
534 				put_page(new_page);
535 				new_page = NULL;
536 
537 				if (PageCompound(orig_page))
538 					orig_page_huge = true;
539 			}
540 			put_page(orig_page);
541 		}
542 	}
543 
544 	ret = __replace_page(vma, vaddr, old_page, new_page);
545 	if (new_page)
546 		put_page(new_page);
547 put_old:
548 	put_page(old_page);
549 
550 	if (unlikely(ret == -EAGAIN))
551 		goto retry;
552 
553 	/* Revert back reference counter if instruction update failed. */
554 	if (ret && is_register && ref_ctr_updated)
555 		update_ref_ctr(uprobe, mm, -1);
556 
557 	/* try collapse pmd for compound page */
558 	if (!ret && orig_page_huge)
559 		collapse_pte_mapped_thp(mm, vaddr, false);
560 
561 	return ret;
562 }
563 
564 /**
565  * set_swbp - store breakpoint at a given address.
566  * @auprobe: arch specific probepoint information.
567  * @mm: the probed process address space.
568  * @vaddr: the virtual address to insert the opcode.
569  *
570  * For mm @mm, store the breakpoint instruction at @vaddr.
571  * Return 0 (success) or a negative errno.
572  */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)573 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
574 {
575 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
576 }
577 
578 /**
579  * set_orig_insn - Restore the original instruction.
580  * @mm: the probed process address space.
581  * @auprobe: arch specific probepoint information.
582  * @vaddr: the virtual address to insert the opcode.
583  *
584  * For mm @mm, restore the original opcode (opcode) at @vaddr.
585  * Return 0 (success) or a negative errno.
586  */
587 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)588 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
589 {
590 	return uprobe_write_opcode(auprobe, mm, vaddr,
591 			*(uprobe_opcode_t *)&auprobe->insn);
592 }
593 
get_uprobe(struct uprobe * uprobe)594 static struct uprobe *get_uprobe(struct uprobe *uprobe)
595 {
596 	refcount_inc(&uprobe->ref);
597 	return uprobe;
598 }
599 
put_uprobe(struct uprobe * uprobe)600 static void put_uprobe(struct uprobe *uprobe)
601 {
602 	if (refcount_dec_and_test(&uprobe->ref)) {
603 		/*
604 		 * If application munmap(exec_vma) before uprobe_unregister()
605 		 * gets called, we don't get a chance to remove uprobe from
606 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
607 		 */
608 		mutex_lock(&delayed_uprobe_lock);
609 		delayed_uprobe_remove(uprobe, NULL);
610 		mutex_unlock(&delayed_uprobe_lock);
611 		kfree(uprobe);
612 	}
613 }
614 
615 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)616 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
617 	       const struct uprobe *r)
618 {
619 	if (l_inode < r->inode)
620 		return -1;
621 
622 	if (l_inode > r->inode)
623 		return 1;
624 
625 	if (l_offset < r->offset)
626 		return -1;
627 
628 	if (l_offset > r->offset)
629 		return 1;
630 
631 	return 0;
632 }
633 
634 #define __node_2_uprobe(node) \
635 	rb_entry((node), struct uprobe, rb_node)
636 
637 struct __uprobe_key {
638 	struct inode *inode;
639 	loff_t offset;
640 };
641 
__uprobe_cmp_key(const void * key,const struct rb_node * b)642 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
643 {
644 	const struct __uprobe_key *a = key;
645 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
646 }
647 
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)648 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
649 {
650 	struct uprobe *u = __node_2_uprobe(a);
651 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
652 }
653 
__find_uprobe(struct inode * inode,loff_t offset)654 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
655 {
656 	struct __uprobe_key key = {
657 		.inode = inode,
658 		.offset = offset,
659 	};
660 	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
661 
662 	if (node)
663 		return get_uprobe(__node_2_uprobe(node));
664 
665 	return NULL;
666 }
667 
668 /*
669  * Find a uprobe corresponding to a given inode:offset
670  * Acquires uprobes_treelock
671  */
find_uprobe(struct inode * inode,loff_t offset)672 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
673 {
674 	struct uprobe *uprobe;
675 
676 	spin_lock(&uprobes_treelock);
677 	uprobe = __find_uprobe(inode, offset);
678 	spin_unlock(&uprobes_treelock);
679 
680 	return uprobe;
681 }
682 
__insert_uprobe(struct uprobe * uprobe)683 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
684 {
685 	struct rb_node *node;
686 
687 	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
688 	if (node)
689 		return get_uprobe(__node_2_uprobe(node));
690 
691 	/* get access + creation ref */
692 	refcount_set(&uprobe->ref, 2);
693 	return NULL;
694 }
695 
696 /*
697  * Acquire uprobes_treelock.
698  * Matching uprobe already exists in rbtree;
699  *	increment (access refcount) and return the matching uprobe.
700  *
701  * No matching uprobe; insert the uprobe in rb_tree;
702  *	get a double refcount (access + creation) and return NULL.
703  */
insert_uprobe(struct uprobe * uprobe)704 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
705 {
706 	struct uprobe *u;
707 
708 	spin_lock(&uprobes_treelock);
709 	u = __insert_uprobe(uprobe);
710 	spin_unlock(&uprobes_treelock);
711 
712 	return u;
713 }
714 
715 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)716 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
717 {
718 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
719 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
720 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
721 		(unsigned long long) cur_uprobe->ref_ctr_offset,
722 		(unsigned long long) uprobe->ref_ctr_offset);
723 }
724 
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)725 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
726 				   loff_t ref_ctr_offset)
727 {
728 	struct uprobe *uprobe, *cur_uprobe;
729 
730 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
731 	if (!uprobe)
732 		return NULL;
733 
734 	uprobe->inode = inode;
735 	uprobe->offset = offset;
736 	uprobe->ref_ctr_offset = ref_ctr_offset;
737 	init_rwsem(&uprobe->register_rwsem);
738 	init_rwsem(&uprobe->consumer_rwsem);
739 
740 	/* add to uprobes_tree, sorted on inode:offset */
741 	cur_uprobe = insert_uprobe(uprobe);
742 	/* a uprobe exists for this inode:offset combination */
743 	if (cur_uprobe) {
744 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
745 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
746 			put_uprobe(cur_uprobe);
747 			kfree(uprobe);
748 			return ERR_PTR(-EINVAL);
749 		}
750 		kfree(uprobe);
751 		uprobe = cur_uprobe;
752 	}
753 
754 	return uprobe;
755 }
756 
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)757 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
758 {
759 	down_write(&uprobe->consumer_rwsem);
760 	uc->next = uprobe->consumers;
761 	uprobe->consumers = uc;
762 	up_write(&uprobe->consumer_rwsem);
763 }
764 
765 /*
766  * For uprobe @uprobe, delete the consumer @uc.
767  * Return true if the @uc is deleted successfully
768  * or return false.
769  */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)770 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
771 {
772 	struct uprobe_consumer **con;
773 	bool ret = false;
774 
775 	down_write(&uprobe->consumer_rwsem);
776 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
777 		if (*con == uc) {
778 			*con = uc->next;
779 			ret = true;
780 			break;
781 		}
782 	}
783 	up_write(&uprobe->consumer_rwsem);
784 
785 	return ret;
786 }
787 
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)788 static int __copy_insn(struct address_space *mapping, struct file *filp,
789 			void *insn, int nbytes, loff_t offset)
790 {
791 	struct page *page;
792 	/*
793 	 * Ensure that the page that has the original instruction is populated
794 	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
795 	 * see uprobe_register().
796 	 */
797 	if (mapping->a_ops->read_folio)
798 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
799 	else
800 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
801 	if (IS_ERR(page))
802 		return PTR_ERR(page);
803 
804 	copy_from_page(page, offset, insn, nbytes);
805 	put_page(page);
806 
807 	return 0;
808 }
809 
copy_insn(struct uprobe * uprobe,struct file * filp)810 static int copy_insn(struct uprobe *uprobe, struct file *filp)
811 {
812 	struct address_space *mapping = uprobe->inode->i_mapping;
813 	loff_t offs = uprobe->offset;
814 	void *insn = &uprobe->arch.insn;
815 	int size = sizeof(uprobe->arch.insn);
816 	int len, err = -EIO;
817 
818 	/* Copy only available bytes, -EIO if nothing was read */
819 	do {
820 		if (offs >= i_size_read(uprobe->inode))
821 			break;
822 
823 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
824 		err = __copy_insn(mapping, filp, insn, len, offs);
825 		if (err)
826 			break;
827 
828 		insn += len;
829 		offs += len;
830 		size -= len;
831 	} while (size);
832 
833 	return err;
834 }
835 
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)836 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
837 				struct mm_struct *mm, unsigned long vaddr)
838 {
839 	int ret = 0;
840 
841 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
842 		return ret;
843 
844 	/* TODO: move this into _register, until then we abuse this sem. */
845 	down_write(&uprobe->consumer_rwsem);
846 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
847 		goto out;
848 
849 	ret = copy_insn(uprobe, file);
850 	if (ret)
851 		goto out;
852 
853 	ret = -ENOTSUPP;
854 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
855 		goto out;
856 
857 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
858 	if (ret)
859 		goto out;
860 
861 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
862 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
863 
864  out:
865 	up_write(&uprobe->consumer_rwsem);
866 
867 	return ret;
868 }
869 
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)870 static inline bool consumer_filter(struct uprobe_consumer *uc,
871 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
872 {
873 	return !uc->filter || uc->filter(uc, ctx, mm);
874 }
875 
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)876 static bool filter_chain(struct uprobe *uprobe,
877 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
878 {
879 	struct uprobe_consumer *uc;
880 	bool ret = false;
881 
882 	down_read(&uprobe->consumer_rwsem);
883 	for (uc = uprobe->consumers; uc; uc = uc->next) {
884 		ret = consumer_filter(uc, ctx, mm);
885 		if (ret)
886 			break;
887 	}
888 	up_read(&uprobe->consumer_rwsem);
889 
890 	return ret;
891 }
892 
893 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)894 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
895 			struct vm_area_struct *vma, unsigned long vaddr)
896 {
897 	bool first_uprobe;
898 	int ret;
899 
900 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
901 	if (ret)
902 		return ret;
903 
904 	/*
905 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
906 	 * the task can hit this breakpoint right after __replace_page().
907 	 */
908 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
909 	if (first_uprobe)
910 		set_bit(MMF_HAS_UPROBES, &mm->flags);
911 
912 	ret = set_swbp(&uprobe->arch, mm, vaddr);
913 	if (!ret)
914 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
915 	else if (first_uprobe)
916 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
917 
918 	return ret;
919 }
920 
921 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)922 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
923 {
924 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
925 	return set_orig_insn(&uprobe->arch, mm, vaddr);
926 }
927 
uprobe_is_active(struct uprobe * uprobe)928 static inline bool uprobe_is_active(struct uprobe *uprobe)
929 {
930 	return !RB_EMPTY_NODE(&uprobe->rb_node);
931 }
932 /*
933  * There could be threads that have already hit the breakpoint. They
934  * will recheck the current insn and restart if find_uprobe() fails.
935  * See find_active_uprobe().
936  */
delete_uprobe(struct uprobe * uprobe)937 static void delete_uprobe(struct uprobe *uprobe)
938 {
939 	if (WARN_ON(!uprobe_is_active(uprobe)))
940 		return;
941 
942 	spin_lock(&uprobes_treelock);
943 	rb_erase(&uprobe->rb_node, &uprobes_tree);
944 	spin_unlock(&uprobes_treelock);
945 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
946 	put_uprobe(uprobe);
947 }
948 
949 struct map_info {
950 	struct map_info *next;
951 	struct mm_struct *mm;
952 	unsigned long vaddr;
953 };
954 
free_map_info(struct map_info * info)955 static inline struct map_info *free_map_info(struct map_info *info)
956 {
957 	struct map_info *next = info->next;
958 	kfree(info);
959 	return next;
960 }
961 
962 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)963 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
964 {
965 	unsigned long pgoff = offset >> PAGE_SHIFT;
966 	struct vm_area_struct *vma;
967 	struct map_info *curr = NULL;
968 	struct map_info *prev = NULL;
969 	struct map_info *info;
970 	int more = 0;
971 
972  again:
973 	i_mmap_lock_read(mapping);
974 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
975 		if (!valid_vma(vma, is_register))
976 			continue;
977 
978 		if (!prev && !more) {
979 			/*
980 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
981 			 * reclaim. This is optimistic, no harm done if it fails.
982 			 */
983 			prev = kmalloc(sizeof(struct map_info),
984 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
985 			if (prev)
986 				prev->next = NULL;
987 		}
988 		if (!prev) {
989 			more++;
990 			continue;
991 		}
992 
993 		if (!mmget_not_zero(vma->vm_mm))
994 			continue;
995 
996 		info = prev;
997 		prev = prev->next;
998 		info->next = curr;
999 		curr = info;
1000 
1001 		info->mm = vma->vm_mm;
1002 		info->vaddr = offset_to_vaddr(vma, offset);
1003 	}
1004 	i_mmap_unlock_read(mapping);
1005 
1006 	if (!more)
1007 		goto out;
1008 
1009 	prev = curr;
1010 	while (curr) {
1011 		mmput(curr->mm);
1012 		curr = curr->next;
1013 	}
1014 
1015 	do {
1016 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1017 		if (!info) {
1018 			curr = ERR_PTR(-ENOMEM);
1019 			goto out;
1020 		}
1021 		info->next = prev;
1022 		prev = info;
1023 	} while (--more);
1024 
1025 	goto again;
1026  out:
1027 	while (prev)
1028 		prev = free_map_info(prev);
1029 	return curr;
1030 }
1031 
1032 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1033 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1034 {
1035 	bool is_register = !!new;
1036 	struct map_info *info;
1037 	int err = 0;
1038 
1039 	percpu_down_write(&dup_mmap_sem);
1040 	info = build_map_info(uprobe->inode->i_mapping,
1041 					uprobe->offset, is_register);
1042 	if (IS_ERR(info)) {
1043 		err = PTR_ERR(info);
1044 		goto out;
1045 	}
1046 
1047 	while (info) {
1048 		struct mm_struct *mm = info->mm;
1049 		struct vm_area_struct *vma;
1050 
1051 		if (err && is_register)
1052 			goto free;
1053 
1054 		mmap_write_lock(mm);
1055 		vma = find_vma(mm, info->vaddr);
1056 		if (!vma || !valid_vma(vma, is_register) ||
1057 		    file_inode(vma->vm_file) != uprobe->inode)
1058 			goto unlock;
1059 
1060 		if (vma->vm_start > info->vaddr ||
1061 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1062 			goto unlock;
1063 
1064 		if (is_register) {
1065 			/* consult only the "caller", new consumer. */
1066 			if (consumer_filter(new,
1067 					UPROBE_FILTER_REGISTER, mm))
1068 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1069 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1070 			if (!filter_chain(uprobe,
1071 					UPROBE_FILTER_UNREGISTER, mm))
1072 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1073 		}
1074 
1075  unlock:
1076 		mmap_write_unlock(mm);
1077  free:
1078 		mmput(mm);
1079 		info = free_map_info(info);
1080 	}
1081  out:
1082 	percpu_up_write(&dup_mmap_sem);
1083 	return err;
1084 }
1085 
1086 static void
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)1087 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1088 {
1089 	int err;
1090 
1091 	if (WARN_ON(!consumer_del(uprobe, uc)))
1092 		return;
1093 
1094 	err = register_for_each_vma(uprobe, NULL);
1095 	/* TODO : cant unregister? schedule a worker thread */
1096 	if (!uprobe->consumers && !err)
1097 		delete_uprobe(uprobe);
1098 }
1099 
1100 /*
1101  * uprobe_unregister - unregister an already registered probe.
1102  * @inode: the file in which the probe has to be removed.
1103  * @offset: offset from the start of the file.
1104  * @uc: identify which probe if multiple probes are colocated.
1105  */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1106 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1107 {
1108 	struct uprobe *uprobe;
1109 
1110 	uprobe = find_uprobe(inode, offset);
1111 	if (WARN_ON(!uprobe))
1112 		return;
1113 
1114 	down_write(&uprobe->register_rwsem);
1115 	__uprobe_unregister(uprobe, uc);
1116 	up_write(&uprobe->register_rwsem);
1117 	put_uprobe(uprobe);
1118 }
1119 EXPORT_SYMBOL_GPL(uprobe_unregister);
1120 
1121 /*
1122  * __uprobe_register - register a probe
1123  * @inode: the file in which the probe has to be placed.
1124  * @offset: offset from the start of the file.
1125  * @uc: information on howto handle the probe..
1126  *
1127  * Apart from the access refcount, __uprobe_register() takes a creation
1128  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1129  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1130  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1131  * @uprobe even before the register operation is complete. Creation
1132  * refcount is released when the last @uc for the @uprobe
1133  * unregisters. Caller of __uprobe_register() is required to keep @inode
1134  * (and the containing mount) referenced.
1135  *
1136  * Return errno if it cannot successully install probes
1137  * else return 0 (success)
1138  */
__uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1139 static int __uprobe_register(struct inode *inode, loff_t offset,
1140 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1141 {
1142 	struct uprobe *uprobe;
1143 	int ret;
1144 
1145 	/* Uprobe must have at least one set consumer */
1146 	if (!uc->handler && !uc->ret_handler)
1147 		return -EINVAL;
1148 
1149 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1150 	if (!inode->i_mapping->a_ops->read_folio &&
1151 	    !shmem_mapping(inode->i_mapping))
1152 		return -EIO;
1153 	/* Racy, just to catch the obvious mistakes */
1154 	if (offset > i_size_read(inode))
1155 		return -EINVAL;
1156 
1157 	/*
1158 	 * This ensures that copy_from_page(), copy_to_page() and
1159 	 * __update_ref_ctr() can't cross page boundary.
1160 	 */
1161 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1162 		return -EINVAL;
1163 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1164 		return -EINVAL;
1165 
1166  retry:
1167 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1168 	if (!uprobe)
1169 		return -ENOMEM;
1170 	if (IS_ERR(uprobe))
1171 		return PTR_ERR(uprobe);
1172 
1173 	/*
1174 	 * We can race with uprobe_unregister()->delete_uprobe().
1175 	 * Check uprobe_is_active() and retry if it is false.
1176 	 */
1177 	down_write(&uprobe->register_rwsem);
1178 	ret = -EAGAIN;
1179 	if (likely(uprobe_is_active(uprobe))) {
1180 		consumer_add(uprobe, uc);
1181 		ret = register_for_each_vma(uprobe, uc);
1182 		if (ret)
1183 			__uprobe_unregister(uprobe, uc);
1184 	}
1185 	up_write(&uprobe->register_rwsem);
1186 	put_uprobe(uprobe);
1187 
1188 	if (unlikely(ret == -EAGAIN))
1189 		goto retry;
1190 	return ret;
1191 }
1192 
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1193 int uprobe_register(struct inode *inode, loff_t offset,
1194 		    struct uprobe_consumer *uc)
1195 {
1196 	return __uprobe_register(inode, offset, 0, uc);
1197 }
1198 EXPORT_SYMBOL_GPL(uprobe_register);
1199 
uprobe_register_refctr(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1200 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1201 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1202 {
1203 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1204 }
1205 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1206 
1207 /*
1208  * uprobe_apply - unregister an already registered probe.
1209  * @inode: the file in which the probe has to be removed.
1210  * @offset: offset from the start of the file.
1211  * @uc: consumer which wants to add more or remove some breakpoints
1212  * @add: add or remove the breakpoints
1213  */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)1214 int uprobe_apply(struct inode *inode, loff_t offset,
1215 			struct uprobe_consumer *uc, bool add)
1216 {
1217 	struct uprobe *uprobe;
1218 	struct uprobe_consumer *con;
1219 	int ret = -ENOENT;
1220 
1221 	uprobe = find_uprobe(inode, offset);
1222 	if (WARN_ON(!uprobe))
1223 		return ret;
1224 
1225 	down_write(&uprobe->register_rwsem);
1226 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1227 		;
1228 	if (con)
1229 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1230 	up_write(&uprobe->register_rwsem);
1231 	put_uprobe(uprobe);
1232 
1233 	return ret;
1234 }
1235 
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1236 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1237 {
1238 	VMA_ITERATOR(vmi, mm, 0);
1239 	struct vm_area_struct *vma;
1240 	int err = 0;
1241 
1242 	mmap_read_lock(mm);
1243 	for_each_vma(vmi, vma) {
1244 		unsigned long vaddr;
1245 		loff_t offset;
1246 
1247 		if (!valid_vma(vma, false) ||
1248 		    file_inode(vma->vm_file) != uprobe->inode)
1249 			continue;
1250 
1251 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1252 		if (uprobe->offset <  offset ||
1253 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1254 			continue;
1255 
1256 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1257 		err |= remove_breakpoint(uprobe, mm, vaddr);
1258 	}
1259 	mmap_read_unlock(mm);
1260 
1261 	return err;
1262 }
1263 
1264 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1265 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1266 {
1267 	struct rb_node *n = uprobes_tree.rb_node;
1268 
1269 	while (n) {
1270 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1271 
1272 		if (inode < u->inode) {
1273 			n = n->rb_left;
1274 		} else if (inode > u->inode) {
1275 			n = n->rb_right;
1276 		} else {
1277 			if (max < u->offset)
1278 				n = n->rb_left;
1279 			else if (min > u->offset)
1280 				n = n->rb_right;
1281 			else
1282 				break;
1283 		}
1284 	}
1285 
1286 	return n;
1287 }
1288 
1289 /*
1290  * For a given range in vma, build a list of probes that need to be inserted.
1291  */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1292 static void build_probe_list(struct inode *inode,
1293 				struct vm_area_struct *vma,
1294 				unsigned long start, unsigned long end,
1295 				struct list_head *head)
1296 {
1297 	loff_t min, max;
1298 	struct rb_node *n, *t;
1299 	struct uprobe *u;
1300 
1301 	INIT_LIST_HEAD(head);
1302 	min = vaddr_to_offset(vma, start);
1303 	max = min + (end - start) - 1;
1304 
1305 	spin_lock(&uprobes_treelock);
1306 	n = find_node_in_range(inode, min, max);
1307 	if (n) {
1308 		for (t = n; t; t = rb_prev(t)) {
1309 			u = rb_entry(t, struct uprobe, rb_node);
1310 			if (u->inode != inode || u->offset < min)
1311 				break;
1312 			list_add(&u->pending_list, head);
1313 			get_uprobe(u);
1314 		}
1315 		for (t = n; (t = rb_next(t)); ) {
1316 			u = rb_entry(t, struct uprobe, rb_node);
1317 			if (u->inode != inode || u->offset > max)
1318 				break;
1319 			list_add(&u->pending_list, head);
1320 			get_uprobe(u);
1321 		}
1322 	}
1323 	spin_unlock(&uprobes_treelock);
1324 }
1325 
1326 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1327 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1328 {
1329 	struct list_head *pos, *q;
1330 	struct delayed_uprobe *du;
1331 	unsigned long vaddr;
1332 	int ret = 0, err = 0;
1333 
1334 	mutex_lock(&delayed_uprobe_lock);
1335 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1336 		du = list_entry(pos, struct delayed_uprobe, list);
1337 
1338 		if (du->mm != vma->vm_mm ||
1339 		    !valid_ref_ctr_vma(du->uprobe, vma))
1340 			continue;
1341 
1342 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1343 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1344 		if (ret) {
1345 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1346 			if (!err)
1347 				err = ret;
1348 		}
1349 		delayed_uprobe_delete(du);
1350 	}
1351 	mutex_unlock(&delayed_uprobe_lock);
1352 	return err;
1353 }
1354 
1355 /*
1356  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1357  *
1358  * Currently we ignore all errors and always return 0, the callers
1359  * can't handle the failure anyway.
1360  */
uprobe_mmap(struct vm_area_struct * vma)1361 int uprobe_mmap(struct vm_area_struct *vma)
1362 {
1363 	struct list_head tmp_list;
1364 	struct uprobe *uprobe, *u;
1365 	struct inode *inode;
1366 
1367 	if (no_uprobe_events())
1368 		return 0;
1369 
1370 	if (vma->vm_file &&
1371 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1372 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1373 		delayed_ref_ctr_inc(vma);
1374 
1375 	if (!valid_vma(vma, true))
1376 		return 0;
1377 
1378 	inode = file_inode(vma->vm_file);
1379 	if (!inode)
1380 		return 0;
1381 
1382 	mutex_lock(uprobes_mmap_hash(inode));
1383 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1384 	/*
1385 	 * We can race with uprobe_unregister(), this uprobe can be already
1386 	 * removed. But in this case filter_chain() must return false, all
1387 	 * consumers have gone away.
1388 	 */
1389 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1390 		if (!fatal_signal_pending(current) &&
1391 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1392 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1393 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1394 		}
1395 		put_uprobe(uprobe);
1396 	}
1397 	mutex_unlock(uprobes_mmap_hash(inode));
1398 
1399 	return 0;
1400 }
1401 
1402 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1403 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1404 {
1405 	loff_t min, max;
1406 	struct inode *inode;
1407 	struct rb_node *n;
1408 
1409 	inode = file_inode(vma->vm_file);
1410 
1411 	min = vaddr_to_offset(vma, start);
1412 	max = min + (end - start) - 1;
1413 
1414 	spin_lock(&uprobes_treelock);
1415 	n = find_node_in_range(inode, min, max);
1416 	spin_unlock(&uprobes_treelock);
1417 
1418 	return !!n;
1419 }
1420 
1421 /*
1422  * Called in context of a munmap of a vma.
1423  */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1424 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1425 {
1426 	if (no_uprobe_events() || !valid_vma(vma, false))
1427 		return;
1428 
1429 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1430 		return;
1431 
1432 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1433 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1434 		return;
1435 
1436 	if (vma_has_uprobes(vma, start, end))
1437 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1438 }
1439 
1440 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1441 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1442 {
1443 	struct vm_area_struct *vma;
1444 	int ret;
1445 
1446 	if (mmap_write_lock_killable(mm))
1447 		return -EINTR;
1448 
1449 	if (mm->uprobes_state.xol_area) {
1450 		ret = -EALREADY;
1451 		goto fail;
1452 	}
1453 
1454 	if (!area->vaddr) {
1455 		/* Try to map as high as possible, this is only a hint. */
1456 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1457 						PAGE_SIZE, 0, 0);
1458 		if (IS_ERR_VALUE(area->vaddr)) {
1459 			ret = area->vaddr;
1460 			goto fail;
1461 		}
1462 	}
1463 
1464 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1465 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1466 				&area->xol_mapping);
1467 	if (IS_ERR(vma)) {
1468 		ret = PTR_ERR(vma);
1469 		goto fail;
1470 	}
1471 
1472 	ret = 0;
1473 	/* pairs with get_xol_area() */
1474 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1475  fail:
1476 	mmap_write_unlock(mm);
1477 
1478 	return ret;
1479 }
1480 
__create_xol_area(unsigned long vaddr)1481 static struct xol_area *__create_xol_area(unsigned long vaddr)
1482 {
1483 	struct mm_struct *mm = current->mm;
1484 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1485 	struct xol_area *area;
1486 
1487 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1488 	if (unlikely(!area))
1489 		goto out;
1490 
1491 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1492 			       GFP_KERNEL);
1493 	if (!area->bitmap)
1494 		goto free_area;
1495 
1496 	area->xol_mapping.name = "[uprobes]";
1497 	area->xol_mapping.fault = NULL;
1498 	area->xol_mapping.pages = area->pages;
1499 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1500 	if (!area->pages[0])
1501 		goto free_bitmap;
1502 	area->pages[1] = NULL;
1503 
1504 	area->vaddr = vaddr;
1505 	init_waitqueue_head(&area->wq);
1506 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1507 	set_bit(0, area->bitmap);
1508 	atomic_set(&area->slot_count, 1);
1509 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1510 
1511 	if (!xol_add_vma(mm, area))
1512 		return area;
1513 
1514 	__free_page(area->pages[0]);
1515  free_bitmap:
1516 	kfree(area->bitmap);
1517  free_area:
1518 	kfree(area);
1519  out:
1520 	return NULL;
1521 }
1522 
1523 /*
1524  * get_xol_area - Allocate process's xol_area if necessary.
1525  * This area will be used for storing instructions for execution out of line.
1526  *
1527  * Returns the allocated area or NULL.
1528  */
get_xol_area(void)1529 static struct xol_area *get_xol_area(void)
1530 {
1531 	struct mm_struct *mm = current->mm;
1532 	struct xol_area *area;
1533 
1534 	if (!mm->uprobes_state.xol_area)
1535 		__create_xol_area(0);
1536 
1537 	/* Pairs with xol_add_vma() smp_store_release() */
1538 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1539 	return area;
1540 }
1541 
1542 /*
1543  * uprobe_clear_state - Free the area allocated for slots.
1544  */
uprobe_clear_state(struct mm_struct * mm)1545 void uprobe_clear_state(struct mm_struct *mm)
1546 {
1547 	struct xol_area *area = mm->uprobes_state.xol_area;
1548 
1549 	mutex_lock(&delayed_uprobe_lock);
1550 	delayed_uprobe_remove(NULL, mm);
1551 	mutex_unlock(&delayed_uprobe_lock);
1552 
1553 	if (!area)
1554 		return;
1555 
1556 	put_page(area->pages[0]);
1557 	kfree(area->bitmap);
1558 	kfree(area);
1559 }
1560 
uprobe_start_dup_mmap(void)1561 void uprobe_start_dup_mmap(void)
1562 {
1563 	percpu_down_read(&dup_mmap_sem);
1564 }
1565 
uprobe_end_dup_mmap(void)1566 void uprobe_end_dup_mmap(void)
1567 {
1568 	percpu_up_read(&dup_mmap_sem);
1569 }
1570 
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1571 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1572 {
1573 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1574 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1575 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1576 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1577 	}
1578 }
1579 
1580 /*
1581  *  - search for a free slot.
1582  */
xol_take_insn_slot(struct xol_area * area)1583 static unsigned long xol_take_insn_slot(struct xol_area *area)
1584 {
1585 	unsigned long slot_addr;
1586 	int slot_nr;
1587 
1588 	do {
1589 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1590 		if (slot_nr < UINSNS_PER_PAGE) {
1591 			if (!test_and_set_bit(slot_nr, area->bitmap))
1592 				break;
1593 
1594 			slot_nr = UINSNS_PER_PAGE;
1595 			continue;
1596 		}
1597 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1598 	} while (slot_nr >= UINSNS_PER_PAGE);
1599 
1600 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1601 	atomic_inc(&area->slot_count);
1602 
1603 	return slot_addr;
1604 }
1605 
1606 /*
1607  * xol_get_insn_slot - allocate a slot for xol.
1608  * Returns the allocated slot address or 0.
1609  */
xol_get_insn_slot(struct uprobe * uprobe)1610 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1611 {
1612 	struct xol_area *area;
1613 	unsigned long xol_vaddr;
1614 
1615 	area = get_xol_area();
1616 	if (!area)
1617 		return 0;
1618 
1619 	xol_vaddr = xol_take_insn_slot(area);
1620 	if (unlikely(!xol_vaddr))
1621 		return 0;
1622 
1623 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1624 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1625 
1626 	return xol_vaddr;
1627 }
1628 
1629 /*
1630  * xol_free_insn_slot - If slot was earlier allocated by
1631  * @xol_get_insn_slot(), make the slot available for
1632  * subsequent requests.
1633  */
xol_free_insn_slot(struct task_struct * tsk)1634 static void xol_free_insn_slot(struct task_struct *tsk)
1635 {
1636 	struct xol_area *area;
1637 	unsigned long vma_end;
1638 	unsigned long slot_addr;
1639 
1640 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1641 		return;
1642 
1643 	slot_addr = tsk->utask->xol_vaddr;
1644 	if (unlikely(!slot_addr))
1645 		return;
1646 
1647 	area = tsk->mm->uprobes_state.xol_area;
1648 	vma_end = area->vaddr + PAGE_SIZE;
1649 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1650 		unsigned long offset;
1651 		int slot_nr;
1652 
1653 		offset = slot_addr - area->vaddr;
1654 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1655 		if (slot_nr >= UINSNS_PER_PAGE)
1656 			return;
1657 
1658 		clear_bit(slot_nr, area->bitmap);
1659 		atomic_dec(&area->slot_count);
1660 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1661 		if (waitqueue_active(&area->wq))
1662 			wake_up(&area->wq);
1663 
1664 		tsk->utask->xol_vaddr = 0;
1665 	}
1666 }
1667 
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1668 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1669 				  void *src, unsigned long len)
1670 {
1671 	/* Initialize the slot */
1672 	copy_to_page(page, vaddr, src, len);
1673 
1674 	/*
1675 	 * We probably need flush_icache_user_page() but it needs vma.
1676 	 * This should work on most of architectures by default. If
1677 	 * architecture needs to do something different it can define
1678 	 * its own version of the function.
1679 	 */
1680 	flush_dcache_page(page);
1681 }
1682 
1683 /**
1684  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1685  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1686  * instruction.
1687  * Return the address of the breakpoint instruction.
1688  */
uprobe_get_swbp_addr(struct pt_regs * regs)1689 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1690 {
1691 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1692 }
1693 
uprobe_get_trap_addr(struct pt_regs * regs)1694 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1695 {
1696 	struct uprobe_task *utask = current->utask;
1697 
1698 	if (unlikely(utask && utask->active_uprobe))
1699 		return utask->vaddr;
1700 
1701 	return instruction_pointer(regs);
1702 }
1703 
free_ret_instance(struct return_instance * ri)1704 static struct return_instance *free_ret_instance(struct return_instance *ri)
1705 {
1706 	struct return_instance *next = ri->next;
1707 	put_uprobe(ri->uprobe);
1708 	kfree(ri);
1709 	return next;
1710 }
1711 
1712 /*
1713  * Called with no locks held.
1714  * Called in context of an exiting or an exec-ing thread.
1715  */
uprobe_free_utask(struct task_struct * t)1716 void uprobe_free_utask(struct task_struct *t)
1717 {
1718 	struct uprobe_task *utask = t->utask;
1719 	struct return_instance *ri;
1720 
1721 	if (!utask)
1722 		return;
1723 
1724 	if (utask->active_uprobe)
1725 		put_uprobe(utask->active_uprobe);
1726 
1727 	ri = utask->return_instances;
1728 	while (ri)
1729 		ri = free_ret_instance(ri);
1730 
1731 	xol_free_insn_slot(t);
1732 	kfree(utask);
1733 	t->utask = NULL;
1734 }
1735 
1736 /*
1737  * Allocate a uprobe_task object for the task if necessary.
1738  * Called when the thread hits a breakpoint.
1739  *
1740  * Returns:
1741  * - pointer to new uprobe_task on success
1742  * - NULL otherwise
1743  */
get_utask(void)1744 static struct uprobe_task *get_utask(void)
1745 {
1746 	if (!current->utask)
1747 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1748 	return current->utask;
1749 }
1750 
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1751 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1752 {
1753 	struct uprobe_task *n_utask;
1754 	struct return_instance **p, *o, *n;
1755 
1756 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1757 	if (!n_utask)
1758 		return -ENOMEM;
1759 	t->utask = n_utask;
1760 
1761 	p = &n_utask->return_instances;
1762 	for (o = o_utask->return_instances; o; o = o->next) {
1763 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1764 		if (!n)
1765 			return -ENOMEM;
1766 
1767 		*n = *o;
1768 		get_uprobe(n->uprobe);
1769 		n->next = NULL;
1770 
1771 		*p = n;
1772 		p = &n->next;
1773 		n_utask->depth++;
1774 	}
1775 
1776 	return 0;
1777 }
1778 
uprobe_warn(struct task_struct * t,const char * msg)1779 static void uprobe_warn(struct task_struct *t, const char *msg)
1780 {
1781 	pr_warn("uprobe: %s:%d failed to %s\n",
1782 			current->comm, current->pid, msg);
1783 }
1784 
dup_xol_work(struct callback_head * work)1785 static void dup_xol_work(struct callback_head *work)
1786 {
1787 	if (current->flags & PF_EXITING)
1788 		return;
1789 
1790 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1791 			!fatal_signal_pending(current))
1792 		uprobe_warn(current, "dup xol area");
1793 }
1794 
1795 /*
1796  * Called in context of a new clone/fork from copy_process.
1797  */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1798 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1799 {
1800 	struct uprobe_task *utask = current->utask;
1801 	struct mm_struct *mm = current->mm;
1802 	struct xol_area *area;
1803 
1804 	t->utask = NULL;
1805 
1806 	if (!utask || !utask->return_instances)
1807 		return;
1808 
1809 	if (mm == t->mm && !(flags & CLONE_VFORK))
1810 		return;
1811 
1812 	if (dup_utask(t, utask))
1813 		return uprobe_warn(t, "dup ret instances");
1814 
1815 	/* The task can fork() after dup_xol_work() fails */
1816 	area = mm->uprobes_state.xol_area;
1817 	if (!area)
1818 		return uprobe_warn(t, "dup xol area");
1819 
1820 	if (mm == t->mm)
1821 		return;
1822 
1823 	t->utask->dup_xol_addr = area->vaddr;
1824 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1825 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1826 }
1827 
1828 /*
1829  * Current area->vaddr notion assume the trampoline address is always
1830  * equal area->vaddr.
1831  *
1832  * Returns -1 in case the xol_area is not allocated.
1833  */
get_trampoline_vaddr(void)1834 static unsigned long get_trampoline_vaddr(void)
1835 {
1836 	struct xol_area *area;
1837 	unsigned long trampoline_vaddr = -1;
1838 
1839 	/* Pairs with xol_add_vma() smp_store_release() */
1840 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1841 	if (area)
1842 		trampoline_vaddr = area->vaddr;
1843 
1844 	return trampoline_vaddr;
1845 }
1846 
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1847 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1848 					struct pt_regs *regs)
1849 {
1850 	struct return_instance *ri = utask->return_instances;
1851 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1852 
1853 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1854 		ri = free_ret_instance(ri);
1855 		utask->depth--;
1856 	}
1857 	utask->return_instances = ri;
1858 }
1859 
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1860 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1861 {
1862 	struct return_instance *ri;
1863 	struct uprobe_task *utask;
1864 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1865 	bool chained;
1866 
1867 	if (!get_xol_area())
1868 		return;
1869 
1870 	utask = get_utask();
1871 	if (!utask)
1872 		return;
1873 
1874 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1875 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1876 				" nestedness limit pid/tgid=%d/%d\n",
1877 				current->pid, current->tgid);
1878 		return;
1879 	}
1880 
1881 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1882 	if (!ri)
1883 		return;
1884 
1885 	trampoline_vaddr = get_trampoline_vaddr();
1886 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1887 	if (orig_ret_vaddr == -1)
1888 		goto fail;
1889 
1890 	/* drop the entries invalidated by longjmp() */
1891 	chained = (orig_ret_vaddr == trampoline_vaddr);
1892 	cleanup_return_instances(utask, chained, regs);
1893 
1894 	/*
1895 	 * We don't want to keep trampoline address in stack, rather keep the
1896 	 * original return address of first caller thru all the consequent
1897 	 * instances. This also makes breakpoint unwrapping easier.
1898 	 */
1899 	if (chained) {
1900 		if (!utask->return_instances) {
1901 			/*
1902 			 * This situation is not possible. Likely we have an
1903 			 * attack from user-space.
1904 			 */
1905 			uprobe_warn(current, "handle tail call");
1906 			goto fail;
1907 		}
1908 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1909 	}
1910 
1911 	ri->uprobe = get_uprobe(uprobe);
1912 	ri->func = instruction_pointer(regs);
1913 	ri->stack = user_stack_pointer(regs);
1914 	ri->orig_ret_vaddr = orig_ret_vaddr;
1915 	ri->chained = chained;
1916 
1917 	utask->depth++;
1918 	ri->next = utask->return_instances;
1919 	utask->return_instances = ri;
1920 
1921 	return;
1922  fail:
1923 	kfree(ri);
1924 }
1925 
1926 /* Prepare to single-step probed instruction out of line. */
1927 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1928 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1929 {
1930 	struct uprobe_task *utask;
1931 	unsigned long xol_vaddr;
1932 	int err;
1933 
1934 	utask = get_utask();
1935 	if (!utask)
1936 		return -ENOMEM;
1937 
1938 	xol_vaddr = xol_get_insn_slot(uprobe);
1939 	if (!xol_vaddr)
1940 		return -ENOMEM;
1941 
1942 	utask->xol_vaddr = xol_vaddr;
1943 	utask->vaddr = bp_vaddr;
1944 
1945 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1946 	if (unlikely(err)) {
1947 		xol_free_insn_slot(current);
1948 		return err;
1949 	}
1950 
1951 	utask->active_uprobe = uprobe;
1952 	utask->state = UTASK_SSTEP;
1953 	return 0;
1954 }
1955 
1956 /*
1957  * If we are singlestepping, then ensure this thread is not connected to
1958  * non-fatal signals until completion of singlestep.  When xol insn itself
1959  * triggers the signal,  restart the original insn even if the task is
1960  * already SIGKILL'ed (since coredump should report the correct ip).  This
1961  * is even more important if the task has a handler for SIGSEGV/etc, The
1962  * _same_ instruction should be repeated again after return from the signal
1963  * handler, and SSTEP can never finish in this case.
1964  */
uprobe_deny_signal(void)1965 bool uprobe_deny_signal(void)
1966 {
1967 	struct task_struct *t = current;
1968 	struct uprobe_task *utask = t->utask;
1969 
1970 	if (likely(!utask || !utask->active_uprobe))
1971 		return false;
1972 
1973 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1974 
1975 	if (task_sigpending(t)) {
1976 		spin_lock_irq(&t->sighand->siglock);
1977 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1978 		spin_unlock_irq(&t->sighand->siglock);
1979 
1980 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1981 			utask->state = UTASK_SSTEP_TRAPPED;
1982 			set_tsk_thread_flag(t, TIF_UPROBE);
1983 		}
1984 	}
1985 
1986 	return true;
1987 }
1988 
mmf_recalc_uprobes(struct mm_struct * mm)1989 static void mmf_recalc_uprobes(struct mm_struct *mm)
1990 {
1991 	VMA_ITERATOR(vmi, mm, 0);
1992 	struct vm_area_struct *vma;
1993 
1994 	for_each_vma(vmi, vma) {
1995 		if (!valid_vma(vma, false))
1996 			continue;
1997 		/*
1998 		 * This is not strictly accurate, we can race with
1999 		 * uprobe_unregister() and see the already removed
2000 		 * uprobe if delete_uprobe() was not yet called.
2001 		 * Or this uprobe can be filtered out.
2002 		 */
2003 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2004 			return;
2005 	}
2006 
2007 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2008 }
2009 
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2010 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2011 {
2012 	struct page *page;
2013 	uprobe_opcode_t opcode;
2014 	int result;
2015 
2016 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2017 		return -EINVAL;
2018 
2019 	pagefault_disable();
2020 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2021 	pagefault_enable();
2022 
2023 	if (likely(result == 0))
2024 		goto out;
2025 
2026 	/*
2027 	 * The NULL 'tsk' here ensures that any faults that occur here
2028 	 * will not be accounted to the task.  'mm' *is* current->mm,
2029 	 * but we treat this as a 'remote' access since it is
2030 	 * essentially a kernel access to the memory.
2031 	 */
2032 	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL);
2033 	if (result < 0)
2034 		return result;
2035 
2036 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2037 	put_page(page);
2038  out:
2039 	/* This needs to return true for any variant of the trap insn */
2040 	return is_trap_insn(&opcode);
2041 }
2042 
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)2043 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2044 {
2045 	struct mm_struct *mm = current->mm;
2046 	struct uprobe *uprobe = NULL;
2047 	struct vm_area_struct *vma;
2048 
2049 	mmap_read_lock(mm);
2050 	vma = vma_lookup(mm, bp_vaddr);
2051 	if (vma) {
2052 		if (valid_vma(vma, false)) {
2053 			struct inode *inode = file_inode(vma->vm_file);
2054 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2055 
2056 			uprobe = find_uprobe(inode, offset);
2057 		}
2058 
2059 		if (!uprobe)
2060 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2061 	} else {
2062 		*is_swbp = -EFAULT;
2063 	}
2064 
2065 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2066 		mmf_recalc_uprobes(mm);
2067 	mmap_read_unlock(mm);
2068 
2069 	return uprobe;
2070 }
2071 
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2072 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2073 {
2074 	struct uprobe_consumer *uc;
2075 	int remove = UPROBE_HANDLER_REMOVE;
2076 	bool need_prep = false; /* prepare return uprobe, when needed */
2077 
2078 	down_read(&uprobe->register_rwsem);
2079 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2080 		int rc = 0;
2081 
2082 		if (uc->handler) {
2083 			rc = uc->handler(uc, regs);
2084 			WARN(rc & ~UPROBE_HANDLER_MASK,
2085 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2086 		}
2087 
2088 		if (uc->ret_handler)
2089 			need_prep = true;
2090 
2091 		remove &= rc;
2092 	}
2093 
2094 	if (need_prep && !remove)
2095 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2096 
2097 	if (remove && uprobe->consumers) {
2098 		WARN_ON(!uprobe_is_active(uprobe));
2099 		unapply_uprobe(uprobe, current->mm);
2100 	}
2101 	up_read(&uprobe->register_rwsem);
2102 }
2103 
2104 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)2105 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2106 {
2107 	struct uprobe *uprobe = ri->uprobe;
2108 	struct uprobe_consumer *uc;
2109 
2110 	down_read(&uprobe->register_rwsem);
2111 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2112 		if (uc->ret_handler)
2113 			uc->ret_handler(uc, ri->func, regs);
2114 	}
2115 	up_read(&uprobe->register_rwsem);
2116 }
2117 
find_next_ret_chain(struct return_instance * ri)2118 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2119 {
2120 	bool chained;
2121 
2122 	do {
2123 		chained = ri->chained;
2124 		ri = ri->next;	/* can't be NULL if chained */
2125 	} while (chained);
2126 
2127 	return ri;
2128 }
2129 
handle_trampoline(struct pt_regs * regs)2130 static void handle_trampoline(struct pt_regs *regs)
2131 {
2132 	struct uprobe_task *utask;
2133 	struct return_instance *ri, *next;
2134 	bool valid;
2135 
2136 	utask = current->utask;
2137 	if (!utask)
2138 		goto sigill;
2139 
2140 	ri = utask->return_instances;
2141 	if (!ri)
2142 		goto sigill;
2143 
2144 	do {
2145 		/*
2146 		 * We should throw out the frames invalidated by longjmp().
2147 		 * If this chain is valid, then the next one should be alive
2148 		 * or NULL; the latter case means that nobody but ri->func
2149 		 * could hit this trampoline on return. TODO: sigaltstack().
2150 		 */
2151 		next = find_next_ret_chain(ri);
2152 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2153 
2154 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2155 		do {
2156 			if (valid)
2157 				handle_uretprobe_chain(ri, regs);
2158 			ri = free_ret_instance(ri);
2159 			utask->depth--;
2160 		} while (ri != next);
2161 	} while (!valid);
2162 
2163 	utask->return_instances = ri;
2164 	return;
2165 
2166  sigill:
2167 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2168 	force_sig(SIGILL);
2169 
2170 }
2171 
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2172 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2173 {
2174 	return false;
2175 }
2176 
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2177 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2178 					struct pt_regs *regs)
2179 {
2180 	return true;
2181 }
2182 
2183 /*
2184  * Run handler and ask thread to singlestep.
2185  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2186  */
handle_swbp(struct pt_regs * regs)2187 static void handle_swbp(struct pt_regs *regs)
2188 {
2189 	struct uprobe *uprobe;
2190 	unsigned long bp_vaddr;
2191 	int is_swbp;
2192 
2193 	bp_vaddr = uprobe_get_swbp_addr(regs);
2194 	if (bp_vaddr == get_trampoline_vaddr())
2195 		return handle_trampoline(regs);
2196 
2197 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2198 	if (!uprobe) {
2199 		if (is_swbp > 0) {
2200 			/* No matching uprobe; signal SIGTRAP. */
2201 			force_sig(SIGTRAP);
2202 		} else {
2203 			/*
2204 			 * Either we raced with uprobe_unregister() or we can't
2205 			 * access this memory. The latter is only possible if
2206 			 * another thread plays with our ->mm. In both cases
2207 			 * we can simply restart. If this vma was unmapped we
2208 			 * can pretend this insn was not executed yet and get
2209 			 * the (correct) SIGSEGV after restart.
2210 			 */
2211 			instruction_pointer_set(regs, bp_vaddr);
2212 		}
2213 		return;
2214 	}
2215 
2216 	/* change it in advance for ->handler() and restart */
2217 	instruction_pointer_set(regs, bp_vaddr);
2218 
2219 	/*
2220 	 * TODO: move copy_insn/etc into _register and remove this hack.
2221 	 * After we hit the bp, _unregister + _register can install the
2222 	 * new and not-yet-analyzed uprobe at the same address, restart.
2223 	 */
2224 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2225 		goto out;
2226 
2227 	/*
2228 	 * Pairs with the smp_wmb() in prepare_uprobe().
2229 	 *
2230 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2231 	 * we must also see the stores to &uprobe->arch performed by the
2232 	 * prepare_uprobe() call.
2233 	 */
2234 	smp_rmb();
2235 
2236 	/* Tracing handlers use ->utask to communicate with fetch methods */
2237 	if (!get_utask())
2238 		goto out;
2239 
2240 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2241 		goto out;
2242 
2243 	handler_chain(uprobe, regs);
2244 
2245 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2246 		goto out;
2247 
2248 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2249 		return;
2250 
2251 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2252 out:
2253 	put_uprobe(uprobe);
2254 }
2255 
2256 /*
2257  * Perform required fix-ups and disable singlestep.
2258  * Allow pending signals to take effect.
2259  */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2260 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2261 {
2262 	struct uprobe *uprobe;
2263 	int err = 0;
2264 
2265 	uprobe = utask->active_uprobe;
2266 	if (utask->state == UTASK_SSTEP_ACK)
2267 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2268 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2269 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2270 	else
2271 		WARN_ON_ONCE(1);
2272 
2273 	put_uprobe(uprobe);
2274 	utask->active_uprobe = NULL;
2275 	utask->state = UTASK_RUNNING;
2276 	xol_free_insn_slot(current);
2277 
2278 	spin_lock_irq(&current->sighand->siglock);
2279 	recalc_sigpending(); /* see uprobe_deny_signal() */
2280 	spin_unlock_irq(&current->sighand->siglock);
2281 
2282 	if (unlikely(err)) {
2283 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2284 		force_sig(SIGILL);
2285 	}
2286 }
2287 
2288 /*
2289  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2290  * allows the thread to return from interrupt. After that handle_swbp()
2291  * sets utask->active_uprobe.
2292  *
2293  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2294  * and allows the thread to return from interrupt.
2295  *
2296  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2297  * uprobe_notify_resume().
2298  */
uprobe_notify_resume(struct pt_regs * regs)2299 void uprobe_notify_resume(struct pt_regs *regs)
2300 {
2301 	struct uprobe_task *utask;
2302 
2303 	clear_thread_flag(TIF_UPROBE);
2304 
2305 	utask = current->utask;
2306 	if (utask && utask->active_uprobe)
2307 		handle_singlestep(utask, regs);
2308 	else
2309 		handle_swbp(regs);
2310 }
2311 
2312 /*
2313  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2314  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2315  */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2316 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2317 {
2318 	if (!current->mm)
2319 		return 0;
2320 
2321 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2322 	    (!current->utask || !current->utask->return_instances))
2323 		return 0;
2324 
2325 	set_thread_flag(TIF_UPROBE);
2326 	return 1;
2327 }
2328 
2329 /*
2330  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2331  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2332  */
uprobe_post_sstep_notifier(struct pt_regs * regs)2333 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2334 {
2335 	struct uprobe_task *utask = current->utask;
2336 
2337 	if (!current->mm || !utask || !utask->active_uprobe)
2338 		/* task is currently not uprobed */
2339 		return 0;
2340 
2341 	utask->state = UTASK_SSTEP_ACK;
2342 	set_thread_flag(TIF_UPROBE);
2343 	return 1;
2344 }
2345 
2346 static struct notifier_block uprobe_exception_nb = {
2347 	.notifier_call		= arch_uprobe_exception_notify,
2348 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2349 };
2350 
uprobes_init(void)2351 void __init uprobes_init(void)
2352 {
2353 	int i;
2354 
2355 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2356 		mutex_init(&uprobes_mmap_mutex[i]);
2357 
2358 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2359 }
2360