1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68
69 #include "tree.h"
70 #include "rcu.h"
71
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76
77 /* Data structures. */
78
79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80 .gpwrap = true,
81 #ifdef CONFIG_RCU_NOCB_CPU
82 .cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 .level = { &rcu_state.node[0] },
87 .gp_state = RCU_GP_IDLE,
88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 .name = RCU_NAME,
92 .abbr = RCU_ABBR,
93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96 };
97
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116
117 /*
118 * The rcu_scheduler_active variable is initialized to the value
119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
121 * RCU can assume that there is but one task, allowing RCU to (for example)
122 * optimize synchronize_rcu() to a simple barrier(). When this variable
123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124 * to detect real grace periods. This variable is also used to suppress
125 * boot-time false positives from lockdep-RCU error checking. Finally, it
126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127 * is fully initialized, including all of its kthreads having been spawned.
128 */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
132 /*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144 static int rcu_scheduler_fully_active __read_mostly;
145
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 unsigned long gps, unsigned long flags);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155 static bool rcu_init_invoked(void);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158
159 /*
160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161 * real-time priority(enabling/disabling) is controlled by
162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163 */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
166
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
168
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
175
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
180 #endif
181
182 /*
183 * This rcu parameter is runtime-read-only. It reflects
184 * a minimum allowed number of objects which can be cached
185 * per-CPU. Object size is equal to one page. This value
186 * can be changed at boot time.
187 */
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
190
191 // A page shrinker can ask for pages to be freed to make them
192 // available for other parts of the system. This usually happens
193 // under low memory conditions, and in that case we should also
194 // defer page-cache filling for a short time period.
195 //
196 // The default value is 5 seconds, which is long enough to reduce
197 // interference with the shrinker while it asks other systems to
198 // drain their caches.
199 static int rcu_delay_page_cache_fill_msec = 5000;
200 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201
202 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)203 int rcu_get_gp_kthreads_prio(void)
204 {
205 return kthread_prio;
206 }
207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208
209 /*
210 * Number of grace periods between delays, normalized by the duration of
211 * the delay. The longer the delay, the more the grace periods between
212 * each delay. The reason for this normalization is that it means that,
213 * for non-zero delays, the overall slowdown of grace periods is constant
214 * regardless of the duration of the delay. This arrangement balances
215 * the need for long delays to increase some race probabilities with the
216 * need for fast grace periods to increase other race probabilities.
217 */
218 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
219
220 /*
221 * Return true if an RCU grace period is in progress. The READ_ONCE()s
222 * permit this function to be invoked without holding the root rcu_node
223 * structure's ->lock, but of course results can be subject to change.
224 */
rcu_gp_in_progress(void)225 static int rcu_gp_in_progress(void)
226 {
227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
228 }
229
230 /*
231 * Return the number of callbacks queued on the specified CPU.
232 * Handles both the nocbs and normal cases.
233 */
rcu_get_n_cbs_cpu(int cpu)234 static long rcu_get_n_cbs_cpu(int cpu)
235 {
236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237
238 if (rcu_segcblist_is_enabled(&rdp->cblist))
239 return rcu_segcblist_n_cbs(&rdp->cblist);
240 return 0;
241 }
242
rcu_softirq_qs(void)243 void rcu_softirq_qs(void)
244 {
245 rcu_qs();
246 rcu_preempt_deferred_qs(current);
247 rcu_tasks_qs(current, false);
248 }
249
250 /*
251 * Reset the current CPU's ->dynticks counter to indicate that the
252 * newly onlined CPU is no longer in an extended quiescent state.
253 * This will either leave the counter unchanged, or increment it
254 * to the next non-quiescent value.
255 *
256 * The non-atomic test/increment sequence works because the upper bits
257 * of the ->dynticks counter are manipulated only by the corresponding CPU,
258 * or when the corresponding CPU is offline.
259 */
rcu_dynticks_eqs_online(void)260 static void rcu_dynticks_eqs_online(void)
261 {
262 if (ct_dynticks() & RCU_DYNTICKS_IDX)
263 return;
264 ct_state_inc(RCU_DYNTICKS_IDX);
265 }
266
267 /*
268 * Snapshot the ->dynticks counter with full ordering so as to allow
269 * stable comparison of this counter with past and future snapshots.
270 */
rcu_dynticks_snap(int cpu)271 static int rcu_dynticks_snap(int cpu)
272 {
273 smp_mb(); // Fundamental RCU ordering guarantee.
274 return ct_dynticks_cpu_acquire(cpu);
275 }
276
277 /*
278 * Return true if the snapshot returned from rcu_dynticks_snap()
279 * indicates that RCU is in an extended quiescent state.
280 */
rcu_dynticks_in_eqs(int snap)281 static bool rcu_dynticks_in_eqs(int snap)
282 {
283 return !(snap & RCU_DYNTICKS_IDX);
284 }
285
286 /*
287 * Return true if the CPU corresponding to the specified rcu_data
288 * structure has spent some time in an extended quiescent state since
289 * rcu_dynticks_snap() returned the specified snapshot.
290 */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
292 {
293 return snap != rcu_dynticks_snap(rdp->cpu);
294 }
295
296 /*
297 * Return true if the referenced integer is zero while the specified
298 * CPU remains within a single extended quiescent state.
299 */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301 {
302 int snap;
303
304 // If not quiescent, force back to earlier extended quiescent state.
305 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
306 smp_rmb(); // Order ->dynticks and *vp reads.
307 if (READ_ONCE(*vp))
308 return false; // Non-zero, so report failure;
309 smp_rmb(); // Order *vp read and ->dynticks re-read.
310
311 // If still in the same extended quiescent state, we are good!
312 return snap == ct_dynticks_cpu(cpu);
313 }
314
315 /*
316 * Let the RCU core know that this CPU has gone through the scheduler,
317 * which is a quiescent state. This is called when the need for a
318 * quiescent state is urgent, so we burn an atomic operation and full
319 * memory barriers to let the RCU core know about it, regardless of what
320 * this CPU might (or might not) do in the near future.
321 *
322 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
323 *
324 * The caller must have disabled interrupts and must not be idle.
325 */
rcu_momentary_dyntick_idle(void)326 notrace void rcu_momentary_dyntick_idle(void)
327 {
328 int seq;
329
330 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
331 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
332 /* It is illegal to call this from idle state. */
333 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
334 rcu_preempt_deferred_qs(current);
335 }
336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
337
338 /**
339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
340 *
341 * If the current CPU is idle and running at a first-level (not nested)
342 * interrupt, or directly, from idle, return true.
343 *
344 * The caller must have at least disabled IRQs.
345 */
rcu_is_cpu_rrupt_from_idle(void)346 static int rcu_is_cpu_rrupt_from_idle(void)
347 {
348 long nesting;
349
350 /*
351 * Usually called from the tick; but also used from smp_function_call()
352 * for expedited grace periods. This latter can result in running from
353 * the idle task, instead of an actual IPI.
354 */
355 lockdep_assert_irqs_disabled();
356
357 /* Check for counter underflows */
358 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
359 "RCU dynticks_nesting counter underflow!");
360 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
361 "RCU dynticks_nmi_nesting counter underflow/zero!");
362
363 /* Are we at first interrupt nesting level? */
364 nesting = ct_dynticks_nmi_nesting();
365 if (nesting > 1)
366 return false;
367
368 /*
369 * If we're not in an interrupt, we must be in the idle task!
370 */
371 WARN_ON_ONCE(!nesting && !is_idle_task(current));
372
373 /* Does CPU appear to be idle from an RCU standpoint? */
374 return ct_dynticks_nesting() == 0;
375 }
376
377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378 // Maximum callbacks per rcu_do_batch ...
379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
380 static long blimit = DEFAULT_RCU_BLIMIT;
381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
382 static long qhimark = DEFAULT_RCU_QHIMARK;
383 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
384 static long qlowmark = DEFAULT_RCU_QLOMARK;
385 #define DEFAULT_RCU_QOVLD_MULT 2
386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
389
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
393 module_param(qovld, long, 0444);
394
395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
396 static ulong jiffies_till_next_fqs = ULONG_MAX;
397 static bool rcu_kick_kthreads;
398 static int rcu_divisor = 7;
399 module_param(rcu_divisor, int, 0644);
400
401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403 module_param(rcu_resched_ns, long, 0644);
404
405 /*
406 * How long the grace period must be before we start recruiting
407 * quiescent-state help from rcu_note_context_switch().
408 */
409 static ulong jiffies_till_sched_qs = ULONG_MAX;
410 module_param(jiffies_till_sched_qs, ulong, 0444);
411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413
414 /*
415 * Make sure that we give the grace-period kthread time to detect any
416 * idle CPUs before taking active measures to force quiescent states.
417 * However, don't go below 100 milliseconds, adjusted upwards for really
418 * large systems.
419 */
adjust_jiffies_till_sched_qs(void)420 static void adjust_jiffies_till_sched_qs(void)
421 {
422 unsigned long j;
423
424 /* If jiffies_till_sched_qs was specified, respect the request. */
425 if (jiffies_till_sched_qs != ULONG_MAX) {
426 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 return;
428 }
429 /* Otherwise, set to third fqs scan, but bound below on large system. */
430 j = READ_ONCE(jiffies_till_first_fqs) +
431 2 * READ_ONCE(jiffies_till_next_fqs);
432 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435 WRITE_ONCE(jiffies_to_sched_qs, j);
436 }
437
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439 {
440 ulong j;
441 int ret = kstrtoul(val, 0, &j);
442
443 if (!ret) {
444 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
445 adjust_jiffies_till_sched_qs();
446 }
447 return ret;
448 }
449
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451 {
452 ulong j;
453 int ret = kstrtoul(val, 0, &j);
454
455 if (!ret) {
456 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
457 adjust_jiffies_till_sched_qs();
458 }
459 return ret;
460 }
461
462 static const struct kernel_param_ops first_fqs_jiffies_ops = {
463 .set = param_set_first_fqs_jiffies,
464 .get = param_get_ulong,
465 };
466
467 static const struct kernel_param_ops next_fqs_jiffies_ops = {
468 .set = param_set_next_fqs_jiffies,
469 .get = param_get_ulong,
470 };
471
472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
474 module_param(rcu_kick_kthreads, bool, 0644);
475
476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
477 static int rcu_pending(int user);
478
479 /*
480 * Return the number of RCU GPs completed thus far for debug & stats.
481 */
rcu_get_gp_seq(void)482 unsigned long rcu_get_gp_seq(void)
483 {
484 return READ_ONCE(rcu_state.gp_seq);
485 }
486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
487
488 /*
489 * Return the number of RCU expedited batches completed thus far for
490 * debug & stats. Odd numbers mean that a batch is in progress, even
491 * numbers mean idle. The value returned will thus be roughly double
492 * the cumulative batches since boot.
493 */
rcu_exp_batches_completed(void)494 unsigned long rcu_exp_batches_completed(void)
495 {
496 return rcu_state.expedited_sequence;
497 }
498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499
500 /*
501 * Return the root node of the rcu_state structure.
502 */
rcu_get_root(void)503 static struct rcu_node *rcu_get_root(void)
504 {
505 return &rcu_state.node[0];
506 }
507
508 /*
509 * Send along grace-period-related data for rcutorture diagnostics.
510 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
512 unsigned long *gp_seq)
513 {
514 switch (test_type) {
515 case RCU_FLAVOR:
516 *flags = READ_ONCE(rcu_state.gp_flags);
517 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
518 break;
519 default:
520 break;
521 }
522 }
523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524
525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
526 /*
527 * An empty function that will trigger a reschedule on
528 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
529 */
late_wakeup_func(struct irq_work * work)530 static void late_wakeup_func(struct irq_work *work)
531 {
532 }
533
534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535 IRQ_WORK_INIT(late_wakeup_func);
536
537 /*
538 * If either:
539 *
540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542 *
543 * In these cases the late RCU wake ups aren't supported in the resched loops and our
544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545 * get re-enabled again.
546 */
rcu_irq_work_resched(void)547 noinstr void rcu_irq_work_resched(void)
548 {
549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550
551 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552 return;
553
554 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555 return;
556
557 instrumentation_begin();
558 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560 }
561 instrumentation_end();
562 }
563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
564
565 #ifdef CONFIG_PROVE_RCU
566 /**
567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568 */
rcu_irq_exit_check_preempt(void)569 void rcu_irq_exit_check_preempt(void)
570 {
571 lockdep_assert_irqs_disabled();
572
573 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
574 "RCU dynticks_nesting counter underflow/zero!");
575 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
576 DYNTICK_IRQ_NONIDLE,
577 "Bad RCU dynticks_nmi_nesting counter\n");
578 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579 "RCU in extended quiescent state!");
580 }
581 #endif /* #ifdef CONFIG_PROVE_RCU */
582
583 #ifdef CONFIG_NO_HZ_FULL
584 /**
585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586 *
587 * The scheduler tick is not normally enabled when CPUs enter the kernel
588 * from nohz_full userspace execution. After all, nohz_full userspace
589 * execution is an RCU quiescent state and the time executing in the kernel
590 * is quite short. Except of course when it isn't. And it is not hard to
591 * cause a large system to spend tens of seconds or even minutes looping
592 * in the kernel, which can cause a number of problems, include RCU CPU
593 * stall warnings.
594 *
595 * Therefore, if a nohz_full CPU fails to report a quiescent state
596 * in a timely manner, the RCU grace-period kthread sets that CPU's
597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598 * exception will invoke this function, which will turn on the scheduler
599 * tick, which will enable RCU to detect that CPU's quiescent states,
600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601 * The tick will be disabled once a quiescent state is reported for
602 * this CPU.
603 *
604 * Of course, in carefully tuned systems, there might never be an
605 * interrupt or exception. In that case, the RCU grace-period kthread
606 * will eventually cause one to happen. However, in less carefully
607 * controlled environments, this function allows RCU to get what it
608 * needs without creating otherwise useless interruptions.
609 */
__rcu_irq_enter_check_tick(void)610 void __rcu_irq_enter_check_tick(void)
611 {
612 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613
614 // If we're here from NMI there's nothing to do.
615 if (in_nmi())
616 return;
617
618 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620
621 if (!tick_nohz_full_cpu(rdp->cpu) ||
622 !READ_ONCE(rdp->rcu_urgent_qs) ||
623 READ_ONCE(rdp->rcu_forced_tick)) {
624 // RCU doesn't need nohz_full help from this CPU, or it is
625 // already getting that help.
626 return;
627 }
628
629 // We get here only when not in an extended quiescent state and
630 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
631 // already watching and (2) The fact that we are in an interrupt
632 // handler and that the rcu_node lock is an irq-disabled lock
633 // prevents self-deadlock. So we can safely recheck under the lock.
634 // Note that the nohz_full state currently cannot change.
635 raw_spin_lock_rcu_node(rdp->mynode);
636 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
637 // A nohz_full CPU is in the kernel and RCU needs a
638 // quiescent state. Turn on the tick!
639 WRITE_ONCE(rdp->rcu_forced_tick, true);
640 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641 }
642 raw_spin_unlock_rcu_node(rdp->mynode);
643 }
644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
645 #endif /* CONFIG_NO_HZ_FULL */
646
647 /*
648 * Check to see if any future non-offloaded RCU-related work will need
649 * to be done by the current CPU, even if none need be done immediately,
650 * returning 1 if so. This function is part of the RCU implementation;
651 * it is -not- an exported member of the RCU API. This is used by
652 * the idle-entry code to figure out whether it is safe to disable the
653 * scheduler-clock interrupt.
654 *
655 * Just check whether or not this CPU has non-offloaded RCU callbacks
656 * queued.
657 */
rcu_needs_cpu(void)658 int rcu_needs_cpu(void)
659 {
660 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
661 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662 }
663
664 /*
665 * If any sort of urgency was applied to the current CPU (for example,
666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667 * to get to a quiescent state, disable it.
668 */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
670 {
671 raw_lockdep_assert_held_rcu_node(rdp->mynode);
672 WRITE_ONCE(rdp->rcu_urgent_qs, false);
673 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
674 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
675 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
676 WRITE_ONCE(rdp->rcu_forced_tick, false);
677 }
678 }
679
680 /**
681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
682 *
683 * Return @true if RCU is watching the running CPU and @false otherwise.
684 * An @true return means that this CPU can safely enter RCU read-side
685 * critical sections.
686 *
687 * Although calls to rcu_is_watching() from most parts of the kernel
688 * will return @true, there are important exceptions. For example, if the
689 * current CPU is deep within its idle loop, in kernel entry/exit code,
690 * or offline, rcu_is_watching() will return @false.
691 *
692 * Make notrace because it can be called by the internal functions of
693 * ftrace, and making this notrace removes unnecessary recursion calls.
694 */
rcu_is_watching(void)695 notrace bool rcu_is_watching(void)
696 {
697 bool ret;
698
699 preempt_disable_notrace();
700 ret = !rcu_dynticks_curr_cpu_in_eqs();
701 preempt_enable_notrace();
702 return ret;
703 }
704 EXPORT_SYMBOL_GPL(rcu_is_watching);
705
706 /*
707 * If a holdout task is actually running, request an urgent quiescent
708 * state from its CPU. This is unsynchronized, so migrations can cause
709 * the request to go to the wrong CPU. Which is OK, all that will happen
710 * is that the CPU's next context switch will be a bit slower and next
711 * time around this task will generate another request.
712 */
rcu_request_urgent_qs_task(struct task_struct * t)713 void rcu_request_urgent_qs_task(struct task_struct *t)
714 {
715 int cpu;
716
717 barrier();
718 cpu = task_cpu(t);
719 if (!task_curr(t))
720 return; /* This task is not running on that CPU. */
721 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
722 }
723
724 /*
725 * When trying to report a quiescent state on behalf of some other CPU,
726 * it is our responsibility to check for and handle potential overflow
727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
728 * After all, the CPU might be in deep idle state, and thus executing no
729 * code whatsoever.
730 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732 {
733 raw_lockdep_assert_held_rcu_node(rnp);
734 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735 rnp->gp_seq))
736 WRITE_ONCE(rdp->gpwrap, true);
737 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
739 }
740
741 /*
742 * Snapshot the specified CPU's dynticks counter so that we can later
743 * credit them with an implicit quiescent state. Return 1 if this CPU
744 * is in dynticks idle mode, which is an extended quiescent state.
745 */
dyntick_save_progress_counter(struct rcu_data * rdp)746 static int dyntick_save_progress_counter(struct rcu_data *rdp)
747 {
748 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
749 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
750 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
751 rcu_gpnum_ovf(rdp->mynode, rdp);
752 return 1;
753 }
754 return 0;
755 }
756
757 /*
758 * Returns positive if the specified CPU has passed through a quiescent state
759 * by virtue of being in or having passed through an dynticks idle state since
760 * the last call to dyntick_save_progress_counter() for this same CPU, or by
761 * virtue of having been offline.
762 *
763 * Returns negative if the specified CPU needs a force resched.
764 *
765 * Returns zero otherwise.
766 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)767 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
768 {
769 unsigned long jtsq;
770 int ret = 0;
771 struct rcu_node *rnp = rdp->mynode;
772
773 /*
774 * If the CPU passed through or entered a dynticks idle phase with
775 * no active irq/NMI handlers, then we can safely pretend that the CPU
776 * already acknowledged the request to pass through a quiescent
777 * state. Either way, that CPU cannot possibly be in an RCU
778 * read-side critical section that started before the beginning
779 * of the current RCU grace period.
780 */
781 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
782 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
783 rcu_gpnum_ovf(rnp, rdp);
784 return 1;
785 }
786
787 /*
788 * Complain if a CPU that is considered to be offline from RCU's
789 * perspective has not yet reported a quiescent state. After all,
790 * the offline CPU should have reported a quiescent state during
791 * the CPU-offline process, or, failing that, by rcu_gp_init()
792 * if it ran concurrently with either the CPU going offline or the
793 * last task on a leaf rcu_node structure exiting its RCU read-side
794 * critical section while all CPUs corresponding to that structure
795 * are offline. This added warning detects bugs in any of these
796 * code paths.
797 *
798 * The rcu_node structure's ->lock is held here, which excludes
799 * the relevant portions the CPU-hotplug code, the grace-period
800 * initialization code, and the rcu_read_unlock() code paths.
801 *
802 * For more detail, please refer to the "Hotplug CPU" section
803 * of RCU's Requirements documentation.
804 */
805 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
806 struct rcu_node *rnp1;
807
808 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
809 __func__, rnp->grplo, rnp->grphi, rnp->level,
810 (long)rnp->gp_seq, (long)rnp->completedqs);
811 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
812 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
813 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
814 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
815 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
816 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
817 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
818 return 1; /* Break things loose after complaining. */
819 }
820
821 /*
822 * A CPU running for an extended time within the kernel can
823 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
824 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
825 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
826 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
827 * variable are safe because the assignments are repeated if this
828 * CPU failed to pass through a quiescent state. This code
829 * also checks .jiffies_resched in case jiffies_to_sched_qs
830 * is set way high.
831 */
832 jtsq = READ_ONCE(jiffies_to_sched_qs);
833 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
834 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
835 time_after(jiffies, rcu_state.jiffies_resched) ||
836 rcu_state.cbovld)) {
837 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
838 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
839 smp_store_release(&rdp->rcu_urgent_qs, true);
840 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
841 WRITE_ONCE(rdp->rcu_urgent_qs, true);
842 }
843
844 /*
845 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
846 * The above code handles this, but only for straight cond_resched().
847 * And some in-kernel loops check need_resched() before calling
848 * cond_resched(), which defeats the above code for CPUs that are
849 * running in-kernel with scheduling-clock interrupts disabled.
850 * So hit them over the head with the resched_cpu() hammer!
851 */
852 if (tick_nohz_full_cpu(rdp->cpu) &&
853 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
854 rcu_state.cbovld)) {
855 WRITE_ONCE(rdp->rcu_urgent_qs, true);
856 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
857 ret = -1;
858 }
859
860 /*
861 * If more than halfway to RCU CPU stall-warning time, invoke
862 * resched_cpu() more frequently to try to loosen things up a bit.
863 * Also check to see if the CPU is getting hammered with interrupts,
864 * but only once per grace period, just to keep the IPIs down to
865 * a dull roar.
866 */
867 if (time_after(jiffies, rcu_state.jiffies_resched)) {
868 if (time_after(jiffies,
869 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
870 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
871 ret = -1;
872 }
873 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
874 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
875 (rnp->ffmask & rdp->grpmask)) {
876 rdp->rcu_iw_pending = true;
877 rdp->rcu_iw_gp_seq = rnp->gp_seq;
878 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
879 }
880
881 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
882 int cpu = rdp->cpu;
883 struct rcu_snap_record *rsrp;
884 struct kernel_cpustat *kcsp;
885
886 kcsp = &kcpustat_cpu(cpu);
887
888 rsrp = &rdp->snap_record;
889 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
890 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
891 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
892 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
893 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
894 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
895 rsrp->jiffies = jiffies;
896 rsrp->gp_seq = rdp->gp_seq;
897 }
898 }
899
900 return ret;
901 }
902
903 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)904 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
905 unsigned long gp_seq_req, const char *s)
906 {
907 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
908 gp_seq_req, rnp->level,
909 rnp->grplo, rnp->grphi, s);
910 }
911
912 /*
913 * rcu_start_this_gp - Request the start of a particular grace period
914 * @rnp_start: The leaf node of the CPU from which to start.
915 * @rdp: The rcu_data corresponding to the CPU from which to start.
916 * @gp_seq_req: The gp_seq of the grace period to start.
917 *
918 * Start the specified grace period, as needed to handle newly arrived
919 * callbacks. The required future grace periods are recorded in each
920 * rcu_node structure's ->gp_seq_needed field. Returns true if there
921 * is reason to awaken the grace-period kthread.
922 *
923 * The caller must hold the specified rcu_node structure's ->lock, which
924 * is why the caller is responsible for waking the grace-period kthread.
925 *
926 * Returns true if the GP thread needs to be awakened else false.
927 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)928 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
929 unsigned long gp_seq_req)
930 {
931 bool ret = false;
932 struct rcu_node *rnp;
933
934 /*
935 * Use funnel locking to either acquire the root rcu_node
936 * structure's lock or bail out if the need for this grace period
937 * has already been recorded -- or if that grace period has in
938 * fact already started. If there is already a grace period in
939 * progress in a non-leaf node, no recording is needed because the
940 * end of the grace period will scan the leaf rcu_node structures.
941 * Note that rnp_start->lock must not be released.
942 */
943 raw_lockdep_assert_held_rcu_node(rnp_start);
944 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
945 for (rnp = rnp_start; 1; rnp = rnp->parent) {
946 if (rnp != rnp_start)
947 raw_spin_lock_rcu_node(rnp);
948 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
949 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
950 (rnp != rnp_start &&
951 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
952 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
953 TPS("Prestarted"));
954 goto unlock_out;
955 }
956 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
957 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
958 /*
959 * We just marked the leaf or internal node, and a
960 * grace period is in progress, which means that
961 * rcu_gp_cleanup() will see the marking. Bail to
962 * reduce contention.
963 */
964 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
965 TPS("Startedleaf"));
966 goto unlock_out;
967 }
968 if (rnp != rnp_start && rnp->parent != NULL)
969 raw_spin_unlock_rcu_node(rnp);
970 if (!rnp->parent)
971 break; /* At root, and perhaps also leaf. */
972 }
973
974 /* If GP already in progress, just leave, otherwise start one. */
975 if (rcu_gp_in_progress()) {
976 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
977 goto unlock_out;
978 }
979 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
980 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
981 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
982 if (!READ_ONCE(rcu_state.gp_kthread)) {
983 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
984 goto unlock_out;
985 }
986 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
987 ret = true; /* Caller must wake GP kthread. */
988 unlock_out:
989 /* Push furthest requested GP to leaf node and rcu_data structure. */
990 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
991 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
992 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
993 }
994 if (rnp != rnp_start)
995 raw_spin_unlock_rcu_node(rnp);
996 return ret;
997 }
998
999 /*
1000 * Clean up any old requests for the just-ended grace period. Also return
1001 * whether any additional grace periods have been requested.
1002 */
rcu_future_gp_cleanup(struct rcu_node * rnp)1003 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1004 {
1005 bool needmore;
1006 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1007
1008 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1009 if (!needmore)
1010 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1011 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1012 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1013 return needmore;
1014 }
1015
swake_up_one_online_ipi(void * arg)1016 static void swake_up_one_online_ipi(void *arg)
1017 {
1018 struct swait_queue_head *wqh = arg;
1019
1020 swake_up_one(wqh);
1021 }
1022
swake_up_one_online(struct swait_queue_head * wqh)1023 static void swake_up_one_online(struct swait_queue_head *wqh)
1024 {
1025 int cpu = get_cpu();
1026
1027 /*
1028 * If called from rcutree_report_cpu_starting(), wake up
1029 * is dangerous that late in the CPU-down hotplug process. The
1030 * scheduler might queue an ignored hrtimer. Defer the wake up
1031 * to an online CPU instead.
1032 */
1033 if (unlikely(cpu_is_offline(cpu))) {
1034 int target;
1035
1036 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1037 cpu_online_mask);
1038
1039 smp_call_function_single(target, swake_up_one_online_ipi,
1040 wqh, 0);
1041 put_cpu();
1042 } else {
1043 put_cpu();
1044 swake_up_one(wqh);
1045 }
1046 }
1047
1048 /*
1049 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1050 * interrupt or softirq handler, in which case we just might immediately
1051 * sleep upon return, resulting in a grace-period hang), and don't bother
1052 * awakening when there is nothing for the grace-period kthread to do
1053 * (as in several CPUs raced to awaken, we lost), and finally don't try
1054 * to awaken a kthread that has not yet been created. If all those checks
1055 * are passed, track some debug information and awaken.
1056 *
1057 * So why do the self-wakeup when in an interrupt or softirq handler
1058 * in the grace-period kthread's context? Because the kthread might have
1059 * been interrupted just as it was going to sleep, and just after the final
1060 * pre-sleep check of the awaken condition. In this case, a wakeup really
1061 * is required, and is therefore supplied.
1062 */
rcu_gp_kthread_wake(void)1063 static void rcu_gp_kthread_wake(void)
1064 {
1065 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1066
1067 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1068 !READ_ONCE(rcu_state.gp_flags) || !t)
1069 return;
1070 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1071 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1072 swake_up_one_online(&rcu_state.gp_wq);
1073 }
1074
1075 /*
1076 * If there is room, assign a ->gp_seq number to any callbacks on this
1077 * CPU that have not already been assigned. Also accelerate any callbacks
1078 * that were previously assigned a ->gp_seq number that has since proven
1079 * to be too conservative, which can happen if callbacks get assigned a
1080 * ->gp_seq number while RCU is idle, but with reference to a non-root
1081 * rcu_node structure. This function is idempotent, so it does not hurt
1082 * to call it repeatedly. Returns an flag saying that we should awaken
1083 * the RCU grace-period kthread.
1084 *
1085 * The caller must hold rnp->lock with interrupts disabled.
1086 */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1087 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1088 {
1089 unsigned long gp_seq_req;
1090 bool ret = false;
1091
1092 rcu_lockdep_assert_cblist_protected(rdp);
1093 raw_lockdep_assert_held_rcu_node(rnp);
1094
1095 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1096 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1097 return false;
1098
1099 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1100
1101 /*
1102 * Callbacks are often registered with incomplete grace-period
1103 * information. Something about the fact that getting exact
1104 * information requires acquiring a global lock... RCU therefore
1105 * makes a conservative estimate of the grace period number at which
1106 * a given callback will become ready to invoke. The following
1107 * code checks this estimate and improves it when possible, thus
1108 * accelerating callback invocation to an earlier grace-period
1109 * number.
1110 */
1111 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1112 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1113 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1114
1115 /* Trace depending on how much we were able to accelerate. */
1116 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1117 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1118 else
1119 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1120
1121 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1122
1123 return ret;
1124 }
1125
1126 /*
1127 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1128 * rcu_node structure's ->lock be held. It consults the cached value
1129 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1130 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1131 * while holding the leaf rcu_node structure's ->lock.
1132 */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1133 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1134 struct rcu_data *rdp)
1135 {
1136 unsigned long c;
1137 bool needwake;
1138
1139 rcu_lockdep_assert_cblist_protected(rdp);
1140 c = rcu_seq_snap(&rcu_state.gp_seq);
1141 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1142 /* Old request still live, so mark recent callbacks. */
1143 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1144 return;
1145 }
1146 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1147 needwake = rcu_accelerate_cbs(rnp, rdp);
1148 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1149 if (needwake)
1150 rcu_gp_kthread_wake();
1151 }
1152
1153 /*
1154 * Move any callbacks whose grace period has completed to the
1155 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1156 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1157 * sublist. This function is idempotent, so it does not hurt to
1158 * invoke it repeatedly. As long as it is not invoked -too- often...
1159 * Returns true if the RCU grace-period kthread needs to be awakened.
1160 *
1161 * The caller must hold rnp->lock with interrupts disabled.
1162 */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1163 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1164 {
1165 rcu_lockdep_assert_cblist_protected(rdp);
1166 raw_lockdep_assert_held_rcu_node(rnp);
1167
1168 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1169 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1170 return false;
1171
1172 /*
1173 * Find all callbacks whose ->gp_seq numbers indicate that they
1174 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1175 */
1176 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1177
1178 /* Classify any remaining callbacks. */
1179 return rcu_accelerate_cbs(rnp, rdp);
1180 }
1181
1182 /*
1183 * Move and classify callbacks, but only if doing so won't require
1184 * that the RCU grace-period kthread be awakened.
1185 */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1186 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1187 struct rcu_data *rdp)
1188 {
1189 rcu_lockdep_assert_cblist_protected(rdp);
1190 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1191 return;
1192 // The grace period cannot end while we hold the rcu_node lock.
1193 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1194 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1195 raw_spin_unlock_rcu_node(rnp);
1196 }
1197
1198 /*
1199 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1200 * quiescent state. This is intended to be invoked when the CPU notices
1201 * a new grace period.
1202 */
rcu_strict_gp_check_qs(void)1203 static void rcu_strict_gp_check_qs(void)
1204 {
1205 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1206 rcu_read_lock();
1207 rcu_read_unlock();
1208 }
1209 }
1210
1211 /*
1212 * Update CPU-local rcu_data state to record the beginnings and ends of
1213 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1214 * structure corresponding to the current CPU, and must have irqs disabled.
1215 * Returns true if the grace-period kthread needs to be awakened.
1216 */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1217 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1218 {
1219 bool ret = false;
1220 bool need_qs;
1221 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1222
1223 raw_lockdep_assert_held_rcu_node(rnp);
1224
1225 if (rdp->gp_seq == rnp->gp_seq)
1226 return false; /* Nothing to do. */
1227
1228 /* Handle the ends of any preceding grace periods first. */
1229 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1230 unlikely(READ_ONCE(rdp->gpwrap))) {
1231 if (!offloaded)
1232 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1233 rdp->core_needs_qs = false;
1234 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1235 } else {
1236 if (!offloaded)
1237 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1238 if (rdp->core_needs_qs)
1239 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1240 }
1241
1242 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1243 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1244 unlikely(READ_ONCE(rdp->gpwrap))) {
1245 /*
1246 * If the current grace period is waiting for this CPU,
1247 * set up to detect a quiescent state, otherwise don't
1248 * go looking for one.
1249 */
1250 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1251 need_qs = !!(rnp->qsmask & rdp->grpmask);
1252 rdp->cpu_no_qs.b.norm = need_qs;
1253 rdp->core_needs_qs = need_qs;
1254 zero_cpu_stall_ticks(rdp);
1255 }
1256 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1257 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1258 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1259 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1260 WRITE_ONCE(rdp->last_sched_clock, jiffies);
1261 WRITE_ONCE(rdp->gpwrap, false);
1262 rcu_gpnum_ovf(rnp, rdp);
1263 return ret;
1264 }
1265
note_gp_changes(struct rcu_data * rdp)1266 static void note_gp_changes(struct rcu_data *rdp)
1267 {
1268 unsigned long flags;
1269 bool needwake;
1270 struct rcu_node *rnp;
1271
1272 local_irq_save(flags);
1273 rnp = rdp->mynode;
1274 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1275 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1276 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1277 local_irq_restore(flags);
1278 return;
1279 }
1280 needwake = __note_gp_changes(rnp, rdp);
1281 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1282 rcu_strict_gp_check_qs();
1283 if (needwake)
1284 rcu_gp_kthread_wake();
1285 }
1286
1287 static atomic_t *rcu_gp_slow_suppress;
1288
1289 /* Register a counter to suppress debugging grace-period delays. */
rcu_gp_slow_register(atomic_t * rgssp)1290 void rcu_gp_slow_register(atomic_t *rgssp)
1291 {
1292 WARN_ON_ONCE(rcu_gp_slow_suppress);
1293
1294 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1295 }
1296 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1297
1298 /* Unregister a counter, with NULL for not caring which. */
rcu_gp_slow_unregister(atomic_t * rgssp)1299 void rcu_gp_slow_unregister(atomic_t *rgssp)
1300 {
1301 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1302
1303 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1304 }
1305 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1306
rcu_gp_slow_is_suppressed(void)1307 static bool rcu_gp_slow_is_suppressed(void)
1308 {
1309 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1310
1311 return rgssp && atomic_read(rgssp);
1312 }
1313
rcu_gp_slow(int delay)1314 static void rcu_gp_slow(int delay)
1315 {
1316 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1317 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1318 schedule_timeout_idle(delay);
1319 }
1320
1321 static unsigned long sleep_duration;
1322
1323 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1324 void rcu_gp_set_torture_wait(int duration)
1325 {
1326 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1327 WRITE_ONCE(sleep_duration, duration);
1328 }
1329 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1330
1331 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1332 static void rcu_gp_torture_wait(void)
1333 {
1334 unsigned long duration;
1335
1336 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1337 return;
1338 duration = xchg(&sleep_duration, 0UL);
1339 if (duration > 0) {
1340 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1341 schedule_timeout_idle(duration);
1342 pr_alert("%s: Wait complete\n", __func__);
1343 }
1344 }
1345
1346 /*
1347 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1348 * processing.
1349 */
rcu_strict_gp_boundary(void * unused)1350 static void rcu_strict_gp_boundary(void *unused)
1351 {
1352 invoke_rcu_core();
1353 }
1354
1355 // Make the polled API aware of the beginning of a grace period.
rcu_poll_gp_seq_start(unsigned long * snap)1356 static void rcu_poll_gp_seq_start(unsigned long *snap)
1357 {
1358 struct rcu_node *rnp = rcu_get_root();
1359
1360 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1361 raw_lockdep_assert_held_rcu_node(rnp);
1362
1363 // If RCU was idle, note beginning of GP.
1364 if (!rcu_seq_state(rcu_state.gp_seq_polled))
1365 rcu_seq_start(&rcu_state.gp_seq_polled);
1366
1367 // Either way, record current state.
1368 *snap = rcu_state.gp_seq_polled;
1369 }
1370
1371 // Make the polled API aware of the end of a grace period.
rcu_poll_gp_seq_end(unsigned long * snap)1372 static void rcu_poll_gp_seq_end(unsigned long *snap)
1373 {
1374 struct rcu_node *rnp = rcu_get_root();
1375
1376 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1377 raw_lockdep_assert_held_rcu_node(rnp);
1378
1379 // If the previously noted GP is still in effect, record the
1380 // end of that GP. Either way, zero counter to avoid counter-wrap
1381 // problems.
1382 if (*snap && *snap == rcu_state.gp_seq_polled) {
1383 rcu_seq_end(&rcu_state.gp_seq_polled);
1384 rcu_state.gp_seq_polled_snap = 0;
1385 rcu_state.gp_seq_polled_exp_snap = 0;
1386 } else {
1387 *snap = 0;
1388 }
1389 }
1390
1391 // Make the polled API aware of the beginning of a grace period, but
1392 // where caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_start_unlocked(unsigned long * snap)1393 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1394 {
1395 unsigned long flags;
1396 struct rcu_node *rnp = rcu_get_root();
1397
1398 if (rcu_init_invoked()) {
1399 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1400 lockdep_assert_irqs_enabled();
1401 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1402 }
1403 rcu_poll_gp_seq_start(snap);
1404 if (rcu_init_invoked())
1405 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1406 }
1407
1408 // Make the polled API aware of the end of a grace period, but where
1409 // caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_end_unlocked(unsigned long * snap)1410 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1411 {
1412 unsigned long flags;
1413 struct rcu_node *rnp = rcu_get_root();
1414
1415 if (rcu_init_invoked()) {
1416 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1417 lockdep_assert_irqs_enabled();
1418 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1419 }
1420 rcu_poll_gp_seq_end(snap);
1421 if (rcu_init_invoked())
1422 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1423 }
1424
1425 /*
1426 * Initialize a new grace period. Return false if no grace period required.
1427 */
rcu_gp_init(void)1428 static noinline_for_stack bool rcu_gp_init(void)
1429 {
1430 unsigned long flags;
1431 unsigned long oldmask;
1432 unsigned long mask;
1433 struct rcu_data *rdp;
1434 struct rcu_node *rnp = rcu_get_root();
1435
1436 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1437 raw_spin_lock_irq_rcu_node(rnp);
1438 if (!READ_ONCE(rcu_state.gp_flags)) {
1439 /* Spurious wakeup, tell caller to go back to sleep. */
1440 raw_spin_unlock_irq_rcu_node(rnp);
1441 return false;
1442 }
1443 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1444
1445 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1446 /*
1447 * Grace period already in progress, don't start another.
1448 * Not supposed to be able to happen.
1449 */
1450 raw_spin_unlock_irq_rcu_node(rnp);
1451 return false;
1452 }
1453
1454 /* Advance to a new grace period and initialize state. */
1455 record_gp_stall_check_time();
1456 /* Record GP times before starting GP, hence rcu_seq_start(). */
1457 rcu_seq_start(&rcu_state.gp_seq);
1458 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1459 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1460 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1461 raw_spin_unlock_irq_rcu_node(rnp);
1462
1463 /*
1464 * Apply per-leaf buffered online and offline operations to
1465 * the rcu_node tree. Note that this new grace period need not
1466 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1467 * offlining path, when combined with checks in this function,
1468 * will handle CPUs that are currently going offline or that will
1469 * go offline later. Please also refer to "Hotplug CPU" section
1470 * of RCU's Requirements documentation.
1471 */
1472 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1473 /* Exclude CPU hotplug operations. */
1474 rcu_for_each_leaf_node(rnp) {
1475 local_irq_save(flags);
1476 arch_spin_lock(&rcu_state.ofl_lock);
1477 raw_spin_lock_rcu_node(rnp);
1478 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1479 !rnp->wait_blkd_tasks) {
1480 /* Nothing to do on this leaf rcu_node structure. */
1481 raw_spin_unlock_rcu_node(rnp);
1482 arch_spin_unlock(&rcu_state.ofl_lock);
1483 local_irq_restore(flags);
1484 continue;
1485 }
1486
1487 /* Record old state, apply changes to ->qsmaskinit field. */
1488 oldmask = rnp->qsmaskinit;
1489 rnp->qsmaskinit = rnp->qsmaskinitnext;
1490
1491 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1492 if (!oldmask != !rnp->qsmaskinit) {
1493 if (!oldmask) { /* First online CPU for rcu_node. */
1494 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1495 rcu_init_new_rnp(rnp);
1496 } else if (rcu_preempt_has_tasks(rnp)) {
1497 rnp->wait_blkd_tasks = true; /* blocked tasks */
1498 } else { /* Last offline CPU and can propagate. */
1499 rcu_cleanup_dead_rnp(rnp);
1500 }
1501 }
1502
1503 /*
1504 * If all waited-on tasks from prior grace period are
1505 * done, and if all this rcu_node structure's CPUs are
1506 * still offline, propagate up the rcu_node tree and
1507 * clear ->wait_blkd_tasks. Otherwise, if one of this
1508 * rcu_node structure's CPUs has since come back online,
1509 * simply clear ->wait_blkd_tasks.
1510 */
1511 if (rnp->wait_blkd_tasks &&
1512 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1513 rnp->wait_blkd_tasks = false;
1514 if (!rnp->qsmaskinit)
1515 rcu_cleanup_dead_rnp(rnp);
1516 }
1517
1518 raw_spin_unlock_rcu_node(rnp);
1519 arch_spin_unlock(&rcu_state.ofl_lock);
1520 local_irq_restore(flags);
1521 }
1522 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1523
1524 /*
1525 * Set the quiescent-state-needed bits in all the rcu_node
1526 * structures for all currently online CPUs in breadth-first
1527 * order, starting from the root rcu_node structure, relying on the
1528 * layout of the tree within the rcu_state.node[] array. Note that
1529 * other CPUs will access only the leaves of the hierarchy, thus
1530 * seeing that no grace period is in progress, at least until the
1531 * corresponding leaf node has been initialized.
1532 *
1533 * The grace period cannot complete until the initialization
1534 * process finishes, because this kthread handles both.
1535 */
1536 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1537 rcu_for_each_node_breadth_first(rnp) {
1538 rcu_gp_slow(gp_init_delay);
1539 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1540 rdp = this_cpu_ptr(&rcu_data);
1541 rcu_preempt_check_blocked_tasks(rnp);
1542 rnp->qsmask = rnp->qsmaskinit;
1543 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1544 if (rnp == rdp->mynode)
1545 (void)__note_gp_changes(rnp, rdp);
1546 rcu_preempt_boost_start_gp(rnp);
1547 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1548 rnp->level, rnp->grplo,
1549 rnp->grphi, rnp->qsmask);
1550 /* Quiescent states for tasks on any now-offline CPUs. */
1551 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1552 rnp->rcu_gp_init_mask = mask;
1553 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1554 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1555 else
1556 raw_spin_unlock_irq_rcu_node(rnp);
1557 cond_resched_tasks_rcu_qs();
1558 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1559 }
1560
1561 // If strict, make all CPUs aware of new grace period.
1562 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1563 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1564
1565 return true;
1566 }
1567
1568 /*
1569 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1570 * time.
1571 */
rcu_gp_fqs_check_wake(int * gfp)1572 static bool rcu_gp_fqs_check_wake(int *gfp)
1573 {
1574 struct rcu_node *rnp = rcu_get_root();
1575
1576 // If under overload conditions, force an immediate FQS scan.
1577 if (*gfp & RCU_GP_FLAG_OVLD)
1578 return true;
1579
1580 // Someone like call_rcu() requested a force-quiescent-state scan.
1581 *gfp = READ_ONCE(rcu_state.gp_flags);
1582 if (*gfp & RCU_GP_FLAG_FQS)
1583 return true;
1584
1585 // The current grace period has completed.
1586 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1587 return true;
1588
1589 return false;
1590 }
1591
1592 /*
1593 * Do one round of quiescent-state forcing.
1594 */
rcu_gp_fqs(bool first_time)1595 static void rcu_gp_fqs(bool first_time)
1596 {
1597 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1598 struct rcu_node *rnp = rcu_get_root();
1599
1600 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1601 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1602
1603 WARN_ON_ONCE(nr_fqs > 3);
1604 /* Only countdown nr_fqs for stall purposes if jiffies moves. */
1605 if (nr_fqs) {
1606 if (nr_fqs == 1) {
1607 WRITE_ONCE(rcu_state.jiffies_stall,
1608 jiffies + rcu_jiffies_till_stall_check());
1609 }
1610 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1611 }
1612
1613 if (first_time) {
1614 /* Collect dyntick-idle snapshots. */
1615 force_qs_rnp(dyntick_save_progress_counter);
1616 } else {
1617 /* Handle dyntick-idle and offline CPUs. */
1618 force_qs_rnp(rcu_implicit_dynticks_qs);
1619 }
1620 /* Clear flag to prevent immediate re-entry. */
1621 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1622 raw_spin_lock_irq_rcu_node(rnp);
1623 WRITE_ONCE(rcu_state.gp_flags,
1624 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1625 raw_spin_unlock_irq_rcu_node(rnp);
1626 }
1627 }
1628
1629 /*
1630 * Loop doing repeated quiescent-state forcing until the grace period ends.
1631 */
rcu_gp_fqs_loop(void)1632 static noinline_for_stack void rcu_gp_fqs_loop(void)
1633 {
1634 bool first_gp_fqs = true;
1635 int gf = 0;
1636 unsigned long j;
1637 int ret;
1638 struct rcu_node *rnp = rcu_get_root();
1639
1640 j = READ_ONCE(jiffies_till_first_fqs);
1641 if (rcu_state.cbovld)
1642 gf = RCU_GP_FLAG_OVLD;
1643 ret = 0;
1644 for (;;) {
1645 if (rcu_state.cbovld) {
1646 j = (j + 2) / 3;
1647 if (j <= 0)
1648 j = 1;
1649 }
1650 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1651 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1652 /*
1653 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1654 * update; required for stall checks.
1655 */
1656 smp_wmb();
1657 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1658 jiffies + (j ? 3 * j : 2));
1659 }
1660 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1661 TPS("fqswait"));
1662 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1663 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1664 rcu_gp_fqs_check_wake(&gf), j);
1665 rcu_gp_torture_wait();
1666 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1667 /* Locking provides needed memory barriers. */
1668 /*
1669 * Exit the loop if the root rcu_node structure indicates that the grace period
1670 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
1671 * is required only for single-node rcu_node trees because readers blocking
1672 * the current grace period are queued only on leaf rcu_node structures.
1673 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1674 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1675 * the corresponding leaf nodes have passed through their quiescent state.
1676 */
1677 if (!READ_ONCE(rnp->qsmask) &&
1678 !rcu_preempt_blocked_readers_cgp(rnp))
1679 break;
1680 /* If time for quiescent-state forcing, do it. */
1681 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1682 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1683 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1684 TPS("fqsstart"));
1685 rcu_gp_fqs(first_gp_fqs);
1686 gf = 0;
1687 if (first_gp_fqs) {
1688 first_gp_fqs = false;
1689 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1690 }
1691 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1692 TPS("fqsend"));
1693 cond_resched_tasks_rcu_qs();
1694 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1695 ret = 0; /* Force full wait till next FQS. */
1696 j = READ_ONCE(jiffies_till_next_fqs);
1697 } else {
1698 /* Deal with stray signal. */
1699 cond_resched_tasks_rcu_qs();
1700 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1701 WARN_ON(signal_pending(current));
1702 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1703 TPS("fqswaitsig"));
1704 ret = 1; /* Keep old FQS timing. */
1705 j = jiffies;
1706 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1707 j = 1;
1708 else
1709 j = rcu_state.jiffies_force_qs - j;
1710 gf = 0;
1711 }
1712 }
1713 }
1714
1715 /*
1716 * Clean up after the old grace period.
1717 */
rcu_gp_cleanup(void)1718 static noinline void rcu_gp_cleanup(void)
1719 {
1720 int cpu;
1721 bool needgp = false;
1722 unsigned long gp_duration;
1723 unsigned long new_gp_seq;
1724 bool offloaded;
1725 struct rcu_data *rdp;
1726 struct rcu_node *rnp = rcu_get_root();
1727 struct swait_queue_head *sq;
1728
1729 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1730 raw_spin_lock_irq_rcu_node(rnp);
1731 rcu_state.gp_end = jiffies;
1732 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1733 if (gp_duration > rcu_state.gp_max)
1734 rcu_state.gp_max = gp_duration;
1735
1736 /*
1737 * We know the grace period is complete, but to everyone else
1738 * it appears to still be ongoing. But it is also the case
1739 * that to everyone else it looks like there is nothing that
1740 * they can do to advance the grace period. It is therefore
1741 * safe for us to drop the lock in order to mark the grace
1742 * period as completed in all of the rcu_node structures.
1743 */
1744 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1745 raw_spin_unlock_irq_rcu_node(rnp);
1746
1747 /*
1748 * Propagate new ->gp_seq value to rcu_node structures so that
1749 * other CPUs don't have to wait until the start of the next grace
1750 * period to process their callbacks. This also avoids some nasty
1751 * RCU grace-period initialization races by forcing the end of
1752 * the current grace period to be completely recorded in all of
1753 * the rcu_node structures before the beginning of the next grace
1754 * period is recorded in any of the rcu_node structures.
1755 */
1756 new_gp_seq = rcu_state.gp_seq;
1757 rcu_seq_end(&new_gp_seq);
1758 rcu_for_each_node_breadth_first(rnp) {
1759 raw_spin_lock_irq_rcu_node(rnp);
1760 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1761 dump_blkd_tasks(rnp, 10);
1762 WARN_ON_ONCE(rnp->qsmask);
1763 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1764 if (!rnp->parent)
1765 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1766 rdp = this_cpu_ptr(&rcu_data);
1767 if (rnp == rdp->mynode)
1768 needgp = __note_gp_changes(rnp, rdp) || needgp;
1769 /* smp_mb() provided by prior unlock-lock pair. */
1770 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1771 // Reset overload indication for CPUs no longer overloaded
1772 if (rcu_is_leaf_node(rnp))
1773 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1774 rdp = per_cpu_ptr(&rcu_data, cpu);
1775 check_cb_ovld_locked(rdp, rnp);
1776 }
1777 sq = rcu_nocb_gp_get(rnp);
1778 raw_spin_unlock_irq_rcu_node(rnp);
1779 rcu_nocb_gp_cleanup(sq);
1780 cond_resched_tasks_rcu_qs();
1781 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1782 rcu_gp_slow(gp_cleanup_delay);
1783 }
1784 rnp = rcu_get_root();
1785 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1786
1787 /* Declare grace period done, trace first to use old GP number. */
1788 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1789 rcu_seq_end(&rcu_state.gp_seq);
1790 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1791 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1792 /* Check for GP requests since above loop. */
1793 rdp = this_cpu_ptr(&rcu_data);
1794 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1795 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1796 TPS("CleanupMore"));
1797 needgp = true;
1798 }
1799 /* Advance CBs to reduce false positives below. */
1800 offloaded = rcu_rdp_is_offloaded(rdp);
1801 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1802
1803 // We get here if a grace period was needed (“needgp”)
1804 // and the above call to rcu_accelerate_cbs() did not set
1805 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1806 // the need for another grace period). The purpose
1807 // of the “offloaded” check is to avoid invoking
1808 // rcu_accelerate_cbs() on an offloaded CPU because we do not
1809 // hold the ->nocb_lock needed to safely access an offloaded
1810 // ->cblist. We do not want to acquire that lock because
1811 // it can be heavily contended during callback floods.
1812
1813 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1814 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1815 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1816 } else {
1817
1818 // We get here either if there is no need for an
1819 // additional grace period or if rcu_accelerate_cbs() has
1820 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags.
1821 // So all we need to do is to clear all of the other
1822 // ->gp_flags bits.
1823
1824 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1825 }
1826 raw_spin_unlock_irq_rcu_node(rnp);
1827
1828 // If strict, make all CPUs aware of the end of the old grace period.
1829 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1830 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1831 }
1832
1833 /*
1834 * Body of kthread that handles grace periods.
1835 */
rcu_gp_kthread(void * unused)1836 static int __noreturn rcu_gp_kthread(void *unused)
1837 {
1838 rcu_bind_gp_kthread();
1839 for (;;) {
1840
1841 /* Handle grace-period start. */
1842 for (;;) {
1843 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1844 TPS("reqwait"));
1845 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1846 swait_event_idle_exclusive(rcu_state.gp_wq,
1847 READ_ONCE(rcu_state.gp_flags) &
1848 RCU_GP_FLAG_INIT);
1849 rcu_gp_torture_wait();
1850 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1851 /* Locking provides needed memory barrier. */
1852 if (rcu_gp_init())
1853 break;
1854 cond_resched_tasks_rcu_qs();
1855 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1856 WARN_ON(signal_pending(current));
1857 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1858 TPS("reqwaitsig"));
1859 }
1860
1861 /* Handle quiescent-state forcing. */
1862 rcu_gp_fqs_loop();
1863
1864 /* Handle grace-period end. */
1865 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1866 rcu_gp_cleanup();
1867 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1868 }
1869 }
1870
1871 /*
1872 * Report a full set of quiescent states to the rcu_state data structure.
1873 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1874 * another grace period is required. Whether we wake the grace-period
1875 * kthread or it awakens itself for the next round of quiescent-state
1876 * forcing, that kthread will clean up after the just-completed grace
1877 * period. Note that the caller must hold rnp->lock, which is released
1878 * before return.
1879 */
rcu_report_qs_rsp(unsigned long flags)1880 static void rcu_report_qs_rsp(unsigned long flags)
1881 __releases(rcu_get_root()->lock)
1882 {
1883 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1884 WARN_ON_ONCE(!rcu_gp_in_progress());
1885 WRITE_ONCE(rcu_state.gp_flags,
1886 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1887 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1888 rcu_gp_kthread_wake();
1889 }
1890
1891 /*
1892 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1893 * Allows quiescent states for a group of CPUs to be reported at one go
1894 * to the specified rcu_node structure, though all the CPUs in the group
1895 * must be represented by the same rcu_node structure (which need not be a
1896 * leaf rcu_node structure, though it often will be). The gps parameter
1897 * is the grace-period snapshot, which means that the quiescent states
1898 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1899 * must be held upon entry, and it is released before return.
1900 *
1901 * As a special case, if mask is zero, the bit-already-cleared check is
1902 * disabled. This allows propagating quiescent state due to resumed tasks
1903 * during grace-period initialization.
1904 */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)1905 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1906 unsigned long gps, unsigned long flags)
1907 __releases(rnp->lock)
1908 {
1909 unsigned long oldmask = 0;
1910 struct rcu_node *rnp_c;
1911
1912 raw_lockdep_assert_held_rcu_node(rnp);
1913
1914 /* Walk up the rcu_node hierarchy. */
1915 for (;;) {
1916 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1917
1918 /*
1919 * Our bit has already been cleared, or the
1920 * relevant grace period is already over, so done.
1921 */
1922 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1923 return;
1924 }
1925 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1926 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1927 rcu_preempt_blocked_readers_cgp(rnp));
1928 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1929 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1930 mask, rnp->qsmask, rnp->level,
1931 rnp->grplo, rnp->grphi,
1932 !!rnp->gp_tasks);
1933 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1934
1935 /* Other bits still set at this level, so done. */
1936 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1937 return;
1938 }
1939 rnp->completedqs = rnp->gp_seq;
1940 mask = rnp->grpmask;
1941 if (rnp->parent == NULL) {
1942
1943 /* No more levels. Exit loop holding root lock. */
1944
1945 break;
1946 }
1947 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1948 rnp_c = rnp;
1949 rnp = rnp->parent;
1950 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1951 oldmask = READ_ONCE(rnp_c->qsmask);
1952 }
1953
1954 /*
1955 * Get here if we are the last CPU to pass through a quiescent
1956 * state for this grace period. Invoke rcu_report_qs_rsp()
1957 * to clean up and start the next grace period if one is needed.
1958 */
1959 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1960 }
1961
1962 /*
1963 * Record a quiescent state for all tasks that were previously queued
1964 * on the specified rcu_node structure and that were blocking the current
1965 * RCU grace period. The caller must hold the corresponding rnp->lock with
1966 * irqs disabled, and this lock is released upon return, but irqs remain
1967 * disabled.
1968 */
1969 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)1970 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1971 __releases(rnp->lock)
1972 {
1973 unsigned long gps;
1974 unsigned long mask;
1975 struct rcu_node *rnp_p;
1976
1977 raw_lockdep_assert_held_rcu_node(rnp);
1978 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1979 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1980 rnp->qsmask != 0) {
1981 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1982 return; /* Still need more quiescent states! */
1983 }
1984
1985 rnp->completedqs = rnp->gp_seq;
1986 rnp_p = rnp->parent;
1987 if (rnp_p == NULL) {
1988 /*
1989 * Only one rcu_node structure in the tree, so don't
1990 * try to report up to its nonexistent parent!
1991 */
1992 rcu_report_qs_rsp(flags);
1993 return;
1994 }
1995
1996 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1997 gps = rnp->gp_seq;
1998 mask = rnp->grpmask;
1999 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2000 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2001 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2002 }
2003
2004 /*
2005 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2006 * structure. This must be called from the specified CPU.
2007 */
2008 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2009 rcu_report_qs_rdp(struct rcu_data *rdp)
2010 {
2011 unsigned long flags;
2012 unsigned long mask;
2013 bool needacc = false;
2014 struct rcu_node *rnp;
2015
2016 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2017 rnp = rdp->mynode;
2018 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2019 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2020 rdp->gpwrap) {
2021
2022 /*
2023 * The grace period in which this quiescent state was
2024 * recorded has ended, so don't report it upwards.
2025 * We will instead need a new quiescent state that lies
2026 * within the current grace period.
2027 */
2028 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2029 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2030 return;
2031 }
2032 mask = rdp->grpmask;
2033 rdp->core_needs_qs = false;
2034 if ((rnp->qsmask & mask) == 0) {
2035 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2036 } else {
2037 /*
2038 * This GP can't end until cpu checks in, so all of our
2039 * callbacks can be processed during the next GP.
2040 *
2041 * NOCB kthreads have their own way to deal with that...
2042 */
2043 if (!rcu_rdp_is_offloaded(rdp)) {
2044 /*
2045 * The current GP has not yet ended, so it
2046 * should not be possible for rcu_accelerate_cbs()
2047 * to return true. So complain, but don't awaken.
2048 */
2049 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2050 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2051 /*
2052 * ...but NOCB kthreads may miss or delay callbacks acceleration
2053 * if in the middle of a (de-)offloading process.
2054 */
2055 needacc = true;
2056 }
2057
2058 rcu_disable_urgency_upon_qs(rdp);
2059 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2060 /* ^^^ Released rnp->lock */
2061
2062 if (needacc) {
2063 rcu_nocb_lock_irqsave(rdp, flags);
2064 rcu_accelerate_cbs_unlocked(rnp, rdp);
2065 rcu_nocb_unlock_irqrestore(rdp, flags);
2066 }
2067 }
2068 }
2069
2070 /*
2071 * Check to see if there is a new grace period of which this CPU
2072 * is not yet aware, and if so, set up local rcu_data state for it.
2073 * Otherwise, see if this CPU has just passed through its first
2074 * quiescent state for this grace period, and record that fact if so.
2075 */
2076 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2077 rcu_check_quiescent_state(struct rcu_data *rdp)
2078 {
2079 /* Check for grace-period ends and beginnings. */
2080 note_gp_changes(rdp);
2081
2082 /*
2083 * Does this CPU still need to do its part for current grace period?
2084 * If no, return and let the other CPUs do their part as well.
2085 */
2086 if (!rdp->core_needs_qs)
2087 return;
2088
2089 /*
2090 * Was there a quiescent state since the beginning of the grace
2091 * period? If no, then exit and wait for the next call.
2092 */
2093 if (rdp->cpu_no_qs.b.norm)
2094 return;
2095
2096 /*
2097 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2098 * judge of that).
2099 */
2100 rcu_report_qs_rdp(rdp);
2101 }
2102
2103 /* Return true if callback-invocation time limit exceeded. */
rcu_do_batch_check_time(long count,long tlimit,bool jlimit_check,unsigned long jlimit)2104 static bool rcu_do_batch_check_time(long count, long tlimit,
2105 bool jlimit_check, unsigned long jlimit)
2106 {
2107 // Invoke local_clock() only once per 32 consecutive callbacks.
2108 return unlikely(tlimit) &&
2109 (!likely(count & 31) ||
2110 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2111 jlimit_check && time_after(jiffies, jlimit))) &&
2112 local_clock() >= tlimit;
2113 }
2114
2115 /*
2116 * Invoke any RCU callbacks that have made it to the end of their grace
2117 * period. Throttle as specified by rdp->blimit.
2118 */
rcu_do_batch(struct rcu_data * rdp)2119 static void rcu_do_batch(struct rcu_data *rdp)
2120 {
2121 long bl;
2122 long count = 0;
2123 int div;
2124 bool __maybe_unused empty;
2125 unsigned long flags;
2126 unsigned long jlimit;
2127 bool jlimit_check = false;
2128 long pending;
2129 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2130 struct rcu_head *rhp;
2131 long tlimit = 0;
2132
2133 /* If no callbacks are ready, just return. */
2134 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2135 trace_rcu_batch_start(rcu_state.name,
2136 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2137 trace_rcu_batch_end(rcu_state.name, 0,
2138 !rcu_segcblist_empty(&rdp->cblist),
2139 need_resched(), is_idle_task(current),
2140 rcu_is_callbacks_kthread(rdp));
2141 return;
2142 }
2143
2144 /*
2145 * Extract the list of ready callbacks, disabling IRQs to prevent
2146 * races with call_rcu() from interrupt handlers. Leave the
2147 * callback counts, as rcu_barrier() needs to be conservative.
2148 */
2149 rcu_nocb_lock_irqsave(rdp, flags);
2150 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2151 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2152 div = READ_ONCE(rcu_divisor);
2153 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2154 bl = max(rdp->blimit, pending >> div);
2155 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2156 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2157 const long npj = NSEC_PER_SEC / HZ;
2158 long rrn = READ_ONCE(rcu_resched_ns);
2159
2160 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2161 tlimit = local_clock() + rrn;
2162 jlimit = jiffies + (rrn + npj + 1) / npj;
2163 jlimit_check = true;
2164 }
2165 trace_rcu_batch_start(rcu_state.name,
2166 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2167 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2168 if (rcu_rdp_is_offloaded(rdp))
2169 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2170
2171 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2172 rcu_nocb_unlock_irqrestore(rdp, flags);
2173
2174 /* Invoke callbacks. */
2175 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2176 rhp = rcu_cblist_dequeue(&rcl);
2177
2178 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2179 rcu_callback_t f;
2180
2181 count++;
2182 debug_rcu_head_unqueue(rhp);
2183
2184 rcu_lock_acquire(&rcu_callback_map);
2185 trace_rcu_invoke_callback(rcu_state.name, rhp);
2186
2187 f = rhp->func;
2188 debug_rcu_head_callback(rhp);
2189 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2190 f(rhp);
2191
2192 rcu_lock_release(&rcu_callback_map);
2193
2194 /*
2195 * Stop only if limit reached and CPU has something to do.
2196 */
2197 if (in_serving_softirq()) {
2198 if (count >= bl && (need_resched() || !is_idle_task(current)))
2199 break;
2200 /*
2201 * Make sure we don't spend too much time here and deprive other
2202 * softirq vectors of CPU cycles.
2203 */
2204 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2205 break;
2206 } else {
2207 // In rcuc/rcuoc context, so no worries about
2208 // depriving other softirq vectors of CPU cycles.
2209 local_bh_enable();
2210 lockdep_assert_irqs_enabled();
2211 cond_resched_tasks_rcu_qs();
2212 lockdep_assert_irqs_enabled();
2213 local_bh_disable();
2214 // But rcuc kthreads can delay quiescent-state
2215 // reporting, so check time limits for them.
2216 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2217 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2218 rdp->rcu_cpu_has_work = 1;
2219 break;
2220 }
2221 }
2222 }
2223
2224 rcu_nocb_lock_irqsave(rdp, flags);
2225 rdp->n_cbs_invoked += count;
2226 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2227 is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2228
2229 /* Update counts and requeue any remaining callbacks. */
2230 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2231 rcu_segcblist_add_len(&rdp->cblist, -count);
2232
2233 /* Reinstate batch limit if we have worked down the excess. */
2234 count = rcu_segcblist_n_cbs(&rdp->cblist);
2235 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2236 rdp->blimit = blimit;
2237
2238 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2239 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2240 rdp->qlen_last_fqs_check = 0;
2241 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2242 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2243 rdp->qlen_last_fqs_check = count;
2244
2245 /*
2246 * The following usually indicates a double call_rcu(). To track
2247 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2248 */
2249 empty = rcu_segcblist_empty(&rdp->cblist);
2250 WARN_ON_ONCE(count == 0 && !empty);
2251 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2252 count != 0 && empty);
2253 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2254 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2255
2256 rcu_nocb_unlock_irqrestore(rdp, flags);
2257
2258 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2259 }
2260
2261 /*
2262 * This function is invoked from each scheduling-clock interrupt,
2263 * and checks to see if this CPU is in a non-context-switch quiescent
2264 * state, for example, user mode or idle loop. It also schedules RCU
2265 * core processing. If the current grace period has gone on too long,
2266 * it will ask the scheduler to manufacture a context switch for the sole
2267 * purpose of providing the needed quiescent state.
2268 */
rcu_sched_clock_irq(int user)2269 void rcu_sched_clock_irq(int user)
2270 {
2271 unsigned long j;
2272
2273 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2274 j = jiffies;
2275 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2276 __this_cpu_write(rcu_data.last_sched_clock, j);
2277 }
2278 trace_rcu_utilization(TPS("Start scheduler-tick"));
2279 lockdep_assert_irqs_disabled();
2280 raw_cpu_inc(rcu_data.ticks_this_gp);
2281 /* The load-acquire pairs with the store-release setting to true. */
2282 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2283 /* Idle and userspace execution already are quiescent states. */
2284 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2285 set_tsk_need_resched(current);
2286 set_preempt_need_resched();
2287 }
2288 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2289 }
2290 rcu_flavor_sched_clock_irq(user);
2291 if (rcu_pending(user))
2292 invoke_rcu_core();
2293 if (user || rcu_is_cpu_rrupt_from_idle())
2294 rcu_note_voluntary_context_switch(current);
2295 lockdep_assert_irqs_disabled();
2296
2297 trace_rcu_utilization(TPS("End scheduler-tick"));
2298 }
2299
2300 /*
2301 * Scan the leaf rcu_node structures. For each structure on which all
2302 * CPUs have reported a quiescent state and on which there are tasks
2303 * blocking the current grace period, initiate RCU priority boosting.
2304 * Otherwise, invoke the specified function to check dyntick state for
2305 * each CPU that has not yet reported a quiescent state.
2306 */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2307 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2308 {
2309 int cpu;
2310 unsigned long flags;
2311 struct rcu_node *rnp;
2312
2313 rcu_state.cbovld = rcu_state.cbovldnext;
2314 rcu_state.cbovldnext = false;
2315 rcu_for_each_leaf_node(rnp) {
2316 unsigned long mask = 0;
2317 unsigned long rsmask = 0;
2318
2319 cond_resched_tasks_rcu_qs();
2320 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2321 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2322 if (rnp->qsmask == 0) {
2323 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2324 /*
2325 * No point in scanning bits because they
2326 * are all zero. But we might need to
2327 * priority-boost blocked readers.
2328 */
2329 rcu_initiate_boost(rnp, flags);
2330 /* rcu_initiate_boost() releases rnp->lock */
2331 continue;
2332 }
2333 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2334 continue;
2335 }
2336 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2337 struct rcu_data *rdp;
2338 int ret;
2339
2340 rdp = per_cpu_ptr(&rcu_data, cpu);
2341 ret = f(rdp);
2342 if (ret > 0) {
2343 mask |= rdp->grpmask;
2344 rcu_disable_urgency_upon_qs(rdp);
2345 }
2346 if (ret < 0)
2347 rsmask |= rdp->grpmask;
2348 }
2349 if (mask != 0) {
2350 /* Idle/offline CPUs, report (releases rnp->lock). */
2351 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2352 } else {
2353 /* Nothing to do here, so just drop the lock. */
2354 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2355 }
2356
2357 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2358 resched_cpu(cpu);
2359 }
2360 }
2361
2362 /*
2363 * Force quiescent states on reluctant CPUs, and also detect which
2364 * CPUs are in dyntick-idle mode.
2365 */
rcu_force_quiescent_state(void)2366 void rcu_force_quiescent_state(void)
2367 {
2368 unsigned long flags;
2369 bool ret;
2370 struct rcu_node *rnp;
2371 struct rcu_node *rnp_old = NULL;
2372
2373 /* Funnel through hierarchy to reduce memory contention. */
2374 rnp = raw_cpu_read(rcu_data.mynode);
2375 for (; rnp != NULL; rnp = rnp->parent) {
2376 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2377 !raw_spin_trylock(&rnp->fqslock);
2378 if (rnp_old != NULL)
2379 raw_spin_unlock(&rnp_old->fqslock);
2380 if (ret)
2381 return;
2382 rnp_old = rnp;
2383 }
2384 /* rnp_old == rcu_get_root(), rnp == NULL. */
2385
2386 /* Reached the root of the rcu_node tree, acquire lock. */
2387 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2388 raw_spin_unlock(&rnp_old->fqslock);
2389 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2390 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2391 return; /* Someone beat us to it. */
2392 }
2393 WRITE_ONCE(rcu_state.gp_flags,
2394 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2395 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2396 rcu_gp_kthread_wake();
2397 }
2398 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2399
2400 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2401 // grace periods.
strict_work_handler(struct work_struct * work)2402 static void strict_work_handler(struct work_struct *work)
2403 {
2404 rcu_read_lock();
2405 rcu_read_unlock();
2406 }
2407
2408 /* Perform RCU core processing work for the current CPU. */
rcu_core(void)2409 static __latent_entropy void rcu_core(void)
2410 {
2411 unsigned long flags;
2412 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2413 struct rcu_node *rnp = rdp->mynode;
2414 /*
2415 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2416 * Therefore this function can race with concurrent NOCB (de-)offloading
2417 * on this CPU and the below condition must be considered volatile.
2418 * However if we race with:
2419 *
2420 * _ Offloading: In the worst case we accelerate or process callbacks
2421 * concurrently with NOCB kthreads. We are guaranteed to
2422 * call rcu_nocb_lock() if that happens.
2423 *
2424 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2425 * processing. This is fine because the early stage
2426 * of deoffloading invokes rcu_core() after setting
2427 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2428 * what could have been dismissed without the need to wait
2429 * for the next rcu_pending() check in the next jiffy.
2430 */
2431 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2432
2433 if (cpu_is_offline(smp_processor_id()))
2434 return;
2435 trace_rcu_utilization(TPS("Start RCU core"));
2436 WARN_ON_ONCE(!rdp->beenonline);
2437
2438 /* Report any deferred quiescent states if preemption enabled. */
2439 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2440 rcu_preempt_deferred_qs(current);
2441 } else if (rcu_preempt_need_deferred_qs(current)) {
2442 set_tsk_need_resched(current);
2443 set_preempt_need_resched();
2444 }
2445
2446 /* Update RCU state based on any recent quiescent states. */
2447 rcu_check_quiescent_state(rdp);
2448
2449 /* No grace period and unregistered callbacks? */
2450 if (!rcu_gp_in_progress() &&
2451 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2452 rcu_nocb_lock_irqsave(rdp, flags);
2453 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2454 rcu_accelerate_cbs_unlocked(rnp, rdp);
2455 rcu_nocb_unlock_irqrestore(rdp, flags);
2456 }
2457
2458 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2459
2460 /* If there are callbacks ready, invoke them. */
2461 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2462 likely(READ_ONCE(rcu_scheduler_fully_active))) {
2463 rcu_do_batch(rdp);
2464 /* Re-invoke RCU core processing if there are callbacks remaining. */
2465 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2466 invoke_rcu_core();
2467 }
2468
2469 /* Do any needed deferred wakeups of rcuo kthreads. */
2470 do_nocb_deferred_wakeup(rdp);
2471 trace_rcu_utilization(TPS("End RCU core"));
2472
2473 // If strict GPs, schedule an RCU reader in a clean environment.
2474 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2475 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2476 }
2477
rcu_core_si(struct softirq_action * h)2478 static void rcu_core_si(struct softirq_action *h)
2479 {
2480 rcu_core();
2481 }
2482
rcu_wake_cond(struct task_struct * t,int status)2483 static void rcu_wake_cond(struct task_struct *t, int status)
2484 {
2485 /*
2486 * If the thread is yielding, only wake it when this
2487 * is invoked from idle
2488 */
2489 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2490 wake_up_process(t);
2491 }
2492
invoke_rcu_core_kthread(void)2493 static void invoke_rcu_core_kthread(void)
2494 {
2495 struct task_struct *t;
2496 unsigned long flags;
2497
2498 local_irq_save(flags);
2499 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2500 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2501 if (t != NULL && t != current)
2502 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2503 local_irq_restore(flags);
2504 }
2505
2506 /*
2507 * Wake up this CPU's rcuc kthread to do RCU core processing.
2508 */
invoke_rcu_core(void)2509 static void invoke_rcu_core(void)
2510 {
2511 if (!cpu_online(smp_processor_id()))
2512 return;
2513 if (use_softirq)
2514 raise_softirq(RCU_SOFTIRQ);
2515 else
2516 invoke_rcu_core_kthread();
2517 }
2518
rcu_cpu_kthread_park(unsigned int cpu)2519 static void rcu_cpu_kthread_park(unsigned int cpu)
2520 {
2521 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2522 }
2523
rcu_cpu_kthread_should_run(unsigned int cpu)2524 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2525 {
2526 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2527 }
2528
2529 /*
2530 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2531 * the RCU softirq used in configurations of RCU that do not support RCU
2532 * priority boosting.
2533 */
rcu_cpu_kthread(unsigned int cpu)2534 static void rcu_cpu_kthread(unsigned int cpu)
2535 {
2536 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2537 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2538 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2539 int spincnt;
2540
2541 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2542 for (spincnt = 0; spincnt < 10; spincnt++) {
2543 WRITE_ONCE(*j, jiffies);
2544 local_bh_disable();
2545 *statusp = RCU_KTHREAD_RUNNING;
2546 local_irq_disable();
2547 work = *workp;
2548 WRITE_ONCE(*workp, 0);
2549 local_irq_enable();
2550 if (work)
2551 rcu_core();
2552 local_bh_enable();
2553 if (!READ_ONCE(*workp)) {
2554 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2555 *statusp = RCU_KTHREAD_WAITING;
2556 return;
2557 }
2558 }
2559 *statusp = RCU_KTHREAD_YIELDING;
2560 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2561 schedule_timeout_idle(2);
2562 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2563 *statusp = RCU_KTHREAD_WAITING;
2564 WRITE_ONCE(*j, jiffies);
2565 }
2566
2567 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2568 .store = &rcu_data.rcu_cpu_kthread_task,
2569 .thread_should_run = rcu_cpu_kthread_should_run,
2570 .thread_fn = rcu_cpu_kthread,
2571 .thread_comm = "rcuc/%u",
2572 .setup = rcu_cpu_kthread_setup,
2573 .park = rcu_cpu_kthread_park,
2574 };
2575
2576 /*
2577 * Spawn per-CPU RCU core processing kthreads.
2578 */
rcu_spawn_core_kthreads(void)2579 static int __init rcu_spawn_core_kthreads(void)
2580 {
2581 int cpu;
2582
2583 for_each_possible_cpu(cpu)
2584 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2585 if (use_softirq)
2586 return 0;
2587 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2588 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2589 return 0;
2590 }
2591
2592 /*
2593 * Handle any core-RCU processing required by a call_rcu() invocation.
2594 */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2595 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2596 unsigned long flags)
2597 {
2598 /*
2599 * If called from an extended quiescent state, invoke the RCU
2600 * core in order to force a re-evaluation of RCU's idleness.
2601 */
2602 if (!rcu_is_watching())
2603 invoke_rcu_core();
2604
2605 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2606 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2607 return;
2608
2609 /*
2610 * Force the grace period if too many callbacks or too long waiting.
2611 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2612 * if some other CPU has recently done so. Also, don't bother
2613 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2614 * is the only one waiting for a grace period to complete.
2615 */
2616 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2617 rdp->qlen_last_fqs_check + qhimark)) {
2618
2619 /* Are we ignoring a completed grace period? */
2620 note_gp_changes(rdp);
2621
2622 /* Start a new grace period if one not already started. */
2623 if (!rcu_gp_in_progress()) {
2624 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2625 } else {
2626 /* Give the grace period a kick. */
2627 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2628 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2629 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2630 rcu_force_quiescent_state();
2631 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2632 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2633 }
2634 }
2635 }
2636
2637 /*
2638 * RCU callback function to leak a callback.
2639 */
rcu_leak_callback(struct rcu_head * rhp)2640 static void rcu_leak_callback(struct rcu_head *rhp)
2641 {
2642 }
2643
2644 /*
2645 * Check and if necessary update the leaf rcu_node structure's
2646 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2647 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2648 * structure's ->lock.
2649 */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2650 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2651 {
2652 raw_lockdep_assert_held_rcu_node(rnp);
2653 if (qovld_calc <= 0)
2654 return; // Early boot and wildcard value set.
2655 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2656 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2657 else
2658 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2659 }
2660
2661 /*
2662 * Check and if necessary update the leaf rcu_node structure's
2663 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2664 * number of queued RCU callbacks. No locks need be held, but the
2665 * caller must have disabled interrupts.
2666 *
2667 * Note that this function ignores the possibility that there are a lot
2668 * of callbacks all of which have already seen the end of their respective
2669 * grace periods. This omission is due to the need for no-CBs CPUs to
2670 * be holding ->nocb_lock to do this check, which is too heavy for a
2671 * common-case operation.
2672 */
check_cb_ovld(struct rcu_data * rdp)2673 static void check_cb_ovld(struct rcu_data *rdp)
2674 {
2675 struct rcu_node *const rnp = rdp->mynode;
2676
2677 if (qovld_calc <= 0 ||
2678 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2679 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2680 return; // Early boot wildcard value or already set correctly.
2681 raw_spin_lock_rcu_node(rnp);
2682 check_cb_ovld_locked(rdp, rnp);
2683 raw_spin_unlock_rcu_node(rnp);
2684 }
2685
2686 static void
__call_rcu_common(struct rcu_head * head,rcu_callback_t func,bool lazy_in)2687 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2688 {
2689 static atomic_t doublefrees;
2690 unsigned long flags;
2691 bool lazy;
2692 struct rcu_data *rdp;
2693 bool was_alldone;
2694
2695 /* Misaligned rcu_head! */
2696 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2697
2698 if (debug_rcu_head_queue(head)) {
2699 /*
2700 * Probable double call_rcu(), so leak the callback.
2701 * Use rcu:rcu_callback trace event to find the previous
2702 * time callback was passed to call_rcu().
2703 */
2704 if (atomic_inc_return(&doublefrees) < 4) {
2705 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
2706 mem_dump_obj(head);
2707 }
2708 WRITE_ONCE(head->func, rcu_leak_callback);
2709 return;
2710 }
2711 head->func = func;
2712 head->next = NULL;
2713 kasan_record_aux_stack_noalloc(head);
2714 local_irq_save(flags);
2715 rdp = this_cpu_ptr(&rcu_data);
2716 lazy = lazy_in && !rcu_async_should_hurry();
2717
2718 /* Add the callback to our list. */
2719 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2720 // This can trigger due to call_rcu() from offline CPU:
2721 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2722 WARN_ON_ONCE(!rcu_is_watching());
2723 // Very early boot, before rcu_init(). Initialize if needed
2724 // and then drop through to queue the callback.
2725 if (rcu_segcblist_empty(&rdp->cblist))
2726 rcu_segcblist_init(&rdp->cblist);
2727 }
2728
2729 check_cb_ovld(rdp);
2730 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
2731 return; // Enqueued onto ->nocb_bypass, so just leave.
2732 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2733 rcu_segcblist_enqueue(&rdp->cblist, head);
2734 if (__is_kvfree_rcu_offset((unsigned long)func))
2735 trace_rcu_kvfree_callback(rcu_state.name, head,
2736 (unsigned long)func,
2737 rcu_segcblist_n_cbs(&rdp->cblist));
2738 else
2739 trace_rcu_callback(rcu_state.name, head,
2740 rcu_segcblist_n_cbs(&rdp->cblist));
2741
2742 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2743
2744 /* Go handle any RCU core processing required. */
2745 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2746 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2747 } else {
2748 __call_rcu_core(rdp, head, flags);
2749 local_irq_restore(flags);
2750 }
2751 }
2752
2753 #ifdef CONFIG_RCU_LAZY
2754 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
2755 module_param(enable_rcu_lazy, bool, 0444);
2756
2757 /**
2758 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2759 * flush all lazy callbacks (including the new one) to the main ->cblist while
2760 * doing so.
2761 *
2762 * @head: structure to be used for queueing the RCU updates.
2763 * @func: actual callback function to be invoked after the grace period
2764 *
2765 * The callback function will be invoked some time after a full grace
2766 * period elapses, in other words after all pre-existing RCU read-side
2767 * critical sections have completed.
2768 *
2769 * Use this API instead of call_rcu() if you don't want the callback to be
2770 * invoked after very long periods of time, which can happen on systems without
2771 * memory pressure and on systems which are lightly loaded or mostly idle.
2772 * This function will cause callbacks to be invoked sooner than later at the
2773 * expense of extra power. Other than that, this function is identical to, and
2774 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2775 * ordering and other functionality.
2776 */
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)2777 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2778 {
2779 return __call_rcu_common(head, func, false);
2780 }
2781 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2782 #else
2783 #define enable_rcu_lazy false
2784 #endif
2785
2786 /**
2787 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2788 * By default the callbacks are 'lazy' and are kept hidden from the main
2789 * ->cblist to prevent starting of grace periods too soon.
2790 * If you desire grace periods to start very soon, use call_rcu_hurry().
2791 *
2792 * @head: structure to be used for queueing the RCU updates.
2793 * @func: actual callback function to be invoked after the grace period
2794 *
2795 * The callback function will be invoked some time after a full grace
2796 * period elapses, in other words after all pre-existing RCU read-side
2797 * critical sections have completed. However, the callback function
2798 * might well execute concurrently with RCU read-side critical sections
2799 * that started after call_rcu() was invoked.
2800 *
2801 * RCU read-side critical sections are delimited by rcu_read_lock()
2802 * and rcu_read_unlock(), and may be nested. In addition, but only in
2803 * v5.0 and later, regions of code across which interrupts, preemption,
2804 * or softirqs have been disabled also serve as RCU read-side critical
2805 * sections. This includes hardware interrupt handlers, softirq handlers,
2806 * and NMI handlers.
2807 *
2808 * Note that all CPUs must agree that the grace period extended beyond
2809 * all pre-existing RCU read-side critical section. On systems with more
2810 * than one CPU, this means that when "func()" is invoked, each CPU is
2811 * guaranteed to have executed a full memory barrier since the end of its
2812 * last RCU read-side critical section whose beginning preceded the call
2813 * to call_rcu(). It also means that each CPU executing an RCU read-side
2814 * critical section that continues beyond the start of "func()" must have
2815 * executed a memory barrier after the call_rcu() but before the beginning
2816 * of that RCU read-side critical section. Note that these guarantees
2817 * include CPUs that are offline, idle, or executing in user mode, as
2818 * well as CPUs that are executing in the kernel.
2819 *
2820 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2821 * resulting RCU callback function "func()", then both CPU A and CPU B are
2822 * guaranteed to execute a full memory barrier during the time interval
2823 * between the call to call_rcu() and the invocation of "func()" -- even
2824 * if CPU A and CPU B are the same CPU (but again only if the system has
2825 * more than one CPU).
2826 *
2827 * Implementation of these memory-ordering guarantees is described here:
2828 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2829 */
call_rcu(struct rcu_head * head,rcu_callback_t func)2830 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2831 {
2832 __call_rcu_common(head, func, enable_rcu_lazy);
2833 }
2834 EXPORT_SYMBOL_GPL(call_rcu);
2835
2836 /* Maximum number of jiffies to wait before draining a batch. */
2837 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2838 #define KFREE_N_BATCHES 2
2839 #define FREE_N_CHANNELS 2
2840
2841 /**
2842 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2843 * @list: List node. All blocks are linked between each other
2844 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2845 * @nr_records: Number of active pointers in the array
2846 * @records: Array of the kvfree_rcu() pointers
2847 */
2848 struct kvfree_rcu_bulk_data {
2849 struct list_head list;
2850 struct rcu_gp_oldstate gp_snap;
2851 unsigned long nr_records;
2852 void *records[];
2853 };
2854
2855 /*
2856 * This macro defines how many entries the "records" array
2857 * will contain. It is based on the fact that the size of
2858 * kvfree_rcu_bulk_data structure becomes exactly one page.
2859 */
2860 #define KVFREE_BULK_MAX_ENTR \
2861 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2862
2863 /**
2864 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2865 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2866 * @head_free: List of kfree_rcu() objects waiting for a grace period
2867 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2868 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2869 * @krcp: Pointer to @kfree_rcu_cpu structure
2870 */
2871
2872 struct kfree_rcu_cpu_work {
2873 struct rcu_work rcu_work;
2874 struct rcu_head *head_free;
2875 struct rcu_gp_oldstate head_free_gp_snap;
2876 struct list_head bulk_head_free[FREE_N_CHANNELS];
2877 struct kfree_rcu_cpu *krcp;
2878 };
2879
2880 /**
2881 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2882 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2883 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2884 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2885 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2886 * @lock: Synchronize access to this structure
2887 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2888 * @initialized: The @rcu_work fields have been initialized
2889 * @head_count: Number of objects in rcu_head singular list
2890 * @bulk_count: Number of objects in bulk-list
2891 * @bkvcache:
2892 * A simple cache list that contains objects for reuse purpose.
2893 * In order to save some per-cpu space the list is singular.
2894 * Even though it is lockless an access has to be protected by the
2895 * per-cpu lock.
2896 * @page_cache_work: A work to refill the cache when it is empty
2897 * @backoff_page_cache_fill: Delay cache refills
2898 * @work_in_progress: Indicates that page_cache_work is running
2899 * @hrtimer: A hrtimer for scheduling a page_cache_work
2900 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2901 *
2902 * This is a per-CPU structure. The reason that it is not included in
2903 * the rcu_data structure is to permit this code to be extracted from
2904 * the RCU files. Such extraction could allow further optimization of
2905 * the interactions with the slab allocators.
2906 */
2907 struct kfree_rcu_cpu {
2908 // Objects queued on a linked list
2909 // through their rcu_head structures.
2910 struct rcu_head *head;
2911 unsigned long head_gp_snap;
2912 atomic_t head_count;
2913
2914 // Objects queued on a bulk-list.
2915 struct list_head bulk_head[FREE_N_CHANNELS];
2916 atomic_t bulk_count[FREE_N_CHANNELS];
2917
2918 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2919 raw_spinlock_t lock;
2920 struct delayed_work monitor_work;
2921 bool initialized;
2922
2923 struct delayed_work page_cache_work;
2924 atomic_t backoff_page_cache_fill;
2925 atomic_t work_in_progress;
2926 struct hrtimer hrtimer;
2927
2928 struct llist_head bkvcache;
2929 int nr_bkv_objs;
2930 };
2931
2932 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2933 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2934 };
2935
2936 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)2937 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2938 {
2939 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2940 int i;
2941
2942 for (i = 0; i < bhead->nr_records; i++)
2943 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2944 #endif
2945 }
2946
2947 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)2948 krc_this_cpu_lock(unsigned long *flags)
2949 {
2950 struct kfree_rcu_cpu *krcp;
2951
2952 local_irq_save(*flags); // For safely calling this_cpu_ptr().
2953 krcp = this_cpu_ptr(&krc);
2954 raw_spin_lock(&krcp->lock);
2955
2956 return krcp;
2957 }
2958
2959 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)2960 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2961 {
2962 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2963 }
2964
2965 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)2966 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2967 {
2968 if (!krcp->nr_bkv_objs)
2969 return NULL;
2970
2971 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2972 return (struct kvfree_rcu_bulk_data *)
2973 llist_del_first(&krcp->bkvcache);
2974 }
2975
2976 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)2977 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2978 struct kvfree_rcu_bulk_data *bnode)
2979 {
2980 // Check the limit.
2981 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2982 return false;
2983
2984 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2985 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2986 return true;
2987 }
2988
2989 static int
drain_page_cache(struct kfree_rcu_cpu * krcp)2990 drain_page_cache(struct kfree_rcu_cpu *krcp)
2991 {
2992 unsigned long flags;
2993 struct llist_node *page_list, *pos, *n;
2994 int freed = 0;
2995
2996 if (!rcu_min_cached_objs)
2997 return 0;
2998
2999 raw_spin_lock_irqsave(&krcp->lock, flags);
3000 page_list = llist_del_all(&krcp->bkvcache);
3001 WRITE_ONCE(krcp->nr_bkv_objs, 0);
3002 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3003
3004 llist_for_each_safe(pos, n, page_list) {
3005 free_page((unsigned long)pos);
3006 freed++;
3007 }
3008
3009 return freed;
3010 }
3011
3012 static void
kvfree_rcu_bulk(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode,int idx)3013 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3014 struct kvfree_rcu_bulk_data *bnode, int idx)
3015 {
3016 unsigned long flags;
3017 int i;
3018
3019 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3020 debug_rcu_bhead_unqueue(bnode);
3021 rcu_lock_acquire(&rcu_callback_map);
3022 if (idx == 0) { // kmalloc() / kfree().
3023 trace_rcu_invoke_kfree_bulk_callback(
3024 rcu_state.name, bnode->nr_records,
3025 bnode->records);
3026
3027 kfree_bulk(bnode->nr_records, bnode->records);
3028 } else { // vmalloc() / vfree().
3029 for (i = 0; i < bnode->nr_records; i++) {
3030 trace_rcu_invoke_kvfree_callback(
3031 rcu_state.name, bnode->records[i], 0);
3032
3033 vfree(bnode->records[i]);
3034 }
3035 }
3036 rcu_lock_release(&rcu_callback_map);
3037 }
3038
3039 raw_spin_lock_irqsave(&krcp->lock, flags);
3040 if (put_cached_bnode(krcp, bnode))
3041 bnode = NULL;
3042 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3043
3044 if (bnode)
3045 free_page((unsigned long) bnode);
3046
3047 cond_resched_tasks_rcu_qs();
3048 }
3049
3050 static void
kvfree_rcu_list(struct rcu_head * head)3051 kvfree_rcu_list(struct rcu_head *head)
3052 {
3053 struct rcu_head *next;
3054
3055 for (; head; head = next) {
3056 void *ptr = (void *) head->func;
3057 unsigned long offset = (void *) head - ptr;
3058
3059 next = head->next;
3060 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3061 rcu_lock_acquire(&rcu_callback_map);
3062 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3063
3064 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3065 kvfree(ptr);
3066
3067 rcu_lock_release(&rcu_callback_map);
3068 cond_resched_tasks_rcu_qs();
3069 }
3070 }
3071
3072 /*
3073 * This function is invoked in workqueue context after a grace period.
3074 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3075 */
kfree_rcu_work(struct work_struct * work)3076 static void kfree_rcu_work(struct work_struct *work)
3077 {
3078 unsigned long flags;
3079 struct kvfree_rcu_bulk_data *bnode, *n;
3080 struct list_head bulk_head[FREE_N_CHANNELS];
3081 struct rcu_head *head;
3082 struct kfree_rcu_cpu *krcp;
3083 struct kfree_rcu_cpu_work *krwp;
3084 struct rcu_gp_oldstate head_gp_snap;
3085 int i;
3086
3087 krwp = container_of(to_rcu_work(work),
3088 struct kfree_rcu_cpu_work, rcu_work);
3089 krcp = krwp->krcp;
3090
3091 raw_spin_lock_irqsave(&krcp->lock, flags);
3092 // Channels 1 and 2.
3093 for (i = 0; i < FREE_N_CHANNELS; i++)
3094 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3095
3096 // Channel 3.
3097 head = krwp->head_free;
3098 krwp->head_free = NULL;
3099 head_gp_snap = krwp->head_free_gp_snap;
3100 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3101
3102 // Handle the first two channels.
3103 for (i = 0; i < FREE_N_CHANNELS; i++) {
3104 // Start from the tail page, so a GP is likely passed for it.
3105 list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3106 kvfree_rcu_bulk(krcp, bnode, i);
3107 }
3108
3109 /*
3110 * This is used when the "bulk" path can not be used for the
3111 * double-argument of kvfree_rcu(). This happens when the
3112 * page-cache is empty, which means that objects are instead
3113 * queued on a linked list through their rcu_head structures.
3114 * This list is named "Channel 3".
3115 */
3116 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3117 kvfree_rcu_list(head);
3118 }
3119
3120 static bool
need_offload_krc(struct kfree_rcu_cpu * krcp)3121 need_offload_krc(struct kfree_rcu_cpu *krcp)
3122 {
3123 int i;
3124
3125 for (i = 0; i < FREE_N_CHANNELS; i++)
3126 if (!list_empty(&krcp->bulk_head[i]))
3127 return true;
3128
3129 return !!READ_ONCE(krcp->head);
3130 }
3131
3132 static bool
need_wait_for_krwp_work(struct kfree_rcu_cpu_work * krwp)3133 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3134 {
3135 int i;
3136
3137 for (i = 0; i < FREE_N_CHANNELS; i++)
3138 if (!list_empty(&krwp->bulk_head_free[i]))
3139 return true;
3140
3141 return !!krwp->head_free;
3142 }
3143
krc_count(struct kfree_rcu_cpu * krcp)3144 static int krc_count(struct kfree_rcu_cpu *krcp)
3145 {
3146 int sum = atomic_read(&krcp->head_count);
3147 int i;
3148
3149 for (i = 0; i < FREE_N_CHANNELS; i++)
3150 sum += atomic_read(&krcp->bulk_count[i]);
3151
3152 return sum;
3153 }
3154
3155 static void
schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3156 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3157 {
3158 long delay, delay_left;
3159
3160 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3161 if (delayed_work_pending(&krcp->monitor_work)) {
3162 delay_left = krcp->monitor_work.timer.expires - jiffies;
3163 if (delay < delay_left)
3164 mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3165 return;
3166 }
3167 queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3168 }
3169
3170 static void
kvfree_rcu_drain_ready(struct kfree_rcu_cpu * krcp)3171 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3172 {
3173 struct list_head bulk_ready[FREE_N_CHANNELS];
3174 struct kvfree_rcu_bulk_data *bnode, *n;
3175 struct rcu_head *head_ready = NULL;
3176 unsigned long flags;
3177 int i;
3178
3179 raw_spin_lock_irqsave(&krcp->lock, flags);
3180 for (i = 0; i < FREE_N_CHANNELS; i++) {
3181 INIT_LIST_HEAD(&bulk_ready[i]);
3182
3183 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3184 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3185 break;
3186
3187 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3188 list_move(&bnode->list, &bulk_ready[i]);
3189 }
3190 }
3191
3192 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3193 head_ready = krcp->head;
3194 atomic_set(&krcp->head_count, 0);
3195 WRITE_ONCE(krcp->head, NULL);
3196 }
3197 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3198
3199 for (i = 0; i < FREE_N_CHANNELS; i++) {
3200 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3201 kvfree_rcu_bulk(krcp, bnode, i);
3202 }
3203
3204 if (head_ready)
3205 kvfree_rcu_list(head_ready);
3206 }
3207
3208 /*
3209 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3210 */
kfree_rcu_monitor(struct work_struct * work)3211 static void kfree_rcu_monitor(struct work_struct *work)
3212 {
3213 struct kfree_rcu_cpu *krcp = container_of(work,
3214 struct kfree_rcu_cpu, monitor_work.work);
3215 unsigned long flags;
3216 int i, j;
3217
3218 // Drain ready for reclaim.
3219 kvfree_rcu_drain_ready(krcp);
3220
3221 raw_spin_lock_irqsave(&krcp->lock, flags);
3222
3223 // Attempt to start a new batch.
3224 for (i = 0; i < KFREE_N_BATCHES; i++) {
3225 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3226
3227 // Try to detach bulk_head or head and attach it, only when
3228 // all channels are free. Any channel is not free means at krwp
3229 // there is on-going rcu work to handle krwp's free business.
3230 if (need_wait_for_krwp_work(krwp))
3231 continue;
3232
3233 // kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3234 if (need_offload_krc(krcp)) {
3235 // Channel 1 corresponds to the SLAB-pointer bulk path.
3236 // Channel 2 corresponds to vmalloc-pointer bulk path.
3237 for (j = 0; j < FREE_N_CHANNELS; j++) {
3238 if (list_empty(&krwp->bulk_head_free[j])) {
3239 atomic_set(&krcp->bulk_count[j], 0);
3240 list_replace_init(&krcp->bulk_head[j],
3241 &krwp->bulk_head_free[j]);
3242 }
3243 }
3244
3245 // Channel 3 corresponds to both SLAB and vmalloc
3246 // objects queued on the linked list.
3247 if (!krwp->head_free) {
3248 krwp->head_free = krcp->head;
3249 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3250 atomic_set(&krcp->head_count, 0);
3251 WRITE_ONCE(krcp->head, NULL);
3252 }
3253
3254 // One work is per one batch, so there are three
3255 // "free channels", the batch can handle. It can
3256 // be that the work is in the pending state when
3257 // channels have been detached following by each
3258 // other.
3259 queue_rcu_work(system_wq, &krwp->rcu_work);
3260 }
3261 }
3262
3263 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3264
3265 // If there is nothing to detach, it means that our job is
3266 // successfully done here. In case of having at least one
3267 // of the channels that is still busy we should rearm the
3268 // work to repeat an attempt. Because previous batches are
3269 // still in progress.
3270 if (need_offload_krc(krcp))
3271 schedule_delayed_monitor_work(krcp);
3272 }
3273
3274 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3275 schedule_page_work_fn(struct hrtimer *t)
3276 {
3277 struct kfree_rcu_cpu *krcp =
3278 container_of(t, struct kfree_rcu_cpu, hrtimer);
3279
3280 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3281 return HRTIMER_NORESTART;
3282 }
3283
fill_page_cache_func(struct work_struct * work)3284 static void fill_page_cache_func(struct work_struct *work)
3285 {
3286 struct kvfree_rcu_bulk_data *bnode;
3287 struct kfree_rcu_cpu *krcp =
3288 container_of(work, struct kfree_rcu_cpu,
3289 page_cache_work.work);
3290 unsigned long flags;
3291 int nr_pages;
3292 bool pushed;
3293 int i;
3294
3295 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3296 1 : rcu_min_cached_objs;
3297
3298 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3299 bnode = (struct kvfree_rcu_bulk_data *)
3300 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3301
3302 if (!bnode)
3303 break;
3304
3305 raw_spin_lock_irqsave(&krcp->lock, flags);
3306 pushed = put_cached_bnode(krcp, bnode);
3307 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3308
3309 if (!pushed) {
3310 free_page((unsigned long) bnode);
3311 break;
3312 }
3313 }
3314
3315 atomic_set(&krcp->work_in_progress, 0);
3316 atomic_set(&krcp->backoff_page_cache_fill, 0);
3317 }
3318
3319 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3320 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3321 {
3322 // If cache disabled, bail out.
3323 if (!rcu_min_cached_objs)
3324 return;
3325
3326 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3327 !atomic_xchg(&krcp->work_in_progress, 1)) {
3328 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3329 queue_delayed_work(system_wq,
3330 &krcp->page_cache_work,
3331 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3332 } else {
3333 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3334 krcp->hrtimer.function = schedule_page_work_fn;
3335 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3336 }
3337 }
3338 }
3339
3340 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3341 // state specified by flags. If can_alloc is true, the caller must
3342 // be schedulable and not be holding any locks or mutexes that might be
3343 // acquired by the memory allocator or anything that it might invoke.
3344 // Returns true if ptr was successfully recorded, else the caller must
3345 // use a fallback.
3346 static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu ** krcp,unsigned long * flags,void * ptr,bool can_alloc)3347 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3348 unsigned long *flags, void *ptr, bool can_alloc)
3349 {
3350 struct kvfree_rcu_bulk_data *bnode;
3351 int idx;
3352
3353 *krcp = krc_this_cpu_lock(flags);
3354 if (unlikely(!(*krcp)->initialized))
3355 return false;
3356
3357 idx = !!is_vmalloc_addr(ptr);
3358 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3359 struct kvfree_rcu_bulk_data, list);
3360
3361 /* Check if a new block is required. */
3362 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3363 bnode = get_cached_bnode(*krcp);
3364 if (!bnode && can_alloc) {
3365 krc_this_cpu_unlock(*krcp, *flags);
3366
3367 // __GFP_NORETRY - allows a light-weight direct reclaim
3368 // what is OK from minimizing of fallback hitting point of
3369 // view. Apart of that it forbids any OOM invoking what is
3370 // also beneficial since we are about to release memory soon.
3371 //
3372 // __GFP_NOMEMALLOC - prevents from consuming of all the
3373 // memory reserves. Please note we have a fallback path.
3374 //
3375 // __GFP_NOWARN - it is supposed that an allocation can
3376 // be failed under low memory or high memory pressure
3377 // scenarios.
3378 bnode = (struct kvfree_rcu_bulk_data *)
3379 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3380 raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3381 }
3382
3383 if (!bnode)
3384 return false;
3385
3386 // Initialize the new block and attach it.
3387 bnode->nr_records = 0;
3388 list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3389 }
3390
3391 // Finally insert and update the GP for this page.
3392 bnode->records[bnode->nr_records++] = ptr;
3393 get_state_synchronize_rcu_full(&bnode->gp_snap);
3394 atomic_inc(&(*krcp)->bulk_count[idx]);
3395
3396 return true;
3397 }
3398
3399 /*
3400 * Queue a request for lazy invocation of the appropriate free routine
3401 * after a grace period. Please note that three paths are maintained,
3402 * two for the common case using arrays of pointers and a third one that
3403 * is used only when the main paths cannot be used, for example, due to
3404 * memory pressure.
3405 *
3406 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3407 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3408 * be free'd in workqueue context. This allows us to: batch requests together to
3409 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3410 */
kvfree_call_rcu(struct rcu_head * head,void * ptr)3411 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3412 {
3413 unsigned long flags;
3414 struct kfree_rcu_cpu *krcp;
3415 bool success;
3416
3417 /*
3418 * Please note there is a limitation for the head-less
3419 * variant, that is why there is a clear rule for such
3420 * objects: it can be used from might_sleep() context
3421 * only. For other places please embed an rcu_head to
3422 * your data.
3423 */
3424 if (!head)
3425 might_sleep();
3426
3427 // Queue the object but don't yet schedule the batch.
3428 if (debug_rcu_head_queue(ptr)) {
3429 // Probable double kfree_rcu(), just leak.
3430 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3431 __func__, head);
3432
3433 // Mark as success and leave.
3434 return;
3435 }
3436
3437 kasan_record_aux_stack_noalloc(ptr);
3438 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3439 if (!success) {
3440 run_page_cache_worker(krcp);
3441
3442 if (head == NULL)
3443 // Inline if kvfree_rcu(one_arg) call.
3444 goto unlock_return;
3445
3446 head->func = ptr;
3447 head->next = krcp->head;
3448 WRITE_ONCE(krcp->head, head);
3449 atomic_inc(&krcp->head_count);
3450
3451 // Take a snapshot for this krcp.
3452 krcp->head_gp_snap = get_state_synchronize_rcu();
3453 success = true;
3454 }
3455
3456 /*
3457 * The kvfree_rcu() caller considers the pointer freed at this point
3458 * and likely removes any references to it. Since the actual slab
3459 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3460 * this object (no scanning or false positives reporting).
3461 */
3462 kmemleak_ignore(ptr);
3463
3464 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3465 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3466 schedule_delayed_monitor_work(krcp);
3467
3468 unlock_return:
3469 krc_this_cpu_unlock(krcp, flags);
3470
3471 /*
3472 * Inline kvfree() after synchronize_rcu(). We can do
3473 * it from might_sleep() context only, so the current
3474 * CPU can pass the QS state.
3475 */
3476 if (!success) {
3477 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3478 synchronize_rcu();
3479 kvfree(ptr);
3480 }
3481 }
3482 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3483
3484 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3485 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3486 {
3487 int cpu;
3488 unsigned long count = 0;
3489
3490 /* Snapshot count of all CPUs */
3491 for_each_possible_cpu(cpu) {
3492 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3493
3494 count += krc_count(krcp);
3495 count += READ_ONCE(krcp->nr_bkv_objs);
3496 atomic_set(&krcp->backoff_page_cache_fill, 1);
3497 }
3498
3499 return count == 0 ? SHRINK_EMPTY : count;
3500 }
3501
3502 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3503 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3504 {
3505 int cpu, freed = 0;
3506
3507 for_each_possible_cpu(cpu) {
3508 int count;
3509 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3510
3511 count = krc_count(krcp);
3512 count += drain_page_cache(krcp);
3513 kfree_rcu_monitor(&krcp->monitor_work.work);
3514
3515 sc->nr_to_scan -= count;
3516 freed += count;
3517
3518 if (sc->nr_to_scan <= 0)
3519 break;
3520 }
3521
3522 return freed == 0 ? SHRINK_STOP : freed;
3523 }
3524
3525 static struct shrinker kfree_rcu_shrinker = {
3526 .count_objects = kfree_rcu_shrink_count,
3527 .scan_objects = kfree_rcu_shrink_scan,
3528 .batch = 0,
3529 .seeks = DEFAULT_SEEKS,
3530 };
3531
kfree_rcu_scheduler_running(void)3532 void __init kfree_rcu_scheduler_running(void)
3533 {
3534 int cpu;
3535
3536 for_each_possible_cpu(cpu) {
3537 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3538
3539 if (need_offload_krc(krcp))
3540 schedule_delayed_monitor_work(krcp);
3541 }
3542 }
3543
3544 /*
3545 * During early boot, any blocking grace-period wait automatically
3546 * implies a grace period.
3547 *
3548 * Later on, this could in theory be the case for kernels built with
3549 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3550 * is not a common case. Furthermore, this optimization would cause
3551 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3552 * grace-period optimization is ignored once the scheduler is running.
3553 */
rcu_blocking_is_gp(void)3554 static int rcu_blocking_is_gp(void)
3555 {
3556 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3557 might_sleep();
3558 return false;
3559 }
3560 return true;
3561 }
3562
3563 /**
3564 * synchronize_rcu - wait until a grace period has elapsed.
3565 *
3566 * Control will return to the caller some time after a full grace
3567 * period has elapsed, in other words after all currently executing RCU
3568 * read-side critical sections have completed. Note, however, that
3569 * upon return from synchronize_rcu(), the caller might well be executing
3570 * concurrently with new RCU read-side critical sections that began while
3571 * synchronize_rcu() was waiting.
3572 *
3573 * RCU read-side critical sections are delimited by rcu_read_lock()
3574 * and rcu_read_unlock(), and may be nested. In addition, but only in
3575 * v5.0 and later, regions of code across which interrupts, preemption,
3576 * or softirqs have been disabled also serve as RCU read-side critical
3577 * sections. This includes hardware interrupt handlers, softirq handlers,
3578 * and NMI handlers.
3579 *
3580 * Note that this guarantee implies further memory-ordering guarantees.
3581 * On systems with more than one CPU, when synchronize_rcu() returns,
3582 * each CPU is guaranteed to have executed a full memory barrier since
3583 * the end of its last RCU read-side critical section whose beginning
3584 * preceded the call to synchronize_rcu(). In addition, each CPU having
3585 * an RCU read-side critical section that extends beyond the return from
3586 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3587 * after the beginning of synchronize_rcu() and before the beginning of
3588 * that RCU read-side critical section. Note that these guarantees include
3589 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3590 * that are executing in the kernel.
3591 *
3592 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3593 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3594 * to have executed a full memory barrier during the execution of
3595 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3596 * again only if the system has more than one CPU).
3597 *
3598 * Implementation of these memory-ordering guarantees is described here:
3599 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3600 */
synchronize_rcu(void)3601 void synchronize_rcu(void)
3602 {
3603 unsigned long flags;
3604 struct rcu_node *rnp;
3605
3606 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3607 lock_is_held(&rcu_lock_map) ||
3608 lock_is_held(&rcu_sched_lock_map),
3609 "Illegal synchronize_rcu() in RCU read-side critical section");
3610 if (!rcu_blocking_is_gp()) {
3611 if (rcu_gp_is_expedited())
3612 synchronize_rcu_expedited();
3613 else
3614 wait_rcu_gp(call_rcu_hurry);
3615 return;
3616 }
3617
3618 // Context allows vacuous grace periods.
3619 // Note well that this code runs with !PREEMPT && !SMP.
3620 // In addition, all code that advances grace periods runs at
3621 // process level. Therefore, this normal GP overlaps with other
3622 // normal GPs only by being fully nested within them, which allows
3623 // reuse of ->gp_seq_polled_snap.
3624 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3625 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3626
3627 // Update the normal grace-period counters to record
3628 // this grace period, but only those used by the boot CPU.
3629 // The rcu_scheduler_starting() will take care of the rest of
3630 // these counters.
3631 local_irq_save(flags);
3632 WARN_ON_ONCE(num_online_cpus() > 1);
3633 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3634 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3635 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3636 local_irq_restore(flags);
3637 }
3638 EXPORT_SYMBOL_GPL(synchronize_rcu);
3639
3640 /**
3641 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3642 * @rgosp: Place to put state cookie
3643 *
3644 * Stores into @rgosp a value that will always be treated by functions
3645 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3646 * has already completed.
3647 */
get_completed_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3648 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3649 {
3650 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3651 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3652 }
3653 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3654
3655 /**
3656 * get_state_synchronize_rcu - Snapshot current RCU state
3657 *
3658 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3659 * or poll_state_synchronize_rcu() to determine whether or not a full
3660 * grace period has elapsed in the meantime.
3661 */
get_state_synchronize_rcu(void)3662 unsigned long get_state_synchronize_rcu(void)
3663 {
3664 /*
3665 * Any prior manipulation of RCU-protected data must happen
3666 * before the load from ->gp_seq.
3667 */
3668 smp_mb(); /* ^^^ */
3669 return rcu_seq_snap(&rcu_state.gp_seq_polled);
3670 }
3671 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3672
3673 /**
3674 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3675 * @rgosp: location to place combined normal/expedited grace-period state
3676 *
3677 * Places the normal and expedited grace-period states in @rgosp. This
3678 * state value can be passed to a later call to cond_synchronize_rcu_full()
3679 * or poll_state_synchronize_rcu_full() to determine whether or not a
3680 * grace period (whether normal or expedited) has elapsed in the meantime.
3681 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3682 * long, but is guaranteed to see all grace periods. In contrast, the
3683 * combined state occupies less memory, but can sometimes fail to take
3684 * grace periods into account.
3685 *
3686 * This does not guarantee that the needed grace period will actually
3687 * start.
3688 */
get_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3689 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3690 {
3691 struct rcu_node *rnp = rcu_get_root();
3692
3693 /*
3694 * Any prior manipulation of RCU-protected data must happen
3695 * before the loads from ->gp_seq and ->expedited_sequence.
3696 */
3697 smp_mb(); /* ^^^ */
3698 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3699 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3700 }
3701 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3702
3703 /*
3704 * Helper function for start_poll_synchronize_rcu() and
3705 * start_poll_synchronize_rcu_full().
3706 */
start_poll_synchronize_rcu_common(void)3707 static void start_poll_synchronize_rcu_common(void)
3708 {
3709 unsigned long flags;
3710 bool needwake;
3711 struct rcu_data *rdp;
3712 struct rcu_node *rnp;
3713
3714 lockdep_assert_irqs_enabled();
3715 local_irq_save(flags);
3716 rdp = this_cpu_ptr(&rcu_data);
3717 rnp = rdp->mynode;
3718 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3719 // Note it is possible for a grace period to have elapsed between
3720 // the above call to get_state_synchronize_rcu() and the below call
3721 // to rcu_seq_snap. This is OK, the worst that happens is that we
3722 // get a grace period that no one needed. These accesses are ordered
3723 // by smp_mb(), and we are accessing them in the opposite order
3724 // from which they are updated at grace-period start, as required.
3725 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3726 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3727 if (needwake)
3728 rcu_gp_kthread_wake();
3729 }
3730
3731 /**
3732 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3733 *
3734 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3735 * or poll_state_synchronize_rcu() to determine whether or not a full
3736 * grace period has elapsed in the meantime. If the needed grace period
3737 * is not already slated to start, notifies RCU core of the need for that
3738 * grace period.
3739 *
3740 * Interrupts must be enabled for the case where it is necessary to awaken
3741 * the grace-period kthread.
3742 */
start_poll_synchronize_rcu(void)3743 unsigned long start_poll_synchronize_rcu(void)
3744 {
3745 unsigned long gp_seq = get_state_synchronize_rcu();
3746
3747 start_poll_synchronize_rcu_common();
3748 return gp_seq;
3749 }
3750 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3751
3752 /**
3753 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3754 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3755 *
3756 * Places the normal and expedited grace-period states in *@rgos. This
3757 * state value can be passed to a later call to cond_synchronize_rcu_full()
3758 * or poll_state_synchronize_rcu_full() to determine whether or not a
3759 * grace period (whether normal or expedited) has elapsed in the meantime.
3760 * If the needed grace period is not already slated to start, notifies
3761 * RCU core of the need for that grace period.
3762 *
3763 * Interrupts must be enabled for the case where it is necessary to awaken
3764 * the grace-period kthread.
3765 */
start_poll_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3766 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3767 {
3768 get_state_synchronize_rcu_full(rgosp);
3769
3770 start_poll_synchronize_rcu_common();
3771 }
3772 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3773
3774 /**
3775 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3776 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3777 *
3778 * If a full RCU grace period has elapsed since the earlier call from
3779 * which @oldstate was obtained, return @true, otherwise return @false.
3780 * If @false is returned, it is the caller's responsibility to invoke this
3781 * function later on until it does return @true. Alternatively, the caller
3782 * can explicitly wait for a grace period, for example, by passing @oldstate
3783 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3784 * on the one hand or by directly invoking either synchronize_rcu() or
3785 * synchronize_rcu_expedited() on the other.
3786 *
3787 * Yes, this function does not take counter wrap into account.
3788 * But counter wrap is harmless. If the counter wraps, we have waited for
3789 * more than a billion grace periods (and way more on a 64-bit system!).
3790 * Those needing to keep old state values for very long time periods
3791 * (many hours even on 32-bit systems) should check them occasionally and
3792 * either refresh them or set a flag indicating that the grace period has
3793 * completed. Alternatively, they can use get_completed_synchronize_rcu()
3794 * to get a guaranteed-completed grace-period state.
3795 *
3796 * In addition, because oldstate compresses the grace-period state for
3797 * both normal and expedited grace periods into a single unsigned long,
3798 * it can miss a grace period when synchronize_rcu() runs concurrently
3799 * with synchronize_rcu_expedited(). If this is unacceptable, please
3800 * instead use the _full() variant of these polling APIs.
3801 *
3802 * This function provides the same memory-ordering guarantees that
3803 * would be provided by a synchronize_rcu() that was invoked at the call
3804 * to the function that provided @oldstate, and that returned at the end
3805 * of this function.
3806 */
poll_state_synchronize_rcu(unsigned long oldstate)3807 bool poll_state_synchronize_rcu(unsigned long oldstate)
3808 {
3809 if (oldstate == RCU_GET_STATE_COMPLETED ||
3810 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3811 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3812 return true;
3813 }
3814 return false;
3815 }
3816 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3817
3818 /**
3819 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3820 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3821 *
3822 * If a full RCU grace period has elapsed since the earlier call from
3823 * which *rgosp was obtained, return @true, otherwise return @false.
3824 * If @false is returned, it is the caller's responsibility to invoke this
3825 * function later on until it does return @true. Alternatively, the caller
3826 * can explicitly wait for a grace period, for example, by passing @rgosp
3827 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3828 *
3829 * Yes, this function does not take counter wrap into account.
3830 * But counter wrap is harmless. If the counter wraps, we have waited
3831 * for more than a billion grace periods (and way more on a 64-bit
3832 * system!). Those needing to keep rcu_gp_oldstate values for very
3833 * long time periods (many hours even on 32-bit systems) should check
3834 * them occasionally and either refresh them or set a flag indicating
3835 * that the grace period has completed. Alternatively, they can use
3836 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3837 * grace-period state.
3838 *
3839 * This function provides the same memory-ordering guarantees that would
3840 * be provided by a synchronize_rcu() that was invoked at the call to
3841 * the function that provided @rgosp, and that returned at the end of this
3842 * function. And this guarantee requires that the root rcu_node structure's
3843 * ->gp_seq field be checked instead of that of the rcu_state structure.
3844 * The problem is that the just-ending grace-period's callbacks can be
3845 * invoked between the time that the root rcu_node structure's ->gp_seq
3846 * field is updated and the time that the rcu_state structure's ->gp_seq
3847 * field is updated. Therefore, if a single synchronize_rcu() is to
3848 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3849 * then the root rcu_node structure is the one that needs to be polled.
3850 */
poll_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3851 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3852 {
3853 struct rcu_node *rnp = rcu_get_root();
3854
3855 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3856 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3857 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3858 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3859 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3860 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3861 return true;
3862 }
3863 return false;
3864 }
3865 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3866
3867 /**
3868 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3869 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3870 *
3871 * If a full RCU grace period has elapsed since the earlier call to
3872 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3873 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3874 *
3875 * Yes, this function does not take counter wrap into account.
3876 * But counter wrap is harmless. If the counter wraps, we have waited for
3877 * more than 2 billion grace periods (and way more on a 64-bit system!),
3878 * so waiting for a couple of additional grace periods should be just fine.
3879 *
3880 * This function provides the same memory-ordering guarantees that
3881 * would be provided by a synchronize_rcu() that was invoked at the call
3882 * to the function that provided @oldstate and that returned at the end
3883 * of this function.
3884 */
cond_synchronize_rcu(unsigned long oldstate)3885 void cond_synchronize_rcu(unsigned long oldstate)
3886 {
3887 if (!poll_state_synchronize_rcu(oldstate))
3888 synchronize_rcu();
3889 }
3890 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3891
3892 /**
3893 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3894 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3895 *
3896 * If a full RCU grace period has elapsed since the call to
3897 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3898 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3899 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
3900 * for a full grace period.
3901 *
3902 * Yes, this function does not take counter wrap into account.
3903 * But counter wrap is harmless. If the counter wraps, we have waited for
3904 * more than 2 billion grace periods (and way more on a 64-bit system!),
3905 * so waiting for a couple of additional grace periods should be just fine.
3906 *
3907 * This function provides the same memory-ordering guarantees that
3908 * would be provided by a synchronize_rcu() that was invoked at the call
3909 * to the function that provided @rgosp and that returned at the end of
3910 * this function.
3911 */
cond_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3912 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3913 {
3914 if (!poll_state_synchronize_rcu_full(rgosp))
3915 synchronize_rcu();
3916 }
3917 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3918
3919 /*
3920 * Check to see if there is any immediate RCU-related work to be done by
3921 * the current CPU, returning 1 if so and zero otherwise. The checks are
3922 * in order of increasing expense: checks that can be carried out against
3923 * CPU-local state are performed first. However, we must check for CPU
3924 * stalls first, else we might not get a chance.
3925 */
rcu_pending(int user)3926 static int rcu_pending(int user)
3927 {
3928 bool gp_in_progress;
3929 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3930 struct rcu_node *rnp = rdp->mynode;
3931
3932 lockdep_assert_irqs_disabled();
3933
3934 /* Check for CPU stalls, if enabled. */
3935 check_cpu_stall(rdp);
3936
3937 /* Does this CPU need a deferred NOCB wakeup? */
3938 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3939 return 1;
3940
3941 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3942 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3943 return 0;
3944
3945 /* Is the RCU core waiting for a quiescent state from this CPU? */
3946 gp_in_progress = rcu_gp_in_progress();
3947 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3948 return 1;
3949
3950 /* Does this CPU have callbacks ready to invoke? */
3951 if (!rcu_rdp_is_offloaded(rdp) &&
3952 rcu_segcblist_ready_cbs(&rdp->cblist))
3953 return 1;
3954
3955 /* Has RCU gone idle with this CPU needing another grace period? */
3956 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3957 !rcu_rdp_is_offloaded(rdp) &&
3958 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3959 return 1;
3960
3961 /* Have RCU grace period completed or started? */
3962 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3963 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3964 return 1;
3965
3966 /* nothing to do */
3967 return 0;
3968 }
3969
3970 /*
3971 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3972 * the compiler is expected to optimize this away.
3973 */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3974 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3975 {
3976 trace_rcu_barrier(rcu_state.name, s, cpu,
3977 atomic_read(&rcu_state.barrier_cpu_count), done);
3978 }
3979
3980 /*
3981 * RCU callback function for rcu_barrier(). If we are last, wake
3982 * up the task executing rcu_barrier().
3983 *
3984 * Note that the value of rcu_state.barrier_sequence must be captured
3985 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3986 * other CPUs might count the value down to zero before this CPU gets
3987 * around to invoking rcu_barrier_trace(), which might result in bogus
3988 * data from the next instance of rcu_barrier().
3989 */
rcu_barrier_callback(struct rcu_head * rhp)3990 static void rcu_barrier_callback(struct rcu_head *rhp)
3991 {
3992 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3993
3994 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3995 rcu_barrier_trace(TPS("LastCB"), -1, s);
3996 complete(&rcu_state.barrier_completion);
3997 } else {
3998 rcu_barrier_trace(TPS("CB"), -1, s);
3999 }
4000 }
4001
4002 /*
4003 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4004 */
rcu_barrier_entrain(struct rcu_data * rdp)4005 static void rcu_barrier_entrain(struct rcu_data *rdp)
4006 {
4007 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4008 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4009 bool wake_nocb = false;
4010 bool was_alldone = false;
4011
4012 lockdep_assert_held(&rcu_state.barrier_lock);
4013 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4014 return;
4015 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4016 rdp->barrier_head.func = rcu_barrier_callback;
4017 debug_rcu_head_queue(&rdp->barrier_head);
4018 rcu_nocb_lock(rdp);
4019 /*
4020 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4021 * queue. This way we don't wait for bypass timer that can reach seconds
4022 * if it's fully lazy.
4023 */
4024 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4025 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4026 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4027 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4028 atomic_inc(&rcu_state.barrier_cpu_count);
4029 } else {
4030 debug_rcu_head_unqueue(&rdp->barrier_head);
4031 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4032 }
4033 rcu_nocb_unlock(rdp);
4034 if (wake_nocb)
4035 wake_nocb_gp(rdp, false);
4036 smp_store_release(&rdp->barrier_seq_snap, gseq);
4037 }
4038
4039 /*
4040 * Called with preemption disabled, and from cross-cpu IRQ context.
4041 */
rcu_barrier_handler(void * cpu_in)4042 static void rcu_barrier_handler(void *cpu_in)
4043 {
4044 uintptr_t cpu = (uintptr_t)cpu_in;
4045 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4046
4047 lockdep_assert_irqs_disabled();
4048 WARN_ON_ONCE(cpu != rdp->cpu);
4049 WARN_ON_ONCE(cpu != smp_processor_id());
4050 raw_spin_lock(&rcu_state.barrier_lock);
4051 rcu_barrier_entrain(rdp);
4052 raw_spin_unlock(&rcu_state.barrier_lock);
4053 }
4054
4055 /**
4056 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4057 *
4058 * Note that this primitive does not necessarily wait for an RCU grace period
4059 * to complete. For example, if there are no RCU callbacks queued anywhere
4060 * in the system, then rcu_barrier() is within its rights to return
4061 * immediately, without waiting for anything, much less an RCU grace period.
4062 */
rcu_barrier(void)4063 void rcu_barrier(void)
4064 {
4065 uintptr_t cpu;
4066 unsigned long flags;
4067 unsigned long gseq;
4068 struct rcu_data *rdp;
4069 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4070
4071 rcu_barrier_trace(TPS("Begin"), -1, s);
4072
4073 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4074 mutex_lock(&rcu_state.barrier_mutex);
4075
4076 /* Did someone else do our work for us? */
4077 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4078 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4079 smp_mb(); /* caller's subsequent code after above check. */
4080 mutex_unlock(&rcu_state.barrier_mutex);
4081 return;
4082 }
4083
4084 /* Mark the start of the barrier operation. */
4085 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4086 rcu_seq_start(&rcu_state.barrier_sequence);
4087 gseq = rcu_state.barrier_sequence;
4088 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4089
4090 /*
4091 * Initialize the count to two rather than to zero in order
4092 * to avoid a too-soon return to zero in case of an immediate
4093 * invocation of the just-enqueued callback (or preemption of
4094 * this task). Exclude CPU-hotplug operations to ensure that no
4095 * offline non-offloaded CPU has callbacks queued.
4096 */
4097 init_completion(&rcu_state.barrier_completion);
4098 atomic_set(&rcu_state.barrier_cpu_count, 2);
4099 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4100
4101 /*
4102 * Force each CPU with callbacks to register a new callback.
4103 * When that callback is invoked, we will know that all of the
4104 * corresponding CPU's preceding callbacks have been invoked.
4105 */
4106 for_each_possible_cpu(cpu) {
4107 rdp = per_cpu_ptr(&rcu_data, cpu);
4108 retry:
4109 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4110 continue;
4111 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4112 if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4113 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4114 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4115 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4116 continue;
4117 }
4118 if (!rcu_rdp_cpu_online(rdp)) {
4119 rcu_barrier_entrain(rdp);
4120 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4121 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4122 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4123 continue;
4124 }
4125 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4126 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4127 schedule_timeout_uninterruptible(1);
4128 goto retry;
4129 }
4130 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4131 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4132 }
4133
4134 /*
4135 * Now that we have an rcu_barrier_callback() callback on each
4136 * CPU, and thus each counted, remove the initial count.
4137 */
4138 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4139 complete(&rcu_state.barrier_completion);
4140
4141 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4142 wait_for_completion(&rcu_state.barrier_completion);
4143
4144 /* Mark the end of the barrier operation. */
4145 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4146 rcu_seq_end(&rcu_state.barrier_sequence);
4147 gseq = rcu_state.barrier_sequence;
4148 for_each_possible_cpu(cpu) {
4149 rdp = per_cpu_ptr(&rcu_data, cpu);
4150
4151 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4152 }
4153
4154 /* Other rcu_barrier() invocations can now safely proceed. */
4155 mutex_unlock(&rcu_state.barrier_mutex);
4156 }
4157 EXPORT_SYMBOL_GPL(rcu_barrier);
4158
4159 /*
4160 * Compute the mask of online CPUs for the specified rcu_node structure.
4161 * This will not be stable unless the rcu_node structure's ->lock is
4162 * held, but the bit corresponding to the current CPU will be stable
4163 * in most contexts.
4164 */
rcu_rnp_online_cpus(struct rcu_node * rnp)4165 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4166 {
4167 return READ_ONCE(rnp->qsmaskinitnext);
4168 }
4169
4170 /*
4171 * Is the CPU corresponding to the specified rcu_data structure online
4172 * from RCU's perspective? This perspective is given by that structure's
4173 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4174 */
rcu_rdp_cpu_online(struct rcu_data * rdp)4175 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4176 {
4177 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4178 }
4179
rcu_cpu_online(int cpu)4180 bool rcu_cpu_online(int cpu)
4181 {
4182 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4183
4184 return rcu_rdp_cpu_online(rdp);
4185 }
4186
4187 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4188
4189 /*
4190 * Is the current CPU online as far as RCU is concerned?
4191 *
4192 * Disable preemption to avoid false positives that could otherwise
4193 * happen due to the current CPU number being sampled, this task being
4194 * preempted, its old CPU being taken offline, resuming on some other CPU,
4195 * then determining that its old CPU is now offline.
4196 *
4197 * Disable checking if in an NMI handler because we cannot safely
4198 * report errors from NMI handlers anyway. In addition, it is OK to use
4199 * RCU on an offline processor during initial boot, hence the check for
4200 * rcu_scheduler_fully_active.
4201 */
rcu_lockdep_current_cpu_online(void)4202 bool rcu_lockdep_current_cpu_online(void)
4203 {
4204 struct rcu_data *rdp;
4205 bool ret = false;
4206
4207 if (in_nmi() || !rcu_scheduler_fully_active)
4208 return true;
4209 preempt_disable_notrace();
4210 rdp = this_cpu_ptr(&rcu_data);
4211 /*
4212 * Strictly, we care here about the case where the current CPU is
4213 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
4214 * not being up to date. So arch_spin_is_locked() might have a
4215 * false positive if it's held by some *other* CPU, but that's
4216 * OK because that just means a false *negative* on the warning.
4217 */
4218 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4219 ret = true;
4220 preempt_enable_notrace();
4221 return ret;
4222 }
4223 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4224
4225 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4226
4227 // Has rcu_init() been invoked? This is used (for example) to determine
4228 // whether spinlocks may be acquired safely.
rcu_init_invoked(void)4229 static bool rcu_init_invoked(void)
4230 {
4231 return !!rcu_state.n_online_cpus;
4232 }
4233
4234 /*
4235 * Near the end of the offline process. Trace the fact that this CPU
4236 * is going offline.
4237 */
rcutree_dying_cpu(unsigned int cpu)4238 int rcutree_dying_cpu(unsigned int cpu)
4239 {
4240 bool blkd;
4241 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4242 struct rcu_node *rnp = rdp->mynode;
4243
4244 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4245 return 0;
4246
4247 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4248 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4249 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4250 return 0;
4251 }
4252
4253 /*
4254 * All CPUs for the specified rcu_node structure have gone offline,
4255 * and all tasks that were preempted within an RCU read-side critical
4256 * section while running on one of those CPUs have since exited their RCU
4257 * read-side critical section. Some other CPU is reporting this fact with
4258 * the specified rcu_node structure's ->lock held and interrupts disabled.
4259 * This function therefore goes up the tree of rcu_node structures,
4260 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
4261 * the leaf rcu_node structure's ->qsmaskinit field has already been
4262 * updated.
4263 *
4264 * This function does check that the specified rcu_node structure has
4265 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4266 * prematurely. That said, invoking it after the fact will cost you
4267 * a needless lock acquisition. So once it has done its work, don't
4268 * invoke it again.
4269 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)4270 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4271 {
4272 long mask;
4273 struct rcu_node *rnp = rnp_leaf;
4274
4275 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4276 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4277 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4278 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4279 return;
4280 for (;;) {
4281 mask = rnp->grpmask;
4282 rnp = rnp->parent;
4283 if (!rnp)
4284 break;
4285 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4286 rnp->qsmaskinit &= ~mask;
4287 /* Between grace periods, so better already be zero! */
4288 WARN_ON_ONCE(rnp->qsmask);
4289 if (rnp->qsmaskinit) {
4290 raw_spin_unlock_rcu_node(rnp);
4291 /* irqs remain disabled. */
4292 return;
4293 }
4294 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4295 }
4296 }
4297
4298 /*
4299 * The CPU has been completely removed, and some other CPU is reporting
4300 * this fact from process context. Do the remainder of the cleanup.
4301 * There can only be one CPU hotplug operation at a time, so no need for
4302 * explicit locking.
4303 */
rcutree_dead_cpu(unsigned int cpu)4304 int rcutree_dead_cpu(unsigned int cpu)
4305 {
4306 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4307 return 0;
4308
4309 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4310 // Stop-machine done, so allow nohz_full to disable tick.
4311 tick_dep_clear(TICK_DEP_BIT_RCU);
4312 return 0;
4313 }
4314
4315 /*
4316 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4317 * first CPU in a given leaf rcu_node structure coming online. The caller
4318 * must hold the corresponding leaf rcu_node ->lock with interrupts
4319 * disabled.
4320 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4321 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4322 {
4323 long mask;
4324 long oldmask;
4325 struct rcu_node *rnp = rnp_leaf;
4326
4327 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4328 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4329 for (;;) {
4330 mask = rnp->grpmask;
4331 rnp = rnp->parent;
4332 if (rnp == NULL)
4333 return;
4334 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4335 oldmask = rnp->qsmaskinit;
4336 rnp->qsmaskinit |= mask;
4337 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4338 if (oldmask)
4339 return;
4340 }
4341 }
4342
4343 /*
4344 * Do boot-time initialization of a CPU's per-CPU RCU data.
4345 */
4346 static void __init
rcu_boot_init_percpu_data(int cpu)4347 rcu_boot_init_percpu_data(int cpu)
4348 {
4349 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4350 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4351
4352 /* Set up local state, ensuring consistent view of global state. */
4353 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4354 INIT_WORK(&rdp->strict_work, strict_work_handler);
4355 WARN_ON_ONCE(ct->dynticks_nesting != 1);
4356 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4357 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4358 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4359 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4360 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4361 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4362 rdp->last_sched_clock = jiffies;
4363 rdp->cpu = cpu;
4364 rcu_boot_init_nocb_percpu_data(rdp);
4365 }
4366
4367 /*
4368 * Invoked early in the CPU-online process, when pretty much all services
4369 * are available. The incoming CPU is not present.
4370 *
4371 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4372 * offline event can be happening at a given time. Note also that we can
4373 * accept some slop in the rsp->gp_seq access due to the fact that this
4374 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4375 * And any offloaded callbacks are being numbered elsewhere.
4376 */
rcutree_prepare_cpu(unsigned int cpu)4377 int rcutree_prepare_cpu(unsigned int cpu)
4378 {
4379 unsigned long flags;
4380 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4381 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4382 struct rcu_node *rnp = rcu_get_root();
4383
4384 /* Set up local state, ensuring consistent view of global state. */
4385 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4386 rdp->qlen_last_fqs_check = 0;
4387 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4388 rdp->blimit = blimit;
4389 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
4390 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4391
4392 /*
4393 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4394 * (re-)initialized.
4395 */
4396 if (!rcu_segcblist_is_enabled(&rdp->cblist))
4397 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4398
4399 /*
4400 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4401 * propagation up the rcu_node tree will happen at the beginning
4402 * of the next grace period.
4403 */
4404 rnp = rdp->mynode;
4405 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4406 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4407 rdp->gp_seq_needed = rdp->gp_seq;
4408 rdp->cpu_no_qs.b.norm = true;
4409 rdp->core_needs_qs = false;
4410 rdp->rcu_iw_pending = false;
4411 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4412 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4413 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4414 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4415 rcu_spawn_one_boost_kthread(rnp);
4416 rcu_spawn_cpu_nocb_kthread(cpu);
4417 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4418
4419 return 0;
4420 }
4421
4422 /*
4423 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4424 */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4425 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4426 {
4427 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4428
4429 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4430 }
4431
4432 /*
4433 * Has the specified (known valid) CPU ever been fully online?
4434 */
rcu_cpu_beenfullyonline(int cpu)4435 bool rcu_cpu_beenfullyonline(int cpu)
4436 {
4437 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4438
4439 return smp_load_acquire(&rdp->beenonline);
4440 }
4441
4442 /*
4443 * Near the end of the CPU-online process. Pretty much all services
4444 * enabled, and the CPU is now very much alive.
4445 */
rcutree_online_cpu(unsigned int cpu)4446 int rcutree_online_cpu(unsigned int cpu)
4447 {
4448 unsigned long flags;
4449 struct rcu_data *rdp;
4450 struct rcu_node *rnp;
4451
4452 rdp = per_cpu_ptr(&rcu_data, cpu);
4453 rnp = rdp->mynode;
4454 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4455 rnp->ffmask |= rdp->grpmask;
4456 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4457 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4458 return 0; /* Too early in boot for scheduler work. */
4459 sync_sched_exp_online_cleanup(cpu);
4460 rcutree_affinity_setting(cpu, -1);
4461
4462 // Stop-machine done, so allow nohz_full to disable tick.
4463 tick_dep_clear(TICK_DEP_BIT_RCU);
4464 return 0;
4465 }
4466
4467 /*
4468 * Near the beginning of the process. The CPU is still very much alive
4469 * with pretty much all services enabled.
4470 */
rcutree_offline_cpu(unsigned int cpu)4471 int rcutree_offline_cpu(unsigned int cpu)
4472 {
4473 unsigned long flags;
4474 struct rcu_data *rdp;
4475 struct rcu_node *rnp;
4476
4477 rdp = per_cpu_ptr(&rcu_data, cpu);
4478 rnp = rdp->mynode;
4479 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4480 rnp->ffmask &= ~rdp->grpmask;
4481 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4482
4483 rcutree_affinity_setting(cpu, cpu);
4484
4485 // nohz_full CPUs need the tick for stop-machine to work quickly
4486 tick_dep_set(TICK_DEP_BIT_RCU);
4487 return 0;
4488 }
4489
4490 /*
4491 * Mark the specified CPU as being online so that subsequent grace periods
4492 * (both expedited and normal) will wait on it. Note that this means that
4493 * incoming CPUs are not allowed to use RCU read-side critical sections
4494 * until this function is called. Failing to observe this restriction
4495 * will result in lockdep splats.
4496 *
4497 * Note that this function is special in that it is invoked directly
4498 * from the incoming CPU rather than from the cpuhp_step mechanism.
4499 * This is because this function must be invoked at a precise location.
4500 * This incoming CPU must not have enabled interrupts yet.
4501 */
rcu_cpu_starting(unsigned int cpu)4502 void rcu_cpu_starting(unsigned int cpu)
4503 {
4504 unsigned long mask;
4505 struct rcu_data *rdp;
4506 struct rcu_node *rnp;
4507 bool newcpu;
4508
4509 lockdep_assert_irqs_disabled();
4510 rdp = per_cpu_ptr(&rcu_data, cpu);
4511 if (rdp->cpu_started)
4512 return;
4513 rdp->cpu_started = true;
4514
4515 rnp = rdp->mynode;
4516 mask = rdp->grpmask;
4517 arch_spin_lock(&rcu_state.ofl_lock);
4518 rcu_dynticks_eqs_online();
4519 raw_spin_lock(&rcu_state.barrier_lock);
4520 raw_spin_lock_rcu_node(rnp);
4521 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4522 raw_spin_unlock(&rcu_state.barrier_lock);
4523 newcpu = !(rnp->expmaskinitnext & mask);
4524 rnp->expmaskinitnext |= mask;
4525 /* Allow lockless access for expedited grace periods. */
4526 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4527 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4528 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4529 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4530 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4531
4532 /* An incoming CPU should never be blocking a grace period. */
4533 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4534 /* rcu_report_qs_rnp() *really* wants some flags to restore */
4535 unsigned long flags;
4536
4537 local_irq_save(flags);
4538 rcu_disable_urgency_upon_qs(rdp);
4539 /* Report QS -after- changing ->qsmaskinitnext! */
4540 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4541 } else {
4542 raw_spin_unlock_rcu_node(rnp);
4543 }
4544 arch_spin_unlock(&rcu_state.ofl_lock);
4545 smp_store_release(&rdp->beenonline, true);
4546 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4547 }
4548
4549 /*
4550 * The outgoing function has no further need of RCU, so remove it from
4551 * the rcu_node tree's ->qsmaskinitnext bit masks.
4552 *
4553 * Note that this function is special in that it is invoked directly
4554 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4555 * This is because this function must be invoked at a precise location.
4556 */
rcu_report_dead(unsigned int cpu)4557 void rcu_report_dead(unsigned int cpu)
4558 {
4559 unsigned long flags, seq_flags;
4560 unsigned long mask;
4561 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4562 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4563
4564 // Do any dangling deferred wakeups.
4565 do_nocb_deferred_wakeup(rdp);
4566
4567 rcu_preempt_deferred_qs(current);
4568
4569 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4570 mask = rdp->grpmask;
4571 local_irq_save(seq_flags);
4572 arch_spin_lock(&rcu_state.ofl_lock);
4573 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4574 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4575 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4576 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4577 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4578 rcu_disable_urgency_upon_qs(rdp);
4579 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4580 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4581 }
4582 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4583 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4584 arch_spin_unlock(&rcu_state.ofl_lock);
4585 local_irq_restore(seq_flags);
4586
4587 rdp->cpu_started = false;
4588 }
4589
4590 #ifdef CONFIG_HOTPLUG_CPU
4591 /*
4592 * The outgoing CPU has just passed through the dying-idle state, and we
4593 * are being invoked from the CPU that was IPIed to continue the offline
4594 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4595 */
rcutree_migrate_callbacks(int cpu)4596 void rcutree_migrate_callbacks(int cpu)
4597 {
4598 unsigned long flags;
4599 struct rcu_data *my_rdp;
4600 struct rcu_node *my_rnp;
4601 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4602 bool needwake;
4603
4604 if (rcu_rdp_is_offloaded(rdp))
4605 return;
4606
4607 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4608 if (rcu_segcblist_empty(&rdp->cblist)) {
4609 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4610 return; /* No callbacks to migrate. */
4611 }
4612
4613 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4614 rcu_barrier_entrain(rdp);
4615 my_rdp = this_cpu_ptr(&rcu_data);
4616 my_rnp = my_rdp->mynode;
4617 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4618 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4619 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4620 /* Leverage recent GPs and set GP for new callbacks. */
4621 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4622 rcu_advance_cbs(my_rnp, my_rdp);
4623 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4624 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4625 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4626 rcu_segcblist_disable(&rdp->cblist);
4627 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4628 check_cb_ovld_locked(my_rdp, my_rnp);
4629 if (rcu_rdp_is_offloaded(my_rdp)) {
4630 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4631 __call_rcu_nocb_wake(my_rdp, true, flags);
4632 } else {
4633 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4634 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4635 }
4636 if (needwake)
4637 rcu_gp_kthread_wake();
4638 lockdep_assert_irqs_enabled();
4639 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4640 !rcu_segcblist_empty(&rdp->cblist),
4641 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4642 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4643 rcu_segcblist_first_cb(&rdp->cblist));
4644 }
4645 #endif
4646
4647 /*
4648 * On non-huge systems, use expedited RCU grace periods to make suspend
4649 * and hibernation run faster.
4650 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4651 static int rcu_pm_notify(struct notifier_block *self,
4652 unsigned long action, void *hcpu)
4653 {
4654 switch (action) {
4655 case PM_HIBERNATION_PREPARE:
4656 case PM_SUSPEND_PREPARE:
4657 rcu_async_hurry();
4658 rcu_expedite_gp();
4659 break;
4660 case PM_POST_HIBERNATION:
4661 case PM_POST_SUSPEND:
4662 rcu_unexpedite_gp();
4663 rcu_async_relax();
4664 break;
4665 default:
4666 break;
4667 }
4668 return NOTIFY_OK;
4669 }
4670
4671 #ifdef CONFIG_RCU_EXP_KTHREAD
4672 struct kthread_worker *rcu_exp_gp_kworker;
4673 struct kthread_worker *rcu_exp_par_gp_kworker;
4674
rcu_start_exp_gp_kworkers(void)4675 static void __init rcu_start_exp_gp_kworkers(void)
4676 {
4677 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4678 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4679 struct sched_param param = { .sched_priority = kthread_prio };
4680
4681 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4682 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4683 pr_err("Failed to create %s!\n", gp_kworker_name);
4684 rcu_exp_gp_kworker = NULL;
4685 return;
4686 }
4687
4688 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4689 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4690 pr_err("Failed to create %s!\n", par_gp_kworker_name);
4691 rcu_exp_par_gp_kworker = NULL;
4692 kthread_destroy_worker(rcu_exp_gp_kworker);
4693 rcu_exp_gp_kworker = NULL;
4694 return;
4695 }
4696
4697 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m);
4698 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4699 ¶m);
4700 }
4701
rcu_alloc_par_gp_wq(void)4702 static inline void rcu_alloc_par_gp_wq(void)
4703 {
4704 }
4705 #else /* !CONFIG_RCU_EXP_KTHREAD */
4706 struct workqueue_struct *rcu_par_gp_wq;
4707
rcu_start_exp_gp_kworkers(void)4708 static void __init rcu_start_exp_gp_kworkers(void)
4709 {
4710 }
4711
rcu_alloc_par_gp_wq(void)4712 static inline void rcu_alloc_par_gp_wq(void)
4713 {
4714 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4715 WARN_ON(!rcu_par_gp_wq);
4716 }
4717 #endif /* CONFIG_RCU_EXP_KTHREAD */
4718
4719 /*
4720 * Spawn the kthreads that handle RCU's grace periods.
4721 */
rcu_spawn_gp_kthread(void)4722 static int __init rcu_spawn_gp_kthread(void)
4723 {
4724 unsigned long flags;
4725 struct rcu_node *rnp;
4726 struct sched_param sp;
4727 struct task_struct *t;
4728 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4729
4730 rcu_scheduler_fully_active = 1;
4731 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4732 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4733 return 0;
4734 if (kthread_prio) {
4735 sp.sched_priority = kthread_prio;
4736 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4737 }
4738 rnp = rcu_get_root();
4739 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4740 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4741 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4742 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4743 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4744 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4745 wake_up_process(t);
4746 /* This is a pre-SMP initcall, we expect a single CPU */
4747 WARN_ON(num_online_cpus() > 1);
4748 /*
4749 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4750 * due to rcu_scheduler_fully_active.
4751 */
4752 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4753 rcu_spawn_one_boost_kthread(rdp->mynode);
4754 rcu_spawn_core_kthreads();
4755 /* Create kthread worker for expedited GPs */
4756 rcu_start_exp_gp_kworkers();
4757 return 0;
4758 }
4759 early_initcall(rcu_spawn_gp_kthread);
4760
4761 /*
4762 * This function is invoked towards the end of the scheduler's
4763 * initialization process. Before this is called, the idle task might
4764 * contain synchronous grace-period primitives (during which time, this idle
4765 * task is booting the system, and such primitives are no-ops). After this
4766 * function is called, any synchronous grace-period primitives are run as
4767 * expedited, with the requesting task driving the grace period forward.
4768 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4769 * runtime RCU functionality.
4770 */
rcu_scheduler_starting(void)4771 void rcu_scheduler_starting(void)
4772 {
4773 unsigned long flags;
4774 struct rcu_node *rnp;
4775
4776 WARN_ON(num_online_cpus() != 1);
4777 WARN_ON(nr_context_switches() > 0);
4778 rcu_test_sync_prims();
4779
4780 // Fix up the ->gp_seq counters.
4781 local_irq_save(flags);
4782 rcu_for_each_node_breadth_first(rnp)
4783 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4784 local_irq_restore(flags);
4785
4786 // Switch out of early boot mode.
4787 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4788 rcu_test_sync_prims();
4789 }
4790
4791 /*
4792 * Helper function for rcu_init() that initializes the rcu_state structure.
4793 */
rcu_init_one(void)4794 static void __init rcu_init_one(void)
4795 {
4796 static const char * const buf[] = RCU_NODE_NAME_INIT;
4797 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4798 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4799 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4800
4801 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4802 int cpustride = 1;
4803 int i;
4804 int j;
4805 struct rcu_node *rnp;
4806
4807 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4808
4809 /* Silence gcc 4.8 false positive about array index out of range. */
4810 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4811 panic("rcu_init_one: rcu_num_lvls out of range");
4812
4813 /* Initialize the level-tracking arrays. */
4814
4815 for (i = 1; i < rcu_num_lvls; i++)
4816 rcu_state.level[i] =
4817 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4818 rcu_init_levelspread(levelspread, num_rcu_lvl);
4819
4820 /* Initialize the elements themselves, starting from the leaves. */
4821
4822 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4823 cpustride *= levelspread[i];
4824 rnp = rcu_state.level[i];
4825 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4826 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4827 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4828 &rcu_node_class[i], buf[i]);
4829 raw_spin_lock_init(&rnp->fqslock);
4830 lockdep_set_class_and_name(&rnp->fqslock,
4831 &rcu_fqs_class[i], fqs[i]);
4832 rnp->gp_seq = rcu_state.gp_seq;
4833 rnp->gp_seq_needed = rcu_state.gp_seq;
4834 rnp->completedqs = rcu_state.gp_seq;
4835 rnp->qsmask = 0;
4836 rnp->qsmaskinit = 0;
4837 rnp->grplo = j * cpustride;
4838 rnp->grphi = (j + 1) * cpustride - 1;
4839 if (rnp->grphi >= nr_cpu_ids)
4840 rnp->grphi = nr_cpu_ids - 1;
4841 if (i == 0) {
4842 rnp->grpnum = 0;
4843 rnp->grpmask = 0;
4844 rnp->parent = NULL;
4845 } else {
4846 rnp->grpnum = j % levelspread[i - 1];
4847 rnp->grpmask = BIT(rnp->grpnum);
4848 rnp->parent = rcu_state.level[i - 1] +
4849 j / levelspread[i - 1];
4850 }
4851 rnp->level = i;
4852 INIT_LIST_HEAD(&rnp->blkd_tasks);
4853 rcu_init_one_nocb(rnp);
4854 init_waitqueue_head(&rnp->exp_wq[0]);
4855 init_waitqueue_head(&rnp->exp_wq[1]);
4856 init_waitqueue_head(&rnp->exp_wq[2]);
4857 init_waitqueue_head(&rnp->exp_wq[3]);
4858 spin_lock_init(&rnp->exp_lock);
4859 mutex_init(&rnp->boost_kthread_mutex);
4860 raw_spin_lock_init(&rnp->exp_poll_lock);
4861 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4862 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4863 }
4864 }
4865
4866 init_swait_queue_head(&rcu_state.gp_wq);
4867 init_swait_queue_head(&rcu_state.expedited_wq);
4868 rnp = rcu_first_leaf_node();
4869 for_each_possible_cpu(i) {
4870 while (i > rnp->grphi)
4871 rnp++;
4872 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4873 rcu_boot_init_percpu_data(i);
4874 }
4875 }
4876
4877 /*
4878 * Force priority from the kernel command-line into range.
4879 */
sanitize_kthread_prio(void)4880 static void __init sanitize_kthread_prio(void)
4881 {
4882 int kthread_prio_in = kthread_prio;
4883
4884 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4885 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4886 kthread_prio = 2;
4887 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4888 kthread_prio = 1;
4889 else if (kthread_prio < 0)
4890 kthread_prio = 0;
4891 else if (kthread_prio > 99)
4892 kthread_prio = 99;
4893
4894 if (kthread_prio != kthread_prio_in)
4895 pr_alert("%s: Limited prio to %d from %d\n",
4896 __func__, kthread_prio, kthread_prio_in);
4897 }
4898
4899 /*
4900 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4901 * replace the definitions in tree.h because those are needed to size
4902 * the ->node array in the rcu_state structure.
4903 */
rcu_init_geometry(void)4904 void rcu_init_geometry(void)
4905 {
4906 ulong d;
4907 int i;
4908 static unsigned long old_nr_cpu_ids;
4909 int rcu_capacity[RCU_NUM_LVLS];
4910 static bool initialized;
4911
4912 if (initialized) {
4913 /*
4914 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4915 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4916 */
4917 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4918 return;
4919 }
4920
4921 old_nr_cpu_ids = nr_cpu_ids;
4922 initialized = true;
4923
4924 /*
4925 * Initialize any unspecified boot parameters.
4926 * The default values of jiffies_till_first_fqs and
4927 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4928 * value, which is a function of HZ, then adding one for each
4929 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4930 */
4931 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4932 if (jiffies_till_first_fqs == ULONG_MAX)
4933 jiffies_till_first_fqs = d;
4934 if (jiffies_till_next_fqs == ULONG_MAX)
4935 jiffies_till_next_fqs = d;
4936 adjust_jiffies_till_sched_qs();
4937
4938 /* If the compile-time values are accurate, just leave. */
4939 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4940 nr_cpu_ids == NR_CPUS)
4941 return;
4942 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4943 rcu_fanout_leaf, nr_cpu_ids);
4944
4945 /*
4946 * The boot-time rcu_fanout_leaf parameter must be at least two
4947 * and cannot exceed the number of bits in the rcu_node masks.
4948 * Complain and fall back to the compile-time values if this
4949 * limit is exceeded.
4950 */
4951 if (rcu_fanout_leaf < 2 ||
4952 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4953 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4954 WARN_ON(1);
4955 return;
4956 }
4957
4958 /*
4959 * Compute number of nodes that can be handled an rcu_node tree
4960 * with the given number of levels.
4961 */
4962 rcu_capacity[0] = rcu_fanout_leaf;
4963 for (i = 1; i < RCU_NUM_LVLS; i++)
4964 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4965
4966 /*
4967 * The tree must be able to accommodate the configured number of CPUs.
4968 * If this limit is exceeded, fall back to the compile-time values.
4969 */
4970 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4971 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4972 WARN_ON(1);
4973 return;
4974 }
4975
4976 /* Calculate the number of levels in the tree. */
4977 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4978 }
4979 rcu_num_lvls = i + 1;
4980
4981 /* Calculate the number of rcu_nodes at each level of the tree. */
4982 for (i = 0; i < rcu_num_lvls; i++) {
4983 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4984 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4985 }
4986
4987 /* Calculate the total number of rcu_node structures. */
4988 rcu_num_nodes = 0;
4989 for (i = 0; i < rcu_num_lvls; i++)
4990 rcu_num_nodes += num_rcu_lvl[i];
4991 }
4992
4993 /*
4994 * Dump out the structure of the rcu_node combining tree associated
4995 * with the rcu_state structure.
4996 */
rcu_dump_rcu_node_tree(void)4997 static void __init rcu_dump_rcu_node_tree(void)
4998 {
4999 int level = 0;
5000 struct rcu_node *rnp;
5001
5002 pr_info("rcu_node tree layout dump\n");
5003 pr_info(" ");
5004 rcu_for_each_node_breadth_first(rnp) {
5005 if (rnp->level != level) {
5006 pr_cont("\n");
5007 pr_info(" ");
5008 level = rnp->level;
5009 }
5010 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
5011 }
5012 pr_cont("\n");
5013 }
5014
5015 struct workqueue_struct *rcu_gp_wq;
5016
kfree_rcu_batch_init(void)5017 static void __init kfree_rcu_batch_init(void)
5018 {
5019 int cpu;
5020 int i, j;
5021
5022 /* Clamp it to [0:100] seconds interval. */
5023 if (rcu_delay_page_cache_fill_msec < 0 ||
5024 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5025
5026 rcu_delay_page_cache_fill_msec =
5027 clamp(rcu_delay_page_cache_fill_msec, 0,
5028 (int) (100 * MSEC_PER_SEC));
5029
5030 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5031 rcu_delay_page_cache_fill_msec);
5032 }
5033
5034 for_each_possible_cpu(cpu) {
5035 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5036
5037 for (i = 0; i < KFREE_N_BATCHES; i++) {
5038 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5039 krcp->krw_arr[i].krcp = krcp;
5040
5041 for (j = 0; j < FREE_N_CHANNELS; j++)
5042 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5043 }
5044
5045 for (i = 0; i < FREE_N_CHANNELS; i++)
5046 INIT_LIST_HEAD(&krcp->bulk_head[i]);
5047
5048 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5049 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5050 krcp->initialized = true;
5051 }
5052 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
5053 pr_err("Failed to register kfree_rcu() shrinker!\n");
5054 }
5055
rcu_init(void)5056 void __init rcu_init(void)
5057 {
5058 int cpu = smp_processor_id();
5059
5060 rcu_early_boot_tests();
5061
5062 kfree_rcu_batch_init();
5063 rcu_bootup_announce();
5064 sanitize_kthread_prio();
5065 rcu_init_geometry();
5066 rcu_init_one();
5067 if (dump_tree)
5068 rcu_dump_rcu_node_tree();
5069 if (use_softirq)
5070 open_softirq(RCU_SOFTIRQ, rcu_core_si);
5071
5072 /*
5073 * We don't need protection against CPU-hotplug here because
5074 * this is called early in boot, before either interrupts
5075 * or the scheduler are operational.
5076 */
5077 pm_notifier(rcu_pm_notify, 0);
5078 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5079 rcutree_prepare_cpu(cpu);
5080 rcu_cpu_starting(cpu);
5081 rcutree_online_cpu(cpu);
5082
5083 /* Create workqueue for Tree SRCU and for expedited GPs. */
5084 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5085 WARN_ON(!rcu_gp_wq);
5086 rcu_alloc_par_gp_wq();
5087
5088 /* Fill in default value for rcutree.qovld boot parameter. */
5089 /* -After- the rcu_node ->lock fields are initialized! */
5090 if (qovld < 0)
5091 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5092 else
5093 qovld_calc = qovld;
5094
5095 // Kick-start in case any polled grace periods started early.
5096 (void)start_poll_synchronize_rcu_expedited();
5097
5098 rcu_test_sync_prims();
5099 }
5100
5101 #include "tree_stall.h"
5102 #include "tree_exp.h"
5103 #include "tree_nocb.h"
5104 #include "tree_plugin.h"
5105