1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
23
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
26
27 int irq_base;
28 struct irq_domain *domain;
29
30 int irq;
31 int wake_count;
32
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
41 unsigned int **config_buf;
42
43 unsigned int irq_reg_stride;
44
45 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
46 unsigned int base, int index);
47
48 unsigned int clear_status:1;
49 };
50
51 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53 int irq)
54 {
55 return &data->chip->irqs[irq];
56 }
57
regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data * data)58 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
59 {
60 struct regmap *map = data->map;
61
62 /*
63 * While possible that a user-defined ->get_irq_reg() callback might
64 * be linear enough to support bulk reads, most of the time it won't.
65 * Therefore only allow them if the default callback is being used.
66 */
67 return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
68 data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
69 !map->use_single_read;
70 }
71
regmap_irq_lock(struct irq_data * data)72 static void regmap_irq_lock(struct irq_data *data)
73 {
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75
76 mutex_lock(&d->lock);
77 }
78
regmap_irq_sync_unlock(struct irq_data * data)79 static void regmap_irq_sync_unlock(struct irq_data *data)
80 {
81 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
82 struct regmap *map = d->map;
83 int i, j, ret;
84 u32 reg;
85 u32 val;
86
87 if (d->chip->runtime_pm) {
88 ret = pm_runtime_get_sync(map->dev);
89 if (ret < 0)
90 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
91 ret);
92 }
93
94 if (d->clear_status) {
95 for (i = 0; i < d->chip->num_regs; i++) {
96 reg = d->get_irq_reg(d, d->chip->status_base, i);
97
98 ret = regmap_read(map, reg, &val);
99 if (ret)
100 dev_err(d->map->dev,
101 "Failed to clear the interrupt status bits\n");
102 }
103
104 d->clear_status = false;
105 }
106
107 /*
108 * If there's been a change in the mask write it back to the
109 * hardware. We rely on the use of the regmap core cache to
110 * suppress pointless writes.
111 */
112 for (i = 0; i < d->chip->num_regs; i++) {
113 if (d->chip->handle_mask_sync)
114 d->chip->handle_mask_sync(i, d->mask_buf_def[i],
115 d->mask_buf[i],
116 d->chip->irq_drv_data);
117
118 if (d->chip->mask_base && !d->chip->handle_mask_sync) {
119 reg = d->get_irq_reg(d, d->chip->mask_base, i);
120 ret = regmap_update_bits(d->map, reg,
121 d->mask_buf_def[i],
122 d->mask_buf[i]);
123 if (ret)
124 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
125 }
126
127 if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
128 reg = d->get_irq_reg(d, d->chip->unmask_base, i);
129 ret = regmap_update_bits(d->map, reg,
130 d->mask_buf_def[i], ~d->mask_buf[i]);
131 if (ret)
132 dev_err(d->map->dev, "Failed to sync masks in %x\n",
133 reg);
134 }
135
136 reg = d->get_irq_reg(d, d->chip->wake_base, i);
137 if (d->wake_buf) {
138 if (d->chip->wake_invert)
139 ret = regmap_update_bits(d->map, reg,
140 d->mask_buf_def[i],
141 ~d->wake_buf[i]);
142 else
143 ret = regmap_update_bits(d->map, reg,
144 d->mask_buf_def[i],
145 d->wake_buf[i]);
146 if (ret != 0)
147 dev_err(d->map->dev,
148 "Failed to sync wakes in %x: %d\n",
149 reg, ret);
150 }
151
152 if (!d->chip->init_ack_masked)
153 continue;
154 /*
155 * Ack all the masked interrupts unconditionally,
156 * OR if there is masked interrupt which hasn't been Acked,
157 * it'll be ignored in irq handler, then may introduce irq storm
158 */
159 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
160 reg = d->get_irq_reg(d, d->chip->ack_base, i);
161
162 /* some chips ack by write 0 */
163 if (d->chip->ack_invert)
164 ret = regmap_write(map, reg, ~d->mask_buf[i]);
165 else
166 ret = regmap_write(map, reg, d->mask_buf[i]);
167 if (d->chip->clear_ack) {
168 if (d->chip->ack_invert && !ret)
169 ret = regmap_write(map, reg, UINT_MAX);
170 else if (!ret)
171 ret = regmap_write(map, reg, 0);
172 }
173 if (ret != 0)
174 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
175 reg, ret);
176 }
177 }
178
179 for (i = 0; i < d->chip->num_config_bases; i++) {
180 for (j = 0; j < d->chip->num_config_regs; j++) {
181 reg = d->get_irq_reg(d, d->chip->config_base[i], j);
182 ret = regmap_write(map, reg, d->config_buf[i][j]);
183 if (ret)
184 dev_err(d->map->dev,
185 "Failed to write config %x: %d\n",
186 reg, ret);
187 }
188 }
189
190 if (d->chip->runtime_pm)
191 pm_runtime_put(map->dev);
192
193 /* If we've changed our wakeup count propagate it to the parent */
194 if (d->wake_count < 0)
195 for (i = d->wake_count; i < 0; i++)
196 irq_set_irq_wake(d->irq, 0);
197 else if (d->wake_count > 0)
198 for (i = 0; i < d->wake_count; i++)
199 irq_set_irq_wake(d->irq, 1);
200
201 d->wake_count = 0;
202
203 mutex_unlock(&d->lock);
204 }
205
regmap_irq_enable(struct irq_data * data)206 static void regmap_irq_enable(struct irq_data *data)
207 {
208 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
209 struct regmap *map = d->map;
210 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
211 unsigned int reg = irq_data->reg_offset / map->reg_stride;
212 unsigned int mask;
213
214 /*
215 * The type_in_mask flag means that the underlying hardware uses
216 * separate mask bits for each interrupt trigger type, but we want
217 * to have a single logical interrupt with a configurable type.
218 *
219 * If the interrupt we're enabling defines any supported types
220 * then instead of using the regular mask bits for this interrupt,
221 * use the value previously written to the type buffer at the
222 * corresponding offset in regmap_irq_set_type().
223 */
224 if (d->chip->type_in_mask && irq_data->type.types_supported)
225 mask = d->type_buf[reg] & irq_data->mask;
226 else
227 mask = irq_data->mask;
228
229 if (d->chip->clear_on_unmask)
230 d->clear_status = true;
231
232 d->mask_buf[reg] &= ~mask;
233 }
234
regmap_irq_disable(struct irq_data * data)235 static void regmap_irq_disable(struct irq_data *data)
236 {
237 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
238 struct regmap *map = d->map;
239 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
240
241 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
242 }
243
regmap_irq_set_type(struct irq_data * data,unsigned int type)244 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
245 {
246 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
247 struct regmap *map = d->map;
248 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249 int reg, ret;
250 const struct regmap_irq_type *t = &irq_data->type;
251
252 if ((t->types_supported & type) != type)
253 return 0;
254
255 reg = t->type_reg_offset / map->reg_stride;
256
257 if (d->chip->type_in_mask) {
258 ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
259 irq_data, reg, d->chip->irq_drv_data);
260 if (ret)
261 return ret;
262 }
263
264 if (d->chip->set_type_config) {
265 ret = d->chip->set_type_config(d->config_buf, type, irq_data,
266 reg, d->chip->irq_drv_data);
267 if (ret)
268 return ret;
269 }
270
271 return 0;
272 }
273
regmap_irq_set_wake(struct irq_data * data,unsigned int on)274 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
275 {
276 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
277 struct regmap *map = d->map;
278 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
279
280 if (on) {
281 if (d->wake_buf)
282 d->wake_buf[irq_data->reg_offset / map->reg_stride]
283 &= ~irq_data->mask;
284 d->wake_count++;
285 } else {
286 if (d->wake_buf)
287 d->wake_buf[irq_data->reg_offset / map->reg_stride]
288 |= irq_data->mask;
289 d->wake_count--;
290 }
291
292 return 0;
293 }
294
295 static const struct irq_chip regmap_irq_chip = {
296 .irq_bus_lock = regmap_irq_lock,
297 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
298 .irq_disable = regmap_irq_disable,
299 .irq_enable = regmap_irq_enable,
300 .irq_set_type = regmap_irq_set_type,
301 .irq_set_wake = regmap_irq_set_wake,
302 };
303
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)304 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
305 unsigned int b)
306 {
307 const struct regmap_irq_chip *chip = data->chip;
308 struct regmap *map = data->map;
309 struct regmap_irq_sub_irq_map *subreg;
310 unsigned int reg;
311 int i, ret = 0;
312
313 if (!chip->sub_reg_offsets) {
314 reg = data->get_irq_reg(data, chip->status_base, b);
315 ret = regmap_read(map, reg, &data->status_buf[b]);
316 } else {
317 /*
318 * Note we can't use ->get_irq_reg() here because the offsets
319 * in 'subreg' are *not* interchangeable with indices.
320 */
321 subreg = &chip->sub_reg_offsets[b];
322 for (i = 0; i < subreg->num_regs; i++) {
323 unsigned int offset = subreg->offset[i];
324 unsigned int index = offset / map->reg_stride;
325
326 ret = regmap_read(map, chip->status_base + offset,
327 &data->status_buf[index]);
328 if (ret)
329 break;
330 }
331 }
332 return ret;
333 }
334
regmap_irq_thread(int irq,void * d)335 static irqreturn_t regmap_irq_thread(int irq, void *d)
336 {
337 struct regmap_irq_chip_data *data = d;
338 const struct regmap_irq_chip *chip = data->chip;
339 struct regmap *map = data->map;
340 int ret, i;
341 bool handled = false;
342 u32 reg;
343
344 if (chip->handle_pre_irq)
345 chip->handle_pre_irq(chip->irq_drv_data);
346
347 if (chip->runtime_pm) {
348 ret = pm_runtime_get_sync(map->dev);
349 if (ret < 0) {
350 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
351 ret);
352 goto exit;
353 }
354 }
355
356 /*
357 * Read only registers with active IRQs if the chip has 'main status
358 * register'. Else read in the statuses, using a single bulk read if
359 * possible in order to reduce the I/O overheads.
360 */
361
362 if (chip->no_status) {
363 /* no status register so default to all active */
364 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
365 } else if (chip->num_main_regs) {
366 unsigned int max_main_bits;
367 unsigned long size;
368
369 size = chip->num_regs * sizeof(unsigned int);
370
371 max_main_bits = (chip->num_main_status_bits) ?
372 chip->num_main_status_bits : chip->num_regs;
373 /* Clear the status buf as we don't read all status regs */
374 memset(data->status_buf, 0, size);
375
376 /* We could support bulk read for main status registers
377 * but I don't expect to see devices with really many main
378 * status registers so let's only support single reads for the
379 * sake of simplicity. and add bulk reads only if needed
380 */
381 for (i = 0; i < chip->num_main_regs; i++) {
382 reg = data->get_irq_reg(data, chip->main_status, i);
383 ret = regmap_read(map, reg, &data->main_status_buf[i]);
384 if (ret) {
385 dev_err(map->dev,
386 "Failed to read IRQ status %d\n",
387 ret);
388 goto exit;
389 }
390 }
391
392 /* Read sub registers with active IRQs */
393 for (i = 0; i < chip->num_main_regs; i++) {
394 unsigned int b;
395 const unsigned long mreg = data->main_status_buf[i];
396
397 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
398 if (i * map->format.val_bytes * 8 + b >
399 max_main_bits)
400 break;
401 ret = read_sub_irq_data(data, b);
402
403 if (ret != 0) {
404 dev_err(map->dev,
405 "Failed to read IRQ status %d\n",
406 ret);
407 goto exit;
408 }
409 }
410
411 }
412 } else if (regmap_irq_can_bulk_read_status(data)) {
413
414 u8 *buf8 = data->status_reg_buf;
415 u16 *buf16 = data->status_reg_buf;
416 u32 *buf32 = data->status_reg_buf;
417
418 BUG_ON(!data->status_reg_buf);
419
420 ret = regmap_bulk_read(map, chip->status_base,
421 data->status_reg_buf,
422 chip->num_regs);
423 if (ret != 0) {
424 dev_err(map->dev, "Failed to read IRQ status: %d\n",
425 ret);
426 goto exit;
427 }
428
429 for (i = 0; i < data->chip->num_regs; i++) {
430 switch (map->format.val_bytes) {
431 case 1:
432 data->status_buf[i] = buf8[i];
433 break;
434 case 2:
435 data->status_buf[i] = buf16[i];
436 break;
437 case 4:
438 data->status_buf[i] = buf32[i];
439 break;
440 default:
441 BUG();
442 goto exit;
443 }
444 }
445
446 } else {
447 for (i = 0; i < data->chip->num_regs; i++) {
448 unsigned int reg = data->get_irq_reg(data,
449 data->chip->status_base, i);
450 ret = regmap_read(map, reg, &data->status_buf[i]);
451
452 if (ret != 0) {
453 dev_err(map->dev,
454 "Failed to read IRQ status: %d\n",
455 ret);
456 goto exit;
457 }
458 }
459 }
460
461 if (chip->status_invert)
462 for (i = 0; i < data->chip->num_regs; i++)
463 data->status_buf[i] = ~data->status_buf[i];
464
465 /*
466 * Ignore masked IRQs and ack if we need to; we ack early so
467 * there is no race between handling and acknowledging the
468 * interrupt. We assume that typically few of the interrupts
469 * will fire simultaneously so don't worry about overhead from
470 * doing a write per register.
471 */
472 for (i = 0; i < data->chip->num_regs; i++) {
473 data->status_buf[i] &= ~data->mask_buf[i];
474
475 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
476 reg = data->get_irq_reg(data, data->chip->ack_base, i);
477
478 if (chip->ack_invert)
479 ret = regmap_write(map, reg,
480 ~data->status_buf[i]);
481 else
482 ret = regmap_write(map, reg,
483 data->status_buf[i]);
484 if (chip->clear_ack) {
485 if (chip->ack_invert && !ret)
486 ret = regmap_write(map, reg, UINT_MAX);
487 else if (!ret)
488 ret = regmap_write(map, reg, 0);
489 }
490 if (ret != 0)
491 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
492 reg, ret);
493 }
494 }
495
496 for (i = 0; i < chip->num_irqs; i++) {
497 if (data->status_buf[chip->irqs[i].reg_offset /
498 map->reg_stride] & chip->irqs[i].mask) {
499 handle_nested_irq(irq_find_mapping(data->domain, i));
500 handled = true;
501 }
502 }
503
504 exit:
505 if (chip->handle_post_irq)
506 chip->handle_post_irq(chip->irq_drv_data);
507
508 if (chip->runtime_pm)
509 pm_runtime_put(map->dev);
510
511 if (handled)
512 return IRQ_HANDLED;
513 else
514 return IRQ_NONE;
515 }
516
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)517 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
518 irq_hw_number_t hw)
519 {
520 struct regmap_irq_chip_data *data = h->host_data;
521
522 irq_set_chip_data(virq, data);
523 irq_set_chip(virq, &data->irq_chip);
524 irq_set_nested_thread(virq, 1);
525 irq_set_parent(virq, data->irq);
526 irq_set_noprobe(virq);
527
528 return 0;
529 }
530
531 static const struct irq_domain_ops regmap_domain_ops = {
532 .map = regmap_irq_map,
533 .xlate = irq_domain_xlate_onetwocell,
534 };
535
536 /**
537 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
538 * @data: Data for the &struct regmap_irq_chip
539 * @base: Base register
540 * @index: Register index
541 *
542 * Returns the register address corresponding to the given @base and @index
543 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
544 */
regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data * data,unsigned int base,int index)545 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
546 unsigned int base, int index)
547 {
548 struct regmap *map = data->map;
549
550 return base + index * map->reg_stride * data->irq_reg_stride;
551 }
552 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
553
554 /**
555 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
556 * @buf: Buffer containing configuration register values, this is a 2D array of
557 * `num_config_bases` rows, each of `num_config_regs` elements.
558 * @type: The requested IRQ type.
559 * @irq_data: The IRQ being configured.
560 * @idx: Index of the irq's config registers within each array `buf[i]`
561 * @irq_drv_data: Driver specific IRQ data
562 *
563 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
564 * chips with one config register. Register values are updated according to
565 * the &struct regmap_irq_type data associated with an IRQ.
566 */
regmap_irq_set_type_config_simple(unsigned int ** buf,unsigned int type,const struct regmap_irq * irq_data,int idx,void * irq_drv_data)567 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
568 const struct regmap_irq *irq_data,
569 int idx, void *irq_drv_data)
570 {
571 const struct regmap_irq_type *t = &irq_data->type;
572
573 if (t->type_reg_mask)
574 buf[0][idx] &= ~t->type_reg_mask;
575 else
576 buf[0][idx] &= ~(t->type_falling_val |
577 t->type_rising_val |
578 t->type_level_low_val |
579 t->type_level_high_val);
580
581 switch (type) {
582 case IRQ_TYPE_EDGE_FALLING:
583 buf[0][idx] |= t->type_falling_val;
584 break;
585
586 case IRQ_TYPE_EDGE_RISING:
587 buf[0][idx] |= t->type_rising_val;
588 break;
589
590 case IRQ_TYPE_EDGE_BOTH:
591 buf[0][idx] |= (t->type_falling_val |
592 t->type_rising_val);
593 break;
594
595 case IRQ_TYPE_LEVEL_HIGH:
596 buf[0][idx] |= t->type_level_high_val;
597 break;
598
599 case IRQ_TYPE_LEVEL_LOW:
600 buf[0][idx] |= t->type_level_low_val;
601 break;
602
603 default:
604 return -EINVAL;
605 }
606
607 return 0;
608 }
609 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
610
611 /**
612 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
613 *
614 * @fwnode: The firmware node where the IRQ domain should be added to.
615 * @map: The regmap for the device.
616 * @irq: The IRQ the device uses to signal interrupts.
617 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
618 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
619 * @chip: Configuration for the interrupt controller.
620 * @data: Runtime data structure for the controller, allocated on success.
621 *
622 * Returns 0 on success or an errno on failure.
623 *
624 * In order for this to be efficient the chip really should use a
625 * register cache. The chip driver is responsible for restoring the
626 * register values used by the IRQ controller over suspend and resume.
627 */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)628 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
629 struct regmap *map, int irq,
630 int irq_flags, int irq_base,
631 const struct regmap_irq_chip *chip,
632 struct regmap_irq_chip_data **data)
633 {
634 struct regmap_irq_chip_data *d;
635 int i;
636 int ret = -ENOMEM;
637 u32 reg;
638
639 if (chip->num_regs <= 0)
640 return -EINVAL;
641
642 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
643 return -EINVAL;
644
645 if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
646 return -EINVAL;
647
648 for (i = 0; i < chip->num_irqs; i++) {
649 if (chip->irqs[i].reg_offset % map->reg_stride)
650 return -EINVAL;
651 if (chip->irqs[i].reg_offset / map->reg_stride >=
652 chip->num_regs)
653 return -EINVAL;
654 }
655
656 if (irq_base) {
657 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
658 if (irq_base < 0) {
659 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
660 irq_base);
661 return irq_base;
662 }
663 }
664
665 d = kzalloc(sizeof(*d), GFP_KERNEL);
666 if (!d)
667 return -ENOMEM;
668
669 if (chip->num_main_regs) {
670 d->main_status_buf = kcalloc(chip->num_main_regs,
671 sizeof(*d->main_status_buf),
672 GFP_KERNEL);
673
674 if (!d->main_status_buf)
675 goto err_alloc;
676 }
677
678 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
679 GFP_KERNEL);
680 if (!d->status_buf)
681 goto err_alloc;
682
683 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
684 GFP_KERNEL);
685 if (!d->mask_buf)
686 goto err_alloc;
687
688 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
689 GFP_KERNEL);
690 if (!d->mask_buf_def)
691 goto err_alloc;
692
693 if (chip->wake_base) {
694 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
695 GFP_KERNEL);
696 if (!d->wake_buf)
697 goto err_alloc;
698 }
699
700 if (chip->type_in_mask) {
701 d->type_buf_def = kcalloc(chip->num_regs,
702 sizeof(*d->type_buf_def), GFP_KERNEL);
703 if (!d->type_buf_def)
704 goto err_alloc;
705
706 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
707 if (!d->type_buf)
708 goto err_alloc;
709 }
710
711 if (chip->num_config_bases && chip->num_config_regs) {
712 /*
713 * Create config_buf[num_config_bases][num_config_regs]
714 */
715 d->config_buf = kcalloc(chip->num_config_bases,
716 sizeof(*d->config_buf), GFP_KERNEL);
717 if (!d->config_buf)
718 goto err_alloc;
719
720 for (i = 0; i < chip->num_config_bases; i++) {
721 d->config_buf[i] = kcalloc(chip->num_config_regs,
722 sizeof(**d->config_buf),
723 GFP_KERNEL);
724 if (!d->config_buf[i])
725 goto err_alloc;
726 }
727 }
728
729 d->irq_chip = regmap_irq_chip;
730 d->irq_chip.name = chip->name;
731 d->irq = irq;
732 d->map = map;
733 d->chip = chip;
734 d->irq_base = irq_base;
735
736 if (chip->irq_reg_stride)
737 d->irq_reg_stride = chip->irq_reg_stride;
738 else
739 d->irq_reg_stride = 1;
740
741 if (chip->get_irq_reg)
742 d->get_irq_reg = chip->get_irq_reg;
743 else
744 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
745
746 if (regmap_irq_can_bulk_read_status(d)) {
747 d->status_reg_buf = kmalloc_array(chip->num_regs,
748 map->format.val_bytes,
749 GFP_KERNEL);
750 if (!d->status_reg_buf)
751 goto err_alloc;
752 }
753
754 mutex_init(&d->lock);
755
756 for (i = 0; i < chip->num_irqs; i++)
757 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
758 |= chip->irqs[i].mask;
759
760 /* Mask all the interrupts by default */
761 for (i = 0; i < chip->num_regs; i++) {
762 d->mask_buf[i] = d->mask_buf_def[i];
763
764 if (chip->handle_mask_sync) {
765 ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
766 d->mask_buf[i],
767 chip->irq_drv_data);
768 if (ret)
769 goto err_alloc;
770 }
771
772 if (chip->mask_base && !chip->handle_mask_sync) {
773 reg = d->get_irq_reg(d, chip->mask_base, i);
774 ret = regmap_update_bits(d->map, reg,
775 d->mask_buf_def[i],
776 d->mask_buf[i]);
777 if (ret) {
778 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
779 reg, ret);
780 goto err_alloc;
781 }
782 }
783
784 if (chip->unmask_base && !chip->handle_mask_sync) {
785 reg = d->get_irq_reg(d, chip->unmask_base, i);
786 ret = regmap_update_bits(d->map, reg,
787 d->mask_buf_def[i], ~d->mask_buf[i]);
788 if (ret) {
789 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
790 reg, ret);
791 goto err_alloc;
792 }
793 }
794
795 if (!chip->init_ack_masked)
796 continue;
797
798 /* Ack masked but set interrupts */
799 if (d->chip->no_status) {
800 /* no status register so default to all active */
801 d->status_buf[i] = GENMASK(31, 0);
802 } else {
803 reg = d->get_irq_reg(d, d->chip->status_base, i);
804 ret = regmap_read(map, reg, &d->status_buf[i]);
805 if (ret != 0) {
806 dev_err(map->dev, "Failed to read IRQ status: %d\n",
807 ret);
808 goto err_alloc;
809 }
810 }
811
812 if (chip->status_invert)
813 d->status_buf[i] = ~d->status_buf[i];
814
815 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
816 reg = d->get_irq_reg(d, d->chip->ack_base, i);
817 if (chip->ack_invert)
818 ret = regmap_write(map, reg,
819 ~(d->status_buf[i] & d->mask_buf[i]));
820 else
821 ret = regmap_write(map, reg,
822 d->status_buf[i] & d->mask_buf[i]);
823 if (chip->clear_ack) {
824 if (chip->ack_invert && !ret)
825 ret = regmap_write(map, reg, UINT_MAX);
826 else if (!ret)
827 ret = regmap_write(map, reg, 0);
828 }
829 if (ret != 0) {
830 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
831 reg, ret);
832 goto err_alloc;
833 }
834 }
835 }
836
837 /* Wake is disabled by default */
838 if (d->wake_buf) {
839 for (i = 0; i < chip->num_regs; i++) {
840 d->wake_buf[i] = d->mask_buf_def[i];
841 reg = d->get_irq_reg(d, d->chip->wake_base, i);
842
843 if (chip->wake_invert)
844 ret = regmap_update_bits(d->map, reg,
845 d->mask_buf_def[i],
846 0);
847 else
848 ret = regmap_update_bits(d->map, reg,
849 d->mask_buf_def[i],
850 d->wake_buf[i]);
851 if (ret != 0) {
852 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
853 reg, ret);
854 goto err_alloc;
855 }
856 }
857 }
858
859 if (irq_base)
860 d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
861 irq_base, 0,
862 ®map_domain_ops, d);
863 else
864 d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
865 ®map_domain_ops, d);
866 if (!d->domain) {
867 dev_err(map->dev, "Failed to create IRQ domain\n");
868 ret = -ENOMEM;
869 goto err_alloc;
870 }
871
872 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
873 irq_flags | IRQF_ONESHOT,
874 chip->name, d);
875 if (ret != 0) {
876 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
877 irq, chip->name, ret);
878 goto err_domain;
879 }
880
881 *data = d;
882
883 return 0;
884
885 err_domain:
886 /* Should really dispose of the domain but... */
887 err_alloc:
888 kfree(d->type_buf);
889 kfree(d->type_buf_def);
890 kfree(d->wake_buf);
891 kfree(d->mask_buf_def);
892 kfree(d->mask_buf);
893 kfree(d->status_buf);
894 kfree(d->status_reg_buf);
895 if (d->config_buf) {
896 for (i = 0; i < chip->num_config_bases; i++)
897 kfree(d->config_buf[i]);
898 kfree(d->config_buf);
899 }
900 kfree(d);
901 return ret;
902 }
903 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
904
905 /**
906 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
907 *
908 * @map: The regmap for the device.
909 * @irq: The IRQ the device uses to signal interrupts.
910 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
911 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
912 * @chip: Configuration for the interrupt controller.
913 * @data: Runtime data structure for the controller, allocated on success.
914 *
915 * Returns 0 on success or an errno on failure.
916 *
917 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
918 * node of the regmap is used.
919 */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)920 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
921 int irq_base, const struct regmap_irq_chip *chip,
922 struct regmap_irq_chip_data **data)
923 {
924 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
925 irq_flags, irq_base, chip, data);
926 }
927 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
928
929 /**
930 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
931 *
932 * @irq: Primary IRQ for the device
933 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
934 *
935 * This function also disposes of all mapped IRQs on the chip.
936 */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)937 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
938 {
939 unsigned int virq;
940 int i, hwirq;
941
942 if (!d)
943 return;
944
945 free_irq(irq, d);
946
947 /* Dispose all virtual irq from irq domain before removing it */
948 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
949 /* Ignore hwirq if holes in the IRQ list */
950 if (!d->chip->irqs[hwirq].mask)
951 continue;
952
953 /*
954 * Find the virtual irq of hwirq on chip and if it is
955 * there then dispose it
956 */
957 virq = irq_find_mapping(d->domain, hwirq);
958 if (virq)
959 irq_dispose_mapping(virq);
960 }
961
962 irq_domain_remove(d->domain);
963 kfree(d->type_buf);
964 kfree(d->type_buf_def);
965 kfree(d->wake_buf);
966 kfree(d->mask_buf_def);
967 kfree(d->mask_buf);
968 kfree(d->status_reg_buf);
969 kfree(d->status_buf);
970 if (d->config_buf) {
971 for (i = 0; i < d->chip->num_config_bases; i++)
972 kfree(d->config_buf[i]);
973 kfree(d->config_buf);
974 }
975 kfree(d);
976 }
977 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
978
devm_regmap_irq_chip_release(struct device * dev,void * res)979 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
980 {
981 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
982
983 regmap_del_irq_chip(d->irq, d);
984 }
985
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)986 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
987
988 {
989 struct regmap_irq_chip_data **r = res;
990
991 if (!r || !*r) {
992 WARN_ON(!r || !*r);
993 return 0;
994 }
995 return *r == data;
996 }
997
998 /**
999 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1000 *
1001 * @dev: The device pointer on which irq_chip belongs to.
1002 * @fwnode: The firmware node where the IRQ domain should be added to.
1003 * @map: The regmap for the device.
1004 * @irq: The IRQ the device uses to signal interrupts
1005 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1006 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1007 * @chip: Configuration for the interrupt controller.
1008 * @data: Runtime data structure for the controller, allocated on success
1009 *
1010 * Returns 0 on success or an errno on failure.
1011 *
1012 * The ®map_irq_chip_data will be automatically released when the device is
1013 * unbound.
1014 */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1015 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1016 struct fwnode_handle *fwnode,
1017 struct regmap *map, int irq,
1018 int irq_flags, int irq_base,
1019 const struct regmap_irq_chip *chip,
1020 struct regmap_irq_chip_data **data)
1021 {
1022 struct regmap_irq_chip_data **ptr, *d;
1023 int ret;
1024
1025 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1026 GFP_KERNEL);
1027 if (!ptr)
1028 return -ENOMEM;
1029
1030 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1031 chip, &d);
1032 if (ret < 0) {
1033 devres_free(ptr);
1034 return ret;
1035 }
1036
1037 *ptr = d;
1038 devres_add(dev, ptr);
1039 *data = d;
1040 return 0;
1041 }
1042 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1043
1044 /**
1045 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1046 *
1047 * @dev: The device pointer on which irq_chip belongs to.
1048 * @map: The regmap for the device.
1049 * @irq: The IRQ the device uses to signal interrupts
1050 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1051 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1052 * @chip: Configuration for the interrupt controller.
1053 * @data: Runtime data structure for the controller, allocated on success
1054 *
1055 * Returns 0 on success or an errno on failure.
1056 *
1057 * The ®map_irq_chip_data will be automatically released when the device is
1058 * unbound.
1059 */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1060 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1061 int irq_flags, int irq_base,
1062 const struct regmap_irq_chip *chip,
1063 struct regmap_irq_chip_data **data)
1064 {
1065 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1066 irq, irq_flags, irq_base, chip,
1067 data);
1068 }
1069 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1070
1071 /**
1072 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1073 *
1074 * @dev: Device for which the resource was allocated.
1075 * @irq: Primary IRQ for the device.
1076 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1077 *
1078 * A resource managed version of regmap_del_irq_chip().
1079 */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1080 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1081 struct regmap_irq_chip_data *data)
1082 {
1083 int rc;
1084
1085 WARN_ON(irq != data->irq);
1086 rc = devres_release(dev, devm_regmap_irq_chip_release,
1087 devm_regmap_irq_chip_match, data);
1088
1089 if (rc != 0)
1090 WARN_ON(rc);
1091 }
1092 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1093
1094 /**
1095 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1096 *
1097 * @data: regmap irq controller to operate on.
1098 *
1099 * Useful for drivers to request their own IRQs.
1100 */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1101 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1102 {
1103 WARN_ON(!data->irq_base);
1104 return data->irq_base;
1105 }
1106 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1107
1108 /**
1109 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1110 *
1111 * @data: regmap irq controller to operate on.
1112 * @irq: index of the interrupt requested in the chip IRQs.
1113 *
1114 * Useful for drivers to request their own IRQs.
1115 */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1116 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1117 {
1118 /* Handle holes in the IRQ list */
1119 if (!data->chip->irqs[irq].mask)
1120 return -EINVAL;
1121
1122 return irq_create_mapping(data->domain, irq);
1123 }
1124 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1125
1126 /**
1127 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1128 *
1129 * @data: regmap_irq controller to operate on.
1130 *
1131 * Useful for drivers to request their own IRQs and for integration
1132 * with subsystems. For ease of integration NULL is accepted as a
1133 * domain, allowing devices to just call this even if no domain is
1134 * allocated.
1135 */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1136 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1137 {
1138 if (data)
1139 return data->domain;
1140 else
1141 return NULL;
1142 }
1143 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1144