• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/android_vendor.h>
72 #include <linux/android_kabi.h>
73 
74 #include <trace/events/power.h>
75 #include <trace/events/sched.h>
76 
77 #include "../workqueue_internal.h"
78 
79 #ifdef CONFIG_CGROUP_SCHED
80 #include <linux/cgroup.h>
81 #include <linux/psi.h>
82 #endif
83 
84 #ifdef CONFIG_SCHED_DEBUG
85 # include <linux/static_key.h>
86 #endif
87 
88 #ifdef CONFIG_PARAVIRT
89 # include <asm/paravirt.h>
90 # include <asm/paravirt_api_clock.h>
91 #endif
92 
93 #include <asm/barrier.h>
94 
95 #include "cpupri.h"
96 #include "cpudeadline.h"
97 
98 #ifdef CONFIG_SCHED_DEBUG
99 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
100 #else
101 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
102 #endif
103 
104 struct rq;
105 struct cpuidle_state;
106 
107 /* task_struct::on_rq states: */
108 #define TASK_ON_RQ_QUEUED	1
109 #define TASK_ON_RQ_MIGRATING	2
110 
111 extern __read_mostly int scheduler_running;
112 
113 extern unsigned long calc_load_update;
114 extern atomic_long_t calc_load_tasks;
115 
116 extern unsigned int sysctl_sched_child_runs_first;
117 
118 extern void calc_global_load_tick(struct rq *this_rq);
119 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
120 
121 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
122 
123 extern unsigned int sysctl_sched_rt_period;
124 extern int sysctl_sched_rt_runtime;
125 extern int sched_rr_timeslice;
126 
127 /*
128  * Helpers for converting nanosecond timing to jiffy resolution
129  */
130 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
131 
132 /*
133  * Increase resolution of nice-level calculations for 64-bit architectures.
134  * The extra resolution improves shares distribution and load balancing of
135  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
136  * hierarchies, especially on larger systems. This is not a user-visible change
137  * and does not change the user-interface for setting shares/weights.
138  *
139  * We increase resolution only if we have enough bits to allow this increased
140  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
141  * are pretty high and the returns do not justify the increased costs.
142  *
143  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
144  * increase coverage and consistency always enable it on 64-bit platforms.
145  */
146 #ifdef CONFIG_64BIT
147 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
148 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
149 # define scale_load_down(w) \
150 ({ \
151 	unsigned long __w = (w); \
152 	if (__w) \
153 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
154 	__w; \
155 })
156 #else
157 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
158 # define scale_load(w)		(w)
159 # define scale_load_down(w)	(w)
160 #endif
161 
162 /*
163  * Task weight (visible to users) and its load (invisible to users) have
164  * independent resolution, but they should be well calibrated. We use
165  * scale_load() and scale_load_down(w) to convert between them. The
166  * following must be true:
167  *
168  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
169  *
170  */
171 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
172 
173 /*
174  * Single value that decides SCHED_DEADLINE internal math precision.
175  * 10 -> just above 1us
176  * 9  -> just above 0.5us
177  */
178 #define DL_SCALE		10
179 
180 /*
181  * Single value that denotes runtime == period, ie unlimited time.
182  */
183 #define RUNTIME_INF		((u64)~0ULL)
184 
idle_policy(int policy)185 static inline int idle_policy(int policy)
186 {
187 	return policy == SCHED_IDLE;
188 }
fair_policy(int policy)189 static inline int fair_policy(int policy)
190 {
191 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
192 }
193 
rt_policy(int policy)194 static inline int rt_policy(int policy)
195 {
196 	return policy == SCHED_FIFO || policy == SCHED_RR;
197 }
198 
dl_policy(int policy)199 static inline int dl_policy(int policy)
200 {
201 	return policy == SCHED_DEADLINE;
202 }
valid_policy(int policy)203 static inline bool valid_policy(int policy)
204 {
205 	return idle_policy(policy) || fair_policy(policy) ||
206 		rt_policy(policy) || dl_policy(policy);
207 }
208 
task_has_idle_policy(struct task_struct * p)209 static inline int task_has_idle_policy(struct task_struct *p)
210 {
211 	return idle_policy(p->policy);
212 }
213 
task_has_rt_policy(struct task_struct * p)214 static inline int task_has_rt_policy(struct task_struct *p)
215 {
216 	return rt_policy(p->policy);
217 }
218 
task_has_dl_policy(struct task_struct * p)219 static inline int task_has_dl_policy(struct task_struct *p)
220 {
221 	return dl_policy(p->policy);
222 }
223 
224 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
225 
update_avg(u64 * avg,u64 sample)226 static inline void update_avg(u64 *avg, u64 sample)
227 {
228 	s64 diff = sample - *avg;
229 	*avg += diff / 8;
230 }
231 
232 /*
233  * Shifting a value by an exponent greater *or equal* to the size of said value
234  * is UB; cap at size-1.
235  */
236 #define shr_bound(val, shift)							\
237 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
238 
239 /*
240  * !! For sched_setattr_nocheck() (kernel) only !!
241  *
242  * This is actually gross. :(
243  *
244  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
245  * tasks, but still be able to sleep. We need this on platforms that cannot
246  * atomically change clock frequency. Remove once fast switching will be
247  * available on such platforms.
248  *
249  * SUGOV stands for SchedUtil GOVernor.
250  */
251 #define SCHED_FLAG_SUGOV	0x10000000
252 
253 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
254 
dl_entity_is_special(const struct sched_dl_entity * dl_se)255 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
256 {
257 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
258 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
259 #else
260 	return false;
261 #endif
262 }
263 
264 /*
265  * Tells if entity @a should preempt entity @b.
266  */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)267 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
268 				     const struct sched_dl_entity *b)
269 {
270 	return dl_entity_is_special(a) ||
271 	       dl_time_before(a->deadline, b->deadline);
272 }
273 
274 /*
275  * This is the priority-queue data structure of the RT scheduling class:
276  */
277 struct rt_prio_array {
278 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
279 	struct list_head queue[MAX_RT_PRIO];
280 };
281 
282 struct rt_bandwidth {
283 	/* nests inside the rq lock: */
284 	raw_spinlock_t		rt_runtime_lock;
285 	ktime_t			rt_period;
286 	u64			rt_runtime;
287 	struct hrtimer		rt_period_timer;
288 	unsigned int		rt_period_active;
289 };
290 
291 void __dl_clear_params(struct task_struct *p);
292 
dl_bandwidth_enabled(void)293 static inline int dl_bandwidth_enabled(void)
294 {
295 	return sysctl_sched_rt_runtime >= 0;
296 }
297 
298 /*
299  * To keep the bandwidth of -deadline tasks under control
300  * we need some place where:
301  *  - store the maximum -deadline bandwidth of each cpu;
302  *  - cache the fraction of bandwidth that is currently allocated in
303  *    each root domain;
304  *
305  * This is all done in the data structure below. It is similar to the
306  * one used for RT-throttling (rt_bandwidth), with the main difference
307  * that, since here we are only interested in admission control, we
308  * do not decrease any runtime while the group "executes", neither we
309  * need a timer to replenish it.
310  *
311  * With respect to SMP, bandwidth is given on a per root domain basis,
312  * meaning that:
313  *  - bw (< 100%) is the deadline bandwidth of each CPU;
314  *  - total_bw is the currently allocated bandwidth in each root domain;
315  */
316 struct dl_bw {
317 	raw_spinlock_t		lock;
318 	u64			bw;
319 	u64			total_bw;
320 };
321 
322 extern void init_dl_bw(struct dl_bw *dl_b);
323 extern int  sched_dl_global_validate(void);
324 extern void sched_dl_do_global(void);
325 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
326 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
327 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
328 extern bool __checkparam_dl(const struct sched_attr *attr);
329 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
330 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
331 extern int  dl_bw_check_overflow(int cpu);
332 
333 #ifdef CONFIG_CGROUP_SCHED
334 
335 struct cfs_rq;
336 struct rt_rq;
337 
338 extern struct list_head task_groups;
339 
340 struct cfs_bandwidth {
341 #ifdef CONFIG_CFS_BANDWIDTH
342 	raw_spinlock_t		lock;
343 	ktime_t			period;
344 	u64			quota;
345 	u64			runtime;
346 	u64			burst;
347 	u64			runtime_snap;
348 	s64			hierarchical_quota;
349 
350 	u8			idle;
351 	u8			period_active;
352 	u8			slack_started;
353 	struct hrtimer		period_timer;
354 	struct hrtimer		slack_timer;
355 	struct list_head	throttled_cfs_rq;
356 
357 	/* Statistics: */
358 	int			nr_periods;
359 	int			nr_throttled;
360 	int			nr_burst;
361 	u64			throttled_time;
362 	u64			burst_time;
363 #endif
364 };
365 
366 /* Task group related information */
367 struct task_group {
368 	struct cgroup_subsys_state css;
369 
370 #ifdef CONFIG_FAIR_GROUP_SCHED
371 	/* schedulable entities of this group on each CPU */
372 	struct sched_entity	**se;
373 	/* runqueue "owned" by this group on each CPU */
374 	struct cfs_rq		**cfs_rq;
375 	unsigned long		shares;
376 
377 	/* A positive value indicates that this is a SCHED_IDLE group. */
378 	int			idle;
379 
380 #ifdef	CONFIG_SMP
381 	/*
382 	 * load_avg can be heavily contended at clock tick time, so put
383 	 * it in its own cacheline separated from the fields above which
384 	 * will also be accessed at each tick.
385 	 */
386 	atomic_long_t		load_avg ____cacheline_aligned;
387 #endif
388 #endif
389 
390 #ifdef CONFIG_RT_GROUP_SCHED
391 	struct sched_rt_entity	**rt_se;
392 	struct rt_rq		**rt_rq;
393 
394 	struct rt_bandwidth	rt_bandwidth;
395 #endif
396 
397 	struct rcu_head		rcu;
398 	struct list_head	list;
399 
400 	struct task_group	*parent;
401 	struct list_head	siblings;
402 	struct list_head	children;
403 
404 #ifdef CONFIG_SCHED_AUTOGROUP
405 	struct autogroup	*autogroup;
406 #endif
407 
408 	struct cfs_bandwidth	cfs_bandwidth;
409 
410 #ifdef CONFIG_UCLAMP_TASK_GROUP
411 	/* The two decimal precision [%] value requested from user-space */
412 	unsigned int		uclamp_pct[UCLAMP_CNT];
413 	/* Clamp values requested for a task group */
414 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
415 	/* Effective clamp values used for a task group */
416 	struct uclamp_se	uclamp[UCLAMP_CNT];
417 	/* Latency-sensitive flag used for a task group */
418 	unsigned int		latency_sensitive;
419 
420 	ANDROID_VENDOR_DATA_ARRAY(1, 4);
421 #endif
422 
423 	ANDROID_KABI_RESERVE(1);
424 	ANDROID_KABI_RESERVE(2);
425 	ANDROID_KABI_RESERVE(3);
426 	ANDROID_KABI_RESERVE(4);
427 };
428 
429 #ifdef CONFIG_FAIR_GROUP_SCHED
430 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
431 
432 /*
433  * A weight of 0 or 1 can cause arithmetics problems.
434  * A weight of a cfs_rq is the sum of weights of which entities
435  * are queued on this cfs_rq, so a weight of a entity should not be
436  * too large, so as the shares value of a task group.
437  * (The default weight is 1024 - so there's no practical
438  *  limitation from this.)
439  */
440 #define MIN_SHARES		(1UL <<  1)
441 #define MAX_SHARES		(1UL << 18)
442 #endif
443 
444 typedef int (*tg_visitor)(struct task_group *, void *);
445 
446 extern int walk_tg_tree_from(struct task_group *from,
447 			     tg_visitor down, tg_visitor up, void *data);
448 
449 /*
450  * Iterate the full tree, calling @down when first entering a node and @up when
451  * leaving it for the final time.
452  *
453  * Caller must hold rcu_lock or sufficient equivalent.
454  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)455 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
456 {
457 	return walk_tg_tree_from(&root_task_group, down, up, data);
458 }
459 
460 extern int tg_nop(struct task_group *tg, void *data);
461 
462 extern void free_fair_sched_group(struct task_group *tg);
463 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
464 extern void online_fair_sched_group(struct task_group *tg);
465 extern void unregister_fair_sched_group(struct task_group *tg);
466 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
467 			struct sched_entity *se, int cpu,
468 			struct sched_entity *parent);
469 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
470 
471 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
472 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
473 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
474 extern bool cfs_task_bw_constrained(struct task_struct *p);
475 
476 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
477 		struct sched_rt_entity *rt_se, int cpu,
478 		struct sched_rt_entity *parent);
479 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
480 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
481 extern long sched_group_rt_runtime(struct task_group *tg);
482 extern long sched_group_rt_period(struct task_group *tg);
483 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
484 
485 extern struct task_group *sched_create_group(struct task_group *parent);
486 extern void sched_online_group(struct task_group *tg,
487 			       struct task_group *parent);
488 extern void sched_destroy_group(struct task_group *tg);
489 extern void sched_release_group(struct task_group *tg);
490 
491 extern void sched_move_task(struct task_struct *tsk);
492 
493 #ifdef CONFIG_FAIR_GROUP_SCHED
494 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
495 
496 extern int sched_group_set_idle(struct task_group *tg, long idle);
497 
498 #ifdef CONFIG_SMP
499 extern void set_task_rq_fair(struct sched_entity *se,
500 			     struct cfs_rq *prev, struct cfs_rq *next);
501 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)502 static inline void set_task_rq_fair(struct sched_entity *se,
503 			     struct cfs_rq *prev, struct cfs_rq *next) { }
504 #endif /* CONFIG_SMP */
505 #endif /* CONFIG_FAIR_GROUP_SCHED */
506 
507 #else /* CONFIG_CGROUP_SCHED */
508 
509 struct cfs_bandwidth { };
cfs_task_bw_constrained(struct task_struct * p)510 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
511 
512 #endif	/* CONFIG_CGROUP_SCHED */
513 
514 extern void unregister_rt_sched_group(struct task_group *tg);
515 extern void free_rt_sched_group(struct task_group *tg);
516 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
517 
518 /*
519  * u64_u32_load/u64_u32_store
520  *
521  * Use a copy of a u64 value to protect against data race. This is only
522  * applicable for 32-bits architectures.
523  */
524 #ifdef CONFIG_64BIT
525 # define u64_u32_load_copy(var, copy)       var
526 # define u64_u32_store_copy(var, copy, val) (var = val)
527 #else
528 # define u64_u32_load_copy(var, copy)					\
529 ({									\
530 	u64 __val, __val_copy;						\
531 	do {								\
532 		__val_copy = copy;					\
533 		/*							\
534 		 * paired with u64_u32_store_copy(), ordering access	\
535 		 * to var and copy.					\
536 		 */							\
537 		smp_rmb();						\
538 		__val = var;						\
539 	} while (__val != __val_copy);					\
540 	__val;								\
541 })
542 # define u64_u32_store_copy(var, copy, val)				\
543 do {									\
544 	typeof(val) __val = (val);					\
545 	var = __val;							\
546 	/*								\
547 	 * paired with u64_u32_load_copy(), ordering access to var and	\
548 	 * copy.							\
549 	 */								\
550 	smp_wmb();							\
551 	copy = __val;							\
552 } while (0)
553 #endif
554 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
555 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
556 
557 /* CFS-related fields in a runqueue */
558 struct cfs_rq {
559 	struct load_weight	load;
560 	unsigned int		nr_running;
561 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
562 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
563 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
564 
565 	s64			avg_vruntime;
566 	u64			avg_load;
567 
568 	u64			exec_clock;
569 	u64			min_vruntime;
570 #ifdef CONFIG_SCHED_CORE
571 	unsigned int		forceidle_seq;
572 	u64			min_vruntime_fi;
573 #endif
574 
575 #ifndef CONFIG_64BIT
576 	u64			min_vruntime_copy;
577 #endif
578 
579 	struct rb_root_cached	tasks_timeline;
580 
581 	/*
582 	 * 'curr' points to currently running entity on this cfs_rq.
583 	 * It is set to NULL otherwise (i.e when none are currently running).
584 	 */
585 	struct sched_entity	*curr;
586 	struct sched_entity	*next;
587 
588 #ifdef	CONFIG_SCHED_DEBUG
589 	unsigned int		nr_spread_over;
590 #endif
591 
592 #ifdef CONFIG_SMP
593 	/*
594 	 * CFS load tracking
595 	 */
596 	struct sched_avg	avg;
597 #ifndef CONFIG_64BIT
598 	u64			last_update_time_copy;
599 #endif
600 	struct {
601 		raw_spinlock_t	lock ____cacheline_aligned;
602 		int		nr;
603 		unsigned long	load_avg;
604 		unsigned long	util_avg;
605 		unsigned long	runnable_avg;
606 	} removed;
607 
608 #ifdef CONFIG_FAIR_GROUP_SCHED
609 	unsigned long		tg_load_avg_contrib;
610 	long			propagate;
611 	long			prop_runnable_sum;
612 
613 	/*
614 	 *   h_load = weight * f(tg)
615 	 *
616 	 * Where f(tg) is the recursive weight fraction assigned to
617 	 * this group.
618 	 */
619 	unsigned long		h_load;
620 	u64			last_h_load_update;
621 	struct sched_entity	*h_load_next;
622 #endif /* CONFIG_FAIR_GROUP_SCHED */
623 #endif /* CONFIG_SMP */
624 
625 	 /* Unused, only kept here to preserve the KMI after revert. */
626 	bool			decayed;
627 
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
630 
631 	/*
632 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
633 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
634 	 * (like users, containers etc.)
635 	 *
636 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
637 	 * This list is used during load balance.
638 	 */
639 	int			on_list;
640 	struct list_head	leaf_cfs_rq_list;
641 	struct task_group	*tg;	/* group that "owns" this runqueue */
642 
643 	/* Locally cached copy of our task_group's idle value */
644 	int			idle;
645 
646 #ifdef CONFIG_CFS_BANDWIDTH
647 	int			runtime_enabled;
648 	s64			runtime_remaining;
649 
650 	u64			throttled_pelt_idle;
651 #ifndef CONFIG_64BIT
652 	u64                     throttled_pelt_idle_copy;
653 #endif
654 	u64			throttled_clock;
655 	u64			throttled_clock_pelt;
656 	u64			throttled_clock_pelt_time;
657 	u64			throttled_clock_self;
658 	u64			throttled_clock_self_time;
659 	int			throttled;
660 	int			throttle_count;
661 	struct list_head	throttled_list;
662 #ifdef CONFIG_SMP
663 	struct list_head	throttled_csd_list;
664 #endif
665 #endif /* CONFIG_CFS_BANDWIDTH */
666 #endif /* CONFIG_FAIR_GROUP_SCHED */
667 };
668 
rt_bandwidth_enabled(void)669 static inline int rt_bandwidth_enabled(void)
670 {
671 	return sysctl_sched_rt_runtime >= 0;
672 }
673 
674 /* RT IPI pull logic requires IRQ_WORK */
675 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
676 # define HAVE_RT_PUSH_IPI
677 #endif
678 
679 /* Real-Time classes' related field in a runqueue: */
680 struct rt_rq {
681 	struct rt_prio_array	active;
682 	unsigned int		rt_nr_running;
683 	unsigned int		rr_nr_running;
684 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
685 	struct {
686 		int		curr; /* highest queued rt task prio */
687 #ifdef CONFIG_SMP
688 		int		next; /* next highest */
689 #endif
690 	} highest_prio;
691 #endif
692 #ifdef CONFIG_SMP
693 	unsigned int		rt_nr_migratory;
694 	unsigned int		rt_nr_total;
695 	int			overloaded;
696 	struct plist_head	pushable_tasks;
697 
698 #endif /* CONFIG_SMP */
699 	int			rt_queued;
700 
701 	int			rt_throttled;
702 	u64			rt_time;
703 	u64			rt_runtime;
704 	/* Nests inside the rq lock: */
705 	raw_spinlock_t		rt_runtime_lock;
706 
707 #ifdef CONFIG_RT_GROUP_SCHED
708 	unsigned int		rt_nr_boosted;
709 
710 	struct rq		*rq;
711 	struct task_group	*tg;
712 #endif
713 };
714 
rt_rq_is_runnable(struct rt_rq * rt_rq)715 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
716 {
717 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
718 }
719 
720 /* Deadline class' related fields in a runqueue */
721 struct dl_rq {
722 	/* runqueue is an rbtree, ordered by deadline */
723 	struct rb_root_cached	root;
724 
725 	unsigned int		dl_nr_running;
726 
727 #ifdef CONFIG_SMP
728 	/*
729 	 * Deadline values of the currently executing and the
730 	 * earliest ready task on this rq. Caching these facilitates
731 	 * the decision whether or not a ready but not running task
732 	 * should migrate somewhere else.
733 	 */
734 	struct {
735 		u64		curr;
736 		u64		next;
737 	} earliest_dl;
738 
739 	unsigned int		dl_nr_migratory;
740 	int			overloaded;
741 
742 	/*
743 	 * Tasks on this rq that can be pushed away. They are kept in
744 	 * an rb-tree, ordered by tasks' deadlines, with caching
745 	 * of the leftmost (earliest deadline) element.
746 	 */
747 	struct rb_root_cached	pushable_dl_tasks_root;
748 #else
749 	struct dl_bw		dl_bw;
750 #endif
751 	/*
752 	 * "Active utilization" for this runqueue: increased when a
753 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
754 	 * task blocks
755 	 */
756 	u64			running_bw;
757 
758 	/*
759 	 * Utilization of the tasks "assigned" to this runqueue (including
760 	 * the tasks that are in runqueue and the tasks that executed on this
761 	 * CPU and blocked). Increased when a task moves to this runqueue, and
762 	 * decreased when the task moves away (migrates, changes scheduling
763 	 * policy, or terminates).
764 	 * This is needed to compute the "inactive utilization" for the
765 	 * runqueue (inactive utilization = this_bw - running_bw).
766 	 */
767 	u64			this_bw;
768 	u64			extra_bw;
769 
770 	/*
771 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
772 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
773 	 */
774 	u64			max_bw;
775 
776 	/*
777 	 * Inverse of the fraction of CPU utilization that can be reclaimed
778 	 * by the GRUB algorithm.
779 	 */
780 	u64			bw_ratio;
781 };
782 
783 #ifdef CONFIG_FAIR_GROUP_SCHED
784 /* An entity is a task if it doesn't "own" a runqueue */
785 #define entity_is_task(se)	(!se->my_q)
786 
se_update_runnable(struct sched_entity * se)787 static inline void se_update_runnable(struct sched_entity *se)
788 {
789 	if (!entity_is_task(se))
790 		se->runnable_weight = se->my_q->h_nr_running;
791 }
792 
se_runnable(struct sched_entity * se)793 static inline long se_runnable(struct sched_entity *se)
794 {
795 	if (entity_is_task(se))
796 		return !!se->on_rq;
797 	else
798 		return se->runnable_weight;
799 }
800 
801 #else
802 #define entity_is_task(se)	1
803 
se_update_runnable(struct sched_entity * se)804 static inline void se_update_runnable(struct sched_entity *se) {}
805 
se_runnable(struct sched_entity * se)806 static inline long se_runnable(struct sched_entity *se)
807 {
808 	return !!se->on_rq;
809 }
810 #endif
811 
812 #ifdef CONFIG_SMP
813 /*
814  * XXX we want to get rid of these helpers and use the full load resolution.
815  */
se_weight(struct sched_entity * se)816 static inline long se_weight(struct sched_entity *se)
817 {
818 	return scale_load_down(se->load.weight);
819 }
820 
821 
sched_asym_prefer(int a,int b)822 static inline bool sched_asym_prefer(int a, int b)
823 {
824 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
825 }
826 
827 struct perf_domain {
828 	struct em_perf_domain *em_pd;
829 	struct perf_domain *next;
830 	struct rcu_head rcu;
831 };
832 
833 /* Scheduling group status flags */
834 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
835 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
836 
837 /*
838  * We add the notion of a root-domain which will be used to define per-domain
839  * variables. Each exclusive cpuset essentially defines an island domain by
840  * fully partitioning the member CPUs from any other cpuset. Whenever a new
841  * exclusive cpuset is created, we also create and attach a new root-domain
842  * object.
843  *
844  */
845 struct root_domain {
846 	atomic_t		refcount;
847 	atomic_t		rto_count;
848 	struct rcu_head		rcu;
849 	cpumask_var_t		span;
850 	cpumask_var_t		online;
851 
852 	/*
853 	 * Indicate pullable load on at least one CPU, e.g:
854 	 * - More than one runnable task
855 	 * - Running task is misfit
856 	 */
857 	int			overload;
858 
859 	/* Indicate one or more cpus over-utilized (tipping point) */
860 	int			overutilized;
861 
862 	/*
863 	 * The bit corresponding to a CPU gets set here if such CPU has more
864 	 * than one runnable -deadline task (as it is below for RT tasks).
865 	 */
866 	cpumask_var_t		dlo_mask;
867 	atomic_t		dlo_count;
868 	struct dl_bw		dl_bw;
869 	struct cpudl		cpudl;
870 
871 	/*
872 	 * Indicate whether a root_domain's dl_bw has been checked or
873 	 * updated. It's monotonously increasing value.
874 	 *
875 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
876 	 * that u64 is 'big enough'. So that shouldn't be a concern.
877 	 */
878 	u64 visit_gen;
879 
880 #ifdef HAVE_RT_PUSH_IPI
881 	/*
882 	 * For IPI pull requests, loop across the rto_mask.
883 	 */
884 	struct irq_work		rto_push_work;
885 	raw_spinlock_t		rto_lock;
886 	/* These are only updated and read within rto_lock */
887 	int			rto_loop;
888 	int			rto_cpu;
889 	/* These atomics are updated outside of a lock */
890 	atomic_t		rto_loop_next;
891 	atomic_t		rto_loop_start;
892 #endif
893 	/*
894 	 * The "RT overload" flag: it gets set if a CPU has more than
895 	 * one runnable RT task.
896 	 */
897 	cpumask_var_t		rto_mask;
898 	struct cpupri		cpupri;
899 
900 	unsigned long		max_cpu_capacity;
901 
902 	/*
903 	 * NULL-terminated list of performance domains intersecting with the
904 	 * CPUs of the rd. Protected by RCU.
905 	 */
906 	struct perf_domain __rcu *pd;
907 
908 	ANDROID_VENDOR_DATA(1);
909 
910 	ANDROID_KABI_RESERVE(1);
911 	ANDROID_KABI_RESERVE(2);
912 	ANDROID_KABI_RESERVE(3);
913 	ANDROID_KABI_RESERVE(4);
914 };
915 
916 extern void init_defrootdomain(void);
917 extern int sched_init_domains(const struct cpumask *cpu_map);
918 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
919 extern void sched_get_rd(struct root_domain *rd);
920 extern void sched_put_rd(struct root_domain *rd);
921 
922 #ifdef HAVE_RT_PUSH_IPI
923 extern void rto_push_irq_work_func(struct irq_work *work);
924 #endif
925 extern struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu);
926 #endif /* CONFIG_SMP */
927 
928 #ifdef CONFIG_UCLAMP_TASK
929 /*
930  * struct uclamp_bucket - Utilization clamp bucket
931  * @value: utilization clamp value for tasks on this clamp bucket
932  * @tasks: number of RUNNABLE tasks on this clamp bucket
933  *
934  * Keep track of how many tasks are RUNNABLE for a given utilization
935  * clamp value.
936  */
937 struct uclamp_bucket {
938 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
939 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
940 };
941 
942 /*
943  * struct uclamp_rq - rq's utilization clamp
944  * @value: currently active clamp values for a rq
945  * @bucket: utilization clamp buckets affecting a rq
946  *
947  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
948  * A clamp value is affecting a rq when there is at least one task RUNNABLE
949  * (or actually running) with that value.
950  *
951  * There are up to UCLAMP_CNT possible different clamp values, currently there
952  * are only two: minimum utilization and maximum utilization.
953  *
954  * All utilization clamping values are MAX aggregated, since:
955  * - for util_min: we want to run the CPU at least at the max of the minimum
956  *   utilization required by its currently RUNNABLE tasks.
957  * - for util_max: we want to allow the CPU to run up to the max of the
958  *   maximum utilization allowed by its currently RUNNABLE tasks.
959  *
960  * Since on each system we expect only a limited number of different
961  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
962  * the metrics required to compute all the per-rq utilization clamp values.
963  */
964 struct uclamp_rq {
965 	unsigned int value;
966 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
967 };
968 
969 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
970 #endif /* CONFIG_UCLAMP_TASK */
971 
972 struct rq;
973 struct balance_callback {
974 	struct balance_callback *next;
975 	void (*func)(struct rq *rq);
976 };
977 
978 typedef enum misfit_reason {
979 	MISFIT_PERF,		/* Requires moving to a more performant CPU */
980 } misfit_reason_t;
981 
982 /*
983  * This is the main, per-CPU runqueue data structure.
984  *
985  * Locking rule: those places that want to lock multiple runqueues
986  * (such as the load balancing or the thread migration code), lock
987  * acquire operations must be ordered by ascending &runqueue.
988  */
989 struct rq {
990 	/* runqueue lock: */
991 	raw_spinlock_t		__lock;
992 
993 	/*
994 	 * nr_running and cpu_load should be in the same cacheline because
995 	 * remote CPUs use both these fields when doing load calculation.
996 	 */
997 	unsigned int		nr_running;
998 #ifdef CONFIG_NUMA_BALANCING
999 	unsigned int		nr_numa_running;
1000 	unsigned int		nr_preferred_running;
1001 	unsigned int		numa_migrate_on;
1002 #endif
1003 #ifdef CONFIG_NO_HZ_COMMON
1004 #ifdef CONFIG_SMP
1005 	unsigned long		last_blocked_load_update_tick;
1006 	unsigned int		has_blocked_load;
1007 	call_single_data_t	nohz_csd;
1008 #endif /* CONFIG_SMP */
1009 	unsigned int		nohz_tick_stopped;
1010 	atomic_t		nohz_flags;
1011 #endif /* CONFIG_NO_HZ_COMMON */
1012 
1013 #ifdef CONFIG_SMP
1014 	unsigned int		ttwu_pending;
1015 #endif
1016 	u64			nr_switches;
1017 
1018 #ifdef CONFIG_UCLAMP_TASK
1019 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1020 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1021 	unsigned int		uclamp_flags;
1022 #define UCLAMP_FLAG_IDLE 0x01
1023 #endif
1024 
1025 	struct cfs_rq		cfs;
1026 	struct rt_rq		rt;
1027 	struct dl_rq		dl;
1028 
1029 #ifdef CONFIG_FAIR_GROUP_SCHED
1030 	/* list of leaf cfs_rq on this CPU: */
1031 	struct list_head	leaf_cfs_rq_list;
1032 	struct list_head	*tmp_alone_branch;
1033 #endif /* CONFIG_FAIR_GROUP_SCHED */
1034 
1035 	/*
1036 	 * This is part of a global counter where only the total sum
1037 	 * over all CPUs matters. A task can increase this counter on
1038 	 * one CPU and if it got migrated afterwards it may decrease
1039 	 * it on another CPU. Always updated under the runqueue lock:
1040 	 */
1041 	unsigned int		nr_uninterruptible;
1042 
1043 	struct task_struct __rcu	*curr;
1044 	struct task_struct	*idle;
1045 	struct task_struct	*stop;
1046 	unsigned long		next_balance;
1047 	struct mm_struct	*prev_mm;
1048 
1049 	unsigned int		clock_update_flags;
1050 	u64			clock;
1051 	/* Ensure that all clocks are in the same cache line */
1052 	u64			clock_task ____cacheline_aligned;
1053 	u64			clock_task_mult;
1054 	u64			clock_pelt;
1055 	unsigned long		lost_idle_time;
1056 	u64			clock_pelt_idle;
1057 	u64			clock_idle;
1058 #ifndef CONFIG_64BIT
1059 	u64			clock_pelt_idle_copy;
1060 	u64			clock_idle_copy;
1061 #endif
1062 
1063 	atomic_t		nr_iowait;
1064 
1065 #ifdef CONFIG_SCHED_DEBUG
1066 	u64 last_seen_need_resched_ns;
1067 	int ticks_without_resched;
1068 #endif
1069 
1070 #ifdef CONFIG_MEMBARRIER
1071 	int membarrier_state;
1072 #endif
1073 
1074 #ifdef CONFIG_SMP
1075 	struct root_domain		*rd;
1076 	struct sched_domain __rcu	*sd;
1077 
1078 	unsigned long		cpu_capacity;
1079 	unsigned long		cpu_capacity_orig;
1080 
1081 	struct balance_callback *balance_callback;
1082 
1083 	unsigned char		nohz_idle_balance;
1084 	unsigned char		idle_balance;
1085 
1086 	unsigned long		misfit_task_load;
1087 
1088 	/* For active balancing */
1089 	int			active_balance;
1090 	int			push_cpu;
1091 	struct cpu_stop_work	active_balance_work;
1092 
1093 	/* CPU of this runqueue: */
1094 	int			cpu;
1095 	int			online;
1096 
1097 	struct list_head cfs_tasks;
1098 
1099 	struct sched_avg	avg_rt;
1100 	struct sched_avg	avg_dl;
1101 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1102 	struct sched_avg	avg_irq;
1103 #endif
1104 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1105 	struct sched_avg	avg_thermal;
1106 #endif
1107 	u64			idle_stamp;
1108 	u64			avg_idle;
1109 
1110 	unsigned long		wake_stamp;
1111 	u64			wake_avg_idle;
1112 
1113 	/* This is used to determine avg_idle's max value */
1114 	u64			max_idle_balance_cost;
1115 
1116 #ifdef CONFIG_HOTPLUG_CPU
1117 	struct rcuwait		hotplug_wait;
1118 #endif
1119 #endif /* CONFIG_SMP */
1120 
1121 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1122 	u64			prev_irq_time;
1123 #endif
1124 #ifdef CONFIG_PARAVIRT
1125 	u64			prev_steal_time;
1126 #endif
1127 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1128 	u64			prev_steal_time_rq;
1129 #endif
1130 
1131 	/* calc_load related fields */
1132 	unsigned long		calc_load_update;
1133 	long			calc_load_active;
1134 
1135 #ifdef CONFIG_SCHED_HRTICK
1136 #ifdef CONFIG_SMP
1137 	call_single_data_t	hrtick_csd;
1138 #endif
1139 	struct hrtimer		hrtick_timer;
1140 	ktime_t 		hrtick_time;
1141 #endif
1142 
1143 #ifdef CONFIG_SCHEDSTATS
1144 	/* latency stats */
1145 	struct sched_info	rq_sched_info;
1146 	unsigned long long	rq_cpu_time;
1147 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1148 
1149 	/* sys_sched_yield() stats */
1150 	unsigned int		yld_count;
1151 
1152 	/* schedule() stats */
1153 	unsigned int		sched_count;
1154 	unsigned int		sched_goidle;
1155 
1156 	/* try_to_wake_up() stats */
1157 	unsigned int		ttwu_count;
1158 	unsigned int		ttwu_local;
1159 #endif
1160 
1161 #ifdef CONFIG_CPU_IDLE
1162 	/* Must be inspected within a rcu lock section */
1163 	struct cpuidle_state	*idle_state;
1164 #endif
1165 
1166 #ifdef CONFIG_SMP
1167 	unsigned int		nr_pinned;
1168 #endif
1169 	unsigned int		push_busy;
1170 	struct cpu_stop_work	push_work;
1171 
1172 #ifdef CONFIG_SCHED_CORE
1173 	/* per rq */
1174 	struct rq		*core;
1175 	struct task_struct	*core_pick;
1176 	unsigned int		core_enabled;
1177 	unsigned int		core_sched_seq;
1178 	struct rb_root		core_tree;
1179 
1180 	/* shared state -- careful with sched_core_cpu_deactivate() */
1181 	unsigned int		core_task_seq;
1182 	unsigned int		core_pick_seq;
1183 	unsigned long		core_cookie;
1184 	unsigned int		core_forceidle_count;
1185 	unsigned int		core_forceidle_seq;
1186 	unsigned int		core_forceidle_occupation;
1187 	u64			core_forceidle_start;
1188 #endif
1189 
1190 	/* Scratch cpumask to be temporarily used under rq_lock */
1191 	cpumask_var_t		scratch_mask;
1192 
1193 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1194 	call_single_data_t	cfsb_csd;
1195 	struct list_head	cfsb_csd_list;
1196 #endif
1197 
1198 #ifdef CONFIG_SMP
1199 	misfit_reason_t		misfit_reason;
1200 #endif
1201 
1202 	ANDROID_OEM_DATA_ARRAY(1, 16);
1203 
1204 	ANDROID_KABI_RESERVE(1);
1205 	ANDROID_KABI_RESERVE(2);
1206 	ANDROID_KABI_RESERVE(3);
1207 	ANDROID_KABI_RESERVE(4);
1208 };
1209 
1210 #ifdef CONFIG_FAIR_GROUP_SCHED
1211 
1212 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1213 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1214 {
1215 	return cfs_rq->rq;
1216 }
1217 
1218 #else
1219 
rq_of(struct cfs_rq * cfs_rq)1220 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1221 {
1222 	return container_of(cfs_rq, struct rq, cfs);
1223 }
1224 #endif
1225 
cpu_of(struct rq * rq)1226 static inline int cpu_of(struct rq *rq)
1227 {
1228 #ifdef CONFIG_SMP
1229 	return rq->cpu;
1230 #else
1231 	return 0;
1232 #endif
1233 }
1234 
1235 #define MDF_PUSH	0x01
1236 
is_migration_disabled(struct task_struct * p)1237 static inline bool is_migration_disabled(struct task_struct *p)
1238 {
1239 #ifdef CONFIG_SMP
1240 	return p->migration_disabled;
1241 #else
1242 	return false;
1243 #endif
1244 }
1245 
1246 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1247 
1248 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1249 #define this_rq()		this_cpu_ptr(&runqueues)
1250 #define task_rq(p)		cpu_rq(task_cpu(p))
1251 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1252 #define raw_rq()		raw_cpu_ptr(&runqueues)
1253 
1254 struct sched_group;
1255 #ifdef CONFIG_SCHED_CORE
1256 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1257 
1258 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1259 
sched_core_enabled(struct rq * rq)1260 static inline bool sched_core_enabled(struct rq *rq)
1261 {
1262 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1263 }
1264 
sched_core_disabled(void)1265 static inline bool sched_core_disabled(void)
1266 {
1267 	return !static_branch_unlikely(&__sched_core_enabled);
1268 }
1269 
1270 /*
1271  * Be careful with this function; not for general use. The return value isn't
1272  * stable unless you actually hold a relevant rq->__lock.
1273  */
rq_lockp(struct rq * rq)1274 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1275 {
1276 	if (sched_core_enabled(rq))
1277 		return &rq->core->__lock;
1278 
1279 	return &rq->__lock;
1280 }
1281 
__rq_lockp(struct rq * rq)1282 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1283 {
1284 	if (rq->core_enabled)
1285 		return &rq->core->__lock;
1286 
1287 	return &rq->__lock;
1288 }
1289 
1290 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1291 			bool fi);
1292 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1293 
1294 /*
1295  * Helpers to check if the CPU's core cookie matches with the task's cookie
1296  * when core scheduling is enabled.
1297  * A special case is that the task's cookie always matches with CPU's core
1298  * cookie if the CPU is in an idle core.
1299  */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1300 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1301 {
1302 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1303 	if (!sched_core_enabled(rq))
1304 		return true;
1305 
1306 	return rq->core->core_cookie == p->core_cookie;
1307 }
1308 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1309 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1310 {
1311 	bool idle_core = true;
1312 	int cpu;
1313 
1314 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1315 	if (!sched_core_enabled(rq))
1316 		return true;
1317 
1318 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1319 		if (!available_idle_cpu(cpu)) {
1320 			idle_core = false;
1321 			break;
1322 		}
1323 	}
1324 
1325 	/*
1326 	 * A CPU in an idle core is always the best choice for tasks with
1327 	 * cookies.
1328 	 */
1329 	return idle_core || rq->core->core_cookie == p->core_cookie;
1330 }
1331 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1332 static inline bool sched_group_cookie_match(struct rq *rq,
1333 					    struct task_struct *p,
1334 					    struct sched_group *group)
1335 {
1336 	int cpu;
1337 
1338 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1339 	if (!sched_core_enabled(rq))
1340 		return true;
1341 
1342 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1343 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1344 			return true;
1345 	}
1346 	return false;
1347 }
1348 
sched_core_enqueued(struct task_struct * p)1349 static inline bool sched_core_enqueued(struct task_struct *p)
1350 {
1351 	return !RB_EMPTY_NODE(&p->core_node);
1352 }
1353 
1354 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1355 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1356 
1357 extern void sched_core_get(void);
1358 extern void sched_core_put(void);
1359 
1360 #else /* !CONFIG_SCHED_CORE */
1361 
sched_core_enabled(struct rq * rq)1362 static inline bool sched_core_enabled(struct rq *rq)
1363 {
1364 	return false;
1365 }
1366 
sched_core_disabled(void)1367 static inline bool sched_core_disabled(void)
1368 {
1369 	return true;
1370 }
1371 
rq_lockp(struct rq * rq)1372 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1373 {
1374 	return &rq->__lock;
1375 }
1376 
__rq_lockp(struct rq * rq)1377 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1378 {
1379 	return &rq->__lock;
1380 }
1381 
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1382 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1383 {
1384 	return true;
1385 }
1386 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1387 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1388 {
1389 	return true;
1390 }
1391 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1392 static inline bool sched_group_cookie_match(struct rq *rq,
1393 					    struct task_struct *p,
1394 					    struct sched_group *group)
1395 {
1396 	return true;
1397 }
1398 #endif /* CONFIG_SCHED_CORE */
1399 
lockdep_assert_rq_held(struct rq * rq)1400 static inline void lockdep_assert_rq_held(struct rq *rq)
1401 {
1402 	lockdep_assert_held(__rq_lockp(rq));
1403 }
1404 
1405 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1406 extern bool raw_spin_rq_trylock(struct rq *rq);
1407 extern void raw_spin_rq_unlock(struct rq *rq);
1408 
raw_spin_rq_lock(struct rq * rq)1409 static inline void raw_spin_rq_lock(struct rq *rq)
1410 {
1411 	raw_spin_rq_lock_nested(rq, 0);
1412 }
1413 
raw_spin_rq_lock_irq(struct rq * rq)1414 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1415 {
1416 	local_irq_disable();
1417 	raw_spin_rq_lock(rq);
1418 }
1419 
raw_spin_rq_unlock_irq(struct rq * rq)1420 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1421 {
1422 	raw_spin_rq_unlock(rq);
1423 	local_irq_enable();
1424 }
1425 
_raw_spin_rq_lock_irqsave(struct rq * rq)1426 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1427 {
1428 	unsigned long flags;
1429 	local_irq_save(flags);
1430 	raw_spin_rq_lock(rq);
1431 	return flags;
1432 }
1433 
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1434 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1435 {
1436 	raw_spin_rq_unlock(rq);
1437 	local_irq_restore(flags);
1438 }
1439 
1440 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1441 do {						\
1442 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1443 } while (0)
1444 
1445 #ifdef CONFIG_SCHED_SMT
1446 extern void __update_idle_core(struct rq *rq);
1447 
update_idle_core(struct rq * rq)1448 static inline void update_idle_core(struct rq *rq)
1449 {
1450 	if (static_branch_unlikely(&sched_smt_present))
1451 		__update_idle_core(rq);
1452 }
1453 
1454 #else
update_idle_core(struct rq * rq)1455 static inline void update_idle_core(struct rq *rq) { }
1456 #endif
1457 
1458 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1459 static inline struct task_struct *task_of(struct sched_entity *se)
1460 {
1461 	SCHED_WARN_ON(!entity_is_task(se));
1462 	return container_of(se, struct task_struct, se);
1463 }
1464 
task_cfs_rq(struct task_struct * p)1465 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1466 {
1467 	return p->se.cfs_rq;
1468 }
1469 
1470 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1471 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1472 {
1473 	return se->cfs_rq;
1474 }
1475 
1476 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1477 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1478 {
1479 	return grp->my_q;
1480 }
1481 
1482 #else
1483 
1484 #define task_of(_se)	container_of(_se, struct task_struct, se)
1485 
task_cfs_rq(const struct task_struct * p)1486 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1487 {
1488 	return &task_rq(p)->cfs;
1489 }
1490 
cfs_rq_of(const struct sched_entity * se)1491 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1492 {
1493 	const struct task_struct *p = task_of(se);
1494 	struct rq *rq = task_rq(p);
1495 
1496 	return &rq->cfs;
1497 }
1498 
1499 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1500 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1501 {
1502 	return NULL;
1503 }
1504 #endif
1505 
1506 extern void update_rq_clock(struct rq *rq);
1507 
1508 /*
1509  * rq::clock_update_flags bits
1510  *
1511  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1512  *  call to __schedule(). This is an optimisation to avoid
1513  *  neighbouring rq clock updates.
1514  *
1515  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1516  *  in effect and calls to update_rq_clock() are being ignored.
1517  *
1518  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1519  *  made to update_rq_clock() since the last time rq::lock was pinned.
1520  *
1521  * If inside of __schedule(), clock_update_flags will have been
1522  * shifted left (a left shift is a cheap operation for the fast path
1523  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1524  *
1525  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1526  *
1527  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1528  * one position though, because the next rq_unpin_lock() will shift it
1529  * back.
1530  */
1531 #define RQCF_REQ_SKIP		0x01
1532 #define RQCF_ACT_SKIP		0x02
1533 #define RQCF_UPDATED		0x04
1534 
assert_clock_updated(struct rq * rq)1535 static inline void assert_clock_updated(struct rq *rq)
1536 {
1537 	/*
1538 	 * The only reason for not seeing a clock update since the
1539 	 * last rq_pin_lock() is if we're currently skipping updates.
1540 	 */
1541 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1542 }
1543 
rq_clock(struct rq * rq)1544 static inline u64 rq_clock(struct rq *rq)
1545 {
1546 	lockdep_assert_rq_held(rq);
1547 	assert_clock_updated(rq);
1548 
1549 	return rq->clock;
1550 }
1551 
rq_clock_task(struct rq * rq)1552 static inline u64 rq_clock_task(struct rq *rq)
1553 {
1554 	lockdep_assert_rq_held(rq);
1555 	assert_clock_updated(rq);
1556 
1557 	return rq->clock_task;
1558 }
1559 
1560 /**
1561  * By default the decay is the default pelt decay period.
1562  * The decay shift can change the decay period in
1563  * multiples of 32.
1564  *  Decay shift		Decay period(ms)
1565  *	0			32
1566  *	1			64
1567  *	2			128
1568  *	3			256
1569  *	4			512
1570  */
1571 extern int sched_thermal_decay_shift;
1572 
rq_clock_thermal(struct rq * rq)1573 static inline u64 rq_clock_thermal(struct rq *rq)
1574 {
1575 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1576 }
1577 
rq_clock_skip_update(struct rq * rq)1578 static inline void rq_clock_skip_update(struct rq *rq)
1579 {
1580 	lockdep_assert_rq_held(rq);
1581 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1582 }
1583 
1584 /*
1585  * See rt task throttling, which is the only time a skip
1586  * request is canceled.
1587  */
rq_clock_cancel_skipupdate(struct rq * rq)1588 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1589 {
1590 	lockdep_assert_rq_held(rq);
1591 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1592 }
1593 
1594 /*
1595  * During cpu offlining and rq wide unthrottling, we can trigger
1596  * an update_rq_clock() for several cfs and rt runqueues (Typically
1597  * when using list_for_each_entry_*)
1598  * rq_clock_start_loop_update() can be called after updating the clock
1599  * once and before iterating over the list to prevent multiple update.
1600  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1601  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1602  */
rq_clock_start_loop_update(struct rq * rq)1603 static inline void rq_clock_start_loop_update(struct rq *rq)
1604 {
1605 	lockdep_assert_rq_held(rq);
1606 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1607 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1608 }
1609 
rq_clock_stop_loop_update(struct rq * rq)1610 static inline void rq_clock_stop_loop_update(struct rq *rq)
1611 {
1612 	lockdep_assert_rq_held(rq);
1613 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1614 }
1615 
1616 struct rq_flags {
1617 	unsigned long flags;
1618 	struct pin_cookie cookie;
1619 #ifdef CONFIG_SCHED_DEBUG
1620 	/*
1621 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1622 	 * current pin context is stashed here in case it needs to be
1623 	 * restored in rq_repin_lock().
1624 	 */
1625 	unsigned int clock_update_flags;
1626 #endif
1627 };
1628 
1629 #ifdef CONFIG_SMP
1630 extern struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1631 				 struct task_struct *p, int dest_cpu);
1632 #endif
1633 
1634 extern struct balance_callback balance_push_callback;
1635 
1636 /*
1637  * Lockdep annotation that avoids accidental unlocks; it's like a
1638  * sticky/continuous lockdep_assert_held().
1639  *
1640  * This avoids code that has access to 'struct rq *rq' (basically everything in
1641  * the scheduler) from accidentally unlocking the rq if they do not also have a
1642  * copy of the (on-stack) 'struct rq_flags rf'.
1643  *
1644  * Also see Documentation/locking/lockdep-design.rst.
1645  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1646 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1647 {
1648 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1649 
1650 #ifdef CONFIG_SCHED_DEBUG
1651 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1652 	rf->clock_update_flags = 0;
1653 #ifdef CONFIG_SMP
1654 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1655 #endif
1656 #endif
1657 }
1658 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1659 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1660 {
1661 #ifdef CONFIG_SCHED_DEBUG
1662 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1663 		rf->clock_update_flags = RQCF_UPDATED;
1664 #endif
1665 
1666 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1667 }
1668 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1669 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1670 {
1671 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1672 
1673 #ifdef CONFIG_SCHED_DEBUG
1674 	/*
1675 	 * Restore the value we stashed in @rf for this pin context.
1676 	 */
1677 	rq->clock_update_flags |= rf->clock_update_flags;
1678 #endif
1679 }
1680 
1681 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1682 	__acquires(rq->lock);
1683 
1684 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1685 	__acquires(p->pi_lock)
1686 	__acquires(rq->lock);
1687 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1688 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1689 	__releases(rq->lock)
1690 {
1691 	rq_unpin_lock(rq, rf);
1692 	raw_spin_rq_unlock(rq);
1693 }
1694 
1695 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1696 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1697 	__releases(rq->lock)
1698 	__releases(p->pi_lock)
1699 {
1700 	rq_unpin_lock(rq, rf);
1701 	raw_spin_rq_unlock(rq);
1702 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1703 }
1704 
1705 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1706 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1707 	__acquires(rq->lock)
1708 {
1709 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1710 	rq_pin_lock(rq, rf);
1711 }
1712 
1713 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1714 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1715 	__acquires(rq->lock)
1716 {
1717 	raw_spin_rq_lock_irq(rq);
1718 	rq_pin_lock(rq, rf);
1719 }
1720 
1721 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1722 rq_lock(struct rq *rq, struct rq_flags *rf)
1723 	__acquires(rq->lock)
1724 {
1725 	raw_spin_rq_lock(rq);
1726 	rq_pin_lock(rq, rf);
1727 }
1728 
1729 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1730 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1731 	__releases(rq->lock)
1732 {
1733 	rq_unpin_lock(rq, rf);
1734 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1735 }
1736 
1737 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1738 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1739 	__releases(rq->lock)
1740 {
1741 	rq_unpin_lock(rq, rf);
1742 	raw_spin_rq_unlock_irq(rq);
1743 }
1744 
1745 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1746 rq_unlock(struct rq *rq, struct rq_flags *rf)
1747 	__releases(rq->lock)
1748 {
1749 	rq_unpin_lock(rq, rf);
1750 	raw_spin_rq_unlock(rq);
1751 }
1752 
1753 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1754 		    rq_lock(_T->lock, &_T->rf),
1755 		    rq_unlock(_T->lock, &_T->rf),
1756 		    struct rq_flags rf)
1757 
1758 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1759 		    rq_lock_irq(_T->lock, &_T->rf),
1760 		    rq_unlock_irq(_T->lock, &_T->rf),
1761 		    struct rq_flags rf)
1762 
1763 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1764 		    rq_lock_irqsave(_T->lock, &_T->rf),
1765 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1766 		    struct rq_flags rf)
1767 
1768 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1769 this_rq_lock_irq(struct rq_flags *rf)
1770 	__acquires(rq->lock)
1771 {
1772 	struct rq *rq;
1773 
1774 	local_irq_disable();
1775 	rq = this_rq();
1776 	rq_lock(rq, rf);
1777 	return rq;
1778 }
1779 
1780 #ifdef CONFIG_NUMA
1781 enum numa_topology_type {
1782 	NUMA_DIRECT,
1783 	NUMA_GLUELESS_MESH,
1784 	NUMA_BACKPLANE,
1785 };
1786 extern enum numa_topology_type sched_numa_topology_type;
1787 extern int sched_max_numa_distance;
1788 extern bool find_numa_distance(int distance);
1789 extern void sched_init_numa(int offline_node);
1790 extern void sched_update_numa(int cpu, bool online);
1791 extern void sched_domains_numa_masks_set(unsigned int cpu);
1792 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1793 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1794 #else
sched_init_numa(int offline_node)1795 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1796 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1797 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1798 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1799 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1800 {
1801 	return nr_cpu_ids;
1802 }
1803 #endif
1804 
1805 #ifdef CONFIG_NUMA_BALANCING
1806 /* The regions in numa_faults array from task_struct */
1807 enum numa_faults_stats {
1808 	NUMA_MEM = 0,
1809 	NUMA_CPU,
1810 	NUMA_MEMBUF,
1811 	NUMA_CPUBUF
1812 };
1813 extern void sched_setnuma(struct task_struct *p, int node);
1814 extern int migrate_task_to(struct task_struct *p, int cpu);
1815 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1816 #else
1817 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1818 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1819 {
1820 }
1821 #endif /* CONFIG_NUMA_BALANCING */
1822 
1823 #ifdef CONFIG_SMP
1824 
1825 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1826 			int cpu, int scpu);
1827 
1828 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1829 queue_balance_callback(struct rq *rq,
1830 		       struct balance_callback *head,
1831 		       void (*func)(struct rq *rq))
1832 {
1833 	lockdep_assert_rq_held(rq);
1834 
1835 	/*
1836 	 * Don't (re)queue an already queued item; nor queue anything when
1837 	 * balance_push() is active, see the comment with
1838 	 * balance_push_callback.
1839 	 */
1840 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1841 		return;
1842 
1843 	head->func = func;
1844 	head->next = rq->balance_callback;
1845 	rq->balance_callback = head;
1846 }
1847 
1848 #define rcu_dereference_check_sched_domain(p) \
1849 	rcu_dereference_check((p), \
1850 			      lockdep_is_held(&sched_domains_mutex))
1851 
1852 /*
1853  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1854  * See destroy_sched_domains: call_rcu for details.
1855  *
1856  * The domain tree of any CPU may only be accessed from within
1857  * preempt-disabled sections.
1858  */
1859 #define for_each_domain(cpu, __sd) \
1860 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1861 			__sd; __sd = __sd->parent)
1862 
1863 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1864 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1865 static const unsigned int SD_SHARED_CHILD_MASK =
1866 #include <linux/sched/sd_flags.h>
1867 0;
1868 #undef SD_FLAG
1869 
1870 /**
1871  * highest_flag_domain - Return highest sched_domain containing flag.
1872  * @cpu:	The CPU whose highest level of sched domain is to
1873  *		be returned.
1874  * @flag:	The flag to check for the highest sched_domain
1875  *		for the given CPU.
1876  *
1877  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1878  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1879  */
highest_flag_domain(int cpu,int flag)1880 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1881 {
1882 	struct sched_domain *sd, *hsd = NULL;
1883 
1884 	for_each_domain(cpu, sd) {
1885 		if (sd->flags & flag) {
1886 			hsd = sd;
1887 			continue;
1888 		}
1889 
1890 		/*
1891 		 * Stop the search if @flag is known to be shared at lower
1892 		 * levels. It will not be found further up.
1893 		 */
1894 		if (flag & SD_SHARED_CHILD_MASK)
1895 			break;
1896 	}
1897 
1898 	return hsd;
1899 }
1900 
lowest_flag_domain(int cpu,int flag)1901 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1902 {
1903 	struct sched_domain *sd;
1904 
1905 	for_each_domain(cpu, sd) {
1906 		if (sd->flags & flag)
1907 			break;
1908 	}
1909 
1910 	return sd;
1911 }
1912 
1913 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1914 DECLARE_PER_CPU(int, sd_llc_size);
1915 DECLARE_PER_CPU(int, sd_llc_id);
1916 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1917 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1918 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1919 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1920 extern struct static_key_false sched_asym_cpucapacity;
1921 
sched_asym_cpucap_active(void)1922 static __always_inline bool sched_asym_cpucap_active(void)
1923 {
1924 	return static_branch_unlikely(&sched_asym_cpucapacity);
1925 }
1926 
1927 struct sched_group_capacity {
1928 	atomic_t		ref;
1929 	/*
1930 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1931 	 * for a single CPU.
1932 	 */
1933 	unsigned long		capacity;
1934 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1935 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1936 	unsigned long		next_update;
1937 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1938 
1939 #ifdef CONFIG_SCHED_DEBUG
1940 	int			id;
1941 #endif
1942 
1943 	unsigned long		cpumask[];		/* Balance mask */
1944 };
1945 
1946 struct sched_group {
1947 	struct sched_group	*next;			/* Must be a circular list */
1948 	atomic_t		ref;
1949 
1950 	unsigned int		group_weight;
1951 	unsigned int		cores;
1952 	struct sched_group_capacity *sgc;
1953 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1954 	int			flags;
1955 
1956 	/*
1957 	 * The CPUs this group covers.
1958 	 *
1959 	 * NOTE: this field is variable length. (Allocated dynamically
1960 	 * by attaching extra space to the end of the structure,
1961 	 * depending on how many CPUs the kernel has booted up with)
1962 	 */
1963 	unsigned long		cpumask[];
1964 };
1965 
sched_group_span(struct sched_group * sg)1966 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1967 {
1968 	return to_cpumask(sg->cpumask);
1969 }
1970 
1971 /*
1972  * See build_balance_mask().
1973  */
group_balance_mask(struct sched_group * sg)1974 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1975 {
1976 	return to_cpumask(sg->sgc->cpumask);
1977 }
1978 
1979 extern int group_balance_cpu(struct sched_group *sg);
1980 
1981 #ifdef CONFIG_SCHED_DEBUG
1982 void update_sched_domain_debugfs(void);
1983 void dirty_sched_domain_sysctl(int cpu);
1984 #else
update_sched_domain_debugfs(void)1985 static inline void update_sched_domain_debugfs(void)
1986 {
1987 }
dirty_sched_domain_sysctl(int cpu)1988 static inline void dirty_sched_domain_sysctl(int cpu)
1989 {
1990 }
1991 #endif
1992 
1993 extern int sched_update_scaling(void);
1994 
task_user_cpus(struct task_struct * p)1995 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1996 {
1997 	if (!p->user_cpus_ptr)
1998 		return cpu_possible_mask; /* &init_task.cpus_mask */
1999 	return p->user_cpus_ptr;
2000 }
2001 #endif /* CONFIG_SMP */
2002 
2003 #include "stats.h"
2004 
2005 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
2006 
2007 extern void __sched_core_account_forceidle(struct rq *rq);
2008 
sched_core_account_forceidle(struct rq * rq)2009 static inline void sched_core_account_forceidle(struct rq *rq)
2010 {
2011 	if (schedstat_enabled())
2012 		__sched_core_account_forceidle(rq);
2013 }
2014 
2015 extern void __sched_core_tick(struct rq *rq);
2016 
sched_core_tick(struct rq * rq)2017 static inline void sched_core_tick(struct rq *rq)
2018 {
2019 	if (sched_core_enabled(rq) && schedstat_enabled())
2020 		__sched_core_tick(rq);
2021 }
2022 
2023 #else
2024 
sched_core_account_forceidle(struct rq * rq)2025 static inline void sched_core_account_forceidle(struct rq *rq) {}
2026 
sched_core_tick(struct rq * rq)2027 static inline void sched_core_tick(struct rq *rq) {}
2028 
2029 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
2030 
2031 #ifdef CONFIG_CGROUP_SCHED
2032 
2033 /*
2034  * Return the group to which this tasks belongs.
2035  *
2036  * We cannot use task_css() and friends because the cgroup subsystem
2037  * changes that value before the cgroup_subsys::attach() method is called,
2038  * therefore we cannot pin it and might observe the wrong value.
2039  *
2040  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2041  * core changes this before calling sched_move_task().
2042  *
2043  * Instead we use a 'copy' which is updated from sched_move_task() while
2044  * holding both task_struct::pi_lock and rq::lock.
2045  */
task_group(struct task_struct * p)2046 static inline struct task_group *task_group(struct task_struct *p)
2047 {
2048 	return p->sched_task_group;
2049 }
2050 
2051 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2052 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2053 {
2054 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2055 	struct task_group *tg = task_group(p);
2056 #endif
2057 
2058 #ifdef CONFIG_FAIR_GROUP_SCHED
2059 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2060 	p->se.cfs_rq = tg->cfs_rq[cpu];
2061 	p->se.parent = tg->se[cpu];
2062 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2063 #endif
2064 
2065 #ifdef CONFIG_RT_GROUP_SCHED
2066 	p->rt.rt_rq  = tg->rt_rq[cpu];
2067 	p->rt.parent = tg->rt_se[cpu];
2068 #endif
2069 }
2070 
2071 #else /* CONFIG_CGROUP_SCHED */
2072 
set_task_rq(struct task_struct * p,unsigned int cpu)2073 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)2074 static inline struct task_group *task_group(struct task_struct *p)
2075 {
2076 	return NULL;
2077 }
2078 
2079 #endif /* CONFIG_CGROUP_SCHED */
2080 
__set_task_cpu(struct task_struct * p,unsigned int cpu)2081 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2082 {
2083 	set_task_rq(p, cpu);
2084 #ifdef CONFIG_SMP
2085 	/*
2086 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2087 	 * successfully executed on another CPU. We must ensure that updates of
2088 	 * per-task data have been completed by this moment.
2089 	 */
2090 	smp_wmb();
2091 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2092 	p->wake_cpu = cpu;
2093 #endif
2094 }
2095 
2096 /*
2097  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2098  */
2099 #ifdef CONFIG_SCHED_DEBUG
2100 # define const_debug __read_mostly
2101 #else
2102 # define const_debug const
2103 #endif
2104 
2105 #define SCHED_FEAT(name, enabled)	\
2106 	__SCHED_FEAT_##name ,
2107 
2108 enum {
2109 #include "features.h"
2110 	__SCHED_FEAT_NR,
2111 };
2112 
2113 #undef SCHED_FEAT
2114 
2115 #ifdef CONFIG_SCHED_DEBUG
2116 
2117 /*
2118  * To support run-time toggling of sched features, all the translation units
2119  * (but core.c) reference the sysctl_sched_features defined in core.c.
2120  */
2121 extern const_debug unsigned int sysctl_sched_features;
2122 
2123 #ifdef CONFIG_JUMP_LABEL
2124 #define SCHED_FEAT(name, enabled)					\
2125 static __always_inline bool static_branch_##name(struct static_key *key) \
2126 {									\
2127 	return static_key_##enabled(key);				\
2128 }
2129 
2130 #include "features.h"
2131 #undef SCHED_FEAT
2132 
2133 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2134 extern const char * const sched_feat_names[__SCHED_FEAT_NR];
2135 
2136 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2137 
2138 #else /* !CONFIG_JUMP_LABEL */
2139 
2140 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2141 
2142 #endif /* CONFIG_JUMP_LABEL */
2143 
2144 #else /* !SCHED_DEBUG */
2145 
2146 /*
2147  * Each translation unit has its own copy of sysctl_sched_features to allow
2148  * constants propagation at compile time and compiler optimization based on
2149  * features default.
2150  */
2151 #define SCHED_FEAT(name, enabled)	\
2152 	(1UL << __SCHED_FEAT_##name) * enabled |
2153 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2154 #include "features.h"
2155 	0;
2156 #undef SCHED_FEAT
2157 
2158 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2159 
2160 #endif /* SCHED_DEBUG */
2161 
2162 extern struct static_key_false sched_numa_balancing;
2163 extern struct static_key_false sched_schedstats;
2164 
global_rt_period(void)2165 static inline u64 global_rt_period(void)
2166 {
2167 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2168 }
2169 
global_rt_runtime(void)2170 static inline u64 global_rt_runtime(void)
2171 {
2172 	if (sysctl_sched_rt_runtime < 0)
2173 		return RUNTIME_INF;
2174 
2175 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2176 }
2177 
task_current(struct rq * rq,struct task_struct * p)2178 static inline int task_current(struct rq *rq, struct task_struct *p)
2179 {
2180 	return rq->curr == p;
2181 }
2182 
task_on_cpu(struct rq * rq,struct task_struct * p)2183 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2184 {
2185 #ifdef CONFIG_SMP
2186 	return p->on_cpu;
2187 #else
2188 	return task_current(rq, p);
2189 #endif
2190 }
2191 
task_on_rq_queued(struct task_struct * p)2192 static inline int task_on_rq_queued(struct task_struct *p)
2193 {
2194 	return p->on_rq == TASK_ON_RQ_QUEUED;
2195 }
2196 
task_on_rq_migrating(struct task_struct * p)2197 static inline int task_on_rq_migrating(struct task_struct *p)
2198 {
2199 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2200 }
2201 
2202 /* Wake flags. The first three directly map to some SD flag value */
2203 #define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2204 #define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2205 #define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2206 
2207 #define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
2208 #define WF_MIGRATED     0x20 /* Internal use, task got migrated */
2209 #define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
2210 
2211 #define WF_ANDROID_VENDOR	0x1000 /* Vendor specific for Android */
2212 
2213 #ifdef CONFIG_SMP
2214 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2215 static_assert(WF_FORK == SD_BALANCE_FORK);
2216 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2217 #endif
2218 
2219 /*
2220  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2221  * of tasks with abnormal "nice" values across CPUs the contribution that
2222  * each task makes to its run queue's load is weighted according to its
2223  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2224  * scaled version of the new time slice allocation that they receive on time
2225  * slice expiry etc.
2226  */
2227 
2228 #define WEIGHT_IDLEPRIO		3
2229 #define WMULT_IDLEPRIO		1431655765
2230 
2231 extern const int		sched_prio_to_weight[40];
2232 extern const u32		sched_prio_to_wmult[40];
2233 
2234 /*
2235  * {de,en}queue flags:
2236  *
2237  * DEQUEUE_SLEEP  - task is no longer runnable
2238  * ENQUEUE_WAKEUP - task just became runnable
2239  *
2240  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2241  *                are in a known state which allows modification. Such pairs
2242  *                should preserve as much state as possible.
2243  *
2244  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2245  *        in the runqueue.
2246  *
2247  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2248  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2249  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2250  *
2251  */
2252 
2253 #define DEQUEUE_SLEEP		0x01
2254 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2255 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2256 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2257 
2258 #define ENQUEUE_WAKEUP		0x01
2259 #define ENQUEUE_RESTORE		0x02
2260 #define ENQUEUE_MOVE		0x04
2261 #define ENQUEUE_NOCLOCK		0x08
2262 
2263 #define ENQUEUE_HEAD		0x10
2264 #define ENQUEUE_REPLENISH	0x20
2265 #ifdef CONFIG_SMP
2266 #define ENQUEUE_MIGRATED	0x40
2267 #else
2268 #define ENQUEUE_MIGRATED	0x00
2269 #endif
2270 #define ENQUEUE_INITIAL		0x80
2271 
2272 #define ENQUEUE_WAKEUP_SYNC	0x80
2273 
2274 #define RETRY_TASK		((void *)-1UL)
2275 
2276 struct affinity_context {
2277 	const struct cpumask *new_mask;
2278 	struct cpumask *user_mask;
2279 	unsigned int flags;
2280 };
2281 
2282 struct sched_class {
2283 
2284 #ifdef CONFIG_UCLAMP_TASK
2285 	int uclamp_enabled;
2286 #endif
2287 
2288 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2289 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2290 	void (*yield_task)   (struct rq *rq);
2291 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2292 
2293 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2294 
2295 	struct task_struct *(*pick_next_task)(struct rq *rq);
2296 
2297 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2298 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2299 
2300 #ifdef CONFIG_SMP
2301 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2302 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2303 
2304 	struct task_struct * (*pick_task)(struct rq *rq);
2305 
2306 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2307 
2308 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2309 
2310 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2311 
2312 	void (*rq_online)(struct rq *rq);
2313 	void (*rq_offline)(struct rq *rq);
2314 
2315 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2316 #endif
2317 
2318 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2319 	void (*task_fork)(struct task_struct *p);
2320 	void (*task_dead)(struct task_struct *p);
2321 
2322 	/*
2323 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2324 	 * cannot assume the switched_from/switched_to pair is serialized by
2325 	 * rq->lock. They are however serialized by p->pi_lock.
2326 	 */
2327 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2328 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2329 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2330 			      int oldprio);
2331 
2332 	unsigned int (*get_rr_interval)(struct rq *rq,
2333 					struct task_struct *task);
2334 
2335 	void (*update_curr)(struct rq *rq);
2336 
2337 #ifdef CONFIG_FAIR_GROUP_SCHED
2338 	void (*task_change_group)(struct task_struct *p);
2339 #endif
2340 
2341 #ifdef CONFIG_SCHED_CORE
2342 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2343 #endif
2344 };
2345 
put_prev_task(struct rq * rq,struct task_struct * prev)2346 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2347 {
2348 	WARN_ON_ONCE(rq->curr != prev);
2349 	prev->sched_class->put_prev_task(rq, prev);
2350 }
2351 
set_next_task(struct rq * rq,struct task_struct * next)2352 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2353 {
2354 	next->sched_class->set_next_task(rq, next, false);
2355 }
2356 
2357 
2358 /*
2359  * Helper to define a sched_class instance; each one is placed in a separate
2360  * section which is ordered by the linker script:
2361  *
2362  *   include/asm-generic/vmlinux.lds.h
2363  *
2364  * *CAREFUL* they are laid out in *REVERSE* order!!!
2365  *
2366  * Also enforce alignment on the instance, not the type, to guarantee layout.
2367  */
2368 #define DEFINE_SCHED_CLASS(name) \
2369 const struct sched_class name##_sched_class \
2370 	__aligned(__alignof__(struct sched_class)) \
2371 	__section("__" #name "_sched_class")
2372 
2373 /* Defined in include/asm-generic/vmlinux.lds.h */
2374 extern struct sched_class __sched_class_highest[];
2375 extern struct sched_class __sched_class_lowest[];
2376 
2377 #define for_class_range(class, _from, _to) \
2378 	for (class = (_from); class < (_to); class++)
2379 
2380 #define for_each_class(class) \
2381 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2382 
2383 #define sched_class_above(_a, _b)	((_a) < (_b))
2384 
2385 extern const struct sched_class stop_sched_class;
2386 extern const struct sched_class dl_sched_class;
2387 extern const struct sched_class rt_sched_class;
2388 extern const struct sched_class fair_sched_class;
2389 extern const struct sched_class idle_sched_class;
2390 
sched_stop_runnable(struct rq * rq)2391 static inline bool sched_stop_runnable(struct rq *rq)
2392 {
2393 	return rq->stop && task_on_rq_queued(rq->stop);
2394 }
2395 
sched_dl_runnable(struct rq * rq)2396 static inline bool sched_dl_runnable(struct rq *rq)
2397 {
2398 	return rq->dl.dl_nr_running > 0;
2399 }
2400 
sched_rt_runnable(struct rq * rq)2401 static inline bool sched_rt_runnable(struct rq *rq)
2402 {
2403 	return rq->rt.rt_queued > 0;
2404 }
2405 
sched_fair_runnable(struct rq * rq)2406 static inline bool sched_fair_runnable(struct rq *rq)
2407 {
2408 	return rq->cfs.nr_running > 0;
2409 }
2410 
2411 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2412 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2413 
2414 #define SCA_CHECK		0x01
2415 #define SCA_MIGRATE_DISABLE	0x02
2416 #define SCA_MIGRATE_ENABLE	0x04
2417 #define SCA_USER		0x08
2418 
2419 #ifdef CONFIG_SMP
2420 
2421 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2422 
2423 extern void trigger_load_balance(struct rq *rq);
2424 
2425 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2426 
get_push_task(struct rq * rq)2427 static inline struct task_struct *get_push_task(struct rq *rq)
2428 {
2429 	struct task_struct *p = rq->curr;
2430 
2431 	lockdep_assert_rq_held(rq);
2432 
2433 	if (rq->push_busy)
2434 		return NULL;
2435 
2436 	if (p->nr_cpus_allowed == 1)
2437 		return NULL;
2438 
2439 	if (p->migration_disabled)
2440 		return NULL;
2441 
2442 	rq->push_busy = true;
2443 	return get_task_struct(p);
2444 }
2445 
2446 extern int push_cpu_stop(void *arg);
2447 
2448 extern unsigned long __read_mostly max_load_balance_interval;
2449 #endif
2450 
2451 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2452 static inline void idle_set_state(struct rq *rq,
2453 				  struct cpuidle_state *idle_state)
2454 {
2455 	rq->idle_state = idle_state;
2456 }
2457 
idle_get_state(struct rq * rq)2458 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2459 {
2460 	SCHED_WARN_ON(!rcu_read_lock_held());
2461 
2462 	return rq->idle_state;
2463 }
2464 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2465 static inline void idle_set_state(struct rq *rq,
2466 				  struct cpuidle_state *idle_state)
2467 {
2468 }
2469 
idle_get_state(struct rq * rq)2470 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2471 {
2472 	return NULL;
2473 }
2474 #endif
2475 
2476 extern void schedule_idle(void);
2477 asmlinkage void schedule_user(void);
2478 
2479 extern void sysrq_sched_debug_show(void);
2480 extern void sched_init_granularity(void);
2481 extern void update_max_interval(void);
2482 
2483 extern void init_sched_dl_class(void);
2484 extern void init_sched_rt_class(void);
2485 extern void init_sched_fair_class(void);
2486 
2487 extern void reweight_task(struct task_struct *p, int prio);
2488 
2489 extern void resched_curr(struct rq *rq);
2490 extern void resched_cpu(int cpu);
2491 
2492 extern struct rt_bandwidth def_rt_bandwidth;
2493 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2494 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2495 
2496 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2497 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2498 
2499 #define BW_SHIFT		20
2500 #define BW_UNIT			(1 << BW_SHIFT)
2501 #define RATIO_SHIFT		8
2502 #define MAX_BW_BITS		(64 - BW_SHIFT)
2503 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2504 unsigned long to_ratio(u64 period, u64 runtime);
2505 
2506 extern void init_entity_runnable_average(struct sched_entity *se);
2507 extern void post_init_entity_util_avg(struct task_struct *p);
2508 
2509 #ifdef CONFIG_NO_HZ_FULL
2510 extern bool sched_can_stop_tick(struct rq *rq);
2511 extern int __init sched_tick_offload_init(void);
2512 
2513 /*
2514  * Tick may be needed by tasks in the runqueue depending on their policy and
2515  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2516  * nohz mode if necessary.
2517  */
sched_update_tick_dependency(struct rq * rq)2518 static inline void sched_update_tick_dependency(struct rq *rq)
2519 {
2520 	int cpu = cpu_of(rq);
2521 
2522 	if (!tick_nohz_full_cpu(cpu))
2523 		return;
2524 
2525 	if (sched_can_stop_tick(rq))
2526 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2527 	else
2528 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2529 }
2530 #else
sched_tick_offload_init(void)2531 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2532 static inline void sched_update_tick_dependency(struct rq *rq) { }
2533 #endif
2534 
add_nr_running(struct rq * rq,unsigned count)2535 static inline void add_nr_running(struct rq *rq, unsigned count)
2536 {
2537 	unsigned prev_nr = rq->nr_running;
2538 
2539 	rq->nr_running = prev_nr + count;
2540 	if (trace_sched_update_nr_running_tp_enabled()) {
2541 		call_trace_sched_update_nr_running(rq, count);
2542 	}
2543 
2544 #ifdef CONFIG_SMP
2545 	if (prev_nr < 2 && rq->nr_running >= 2) {
2546 		if (!READ_ONCE(rq->rd->overload))
2547 			WRITE_ONCE(rq->rd->overload, 1);
2548 	}
2549 #endif
2550 
2551 	sched_update_tick_dependency(rq);
2552 }
2553 
sub_nr_running(struct rq * rq,unsigned count)2554 static inline void sub_nr_running(struct rq *rq, unsigned count)
2555 {
2556 	rq->nr_running -= count;
2557 	if (trace_sched_update_nr_running_tp_enabled()) {
2558 		call_trace_sched_update_nr_running(rq, -count);
2559 	}
2560 
2561 	/* Check if we still need preemption */
2562 	sched_update_tick_dependency(rq);
2563 }
2564 
2565 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2566 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2567 
2568 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2569 
2570 #ifdef CONFIG_PREEMPT_RT
2571 #define SCHED_NR_MIGRATE_BREAK 8
2572 #else
2573 #define SCHED_NR_MIGRATE_BREAK 32
2574 #endif
2575 
2576 extern const_debug unsigned int sysctl_sched_nr_migrate;
2577 extern const_debug unsigned int sysctl_sched_migration_cost;
2578 
2579 extern unsigned int sysctl_sched_base_slice;
2580 
2581 #ifdef CONFIG_SCHED_DEBUG
2582 extern int sysctl_resched_latency_warn_ms;
2583 extern int sysctl_resched_latency_warn_once;
2584 
2585 extern unsigned int sysctl_sched_tunable_scaling;
2586 
2587 extern unsigned int sysctl_numa_balancing_scan_delay;
2588 extern unsigned int sysctl_numa_balancing_scan_period_min;
2589 extern unsigned int sysctl_numa_balancing_scan_period_max;
2590 extern unsigned int sysctl_numa_balancing_scan_size;
2591 extern unsigned int sysctl_numa_balancing_hot_threshold;
2592 #endif
2593 
2594 #ifdef CONFIG_SCHED_HRTICK
2595 
2596 /*
2597  * Use hrtick when:
2598  *  - enabled by features
2599  *  - hrtimer is actually high res
2600  */
hrtick_enabled(struct rq * rq)2601 static inline int hrtick_enabled(struct rq *rq)
2602 {
2603 	if (!cpu_active(cpu_of(rq)))
2604 		return 0;
2605 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2606 }
2607 
hrtick_enabled_fair(struct rq * rq)2608 static inline int hrtick_enabled_fair(struct rq *rq)
2609 {
2610 	if (!sched_feat(HRTICK))
2611 		return 0;
2612 	return hrtick_enabled(rq);
2613 }
2614 
hrtick_enabled_dl(struct rq * rq)2615 static inline int hrtick_enabled_dl(struct rq *rq)
2616 {
2617 	if (!sched_feat(HRTICK_DL))
2618 		return 0;
2619 	return hrtick_enabled(rq);
2620 }
2621 
2622 void hrtick_start(struct rq *rq, u64 delay);
2623 
2624 #else
2625 
hrtick_enabled_fair(struct rq * rq)2626 static inline int hrtick_enabled_fair(struct rq *rq)
2627 {
2628 	return 0;
2629 }
2630 
hrtick_enabled_dl(struct rq * rq)2631 static inline int hrtick_enabled_dl(struct rq *rq)
2632 {
2633 	return 0;
2634 }
2635 
hrtick_enabled(struct rq * rq)2636 static inline int hrtick_enabled(struct rq *rq)
2637 {
2638 	return 0;
2639 }
2640 
2641 #endif /* CONFIG_SCHED_HRTICK */
2642 
2643 #ifndef arch_scale_freq_tick
2644 static __always_inline
arch_scale_freq_tick(void)2645 void arch_scale_freq_tick(void)
2646 {
2647 }
2648 #endif
2649 
2650 #ifndef arch_scale_freq_capacity
2651 /**
2652  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2653  * @cpu: the CPU in question.
2654  *
2655  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2656  *
2657  *     f_curr
2658  *     ------ * SCHED_CAPACITY_SCALE
2659  *     f_max
2660  */
2661 static __always_inline
arch_scale_freq_capacity(int cpu)2662 unsigned long arch_scale_freq_capacity(int cpu)
2663 {
2664 	return SCHED_CAPACITY_SCALE;
2665 }
2666 #endif
2667 
2668 #ifdef CONFIG_SCHED_DEBUG
2669 /*
2670  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2671  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2672  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2673  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2674  */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2675 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2676 {
2677 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2678 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2679 #ifdef CONFIG_SMP
2680 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2681 #endif
2682 }
2683 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2684 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2685 #endif
2686 
2687 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)		\
2688 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2689 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2690 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;	\
2691   _lock; return _t; }
2692 
2693 #ifdef CONFIG_SMP
2694 
rq_order_less(struct rq * rq1,struct rq * rq2)2695 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2696 {
2697 #ifdef CONFIG_SCHED_CORE
2698 	/*
2699 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2700 	 * order by core-id first and cpu-id second.
2701 	 *
2702 	 * Notably:
2703 	 *
2704 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2705 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2706 	 *
2707 	 * when only cpu-id is considered.
2708 	 */
2709 	if (rq1->core->cpu < rq2->core->cpu)
2710 		return true;
2711 	if (rq1->core->cpu > rq2->core->cpu)
2712 		return false;
2713 
2714 	/*
2715 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2716 	 */
2717 #endif
2718 	return rq1->cpu < rq2->cpu;
2719 }
2720 
2721 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2722 
2723 #ifdef CONFIG_PREEMPTION
2724 
2725 /*
2726  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2727  * way at the expense of forcing extra atomic operations in all
2728  * invocations.  This assures that the double_lock is acquired using the
2729  * same underlying policy as the spinlock_t on this architecture, which
2730  * reduces latency compared to the unfair variant below.  However, it
2731  * also adds more overhead and therefore may reduce throughput.
2732  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2733 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2734 	__releases(this_rq->lock)
2735 	__acquires(busiest->lock)
2736 	__acquires(this_rq->lock)
2737 {
2738 	raw_spin_rq_unlock(this_rq);
2739 	double_rq_lock(this_rq, busiest);
2740 
2741 	return 1;
2742 }
2743 
2744 #else
2745 /*
2746  * Unfair double_lock_balance: Optimizes throughput at the expense of
2747  * latency by eliminating extra atomic operations when the locks are
2748  * already in proper order on entry.  This favors lower CPU-ids and will
2749  * grant the double lock to lower CPUs over higher ids under contention,
2750  * regardless of entry order into the function.
2751  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2752 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2753 	__releases(this_rq->lock)
2754 	__acquires(busiest->lock)
2755 	__acquires(this_rq->lock)
2756 {
2757 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2758 	    likely(raw_spin_rq_trylock(busiest))) {
2759 		double_rq_clock_clear_update(this_rq, busiest);
2760 		return 0;
2761 	}
2762 
2763 	if (rq_order_less(this_rq, busiest)) {
2764 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2765 		double_rq_clock_clear_update(this_rq, busiest);
2766 		return 0;
2767 	}
2768 
2769 	raw_spin_rq_unlock(this_rq);
2770 	double_rq_lock(this_rq, busiest);
2771 
2772 	return 1;
2773 }
2774 
2775 #endif /* CONFIG_PREEMPTION */
2776 
2777 /*
2778  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2779  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2780 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2781 {
2782 	lockdep_assert_irqs_disabled();
2783 
2784 	return _double_lock_balance(this_rq, busiest);
2785 }
2786 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2787 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2788 	__releases(busiest->lock)
2789 {
2790 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2791 		raw_spin_rq_unlock(busiest);
2792 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2793 }
2794 
double_lock(spinlock_t * l1,spinlock_t * l2)2795 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2796 {
2797 	if (l1 > l2)
2798 		swap(l1, l2);
2799 
2800 	spin_lock(l1);
2801 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2802 }
2803 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2804 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2805 {
2806 	if (l1 > l2)
2807 		swap(l1, l2);
2808 
2809 	spin_lock_irq(l1);
2810 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2811 }
2812 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2813 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2814 {
2815 	if (l1 > l2)
2816 		swap(l1, l2);
2817 
2818 	raw_spin_lock(l1);
2819 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2820 }
2821 
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)2822 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2823 {
2824 	raw_spin_unlock(l1);
2825 	raw_spin_unlock(l2);
2826 }
2827 
2828 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2829 		    double_raw_lock(_T->lock, _T->lock2),
2830 		    double_raw_unlock(_T->lock, _T->lock2))
2831 
2832 /*
2833  * double_rq_unlock - safely unlock two runqueues
2834  *
2835  * Note this does not restore interrupts like task_rq_unlock,
2836  * you need to do so manually after calling.
2837  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2838 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2839 	__releases(rq1->lock)
2840 	__releases(rq2->lock)
2841 {
2842 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2843 		raw_spin_rq_unlock(rq2);
2844 	else
2845 		__release(rq2->lock);
2846 	raw_spin_rq_unlock(rq1);
2847 }
2848 
2849 extern void set_rq_online (struct rq *rq);
2850 extern void set_rq_offline(struct rq *rq);
2851 extern bool sched_smp_initialized;
2852 
2853 #else /* CONFIG_SMP */
2854 
2855 /*
2856  * double_rq_lock - safely lock two runqueues
2857  *
2858  * Note this does not disable interrupts like task_rq_lock,
2859  * you need to do so manually before calling.
2860  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2861 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2862 	__acquires(rq1->lock)
2863 	__acquires(rq2->lock)
2864 {
2865 	WARN_ON_ONCE(!irqs_disabled());
2866 	WARN_ON_ONCE(rq1 != rq2);
2867 	raw_spin_rq_lock(rq1);
2868 	__acquire(rq2->lock);	/* Fake it out ;) */
2869 	double_rq_clock_clear_update(rq1, rq2);
2870 }
2871 
2872 /*
2873  * double_rq_unlock - safely unlock two runqueues
2874  *
2875  * Note this does not restore interrupts like task_rq_unlock,
2876  * you need to do so manually after calling.
2877  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2878 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2879 	__releases(rq1->lock)
2880 	__releases(rq2->lock)
2881 {
2882 	WARN_ON_ONCE(rq1 != rq2);
2883 	raw_spin_rq_unlock(rq1);
2884 	__release(rq2->lock);
2885 }
2886 
2887 #endif
2888 
2889 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2890 		    double_rq_lock(_T->lock, _T->lock2),
2891 		    double_rq_unlock(_T->lock, _T->lock2))
2892 
2893 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
2894 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2895 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2896 
2897 #ifdef	CONFIG_SCHED_DEBUG
2898 extern bool sched_debug_verbose;
2899 
2900 extern void print_cfs_stats(struct seq_file *m, int cpu);
2901 extern void print_rt_stats(struct seq_file *m, int cpu);
2902 extern void print_dl_stats(struct seq_file *m, int cpu);
2903 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2904 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2905 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2906 
2907 extern void resched_latency_warn(int cpu, u64 latency);
2908 #ifdef CONFIG_NUMA_BALANCING
2909 extern void
2910 show_numa_stats(struct task_struct *p, struct seq_file *m);
2911 extern void
2912 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2913 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2914 #endif /* CONFIG_NUMA_BALANCING */
2915 #else
resched_latency_warn(int cpu,u64 latency)2916 static inline void resched_latency_warn(int cpu, u64 latency) {}
2917 #endif /* CONFIG_SCHED_DEBUG */
2918 
2919 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2920 extern void init_rt_rq(struct rt_rq *rt_rq);
2921 extern void init_dl_rq(struct dl_rq *dl_rq);
2922 
2923 extern void cfs_bandwidth_usage_inc(void);
2924 extern void cfs_bandwidth_usage_dec(void);
2925 
2926 #ifdef CONFIG_NO_HZ_COMMON
2927 #define NOHZ_BALANCE_KICK_BIT	0
2928 #define NOHZ_STATS_KICK_BIT	1
2929 #define NOHZ_NEWILB_KICK_BIT	2
2930 #define NOHZ_NEXT_KICK_BIT	3
2931 
2932 /* Run rebalance_domains() */
2933 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2934 /* Update blocked load */
2935 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2936 /* Update blocked load when entering idle */
2937 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2938 /* Update nohz.next_balance */
2939 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2940 
2941 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2942 
2943 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2944 
2945 extern void nohz_balance_exit_idle(struct rq *rq);
2946 #else
nohz_balance_exit_idle(struct rq * rq)2947 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2948 #endif
2949 
2950 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2951 extern void nohz_run_idle_balance(int cpu);
2952 #else
nohz_run_idle_balance(int cpu)2953 static inline void nohz_run_idle_balance(int cpu) { }
2954 #endif
2955 
2956 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2957 struct irqtime {
2958 	u64			total;
2959 	u64			tick_delta;
2960 	u64			irq_start_time;
2961 	struct u64_stats_sync	sync;
2962 };
2963 
2964 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2965 
2966 /*
2967  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2968  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2969  * and never move forward.
2970  */
irq_time_read(int cpu)2971 static inline u64 irq_time_read(int cpu)
2972 {
2973 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2974 	unsigned int seq;
2975 	u64 total;
2976 
2977 	do {
2978 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2979 		total = irqtime->total;
2980 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2981 
2982 	return total;
2983 }
2984 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2985 
2986 #ifdef CONFIG_CPU_FREQ
2987 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2988 
2989 /**
2990  * cpufreq_update_util - Take a note about CPU utilization changes.
2991  * @rq: Runqueue to carry out the update for.
2992  * @flags: Update reason flags.
2993  *
2994  * This function is called by the scheduler on the CPU whose utilization is
2995  * being updated.
2996  *
2997  * It can only be called from RCU-sched read-side critical sections.
2998  *
2999  * The way cpufreq is currently arranged requires it to evaluate the CPU
3000  * performance state (frequency/voltage) on a regular basis to prevent it from
3001  * being stuck in a completely inadequate performance level for too long.
3002  * That is not guaranteed to happen if the updates are only triggered from CFS
3003  * and DL, though, because they may not be coming in if only RT tasks are
3004  * active all the time (or there are RT tasks only).
3005  *
3006  * As a workaround for that issue, this function is called periodically by the
3007  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3008  * but that really is a band-aid.  Going forward it should be replaced with
3009  * solutions targeted more specifically at RT tasks.
3010  */
cpufreq_update_util(struct rq * rq,unsigned int flags)3011 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3012 {
3013 	struct update_util_data *data;
3014 
3015 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3016 						  cpu_of(rq)));
3017 	if (data)
3018 		data->func(data, rq_clock(rq), flags);
3019 }
3020 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)3021 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
3022 #endif /* CONFIG_CPU_FREQ */
3023 
3024 #ifdef arch_scale_freq_capacity
3025 # ifndef arch_scale_freq_invariant
3026 #  define arch_scale_freq_invariant()	true
3027 # endif
3028 #else
3029 # define arch_scale_freq_invariant()	false
3030 #endif
3031 
3032 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)3033 static inline unsigned long capacity_orig_of(int cpu)
3034 {
3035 	return cpu_rq(cpu)->cpu_capacity_orig;
3036 }
3037 
3038 /**
3039  * enum cpu_util_type - CPU utilization type
3040  * @FREQUENCY_UTIL:	Utilization used to select frequency
3041  * @ENERGY_UTIL:	Utilization used during energy calculation
3042  *
3043  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
3044  * need to be aggregated differently depending on the usage made of them. This
3045  * enum is used within effective_cpu_util() to differentiate the types of
3046  * utilization expected by the callers, and adjust the aggregation accordingly.
3047  */
3048 enum cpu_util_type {
3049 	FREQUENCY_UTIL,
3050 	ENERGY_UTIL,
3051 };
3052 
3053 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3054 				 enum cpu_util_type type,
3055 				 struct task_struct *p);
3056 
3057 /*
3058  * Verify the fitness of task @p to run on @cpu taking into account the
3059  * CPU original capacity and the runtime/deadline ratio of the task.
3060  *
3061  * The function will return true if the original capacity of @cpu is
3062  * greater than or equal to task's deadline density right shifted by
3063  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3064  */
dl_task_fits_capacity(struct task_struct * p,int cpu)3065 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3066 {
3067 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3068 
3069 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3070 }
3071 
cpu_bw_dl(struct rq * rq)3072 static inline unsigned long cpu_bw_dl(struct rq *rq)
3073 {
3074 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3075 }
3076 
cpu_util_dl(struct rq * rq)3077 static inline unsigned long cpu_util_dl(struct rq *rq)
3078 {
3079 	return READ_ONCE(rq->avg_dl.util_avg);
3080 }
3081 
3082 
3083 extern unsigned long cpu_util_cfs(int cpu);
3084 extern unsigned long cpu_util_cfs_boost(int cpu);
3085 
cpu_util_rt(struct rq * rq)3086 static inline unsigned long cpu_util_rt(struct rq *rq)
3087 {
3088 	return READ_ONCE(rq->avg_rt.util_avg);
3089 }
3090 #endif
3091 
3092 #ifdef CONFIG_UCLAMP_TASK
3093 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3094 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3095 static inline unsigned long uclamp_rq_get(struct rq *rq,
3096 					  enum uclamp_id clamp_id)
3097 {
3098 	return READ_ONCE(rq->uclamp[clamp_id].value);
3099 }
3100 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3101 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3102 				 unsigned int value)
3103 {
3104 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3105 }
3106 
uclamp_rq_is_idle(struct rq * rq)3107 static inline bool uclamp_rq_is_idle(struct rq *rq)
3108 {
3109 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3110 }
3111 
3112 /**
3113  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3114  * @rq:		The rq to clamp against. Must not be NULL.
3115  * @util:	The util value to clamp.
3116  * @p:		The task to clamp against. Can be NULL if you want to clamp
3117  *		against @rq only.
3118  *
3119  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3120  *
3121  * If sched_uclamp_used static key is disabled, then just return the util
3122  * without any clamping since uclamp aggregation at the rq level in the fast
3123  * path is disabled, rendering this operation a NOP.
3124  *
3125  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3126  * will return the correct effective uclamp value of the task even if the
3127  * static key is disabled.
3128  */
3129 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3130 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3131 				  struct task_struct *p)
3132 {
3133 	unsigned long min_util = 0;
3134 	unsigned long max_util = 0;
3135 
3136 	if (!static_branch_likely(&sched_uclamp_used))
3137 		return util;
3138 
3139 	if (p) {
3140 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3141 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3142 
3143 		/*
3144 		 * Ignore last runnable task's max clamp, as this task will
3145 		 * reset it. Similarly, no need to read the rq's min clamp.
3146 		 */
3147 		if (uclamp_rq_is_idle(rq))
3148 			goto out;
3149 	}
3150 
3151 	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3152 	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3153 out:
3154 	/*
3155 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3156 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3157 	 * inversion. Fix it now when the clamps are applied.
3158 	 */
3159 	if (unlikely(min_util >= max_util))
3160 		return min_util;
3161 
3162 	return clamp(util, min_util, max_util);
3163 }
3164 
3165 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3166 static inline bool uclamp_rq_is_capped(struct rq *rq)
3167 {
3168 	unsigned long rq_util;
3169 	unsigned long max_util;
3170 
3171 	if (!static_branch_likely(&sched_uclamp_used))
3172 		return false;
3173 
3174 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3175 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3176 
3177 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3178 }
3179 
3180 /*
3181  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3182  * by default in the fast path and only gets turned on once userspace performs
3183  * an operation that requires it.
3184  *
3185  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3186  * hence is active.
3187  */
uclamp_is_used(void)3188 static inline bool uclamp_is_used(void)
3189 {
3190 	return static_branch_likely(&sched_uclamp_used);
3191 }
3192 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3193 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3194 					     enum uclamp_id clamp_id)
3195 {
3196 	if (clamp_id == UCLAMP_MIN)
3197 		return 0;
3198 
3199 	return SCHED_CAPACITY_SCALE;
3200 }
3201 
3202 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3203 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3204 				  struct task_struct *p)
3205 {
3206 	return util;
3207 }
3208 
uclamp_rq_is_capped(struct rq * rq)3209 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3210 
uclamp_is_used(void)3211 static inline bool uclamp_is_used(void)
3212 {
3213 	return false;
3214 }
3215 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3216 static inline unsigned long uclamp_rq_get(struct rq *rq,
3217 					  enum uclamp_id clamp_id)
3218 {
3219 	if (clamp_id == UCLAMP_MIN)
3220 		return 0;
3221 
3222 	return SCHED_CAPACITY_SCALE;
3223 }
3224 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3225 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3226 				 unsigned int value)
3227 {
3228 }
3229 
uclamp_rq_is_idle(struct rq * rq)3230 static inline bool uclamp_rq_is_idle(struct rq *rq)
3231 {
3232 	return false;
3233 }
3234 #endif /* CONFIG_UCLAMP_TASK */
3235 
3236 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)3237 static inline unsigned long cpu_util_irq(struct rq *rq)
3238 {
3239 	return rq->avg_irq.util_avg;
3240 }
3241 
3242 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3243 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3244 {
3245 	util *= (max - irq);
3246 	util /= max;
3247 
3248 	return util;
3249 
3250 }
3251 #else
cpu_util_irq(struct rq * rq)3252 static inline unsigned long cpu_util_irq(struct rq *rq)
3253 {
3254 	return 0;
3255 }
3256 
3257 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3258 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3259 {
3260 	return util;
3261 }
3262 #endif
3263 
3264 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3265 
3266 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3267 
3268 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3269 
sched_energy_enabled(void)3270 static inline bool sched_energy_enabled(void)
3271 {
3272 	return static_branch_unlikely(&sched_energy_present);
3273 }
3274 
3275 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3276 
3277 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3278 static inline bool sched_energy_enabled(void) { return false; }
3279 
3280 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3281 
3282 #ifdef CONFIG_MEMBARRIER
3283 /*
3284  * The scheduler provides memory barriers required by membarrier between:
3285  * - prior user-space memory accesses and store to rq->membarrier_state,
3286  * - store to rq->membarrier_state and following user-space memory accesses.
3287  * In the same way it provides those guarantees around store to rq->curr.
3288  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3289 static inline void membarrier_switch_mm(struct rq *rq,
3290 					struct mm_struct *prev_mm,
3291 					struct mm_struct *next_mm)
3292 {
3293 	int membarrier_state;
3294 
3295 	if (prev_mm == next_mm)
3296 		return;
3297 
3298 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3299 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3300 		return;
3301 
3302 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3303 }
3304 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3305 static inline void membarrier_switch_mm(struct rq *rq,
3306 					struct mm_struct *prev_mm,
3307 					struct mm_struct *next_mm)
3308 {
3309 }
3310 #endif
3311 
3312 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3313 static inline bool is_per_cpu_kthread(struct task_struct *p)
3314 {
3315 	if (!(p->flags & PF_KTHREAD))
3316 		return false;
3317 
3318 	if (p->nr_cpus_allowed != 1)
3319 		return false;
3320 
3321 	return true;
3322 }
3323 #endif
3324 
3325 extern void swake_up_all_locked(struct swait_queue_head *q);
3326 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3327 
3328 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3329 
3330 #ifdef CONFIG_PREEMPT_DYNAMIC
3331 extern int preempt_dynamic_mode;
3332 extern int sched_dynamic_mode(const char *str);
3333 extern void sched_dynamic_update(int mode);
3334 #endif
3335 
update_current_exec_runtime(struct task_struct * curr,u64 now,u64 delta_exec)3336 static inline void update_current_exec_runtime(struct task_struct *curr,
3337 						u64 now, u64 delta_exec)
3338 {
3339 	curr->se.sum_exec_runtime += delta_exec;
3340 	account_group_exec_runtime(curr, delta_exec);
3341 
3342 	curr->se.exec_start = now;
3343 	cgroup_account_cputime(curr, delta_exec);
3344 }
3345 
3346 #ifdef CONFIG_SCHED_MM_CID
3347 
3348 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3349 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3350 
3351 extern raw_spinlock_t cid_lock;
3352 extern int use_cid_lock;
3353 
3354 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3355 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3356 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3357 extern void init_sched_mm_cid(struct task_struct *t);
3358 
__mm_cid_put(struct mm_struct * mm,int cid)3359 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3360 {
3361 	if (cid < 0)
3362 		return;
3363 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3364 }
3365 
3366 /*
3367  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3368  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3369  * be held to transition to other states.
3370  *
3371  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3372  * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3373  */
mm_cid_put_lazy(struct task_struct * t)3374 static inline void mm_cid_put_lazy(struct task_struct *t)
3375 {
3376 	struct mm_struct *mm = t->mm;
3377 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3378 	int cid;
3379 
3380 	lockdep_assert_irqs_disabled();
3381 	cid = __this_cpu_read(pcpu_cid->cid);
3382 	if (!mm_cid_is_lazy_put(cid) ||
3383 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3384 		return;
3385 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3386 }
3387 
mm_cid_pcpu_unset(struct mm_struct * mm)3388 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3389 {
3390 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3391 	int cid, res;
3392 
3393 	lockdep_assert_irqs_disabled();
3394 	cid = __this_cpu_read(pcpu_cid->cid);
3395 	for (;;) {
3396 		if (mm_cid_is_unset(cid))
3397 			return MM_CID_UNSET;
3398 		/*
3399 		 * Attempt transition from valid or lazy-put to unset.
3400 		 */
3401 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3402 		if (res == cid)
3403 			break;
3404 		cid = res;
3405 	}
3406 	return cid;
3407 }
3408 
mm_cid_put(struct mm_struct * mm)3409 static inline void mm_cid_put(struct mm_struct *mm)
3410 {
3411 	int cid;
3412 
3413 	lockdep_assert_irqs_disabled();
3414 	cid = mm_cid_pcpu_unset(mm);
3415 	if (cid == MM_CID_UNSET)
3416 		return;
3417 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3418 }
3419 
__mm_cid_try_get(struct mm_struct * mm)3420 static inline int __mm_cid_try_get(struct mm_struct *mm)
3421 {
3422 	struct cpumask *cpumask;
3423 	int cid;
3424 
3425 	cpumask = mm_cidmask(mm);
3426 	/*
3427 	 * Retry finding first zero bit if the mask is temporarily
3428 	 * filled. This only happens during concurrent remote-clear
3429 	 * which owns a cid without holding a rq lock.
3430 	 */
3431 	for (;;) {
3432 		cid = cpumask_first_zero(cpumask);
3433 		if (cid < nr_cpu_ids)
3434 			break;
3435 		cpu_relax();
3436 	}
3437 	if (cpumask_test_and_set_cpu(cid, cpumask))
3438 		return -1;
3439 	return cid;
3440 }
3441 
3442 /*
3443  * Save a snapshot of the current runqueue time of this cpu
3444  * with the per-cpu cid value, allowing to estimate how recently it was used.
3445  */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3446 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3447 {
3448 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3449 
3450 	lockdep_assert_rq_held(rq);
3451 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3452 }
3453 
__mm_cid_get(struct rq * rq,struct mm_struct * mm)3454 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3455 {
3456 	int cid;
3457 
3458 	/*
3459 	 * All allocations (even those using the cid_lock) are lock-free. If
3460 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3461 	 * guarantee forward progress.
3462 	 */
3463 	if (!READ_ONCE(use_cid_lock)) {
3464 		cid = __mm_cid_try_get(mm);
3465 		if (cid >= 0)
3466 			goto end;
3467 		raw_spin_lock(&cid_lock);
3468 	} else {
3469 		raw_spin_lock(&cid_lock);
3470 		cid = __mm_cid_try_get(mm);
3471 		if (cid >= 0)
3472 			goto unlock;
3473 	}
3474 
3475 	/*
3476 	 * cid concurrently allocated. Retry while forcing following
3477 	 * allocations to use the cid_lock to ensure forward progress.
3478 	 */
3479 	WRITE_ONCE(use_cid_lock, 1);
3480 	/*
3481 	 * Set use_cid_lock before allocation. Only care about program order
3482 	 * because this is only required for forward progress.
3483 	 */
3484 	barrier();
3485 	/*
3486 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3487 	 * all newcoming allocations observe the use_cid_lock flag set.
3488 	 */
3489 	do {
3490 		cid = __mm_cid_try_get(mm);
3491 		cpu_relax();
3492 	} while (cid < 0);
3493 	/*
3494 	 * Allocate before clearing use_cid_lock. Only care about
3495 	 * program order because this is for forward progress.
3496 	 */
3497 	barrier();
3498 	WRITE_ONCE(use_cid_lock, 0);
3499 unlock:
3500 	raw_spin_unlock(&cid_lock);
3501 end:
3502 	mm_cid_snapshot_time(rq, mm);
3503 	return cid;
3504 }
3505 
mm_cid_get(struct rq * rq,struct mm_struct * mm)3506 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3507 {
3508 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3509 	struct cpumask *cpumask;
3510 	int cid;
3511 
3512 	lockdep_assert_rq_held(rq);
3513 	cpumask = mm_cidmask(mm);
3514 	cid = __this_cpu_read(pcpu_cid->cid);
3515 	if (mm_cid_is_valid(cid)) {
3516 		mm_cid_snapshot_time(rq, mm);
3517 		return cid;
3518 	}
3519 	if (mm_cid_is_lazy_put(cid)) {
3520 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3521 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3522 	}
3523 	cid = __mm_cid_get(rq, mm);
3524 	__this_cpu_write(pcpu_cid->cid, cid);
3525 	return cid;
3526 }
3527 
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3528 static inline void switch_mm_cid(struct rq *rq,
3529 				 struct task_struct *prev,
3530 				 struct task_struct *next)
3531 {
3532 	/*
3533 	 * Provide a memory barrier between rq->curr store and load of
3534 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3535 	 *
3536 	 * Should be adapted if context_switch() is modified.
3537 	 */
3538 	if (!next->mm) {                                // to kernel
3539 		/*
3540 		 * user -> kernel transition does not guarantee a barrier, but
3541 		 * we can use the fact that it performs an atomic operation in
3542 		 * mmgrab().
3543 		 */
3544 		if (prev->mm)                           // from user
3545 			smp_mb__after_mmgrab();
3546 		/*
3547 		 * kernel -> kernel transition does not change rq->curr->mm
3548 		 * state. It stays NULL.
3549 		 */
3550 	} else {                                        // to user
3551 		/*
3552 		 * kernel -> user transition does not provide a barrier
3553 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3554 		 * Provide it here.
3555 		 */
3556 		if (!prev->mm) {                        // from kernel
3557 			smp_mb();
3558 		} else {				// from user
3559 			/*
3560 			 * user->user transition relies on an implicit
3561 			 * memory barrier in switch_mm() when
3562 			 * current->mm changes. If the architecture
3563 			 * switch_mm() does not have an implicit memory
3564 			 * barrier, it is emitted here.  If current->mm
3565 			 * is unchanged, no barrier is needed.
3566 			 */
3567 			smp_mb__after_switch_mm();
3568 		}
3569 	}
3570 	if (prev->mm_cid_active) {
3571 		mm_cid_snapshot_time(rq, prev->mm);
3572 		mm_cid_put_lazy(prev);
3573 		prev->mm_cid = -1;
3574 	}
3575 	if (next->mm_cid_active)
3576 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3577 }
3578 
3579 #else
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3580 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3581 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3582 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3583 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3584 static inline void init_sched_mm_cid(struct task_struct *t) { }
3585 #endif
3586 
3587 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3588 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3589 
3590 #ifdef CONFIG_RT_SOFTIRQ_AWARE_SCHED
3591 extern bool cpu_busy_with_softirqs(int cpu);
3592 #else
cpu_busy_with_softirqs(int cpu)3593 static inline bool cpu_busy_with_softirqs(int cpu)
3594 {
3595 	return false;
3596 }
3597 #endif /* CONFIG_RT_SOFTIRQ_AWARE_SCHED */
3598 
3599 #endif /* _KERNEL_SCHED_SCHED_H */
3600