• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2024 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
get_cfg80211_regdom(void)138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
get_wiphy_regdom(struct wiphy * wiphy)148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
reg_get_dfs_region(struct wiphy * wiphy)171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
rcu_free_regdom(const struct ieee80211_regdomain * r)207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
get_last_request(void)214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
reg_free_request(struct regulatory_request * request)292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
reg_free_last_request(void)301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
reg_update_last_request(struct regulatory_request * request)309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
update_world_regdomain(const struct ieee80211_regdomain * rd)354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
is_world_regdom(const char * alpha2)367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
is_alpha2_set(const char * alpha2)374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
is_unknown_alpha2(const char * alpha2)381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
is_intersected_alpha2(const char * alpha2)392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
is_an_alpha2(const char * alpha2)404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
alpha2_equal(const char * alpha2_x,const char * alpha2_y)411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
regdom_changes(const char * alpha2)418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
is_user_regdom_saved(void)432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
reg_regdb_apply(struct work_struct * work)483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
reg_schedule_apply(const struct ieee80211_regdomain * regdom)506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
crda_timeout_work(struct work_struct * work)535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
cancel_crda_timeout(void)544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
cancel_crda_timeout_sync(void)549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
reset_crda_timeouts(void)554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
call_crda(const char * alpha2)563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
cancel_crda_timeout(void)592 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)593 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)594 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
ecw2cw(int ecw)656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
valid_wmm(struct fwdb_wmm_rule * rule)661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741 
742 static struct key *builtin_regdb_keys;
743 
load_builtin_regdb_keys(void)744 static int __init load_builtin_regdb_keys(void)
745 {
746 	builtin_regdb_keys =
747 		keyring_alloc(".builtin_regdb_keys",
748 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 	if (IS_ERR(builtin_regdb_keys))
753 		return PTR_ERR(builtin_regdb_keys);
754 
755 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756 
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 	x509_load_certificate_list(shipped_regdb_certs,
759 				   shipped_regdb_certs_len,
760 				   builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 		x509_load_certificate_list(extra_regdb_certs,
765 					   extra_regdb_certs_len,
766 					   builtin_regdb_keys);
767 #endif
768 
769 	return 0;
770 }
771 
772 MODULE_FIRMWARE("regulatory.db.p7s");
773 
regdb_has_valid_signature(const u8 * data,unsigned int size)774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776 	const struct firmware *sig;
777 	bool result;
778 
779 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780 		return false;
781 
782 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 					builtin_regdb_keys,
784 					VERIFYING_UNSPECIFIED_SIGNATURE,
785 					NULL, NULL) == 0;
786 
787 	release_firmware(sig);
788 
789 	return result;
790 }
791 
free_regdb_keyring(void)792 static void free_regdb_keyring(void)
793 {
794 	key_put(builtin_regdb_keys);
795 }
796 #else
load_builtin_regdb_keys(void)797 static int load_builtin_regdb_keys(void)
798 {
799 	return 0;
800 }
801 
regdb_has_valid_signature(const u8 * data,unsigned int size)802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804 	return true;
805 }
806 
free_regdb_keyring(void)807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811 
valid_regdb(const u8 * data,unsigned int size)812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814 	const struct fwdb_header *hdr = (void *)data;
815 	const struct fwdb_country *country;
816 
817 	if (size < sizeof(*hdr))
818 		return false;
819 
820 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 		return false;
822 
823 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 		return false;
825 
826 	if (!regdb_has_valid_signature(data, size))
827 		return false;
828 
829 	country = &hdr->country[0];
830 	while ((u8 *)(country + 1) <= data + size) {
831 		if (!country->coll_ptr)
832 			break;
833 		if (!valid_country(data, size, country))
834 			return false;
835 		country++;
836 	}
837 
838 	return true;
839 }
840 
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)841 static void set_wmm_rule(const struct fwdb_header *db,
842 			 const struct fwdb_country *country,
843 			 const struct fwdb_rule *rule,
844 			 struct ieee80211_reg_rule *rrule)
845 {
846 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 	struct fwdb_wmm_rule *wmm;
848 	unsigned int i, wmm_ptr;
849 
850 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 	wmm = (void *)((u8 *)db + wmm_ptr);
852 
853 	if (!valid_wmm(wmm)) {
854 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 		       country->alpha2[0], country->alpha2[1]);
857 		return;
858 	}
859 
860 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 		wmm_rule->client[i].cw_min =
862 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865 		wmm_rule->client[i].cot =
866 			1000 * be16_to_cpu(wmm->client[i].cot);
867 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 	}
872 
873 	rrule->has_wmm = true;
874 }
875 
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)876 static int __regdb_query_wmm(const struct fwdb_header *db,
877 			     const struct fwdb_country *country, int freq,
878 			     struct ieee80211_reg_rule *rrule)
879 {
880 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 	int i;
883 
884 	for (i = 0; i < coll->n_rules; i++) {
885 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888 
889 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 			continue;
891 
892 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 			set_wmm_rule(db, country, rule, rrule);
895 			return 0;
896 		}
897 	}
898 
899 	return -ENODATA;
900 }
901 
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904 	const struct fwdb_header *hdr = regdb;
905 	const struct fwdb_country *country;
906 
907 	if (!regdb)
908 		return -ENODATA;
909 
910 	if (IS_ERR(regdb))
911 		return PTR_ERR(regdb);
912 
913 	country = &hdr->country[0];
914 	while (country->coll_ptr) {
915 		if (alpha2_equal(alpha2, country->alpha2))
916 			return __regdb_query_wmm(regdb, country, freq, rule);
917 
918 		country++;
919 	}
920 
921 	return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924 
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)925 static int regdb_query_country(const struct fwdb_header *db,
926 			       const struct fwdb_country *country)
927 {
928 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 	struct ieee80211_regdomain *regdom;
931 	unsigned int i;
932 
933 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 			 GFP_KERNEL);
935 	if (!regdom)
936 		return -ENOMEM;
937 
938 	regdom->n_reg_rules = coll->n_rules;
939 	regdom->alpha2[0] = country->alpha2[0];
940 	regdom->alpha2[1] = country->alpha2[1];
941 	regdom->dfs_region = coll->dfs_region;
942 
943 	for (i = 0; i < regdom->n_reg_rules; i++) {
944 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948 
949 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952 
953 		rrule->power_rule.max_antenna_gain = 0;
954 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955 
956 		rrule->flags = 0;
957 		if (rule->flags & FWDB_FLAG_NO_OFDM)
958 			rrule->flags |= NL80211_RRF_NO_OFDM;
959 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 		if (rule->flags & FWDB_FLAG_DFS)
962 			rrule->flags |= NL80211_RRF_DFS;
963 		if (rule->flags & FWDB_FLAG_NO_IR)
964 			rrule->flags |= NL80211_RRF_NO_IR;
965 		if (rule->flags & FWDB_FLAG_AUTO_BW)
966 			rrule->flags |= NL80211_RRF_AUTO_BW;
967 
968 		rrule->dfs_cac_ms = 0;
969 
970 		/* handle optional data */
971 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 			rrule->dfs_cac_ms =
973 				1000 * be16_to_cpu(rule->cac_timeout);
974 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 			set_wmm_rule(db, country, rule, rrule);
976 	}
977 
978 	return reg_schedule_apply(regdom);
979 }
980 
query_regdb(const char * alpha2)981 static int query_regdb(const char *alpha2)
982 {
983 	const struct fwdb_header *hdr = regdb;
984 	const struct fwdb_country *country;
985 
986 	ASSERT_RTNL();
987 
988 	if (IS_ERR(regdb))
989 		return PTR_ERR(regdb);
990 
991 	country = &hdr->country[0];
992 	while (country->coll_ptr) {
993 		if (alpha2_equal(alpha2, country->alpha2))
994 			return regdb_query_country(regdb, country);
995 		country++;
996 	}
997 
998 	return -ENODATA;
999 }
1000 
regdb_fw_cb(const struct firmware * fw,void * context)1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003 	int set_error = 0;
1004 	bool restore = true;
1005 	void *db;
1006 
1007 	if (!fw) {
1008 		pr_info("failed to load regulatory.db\n");
1009 		set_error = -ENODATA;
1010 	} else if (!valid_regdb(fw->data, fw->size)) {
1011 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 		set_error = -EINVAL;
1013 	}
1014 
1015 	rtnl_lock();
1016 	if (regdb && !IS_ERR(regdb)) {
1017 		/* negative case - a bug
1018 		 * positive case - can happen due to race in case of multiple cb's in
1019 		 * queue, due to usage of asynchronous callback
1020 		 *
1021 		 * Either case, just restore and free new db.
1022 		 */
1023 	} else if (set_error) {
1024 		regdb = ERR_PTR(set_error);
1025 	} else if (fw) {
1026 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 		if (db) {
1028 			regdb = db;
1029 			restore = context && query_regdb(context);
1030 		} else {
1031 			restore = true;
1032 		}
1033 	}
1034 
1035 	if (restore)
1036 		restore_regulatory_settings(true, false);
1037 
1038 	rtnl_unlock();
1039 
1040 	kfree(context);
1041 
1042 	release_firmware(fw);
1043 }
1044 
1045 MODULE_FIRMWARE("regulatory.db");
1046 
query_regdb_file(const char * alpha2)1047 static int query_regdb_file(const char *alpha2)
1048 {
1049 	int err;
1050 
1051 	ASSERT_RTNL();
1052 
1053 	if (regdb)
1054 		return query_regdb(alpha2);
1055 
1056 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 	if (!alpha2)
1058 		return -ENOMEM;
1059 
1060 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 				      &reg_pdev->dev, GFP_KERNEL,
1062 				      (void *)alpha2, regdb_fw_cb);
1063 	if (err)
1064 		kfree(alpha2);
1065 
1066 	return err;
1067 }
1068 
reg_reload_regdb(void)1069 int reg_reload_regdb(void)
1070 {
1071 	const struct firmware *fw;
1072 	void *db;
1073 	int err;
1074 	const struct ieee80211_regdomain *current_regdomain;
1075 	struct regulatory_request *request;
1076 
1077 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078 	if (err)
1079 		return err;
1080 
1081 	if (!valid_regdb(fw->data, fw->size)) {
1082 		err = -ENODATA;
1083 		goto out;
1084 	}
1085 
1086 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 	if (!db) {
1088 		err = -ENOMEM;
1089 		goto out;
1090 	}
1091 
1092 	rtnl_lock();
1093 	if (!IS_ERR_OR_NULL(regdb))
1094 		kfree(regdb);
1095 	regdb = db;
1096 
1097 	/* reset regulatory domain */
1098 	current_regdomain = get_cfg80211_regdom();
1099 
1100 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 	if (!request) {
1102 		err = -ENOMEM;
1103 		goto out_unlock;
1104 	}
1105 
1106 	request->wiphy_idx = WIPHY_IDX_INVALID;
1107 	request->alpha2[0] = current_regdomain->alpha2[0];
1108 	request->alpha2[1] = current_regdomain->alpha2[1];
1109 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111 
1112 	reg_process_hint(request);
1113 
1114 out_unlock:
1115 	rtnl_unlock();
1116  out:
1117 	release_firmware(fw);
1118 	return err;
1119 }
1120 
reg_query_database(struct regulatory_request * request)1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123 	if (query_regdb_file(request->alpha2) == 0)
1124 		return true;
1125 
1126 	if (call_crda(request->alpha2) == 0)
1127 		return true;
1128 
1129 	return false;
1130 }
1131 
reg_is_valid_request(const char * alpha2)1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134 	struct regulatory_request *lr = get_last_request();
1135 
1136 	if (!lr || lr->processed)
1137 		return false;
1138 
1139 	return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141 
reg_get_regdomain(struct wiphy * wiphy)1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144 	struct regulatory_request *lr = get_last_request();
1145 
1146 	/*
1147 	 * Follow the driver's regulatory domain, if present, unless a country
1148 	 * IE has been processed or a user wants to help complaince further
1149 	 */
1150 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 	    wiphy->regd)
1153 		return get_wiphy_regdom(wiphy);
1154 
1155 	return get_cfg80211_regdom();
1156 }
1157 
1158 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 				 const struct ieee80211_reg_rule *rule)
1161 {
1162 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 	const struct ieee80211_freq_range *freq_range_tmp;
1164 	const struct ieee80211_reg_rule *tmp;
1165 	u32 start_freq, end_freq, idx, no;
1166 
1167 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 		if (rule == &rd->reg_rules[idx])
1169 			break;
1170 
1171 	if (idx == rd->n_reg_rules)
1172 		return 0;
1173 
1174 	/* get start_freq */
1175 	no = idx;
1176 
1177 	while (no) {
1178 		tmp = &rd->reg_rules[--no];
1179 		freq_range_tmp = &tmp->freq_range;
1180 
1181 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 			break;
1183 
1184 		freq_range = freq_range_tmp;
1185 	}
1186 
1187 	start_freq = freq_range->start_freq_khz;
1188 
1189 	/* get end_freq */
1190 	freq_range = &rule->freq_range;
1191 	no = idx;
1192 
1193 	while (no < rd->n_reg_rules - 1) {
1194 		tmp = &rd->reg_rules[++no];
1195 		freq_range_tmp = &tmp->freq_range;
1196 
1197 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 			break;
1199 
1200 		freq_range = freq_range_tmp;
1201 	}
1202 
1203 	end_freq = freq_range->end_freq_khz;
1204 
1205 	return end_freq - start_freq;
1206 }
1207 
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 				   const struct ieee80211_reg_rule *rule)
1210 {
1211 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212 
1213 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219 
1220 	/*
1221 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 	 * are not allowed.
1223 	 */
1224 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227 
1228 	return bw;
1229 }
1230 
1231 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 	u32 freq_diff;
1236 
1237 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 		return false;
1239 
1240 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 		return false;
1242 
1243 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244 
1245 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 	    freq_range->max_bandwidth_khz > freq_diff)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
is_valid_rd(const struct ieee80211_regdomain * rd)1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254 	const struct ieee80211_reg_rule *reg_rule = NULL;
1255 	unsigned int i;
1256 
1257 	if (!rd->n_reg_rules)
1258 		return false;
1259 
1260 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 		return false;
1262 
1263 	for (i = 0; i < rd->n_reg_rules; i++) {
1264 		reg_rule = &rd->reg_rules[i];
1265 		if (!is_valid_reg_rule(reg_rule))
1266 			return false;
1267 	}
1268 
1269 	return true;
1270 }
1271 
1272 /**
1273  * freq_in_rule_band - tells us if a frequency is in a frequency band
1274  * @freq_range: frequency rule we want to query
1275  * @freq_khz: frequency we are inquiring about
1276  *
1277  * This lets us know if a specific frequency rule is or is not relevant to
1278  * a specific frequency's band. Bands are device specific and artificial
1279  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280  * however it is safe for now to assume that a frequency rule should not be
1281  * part of a frequency's band if the start freq or end freq are off by more
1282  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283  * 60 GHz band.
1284  * This resolution can be lowered and should be considered as we add
1285  * regulatory rule support for other "bands".
1286  **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1288 			      u32 freq_khz)
1289 {
1290 #define ONE_GHZ_IN_KHZ	1000000
1291 	/*
1292 	 * From 802.11ad: directional multi-gigabit (DMG):
1293 	 * Pertaining to operation in a frequency band containing a channel
1294 	 * with the Channel starting frequency above 45 GHz.
1295 	 */
1296 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1299 		return true;
1300 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1301 		return true;
1302 	return false;
1303 #undef ONE_GHZ_IN_KHZ
1304 }
1305 
1306 /*
1307  * Later on we can perhaps use the more restrictive DFS
1308  * region but we don't have information for that yet so
1309  * for now simply disallow conflicts.
1310  */
1311 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313 			 const enum nl80211_dfs_regions dfs_region2)
1314 {
1315 	if (dfs_region1 != dfs_region2)
1316 		return NL80211_DFS_UNSET;
1317 	return dfs_region1;
1318 }
1319 
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321 				    const struct ieee80211_wmm_ac *wmm_ac2,
1322 				    struct ieee80211_wmm_ac *intersect)
1323 {
1324 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1328 }
1329 
1330 /*
1331  * Helper for regdom_intersect(), this does the real
1332  * mathematical intersection fun
1333  */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335 			       const struct ieee80211_regdomain *rd2,
1336 			       const struct ieee80211_reg_rule *rule1,
1337 			       const struct ieee80211_reg_rule *rule2,
1338 			       struct ieee80211_reg_rule *intersected_rule)
1339 {
1340 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341 	struct ieee80211_freq_range *freq_range;
1342 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343 	struct ieee80211_power_rule *power_rule;
1344 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345 	struct ieee80211_wmm_rule *wmm_rule;
1346 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1347 
1348 	freq_range1 = &rule1->freq_range;
1349 	freq_range2 = &rule2->freq_range;
1350 	freq_range = &intersected_rule->freq_range;
1351 
1352 	power_rule1 = &rule1->power_rule;
1353 	power_rule2 = &rule2->power_rule;
1354 	power_rule = &intersected_rule->power_rule;
1355 
1356 	wmm_rule1 = &rule1->wmm_rule;
1357 	wmm_rule2 = &rule2->wmm_rule;
1358 	wmm_rule = &intersected_rule->wmm_rule;
1359 
1360 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361 					 freq_range2->start_freq_khz);
1362 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363 				       freq_range2->end_freq_khz);
1364 
1365 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1367 
1368 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1369 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1371 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1372 
1373 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1374 
1375 	intersected_rule->flags = rule1->flags | rule2->flags;
1376 
1377 	/*
1378 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1379 	 * set AUTO_BW in intersected rule also. Next we will
1380 	 * calculate BW correctly in handle_channel function.
1381 	 * In other case remove AUTO_BW flag while we calculate
1382 	 * maximum bandwidth correctly and auto calculation is
1383 	 * not required.
1384 	 */
1385 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1387 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1388 	else
1389 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1390 
1391 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392 	if (freq_range->max_bandwidth_khz > freq_diff)
1393 		freq_range->max_bandwidth_khz = freq_diff;
1394 
1395 	power_rule->max_eirp = min(power_rule1->max_eirp,
1396 		power_rule2->max_eirp);
1397 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398 		power_rule2->max_antenna_gain);
1399 
1400 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1401 					   rule2->dfs_cac_ms);
1402 
1403 	if (rule1->has_wmm && rule2->has_wmm) {
1404 		u8 ac;
1405 
1406 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408 						&wmm_rule2->client[ac],
1409 						&wmm_rule->client[ac]);
1410 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1411 						&wmm_rule2->ap[ac],
1412 						&wmm_rule->ap[ac]);
1413 		}
1414 
1415 		intersected_rule->has_wmm = true;
1416 	} else if (rule1->has_wmm) {
1417 		*wmm_rule = *wmm_rule1;
1418 		intersected_rule->has_wmm = true;
1419 	} else if (rule2->has_wmm) {
1420 		*wmm_rule = *wmm_rule2;
1421 		intersected_rule->has_wmm = true;
1422 	} else {
1423 		intersected_rule->has_wmm = false;
1424 	}
1425 
1426 	if (!is_valid_reg_rule(intersected_rule))
1427 		return -EINVAL;
1428 
1429 	return 0;
1430 }
1431 
1432 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1433 static bool rule_contains(struct ieee80211_reg_rule *r1,
1434 			  struct ieee80211_reg_rule *r2)
1435 {
1436 	/* for simplicity, currently consider only same flags */
1437 	if (r1->flags != r2->flags)
1438 		return false;
1439 
1440 	/* verify r1 is more restrictive */
1441 	if ((r1->power_rule.max_antenna_gain >
1442 	     r2->power_rule.max_antenna_gain) ||
1443 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1444 		return false;
1445 
1446 	/* make sure r2's range is contained within r1 */
1447 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1449 		return false;
1450 
1451 	/* and finally verify that r1.max_bw >= r2.max_bw */
1452 	if (r1->freq_range.max_bandwidth_khz <
1453 	    r2->freq_range.max_bandwidth_khz)
1454 		return false;
1455 
1456 	return true;
1457 }
1458 
1459 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1460 static void add_rule(struct ieee80211_reg_rule *rule,
1461 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1462 {
1463 	struct ieee80211_reg_rule *tmp_rule;
1464 	int i;
1465 
1466 	for (i = 0; i < *n_rules; i++) {
1467 		tmp_rule = &reg_rules[i];
1468 		/* rule is already contained - do nothing */
1469 		if (rule_contains(tmp_rule, rule))
1470 			return;
1471 
1472 		/* extend rule if possible */
1473 		if (rule_contains(rule, tmp_rule)) {
1474 			memcpy(tmp_rule, rule, sizeof(*rule));
1475 			return;
1476 		}
1477 	}
1478 
1479 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1480 	(*n_rules)++;
1481 }
1482 
1483 /**
1484  * regdom_intersect - do the intersection between two regulatory domains
1485  * @rd1: first regulatory domain
1486  * @rd2: second regulatory domain
1487  *
1488  * Use this function to get the intersection between two regulatory domains.
1489  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490  * as no one single alpha2 can represent this regulatory domain.
1491  *
1492  * Returns a pointer to the regulatory domain structure which will hold the
1493  * resulting intersection of rules between rd1 and rd2. We will
1494  * kzalloc() this structure for you.
1495  */
1496 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1497 regdom_intersect(const struct ieee80211_regdomain *rd1,
1498 		 const struct ieee80211_regdomain *rd2)
1499 {
1500 	int r;
1501 	unsigned int x, y;
1502 	unsigned int num_rules = 0;
1503 	const struct ieee80211_reg_rule *rule1, *rule2;
1504 	struct ieee80211_reg_rule intersected_rule;
1505 	struct ieee80211_regdomain *rd;
1506 
1507 	if (!rd1 || !rd2)
1508 		return NULL;
1509 
1510 	/*
1511 	 * First we get a count of the rules we'll need, then we actually
1512 	 * build them. This is to so we can malloc() and free() a
1513 	 * regdomain once. The reason we use reg_rules_intersect() here
1514 	 * is it will return -EINVAL if the rule computed makes no sense.
1515 	 * All rules that do check out OK are valid.
1516 	 */
1517 
1518 	for (x = 0; x < rd1->n_reg_rules; x++) {
1519 		rule1 = &rd1->reg_rules[x];
1520 		for (y = 0; y < rd2->n_reg_rules; y++) {
1521 			rule2 = &rd2->reg_rules[y];
1522 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1523 						 &intersected_rule))
1524 				num_rules++;
1525 		}
1526 	}
1527 
1528 	if (!num_rules)
1529 		return NULL;
1530 
1531 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1532 	if (!rd)
1533 		return NULL;
1534 
1535 	for (x = 0; x < rd1->n_reg_rules; x++) {
1536 		rule1 = &rd1->reg_rules[x];
1537 		for (y = 0; y < rd2->n_reg_rules; y++) {
1538 			rule2 = &rd2->reg_rules[y];
1539 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1540 						&intersected_rule);
1541 			/*
1542 			 * No need to memset here the intersected rule here as
1543 			 * we're not using the stack anymore
1544 			 */
1545 			if (r)
1546 				continue;
1547 
1548 			add_rule(&intersected_rule, rd->reg_rules,
1549 				 &rd->n_reg_rules);
1550 		}
1551 	}
1552 
1553 	rd->alpha2[0] = '9';
1554 	rd->alpha2[1] = '8';
1555 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1556 						  rd2->dfs_region);
1557 
1558 	return rd;
1559 }
1560 
1561 /*
1562  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563  * want to just have the channel structure use these
1564  */
map_regdom_flags(u32 rd_flags)1565 static u32 map_regdom_flags(u32 rd_flags)
1566 {
1567 	u32 channel_flags = 0;
1568 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569 		channel_flags |= IEEE80211_CHAN_NO_IR;
1570 	if (rd_flags & NL80211_RRF_DFS)
1571 		channel_flags |= IEEE80211_CHAN_RADAR;
1572 	if (rd_flags & NL80211_RRF_NO_OFDM)
1573 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1583 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1585 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586 	if (rd_flags & NL80211_RRF_NO_HE)
1587 		channel_flags |= IEEE80211_CHAN_NO_HE;
1588 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1589 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590 	if (rd_flags & NL80211_RRF_NO_EHT)
1591 		channel_flags |= IEEE80211_CHAN_NO_EHT;
1592 	if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1593 		channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1594 	if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1595 		channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1596 	if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1597 		channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1598 	if (rd_flags & NL80211_RRF_PSD)
1599 		channel_flags |= IEEE80211_CHAN_PSD;
1600 	return channel_flags;
1601 }
1602 
1603 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1604 freq_reg_info_regd(u32 center_freq,
1605 		   const struct ieee80211_regdomain *regd, u32 bw)
1606 {
1607 	int i;
1608 	bool band_rule_found = false;
1609 	bool bw_fits = false;
1610 
1611 	if (!regd)
1612 		return ERR_PTR(-EINVAL);
1613 
1614 	for (i = 0; i < regd->n_reg_rules; i++) {
1615 		const struct ieee80211_reg_rule *rr;
1616 		const struct ieee80211_freq_range *fr = NULL;
1617 
1618 		rr = &regd->reg_rules[i];
1619 		fr = &rr->freq_range;
1620 
1621 		/*
1622 		 * We only need to know if one frequency rule was
1623 		 * in center_freq's band, that's enough, so let's
1624 		 * not overwrite it once found
1625 		 */
1626 		if (!band_rule_found)
1627 			band_rule_found = freq_in_rule_band(fr, center_freq);
1628 
1629 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1630 
1631 		if (band_rule_found && bw_fits)
1632 			return rr;
1633 	}
1634 
1635 	if (!band_rule_found)
1636 		return ERR_PTR(-ERANGE);
1637 
1638 	return ERR_PTR(-EINVAL);
1639 }
1640 
1641 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1642 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1643 {
1644 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1645 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1646 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1647 	int i = ARRAY_SIZE(bws) - 1;
1648 	u32 bw;
1649 
1650 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1651 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1652 		if (!IS_ERR(reg_rule))
1653 			return reg_rule;
1654 	}
1655 
1656 	return reg_rule;
1657 }
1658 
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1659 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1660 					       u32 center_freq)
1661 {
1662 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1663 
1664 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1665 }
1666 EXPORT_SYMBOL(freq_reg_info);
1667 
reg_initiator_name(enum nl80211_reg_initiator initiator)1668 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1669 {
1670 	switch (initiator) {
1671 	case NL80211_REGDOM_SET_BY_CORE:
1672 		return "core";
1673 	case NL80211_REGDOM_SET_BY_USER:
1674 		return "user";
1675 	case NL80211_REGDOM_SET_BY_DRIVER:
1676 		return "driver";
1677 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1678 		return "country element";
1679 	default:
1680 		WARN_ON(1);
1681 		return "bug";
1682 	}
1683 }
1684 EXPORT_SYMBOL(reg_initiator_name);
1685 
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1686 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1687 					  const struct ieee80211_reg_rule *reg_rule,
1688 					  const struct ieee80211_channel *chan)
1689 {
1690 	const struct ieee80211_freq_range *freq_range = NULL;
1691 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1692 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1693 
1694 	freq_range = &reg_rule->freq_range;
1695 
1696 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1697 	center_freq_khz = ieee80211_channel_to_khz(chan);
1698 	/* Check if auto calculation requested */
1699 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1700 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1701 
1702 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1703 	if (!cfg80211_does_bw_fit_range(freq_range,
1704 					center_freq_khz,
1705 					MHZ_TO_KHZ(10)))
1706 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1707 	if (!cfg80211_does_bw_fit_range(freq_range,
1708 					center_freq_khz,
1709 					MHZ_TO_KHZ(20)))
1710 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1711 
1712 	if (is_s1g) {
1713 		/* S1G is strict about non overlapping channels. We can
1714 		 * calculate which bandwidth is allowed per channel by finding
1715 		 * the largest bandwidth which cleanly divides the freq_range.
1716 		 */
1717 		int edge_offset;
1718 		int ch_bw = max_bandwidth_khz;
1719 
1720 		while (ch_bw) {
1721 			edge_offset = (center_freq_khz - ch_bw / 2) -
1722 				      freq_range->start_freq_khz;
1723 			if (edge_offset % ch_bw == 0) {
1724 				switch (KHZ_TO_MHZ(ch_bw)) {
1725 				case 1:
1726 					bw_flags |= IEEE80211_CHAN_1MHZ;
1727 					break;
1728 				case 2:
1729 					bw_flags |= IEEE80211_CHAN_2MHZ;
1730 					break;
1731 				case 4:
1732 					bw_flags |= IEEE80211_CHAN_4MHZ;
1733 					break;
1734 				case 8:
1735 					bw_flags |= IEEE80211_CHAN_8MHZ;
1736 					break;
1737 				case 16:
1738 					bw_flags |= IEEE80211_CHAN_16MHZ;
1739 					break;
1740 				default:
1741 					/* If we got here, no bandwidths fit on
1742 					 * this frequency, ie. band edge.
1743 					 */
1744 					bw_flags |= IEEE80211_CHAN_DISABLED;
1745 					break;
1746 				}
1747 				break;
1748 			}
1749 			ch_bw /= 2;
1750 		}
1751 	} else {
1752 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1753 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1754 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1755 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1756 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1757 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1758 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1759 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1760 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1761 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1762 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1763 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1764 	}
1765 	return bw_flags;
1766 }
1767 
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1768 static void handle_channel_single_rule(struct wiphy *wiphy,
1769 				       enum nl80211_reg_initiator initiator,
1770 				       struct ieee80211_channel *chan,
1771 				       u32 flags,
1772 				       struct regulatory_request *lr,
1773 				       struct wiphy *request_wiphy,
1774 				       const struct ieee80211_reg_rule *reg_rule)
1775 {
1776 	u32 bw_flags = 0;
1777 	const struct ieee80211_power_rule *power_rule = NULL;
1778 	const struct ieee80211_regdomain *regd;
1779 
1780 	regd = reg_get_regdomain(wiphy);
1781 
1782 	power_rule = &reg_rule->power_rule;
1783 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1784 
1785 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1786 	    request_wiphy && request_wiphy == wiphy &&
1787 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1788 		/*
1789 		 * This guarantees the driver's requested regulatory domain
1790 		 * will always be used as a base for further regulatory
1791 		 * settings
1792 		 */
1793 		chan->flags = chan->orig_flags =
1794 			map_regdom_flags(reg_rule->flags) | bw_flags;
1795 		chan->max_antenna_gain = chan->orig_mag =
1796 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1797 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1798 			(int) MBM_TO_DBM(power_rule->max_eirp);
1799 
1800 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1801 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1802 			if (reg_rule->dfs_cac_ms)
1803 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1804 		}
1805 
1806 		if (chan->flags & IEEE80211_CHAN_PSD)
1807 			chan->psd = reg_rule->psd;
1808 
1809 		return;
1810 	}
1811 
1812 	chan->dfs_state = NL80211_DFS_USABLE;
1813 	chan->dfs_state_entered = jiffies;
1814 
1815 	chan->beacon_found = false;
1816 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1817 	chan->max_antenna_gain =
1818 		min_t(int, chan->orig_mag,
1819 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1820 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1821 
1822 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1823 		if (reg_rule->dfs_cac_ms)
1824 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1825 		else
1826 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1827 	}
1828 
1829 	if (chan->flags & IEEE80211_CHAN_PSD)
1830 		chan->psd = reg_rule->psd;
1831 
1832 	if (chan->orig_mpwr) {
1833 		/*
1834 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1835 		 * will always follow the passed country IE power settings.
1836 		 */
1837 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1838 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1839 			chan->max_power = chan->max_reg_power;
1840 		else
1841 			chan->max_power = min(chan->orig_mpwr,
1842 					      chan->max_reg_power);
1843 	} else
1844 		chan->max_power = chan->max_reg_power;
1845 }
1846 
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1847 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1848 					  enum nl80211_reg_initiator initiator,
1849 					  struct ieee80211_channel *chan,
1850 					  u32 flags,
1851 					  struct regulatory_request *lr,
1852 					  struct wiphy *request_wiphy,
1853 					  const struct ieee80211_reg_rule *rrule1,
1854 					  const struct ieee80211_reg_rule *rrule2,
1855 					  struct ieee80211_freq_range *comb_range)
1856 {
1857 	u32 bw_flags1 = 0;
1858 	u32 bw_flags2 = 0;
1859 	const struct ieee80211_power_rule *power_rule1 = NULL;
1860 	const struct ieee80211_power_rule *power_rule2 = NULL;
1861 	const struct ieee80211_regdomain *regd;
1862 
1863 	regd = reg_get_regdomain(wiphy);
1864 
1865 	power_rule1 = &rrule1->power_rule;
1866 	power_rule2 = &rrule2->power_rule;
1867 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1868 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1869 
1870 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1871 	    request_wiphy && request_wiphy == wiphy &&
1872 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1873 		/* This guarantees the driver's requested regulatory domain
1874 		 * will always be used as a base for further regulatory
1875 		 * settings
1876 		 */
1877 		chan->flags =
1878 			map_regdom_flags(rrule1->flags) |
1879 			map_regdom_flags(rrule2->flags) |
1880 			bw_flags1 |
1881 			bw_flags2;
1882 		chan->orig_flags = chan->flags;
1883 		chan->max_antenna_gain =
1884 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1885 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1886 		chan->orig_mag = chan->max_antenna_gain;
1887 		chan->max_reg_power =
1888 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1889 			      MBM_TO_DBM(power_rule2->max_eirp));
1890 		chan->max_power = chan->max_reg_power;
1891 		chan->orig_mpwr = chan->max_reg_power;
1892 
1893 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1894 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1895 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1896 				chan->dfs_cac_ms = max_t(unsigned int,
1897 							 rrule1->dfs_cac_ms,
1898 							 rrule2->dfs_cac_ms);
1899 		}
1900 
1901 		if ((rrule1->flags & NL80211_RRF_PSD) &&
1902 		    (rrule2->flags & NL80211_RRF_PSD))
1903 			chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1904 		else
1905 			chan->flags &= ~NL80211_RRF_PSD;
1906 
1907 		return;
1908 	}
1909 
1910 	chan->dfs_state = NL80211_DFS_USABLE;
1911 	chan->dfs_state_entered = jiffies;
1912 
1913 	chan->beacon_found = false;
1914 	chan->flags = flags | bw_flags1 | bw_flags2 |
1915 		      map_regdom_flags(rrule1->flags) |
1916 		      map_regdom_flags(rrule2->flags);
1917 
1918 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1919 	 * (otherwise no adj. rule case), recheck therefore
1920 	 */
1921 	if (cfg80211_does_bw_fit_range(comb_range,
1922 				       ieee80211_channel_to_khz(chan),
1923 				       MHZ_TO_KHZ(10)))
1924 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1925 	if (cfg80211_does_bw_fit_range(comb_range,
1926 				       ieee80211_channel_to_khz(chan),
1927 				       MHZ_TO_KHZ(20)))
1928 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1929 
1930 	chan->max_antenna_gain =
1931 		min_t(int, chan->orig_mag,
1932 		      min_t(int,
1933 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1934 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1935 	chan->max_reg_power = min_t(int,
1936 				    MBM_TO_DBM(power_rule1->max_eirp),
1937 				    MBM_TO_DBM(power_rule2->max_eirp));
1938 
1939 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1940 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1941 			chan->dfs_cac_ms = max_t(unsigned int,
1942 						 rrule1->dfs_cac_ms,
1943 						 rrule2->dfs_cac_ms);
1944 		else
1945 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1946 	}
1947 
1948 	if (chan->orig_mpwr) {
1949 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1950 		 * will always follow the passed country IE power settings.
1951 		 */
1952 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1953 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1954 			chan->max_power = chan->max_reg_power;
1955 		else
1956 			chan->max_power = min(chan->orig_mpwr,
1957 					      chan->max_reg_power);
1958 	} else {
1959 		chan->max_power = chan->max_reg_power;
1960 	}
1961 }
1962 
1963 /* Note that right now we assume the desired channel bandwidth
1964  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1965  * per channel, the primary and the extension channel).
1966  */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1967 static void handle_channel(struct wiphy *wiphy,
1968 			   enum nl80211_reg_initiator initiator,
1969 			   struct ieee80211_channel *chan)
1970 {
1971 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1972 	struct regulatory_request *lr = get_last_request();
1973 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1974 	const struct ieee80211_reg_rule *rrule = NULL;
1975 	const struct ieee80211_reg_rule *rrule1 = NULL;
1976 	const struct ieee80211_reg_rule *rrule2 = NULL;
1977 
1978 	u32 flags = chan->orig_flags;
1979 
1980 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1981 	if (IS_ERR(rrule)) {
1982 		/* check for adjacent match, therefore get rules for
1983 		 * chan - 20 MHz and chan + 20 MHz and test
1984 		 * if reg rules are adjacent
1985 		 */
1986 		rrule1 = freq_reg_info(wiphy,
1987 				       orig_chan_freq - MHZ_TO_KHZ(20));
1988 		rrule2 = freq_reg_info(wiphy,
1989 				       orig_chan_freq + MHZ_TO_KHZ(20));
1990 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1991 			struct ieee80211_freq_range comb_range;
1992 
1993 			if (rrule1->freq_range.end_freq_khz !=
1994 			    rrule2->freq_range.start_freq_khz)
1995 				goto disable_chan;
1996 
1997 			comb_range.start_freq_khz =
1998 				rrule1->freq_range.start_freq_khz;
1999 			comb_range.end_freq_khz =
2000 				rrule2->freq_range.end_freq_khz;
2001 			comb_range.max_bandwidth_khz =
2002 				min_t(u32,
2003 				      rrule1->freq_range.max_bandwidth_khz,
2004 				      rrule2->freq_range.max_bandwidth_khz);
2005 
2006 			if (!cfg80211_does_bw_fit_range(&comb_range,
2007 							orig_chan_freq,
2008 							MHZ_TO_KHZ(20)))
2009 				goto disable_chan;
2010 
2011 			handle_channel_adjacent_rules(wiphy, initiator, chan,
2012 						      flags, lr, request_wiphy,
2013 						      rrule1, rrule2,
2014 						      &comb_range);
2015 			return;
2016 		}
2017 
2018 disable_chan:
2019 		/* We will disable all channels that do not match our
2020 		 * received regulatory rule unless the hint is coming
2021 		 * from a Country IE and the Country IE had no information
2022 		 * about a band. The IEEE 802.11 spec allows for an AP
2023 		 * to send only a subset of the regulatory rules allowed,
2024 		 * so an AP in the US that only supports 2.4 GHz may only send
2025 		 * a country IE with information for the 2.4 GHz band
2026 		 * while 5 GHz is still supported.
2027 		 */
2028 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2029 		    PTR_ERR(rrule) == -ERANGE)
2030 			return;
2031 
2032 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2033 		    request_wiphy && request_wiphy == wiphy &&
2034 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2035 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2036 				 chan->center_freq, chan->freq_offset);
2037 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2038 			chan->flags = chan->orig_flags;
2039 		} else {
2040 			pr_debug("Disabling freq %d.%03d MHz\n",
2041 				 chan->center_freq, chan->freq_offset);
2042 			chan->flags |= IEEE80211_CHAN_DISABLED;
2043 		}
2044 		return;
2045 	}
2046 
2047 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2048 				   request_wiphy, rrule);
2049 }
2050 
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2051 static void handle_band(struct wiphy *wiphy,
2052 			enum nl80211_reg_initiator initiator,
2053 			struct ieee80211_supported_band *sband)
2054 {
2055 	unsigned int i;
2056 
2057 	if (!sband)
2058 		return;
2059 
2060 	for (i = 0; i < sband->n_channels; i++)
2061 		handle_channel(wiphy, initiator, &sband->channels[i]);
2062 }
2063 
reg_request_cell_base(struct regulatory_request * request)2064 static bool reg_request_cell_base(struct regulatory_request *request)
2065 {
2066 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2067 		return false;
2068 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2069 }
2070 
reg_last_request_cell_base(void)2071 bool reg_last_request_cell_base(void)
2072 {
2073 	return reg_request_cell_base(get_last_request());
2074 }
2075 
2076 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2077 /* Core specific check */
2078 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2079 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2080 {
2081 	struct regulatory_request *lr = get_last_request();
2082 
2083 	if (!reg_num_devs_support_basehint)
2084 		return REG_REQ_IGNORE;
2085 
2086 	if (reg_request_cell_base(lr) &&
2087 	    !regdom_changes(pending_request->alpha2))
2088 		return REG_REQ_ALREADY_SET;
2089 
2090 	return REG_REQ_OK;
2091 }
2092 
2093 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2094 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2095 {
2096 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2097 }
2098 #else
2099 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2100 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2101 {
2102 	return REG_REQ_IGNORE;
2103 }
2104 
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2105 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2106 {
2107 	return true;
2108 }
2109 #endif
2110 
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2111 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2112 {
2113 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2114 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2115 		return true;
2116 	return false;
2117 }
2118 
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2119 static bool ignore_reg_update(struct wiphy *wiphy,
2120 			      enum nl80211_reg_initiator initiator)
2121 {
2122 	struct regulatory_request *lr = get_last_request();
2123 
2124 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2125 		return true;
2126 
2127 	if (!lr) {
2128 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2129 			 reg_initiator_name(initiator));
2130 		return true;
2131 	}
2132 
2133 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2134 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2135 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2136 			 reg_initiator_name(initiator));
2137 		return true;
2138 	}
2139 
2140 	/*
2141 	 * wiphy->regd will be set once the device has its own
2142 	 * desired regulatory domain set
2143 	 */
2144 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2145 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 	    !is_world_regdom(lr->alpha2)) {
2147 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2148 			 reg_initiator_name(initiator));
2149 		return true;
2150 	}
2151 
2152 	if (reg_request_cell_base(lr))
2153 		return reg_dev_ignore_cell_hint(wiphy);
2154 
2155 	return false;
2156 }
2157 
reg_is_world_roaming(struct wiphy * wiphy)2158 static bool reg_is_world_roaming(struct wiphy *wiphy)
2159 {
2160 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2161 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2162 	struct regulatory_request *lr = get_last_request();
2163 
2164 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2165 		return true;
2166 
2167 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2168 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2169 		return true;
2170 
2171 	return false;
2172 }
2173 
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2174 static void reg_call_notifier(struct wiphy *wiphy,
2175 			      struct regulatory_request *request)
2176 {
2177 	if (wiphy->reg_notifier)
2178 		wiphy->reg_notifier(wiphy, request);
2179 }
2180 
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2181 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2182 			      struct reg_beacon *reg_beacon)
2183 {
2184 	struct ieee80211_supported_band *sband;
2185 	struct ieee80211_channel *chan;
2186 	bool channel_changed = false;
2187 	struct ieee80211_channel chan_before;
2188 	struct regulatory_request *lr = get_last_request();
2189 
2190 	sband = wiphy->bands[reg_beacon->chan.band];
2191 	chan = &sband->channels[chan_idx];
2192 
2193 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2194 		return;
2195 
2196 	if (chan->beacon_found)
2197 		return;
2198 
2199 	chan->beacon_found = true;
2200 
2201 	if (!reg_is_world_roaming(wiphy))
2202 		return;
2203 
2204 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2205 		return;
2206 
2207 	chan_before = *chan;
2208 
2209 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2210 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2211 		channel_changed = true;
2212 	}
2213 
2214 	if (channel_changed) {
2215 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2216 		if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2217 			reg_call_notifier(wiphy, lr);
2218 	}
2219 }
2220 
2221 /*
2222  * Called when a scan on a wiphy finds a beacon on
2223  * new channel
2224  */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2225 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2226 				    struct reg_beacon *reg_beacon)
2227 {
2228 	unsigned int i;
2229 	struct ieee80211_supported_band *sband;
2230 
2231 	if (!wiphy->bands[reg_beacon->chan.band])
2232 		return;
2233 
2234 	sband = wiphy->bands[reg_beacon->chan.band];
2235 
2236 	for (i = 0; i < sband->n_channels; i++)
2237 		handle_reg_beacon(wiphy, i, reg_beacon);
2238 }
2239 
2240 /*
2241  * Called upon reg changes or a new wiphy is added
2242  */
wiphy_update_beacon_reg(struct wiphy * wiphy)2243 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2244 {
2245 	unsigned int i;
2246 	struct ieee80211_supported_band *sband;
2247 	struct reg_beacon *reg_beacon;
2248 
2249 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2250 		if (!wiphy->bands[reg_beacon->chan.band])
2251 			continue;
2252 		sband = wiphy->bands[reg_beacon->chan.band];
2253 		for (i = 0; i < sband->n_channels; i++)
2254 			handle_reg_beacon(wiphy, i, reg_beacon);
2255 	}
2256 }
2257 
2258 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2259 static void reg_process_beacons(struct wiphy *wiphy)
2260 {
2261 	/*
2262 	 * Means we are just firing up cfg80211, so no beacons would
2263 	 * have been processed yet.
2264 	 */
2265 	if (!last_request)
2266 		return;
2267 	wiphy_update_beacon_reg(wiphy);
2268 }
2269 
is_ht40_allowed(struct ieee80211_channel * chan)2270 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2271 {
2272 	if (!chan)
2273 		return false;
2274 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2275 		return false;
2276 	/* This would happen when regulatory rules disallow HT40 completely */
2277 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2278 		return false;
2279 	return true;
2280 }
2281 
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2282 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2283 					 struct ieee80211_channel *channel)
2284 {
2285 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2286 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2287 	const struct ieee80211_regdomain *regd;
2288 	unsigned int i;
2289 	u32 flags;
2290 
2291 	if (!is_ht40_allowed(channel)) {
2292 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2293 		return;
2294 	}
2295 
2296 	/*
2297 	 * We need to ensure the extension channels exist to
2298 	 * be able to use HT40- or HT40+, this finds them (or not)
2299 	 */
2300 	for (i = 0; i < sband->n_channels; i++) {
2301 		struct ieee80211_channel *c = &sband->channels[i];
2302 
2303 		if (c->center_freq == (channel->center_freq - 20))
2304 			channel_before = c;
2305 		if (c->center_freq == (channel->center_freq + 20))
2306 			channel_after = c;
2307 	}
2308 
2309 	flags = 0;
2310 	regd = get_wiphy_regdom(wiphy);
2311 	if (regd) {
2312 		const struct ieee80211_reg_rule *reg_rule =
2313 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2314 					   regd, MHZ_TO_KHZ(20));
2315 
2316 		if (!IS_ERR(reg_rule))
2317 			flags = reg_rule->flags;
2318 	}
2319 
2320 	/*
2321 	 * Please note that this assumes target bandwidth is 20 MHz,
2322 	 * if that ever changes we also need to change the below logic
2323 	 * to include that as well.
2324 	 */
2325 	if (!is_ht40_allowed(channel_before) ||
2326 	    flags & NL80211_RRF_NO_HT40MINUS)
2327 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2328 	else
2329 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2330 
2331 	if (!is_ht40_allowed(channel_after) ||
2332 	    flags & NL80211_RRF_NO_HT40PLUS)
2333 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2334 	else
2335 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2336 }
2337 
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2338 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2339 				      struct ieee80211_supported_band *sband)
2340 {
2341 	unsigned int i;
2342 
2343 	if (!sband)
2344 		return;
2345 
2346 	for (i = 0; i < sband->n_channels; i++)
2347 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2348 }
2349 
reg_process_ht_flags(struct wiphy * wiphy)2350 static void reg_process_ht_flags(struct wiphy *wiphy)
2351 {
2352 	enum nl80211_band band;
2353 
2354 	if (!wiphy)
2355 		return;
2356 
2357 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2358 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2359 }
2360 
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2361 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2362 {
2363 	struct cfg80211_chan_def chandef = {};
2364 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2365 	enum nl80211_iftype iftype;
2366 	bool ret;
2367 	int link;
2368 
2369 	wdev_lock(wdev);
2370 	iftype = wdev->iftype;
2371 
2372 	/* make sure the interface is active */
2373 	if (!wdev->netdev || !netif_running(wdev->netdev))
2374 		goto wdev_inactive_unlock;
2375 
2376 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2377 		struct ieee80211_channel *chan;
2378 
2379 		if (!wdev->valid_links && link > 0)
2380 			break;
2381 		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2382 			continue;
2383 		switch (iftype) {
2384 		case NL80211_IFTYPE_AP:
2385 		case NL80211_IFTYPE_P2P_GO:
2386 			if (!wdev->links[link].ap.beacon_interval)
2387 				continue;
2388 			chandef = wdev->links[link].ap.chandef;
2389 			break;
2390 		case NL80211_IFTYPE_MESH_POINT:
2391 			if (!wdev->u.mesh.beacon_interval)
2392 				continue;
2393 			chandef = wdev->u.mesh.chandef;
2394 			break;
2395 		case NL80211_IFTYPE_ADHOC:
2396 			if (!wdev->u.ibss.ssid_len)
2397 				continue;
2398 			chandef = wdev->u.ibss.chandef;
2399 			break;
2400 		case NL80211_IFTYPE_STATION:
2401 		case NL80211_IFTYPE_P2P_CLIENT:
2402 			/* Maybe we could consider disabling that link only? */
2403 			if (!wdev->links[link].client.current_bss)
2404 				continue;
2405 
2406 			chan = wdev->links[link].client.current_bss->pub.channel;
2407 			if (!chan)
2408 				continue;
2409 
2410 			if (!rdev->ops->get_channel ||
2411 			    rdev_get_channel(rdev, wdev, link, &chandef))
2412 				cfg80211_chandef_create(&chandef, chan,
2413 							NL80211_CHAN_NO_HT);
2414 			break;
2415 		case NL80211_IFTYPE_MONITOR:
2416 		case NL80211_IFTYPE_AP_VLAN:
2417 		case NL80211_IFTYPE_P2P_DEVICE:
2418 			/* no enforcement required */
2419 			break;
2420 		case NL80211_IFTYPE_OCB:
2421 			if (!wdev->u.ocb.chandef.chan)
2422 				continue;
2423 			chandef = wdev->u.ocb.chandef;
2424 			break;
2425 		case NL80211_IFTYPE_NAN:
2426 			/* we have no info, but NAN is also pretty universal */
2427 			continue;
2428 		default:
2429 			/* others not implemented for now */
2430 			WARN_ON_ONCE(1);
2431 			break;
2432 		}
2433 
2434 		wdev_unlock(wdev);
2435 
2436 		switch (iftype) {
2437 		case NL80211_IFTYPE_AP:
2438 		case NL80211_IFTYPE_P2P_GO:
2439 		case NL80211_IFTYPE_ADHOC:
2440 		case NL80211_IFTYPE_MESH_POINT:
2441 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2442 							    iftype);
2443 			if (!ret)
2444 				return ret;
2445 			break;
2446 		case NL80211_IFTYPE_STATION:
2447 		case NL80211_IFTYPE_P2P_CLIENT:
2448 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2449 						      IEEE80211_CHAN_DISABLED);
2450 			if (!ret)
2451 				return ret;
2452 			break;
2453 		default:
2454 			break;
2455 		}
2456 
2457 		wdev_lock(wdev);
2458 	}
2459 
2460 	wdev_unlock(wdev);
2461 
2462 	return true;
2463 
2464 wdev_inactive_unlock:
2465 	wdev_unlock(wdev);
2466 	return true;
2467 }
2468 
reg_leave_invalid_chans(struct wiphy * wiphy)2469 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2470 {
2471 	struct wireless_dev *wdev;
2472 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2473 
2474 	wiphy_lock(wiphy);
2475 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2476 		if (!reg_wdev_chan_valid(wiphy, wdev))
2477 			cfg80211_leave(rdev, wdev);
2478 	wiphy_unlock(wiphy);
2479 }
2480 
reg_check_chans_work(struct work_struct * work)2481 static void reg_check_chans_work(struct work_struct *work)
2482 {
2483 	struct cfg80211_registered_device *rdev;
2484 
2485 	pr_debug("Verifying active interfaces after reg change\n");
2486 	rtnl_lock();
2487 
2488 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2489 		reg_leave_invalid_chans(&rdev->wiphy);
2490 
2491 	rtnl_unlock();
2492 }
2493 
reg_check_channels(void)2494 static void reg_check_channels(void)
2495 {
2496 	/*
2497 	 * Give usermode a chance to do something nicer (move to another
2498 	 * channel, orderly disconnection), before forcing a disconnection.
2499 	 */
2500 	mod_delayed_work(system_power_efficient_wq,
2501 			 &reg_check_chans,
2502 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2503 }
2504 
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2505 static void wiphy_update_regulatory(struct wiphy *wiphy,
2506 				    enum nl80211_reg_initiator initiator)
2507 {
2508 	enum nl80211_band band;
2509 	struct regulatory_request *lr = get_last_request();
2510 
2511 	if (ignore_reg_update(wiphy, initiator)) {
2512 		/*
2513 		 * Regulatory updates set by CORE are ignored for custom
2514 		 * regulatory cards. Let us notify the changes to the driver,
2515 		 * as some drivers used this to restore its orig_* reg domain.
2516 		 */
2517 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2518 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2519 		    !(wiphy->regulatory_flags &
2520 		      REGULATORY_WIPHY_SELF_MANAGED))
2521 			reg_call_notifier(wiphy, lr);
2522 		return;
2523 	}
2524 
2525 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2526 
2527 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2528 		handle_band(wiphy, initiator, wiphy->bands[band]);
2529 
2530 	reg_process_beacons(wiphy);
2531 	reg_process_ht_flags(wiphy);
2532 	reg_call_notifier(wiphy, lr);
2533 }
2534 
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2535 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2536 {
2537 	struct cfg80211_registered_device *rdev;
2538 	struct wiphy *wiphy;
2539 
2540 	ASSERT_RTNL();
2541 
2542 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2543 		wiphy = &rdev->wiphy;
2544 		wiphy_update_regulatory(wiphy, initiator);
2545 	}
2546 
2547 	reg_check_channels();
2548 }
2549 
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2550 static void handle_channel_custom(struct wiphy *wiphy,
2551 				  struct ieee80211_channel *chan,
2552 				  const struct ieee80211_regdomain *regd,
2553 				  u32 min_bw)
2554 {
2555 	u32 bw_flags = 0;
2556 	const struct ieee80211_reg_rule *reg_rule = NULL;
2557 	const struct ieee80211_power_rule *power_rule = NULL;
2558 	u32 bw, center_freq_khz;
2559 
2560 	center_freq_khz = ieee80211_channel_to_khz(chan);
2561 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2562 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2563 		if (!IS_ERR(reg_rule))
2564 			break;
2565 	}
2566 
2567 	if (IS_ERR_OR_NULL(reg_rule)) {
2568 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2569 			 chan->center_freq, chan->freq_offset);
2570 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2571 			chan->flags |= IEEE80211_CHAN_DISABLED;
2572 		} else {
2573 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2574 			chan->flags = chan->orig_flags;
2575 		}
2576 		return;
2577 	}
2578 
2579 	power_rule = &reg_rule->power_rule;
2580 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2581 
2582 	chan->dfs_state_entered = jiffies;
2583 	chan->dfs_state = NL80211_DFS_USABLE;
2584 
2585 	chan->beacon_found = false;
2586 
2587 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2588 		chan->flags = chan->orig_flags | bw_flags |
2589 			      map_regdom_flags(reg_rule->flags);
2590 	else
2591 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2592 
2593 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2594 	chan->max_reg_power = chan->max_power =
2595 		(int) MBM_TO_DBM(power_rule->max_eirp);
2596 
2597 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2598 		if (reg_rule->dfs_cac_ms)
2599 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2600 		else
2601 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2602 	}
2603 
2604 	if (chan->flags & IEEE80211_CHAN_PSD)
2605 		chan->psd = reg_rule->psd;
2606 
2607 	chan->max_power = chan->max_reg_power;
2608 }
2609 
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2610 static void handle_band_custom(struct wiphy *wiphy,
2611 			       struct ieee80211_supported_band *sband,
2612 			       const struct ieee80211_regdomain *regd)
2613 {
2614 	unsigned int i;
2615 
2616 	if (!sband)
2617 		return;
2618 
2619 	/*
2620 	 * We currently assume that you always want at least 20 MHz,
2621 	 * otherwise channel 12 might get enabled if this rule is
2622 	 * compatible to US, which permits 2402 - 2472 MHz.
2623 	 */
2624 	for (i = 0; i < sband->n_channels; i++)
2625 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2626 				      MHZ_TO_KHZ(20));
2627 }
2628 
2629 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2630 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2631 				   const struct ieee80211_regdomain *regd)
2632 {
2633 	const struct ieee80211_regdomain *new_regd, *tmp;
2634 	enum nl80211_band band;
2635 	unsigned int bands_set = 0;
2636 
2637 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2638 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2639 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2640 
2641 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2642 		if (!wiphy->bands[band])
2643 			continue;
2644 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2645 		bands_set++;
2646 	}
2647 
2648 	/*
2649 	 * no point in calling this if it won't have any effect
2650 	 * on your device's supported bands.
2651 	 */
2652 	WARN_ON(!bands_set);
2653 	new_regd = reg_copy_regd(regd);
2654 	if (IS_ERR(new_regd))
2655 		return;
2656 
2657 	rtnl_lock();
2658 	wiphy_lock(wiphy);
2659 
2660 	tmp = get_wiphy_regdom(wiphy);
2661 	rcu_assign_pointer(wiphy->regd, new_regd);
2662 	rcu_free_regdom(tmp);
2663 
2664 	wiphy_unlock(wiphy);
2665 	rtnl_unlock();
2666 }
2667 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2668 
reg_set_request_processed(void)2669 static void reg_set_request_processed(void)
2670 {
2671 	bool need_more_processing = false;
2672 	struct regulatory_request *lr = get_last_request();
2673 
2674 	lr->processed = true;
2675 
2676 	spin_lock(&reg_requests_lock);
2677 	if (!list_empty(&reg_requests_list))
2678 		need_more_processing = true;
2679 	spin_unlock(&reg_requests_lock);
2680 
2681 	cancel_crda_timeout();
2682 
2683 	if (need_more_processing)
2684 		schedule_work(&reg_work);
2685 }
2686 
2687 /**
2688  * reg_process_hint_core - process core regulatory requests
2689  * @core_request: a pending core regulatory request
2690  *
2691  * The wireless subsystem can use this function to process
2692  * a regulatory request issued by the regulatory core.
2693  */
2694 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2695 reg_process_hint_core(struct regulatory_request *core_request)
2696 {
2697 	if (reg_query_database(core_request)) {
2698 		core_request->intersect = false;
2699 		core_request->processed = false;
2700 		reg_update_last_request(core_request);
2701 		return REG_REQ_OK;
2702 	}
2703 
2704 	return REG_REQ_IGNORE;
2705 }
2706 
2707 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2708 __reg_process_hint_user(struct regulatory_request *user_request)
2709 {
2710 	struct regulatory_request *lr = get_last_request();
2711 
2712 	if (reg_request_cell_base(user_request))
2713 		return reg_ignore_cell_hint(user_request);
2714 
2715 	if (reg_request_cell_base(lr))
2716 		return REG_REQ_IGNORE;
2717 
2718 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2719 		return REG_REQ_INTERSECT;
2720 	/*
2721 	 * If the user knows better the user should set the regdom
2722 	 * to their country before the IE is picked up
2723 	 */
2724 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2725 	    lr->intersect)
2726 		return REG_REQ_IGNORE;
2727 	/*
2728 	 * Process user requests only after previous user/driver/core
2729 	 * requests have been processed
2730 	 */
2731 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2732 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2733 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2734 	    regdom_changes(lr->alpha2))
2735 		return REG_REQ_IGNORE;
2736 
2737 	if (!regdom_changes(user_request->alpha2))
2738 		return REG_REQ_ALREADY_SET;
2739 
2740 	return REG_REQ_OK;
2741 }
2742 
2743 /**
2744  * reg_process_hint_user - process user regulatory requests
2745  * @user_request: a pending user regulatory request
2746  *
2747  * The wireless subsystem can use this function to process
2748  * a regulatory request initiated by userspace.
2749  */
2750 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2751 reg_process_hint_user(struct regulatory_request *user_request)
2752 {
2753 	enum reg_request_treatment treatment;
2754 
2755 	treatment = __reg_process_hint_user(user_request);
2756 	if (treatment == REG_REQ_IGNORE ||
2757 	    treatment == REG_REQ_ALREADY_SET)
2758 		return REG_REQ_IGNORE;
2759 
2760 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2761 	user_request->processed = false;
2762 
2763 	if (reg_query_database(user_request)) {
2764 		reg_update_last_request(user_request);
2765 		user_alpha2[0] = user_request->alpha2[0];
2766 		user_alpha2[1] = user_request->alpha2[1];
2767 		return REG_REQ_OK;
2768 	}
2769 
2770 	return REG_REQ_IGNORE;
2771 }
2772 
2773 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2774 __reg_process_hint_driver(struct regulatory_request *driver_request)
2775 {
2776 	struct regulatory_request *lr = get_last_request();
2777 
2778 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2779 		if (regdom_changes(driver_request->alpha2))
2780 			return REG_REQ_OK;
2781 		return REG_REQ_ALREADY_SET;
2782 	}
2783 
2784 	/*
2785 	 * This would happen if you unplug and plug your card
2786 	 * back in or if you add a new device for which the previously
2787 	 * loaded card also agrees on the regulatory domain.
2788 	 */
2789 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2790 	    !regdom_changes(driver_request->alpha2))
2791 		return REG_REQ_ALREADY_SET;
2792 
2793 	return REG_REQ_INTERSECT;
2794 }
2795 
2796 /**
2797  * reg_process_hint_driver - process driver regulatory requests
2798  * @wiphy: the wireless device for the regulatory request
2799  * @driver_request: a pending driver regulatory request
2800  *
2801  * The wireless subsystem can use this function to process
2802  * a regulatory request issued by an 802.11 driver.
2803  *
2804  * Returns one of the different reg request treatment values.
2805  */
2806 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2807 reg_process_hint_driver(struct wiphy *wiphy,
2808 			struct regulatory_request *driver_request)
2809 {
2810 	const struct ieee80211_regdomain *regd, *tmp;
2811 	enum reg_request_treatment treatment;
2812 
2813 	treatment = __reg_process_hint_driver(driver_request);
2814 
2815 	switch (treatment) {
2816 	case REG_REQ_OK:
2817 		break;
2818 	case REG_REQ_IGNORE:
2819 		return REG_REQ_IGNORE;
2820 	case REG_REQ_INTERSECT:
2821 	case REG_REQ_ALREADY_SET:
2822 		regd = reg_copy_regd(get_cfg80211_regdom());
2823 		if (IS_ERR(regd))
2824 			return REG_REQ_IGNORE;
2825 
2826 		tmp = get_wiphy_regdom(wiphy);
2827 		ASSERT_RTNL();
2828 		wiphy_lock(wiphy);
2829 		rcu_assign_pointer(wiphy->regd, regd);
2830 		wiphy_unlock(wiphy);
2831 		rcu_free_regdom(tmp);
2832 	}
2833 
2834 
2835 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2836 	driver_request->processed = false;
2837 
2838 	/*
2839 	 * Since CRDA will not be called in this case as we already
2840 	 * have applied the requested regulatory domain before we just
2841 	 * inform userspace we have processed the request
2842 	 */
2843 	if (treatment == REG_REQ_ALREADY_SET) {
2844 		nl80211_send_reg_change_event(driver_request);
2845 		reg_update_last_request(driver_request);
2846 		reg_set_request_processed();
2847 		return REG_REQ_ALREADY_SET;
2848 	}
2849 
2850 	if (reg_query_database(driver_request)) {
2851 		reg_update_last_request(driver_request);
2852 		return REG_REQ_OK;
2853 	}
2854 
2855 	return REG_REQ_IGNORE;
2856 }
2857 
2858 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2859 __reg_process_hint_country_ie(struct wiphy *wiphy,
2860 			      struct regulatory_request *country_ie_request)
2861 {
2862 	struct wiphy *last_wiphy = NULL;
2863 	struct regulatory_request *lr = get_last_request();
2864 
2865 	if (reg_request_cell_base(lr)) {
2866 		/* Trust a Cell base station over the AP's country IE */
2867 		if (regdom_changes(country_ie_request->alpha2))
2868 			return REG_REQ_IGNORE;
2869 		return REG_REQ_ALREADY_SET;
2870 	} else {
2871 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2872 			return REG_REQ_IGNORE;
2873 	}
2874 
2875 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2876 		return -EINVAL;
2877 
2878 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2879 		return REG_REQ_OK;
2880 
2881 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2882 
2883 	if (last_wiphy != wiphy) {
2884 		/*
2885 		 * Two cards with two APs claiming different
2886 		 * Country IE alpha2s. We could
2887 		 * intersect them, but that seems unlikely
2888 		 * to be correct. Reject second one for now.
2889 		 */
2890 		if (regdom_changes(country_ie_request->alpha2))
2891 			return REG_REQ_IGNORE;
2892 		return REG_REQ_ALREADY_SET;
2893 	}
2894 
2895 	if (regdom_changes(country_ie_request->alpha2))
2896 		return REG_REQ_OK;
2897 	return REG_REQ_ALREADY_SET;
2898 }
2899 
2900 /**
2901  * reg_process_hint_country_ie - process regulatory requests from country IEs
2902  * @wiphy: the wireless device for the regulatory request
2903  * @country_ie_request: a regulatory request from a country IE
2904  *
2905  * The wireless subsystem can use this function to process
2906  * a regulatory request issued by a country Information Element.
2907  *
2908  * Returns one of the different reg request treatment values.
2909  */
2910 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2911 reg_process_hint_country_ie(struct wiphy *wiphy,
2912 			    struct regulatory_request *country_ie_request)
2913 {
2914 	enum reg_request_treatment treatment;
2915 
2916 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2917 
2918 	switch (treatment) {
2919 	case REG_REQ_OK:
2920 		break;
2921 	case REG_REQ_IGNORE:
2922 		return REG_REQ_IGNORE;
2923 	case REG_REQ_ALREADY_SET:
2924 		reg_free_request(country_ie_request);
2925 		return REG_REQ_ALREADY_SET;
2926 	case REG_REQ_INTERSECT:
2927 		/*
2928 		 * This doesn't happen yet, not sure we
2929 		 * ever want to support it for this case.
2930 		 */
2931 		WARN_ONCE(1, "Unexpected intersection for country elements");
2932 		return REG_REQ_IGNORE;
2933 	}
2934 
2935 	country_ie_request->intersect = false;
2936 	country_ie_request->processed = false;
2937 
2938 	if (reg_query_database(country_ie_request)) {
2939 		reg_update_last_request(country_ie_request);
2940 		return REG_REQ_OK;
2941 	}
2942 
2943 	return REG_REQ_IGNORE;
2944 }
2945 
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2946 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2947 {
2948 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2949 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2950 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2951 	bool dfs_domain_same;
2952 
2953 	rcu_read_lock();
2954 
2955 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2956 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2957 	if (!wiphy1_regd)
2958 		wiphy1_regd = cfg80211_regd;
2959 
2960 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2961 	if (!wiphy2_regd)
2962 		wiphy2_regd = cfg80211_regd;
2963 
2964 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2965 
2966 	rcu_read_unlock();
2967 
2968 	return dfs_domain_same;
2969 }
2970 
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2971 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2972 				    struct ieee80211_channel *src_chan)
2973 {
2974 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2975 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2976 		return;
2977 
2978 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2979 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2980 		return;
2981 
2982 	if (src_chan->center_freq == dst_chan->center_freq &&
2983 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2984 		dst_chan->dfs_state = src_chan->dfs_state;
2985 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2986 	}
2987 }
2988 
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2989 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2990 				       struct wiphy *src_wiphy)
2991 {
2992 	struct ieee80211_supported_band *src_sband, *dst_sband;
2993 	struct ieee80211_channel *src_chan, *dst_chan;
2994 	int i, j, band;
2995 
2996 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2997 		return;
2998 
2999 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3000 		dst_sband = dst_wiphy->bands[band];
3001 		src_sband = src_wiphy->bands[band];
3002 		if (!dst_sband || !src_sband)
3003 			continue;
3004 
3005 		for (i = 0; i < dst_sband->n_channels; i++) {
3006 			dst_chan = &dst_sband->channels[i];
3007 			for (j = 0; j < src_sband->n_channels; j++) {
3008 				src_chan = &src_sband->channels[j];
3009 				reg_copy_dfs_chan_state(dst_chan, src_chan);
3010 			}
3011 		}
3012 	}
3013 }
3014 
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)3015 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3016 {
3017 	struct cfg80211_registered_device *rdev;
3018 
3019 	ASSERT_RTNL();
3020 
3021 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3022 		if (wiphy == &rdev->wiphy)
3023 			continue;
3024 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3025 	}
3026 }
3027 
3028 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3029 static void reg_process_hint(struct regulatory_request *reg_request)
3030 {
3031 	struct wiphy *wiphy = NULL;
3032 	enum reg_request_treatment treatment;
3033 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3034 
3035 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3036 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3037 
3038 	switch (initiator) {
3039 	case NL80211_REGDOM_SET_BY_CORE:
3040 		treatment = reg_process_hint_core(reg_request);
3041 		break;
3042 	case NL80211_REGDOM_SET_BY_USER:
3043 		treatment = reg_process_hint_user(reg_request);
3044 		break;
3045 	case NL80211_REGDOM_SET_BY_DRIVER:
3046 		if (!wiphy)
3047 			goto out_free;
3048 		treatment = reg_process_hint_driver(wiphy, reg_request);
3049 		break;
3050 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3051 		if (!wiphy)
3052 			goto out_free;
3053 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3054 		break;
3055 	default:
3056 		WARN(1, "invalid initiator %d\n", initiator);
3057 		goto out_free;
3058 	}
3059 
3060 	if (treatment == REG_REQ_IGNORE)
3061 		goto out_free;
3062 
3063 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3064 	     "unexpected treatment value %d\n", treatment);
3065 
3066 	/* This is required so that the orig_* parameters are saved.
3067 	 * NOTE: treatment must be set for any case that reaches here!
3068 	 */
3069 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3070 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3071 		wiphy_update_regulatory(wiphy, initiator);
3072 		wiphy_all_share_dfs_chan_state(wiphy);
3073 		reg_check_channels();
3074 	}
3075 
3076 	return;
3077 
3078 out_free:
3079 	reg_free_request(reg_request);
3080 }
3081 
notify_self_managed_wiphys(struct regulatory_request * request)3082 static void notify_self_managed_wiphys(struct regulatory_request *request)
3083 {
3084 	struct cfg80211_registered_device *rdev;
3085 	struct wiphy *wiphy;
3086 
3087 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3088 		wiphy = &rdev->wiphy;
3089 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3090 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3091 			reg_call_notifier(wiphy, request);
3092 	}
3093 }
3094 
3095 /*
3096  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3097  * Regulatory hints come on a first come first serve basis and we
3098  * must process each one atomically.
3099  */
reg_process_pending_hints(void)3100 static void reg_process_pending_hints(void)
3101 {
3102 	struct regulatory_request *reg_request, *lr;
3103 
3104 	lr = get_last_request();
3105 
3106 	/* When last_request->processed becomes true this will be rescheduled */
3107 	if (lr && !lr->processed) {
3108 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3109 		return;
3110 	}
3111 
3112 	spin_lock(&reg_requests_lock);
3113 
3114 	if (list_empty(&reg_requests_list)) {
3115 		spin_unlock(&reg_requests_lock);
3116 		return;
3117 	}
3118 
3119 	reg_request = list_first_entry(&reg_requests_list,
3120 				       struct regulatory_request,
3121 				       list);
3122 	list_del_init(&reg_request->list);
3123 
3124 	spin_unlock(&reg_requests_lock);
3125 
3126 	notify_self_managed_wiphys(reg_request);
3127 
3128 	reg_process_hint(reg_request);
3129 
3130 	lr = get_last_request();
3131 
3132 	spin_lock(&reg_requests_lock);
3133 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3134 		schedule_work(&reg_work);
3135 	spin_unlock(&reg_requests_lock);
3136 }
3137 
3138 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3139 static void reg_process_pending_beacon_hints(void)
3140 {
3141 	struct cfg80211_registered_device *rdev;
3142 	struct reg_beacon *pending_beacon, *tmp;
3143 
3144 	/* This goes through the _pending_ beacon list */
3145 	spin_lock_bh(&reg_pending_beacons_lock);
3146 
3147 	list_for_each_entry_safe(pending_beacon, tmp,
3148 				 &reg_pending_beacons, list) {
3149 		list_del_init(&pending_beacon->list);
3150 
3151 		/* Applies the beacon hint to current wiphys */
3152 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3153 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3154 
3155 		/* Remembers the beacon hint for new wiphys or reg changes */
3156 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3157 	}
3158 
3159 	spin_unlock_bh(&reg_pending_beacons_lock);
3160 }
3161 
reg_process_self_managed_hint(struct wiphy * wiphy)3162 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3163 {
3164 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3165 	const struct ieee80211_regdomain *tmp;
3166 	const struct ieee80211_regdomain *regd;
3167 	enum nl80211_band band;
3168 	struct regulatory_request request = {};
3169 
3170 	ASSERT_RTNL();
3171 	lockdep_assert_wiphy(wiphy);
3172 
3173 	spin_lock(&reg_requests_lock);
3174 	regd = rdev->requested_regd;
3175 	rdev->requested_regd = NULL;
3176 	spin_unlock(&reg_requests_lock);
3177 
3178 	if (!regd)
3179 		return;
3180 
3181 	tmp = get_wiphy_regdom(wiphy);
3182 	rcu_assign_pointer(wiphy->regd, regd);
3183 	rcu_free_regdom(tmp);
3184 
3185 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3186 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3187 
3188 	reg_process_ht_flags(wiphy);
3189 
3190 	request.wiphy_idx = get_wiphy_idx(wiphy);
3191 	request.alpha2[0] = regd->alpha2[0];
3192 	request.alpha2[1] = regd->alpha2[1];
3193 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3194 
3195 	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3196 		reg_call_notifier(wiphy, &request);
3197 
3198 	nl80211_send_wiphy_reg_change_event(&request);
3199 }
3200 
reg_process_self_managed_hints(void)3201 static void reg_process_self_managed_hints(void)
3202 {
3203 	struct cfg80211_registered_device *rdev;
3204 
3205 	ASSERT_RTNL();
3206 
3207 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3208 		wiphy_lock(&rdev->wiphy);
3209 		reg_process_self_managed_hint(&rdev->wiphy);
3210 		wiphy_unlock(&rdev->wiphy);
3211 	}
3212 
3213 	reg_check_channels();
3214 }
3215 
reg_todo(struct work_struct * work)3216 static void reg_todo(struct work_struct *work)
3217 {
3218 	rtnl_lock();
3219 	reg_process_pending_hints();
3220 	reg_process_pending_beacon_hints();
3221 	reg_process_self_managed_hints();
3222 	rtnl_unlock();
3223 }
3224 
queue_regulatory_request(struct regulatory_request * request)3225 static void queue_regulatory_request(struct regulatory_request *request)
3226 {
3227 	request->alpha2[0] = toupper(request->alpha2[0]);
3228 	request->alpha2[1] = toupper(request->alpha2[1]);
3229 
3230 	spin_lock(&reg_requests_lock);
3231 	list_add_tail(&request->list, &reg_requests_list);
3232 	spin_unlock(&reg_requests_lock);
3233 
3234 	schedule_work(&reg_work);
3235 }
3236 
3237 /*
3238  * Core regulatory hint -- happens during cfg80211_init()
3239  * and when we restore regulatory settings.
3240  */
regulatory_hint_core(const char * alpha2)3241 static int regulatory_hint_core(const char *alpha2)
3242 {
3243 	struct regulatory_request *request;
3244 
3245 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3246 	if (!request)
3247 		return -ENOMEM;
3248 
3249 	request->alpha2[0] = alpha2[0];
3250 	request->alpha2[1] = alpha2[1];
3251 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3252 	request->wiphy_idx = WIPHY_IDX_INVALID;
3253 
3254 	queue_regulatory_request(request);
3255 
3256 	return 0;
3257 }
3258 
3259 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3260 int regulatory_hint_user(const char *alpha2,
3261 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3262 {
3263 	struct regulatory_request *request;
3264 
3265 	if (WARN_ON(!alpha2))
3266 		return -EINVAL;
3267 
3268 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3269 		return -EINVAL;
3270 
3271 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3272 	if (!request)
3273 		return -ENOMEM;
3274 
3275 	request->wiphy_idx = WIPHY_IDX_INVALID;
3276 	request->alpha2[0] = alpha2[0];
3277 	request->alpha2[1] = alpha2[1];
3278 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3279 	request->user_reg_hint_type = user_reg_hint_type;
3280 
3281 	/* Allow calling CRDA again */
3282 	reset_crda_timeouts();
3283 
3284 	queue_regulatory_request(request);
3285 
3286 	return 0;
3287 }
3288 
regulatory_hint_indoor(bool is_indoor,u32 portid)3289 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3290 {
3291 	spin_lock(&reg_indoor_lock);
3292 
3293 	/* It is possible that more than one user space process is trying to
3294 	 * configure the indoor setting. To handle such cases, clear the indoor
3295 	 * setting in case that some process does not think that the device
3296 	 * is operating in an indoor environment. In addition, if a user space
3297 	 * process indicates that it is controlling the indoor setting, save its
3298 	 * portid, i.e., make it the owner.
3299 	 */
3300 	reg_is_indoor = is_indoor;
3301 	if (reg_is_indoor) {
3302 		if (!reg_is_indoor_portid)
3303 			reg_is_indoor_portid = portid;
3304 	} else {
3305 		reg_is_indoor_portid = 0;
3306 	}
3307 
3308 	spin_unlock(&reg_indoor_lock);
3309 
3310 	if (!is_indoor)
3311 		reg_check_channels();
3312 
3313 	return 0;
3314 }
3315 
regulatory_netlink_notify(u32 portid)3316 void regulatory_netlink_notify(u32 portid)
3317 {
3318 	spin_lock(&reg_indoor_lock);
3319 
3320 	if (reg_is_indoor_portid != portid) {
3321 		spin_unlock(&reg_indoor_lock);
3322 		return;
3323 	}
3324 
3325 	reg_is_indoor = false;
3326 	reg_is_indoor_portid = 0;
3327 
3328 	spin_unlock(&reg_indoor_lock);
3329 
3330 	reg_check_channels();
3331 }
3332 
3333 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3334 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3335 {
3336 	struct regulatory_request *request;
3337 
3338 	if (WARN_ON(!alpha2 || !wiphy))
3339 		return -EINVAL;
3340 
3341 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3342 
3343 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3344 	if (!request)
3345 		return -ENOMEM;
3346 
3347 	request->wiphy_idx = get_wiphy_idx(wiphy);
3348 
3349 	request->alpha2[0] = alpha2[0];
3350 	request->alpha2[1] = alpha2[1];
3351 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3352 
3353 	/* Allow calling CRDA again */
3354 	reset_crda_timeouts();
3355 
3356 	queue_regulatory_request(request);
3357 
3358 	return 0;
3359 }
3360 EXPORT_SYMBOL(regulatory_hint);
3361 
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3362 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3363 				const u8 *country_ie, u8 country_ie_len)
3364 {
3365 	char alpha2[2];
3366 	enum environment_cap env = ENVIRON_ANY;
3367 	struct regulatory_request *request = NULL, *lr;
3368 
3369 	/* IE len must be evenly divisible by 2 */
3370 	if (country_ie_len & 0x01)
3371 		return;
3372 
3373 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3374 		return;
3375 
3376 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3377 	if (!request)
3378 		return;
3379 
3380 	alpha2[0] = country_ie[0];
3381 	alpha2[1] = country_ie[1];
3382 
3383 	if (country_ie[2] == 'I')
3384 		env = ENVIRON_INDOOR;
3385 	else if (country_ie[2] == 'O')
3386 		env = ENVIRON_OUTDOOR;
3387 
3388 	rcu_read_lock();
3389 	lr = get_last_request();
3390 
3391 	if (unlikely(!lr))
3392 		goto out;
3393 
3394 	/*
3395 	 * We will run this only upon a successful connection on cfg80211.
3396 	 * We leave conflict resolution to the workqueue, where can hold
3397 	 * the RTNL.
3398 	 */
3399 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3400 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3401 		goto out;
3402 
3403 	request->wiphy_idx = get_wiphy_idx(wiphy);
3404 	request->alpha2[0] = alpha2[0];
3405 	request->alpha2[1] = alpha2[1];
3406 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3407 	request->country_ie_env = env;
3408 
3409 	/* Allow calling CRDA again */
3410 	reset_crda_timeouts();
3411 
3412 	queue_regulatory_request(request);
3413 	request = NULL;
3414 out:
3415 	kfree(request);
3416 	rcu_read_unlock();
3417 }
3418 
restore_alpha2(char * alpha2,bool reset_user)3419 static void restore_alpha2(char *alpha2, bool reset_user)
3420 {
3421 	/* indicates there is no alpha2 to consider for restoration */
3422 	alpha2[0] = '9';
3423 	alpha2[1] = '7';
3424 
3425 	/* The user setting has precedence over the module parameter */
3426 	if (is_user_regdom_saved()) {
3427 		/* Unless we're asked to ignore it and reset it */
3428 		if (reset_user) {
3429 			pr_debug("Restoring regulatory settings including user preference\n");
3430 			user_alpha2[0] = '9';
3431 			user_alpha2[1] = '7';
3432 
3433 			/*
3434 			 * If we're ignoring user settings, we still need to
3435 			 * check the module parameter to ensure we put things
3436 			 * back as they were for a full restore.
3437 			 */
3438 			if (!is_world_regdom(ieee80211_regdom)) {
3439 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3440 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3441 				alpha2[0] = ieee80211_regdom[0];
3442 				alpha2[1] = ieee80211_regdom[1];
3443 			}
3444 		} else {
3445 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3446 				 user_alpha2[0], user_alpha2[1]);
3447 			alpha2[0] = user_alpha2[0];
3448 			alpha2[1] = user_alpha2[1];
3449 		}
3450 	} else if (!is_world_regdom(ieee80211_regdom)) {
3451 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3452 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3453 		alpha2[0] = ieee80211_regdom[0];
3454 		alpha2[1] = ieee80211_regdom[1];
3455 	} else
3456 		pr_debug("Restoring regulatory settings\n");
3457 }
3458 
restore_custom_reg_settings(struct wiphy * wiphy)3459 static void restore_custom_reg_settings(struct wiphy *wiphy)
3460 {
3461 	struct ieee80211_supported_band *sband;
3462 	enum nl80211_band band;
3463 	struct ieee80211_channel *chan;
3464 	int i;
3465 
3466 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3467 		sband = wiphy->bands[band];
3468 		if (!sband)
3469 			continue;
3470 		for (i = 0; i < sband->n_channels; i++) {
3471 			chan = &sband->channels[i];
3472 			chan->flags = chan->orig_flags;
3473 			chan->max_antenna_gain = chan->orig_mag;
3474 			chan->max_power = chan->orig_mpwr;
3475 			chan->beacon_found = false;
3476 		}
3477 	}
3478 }
3479 
3480 /*
3481  * Restoring regulatory settings involves ignoring any
3482  * possibly stale country IE information and user regulatory
3483  * settings if so desired, this includes any beacon hints
3484  * learned as we could have traveled outside to another country
3485  * after disconnection. To restore regulatory settings we do
3486  * exactly what we did at bootup:
3487  *
3488  *   - send a core regulatory hint
3489  *   - send a user regulatory hint if applicable
3490  *
3491  * Device drivers that send a regulatory hint for a specific country
3492  * keep their own regulatory domain on wiphy->regd so that does
3493  * not need to be remembered.
3494  */
restore_regulatory_settings(bool reset_user,bool cached)3495 static void restore_regulatory_settings(bool reset_user, bool cached)
3496 {
3497 	char alpha2[2];
3498 	char world_alpha2[2];
3499 	struct reg_beacon *reg_beacon, *btmp;
3500 	LIST_HEAD(tmp_reg_req_list);
3501 	struct cfg80211_registered_device *rdev;
3502 
3503 	ASSERT_RTNL();
3504 
3505 	/*
3506 	 * Clear the indoor setting in case that it is not controlled by user
3507 	 * space, as otherwise there is no guarantee that the device is still
3508 	 * operating in an indoor environment.
3509 	 */
3510 	spin_lock(&reg_indoor_lock);
3511 	if (reg_is_indoor && !reg_is_indoor_portid) {
3512 		reg_is_indoor = false;
3513 		reg_check_channels();
3514 	}
3515 	spin_unlock(&reg_indoor_lock);
3516 
3517 	reset_regdomains(true, &world_regdom);
3518 	restore_alpha2(alpha2, reset_user);
3519 
3520 	/*
3521 	 * If there's any pending requests we simply
3522 	 * stash them to a temporary pending queue and
3523 	 * add then after we've restored regulatory
3524 	 * settings.
3525 	 */
3526 	spin_lock(&reg_requests_lock);
3527 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3528 	spin_unlock(&reg_requests_lock);
3529 
3530 	/* Clear beacon hints */
3531 	spin_lock_bh(&reg_pending_beacons_lock);
3532 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3533 		list_del(&reg_beacon->list);
3534 		kfree(reg_beacon);
3535 	}
3536 	spin_unlock_bh(&reg_pending_beacons_lock);
3537 
3538 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3539 		list_del(&reg_beacon->list);
3540 		kfree(reg_beacon);
3541 	}
3542 
3543 	/* First restore to the basic regulatory settings */
3544 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3545 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3546 
3547 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3548 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3549 			continue;
3550 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3551 			restore_custom_reg_settings(&rdev->wiphy);
3552 	}
3553 
3554 	if (cached && (!is_an_alpha2(alpha2) ||
3555 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3556 		reset_regdomains(false, cfg80211_world_regdom);
3557 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3558 		print_regdomain(get_cfg80211_regdom());
3559 		nl80211_send_reg_change_event(&core_request_world);
3560 		reg_set_request_processed();
3561 
3562 		if (is_an_alpha2(alpha2) &&
3563 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3564 			struct regulatory_request *ureq;
3565 
3566 			spin_lock(&reg_requests_lock);
3567 			ureq = list_last_entry(&reg_requests_list,
3568 					       struct regulatory_request,
3569 					       list);
3570 			list_del(&ureq->list);
3571 			spin_unlock(&reg_requests_lock);
3572 
3573 			notify_self_managed_wiphys(ureq);
3574 			reg_update_last_request(ureq);
3575 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3576 				   REGD_SOURCE_CACHED);
3577 		}
3578 	} else {
3579 		regulatory_hint_core(world_alpha2);
3580 
3581 		/*
3582 		 * This restores the ieee80211_regdom module parameter
3583 		 * preference or the last user requested regulatory
3584 		 * settings, user regulatory settings takes precedence.
3585 		 */
3586 		if (is_an_alpha2(alpha2))
3587 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3588 	}
3589 
3590 	spin_lock(&reg_requests_lock);
3591 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3592 	spin_unlock(&reg_requests_lock);
3593 
3594 	pr_debug("Kicking the queue\n");
3595 
3596 	schedule_work(&reg_work);
3597 }
3598 
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3599 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3600 {
3601 	struct cfg80211_registered_device *rdev;
3602 	struct wireless_dev *wdev;
3603 
3604 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3605 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3606 			wdev_lock(wdev);
3607 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3608 				wdev_unlock(wdev);
3609 				return false;
3610 			}
3611 			wdev_unlock(wdev);
3612 		}
3613 	}
3614 
3615 	return true;
3616 }
3617 
regulatory_hint_disconnect(void)3618 void regulatory_hint_disconnect(void)
3619 {
3620 	/* Restore of regulatory settings is not required when wiphy(s)
3621 	 * ignore IE from connected access point but clearance of beacon hints
3622 	 * is required when wiphy(s) supports beacon hints.
3623 	 */
3624 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3625 		struct reg_beacon *reg_beacon, *btmp;
3626 
3627 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3628 			return;
3629 
3630 		spin_lock_bh(&reg_pending_beacons_lock);
3631 		list_for_each_entry_safe(reg_beacon, btmp,
3632 					 &reg_pending_beacons, list) {
3633 			list_del(&reg_beacon->list);
3634 			kfree(reg_beacon);
3635 		}
3636 		spin_unlock_bh(&reg_pending_beacons_lock);
3637 
3638 		list_for_each_entry_safe(reg_beacon, btmp,
3639 					 &reg_beacon_list, list) {
3640 			list_del(&reg_beacon->list);
3641 			kfree(reg_beacon);
3642 		}
3643 
3644 		return;
3645 	}
3646 
3647 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3648 	restore_regulatory_settings(false, true);
3649 }
3650 
freq_is_chan_12_13_14(u32 freq)3651 static bool freq_is_chan_12_13_14(u32 freq)
3652 {
3653 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3654 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3655 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3656 		return true;
3657 	return false;
3658 }
3659 
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3660 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3661 {
3662 	struct reg_beacon *pending_beacon;
3663 
3664 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3665 		if (ieee80211_channel_equal(beacon_chan,
3666 					    &pending_beacon->chan))
3667 			return true;
3668 	return false;
3669 }
3670 
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3671 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3672 				 struct ieee80211_channel *beacon_chan,
3673 				 gfp_t gfp)
3674 {
3675 	struct reg_beacon *reg_beacon;
3676 	bool processing;
3677 
3678 	if (beacon_chan->beacon_found ||
3679 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3680 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3681 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3682 		return 0;
3683 
3684 	spin_lock_bh(&reg_pending_beacons_lock);
3685 	processing = pending_reg_beacon(beacon_chan);
3686 	spin_unlock_bh(&reg_pending_beacons_lock);
3687 
3688 	if (processing)
3689 		return 0;
3690 
3691 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3692 	if (!reg_beacon)
3693 		return -ENOMEM;
3694 
3695 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3696 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3697 		 ieee80211_freq_khz_to_channel(
3698 			 ieee80211_channel_to_khz(beacon_chan)),
3699 		 wiphy_name(wiphy));
3700 
3701 	memcpy(&reg_beacon->chan, beacon_chan,
3702 	       sizeof(struct ieee80211_channel));
3703 
3704 	/*
3705 	 * Since we can be called from BH or and non-BH context
3706 	 * we must use spin_lock_bh()
3707 	 */
3708 	spin_lock_bh(&reg_pending_beacons_lock);
3709 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3710 	spin_unlock_bh(&reg_pending_beacons_lock);
3711 
3712 	schedule_work(&reg_work);
3713 
3714 	return 0;
3715 }
3716 
print_rd_rules(const struct ieee80211_regdomain * rd)3717 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3718 {
3719 	unsigned int i;
3720 	const struct ieee80211_reg_rule *reg_rule = NULL;
3721 	const struct ieee80211_freq_range *freq_range = NULL;
3722 	const struct ieee80211_power_rule *power_rule = NULL;
3723 	char bw[32], cac_time[32];
3724 
3725 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3726 
3727 	for (i = 0; i < rd->n_reg_rules; i++) {
3728 		reg_rule = &rd->reg_rules[i];
3729 		freq_range = &reg_rule->freq_range;
3730 		power_rule = &reg_rule->power_rule;
3731 
3732 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3733 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3734 				 freq_range->max_bandwidth_khz,
3735 				 reg_get_max_bandwidth(rd, reg_rule));
3736 		else
3737 			snprintf(bw, sizeof(bw), "%d KHz",
3738 				 freq_range->max_bandwidth_khz);
3739 
3740 		if (reg_rule->flags & NL80211_RRF_DFS)
3741 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3742 				  reg_rule->dfs_cac_ms/1000);
3743 		else
3744 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3745 
3746 
3747 		/*
3748 		 * There may not be documentation for max antenna gain
3749 		 * in certain regions
3750 		 */
3751 		if (power_rule->max_antenna_gain)
3752 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3753 				freq_range->start_freq_khz,
3754 				freq_range->end_freq_khz,
3755 				bw,
3756 				power_rule->max_antenna_gain,
3757 				power_rule->max_eirp,
3758 				cac_time);
3759 		else
3760 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3761 				freq_range->start_freq_khz,
3762 				freq_range->end_freq_khz,
3763 				bw,
3764 				power_rule->max_eirp,
3765 				cac_time);
3766 	}
3767 }
3768 
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3769 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3770 {
3771 	switch (dfs_region) {
3772 	case NL80211_DFS_UNSET:
3773 	case NL80211_DFS_FCC:
3774 	case NL80211_DFS_ETSI:
3775 	case NL80211_DFS_JP:
3776 		return true;
3777 	default:
3778 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3779 		return false;
3780 	}
3781 }
3782 
print_regdomain(const struct ieee80211_regdomain * rd)3783 static void print_regdomain(const struct ieee80211_regdomain *rd)
3784 {
3785 	struct regulatory_request *lr = get_last_request();
3786 
3787 	if (is_intersected_alpha2(rd->alpha2)) {
3788 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3789 			struct cfg80211_registered_device *rdev;
3790 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3791 			if (rdev) {
3792 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3793 					rdev->country_ie_alpha2[0],
3794 					rdev->country_ie_alpha2[1]);
3795 			} else
3796 				pr_debug("Current regulatory domain intersected:\n");
3797 		} else
3798 			pr_debug("Current regulatory domain intersected:\n");
3799 	} else if (is_world_regdom(rd->alpha2)) {
3800 		pr_debug("World regulatory domain updated:\n");
3801 	} else {
3802 		if (is_unknown_alpha2(rd->alpha2))
3803 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3804 		else {
3805 			if (reg_request_cell_base(lr))
3806 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3807 					rd->alpha2[0], rd->alpha2[1]);
3808 			else
3809 				pr_debug("Regulatory domain changed to country: %c%c\n",
3810 					rd->alpha2[0], rd->alpha2[1]);
3811 		}
3812 	}
3813 
3814 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3815 	print_rd_rules(rd);
3816 }
3817 
print_regdomain_info(const struct ieee80211_regdomain * rd)3818 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3819 {
3820 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3821 	print_rd_rules(rd);
3822 }
3823 
reg_set_rd_core(const struct ieee80211_regdomain * rd)3824 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3825 {
3826 	if (!is_world_regdom(rd->alpha2))
3827 		return -EINVAL;
3828 	update_world_regdomain(rd);
3829 	return 0;
3830 }
3831 
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3832 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3833 			   struct regulatory_request *user_request)
3834 {
3835 	const struct ieee80211_regdomain *intersected_rd = NULL;
3836 
3837 	if (!regdom_changes(rd->alpha2))
3838 		return -EALREADY;
3839 
3840 	if (!is_valid_rd(rd)) {
3841 		pr_err("Invalid regulatory domain detected: %c%c\n",
3842 		       rd->alpha2[0], rd->alpha2[1]);
3843 		print_regdomain_info(rd);
3844 		return -EINVAL;
3845 	}
3846 
3847 	if (!user_request->intersect) {
3848 		reset_regdomains(false, rd);
3849 		return 0;
3850 	}
3851 
3852 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3853 	if (!intersected_rd)
3854 		return -EINVAL;
3855 
3856 	kfree(rd);
3857 	rd = NULL;
3858 	reset_regdomains(false, intersected_rd);
3859 
3860 	return 0;
3861 }
3862 
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3863 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3864 			     struct regulatory_request *driver_request)
3865 {
3866 	const struct ieee80211_regdomain *regd;
3867 	const struct ieee80211_regdomain *intersected_rd = NULL;
3868 	const struct ieee80211_regdomain *tmp;
3869 	struct wiphy *request_wiphy;
3870 
3871 	if (is_world_regdom(rd->alpha2))
3872 		return -EINVAL;
3873 
3874 	if (!regdom_changes(rd->alpha2))
3875 		return -EALREADY;
3876 
3877 	if (!is_valid_rd(rd)) {
3878 		pr_err("Invalid regulatory domain detected: %c%c\n",
3879 		       rd->alpha2[0], rd->alpha2[1]);
3880 		print_regdomain_info(rd);
3881 		return -EINVAL;
3882 	}
3883 
3884 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3885 	if (!request_wiphy)
3886 		return -ENODEV;
3887 
3888 	if (!driver_request->intersect) {
3889 		ASSERT_RTNL();
3890 		wiphy_lock(request_wiphy);
3891 		if (request_wiphy->regd) {
3892 			wiphy_unlock(request_wiphy);
3893 			return -EALREADY;
3894 		}
3895 
3896 		regd = reg_copy_regd(rd);
3897 		if (IS_ERR(regd)) {
3898 			wiphy_unlock(request_wiphy);
3899 			return PTR_ERR(regd);
3900 		}
3901 
3902 		rcu_assign_pointer(request_wiphy->regd, regd);
3903 		wiphy_unlock(request_wiphy);
3904 		reset_regdomains(false, rd);
3905 		return 0;
3906 	}
3907 
3908 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3909 	if (!intersected_rd)
3910 		return -EINVAL;
3911 
3912 	/*
3913 	 * We can trash what CRDA provided now.
3914 	 * However if a driver requested this specific regulatory
3915 	 * domain we keep it for its private use
3916 	 */
3917 	tmp = get_wiphy_regdom(request_wiphy);
3918 	rcu_assign_pointer(request_wiphy->regd, rd);
3919 	rcu_free_regdom(tmp);
3920 
3921 	rd = NULL;
3922 
3923 	reset_regdomains(false, intersected_rd);
3924 
3925 	return 0;
3926 }
3927 
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3928 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3929 				 struct regulatory_request *country_ie_request)
3930 {
3931 	struct wiphy *request_wiphy;
3932 
3933 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3934 	    !is_unknown_alpha2(rd->alpha2))
3935 		return -EINVAL;
3936 
3937 	/*
3938 	 * Lets only bother proceeding on the same alpha2 if the current
3939 	 * rd is non static (it means CRDA was present and was used last)
3940 	 * and the pending request came in from a country IE
3941 	 */
3942 
3943 	if (!is_valid_rd(rd)) {
3944 		pr_err("Invalid regulatory domain detected: %c%c\n",
3945 		       rd->alpha2[0], rd->alpha2[1]);
3946 		print_regdomain_info(rd);
3947 		return -EINVAL;
3948 	}
3949 
3950 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3951 	if (!request_wiphy)
3952 		return -ENODEV;
3953 
3954 	if (country_ie_request->intersect)
3955 		return -EINVAL;
3956 
3957 	reset_regdomains(false, rd);
3958 	return 0;
3959 }
3960 
3961 /*
3962  * Use this call to set the current regulatory domain. Conflicts with
3963  * multiple drivers can be ironed out later. Caller must've already
3964  * kmalloc'd the rd structure.
3965  */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3966 int set_regdom(const struct ieee80211_regdomain *rd,
3967 	       enum ieee80211_regd_source regd_src)
3968 {
3969 	struct regulatory_request *lr;
3970 	bool user_reset = false;
3971 	int r;
3972 
3973 	if (IS_ERR_OR_NULL(rd))
3974 		return -ENODATA;
3975 
3976 	if (!reg_is_valid_request(rd->alpha2)) {
3977 		kfree(rd);
3978 		return -EINVAL;
3979 	}
3980 
3981 	if (regd_src == REGD_SOURCE_CRDA)
3982 		reset_crda_timeouts();
3983 
3984 	lr = get_last_request();
3985 
3986 	/* Note that this doesn't update the wiphys, this is done below */
3987 	switch (lr->initiator) {
3988 	case NL80211_REGDOM_SET_BY_CORE:
3989 		r = reg_set_rd_core(rd);
3990 		break;
3991 	case NL80211_REGDOM_SET_BY_USER:
3992 		cfg80211_save_user_regdom(rd);
3993 		r = reg_set_rd_user(rd, lr);
3994 		user_reset = true;
3995 		break;
3996 	case NL80211_REGDOM_SET_BY_DRIVER:
3997 		r = reg_set_rd_driver(rd, lr);
3998 		break;
3999 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
4000 		r = reg_set_rd_country_ie(rd, lr);
4001 		break;
4002 	default:
4003 		WARN(1, "invalid initiator %d\n", lr->initiator);
4004 		kfree(rd);
4005 		return -EINVAL;
4006 	}
4007 
4008 	if (r) {
4009 		switch (r) {
4010 		case -EALREADY:
4011 			reg_set_request_processed();
4012 			break;
4013 		default:
4014 			/* Back to world regulatory in case of errors */
4015 			restore_regulatory_settings(user_reset, false);
4016 		}
4017 
4018 		kfree(rd);
4019 		return r;
4020 	}
4021 
4022 	/* This would make this whole thing pointless */
4023 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4024 		return -EINVAL;
4025 
4026 	/* update all wiphys now with the new established regulatory domain */
4027 	update_all_wiphy_regulatory(lr->initiator);
4028 
4029 	print_regdomain(get_cfg80211_regdom());
4030 
4031 	nl80211_send_reg_change_event(lr);
4032 
4033 	reg_set_request_processed();
4034 
4035 	return 0;
4036 }
4037 
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4038 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4039 				       struct ieee80211_regdomain *rd)
4040 {
4041 	const struct ieee80211_regdomain *regd;
4042 	const struct ieee80211_regdomain *prev_regd;
4043 	struct cfg80211_registered_device *rdev;
4044 
4045 	if (WARN_ON(!wiphy || !rd))
4046 		return -EINVAL;
4047 
4048 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4049 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4050 		return -EPERM;
4051 
4052 	if (WARN(!is_valid_rd(rd),
4053 		 "Invalid regulatory domain detected: %c%c\n",
4054 		 rd->alpha2[0], rd->alpha2[1])) {
4055 		print_regdomain_info(rd);
4056 		return -EINVAL;
4057 	}
4058 
4059 	regd = reg_copy_regd(rd);
4060 	if (IS_ERR(regd))
4061 		return PTR_ERR(regd);
4062 
4063 	rdev = wiphy_to_rdev(wiphy);
4064 
4065 	spin_lock(&reg_requests_lock);
4066 	prev_regd = rdev->requested_regd;
4067 	rdev->requested_regd = regd;
4068 	spin_unlock(&reg_requests_lock);
4069 
4070 	kfree(prev_regd);
4071 	return 0;
4072 }
4073 
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4074 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4075 			      struct ieee80211_regdomain *rd)
4076 {
4077 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4078 
4079 	if (ret)
4080 		return ret;
4081 
4082 	schedule_work(&reg_work);
4083 	return 0;
4084 }
4085 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4086 
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4087 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4088 				   struct ieee80211_regdomain *rd)
4089 {
4090 	int ret;
4091 
4092 	ASSERT_RTNL();
4093 
4094 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4095 	if (ret)
4096 		return ret;
4097 
4098 	/* process the request immediately */
4099 	reg_process_self_managed_hint(wiphy);
4100 	reg_check_channels();
4101 	return 0;
4102 }
4103 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4104 
wiphy_regulatory_register(struct wiphy * wiphy)4105 void wiphy_regulatory_register(struct wiphy *wiphy)
4106 {
4107 	struct regulatory_request *lr = get_last_request();
4108 
4109 	/* self-managed devices ignore beacon hints and country IE */
4110 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4111 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4112 					   REGULATORY_COUNTRY_IE_IGNORE;
4113 
4114 		/*
4115 		 * The last request may have been received before this
4116 		 * registration call. Call the driver notifier if
4117 		 * initiator is USER.
4118 		 */
4119 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4120 			reg_call_notifier(wiphy, lr);
4121 	}
4122 
4123 	if (!reg_dev_ignore_cell_hint(wiphy))
4124 		reg_num_devs_support_basehint++;
4125 
4126 	wiphy_update_regulatory(wiphy, lr->initiator);
4127 	wiphy_all_share_dfs_chan_state(wiphy);
4128 	reg_process_self_managed_hints();
4129 }
4130 
wiphy_regulatory_deregister(struct wiphy * wiphy)4131 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4132 {
4133 	struct wiphy *request_wiphy = NULL;
4134 	struct regulatory_request *lr;
4135 
4136 	lr = get_last_request();
4137 
4138 	if (!reg_dev_ignore_cell_hint(wiphy))
4139 		reg_num_devs_support_basehint--;
4140 
4141 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4142 	RCU_INIT_POINTER(wiphy->regd, NULL);
4143 
4144 	if (lr)
4145 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4146 
4147 	if (!request_wiphy || request_wiphy != wiphy)
4148 		return;
4149 
4150 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4151 	lr->country_ie_env = ENVIRON_ANY;
4152 }
4153 
4154 /*
4155  * See FCC notices for UNII band definitions
4156  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4157  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4158  */
cfg80211_get_unii(int freq)4159 int cfg80211_get_unii(int freq)
4160 {
4161 	/* UNII-1 */
4162 	if (freq >= 5150 && freq <= 5250)
4163 		return 0;
4164 
4165 	/* UNII-2A */
4166 	if (freq > 5250 && freq <= 5350)
4167 		return 1;
4168 
4169 	/* UNII-2B */
4170 	if (freq > 5350 && freq <= 5470)
4171 		return 2;
4172 
4173 	/* UNII-2C */
4174 	if (freq > 5470 && freq <= 5725)
4175 		return 3;
4176 
4177 	/* UNII-3 */
4178 	if (freq > 5725 && freq <= 5825)
4179 		return 4;
4180 
4181 	/* UNII-5 */
4182 	if (freq > 5925 && freq <= 6425)
4183 		return 5;
4184 
4185 	/* UNII-6 */
4186 	if (freq > 6425 && freq <= 6525)
4187 		return 6;
4188 
4189 	/* UNII-7 */
4190 	if (freq > 6525 && freq <= 6875)
4191 		return 7;
4192 
4193 	/* UNII-8 */
4194 	if (freq > 6875 && freq <= 7125)
4195 		return 8;
4196 
4197 	return -EINVAL;
4198 }
4199 
regulatory_indoor_allowed(void)4200 bool regulatory_indoor_allowed(void)
4201 {
4202 	return reg_is_indoor;
4203 }
4204 
regulatory_pre_cac_allowed(struct wiphy * wiphy)4205 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4206 {
4207 	const struct ieee80211_regdomain *regd = NULL;
4208 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4209 	bool pre_cac_allowed = false;
4210 
4211 	rcu_read_lock();
4212 
4213 	regd = rcu_dereference(cfg80211_regdomain);
4214 	wiphy_regd = rcu_dereference(wiphy->regd);
4215 	if (!wiphy_regd) {
4216 		if (regd->dfs_region == NL80211_DFS_ETSI)
4217 			pre_cac_allowed = true;
4218 
4219 		rcu_read_unlock();
4220 
4221 		return pre_cac_allowed;
4222 	}
4223 
4224 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4225 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4226 		pre_cac_allowed = true;
4227 
4228 	rcu_read_unlock();
4229 
4230 	return pre_cac_allowed;
4231 }
4232 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4233 
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4234 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4235 {
4236 	struct wireless_dev *wdev;
4237 	/* If we finished CAC or received radar, we should end any
4238 	 * CAC running on the same channels.
4239 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4240 	 * either all channels are available - those the CAC_FINISHED
4241 	 * event has effected another wdev state, or there is a channel
4242 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4243 	 * event has effected another wdev state.
4244 	 * In both cases we should end the CAC on the wdev.
4245 	 */
4246 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4247 		struct cfg80211_chan_def *chandef;
4248 
4249 		if (!wdev->cac_started)
4250 			continue;
4251 
4252 		/* FIXME: radar detection is tied to link 0 for now */
4253 		chandef = wdev_chandef(wdev, 0);
4254 		if (!chandef)
4255 			continue;
4256 
4257 		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4258 			rdev_end_cac(rdev, wdev->netdev);
4259 	}
4260 }
4261 
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4262 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4263 				    struct cfg80211_chan_def *chandef,
4264 				    enum nl80211_dfs_state dfs_state,
4265 				    enum nl80211_radar_event event)
4266 {
4267 	struct cfg80211_registered_device *rdev;
4268 
4269 	ASSERT_RTNL();
4270 
4271 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4272 		return;
4273 
4274 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4275 		if (wiphy == &rdev->wiphy)
4276 			continue;
4277 
4278 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4279 			continue;
4280 
4281 		if (!ieee80211_get_channel(&rdev->wiphy,
4282 					   chandef->chan->center_freq))
4283 			continue;
4284 
4285 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4286 
4287 		if (event == NL80211_RADAR_DETECTED ||
4288 		    event == NL80211_RADAR_CAC_FINISHED) {
4289 			cfg80211_sched_dfs_chan_update(rdev);
4290 			cfg80211_check_and_end_cac(rdev);
4291 		}
4292 
4293 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4294 	}
4295 }
4296 
regulatory_init_db(void)4297 static int __init regulatory_init_db(void)
4298 {
4299 	int err;
4300 
4301 	/*
4302 	 * It's possible that - due to other bugs/issues - cfg80211
4303 	 * never called regulatory_init() below, or that it failed;
4304 	 * in that case, don't try to do any further work here as
4305 	 * it's doomed to lead to crashes.
4306 	 */
4307 	if (IS_ERR_OR_NULL(reg_pdev))
4308 		return -EINVAL;
4309 
4310 	err = load_builtin_regdb_keys();
4311 	if (err) {
4312 		platform_device_unregister(reg_pdev);
4313 		return err;
4314 	}
4315 
4316 	/* We always try to get an update for the static regdomain */
4317 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4318 	if (err) {
4319 		if (err == -ENOMEM) {
4320 			platform_device_unregister(reg_pdev);
4321 			return err;
4322 		}
4323 		/*
4324 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4325 		 * memory which is handled and propagated appropriately above
4326 		 * but it can also fail during a netlink_broadcast() or during
4327 		 * early boot for call_usermodehelper(). For now treat these
4328 		 * errors as non-fatal.
4329 		 */
4330 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4331 	}
4332 
4333 	/*
4334 	 * Finally, if the user set the module parameter treat it
4335 	 * as a user hint.
4336 	 */
4337 	if (!is_world_regdom(ieee80211_regdom))
4338 		regulatory_hint_user(ieee80211_regdom,
4339 				     NL80211_USER_REG_HINT_USER);
4340 
4341 	return 0;
4342 }
4343 #ifndef MODULE
4344 late_initcall(regulatory_init_db);
4345 #endif
4346 
regulatory_init(void)4347 int __init regulatory_init(void)
4348 {
4349 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4350 	if (IS_ERR(reg_pdev))
4351 		return PTR_ERR(reg_pdev);
4352 
4353 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4354 
4355 	user_alpha2[0] = '9';
4356 	user_alpha2[1] = '7';
4357 
4358 #ifdef MODULE
4359 	return regulatory_init_db();
4360 #else
4361 	return 0;
4362 #endif
4363 }
4364 
regulatory_exit(void)4365 void regulatory_exit(void)
4366 {
4367 	struct regulatory_request *reg_request, *tmp;
4368 	struct reg_beacon *reg_beacon, *btmp;
4369 
4370 	cancel_work_sync(&reg_work);
4371 	cancel_crda_timeout_sync();
4372 	cancel_delayed_work_sync(&reg_check_chans);
4373 
4374 	/* Lock to suppress warnings */
4375 	rtnl_lock();
4376 	reset_regdomains(true, NULL);
4377 	rtnl_unlock();
4378 
4379 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4380 
4381 	platform_device_unregister(reg_pdev);
4382 
4383 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4384 		list_del(&reg_beacon->list);
4385 		kfree(reg_beacon);
4386 	}
4387 
4388 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4389 		list_del(&reg_beacon->list);
4390 		kfree(reg_beacon);
4391 	}
4392 
4393 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4394 		list_del(&reg_request->list);
4395 		kfree(reg_request);
4396 	}
4397 
4398 	if (!IS_ERR_OR_NULL(regdb))
4399 		kfree(regdb);
4400 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4401 		kfree(cfg80211_user_regdom);
4402 
4403 	free_regdb_keyring();
4404 }
4405