1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2024 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137
get_cfg80211_regdom(void)138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142
143 /*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
get_wiphy_regdom(struct wiphy * wiphy)148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169 }
170
reg_get_dfs_region(struct wiphy * wiphy)171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201 out:
202 rcu_read_unlock();
203
204 return dfs_region;
205 }
206
rcu_free_regdom(const struct ieee80211_regdomain * r)207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213
get_last_request(void)214 static struct regulatory_request *get_last_request(void)
215 {
216 return rcu_dereference_rtnl(last_request);
217 }
218
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229
230 struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233 };
234
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279 };
280
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
reg_free_request(struct regulatory_request * request)292 static void reg_free_request(struct regulatory_request *request)
293 {
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299 }
300
reg_free_last_request(void)301 static void reg_free_last_request(void)
302 {
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307 }
308
reg_update_last_request(struct regulatory_request * request)309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319 }
320
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)321 static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323 {
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348 }
349
350 /*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
update_world_regdomain(const struct ieee80211_regdomain * rd)354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365 }
366
is_world_regdom(const char * alpha2)367 bool is_world_regdom(const char *alpha2)
368 {
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373
is_alpha2_set(const char * alpha2)374 static bool is_alpha2_set(const char *alpha2)
375 {
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379 }
380
is_unknown_alpha2(const char * alpha2)381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391
is_intersected_alpha2(const char * alpha2)392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403
is_an_alpha2(const char * alpha2)404 static bool is_an_alpha2(const char *alpha2)
405 {
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410
alpha2_equal(const char * alpha2_x,const char * alpha2_y)411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417
regdom_changes(const char * alpha2)418 static bool regdom_changes(const char *alpha2)
419 {
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425 }
426
427 /*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
is_user_regdom_saved(void)432 static bool is_user_regdom_saved(void)
433 {
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444 }
445
446 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464 }
465
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474
475 struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478 };
479
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
reg_regdb_apply(struct work_struct * work)483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502 }
503
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
reg_schedule_apply(const struct ieee80211_regdomain * regdom)506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524 }
525
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529
530 static u32 reg_crda_timeouts;
531
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
crda_timeout_work(struct work_struct * work)535 static void crda_timeout_work(struct work_struct *work)
536 {
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542 }
543
cancel_crda_timeout(void)544 static void cancel_crda_timeout(void)
545 {
546 cancel_delayed_work(&crda_timeout);
547 }
548
cancel_crda_timeout_sync(void)549 static void cancel_crda_timeout_sync(void)
550 {
551 cancel_delayed_work_sync(&crda_timeout);
552 }
553
reset_crda_timeouts(void)554 static void reset_crda_timeouts(void)
555 {
556 reg_crda_timeouts = 0;
557 }
558
559 /*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
call_crda(const char * alpha2)563 static int call_crda(const char *alpha2)
564 {
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590 }
591 #else
cancel_crda_timeout(void)592 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)593 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)594 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)595 static inline int call_crda(const char *alpha2)
596 {
597 return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603
604 struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608 } __packed __aligned(4);
609
610 struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617
618 enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624 };
625
626 struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630 } __packed;
631
632 struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636
637 struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645 } __packed __aligned(4);
646
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649
650 struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654 } __packed __aligned(4);
655
ecw2cw(int ecw)656 static int ecw2cw(int ecw)
657 {
658 return (1 << ecw) - 1;
659 }
660
valid_wmm(struct fwdb_wmm_rule * rule)661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679 }
680
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704 }
705
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)706 static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708 {
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737 }
738
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741
742 static struct key *builtin_regdb_keys;
743
load_builtin_regdb_keys(void)744 static int __init load_builtin_regdb_keys(void)
745 {
746 builtin_regdb_keys =
747 keyring_alloc(".builtin_regdb_keys",
748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 if (IS_ERR(builtin_regdb_keys))
753 return PTR_ERR(builtin_regdb_keys);
754
755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 x509_load_certificate_list(shipped_regdb_certs,
759 shipped_regdb_certs_len,
760 builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 x509_load_certificate_list(extra_regdb_certs,
765 extra_regdb_certs_len,
766 builtin_regdb_keys);
767 #endif
768
769 return 0;
770 }
771
772 MODULE_FIRMWARE("regulatory.db.p7s");
773
regdb_has_valid_signature(const u8 * data,unsigned int size)774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776 const struct firmware *sig;
777 bool result;
778
779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
780 return false;
781
782 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 builtin_regdb_keys,
784 VERIFYING_UNSPECIFIED_SIGNATURE,
785 NULL, NULL) == 0;
786
787 release_firmware(sig);
788
789 return result;
790 }
791
free_regdb_keyring(void)792 static void free_regdb_keyring(void)
793 {
794 key_put(builtin_regdb_keys);
795 }
796 #else
load_builtin_regdb_keys(void)797 static int load_builtin_regdb_keys(void)
798 {
799 return 0;
800 }
801
regdb_has_valid_signature(const u8 * data,unsigned int size)802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804 return true;
805 }
806
free_regdb_keyring(void)807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
valid_regdb(const u8 * data,unsigned int size)812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814 const struct fwdb_header *hdr = (void *)data;
815 const struct fwdb_country *country;
816
817 if (size < sizeof(*hdr))
818 return false;
819
820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 return false;
822
823 if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 return false;
825
826 if (!regdb_has_valid_signature(data, size))
827 return false;
828
829 country = &hdr->country[0];
830 while ((u8 *)(country + 1) <= data + size) {
831 if (!country->coll_ptr)
832 break;
833 if (!valid_country(data, size, country))
834 return false;
835 country++;
836 }
837
838 return true;
839 }
840
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)841 static void set_wmm_rule(const struct fwdb_header *db,
842 const struct fwdb_country *country,
843 const struct fwdb_rule *rule,
844 struct ieee80211_reg_rule *rrule)
845 {
846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 struct fwdb_wmm_rule *wmm;
848 unsigned int i, wmm_ptr;
849
850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 wmm = (void *)((u8 *)db + wmm_ptr);
852
853 if (!valid_wmm(wmm)) {
854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 country->alpha2[0], country->alpha2[1]);
857 return;
858 }
859
860 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 wmm_rule->client[i].cw_min =
862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
865 wmm_rule->client[i].cot =
866 1000 * be16_to_cpu(wmm->client[i].cot);
867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 }
872
873 rrule->has_wmm = true;
874 }
875
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)876 static int __regdb_query_wmm(const struct fwdb_header *db,
877 const struct fwdb_country *country, int freq,
878 struct ieee80211_reg_rule *rrule)
879 {
880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 int i;
883
884 for (i = 0; i < coll->n_rules; i++) {
885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 continue;
891
892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 set_wmm_rule(db, country, rule, rrule);
895 return 0;
896 }
897 }
898
899 return -ENODATA;
900 }
901
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904 const struct fwdb_header *hdr = regdb;
905 const struct fwdb_country *country;
906
907 if (!regdb)
908 return -ENODATA;
909
910 if (IS_ERR(regdb))
911 return PTR_ERR(regdb);
912
913 country = &hdr->country[0];
914 while (country->coll_ptr) {
915 if (alpha2_equal(alpha2, country->alpha2))
916 return __regdb_query_wmm(regdb, country, freq, rule);
917
918 country++;
919 }
920
921 return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)925 static int regdb_query_country(const struct fwdb_header *db,
926 const struct fwdb_country *country)
927 {
928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 struct ieee80211_regdomain *regdom;
931 unsigned int i;
932
933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 GFP_KERNEL);
935 if (!regdom)
936 return -ENOMEM;
937
938 regdom->n_reg_rules = coll->n_rules;
939 regdom->alpha2[0] = country->alpha2[0];
940 regdom->alpha2[1] = country->alpha2[1];
941 regdom->dfs_region = coll->dfs_region;
942
943 for (i = 0; i < regdom->n_reg_rules; i++) {
944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
948
949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953 rrule->power_rule.max_antenna_gain = 0;
954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956 rrule->flags = 0;
957 if (rule->flags & FWDB_FLAG_NO_OFDM)
958 rrule->flags |= NL80211_RRF_NO_OFDM;
959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 if (rule->flags & FWDB_FLAG_DFS)
962 rrule->flags |= NL80211_RRF_DFS;
963 if (rule->flags & FWDB_FLAG_NO_IR)
964 rrule->flags |= NL80211_RRF_NO_IR;
965 if (rule->flags & FWDB_FLAG_AUTO_BW)
966 rrule->flags |= NL80211_RRF_AUTO_BW;
967
968 rrule->dfs_cac_ms = 0;
969
970 /* handle optional data */
971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 rrule->dfs_cac_ms =
973 1000 * be16_to_cpu(rule->cac_timeout);
974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 set_wmm_rule(db, country, rule, rrule);
976 }
977
978 return reg_schedule_apply(regdom);
979 }
980
query_regdb(const char * alpha2)981 static int query_regdb(const char *alpha2)
982 {
983 const struct fwdb_header *hdr = regdb;
984 const struct fwdb_country *country;
985
986 ASSERT_RTNL();
987
988 if (IS_ERR(regdb))
989 return PTR_ERR(regdb);
990
991 country = &hdr->country[0];
992 while (country->coll_ptr) {
993 if (alpha2_equal(alpha2, country->alpha2))
994 return regdb_query_country(regdb, country);
995 country++;
996 }
997
998 return -ENODATA;
999 }
1000
regdb_fw_cb(const struct firmware * fw,void * context)1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003 int set_error = 0;
1004 bool restore = true;
1005 void *db;
1006
1007 if (!fw) {
1008 pr_info("failed to load regulatory.db\n");
1009 set_error = -ENODATA;
1010 } else if (!valid_regdb(fw->data, fw->size)) {
1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 set_error = -EINVAL;
1013 }
1014
1015 rtnl_lock();
1016 if (regdb && !IS_ERR(regdb)) {
1017 /* negative case - a bug
1018 * positive case - can happen due to race in case of multiple cb's in
1019 * queue, due to usage of asynchronous callback
1020 *
1021 * Either case, just restore and free new db.
1022 */
1023 } else if (set_error) {
1024 regdb = ERR_PTR(set_error);
1025 } else if (fw) {
1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 if (db) {
1028 regdb = db;
1029 restore = context && query_regdb(context);
1030 } else {
1031 restore = true;
1032 }
1033 }
1034
1035 if (restore)
1036 restore_regulatory_settings(true, false);
1037
1038 rtnl_unlock();
1039
1040 kfree(context);
1041
1042 release_firmware(fw);
1043 }
1044
1045 MODULE_FIRMWARE("regulatory.db");
1046
query_regdb_file(const char * alpha2)1047 static int query_regdb_file(const char *alpha2)
1048 {
1049 int err;
1050
1051 ASSERT_RTNL();
1052
1053 if (regdb)
1054 return query_regdb(alpha2);
1055
1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 if (!alpha2)
1058 return -ENOMEM;
1059
1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 ®_pdev->dev, GFP_KERNEL,
1062 (void *)alpha2, regdb_fw_cb);
1063 if (err)
1064 kfree(alpha2);
1065
1066 return err;
1067 }
1068
reg_reload_regdb(void)1069 int reg_reload_regdb(void)
1070 {
1071 const struct firmware *fw;
1072 void *db;
1073 int err;
1074 const struct ieee80211_regdomain *current_regdomain;
1075 struct regulatory_request *request;
1076
1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1078 if (err)
1079 return err;
1080
1081 if (!valid_regdb(fw->data, fw->size)) {
1082 err = -ENODATA;
1083 goto out;
1084 }
1085
1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 if (!db) {
1088 err = -ENOMEM;
1089 goto out;
1090 }
1091
1092 rtnl_lock();
1093 if (!IS_ERR_OR_NULL(regdb))
1094 kfree(regdb);
1095 regdb = db;
1096
1097 /* reset regulatory domain */
1098 current_regdomain = get_cfg80211_regdom();
1099
1100 request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 if (!request) {
1102 err = -ENOMEM;
1103 goto out_unlock;
1104 }
1105
1106 request->wiphy_idx = WIPHY_IDX_INVALID;
1107 request->alpha2[0] = current_regdomain->alpha2[0];
1108 request->alpha2[1] = current_regdomain->alpha2[1];
1109 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112 reg_process_hint(request);
1113
1114 out_unlock:
1115 rtnl_unlock();
1116 out:
1117 release_firmware(fw);
1118 return err;
1119 }
1120
reg_query_database(struct regulatory_request * request)1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123 if (query_regdb_file(request->alpha2) == 0)
1124 return true;
1125
1126 if (call_crda(request->alpha2) == 0)
1127 return true;
1128
1129 return false;
1130 }
1131
reg_is_valid_request(const char * alpha2)1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134 struct regulatory_request *lr = get_last_request();
1135
1136 if (!lr || lr->processed)
1137 return false;
1138
1139 return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141
reg_get_regdomain(struct wiphy * wiphy)1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144 struct regulatory_request *lr = get_last_request();
1145
1146 /*
1147 * Follow the driver's regulatory domain, if present, unless a country
1148 * IE has been processed or a user wants to help complaince further
1149 */
1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 wiphy->regd)
1153 return get_wiphy_regdom(wiphy);
1154
1155 return get_cfg80211_regdom();
1156 }
1157
1158 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 const struct ieee80211_reg_rule *rule)
1161 {
1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 const struct ieee80211_freq_range *freq_range_tmp;
1164 const struct ieee80211_reg_rule *tmp;
1165 u32 start_freq, end_freq, idx, no;
1166
1167 for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 if (rule == &rd->reg_rules[idx])
1169 break;
1170
1171 if (idx == rd->n_reg_rules)
1172 return 0;
1173
1174 /* get start_freq */
1175 no = idx;
1176
1177 while (no) {
1178 tmp = &rd->reg_rules[--no];
1179 freq_range_tmp = &tmp->freq_range;
1180
1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 break;
1183
1184 freq_range = freq_range_tmp;
1185 }
1186
1187 start_freq = freq_range->start_freq_khz;
1188
1189 /* get end_freq */
1190 freq_range = &rule->freq_range;
1191 no = idx;
1192
1193 while (no < rd->n_reg_rules - 1) {
1194 tmp = &rd->reg_rules[++no];
1195 freq_range_tmp = &tmp->freq_range;
1196
1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 break;
1199
1200 freq_range = freq_range_tmp;
1201 }
1202
1203 end_freq = freq_range->end_freq_khz;
1204
1205 return end_freq - start_freq;
1206 }
1207
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 const struct ieee80211_reg_rule *rule)
1210 {
1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213 if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220 /*
1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 * are not allowed.
1223 */
1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228 return bw;
1229 }
1230
1231 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 u32 freq_diff;
1236
1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 return false;
1239
1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 return false;
1242
1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 freq_range->max_bandwidth_khz > freq_diff)
1247 return false;
1248
1249 return true;
1250 }
1251
is_valid_rd(const struct ieee80211_regdomain * rd)1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254 const struct ieee80211_reg_rule *reg_rule = NULL;
1255 unsigned int i;
1256
1257 if (!rd->n_reg_rules)
1258 return false;
1259
1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 return false;
1262
1263 for (i = 0; i < rd->n_reg_rules; i++) {
1264 reg_rule = &rd->reg_rules[i];
1265 if (!is_valid_reg_rule(reg_rule))
1266 return false;
1267 }
1268
1269 return true;
1270 }
1271
1272 /**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1288 u32 freq_khz)
1289 {
1290 #define ONE_GHZ_IN_KHZ 1000000
1291 /*
1292 * From 802.11ad: directional multi-gigabit (DMG):
1293 * Pertaining to operation in a frequency band containing a channel
1294 * with the Channel starting frequency above 45 GHz.
1295 */
1296 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1299 return true;
1300 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1301 return true;
1302 return false;
1303 #undef ONE_GHZ_IN_KHZ
1304 }
1305
1306 /*
1307 * Later on we can perhaps use the more restrictive DFS
1308 * region but we don't have information for that yet so
1309 * for now simply disallow conflicts.
1310 */
1311 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313 const enum nl80211_dfs_regions dfs_region2)
1314 {
1315 if (dfs_region1 != dfs_region2)
1316 return NL80211_DFS_UNSET;
1317 return dfs_region1;
1318 }
1319
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321 const struct ieee80211_wmm_ac *wmm_ac2,
1322 struct ieee80211_wmm_ac *intersect)
1323 {
1324 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1328 }
1329
1330 /*
1331 * Helper for regdom_intersect(), this does the real
1332 * mathematical intersection fun
1333 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335 const struct ieee80211_regdomain *rd2,
1336 const struct ieee80211_reg_rule *rule1,
1337 const struct ieee80211_reg_rule *rule2,
1338 struct ieee80211_reg_rule *intersected_rule)
1339 {
1340 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341 struct ieee80211_freq_range *freq_range;
1342 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343 struct ieee80211_power_rule *power_rule;
1344 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345 struct ieee80211_wmm_rule *wmm_rule;
1346 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1347
1348 freq_range1 = &rule1->freq_range;
1349 freq_range2 = &rule2->freq_range;
1350 freq_range = &intersected_rule->freq_range;
1351
1352 power_rule1 = &rule1->power_rule;
1353 power_rule2 = &rule2->power_rule;
1354 power_rule = &intersected_rule->power_rule;
1355
1356 wmm_rule1 = &rule1->wmm_rule;
1357 wmm_rule2 = &rule2->wmm_rule;
1358 wmm_rule = &intersected_rule->wmm_rule;
1359
1360 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361 freq_range2->start_freq_khz);
1362 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363 freq_range2->end_freq_khz);
1364
1365 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1367
1368 if (rule1->flags & NL80211_RRF_AUTO_BW)
1369 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370 if (rule2->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1372
1373 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1374
1375 intersected_rule->flags = rule1->flags | rule2->flags;
1376
1377 /*
1378 * In case NL80211_RRF_AUTO_BW requested for both rules
1379 * set AUTO_BW in intersected rule also. Next we will
1380 * calculate BW correctly in handle_channel function.
1381 * In other case remove AUTO_BW flag while we calculate
1382 * maximum bandwidth correctly and auto calculation is
1383 * not required.
1384 */
1385 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386 (rule2->flags & NL80211_RRF_AUTO_BW))
1387 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1388 else
1389 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1390
1391 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392 if (freq_range->max_bandwidth_khz > freq_diff)
1393 freq_range->max_bandwidth_khz = freq_diff;
1394
1395 power_rule->max_eirp = min(power_rule1->max_eirp,
1396 power_rule2->max_eirp);
1397 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398 power_rule2->max_antenna_gain);
1399
1400 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1401 rule2->dfs_cac_ms);
1402
1403 if (rule1->has_wmm && rule2->has_wmm) {
1404 u8 ac;
1405
1406 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408 &wmm_rule2->client[ac],
1409 &wmm_rule->client[ac]);
1410 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1411 &wmm_rule2->ap[ac],
1412 &wmm_rule->ap[ac]);
1413 }
1414
1415 intersected_rule->has_wmm = true;
1416 } else if (rule1->has_wmm) {
1417 *wmm_rule = *wmm_rule1;
1418 intersected_rule->has_wmm = true;
1419 } else if (rule2->has_wmm) {
1420 *wmm_rule = *wmm_rule2;
1421 intersected_rule->has_wmm = true;
1422 } else {
1423 intersected_rule->has_wmm = false;
1424 }
1425
1426 if (!is_valid_reg_rule(intersected_rule))
1427 return -EINVAL;
1428
1429 return 0;
1430 }
1431
1432 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1433 static bool rule_contains(struct ieee80211_reg_rule *r1,
1434 struct ieee80211_reg_rule *r2)
1435 {
1436 /* for simplicity, currently consider only same flags */
1437 if (r1->flags != r2->flags)
1438 return false;
1439
1440 /* verify r1 is more restrictive */
1441 if ((r1->power_rule.max_antenna_gain >
1442 r2->power_rule.max_antenna_gain) ||
1443 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1444 return false;
1445
1446 /* make sure r2's range is contained within r1 */
1447 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1449 return false;
1450
1451 /* and finally verify that r1.max_bw >= r2.max_bw */
1452 if (r1->freq_range.max_bandwidth_khz <
1453 r2->freq_range.max_bandwidth_khz)
1454 return false;
1455
1456 return true;
1457 }
1458
1459 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1460 static void add_rule(struct ieee80211_reg_rule *rule,
1461 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1462 {
1463 struct ieee80211_reg_rule *tmp_rule;
1464 int i;
1465
1466 for (i = 0; i < *n_rules; i++) {
1467 tmp_rule = ®_rules[i];
1468 /* rule is already contained - do nothing */
1469 if (rule_contains(tmp_rule, rule))
1470 return;
1471
1472 /* extend rule if possible */
1473 if (rule_contains(rule, tmp_rule)) {
1474 memcpy(tmp_rule, rule, sizeof(*rule));
1475 return;
1476 }
1477 }
1478
1479 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1480 (*n_rules)++;
1481 }
1482
1483 /**
1484 * regdom_intersect - do the intersection between two regulatory domains
1485 * @rd1: first regulatory domain
1486 * @rd2: second regulatory domain
1487 *
1488 * Use this function to get the intersection between two regulatory domains.
1489 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490 * as no one single alpha2 can represent this regulatory domain.
1491 *
1492 * Returns a pointer to the regulatory domain structure which will hold the
1493 * resulting intersection of rules between rd1 and rd2. We will
1494 * kzalloc() this structure for you.
1495 */
1496 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1497 regdom_intersect(const struct ieee80211_regdomain *rd1,
1498 const struct ieee80211_regdomain *rd2)
1499 {
1500 int r;
1501 unsigned int x, y;
1502 unsigned int num_rules = 0;
1503 const struct ieee80211_reg_rule *rule1, *rule2;
1504 struct ieee80211_reg_rule intersected_rule;
1505 struct ieee80211_regdomain *rd;
1506
1507 if (!rd1 || !rd2)
1508 return NULL;
1509
1510 /*
1511 * First we get a count of the rules we'll need, then we actually
1512 * build them. This is to so we can malloc() and free() a
1513 * regdomain once. The reason we use reg_rules_intersect() here
1514 * is it will return -EINVAL if the rule computed makes no sense.
1515 * All rules that do check out OK are valid.
1516 */
1517
1518 for (x = 0; x < rd1->n_reg_rules; x++) {
1519 rule1 = &rd1->reg_rules[x];
1520 for (y = 0; y < rd2->n_reg_rules; y++) {
1521 rule2 = &rd2->reg_rules[y];
1522 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1523 &intersected_rule))
1524 num_rules++;
1525 }
1526 }
1527
1528 if (!num_rules)
1529 return NULL;
1530
1531 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1532 if (!rd)
1533 return NULL;
1534
1535 for (x = 0; x < rd1->n_reg_rules; x++) {
1536 rule1 = &rd1->reg_rules[x];
1537 for (y = 0; y < rd2->n_reg_rules; y++) {
1538 rule2 = &rd2->reg_rules[y];
1539 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1540 &intersected_rule);
1541 /*
1542 * No need to memset here the intersected rule here as
1543 * we're not using the stack anymore
1544 */
1545 if (r)
1546 continue;
1547
1548 add_rule(&intersected_rule, rd->reg_rules,
1549 &rd->n_reg_rules);
1550 }
1551 }
1552
1553 rd->alpha2[0] = '9';
1554 rd->alpha2[1] = '8';
1555 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1556 rd2->dfs_region);
1557
1558 return rd;
1559 }
1560
1561 /*
1562 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563 * want to just have the channel structure use these
1564 */
map_regdom_flags(u32 rd_flags)1565 static u32 map_regdom_flags(u32 rd_flags)
1566 {
1567 u32 channel_flags = 0;
1568 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569 channel_flags |= IEEE80211_CHAN_NO_IR;
1570 if (rd_flags & NL80211_RRF_DFS)
1571 channel_flags |= IEEE80211_CHAN_RADAR;
1572 if (rd_flags & NL80211_RRF_NO_OFDM)
1573 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582 if (rd_flags & NL80211_RRF_NO_80MHZ)
1583 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584 if (rd_flags & NL80211_RRF_NO_160MHZ)
1585 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586 if (rd_flags & NL80211_RRF_NO_HE)
1587 channel_flags |= IEEE80211_CHAN_NO_HE;
1588 if (rd_flags & NL80211_RRF_NO_320MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590 if (rd_flags & NL80211_RRF_NO_EHT)
1591 channel_flags |= IEEE80211_CHAN_NO_EHT;
1592 if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1593 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1594 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1595 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1596 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1597 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1598 if (rd_flags & NL80211_RRF_PSD)
1599 channel_flags |= IEEE80211_CHAN_PSD;
1600 return channel_flags;
1601 }
1602
1603 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1604 freq_reg_info_regd(u32 center_freq,
1605 const struct ieee80211_regdomain *regd, u32 bw)
1606 {
1607 int i;
1608 bool band_rule_found = false;
1609 bool bw_fits = false;
1610
1611 if (!regd)
1612 return ERR_PTR(-EINVAL);
1613
1614 for (i = 0; i < regd->n_reg_rules; i++) {
1615 const struct ieee80211_reg_rule *rr;
1616 const struct ieee80211_freq_range *fr = NULL;
1617
1618 rr = ®d->reg_rules[i];
1619 fr = &rr->freq_range;
1620
1621 /*
1622 * We only need to know if one frequency rule was
1623 * in center_freq's band, that's enough, so let's
1624 * not overwrite it once found
1625 */
1626 if (!band_rule_found)
1627 band_rule_found = freq_in_rule_band(fr, center_freq);
1628
1629 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1630
1631 if (band_rule_found && bw_fits)
1632 return rr;
1633 }
1634
1635 if (!band_rule_found)
1636 return ERR_PTR(-ERANGE);
1637
1638 return ERR_PTR(-EINVAL);
1639 }
1640
1641 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1642 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1643 {
1644 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1645 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1646 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1647 int i = ARRAY_SIZE(bws) - 1;
1648 u32 bw;
1649
1650 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1651 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1652 if (!IS_ERR(reg_rule))
1653 return reg_rule;
1654 }
1655
1656 return reg_rule;
1657 }
1658
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1659 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1660 u32 center_freq)
1661 {
1662 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1663
1664 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1665 }
1666 EXPORT_SYMBOL(freq_reg_info);
1667
reg_initiator_name(enum nl80211_reg_initiator initiator)1668 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1669 {
1670 switch (initiator) {
1671 case NL80211_REGDOM_SET_BY_CORE:
1672 return "core";
1673 case NL80211_REGDOM_SET_BY_USER:
1674 return "user";
1675 case NL80211_REGDOM_SET_BY_DRIVER:
1676 return "driver";
1677 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1678 return "country element";
1679 default:
1680 WARN_ON(1);
1681 return "bug";
1682 }
1683 }
1684 EXPORT_SYMBOL(reg_initiator_name);
1685
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1686 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1687 const struct ieee80211_reg_rule *reg_rule,
1688 const struct ieee80211_channel *chan)
1689 {
1690 const struct ieee80211_freq_range *freq_range = NULL;
1691 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1692 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1693
1694 freq_range = ®_rule->freq_range;
1695
1696 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1697 center_freq_khz = ieee80211_channel_to_khz(chan);
1698 /* Check if auto calculation requested */
1699 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1700 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1701
1702 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1703 if (!cfg80211_does_bw_fit_range(freq_range,
1704 center_freq_khz,
1705 MHZ_TO_KHZ(10)))
1706 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1707 if (!cfg80211_does_bw_fit_range(freq_range,
1708 center_freq_khz,
1709 MHZ_TO_KHZ(20)))
1710 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1711
1712 if (is_s1g) {
1713 /* S1G is strict about non overlapping channels. We can
1714 * calculate which bandwidth is allowed per channel by finding
1715 * the largest bandwidth which cleanly divides the freq_range.
1716 */
1717 int edge_offset;
1718 int ch_bw = max_bandwidth_khz;
1719
1720 while (ch_bw) {
1721 edge_offset = (center_freq_khz - ch_bw / 2) -
1722 freq_range->start_freq_khz;
1723 if (edge_offset % ch_bw == 0) {
1724 switch (KHZ_TO_MHZ(ch_bw)) {
1725 case 1:
1726 bw_flags |= IEEE80211_CHAN_1MHZ;
1727 break;
1728 case 2:
1729 bw_flags |= IEEE80211_CHAN_2MHZ;
1730 break;
1731 case 4:
1732 bw_flags |= IEEE80211_CHAN_4MHZ;
1733 break;
1734 case 8:
1735 bw_flags |= IEEE80211_CHAN_8MHZ;
1736 break;
1737 case 16:
1738 bw_flags |= IEEE80211_CHAN_16MHZ;
1739 break;
1740 default:
1741 /* If we got here, no bandwidths fit on
1742 * this frequency, ie. band edge.
1743 */
1744 bw_flags |= IEEE80211_CHAN_DISABLED;
1745 break;
1746 }
1747 break;
1748 }
1749 ch_bw /= 2;
1750 }
1751 } else {
1752 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1753 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1754 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1755 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1756 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1757 bw_flags |= IEEE80211_CHAN_NO_HT40;
1758 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1759 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1760 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1761 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1762 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1763 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1764 }
1765 return bw_flags;
1766 }
1767
handle_channel_single_rule(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * reg_rule)1768 static void handle_channel_single_rule(struct wiphy *wiphy,
1769 enum nl80211_reg_initiator initiator,
1770 struct ieee80211_channel *chan,
1771 u32 flags,
1772 struct regulatory_request *lr,
1773 struct wiphy *request_wiphy,
1774 const struct ieee80211_reg_rule *reg_rule)
1775 {
1776 u32 bw_flags = 0;
1777 const struct ieee80211_power_rule *power_rule = NULL;
1778 const struct ieee80211_regdomain *regd;
1779
1780 regd = reg_get_regdomain(wiphy);
1781
1782 power_rule = ®_rule->power_rule;
1783 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1784
1785 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1786 request_wiphy && request_wiphy == wiphy &&
1787 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1788 /*
1789 * This guarantees the driver's requested regulatory domain
1790 * will always be used as a base for further regulatory
1791 * settings
1792 */
1793 chan->flags = chan->orig_flags =
1794 map_regdom_flags(reg_rule->flags) | bw_flags;
1795 chan->max_antenna_gain = chan->orig_mag =
1796 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1797 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1798 (int) MBM_TO_DBM(power_rule->max_eirp);
1799
1800 if (chan->flags & IEEE80211_CHAN_RADAR) {
1801 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1802 if (reg_rule->dfs_cac_ms)
1803 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1804 }
1805
1806 if (chan->flags & IEEE80211_CHAN_PSD)
1807 chan->psd = reg_rule->psd;
1808
1809 return;
1810 }
1811
1812 chan->dfs_state = NL80211_DFS_USABLE;
1813 chan->dfs_state_entered = jiffies;
1814
1815 chan->beacon_found = false;
1816 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1817 chan->max_antenna_gain =
1818 min_t(int, chan->orig_mag,
1819 MBI_TO_DBI(power_rule->max_antenna_gain));
1820 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1821
1822 if (chan->flags & IEEE80211_CHAN_RADAR) {
1823 if (reg_rule->dfs_cac_ms)
1824 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1825 else
1826 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1827 }
1828
1829 if (chan->flags & IEEE80211_CHAN_PSD)
1830 chan->psd = reg_rule->psd;
1831
1832 if (chan->orig_mpwr) {
1833 /*
1834 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1835 * will always follow the passed country IE power settings.
1836 */
1837 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1838 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1839 chan->max_power = chan->max_reg_power;
1840 else
1841 chan->max_power = min(chan->orig_mpwr,
1842 chan->max_reg_power);
1843 } else
1844 chan->max_power = chan->max_reg_power;
1845 }
1846
handle_channel_adjacent_rules(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan,u32 flags,struct regulatory_request * lr,struct wiphy * request_wiphy,const struct ieee80211_reg_rule * rrule1,const struct ieee80211_reg_rule * rrule2,struct ieee80211_freq_range * comb_range)1847 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1848 enum nl80211_reg_initiator initiator,
1849 struct ieee80211_channel *chan,
1850 u32 flags,
1851 struct regulatory_request *lr,
1852 struct wiphy *request_wiphy,
1853 const struct ieee80211_reg_rule *rrule1,
1854 const struct ieee80211_reg_rule *rrule2,
1855 struct ieee80211_freq_range *comb_range)
1856 {
1857 u32 bw_flags1 = 0;
1858 u32 bw_flags2 = 0;
1859 const struct ieee80211_power_rule *power_rule1 = NULL;
1860 const struct ieee80211_power_rule *power_rule2 = NULL;
1861 const struct ieee80211_regdomain *regd;
1862
1863 regd = reg_get_regdomain(wiphy);
1864
1865 power_rule1 = &rrule1->power_rule;
1866 power_rule2 = &rrule2->power_rule;
1867 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1868 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1869
1870 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1871 request_wiphy && request_wiphy == wiphy &&
1872 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1873 /* This guarantees the driver's requested regulatory domain
1874 * will always be used as a base for further regulatory
1875 * settings
1876 */
1877 chan->flags =
1878 map_regdom_flags(rrule1->flags) |
1879 map_regdom_flags(rrule2->flags) |
1880 bw_flags1 |
1881 bw_flags2;
1882 chan->orig_flags = chan->flags;
1883 chan->max_antenna_gain =
1884 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1885 MBI_TO_DBI(power_rule2->max_antenna_gain));
1886 chan->orig_mag = chan->max_antenna_gain;
1887 chan->max_reg_power =
1888 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1889 MBM_TO_DBM(power_rule2->max_eirp));
1890 chan->max_power = chan->max_reg_power;
1891 chan->orig_mpwr = chan->max_reg_power;
1892
1893 if (chan->flags & IEEE80211_CHAN_RADAR) {
1894 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1895 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1896 chan->dfs_cac_ms = max_t(unsigned int,
1897 rrule1->dfs_cac_ms,
1898 rrule2->dfs_cac_ms);
1899 }
1900
1901 if ((rrule1->flags & NL80211_RRF_PSD) &&
1902 (rrule2->flags & NL80211_RRF_PSD))
1903 chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1904 else
1905 chan->flags &= ~NL80211_RRF_PSD;
1906
1907 return;
1908 }
1909
1910 chan->dfs_state = NL80211_DFS_USABLE;
1911 chan->dfs_state_entered = jiffies;
1912
1913 chan->beacon_found = false;
1914 chan->flags = flags | bw_flags1 | bw_flags2 |
1915 map_regdom_flags(rrule1->flags) |
1916 map_regdom_flags(rrule2->flags);
1917
1918 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1919 * (otherwise no adj. rule case), recheck therefore
1920 */
1921 if (cfg80211_does_bw_fit_range(comb_range,
1922 ieee80211_channel_to_khz(chan),
1923 MHZ_TO_KHZ(10)))
1924 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1925 if (cfg80211_does_bw_fit_range(comb_range,
1926 ieee80211_channel_to_khz(chan),
1927 MHZ_TO_KHZ(20)))
1928 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1929
1930 chan->max_antenna_gain =
1931 min_t(int, chan->orig_mag,
1932 min_t(int,
1933 MBI_TO_DBI(power_rule1->max_antenna_gain),
1934 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1935 chan->max_reg_power = min_t(int,
1936 MBM_TO_DBM(power_rule1->max_eirp),
1937 MBM_TO_DBM(power_rule2->max_eirp));
1938
1939 if (chan->flags & IEEE80211_CHAN_RADAR) {
1940 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1941 chan->dfs_cac_ms = max_t(unsigned int,
1942 rrule1->dfs_cac_ms,
1943 rrule2->dfs_cac_ms);
1944 else
1945 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1946 }
1947
1948 if (chan->orig_mpwr) {
1949 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1950 * will always follow the passed country IE power settings.
1951 */
1952 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1953 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1954 chan->max_power = chan->max_reg_power;
1955 else
1956 chan->max_power = min(chan->orig_mpwr,
1957 chan->max_reg_power);
1958 } else {
1959 chan->max_power = chan->max_reg_power;
1960 }
1961 }
1962
1963 /* Note that right now we assume the desired channel bandwidth
1964 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1965 * per channel, the primary and the extension channel).
1966 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1967 static void handle_channel(struct wiphy *wiphy,
1968 enum nl80211_reg_initiator initiator,
1969 struct ieee80211_channel *chan)
1970 {
1971 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1972 struct regulatory_request *lr = get_last_request();
1973 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1974 const struct ieee80211_reg_rule *rrule = NULL;
1975 const struct ieee80211_reg_rule *rrule1 = NULL;
1976 const struct ieee80211_reg_rule *rrule2 = NULL;
1977
1978 u32 flags = chan->orig_flags;
1979
1980 rrule = freq_reg_info(wiphy, orig_chan_freq);
1981 if (IS_ERR(rrule)) {
1982 /* check for adjacent match, therefore get rules for
1983 * chan - 20 MHz and chan + 20 MHz and test
1984 * if reg rules are adjacent
1985 */
1986 rrule1 = freq_reg_info(wiphy,
1987 orig_chan_freq - MHZ_TO_KHZ(20));
1988 rrule2 = freq_reg_info(wiphy,
1989 orig_chan_freq + MHZ_TO_KHZ(20));
1990 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1991 struct ieee80211_freq_range comb_range;
1992
1993 if (rrule1->freq_range.end_freq_khz !=
1994 rrule2->freq_range.start_freq_khz)
1995 goto disable_chan;
1996
1997 comb_range.start_freq_khz =
1998 rrule1->freq_range.start_freq_khz;
1999 comb_range.end_freq_khz =
2000 rrule2->freq_range.end_freq_khz;
2001 comb_range.max_bandwidth_khz =
2002 min_t(u32,
2003 rrule1->freq_range.max_bandwidth_khz,
2004 rrule2->freq_range.max_bandwidth_khz);
2005
2006 if (!cfg80211_does_bw_fit_range(&comb_range,
2007 orig_chan_freq,
2008 MHZ_TO_KHZ(20)))
2009 goto disable_chan;
2010
2011 handle_channel_adjacent_rules(wiphy, initiator, chan,
2012 flags, lr, request_wiphy,
2013 rrule1, rrule2,
2014 &comb_range);
2015 return;
2016 }
2017
2018 disable_chan:
2019 /* We will disable all channels that do not match our
2020 * received regulatory rule unless the hint is coming
2021 * from a Country IE and the Country IE had no information
2022 * about a band. The IEEE 802.11 spec allows for an AP
2023 * to send only a subset of the regulatory rules allowed,
2024 * so an AP in the US that only supports 2.4 GHz may only send
2025 * a country IE with information for the 2.4 GHz band
2026 * while 5 GHz is still supported.
2027 */
2028 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2029 PTR_ERR(rrule) == -ERANGE)
2030 return;
2031
2032 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2033 request_wiphy && request_wiphy == wiphy &&
2034 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2035 pr_debug("Disabling freq %d.%03d MHz for good\n",
2036 chan->center_freq, chan->freq_offset);
2037 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2038 chan->flags = chan->orig_flags;
2039 } else {
2040 pr_debug("Disabling freq %d.%03d MHz\n",
2041 chan->center_freq, chan->freq_offset);
2042 chan->flags |= IEEE80211_CHAN_DISABLED;
2043 }
2044 return;
2045 }
2046
2047 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2048 request_wiphy, rrule);
2049 }
2050
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)2051 static void handle_band(struct wiphy *wiphy,
2052 enum nl80211_reg_initiator initiator,
2053 struct ieee80211_supported_band *sband)
2054 {
2055 unsigned int i;
2056
2057 if (!sband)
2058 return;
2059
2060 for (i = 0; i < sband->n_channels; i++)
2061 handle_channel(wiphy, initiator, &sband->channels[i]);
2062 }
2063
reg_request_cell_base(struct regulatory_request * request)2064 static bool reg_request_cell_base(struct regulatory_request *request)
2065 {
2066 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2067 return false;
2068 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2069 }
2070
reg_last_request_cell_base(void)2071 bool reg_last_request_cell_base(void)
2072 {
2073 return reg_request_cell_base(get_last_request());
2074 }
2075
2076 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2077 /* Core specific check */
2078 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2079 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2080 {
2081 struct regulatory_request *lr = get_last_request();
2082
2083 if (!reg_num_devs_support_basehint)
2084 return REG_REQ_IGNORE;
2085
2086 if (reg_request_cell_base(lr) &&
2087 !regdom_changes(pending_request->alpha2))
2088 return REG_REQ_ALREADY_SET;
2089
2090 return REG_REQ_OK;
2091 }
2092
2093 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2094 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2095 {
2096 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2097 }
2098 #else
2099 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)2100 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2101 {
2102 return REG_REQ_IGNORE;
2103 }
2104
reg_dev_ignore_cell_hint(struct wiphy * wiphy)2105 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2106 {
2107 return true;
2108 }
2109 #endif
2110
wiphy_strict_alpha2_regd(struct wiphy * wiphy)2111 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2112 {
2113 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2114 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2115 return true;
2116 return false;
2117 }
2118
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2119 static bool ignore_reg_update(struct wiphy *wiphy,
2120 enum nl80211_reg_initiator initiator)
2121 {
2122 struct regulatory_request *lr = get_last_request();
2123
2124 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2125 return true;
2126
2127 if (!lr) {
2128 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2129 reg_initiator_name(initiator));
2130 return true;
2131 }
2132
2133 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2134 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2135 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2136 reg_initiator_name(initiator));
2137 return true;
2138 }
2139
2140 /*
2141 * wiphy->regd will be set once the device has its own
2142 * desired regulatory domain set
2143 */
2144 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2145 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 !is_world_regdom(lr->alpha2)) {
2147 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2148 reg_initiator_name(initiator));
2149 return true;
2150 }
2151
2152 if (reg_request_cell_base(lr))
2153 return reg_dev_ignore_cell_hint(wiphy);
2154
2155 return false;
2156 }
2157
reg_is_world_roaming(struct wiphy * wiphy)2158 static bool reg_is_world_roaming(struct wiphy *wiphy)
2159 {
2160 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2161 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2162 struct regulatory_request *lr = get_last_request();
2163
2164 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2165 return true;
2166
2167 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2168 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2169 return true;
2170
2171 return false;
2172 }
2173
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2174 static void reg_call_notifier(struct wiphy *wiphy,
2175 struct regulatory_request *request)
2176 {
2177 if (wiphy->reg_notifier)
2178 wiphy->reg_notifier(wiphy, request);
2179 }
2180
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)2181 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2182 struct reg_beacon *reg_beacon)
2183 {
2184 struct ieee80211_supported_band *sband;
2185 struct ieee80211_channel *chan;
2186 bool channel_changed = false;
2187 struct ieee80211_channel chan_before;
2188 struct regulatory_request *lr = get_last_request();
2189
2190 sband = wiphy->bands[reg_beacon->chan.band];
2191 chan = &sband->channels[chan_idx];
2192
2193 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2194 return;
2195
2196 if (chan->beacon_found)
2197 return;
2198
2199 chan->beacon_found = true;
2200
2201 if (!reg_is_world_roaming(wiphy))
2202 return;
2203
2204 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2205 return;
2206
2207 chan_before = *chan;
2208
2209 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2210 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2211 channel_changed = true;
2212 }
2213
2214 if (channel_changed) {
2215 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2216 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2217 reg_call_notifier(wiphy, lr);
2218 }
2219 }
2220
2221 /*
2222 * Called when a scan on a wiphy finds a beacon on
2223 * new channel
2224 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)2225 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2226 struct reg_beacon *reg_beacon)
2227 {
2228 unsigned int i;
2229 struct ieee80211_supported_band *sband;
2230
2231 if (!wiphy->bands[reg_beacon->chan.band])
2232 return;
2233
2234 sband = wiphy->bands[reg_beacon->chan.band];
2235
2236 for (i = 0; i < sband->n_channels; i++)
2237 handle_reg_beacon(wiphy, i, reg_beacon);
2238 }
2239
2240 /*
2241 * Called upon reg changes or a new wiphy is added
2242 */
wiphy_update_beacon_reg(struct wiphy * wiphy)2243 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2244 {
2245 unsigned int i;
2246 struct ieee80211_supported_band *sband;
2247 struct reg_beacon *reg_beacon;
2248
2249 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2250 if (!wiphy->bands[reg_beacon->chan.band])
2251 continue;
2252 sband = wiphy->bands[reg_beacon->chan.band];
2253 for (i = 0; i < sband->n_channels; i++)
2254 handle_reg_beacon(wiphy, i, reg_beacon);
2255 }
2256 }
2257
2258 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2259 static void reg_process_beacons(struct wiphy *wiphy)
2260 {
2261 /*
2262 * Means we are just firing up cfg80211, so no beacons would
2263 * have been processed yet.
2264 */
2265 if (!last_request)
2266 return;
2267 wiphy_update_beacon_reg(wiphy);
2268 }
2269
is_ht40_allowed(struct ieee80211_channel * chan)2270 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2271 {
2272 if (!chan)
2273 return false;
2274 if (chan->flags & IEEE80211_CHAN_DISABLED)
2275 return false;
2276 /* This would happen when regulatory rules disallow HT40 completely */
2277 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2278 return false;
2279 return true;
2280 }
2281
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2282 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2283 struct ieee80211_channel *channel)
2284 {
2285 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2286 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2287 const struct ieee80211_regdomain *regd;
2288 unsigned int i;
2289 u32 flags;
2290
2291 if (!is_ht40_allowed(channel)) {
2292 channel->flags |= IEEE80211_CHAN_NO_HT40;
2293 return;
2294 }
2295
2296 /*
2297 * We need to ensure the extension channels exist to
2298 * be able to use HT40- or HT40+, this finds them (or not)
2299 */
2300 for (i = 0; i < sband->n_channels; i++) {
2301 struct ieee80211_channel *c = &sband->channels[i];
2302
2303 if (c->center_freq == (channel->center_freq - 20))
2304 channel_before = c;
2305 if (c->center_freq == (channel->center_freq + 20))
2306 channel_after = c;
2307 }
2308
2309 flags = 0;
2310 regd = get_wiphy_regdom(wiphy);
2311 if (regd) {
2312 const struct ieee80211_reg_rule *reg_rule =
2313 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2314 regd, MHZ_TO_KHZ(20));
2315
2316 if (!IS_ERR(reg_rule))
2317 flags = reg_rule->flags;
2318 }
2319
2320 /*
2321 * Please note that this assumes target bandwidth is 20 MHz,
2322 * if that ever changes we also need to change the below logic
2323 * to include that as well.
2324 */
2325 if (!is_ht40_allowed(channel_before) ||
2326 flags & NL80211_RRF_NO_HT40MINUS)
2327 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2328 else
2329 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2330
2331 if (!is_ht40_allowed(channel_after) ||
2332 flags & NL80211_RRF_NO_HT40PLUS)
2333 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2334 else
2335 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2336 }
2337
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2338 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2339 struct ieee80211_supported_band *sband)
2340 {
2341 unsigned int i;
2342
2343 if (!sband)
2344 return;
2345
2346 for (i = 0; i < sband->n_channels; i++)
2347 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2348 }
2349
reg_process_ht_flags(struct wiphy * wiphy)2350 static void reg_process_ht_flags(struct wiphy *wiphy)
2351 {
2352 enum nl80211_band band;
2353
2354 if (!wiphy)
2355 return;
2356
2357 for (band = 0; band < NUM_NL80211_BANDS; band++)
2358 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2359 }
2360
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2361 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2362 {
2363 struct cfg80211_chan_def chandef = {};
2364 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2365 enum nl80211_iftype iftype;
2366 bool ret;
2367 int link;
2368
2369 wdev_lock(wdev);
2370 iftype = wdev->iftype;
2371
2372 /* make sure the interface is active */
2373 if (!wdev->netdev || !netif_running(wdev->netdev))
2374 goto wdev_inactive_unlock;
2375
2376 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2377 struct ieee80211_channel *chan;
2378
2379 if (!wdev->valid_links && link > 0)
2380 break;
2381 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2382 continue;
2383 switch (iftype) {
2384 case NL80211_IFTYPE_AP:
2385 case NL80211_IFTYPE_P2P_GO:
2386 if (!wdev->links[link].ap.beacon_interval)
2387 continue;
2388 chandef = wdev->links[link].ap.chandef;
2389 break;
2390 case NL80211_IFTYPE_MESH_POINT:
2391 if (!wdev->u.mesh.beacon_interval)
2392 continue;
2393 chandef = wdev->u.mesh.chandef;
2394 break;
2395 case NL80211_IFTYPE_ADHOC:
2396 if (!wdev->u.ibss.ssid_len)
2397 continue;
2398 chandef = wdev->u.ibss.chandef;
2399 break;
2400 case NL80211_IFTYPE_STATION:
2401 case NL80211_IFTYPE_P2P_CLIENT:
2402 /* Maybe we could consider disabling that link only? */
2403 if (!wdev->links[link].client.current_bss)
2404 continue;
2405
2406 chan = wdev->links[link].client.current_bss->pub.channel;
2407 if (!chan)
2408 continue;
2409
2410 if (!rdev->ops->get_channel ||
2411 rdev_get_channel(rdev, wdev, link, &chandef))
2412 cfg80211_chandef_create(&chandef, chan,
2413 NL80211_CHAN_NO_HT);
2414 break;
2415 case NL80211_IFTYPE_MONITOR:
2416 case NL80211_IFTYPE_AP_VLAN:
2417 case NL80211_IFTYPE_P2P_DEVICE:
2418 /* no enforcement required */
2419 break;
2420 case NL80211_IFTYPE_OCB:
2421 if (!wdev->u.ocb.chandef.chan)
2422 continue;
2423 chandef = wdev->u.ocb.chandef;
2424 break;
2425 case NL80211_IFTYPE_NAN:
2426 /* we have no info, but NAN is also pretty universal */
2427 continue;
2428 default:
2429 /* others not implemented for now */
2430 WARN_ON_ONCE(1);
2431 break;
2432 }
2433
2434 wdev_unlock(wdev);
2435
2436 switch (iftype) {
2437 case NL80211_IFTYPE_AP:
2438 case NL80211_IFTYPE_P2P_GO:
2439 case NL80211_IFTYPE_ADHOC:
2440 case NL80211_IFTYPE_MESH_POINT:
2441 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2442 iftype);
2443 if (!ret)
2444 return ret;
2445 break;
2446 case NL80211_IFTYPE_STATION:
2447 case NL80211_IFTYPE_P2P_CLIENT:
2448 ret = cfg80211_chandef_usable(wiphy, &chandef,
2449 IEEE80211_CHAN_DISABLED);
2450 if (!ret)
2451 return ret;
2452 break;
2453 default:
2454 break;
2455 }
2456
2457 wdev_lock(wdev);
2458 }
2459
2460 wdev_unlock(wdev);
2461
2462 return true;
2463
2464 wdev_inactive_unlock:
2465 wdev_unlock(wdev);
2466 return true;
2467 }
2468
reg_leave_invalid_chans(struct wiphy * wiphy)2469 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2470 {
2471 struct wireless_dev *wdev;
2472 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2473
2474 wiphy_lock(wiphy);
2475 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2476 if (!reg_wdev_chan_valid(wiphy, wdev))
2477 cfg80211_leave(rdev, wdev);
2478 wiphy_unlock(wiphy);
2479 }
2480
reg_check_chans_work(struct work_struct * work)2481 static void reg_check_chans_work(struct work_struct *work)
2482 {
2483 struct cfg80211_registered_device *rdev;
2484
2485 pr_debug("Verifying active interfaces after reg change\n");
2486 rtnl_lock();
2487
2488 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2489 reg_leave_invalid_chans(&rdev->wiphy);
2490
2491 rtnl_unlock();
2492 }
2493
reg_check_channels(void)2494 static void reg_check_channels(void)
2495 {
2496 /*
2497 * Give usermode a chance to do something nicer (move to another
2498 * channel, orderly disconnection), before forcing a disconnection.
2499 */
2500 mod_delayed_work(system_power_efficient_wq,
2501 ®_check_chans,
2502 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2503 }
2504
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2505 static void wiphy_update_regulatory(struct wiphy *wiphy,
2506 enum nl80211_reg_initiator initiator)
2507 {
2508 enum nl80211_band band;
2509 struct regulatory_request *lr = get_last_request();
2510
2511 if (ignore_reg_update(wiphy, initiator)) {
2512 /*
2513 * Regulatory updates set by CORE are ignored for custom
2514 * regulatory cards. Let us notify the changes to the driver,
2515 * as some drivers used this to restore its orig_* reg domain.
2516 */
2517 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2518 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2519 !(wiphy->regulatory_flags &
2520 REGULATORY_WIPHY_SELF_MANAGED))
2521 reg_call_notifier(wiphy, lr);
2522 return;
2523 }
2524
2525 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2526
2527 for (band = 0; band < NUM_NL80211_BANDS; band++)
2528 handle_band(wiphy, initiator, wiphy->bands[band]);
2529
2530 reg_process_beacons(wiphy);
2531 reg_process_ht_flags(wiphy);
2532 reg_call_notifier(wiphy, lr);
2533 }
2534
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2535 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2536 {
2537 struct cfg80211_registered_device *rdev;
2538 struct wiphy *wiphy;
2539
2540 ASSERT_RTNL();
2541
2542 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2543 wiphy = &rdev->wiphy;
2544 wiphy_update_regulatory(wiphy, initiator);
2545 }
2546
2547 reg_check_channels();
2548 }
2549
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2550 static void handle_channel_custom(struct wiphy *wiphy,
2551 struct ieee80211_channel *chan,
2552 const struct ieee80211_regdomain *regd,
2553 u32 min_bw)
2554 {
2555 u32 bw_flags = 0;
2556 const struct ieee80211_reg_rule *reg_rule = NULL;
2557 const struct ieee80211_power_rule *power_rule = NULL;
2558 u32 bw, center_freq_khz;
2559
2560 center_freq_khz = ieee80211_channel_to_khz(chan);
2561 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2562 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2563 if (!IS_ERR(reg_rule))
2564 break;
2565 }
2566
2567 if (IS_ERR_OR_NULL(reg_rule)) {
2568 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2569 chan->center_freq, chan->freq_offset);
2570 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2571 chan->flags |= IEEE80211_CHAN_DISABLED;
2572 } else {
2573 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2574 chan->flags = chan->orig_flags;
2575 }
2576 return;
2577 }
2578
2579 power_rule = ®_rule->power_rule;
2580 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2581
2582 chan->dfs_state_entered = jiffies;
2583 chan->dfs_state = NL80211_DFS_USABLE;
2584
2585 chan->beacon_found = false;
2586
2587 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2588 chan->flags = chan->orig_flags | bw_flags |
2589 map_regdom_flags(reg_rule->flags);
2590 else
2591 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2592
2593 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2594 chan->max_reg_power = chan->max_power =
2595 (int) MBM_TO_DBM(power_rule->max_eirp);
2596
2597 if (chan->flags & IEEE80211_CHAN_RADAR) {
2598 if (reg_rule->dfs_cac_ms)
2599 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2600 else
2601 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2602 }
2603
2604 if (chan->flags & IEEE80211_CHAN_PSD)
2605 chan->psd = reg_rule->psd;
2606
2607 chan->max_power = chan->max_reg_power;
2608 }
2609
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2610 static void handle_band_custom(struct wiphy *wiphy,
2611 struct ieee80211_supported_band *sband,
2612 const struct ieee80211_regdomain *regd)
2613 {
2614 unsigned int i;
2615
2616 if (!sband)
2617 return;
2618
2619 /*
2620 * We currently assume that you always want at least 20 MHz,
2621 * otherwise channel 12 might get enabled if this rule is
2622 * compatible to US, which permits 2402 - 2472 MHz.
2623 */
2624 for (i = 0; i < sband->n_channels; i++)
2625 handle_channel_custom(wiphy, &sband->channels[i], regd,
2626 MHZ_TO_KHZ(20));
2627 }
2628
2629 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2630 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2631 const struct ieee80211_regdomain *regd)
2632 {
2633 const struct ieee80211_regdomain *new_regd, *tmp;
2634 enum nl80211_band band;
2635 unsigned int bands_set = 0;
2636
2637 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2638 "wiphy should have REGULATORY_CUSTOM_REG\n");
2639 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2640
2641 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2642 if (!wiphy->bands[band])
2643 continue;
2644 handle_band_custom(wiphy, wiphy->bands[band], regd);
2645 bands_set++;
2646 }
2647
2648 /*
2649 * no point in calling this if it won't have any effect
2650 * on your device's supported bands.
2651 */
2652 WARN_ON(!bands_set);
2653 new_regd = reg_copy_regd(regd);
2654 if (IS_ERR(new_regd))
2655 return;
2656
2657 rtnl_lock();
2658 wiphy_lock(wiphy);
2659
2660 tmp = get_wiphy_regdom(wiphy);
2661 rcu_assign_pointer(wiphy->regd, new_regd);
2662 rcu_free_regdom(tmp);
2663
2664 wiphy_unlock(wiphy);
2665 rtnl_unlock();
2666 }
2667 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2668
reg_set_request_processed(void)2669 static void reg_set_request_processed(void)
2670 {
2671 bool need_more_processing = false;
2672 struct regulatory_request *lr = get_last_request();
2673
2674 lr->processed = true;
2675
2676 spin_lock(®_requests_lock);
2677 if (!list_empty(®_requests_list))
2678 need_more_processing = true;
2679 spin_unlock(®_requests_lock);
2680
2681 cancel_crda_timeout();
2682
2683 if (need_more_processing)
2684 schedule_work(®_work);
2685 }
2686
2687 /**
2688 * reg_process_hint_core - process core regulatory requests
2689 * @core_request: a pending core regulatory request
2690 *
2691 * The wireless subsystem can use this function to process
2692 * a regulatory request issued by the regulatory core.
2693 */
2694 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2695 reg_process_hint_core(struct regulatory_request *core_request)
2696 {
2697 if (reg_query_database(core_request)) {
2698 core_request->intersect = false;
2699 core_request->processed = false;
2700 reg_update_last_request(core_request);
2701 return REG_REQ_OK;
2702 }
2703
2704 return REG_REQ_IGNORE;
2705 }
2706
2707 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2708 __reg_process_hint_user(struct regulatory_request *user_request)
2709 {
2710 struct regulatory_request *lr = get_last_request();
2711
2712 if (reg_request_cell_base(user_request))
2713 return reg_ignore_cell_hint(user_request);
2714
2715 if (reg_request_cell_base(lr))
2716 return REG_REQ_IGNORE;
2717
2718 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2719 return REG_REQ_INTERSECT;
2720 /*
2721 * If the user knows better the user should set the regdom
2722 * to their country before the IE is picked up
2723 */
2724 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2725 lr->intersect)
2726 return REG_REQ_IGNORE;
2727 /*
2728 * Process user requests only after previous user/driver/core
2729 * requests have been processed
2730 */
2731 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2732 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2733 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2734 regdom_changes(lr->alpha2))
2735 return REG_REQ_IGNORE;
2736
2737 if (!regdom_changes(user_request->alpha2))
2738 return REG_REQ_ALREADY_SET;
2739
2740 return REG_REQ_OK;
2741 }
2742
2743 /**
2744 * reg_process_hint_user - process user regulatory requests
2745 * @user_request: a pending user regulatory request
2746 *
2747 * The wireless subsystem can use this function to process
2748 * a regulatory request initiated by userspace.
2749 */
2750 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2751 reg_process_hint_user(struct regulatory_request *user_request)
2752 {
2753 enum reg_request_treatment treatment;
2754
2755 treatment = __reg_process_hint_user(user_request);
2756 if (treatment == REG_REQ_IGNORE ||
2757 treatment == REG_REQ_ALREADY_SET)
2758 return REG_REQ_IGNORE;
2759
2760 user_request->intersect = treatment == REG_REQ_INTERSECT;
2761 user_request->processed = false;
2762
2763 if (reg_query_database(user_request)) {
2764 reg_update_last_request(user_request);
2765 user_alpha2[0] = user_request->alpha2[0];
2766 user_alpha2[1] = user_request->alpha2[1];
2767 return REG_REQ_OK;
2768 }
2769
2770 return REG_REQ_IGNORE;
2771 }
2772
2773 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2774 __reg_process_hint_driver(struct regulatory_request *driver_request)
2775 {
2776 struct regulatory_request *lr = get_last_request();
2777
2778 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2779 if (regdom_changes(driver_request->alpha2))
2780 return REG_REQ_OK;
2781 return REG_REQ_ALREADY_SET;
2782 }
2783
2784 /*
2785 * This would happen if you unplug and plug your card
2786 * back in or if you add a new device for which the previously
2787 * loaded card also agrees on the regulatory domain.
2788 */
2789 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2790 !regdom_changes(driver_request->alpha2))
2791 return REG_REQ_ALREADY_SET;
2792
2793 return REG_REQ_INTERSECT;
2794 }
2795
2796 /**
2797 * reg_process_hint_driver - process driver regulatory requests
2798 * @wiphy: the wireless device for the regulatory request
2799 * @driver_request: a pending driver regulatory request
2800 *
2801 * The wireless subsystem can use this function to process
2802 * a regulatory request issued by an 802.11 driver.
2803 *
2804 * Returns one of the different reg request treatment values.
2805 */
2806 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2807 reg_process_hint_driver(struct wiphy *wiphy,
2808 struct regulatory_request *driver_request)
2809 {
2810 const struct ieee80211_regdomain *regd, *tmp;
2811 enum reg_request_treatment treatment;
2812
2813 treatment = __reg_process_hint_driver(driver_request);
2814
2815 switch (treatment) {
2816 case REG_REQ_OK:
2817 break;
2818 case REG_REQ_IGNORE:
2819 return REG_REQ_IGNORE;
2820 case REG_REQ_INTERSECT:
2821 case REG_REQ_ALREADY_SET:
2822 regd = reg_copy_regd(get_cfg80211_regdom());
2823 if (IS_ERR(regd))
2824 return REG_REQ_IGNORE;
2825
2826 tmp = get_wiphy_regdom(wiphy);
2827 ASSERT_RTNL();
2828 wiphy_lock(wiphy);
2829 rcu_assign_pointer(wiphy->regd, regd);
2830 wiphy_unlock(wiphy);
2831 rcu_free_regdom(tmp);
2832 }
2833
2834
2835 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2836 driver_request->processed = false;
2837
2838 /*
2839 * Since CRDA will not be called in this case as we already
2840 * have applied the requested regulatory domain before we just
2841 * inform userspace we have processed the request
2842 */
2843 if (treatment == REG_REQ_ALREADY_SET) {
2844 nl80211_send_reg_change_event(driver_request);
2845 reg_update_last_request(driver_request);
2846 reg_set_request_processed();
2847 return REG_REQ_ALREADY_SET;
2848 }
2849
2850 if (reg_query_database(driver_request)) {
2851 reg_update_last_request(driver_request);
2852 return REG_REQ_OK;
2853 }
2854
2855 return REG_REQ_IGNORE;
2856 }
2857
2858 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2859 __reg_process_hint_country_ie(struct wiphy *wiphy,
2860 struct regulatory_request *country_ie_request)
2861 {
2862 struct wiphy *last_wiphy = NULL;
2863 struct regulatory_request *lr = get_last_request();
2864
2865 if (reg_request_cell_base(lr)) {
2866 /* Trust a Cell base station over the AP's country IE */
2867 if (regdom_changes(country_ie_request->alpha2))
2868 return REG_REQ_IGNORE;
2869 return REG_REQ_ALREADY_SET;
2870 } else {
2871 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2872 return REG_REQ_IGNORE;
2873 }
2874
2875 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2876 return -EINVAL;
2877
2878 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2879 return REG_REQ_OK;
2880
2881 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2882
2883 if (last_wiphy != wiphy) {
2884 /*
2885 * Two cards with two APs claiming different
2886 * Country IE alpha2s. We could
2887 * intersect them, but that seems unlikely
2888 * to be correct. Reject second one for now.
2889 */
2890 if (regdom_changes(country_ie_request->alpha2))
2891 return REG_REQ_IGNORE;
2892 return REG_REQ_ALREADY_SET;
2893 }
2894
2895 if (regdom_changes(country_ie_request->alpha2))
2896 return REG_REQ_OK;
2897 return REG_REQ_ALREADY_SET;
2898 }
2899
2900 /**
2901 * reg_process_hint_country_ie - process regulatory requests from country IEs
2902 * @wiphy: the wireless device for the regulatory request
2903 * @country_ie_request: a regulatory request from a country IE
2904 *
2905 * The wireless subsystem can use this function to process
2906 * a regulatory request issued by a country Information Element.
2907 *
2908 * Returns one of the different reg request treatment values.
2909 */
2910 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2911 reg_process_hint_country_ie(struct wiphy *wiphy,
2912 struct regulatory_request *country_ie_request)
2913 {
2914 enum reg_request_treatment treatment;
2915
2916 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2917
2918 switch (treatment) {
2919 case REG_REQ_OK:
2920 break;
2921 case REG_REQ_IGNORE:
2922 return REG_REQ_IGNORE;
2923 case REG_REQ_ALREADY_SET:
2924 reg_free_request(country_ie_request);
2925 return REG_REQ_ALREADY_SET;
2926 case REG_REQ_INTERSECT:
2927 /*
2928 * This doesn't happen yet, not sure we
2929 * ever want to support it for this case.
2930 */
2931 WARN_ONCE(1, "Unexpected intersection for country elements");
2932 return REG_REQ_IGNORE;
2933 }
2934
2935 country_ie_request->intersect = false;
2936 country_ie_request->processed = false;
2937
2938 if (reg_query_database(country_ie_request)) {
2939 reg_update_last_request(country_ie_request);
2940 return REG_REQ_OK;
2941 }
2942
2943 return REG_REQ_IGNORE;
2944 }
2945
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2946 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2947 {
2948 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2949 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2950 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2951 bool dfs_domain_same;
2952
2953 rcu_read_lock();
2954
2955 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2956 wiphy1_regd = rcu_dereference(wiphy1->regd);
2957 if (!wiphy1_regd)
2958 wiphy1_regd = cfg80211_regd;
2959
2960 wiphy2_regd = rcu_dereference(wiphy2->regd);
2961 if (!wiphy2_regd)
2962 wiphy2_regd = cfg80211_regd;
2963
2964 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2965
2966 rcu_read_unlock();
2967
2968 return dfs_domain_same;
2969 }
2970
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2971 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2972 struct ieee80211_channel *src_chan)
2973 {
2974 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2975 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2976 return;
2977
2978 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2979 src_chan->flags & IEEE80211_CHAN_DISABLED)
2980 return;
2981
2982 if (src_chan->center_freq == dst_chan->center_freq &&
2983 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2984 dst_chan->dfs_state = src_chan->dfs_state;
2985 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2986 }
2987 }
2988
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2989 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2990 struct wiphy *src_wiphy)
2991 {
2992 struct ieee80211_supported_band *src_sband, *dst_sband;
2993 struct ieee80211_channel *src_chan, *dst_chan;
2994 int i, j, band;
2995
2996 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2997 return;
2998
2999 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3000 dst_sband = dst_wiphy->bands[band];
3001 src_sband = src_wiphy->bands[band];
3002 if (!dst_sband || !src_sband)
3003 continue;
3004
3005 for (i = 0; i < dst_sband->n_channels; i++) {
3006 dst_chan = &dst_sband->channels[i];
3007 for (j = 0; j < src_sband->n_channels; j++) {
3008 src_chan = &src_sband->channels[j];
3009 reg_copy_dfs_chan_state(dst_chan, src_chan);
3010 }
3011 }
3012 }
3013 }
3014
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)3015 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3016 {
3017 struct cfg80211_registered_device *rdev;
3018
3019 ASSERT_RTNL();
3020
3021 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3022 if (wiphy == &rdev->wiphy)
3023 continue;
3024 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
3025 }
3026 }
3027
3028 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)3029 static void reg_process_hint(struct regulatory_request *reg_request)
3030 {
3031 struct wiphy *wiphy = NULL;
3032 enum reg_request_treatment treatment;
3033 enum nl80211_reg_initiator initiator = reg_request->initiator;
3034
3035 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3036 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3037
3038 switch (initiator) {
3039 case NL80211_REGDOM_SET_BY_CORE:
3040 treatment = reg_process_hint_core(reg_request);
3041 break;
3042 case NL80211_REGDOM_SET_BY_USER:
3043 treatment = reg_process_hint_user(reg_request);
3044 break;
3045 case NL80211_REGDOM_SET_BY_DRIVER:
3046 if (!wiphy)
3047 goto out_free;
3048 treatment = reg_process_hint_driver(wiphy, reg_request);
3049 break;
3050 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3051 if (!wiphy)
3052 goto out_free;
3053 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3054 break;
3055 default:
3056 WARN(1, "invalid initiator %d\n", initiator);
3057 goto out_free;
3058 }
3059
3060 if (treatment == REG_REQ_IGNORE)
3061 goto out_free;
3062
3063 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3064 "unexpected treatment value %d\n", treatment);
3065
3066 /* This is required so that the orig_* parameters are saved.
3067 * NOTE: treatment must be set for any case that reaches here!
3068 */
3069 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3070 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3071 wiphy_update_regulatory(wiphy, initiator);
3072 wiphy_all_share_dfs_chan_state(wiphy);
3073 reg_check_channels();
3074 }
3075
3076 return;
3077
3078 out_free:
3079 reg_free_request(reg_request);
3080 }
3081
notify_self_managed_wiphys(struct regulatory_request * request)3082 static void notify_self_managed_wiphys(struct regulatory_request *request)
3083 {
3084 struct cfg80211_registered_device *rdev;
3085 struct wiphy *wiphy;
3086
3087 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3088 wiphy = &rdev->wiphy;
3089 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3090 request->initiator == NL80211_REGDOM_SET_BY_USER)
3091 reg_call_notifier(wiphy, request);
3092 }
3093 }
3094
3095 /*
3096 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3097 * Regulatory hints come on a first come first serve basis and we
3098 * must process each one atomically.
3099 */
reg_process_pending_hints(void)3100 static void reg_process_pending_hints(void)
3101 {
3102 struct regulatory_request *reg_request, *lr;
3103
3104 lr = get_last_request();
3105
3106 /* When last_request->processed becomes true this will be rescheduled */
3107 if (lr && !lr->processed) {
3108 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3109 return;
3110 }
3111
3112 spin_lock(®_requests_lock);
3113
3114 if (list_empty(®_requests_list)) {
3115 spin_unlock(®_requests_lock);
3116 return;
3117 }
3118
3119 reg_request = list_first_entry(®_requests_list,
3120 struct regulatory_request,
3121 list);
3122 list_del_init(®_request->list);
3123
3124 spin_unlock(®_requests_lock);
3125
3126 notify_self_managed_wiphys(reg_request);
3127
3128 reg_process_hint(reg_request);
3129
3130 lr = get_last_request();
3131
3132 spin_lock(®_requests_lock);
3133 if (!list_empty(®_requests_list) && lr && lr->processed)
3134 schedule_work(®_work);
3135 spin_unlock(®_requests_lock);
3136 }
3137
3138 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)3139 static void reg_process_pending_beacon_hints(void)
3140 {
3141 struct cfg80211_registered_device *rdev;
3142 struct reg_beacon *pending_beacon, *tmp;
3143
3144 /* This goes through the _pending_ beacon list */
3145 spin_lock_bh(®_pending_beacons_lock);
3146
3147 list_for_each_entry_safe(pending_beacon, tmp,
3148 ®_pending_beacons, list) {
3149 list_del_init(&pending_beacon->list);
3150
3151 /* Applies the beacon hint to current wiphys */
3152 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3153 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3154
3155 /* Remembers the beacon hint for new wiphys or reg changes */
3156 list_add_tail(&pending_beacon->list, ®_beacon_list);
3157 }
3158
3159 spin_unlock_bh(®_pending_beacons_lock);
3160 }
3161
reg_process_self_managed_hint(struct wiphy * wiphy)3162 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3163 {
3164 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3165 const struct ieee80211_regdomain *tmp;
3166 const struct ieee80211_regdomain *regd;
3167 enum nl80211_band band;
3168 struct regulatory_request request = {};
3169
3170 ASSERT_RTNL();
3171 lockdep_assert_wiphy(wiphy);
3172
3173 spin_lock(®_requests_lock);
3174 regd = rdev->requested_regd;
3175 rdev->requested_regd = NULL;
3176 spin_unlock(®_requests_lock);
3177
3178 if (!regd)
3179 return;
3180
3181 tmp = get_wiphy_regdom(wiphy);
3182 rcu_assign_pointer(wiphy->regd, regd);
3183 rcu_free_regdom(tmp);
3184
3185 for (band = 0; band < NUM_NL80211_BANDS; band++)
3186 handle_band_custom(wiphy, wiphy->bands[band], regd);
3187
3188 reg_process_ht_flags(wiphy);
3189
3190 request.wiphy_idx = get_wiphy_idx(wiphy);
3191 request.alpha2[0] = regd->alpha2[0];
3192 request.alpha2[1] = regd->alpha2[1];
3193 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3194
3195 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3196 reg_call_notifier(wiphy, &request);
3197
3198 nl80211_send_wiphy_reg_change_event(&request);
3199 }
3200
reg_process_self_managed_hints(void)3201 static void reg_process_self_managed_hints(void)
3202 {
3203 struct cfg80211_registered_device *rdev;
3204
3205 ASSERT_RTNL();
3206
3207 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3208 wiphy_lock(&rdev->wiphy);
3209 reg_process_self_managed_hint(&rdev->wiphy);
3210 wiphy_unlock(&rdev->wiphy);
3211 }
3212
3213 reg_check_channels();
3214 }
3215
reg_todo(struct work_struct * work)3216 static void reg_todo(struct work_struct *work)
3217 {
3218 rtnl_lock();
3219 reg_process_pending_hints();
3220 reg_process_pending_beacon_hints();
3221 reg_process_self_managed_hints();
3222 rtnl_unlock();
3223 }
3224
queue_regulatory_request(struct regulatory_request * request)3225 static void queue_regulatory_request(struct regulatory_request *request)
3226 {
3227 request->alpha2[0] = toupper(request->alpha2[0]);
3228 request->alpha2[1] = toupper(request->alpha2[1]);
3229
3230 spin_lock(®_requests_lock);
3231 list_add_tail(&request->list, ®_requests_list);
3232 spin_unlock(®_requests_lock);
3233
3234 schedule_work(®_work);
3235 }
3236
3237 /*
3238 * Core regulatory hint -- happens during cfg80211_init()
3239 * and when we restore regulatory settings.
3240 */
regulatory_hint_core(const char * alpha2)3241 static int regulatory_hint_core(const char *alpha2)
3242 {
3243 struct regulatory_request *request;
3244
3245 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3246 if (!request)
3247 return -ENOMEM;
3248
3249 request->alpha2[0] = alpha2[0];
3250 request->alpha2[1] = alpha2[1];
3251 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3252 request->wiphy_idx = WIPHY_IDX_INVALID;
3253
3254 queue_regulatory_request(request);
3255
3256 return 0;
3257 }
3258
3259 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)3260 int regulatory_hint_user(const char *alpha2,
3261 enum nl80211_user_reg_hint_type user_reg_hint_type)
3262 {
3263 struct regulatory_request *request;
3264
3265 if (WARN_ON(!alpha2))
3266 return -EINVAL;
3267
3268 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3269 return -EINVAL;
3270
3271 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3272 if (!request)
3273 return -ENOMEM;
3274
3275 request->wiphy_idx = WIPHY_IDX_INVALID;
3276 request->alpha2[0] = alpha2[0];
3277 request->alpha2[1] = alpha2[1];
3278 request->initiator = NL80211_REGDOM_SET_BY_USER;
3279 request->user_reg_hint_type = user_reg_hint_type;
3280
3281 /* Allow calling CRDA again */
3282 reset_crda_timeouts();
3283
3284 queue_regulatory_request(request);
3285
3286 return 0;
3287 }
3288
regulatory_hint_indoor(bool is_indoor,u32 portid)3289 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3290 {
3291 spin_lock(®_indoor_lock);
3292
3293 /* It is possible that more than one user space process is trying to
3294 * configure the indoor setting. To handle such cases, clear the indoor
3295 * setting in case that some process does not think that the device
3296 * is operating in an indoor environment. In addition, if a user space
3297 * process indicates that it is controlling the indoor setting, save its
3298 * portid, i.e., make it the owner.
3299 */
3300 reg_is_indoor = is_indoor;
3301 if (reg_is_indoor) {
3302 if (!reg_is_indoor_portid)
3303 reg_is_indoor_portid = portid;
3304 } else {
3305 reg_is_indoor_portid = 0;
3306 }
3307
3308 spin_unlock(®_indoor_lock);
3309
3310 if (!is_indoor)
3311 reg_check_channels();
3312
3313 return 0;
3314 }
3315
regulatory_netlink_notify(u32 portid)3316 void regulatory_netlink_notify(u32 portid)
3317 {
3318 spin_lock(®_indoor_lock);
3319
3320 if (reg_is_indoor_portid != portid) {
3321 spin_unlock(®_indoor_lock);
3322 return;
3323 }
3324
3325 reg_is_indoor = false;
3326 reg_is_indoor_portid = 0;
3327
3328 spin_unlock(®_indoor_lock);
3329
3330 reg_check_channels();
3331 }
3332
3333 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3334 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3335 {
3336 struct regulatory_request *request;
3337
3338 if (WARN_ON(!alpha2 || !wiphy))
3339 return -EINVAL;
3340
3341 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3342
3343 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3344 if (!request)
3345 return -ENOMEM;
3346
3347 request->wiphy_idx = get_wiphy_idx(wiphy);
3348
3349 request->alpha2[0] = alpha2[0];
3350 request->alpha2[1] = alpha2[1];
3351 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3352
3353 /* Allow calling CRDA again */
3354 reset_crda_timeouts();
3355
3356 queue_regulatory_request(request);
3357
3358 return 0;
3359 }
3360 EXPORT_SYMBOL(regulatory_hint);
3361
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3362 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3363 const u8 *country_ie, u8 country_ie_len)
3364 {
3365 char alpha2[2];
3366 enum environment_cap env = ENVIRON_ANY;
3367 struct regulatory_request *request = NULL, *lr;
3368
3369 /* IE len must be evenly divisible by 2 */
3370 if (country_ie_len & 0x01)
3371 return;
3372
3373 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3374 return;
3375
3376 request = kzalloc(sizeof(*request), GFP_KERNEL);
3377 if (!request)
3378 return;
3379
3380 alpha2[0] = country_ie[0];
3381 alpha2[1] = country_ie[1];
3382
3383 if (country_ie[2] == 'I')
3384 env = ENVIRON_INDOOR;
3385 else if (country_ie[2] == 'O')
3386 env = ENVIRON_OUTDOOR;
3387
3388 rcu_read_lock();
3389 lr = get_last_request();
3390
3391 if (unlikely(!lr))
3392 goto out;
3393
3394 /*
3395 * We will run this only upon a successful connection on cfg80211.
3396 * We leave conflict resolution to the workqueue, where can hold
3397 * the RTNL.
3398 */
3399 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3400 lr->wiphy_idx != WIPHY_IDX_INVALID)
3401 goto out;
3402
3403 request->wiphy_idx = get_wiphy_idx(wiphy);
3404 request->alpha2[0] = alpha2[0];
3405 request->alpha2[1] = alpha2[1];
3406 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3407 request->country_ie_env = env;
3408
3409 /* Allow calling CRDA again */
3410 reset_crda_timeouts();
3411
3412 queue_regulatory_request(request);
3413 request = NULL;
3414 out:
3415 kfree(request);
3416 rcu_read_unlock();
3417 }
3418
restore_alpha2(char * alpha2,bool reset_user)3419 static void restore_alpha2(char *alpha2, bool reset_user)
3420 {
3421 /* indicates there is no alpha2 to consider for restoration */
3422 alpha2[0] = '9';
3423 alpha2[1] = '7';
3424
3425 /* The user setting has precedence over the module parameter */
3426 if (is_user_regdom_saved()) {
3427 /* Unless we're asked to ignore it and reset it */
3428 if (reset_user) {
3429 pr_debug("Restoring regulatory settings including user preference\n");
3430 user_alpha2[0] = '9';
3431 user_alpha2[1] = '7';
3432
3433 /*
3434 * If we're ignoring user settings, we still need to
3435 * check the module parameter to ensure we put things
3436 * back as they were for a full restore.
3437 */
3438 if (!is_world_regdom(ieee80211_regdom)) {
3439 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3440 ieee80211_regdom[0], ieee80211_regdom[1]);
3441 alpha2[0] = ieee80211_regdom[0];
3442 alpha2[1] = ieee80211_regdom[1];
3443 }
3444 } else {
3445 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3446 user_alpha2[0], user_alpha2[1]);
3447 alpha2[0] = user_alpha2[0];
3448 alpha2[1] = user_alpha2[1];
3449 }
3450 } else if (!is_world_regdom(ieee80211_regdom)) {
3451 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3452 ieee80211_regdom[0], ieee80211_regdom[1]);
3453 alpha2[0] = ieee80211_regdom[0];
3454 alpha2[1] = ieee80211_regdom[1];
3455 } else
3456 pr_debug("Restoring regulatory settings\n");
3457 }
3458
restore_custom_reg_settings(struct wiphy * wiphy)3459 static void restore_custom_reg_settings(struct wiphy *wiphy)
3460 {
3461 struct ieee80211_supported_band *sband;
3462 enum nl80211_band band;
3463 struct ieee80211_channel *chan;
3464 int i;
3465
3466 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3467 sband = wiphy->bands[band];
3468 if (!sband)
3469 continue;
3470 for (i = 0; i < sband->n_channels; i++) {
3471 chan = &sband->channels[i];
3472 chan->flags = chan->orig_flags;
3473 chan->max_antenna_gain = chan->orig_mag;
3474 chan->max_power = chan->orig_mpwr;
3475 chan->beacon_found = false;
3476 }
3477 }
3478 }
3479
3480 /*
3481 * Restoring regulatory settings involves ignoring any
3482 * possibly stale country IE information and user regulatory
3483 * settings if so desired, this includes any beacon hints
3484 * learned as we could have traveled outside to another country
3485 * after disconnection. To restore regulatory settings we do
3486 * exactly what we did at bootup:
3487 *
3488 * - send a core regulatory hint
3489 * - send a user regulatory hint if applicable
3490 *
3491 * Device drivers that send a regulatory hint for a specific country
3492 * keep their own regulatory domain on wiphy->regd so that does
3493 * not need to be remembered.
3494 */
restore_regulatory_settings(bool reset_user,bool cached)3495 static void restore_regulatory_settings(bool reset_user, bool cached)
3496 {
3497 char alpha2[2];
3498 char world_alpha2[2];
3499 struct reg_beacon *reg_beacon, *btmp;
3500 LIST_HEAD(tmp_reg_req_list);
3501 struct cfg80211_registered_device *rdev;
3502
3503 ASSERT_RTNL();
3504
3505 /*
3506 * Clear the indoor setting in case that it is not controlled by user
3507 * space, as otherwise there is no guarantee that the device is still
3508 * operating in an indoor environment.
3509 */
3510 spin_lock(®_indoor_lock);
3511 if (reg_is_indoor && !reg_is_indoor_portid) {
3512 reg_is_indoor = false;
3513 reg_check_channels();
3514 }
3515 spin_unlock(®_indoor_lock);
3516
3517 reset_regdomains(true, &world_regdom);
3518 restore_alpha2(alpha2, reset_user);
3519
3520 /*
3521 * If there's any pending requests we simply
3522 * stash them to a temporary pending queue and
3523 * add then after we've restored regulatory
3524 * settings.
3525 */
3526 spin_lock(®_requests_lock);
3527 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3528 spin_unlock(®_requests_lock);
3529
3530 /* Clear beacon hints */
3531 spin_lock_bh(®_pending_beacons_lock);
3532 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3533 list_del(®_beacon->list);
3534 kfree(reg_beacon);
3535 }
3536 spin_unlock_bh(®_pending_beacons_lock);
3537
3538 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3539 list_del(®_beacon->list);
3540 kfree(reg_beacon);
3541 }
3542
3543 /* First restore to the basic regulatory settings */
3544 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3545 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3546
3547 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3548 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3549 continue;
3550 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3551 restore_custom_reg_settings(&rdev->wiphy);
3552 }
3553
3554 if (cached && (!is_an_alpha2(alpha2) ||
3555 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3556 reset_regdomains(false, cfg80211_world_regdom);
3557 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3558 print_regdomain(get_cfg80211_regdom());
3559 nl80211_send_reg_change_event(&core_request_world);
3560 reg_set_request_processed();
3561
3562 if (is_an_alpha2(alpha2) &&
3563 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3564 struct regulatory_request *ureq;
3565
3566 spin_lock(®_requests_lock);
3567 ureq = list_last_entry(®_requests_list,
3568 struct regulatory_request,
3569 list);
3570 list_del(&ureq->list);
3571 spin_unlock(®_requests_lock);
3572
3573 notify_self_managed_wiphys(ureq);
3574 reg_update_last_request(ureq);
3575 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3576 REGD_SOURCE_CACHED);
3577 }
3578 } else {
3579 regulatory_hint_core(world_alpha2);
3580
3581 /*
3582 * This restores the ieee80211_regdom module parameter
3583 * preference or the last user requested regulatory
3584 * settings, user regulatory settings takes precedence.
3585 */
3586 if (is_an_alpha2(alpha2))
3587 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3588 }
3589
3590 spin_lock(®_requests_lock);
3591 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3592 spin_unlock(®_requests_lock);
3593
3594 pr_debug("Kicking the queue\n");
3595
3596 schedule_work(®_work);
3597 }
3598
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3599 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3600 {
3601 struct cfg80211_registered_device *rdev;
3602 struct wireless_dev *wdev;
3603
3604 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3605 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3606 wdev_lock(wdev);
3607 if (!(wdev->wiphy->regulatory_flags & flag)) {
3608 wdev_unlock(wdev);
3609 return false;
3610 }
3611 wdev_unlock(wdev);
3612 }
3613 }
3614
3615 return true;
3616 }
3617
regulatory_hint_disconnect(void)3618 void regulatory_hint_disconnect(void)
3619 {
3620 /* Restore of regulatory settings is not required when wiphy(s)
3621 * ignore IE from connected access point but clearance of beacon hints
3622 * is required when wiphy(s) supports beacon hints.
3623 */
3624 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3625 struct reg_beacon *reg_beacon, *btmp;
3626
3627 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3628 return;
3629
3630 spin_lock_bh(®_pending_beacons_lock);
3631 list_for_each_entry_safe(reg_beacon, btmp,
3632 ®_pending_beacons, list) {
3633 list_del(®_beacon->list);
3634 kfree(reg_beacon);
3635 }
3636 spin_unlock_bh(®_pending_beacons_lock);
3637
3638 list_for_each_entry_safe(reg_beacon, btmp,
3639 ®_beacon_list, list) {
3640 list_del(®_beacon->list);
3641 kfree(reg_beacon);
3642 }
3643
3644 return;
3645 }
3646
3647 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3648 restore_regulatory_settings(false, true);
3649 }
3650
freq_is_chan_12_13_14(u32 freq)3651 static bool freq_is_chan_12_13_14(u32 freq)
3652 {
3653 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3654 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3655 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3656 return true;
3657 return false;
3658 }
3659
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3660 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3661 {
3662 struct reg_beacon *pending_beacon;
3663
3664 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3665 if (ieee80211_channel_equal(beacon_chan,
3666 &pending_beacon->chan))
3667 return true;
3668 return false;
3669 }
3670
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3671 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3672 struct ieee80211_channel *beacon_chan,
3673 gfp_t gfp)
3674 {
3675 struct reg_beacon *reg_beacon;
3676 bool processing;
3677
3678 if (beacon_chan->beacon_found ||
3679 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3680 (beacon_chan->band == NL80211_BAND_2GHZ &&
3681 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3682 return 0;
3683
3684 spin_lock_bh(®_pending_beacons_lock);
3685 processing = pending_reg_beacon(beacon_chan);
3686 spin_unlock_bh(®_pending_beacons_lock);
3687
3688 if (processing)
3689 return 0;
3690
3691 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3692 if (!reg_beacon)
3693 return -ENOMEM;
3694
3695 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3696 beacon_chan->center_freq, beacon_chan->freq_offset,
3697 ieee80211_freq_khz_to_channel(
3698 ieee80211_channel_to_khz(beacon_chan)),
3699 wiphy_name(wiphy));
3700
3701 memcpy(®_beacon->chan, beacon_chan,
3702 sizeof(struct ieee80211_channel));
3703
3704 /*
3705 * Since we can be called from BH or and non-BH context
3706 * we must use spin_lock_bh()
3707 */
3708 spin_lock_bh(®_pending_beacons_lock);
3709 list_add_tail(®_beacon->list, ®_pending_beacons);
3710 spin_unlock_bh(®_pending_beacons_lock);
3711
3712 schedule_work(®_work);
3713
3714 return 0;
3715 }
3716
print_rd_rules(const struct ieee80211_regdomain * rd)3717 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3718 {
3719 unsigned int i;
3720 const struct ieee80211_reg_rule *reg_rule = NULL;
3721 const struct ieee80211_freq_range *freq_range = NULL;
3722 const struct ieee80211_power_rule *power_rule = NULL;
3723 char bw[32], cac_time[32];
3724
3725 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3726
3727 for (i = 0; i < rd->n_reg_rules; i++) {
3728 reg_rule = &rd->reg_rules[i];
3729 freq_range = ®_rule->freq_range;
3730 power_rule = ®_rule->power_rule;
3731
3732 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3733 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3734 freq_range->max_bandwidth_khz,
3735 reg_get_max_bandwidth(rd, reg_rule));
3736 else
3737 snprintf(bw, sizeof(bw), "%d KHz",
3738 freq_range->max_bandwidth_khz);
3739
3740 if (reg_rule->flags & NL80211_RRF_DFS)
3741 scnprintf(cac_time, sizeof(cac_time), "%u s",
3742 reg_rule->dfs_cac_ms/1000);
3743 else
3744 scnprintf(cac_time, sizeof(cac_time), "N/A");
3745
3746
3747 /*
3748 * There may not be documentation for max antenna gain
3749 * in certain regions
3750 */
3751 if (power_rule->max_antenna_gain)
3752 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3753 freq_range->start_freq_khz,
3754 freq_range->end_freq_khz,
3755 bw,
3756 power_rule->max_antenna_gain,
3757 power_rule->max_eirp,
3758 cac_time);
3759 else
3760 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3761 freq_range->start_freq_khz,
3762 freq_range->end_freq_khz,
3763 bw,
3764 power_rule->max_eirp,
3765 cac_time);
3766 }
3767 }
3768
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3769 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3770 {
3771 switch (dfs_region) {
3772 case NL80211_DFS_UNSET:
3773 case NL80211_DFS_FCC:
3774 case NL80211_DFS_ETSI:
3775 case NL80211_DFS_JP:
3776 return true;
3777 default:
3778 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3779 return false;
3780 }
3781 }
3782
print_regdomain(const struct ieee80211_regdomain * rd)3783 static void print_regdomain(const struct ieee80211_regdomain *rd)
3784 {
3785 struct regulatory_request *lr = get_last_request();
3786
3787 if (is_intersected_alpha2(rd->alpha2)) {
3788 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3789 struct cfg80211_registered_device *rdev;
3790 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3791 if (rdev) {
3792 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3793 rdev->country_ie_alpha2[0],
3794 rdev->country_ie_alpha2[1]);
3795 } else
3796 pr_debug("Current regulatory domain intersected:\n");
3797 } else
3798 pr_debug("Current regulatory domain intersected:\n");
3799 } else if (is_world_regdom(rd->alpha2)) {
3800 pr_debug("World regulatory domain updated:\n");
3801 } else {
3802 if (is_unknown_alpha2(rd->alpha2))
3803 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3804 else {
3805 if (reg_request_cell_base(lr))
3806 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3807 rd->alpha2[0], rd->alpha2[1]);
3808 else
3809 pr_debug("Regulatory domain changed to country: %c%c\n",
3810 rd->alpha2[0], rd->alpha2[1]);
3811 }
3812 }
3813
3814 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3815 print_rd_rules(rd);
3816 }
3817
print_regdomain_info(const struct ieee80211_regdomain * rd)3818 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3819 {
3820 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3821 print_rd_rules(rd);
3822 }
3823
reg_set_rd_core(const struct ieee80211_regdomain * rd)3824 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3825 {
3826 if (!is_world_regdom(rd->alpha2))
3827 return -EINVAL;
3828 update_world_regdomain(rd);
3829 return 0;
3830 }
3831
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3832 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3833 struct regulatory_request *user_request)
3834 {
3835 const struct ieee80211_regdomain *intersected_rd = NULL;
3836
3837 if (!regdom_changes(rd->alpha2))
3838 return -EALREADY;
3839
3840 if (!is_valid_rd(rd)) {
3841 pr_err("Invalid regulatory domain detected: %c%c\n",
3842 rd->alpha2[0], rd->alpha2[1]);
3843 print_regdomain_info(rd);
3844 return -EINVAL;
3845 }
3846
3847 if (!user_request->intersect) {
3848 reset_regdomains(false, rd);
3849 return 0;
3850 }
3851
3852 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3853 if (!intersected_rd)
3854 return -EINVAL;
3855
3856 kfree(rd);
3857 rd = NULL;
3858 reset_regdomains(false, intersected_rd);
3859
3860 return 0;
3861 }
3862
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3863 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3864 struct regulatory_request *driver_request)
3865 {
3866 const struct ieee80211_regdomain *regd;
3867 const struct ieee80211_regdomain *intersected_rd = NULL;
3868 const struct ieee80211_regdomain *tmp;
3869 struct wiphy *request_wiphy;
3870
3871 if (is_world_regdom(rd->alpha2))
3872 return -EINVAL;
3873
3874 if (!regdom_changes(rd->alpha2))
3875 return -EALREADY;
3876
3877 if (!is_valid_rd(rd)) {
3878 pr_err("Invalid regulatory domain detected: %c%c\n",
3879 rd->alpha2[0], rd->alpha2[1]);
3880 print_regdomain_info(rd);
3881 return -EINVAL;
3882 }
3883
3884 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3885 if (!request_wiphy)
3886 return -ENODEV;
3887
3888 if (!driver_request->intersect) {
3889 ASSERT_RTNL();
3890 wiphy_lock(request_wiphy);
3891 if (request_wiphy->regd) {
3892 wiphy_unlock(request_wiphy);
3893 return -EALREADY;
3894 }
3895
3896 regd = reg_copy_regd(rd);
3897 if (IS_ERR(regd)) {
3898 wiphy_unlock(request_wiphy);
3899 return PTR_ERR(regd);
3900 }
3901
3902 rcu_assign_pointer(request_wiphy->regd, regd);
3903 wiphy_unlock(request_wiphy);
3904 reset_regdomains(false, rd);
3905 return 0;
3906 }
3907
3908 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3909 if (!intersected_rd)
3910 return -EINVAL;
3911
3912 /*
3913 * We can trash what CRDA provided now.
3914 * However if a driver requested this specific regulatory
3915 * domain we keep it for its private use
3916 */
3917 tmp = get_wiphy_regdom(request_wiphy);
3918 rcu_assign_pointer(request_wiphy->regd, rd);
3919 rcu_free_regdom(tmp);
3920
3921 rd = NULL;
3922
3923 reset_regdomains(false, intersected_rd);
3924
3925 return 0;
3926 }
3927
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3928 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3929 struct regulatory_request *country_ie_request)
3930 {
3931 struct wiphy *request_wiphy;
3932
3933 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3934 !is_unknown_alpha2(rd->alpha2))
3935 return -EINVAL;
3936
3937 /*
3938 * Lets only bother proceeding on the same alpha2 if the current
3939 * rd is non static (it means CRDA was present and was used last)
3940 * and the pending request came in from a country IE
3941 */
3942
3943 if (!is_valid_rd(rd)) {
3944 pr_err("Invalid regulatory domain detected: %c%c\n",
3945 rd->alpha2[0], rd->alpha2[1]);
3946 print_regdomain_info(rd);
3947 return -EINVAL;
3948 }
3949
3950 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3951 if (!request_wiphy)
3952 return -ENODEV;
3953
3954 if (country_ie_request->intersect)
3955 return -EINVAL;
3956
3957 reset_regdomains(false, rd);
3958 return 0;
3959 }
3960
3961 /*
3962 * Use this call to set the current regulatory domain. Conflicts with
3963 * multiple drivers can be ironed out later. Caller must've already
3964 * kmalloc'd the rd structure.
3965 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3966 int set_regdom(const struct ieee80211_regdomain *rd,
3967 enum ieee80211_regd_source regd_src)
3968 {
3969 struct regulatory_request *lr;
3970 bool user_reset = false;
3971 int r;
3972
3973 if (IS_ERR_OR_NULL(rd))
3974 return -ENODATA;
3975
3976 if (!reg_is_valid_request(rd->alpha2)) {
3977 kfree(rd);
3978 return -EINVAL;
3979 }
3980
3981 if (regd_src == REGD_SOURCE_CRDA)
3982 reset_crda_timeouts();
3983
3984 lr = get_last_request();
3985
3986 /* Note that this doesn't update the wiphys, this is done below */
3987 switch (lr->initiator) {
3988 case NL80211_REGDOM_SET_BY_CORE:
3989 r = reg_set_rd_core(rd);
3990 break;
3991 case NL80211_REGDOM_SET_BY_USER:
3992 cfg80211_save_user_regdom(rd);
3993 r = reg_set_rd_user(rd, lr);
3994 user_reset = true;
3995 break;
3996 case NL80211_REGDOM_SET_BY_DRIVER:
3997 r = reg_set_rd_driver(rd, lr);
3998 break;
3999 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
4000 r = reg_set_rd_country_ie(rd, lr);
4001 break;
4002 default:
4003 WARN(1, "invalid initiator %d\n", lr->initiator);
4004 kfree(rd);
4005 return -EINVAL;
4006 }
4007
4008 if (r) {
4009 switch (r) {
4010 case -EALREADY:
4011 reg_set_request_processed();
4012 break;
4013 default:
4014 /* Back to world regulatory in case of errors */
4015 restore_regulatory_settings(user_reset, false);
4016 }
4017
4018 kfree(rd);
4019 return r;
4020 }
4021
4022 /* This would make this whole thing pointless */
4023 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4024 return -EINVAL;
4025
4026 /* update all wiphys now with the new established regulatory domain */
4027 update_all_wiphy_regulatory(lr->initiator);
4028
4029 print_regdomain(get_cfg80211_regdom());
4030
4031 nl80211_send_reg_change_event(lr);
4032
4033 reg_set_request_processed();
4034
4035 return 0;
4036 }
4037
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4038 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4039 struct ieee80211_regdomain *rd)
4040 {
4041 const struct ieee80211_regdomain *regd;
4042 const struct ieee80211_regdomain *prev_regd;
4043 struct cfg80211_registered_device *rdev;
4044
4045 if (WARN_ON(!wiphy || !rd))
4046 return -EINVAL;
4047
4048 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4049 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4050 return -EPERM;
4051
4052 if (WARN(!is_valid_rd(rd),
4053 "Invalid regulatory domain detected: %c%c\n",
4054 rd->alpha2[0], rd->alpha2[1])) {
4055 print_regdomain_info(rd);
4056 return -EINVAL;
4057 }
4058
4059 regd = reg_copy_regd(rd);
4060 if (IS_ERR(regd))
4061 return PTR_ERR(regd);
4062
4063 rdev = wiphy_to_rdev(wiphy);
4064
4065 spin_lock(®_requests_lock);
4066 prev_regd = rdev->requested_regd;
4067 rdev->requested_regd = regd;
4068 spin_unlock(®_requests_lock);
4069
4070 kfree(prev_regd);
4071 return 0;
4072 }
4073
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4074 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4075 struct ieee80211_regdomain *rd)
4076 {
4077 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4078
4079 if (ret)
4080 return ret;
4081
4082 schedule_work(®_work);
4083 return 0;
4084 }
4085 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4086
regulatory_set_wiphy_regd_sync(struct wiphy * wiphy,struct ieee80211_regdomain * rd)4087 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4088 struct ieee80211_regdomain *rd)
4089 {
4090 int ret;
4091
4092 ASSERT_RTNL();
4093
4094 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4095 if (ret)
4096 return ret;
4097
4098 /* process the request immediately */
4099 reg_process_self_managed_hint(wiphy);
4100 reg_check_channels();
4101 return 0;
4102 }
4103 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4104
wiphy_regulatory_register(struct wiphy * wiphy)4105 void wiphy_regulatory_register(struct wiphy *wiphy)
4106 {
4107 struct regulatory_request *lr = get_last_request();
4108
4109 /* self-managed devices ignore beacon hints and country IE */
4110 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4111 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4112 REGULATORY_COUNTRY_IE_IGNORE;
4113
4114 /*
4115 * The last request may have been received before this
4116 * registration call. Call the driver notifier if
4117 * initiator is USER.
4118 */
4119 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4120 reg_call_notifier(wiphy, lr);
4121 }
4122
4123 if (!reg_dev_ignore_cell_hint(wiphy))
4124 reg_num_devs_support_basehint++;
4125
4126 wiphy_update_regulatory(wiphy, lr->initiator);
4127 wiphy_all_share_dfs_chan_state(wiphy);
4128 reg_process_self_managed_hints();
4129 }
4130
wiphy_regulatory_deregister(struct wiphy * wiphy)4131 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4132 {
4133 struct wiphy *request_wiphy = NULL;
4134 struct regulatory_request *lr;
4135
4136 lr = get_last_request();
4137
4138 if (!reg_dev_ignore_cell_hint(wiphy))
4139 reg_num_devs_support_basehint--;
4140
4141 rcu_free_regdom(get_wiphy_regdom(wiphy));
4142 RCU_INIT_POINTER(wiphy->regd, NULL);
4143
4144 if (lr)
4145 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4146
4147 if (!request_wiphy || request_wiphy != wiphy)
4148 return;
4149
4150 lr->wiphy_idx = WIPHY_IDX_INVALID;
4151 lr->country_ie_env = ENVIRON_ANY;
4152 }
4153
4154 /*
4155 * See FCC notices for UNII band definitions
4156 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4157 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4158 */
cfg80211_get_unii(int freq)4159 int cfg80211_get_unii(int freq)
4160 {
4161 /* UNII-1 */
4162 if (freq >= 5150 && freq <= 5250)
4163 return 0;
4164
4165 /* UNII-2A */
4166 if (freq > 5250 && freq <= 5350)
4167 return 1;
4168
4169 /* UNII-2B */
4170 if (freq > 5350 && freq <= 5470)
4171 return 2;
4172
4173 /* UNII-2C */
4174 if (freq > 5470 && freq <= 5725)
4175 return 3;
4176
4177 /* UNII-3 */
4178 if (freq > 5725 && freq <= 5825)
4179 return 4;
4180
4181 /* UNII-5 */
4182 if (freq > 5925 && freq <= 6425)
4183 return 5;
4184
4185 /* UNII-6 */
4186 if (freq > 6425 && freq <= 6525)
4187 return 6;
4188
4189 /* UNII-7 */
4190 if (freq > 6525 && freq <= 6875)
4191 return 7;
4192
4193 /* UNII-8 */
4194 if (freq > 6875 && freq <= 7125)
4195 return 8;
4196
4197 return -EINVAL;
4198 }
4199
regulatory_indoor_allowed(void)4200 bool regulatory_indoor_allowed(void)
4201 {
4202 return reg_is_indoor;
4203 }
4204
regulatory_pre_cac_allowed(struct wiphy * wiphy)4205 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4206 {
4207 const struct ieee80211_regdomain *regd = NULL;
4208 const struct ieee80211_regdomain *wiphy_regd = NULL;
4209 bool pre_cac_allowed = false;
4210
4211 rcu_read_lock();
4212
4213 regd = rcu_dereference(cfg80211_regdomain);
4214 wiphy_regd = rcu_dereference(wiphy->regd);
4215 if (!wiphy_regd) {
4216 if (regd->dfs_region == NL80211_DFS_ETSI)
4217 pre_cac_allowed = true;
4218
4219 rcu_read_unlock();
4220
4221 return pre_cac_allowed;
4222 }
4223
4224 if (regd->dfs_region == wiphy_regd->dfs_region &&
4225 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4226 pre_cac_allowed = true;
4227
4228 rcu_read_unlock();
4229
4230 return pre_cac_allowed;
4231 }
4232 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4233
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)4234 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4235 {
4236 struct wireless_dev *wdev;
4237 /* If we finished CAC or received radar, we should end any
4238 * CAC running on the same channels.
4239 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4240 * either all channels are available - those the CAC_FINISHED
4241 * event has effected another wdev state, or there is a channel
4242 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4243 * event has effected another wdev state.
4244 * In both cases we should end the CAC on the wdev.
4245 */
4246 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4247 struct cfg80211_chan_def *chandef;
4248
4249 if (!wdev->cac_started)
4250 continue;
4251
4252 /* FIXME: radar detection is tied to link 0 for now */
4253 chandef = wdev_chandef(wdev, 0);
4254 if (!chandef)
4255 continue;
4256
4257 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4258 rdev_end_cac(rdev, wdev->netdev);
4259 }
4260 }
4261
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)4262 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4263 struct cfg80211_chan_def *chandef,
4264 enum nl80211_dfs_state dfs_state,
4265 enum nl80211_radar_event event)
4266 {
4267 struct cfg80211_registered_device *rdev;
4268
4269 ASSERT_RTNL();
4270
4271 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4272 return;
4273
4274 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4275 if (wiphy == &rdev->wiphy)
4276 continue;
4277
4278 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4279 continue;
4280
4281 if (!ieee80211_get_channel(&rdev->wiphy,
4282 chandef->chan->center_freq))
4283 continue;
4284
4285 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4286
4287 if (event == NL80211_RADAR_DETECTED ||
4288 event == NL80211_RADAR_CAC_FINISHED) {
4289 cfg80211_sched_dfs_chan_update(rdev);
4290 cfg80211_check_and_end_cac(rdev);
4291 }
4292
4293 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4294 }
4295 }
4296
regulatory_init_db(void)4297 static int __init regulatory_init_db(void)
4298 {
4299 int err;
4300
4301 /*
4302 * It's possible that - due to other bugs/issues - cfg80211
4303 * never called regulatory_init() below, or that it failed;
4304 * in that case, don't try to do any further work here as
4305 * it's doomed to lead to crashes.
4306 */
4307 if (IS_ERR_OR_NULL(reg_pdev))
4308 return -EINVAL;
4309
4310 err = load_builtin_regdb_keys();
4311 if (err) {
4312 platform_device_unregister(reg_pdev);
4313 return err;
4314 }
4315
4316 /* We always try to get an update for the static regdomain */
4317 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4318 if (err) {
4319 if (err == -ENOMEM) {
4320 platform_device_unregister(reg_pdev);
4321 return err;
4322 }
4323 /*
4324 * N.B. kobject_uevent_env() can fail mainly for when we're out
4325 * memory which is handled and propagated appropriately above
4326 * but it can also fail during a netlink_broadcast() or during
4327 * early boot for call_usermodehelper(). For now treat these
4328 * errors as non-fatal.
4329 */
4330 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4331 }
4332
4333 /*
4334 * Finally, if the user set the module parameter treat it
4335 * as a user hint.
4336 */
4337 if (!is_world_regdom(ieee80211_regdom))
4338 regulatory_hint_user(ieee80211_regdom,
4339 NL80211_USER_REG_HINT_USER);
4340
4341 return 0;
4342 }
4343 #ifndef MODULE
4344 late_initcall(regulatory_init_db);
4345 #endif
4346
regulatory_init(void)4347 int __init regulatory_init(void)
4348 {
4349 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4350 if (IS_ERR(reg_pdev))
4351 return PTR_ERR(reg_pdev);
4352
4353 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4354
4355 user_alpha2[0] = '9';
4356 user_alpha2[1] = '7';
4357
4358 #ifdef MODULE
4359 return regulatory_init_db();
4360 #else
4361 return 0;
4362 #endif
4363 }
4364
regulatory_exit(void)4365 void regulatory_exit(void)
4366 {
4367 struct regulatory_request *reg_request, *tmp;
4368 struct reg_beacon *reg_beacon, *btmp;
4369
4370 cancel_work_sync(®_work);
4371 cancel_crda_timeout_sync();
4372 cancel_delayed_work_sync(®_check_chans);
4373
4374 /* Lock to suppress warnings */
4375 rtnl_lock();
4376 reset_regdomains(true, NULL);
4377 rtnl_unlock();
4378
4379 dev_set_uevent_suppress(®_pdev->dev, true);
4380
4381 platform_device_unregister(reg_pdev);
4382
4383 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4384 list_del(®_beacon->list);
4385 kfree(reg_beacon);
4386 }
4387
4388 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4389 list_del(®_beacon->list);
4390 kfree(reg_beacon);
4391 }
4392
4393 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4394 list_del(®_request->list);
4395 kfree(reg_request);
4396 }
4397
4398 if (!IS_ERR_OR_NULL(regdb))
4399 kfree(regdb);
4400 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4401 kfree(cfg80211_user_regdom);
4402
4403 free_regdb_keyring();
4404 }
4405