1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45
46 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
47 struct thread *th, bool lock);
48
machine__kernel_dso(struct machine * machine)49 static struct dso *machine__kernel_dso(struct machine *machine)
50 {
51 return map__dso(machine->vmlinux_map);
52 }
53
dsos__init(struct dsos * dsos)54 static void dsos__init(struct dsos *dsos)
55 {
56 INIT_LIST_HEAD(&dsos->head);
57 dsos->root = RB_ROOT;
58 init_rwsem(&dsos->lock);
59 }
60
machine__threads_init(struct machine * machine)61 static void machine__threads_init(struct machine *machine)
62 {
63 int i;
64
65 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
66 struct threads *threads = &machine->threads[i];
67 threads->entries = RB_ROOT_CACHED;
68 init_rwsem(&threads->lock);
69 threads->nr = 0;
70 INIT_LIST_HEAD(&threads->dead);
71 threads->last_match = NULL;
72 }
73 }
74
thread_rb_node__cmp_tid(const void * key,const struct rb_node * nd)75 static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd)
76 {
77 int to_find = (int) *((pid_t *)key);
78
79 return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread);
80 }
81
thread_rb_node__find(const struct thread * th,struct rb_root * tree)82 static struct thread_rb_node *thread_rb_node__find(const struct thread *th,
83 struct rb_root *tree)
84 {
85 pid_t to_find = thread__tid(th);
86 struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid);
87
88 return rb_entry(nd, struct thread_rb_node, rb_node);
89 }
90
machine__set_mmap_name(struct machine * machine)91 static int machine__set_mmap_name(struct machine *machine)
92 {
93 if (machine__is_host(machine))
94 machine->mmap_name = strdup("[kernel.kallsyms]");
95 else if (machine__is_default_guest(machine))
96 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
97 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
98 machine->pid) < 0)
99 machine->mmap_name = NULL;
100
101 return machine->mmap_name ? 0 : -ENOMEM;
102 }
103
thread__set_guest_comm(struct thread * thread,pid_t pid)104 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
105 {
106 char comm[64];
107
108 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
109 thread__set_comm(thread, comm, 0);
110 }
111
machine__init(struct machine * machine,const char * root_dir,pid_t pid)112 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
113 {
114 int err = -ENOMEM;
115
116 memset(machine, 0, sizeof(*machine));
117 machine->kmaps = maps__new(machine);
118 if (machine->kmaps == NULL)
119 return -ENOMEM;
120
121 RB_CLEAR_NODE(&machine->rb_node);
122 dsos__init(&machine->dsos);
123
124 machine__threads_init(machine);
125
126 machine->vdso_info = NULL;
127 machine->env = NULL;
128
129 machine->pid = pid;
130
131 machine->id_hdr_size = 0;
132 machine->kptr_restrict_warned = false;
133 machine->comm_exec = false;
134 machine->kernel_start = 0;
135 machine->vmlinux_map = NULL;
136
137 machine->root_dir = strdup(root_dir);
138 if (machine->root_dir == NULL)
139 goto out;
140
141 if (machine__set_mmap_name(machine))
142 goto out;
143
144 if (pid != HOST_KERNEL_ID) {
145 struct thread *thread = machine__findnew_thread(machine, -1,
146 pid);
147
148 if (thread == NULL)
149 goto out;
150
151 thread__set_guest_comm(thread, pid);
152 thread__put(thread);
153 }
154
155 machine->current_tid = NULL;
156 err = 0;
157
158 out:
159 if (err) {
160 zfree(&machine->kmaps);
161 zfree(&machine->root_dir);
162 zfree(&machine->mmap_name);
163 }
164 return 0;
165 }
166
machine__new_host(void)167 struct machine *machine__new_host(void)
168 {
169 struct machine *machine = malloc(sizeof(*machine));
170
171 if (machine != NULL) {
172 machine__init(machine, "", HOST_KERNEL_ID);
173
174 if (machine__create_kernel_maps(machine) < 0)
175 goto out_delete;
176 }
177
178 return machine;
179 out_delete:
180 free(machine);
181 return NULL;
182 }
183
machine__new_kallsyms(void)184 struct machine *machine__new_kallsyms(void)
185 {
186 struct machine *machine = machine__new_host();
187 /*
188 * FIXME:
189 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
190 * ask for not using the kcore parsing code, once this one is fixed
191 * to create a map per module.
192 */
193 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
194 machine__delete(machine);
195 machine = NULL;
196 }
197
198 return machine;
199 }
200
dsos__purge(struct dsos * dsos)201 static void dsos__purge(struct dsos *dsos)
202 {
203 struct dso *pos, *n;
204
205 down_write(&dsos->lock);
206
207 list_for_each_entry_safe(pos, n, &dsos->head, node) {
208 RB_CLEAR_NODE(&pos->rb_node);
209 pos->root = NULL;
210 list_del_init(&pos->node);
211 dso__put(pos);
212 }
213
214 up_write(&dsos->lock);
215 }
216
dsos__exit(struct dsos * dsos)217 static void dsos__exit(struct dsos *dsos)
218 {
219 dsos__purge(dsos);
220 exit_rwsem(&dsos->lock);
221 }
222
machine__delete_threads(struct machine * machine)223 void machine__delete_threads(struct machine *machine)
224 {
225 struct rb_node *nd;
226 int i;
227
228 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 struct threads *threads = &machine->threads[i];
230 down_write(&threads->lock);
231 nd = rb_first_cached(&threads->entries);
232 while (nd) {
233 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
234
235 nd = rb_next(nd);
236 __machine__remove_thread(machine, trb, trb->thread, false);
237 }
238 up_write(&threads->lock);
239 }
240 }
241
machine__exit(struct machine * machine)242 void machine__exit(struct machine *machine)
243 {
244 int i;
245
246 if (machine == NULL)
247 return;
248
249 machine__destroy_kernel_maps(machine);
250 maps__zput(machine->kmaps);
251 dsos__exit(&machine->dsos);
252 machine__exit_vdso(machine);
253 zfree(&machine->root_dir);
254 zfree(&machine->mmap_name);
255 zfree(&machine->current_tid);
256 zfree(&machine->kallsyms_filename);
257
258 machine__delete_threads(machine);
259 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
260 struct threads *threads = &machine->threads[i];
261
262 exit_rwsem(&threads->lock);
263 }
264 }
265
machine__delete(struct machine * machine)266 void machine__delete(struct machine *machine)
267 {
268 if (machine) {
269 machine__exit(machine);
270 free(machine);
271 }
272 }
273
machines__init(struct machines * machines)274 void machines__init(struct machines *machines)
275 {
276 machine__init(&machines->host, "", HOST_KERNEL_ID);
277 machines->guests = RB_ROOT_CACHED;
278 }
279
machines__exit(struct machines * machines)280 void machines__exit(struct machines *machines)
281 {
282 machine__exit(&machines->host);
283 /* XXX exit guest */
284 }
285
machines__add(struct machines * machines,pid_t pid,const char * root_dir)286 struct machine *machines__add(struct machines *machines, pid_t pid,
287 const char *root_dir)
288 {
289 struct rb_node **p = &machines->guests.rb_root.rb_node;
290 struct rb_node *parent = NULL;
291 struct machine *pos, *machine = malloc(sizeof(*machine));
292 bool leftmost = true;
293
294 if (machine == NULL)
295 return NULL;
296
297 if (machine__init(machine, root_dir, pid) != 0) {
298 free(machine);
299 return NULL;
300 }
301
302 while (*p != NULL) {
303 parent = *p;
304 pos = rb_entry(parent, struct machine, rb_node);
305 if (pid < pos->pid)
306 p = &(*p)->rb_left;
307 else {
308 p = &(*p)->rb_right;
309 leftmost = false;
310 }
311 }
312
313 rb_link_node(&machine->rb_node, parent, p);
314 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
315
316 machine->machines = machines;
317
318 return machine;
319 }
320
machines__set_comm_exec(struct machines * machines,bool comm_exec)321 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
322 {
323 struct rb_node *nd;
324
325 machines->host.comm_exec = comm_exec;
326
327 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
328 struct machine *machine = rb_entry(nd, struct machine, rb_node);
329
330 machine->comm_exec = comm_exec;
331 }
332 }
333
machines__find(struct machines * machines,pid_t pid)334 struct machine *machines__find(struct machines *machines, pid_t pid)
335 {
336 struct rb_node **p = &machines->guests.rb_root.rb_node;
337 struct rb_node *parent = NULL;
338 struct machine *machine;
339 struct machine *default_machine = NULL;
340
341 if (pid == HOST_KERNEL_ID)
342 return &machines->host;
343
344 while (*p != NULL) {
345 parent = *p;
346 machine = rb_entry(parent, struct machine, rb_node);
347 if (pid < machine->pid)
348 p = &(*p)->rb_left;
349 else if (pid > machine->pid)
350 p = &(*p)->rb_right;
351 else
352 return machine;
353 if (!machine->pid)
354 default_machine = machine;
355 }
356
357 return default_machine;
358 }
359
machines__findnew(struct machines * machines,pid_t pid)360 struct machine *machines__findnew(struct machines *machines, pid_t pid)
361 {
362 char path[PATH_MAX];
363 const char *root_dir = "";
364 struct machine *machine = machines__find(machines, pid);
365
366 if (machine && (machine->pid == pid))
367 goto out;
368
369 if ((pid != HOST_KERNEL_ID) &&
370 (pid != DEFAULT_GUEST_KERNEL_ID) &&
371 (symbol_conf.guestmount)) {
372 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
373 if (access(path, R_OK)) {
374 static struct strlist *seen;
375
376 if (!seen)
377 seen = strlist__new(NULL, NULL);
378
379 if (!strlist__has_entry(seen, path)) {
380 pr_err("Can't access file %s\n", path);
381 strlist__add(seen, path);
382 }
383 machine = NULL;
384 goto out;
385 }
386 root_dir = path;
387 }
388
389 machine = machines__add(machines, pid, root_dir);
390 out:
391 return machine;
392 }
393
machines__find_guest(struct machines * machines,pid_t pid)394 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
395 {
396 struct machine *machine = machines__find(machines, pid);
397
398 if (!machine)
399 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
400 return machine;
401 }
402
403 /*
404 * A common case for KVM test programs is that the test program acts as the
405 * hypervisor, creating, running and destroying the virtual machine, and
406 * providing the guest object code from its own object code. In this case,
407 * the VM is not running an OS, but only the functions loaded into it by the
408 * hypervisor test program, and conveniently, loaded at the same virtual
409 * addresses.
410 *
411 * Normally to resolve addresses, MMAP events are needed to map addresses
412 * back to the object code and debug symbols for that object code.
413 *
414 * Currently, there is no way to get such mapping information from guests
415 * but, in the scenario described above, the guest has the same mappings
416 * as the hypervisor, so support for that scenario can be achieved.
417 *
418 * To support that, copy the host thread's maps to the guest thread's maps.
419 * Note, we do not discover the guest until we encounter a guest event,
420 * which works well because it is not until then that we know that the host
421 * thread's maps have been set up.
422 *
423 * This function returns the guest thread. Apart from keeping the data
424 * structures sane, using a thread belonging to the guest machine, instead
425 * of the host thread, allows it to have its own comm (refer
426 * thread__set_guest_comm()).
427 */
findnew_guest_code(struct machine * machine,struct machine * host_machine,pid_t pid)428 static struct thread *findnew_guest_code(struct machine *machine,
429 struct machine *host_machine,
430 pid_t pid)
431 {
432 struct thread *host_thread;
433 struct thread *thread;
434 int err;
435
436 if (!machine)
437 return NULL;
438
439 thread = machine__findnew_thread(machine, -1, pid);
440 if (!thread)
441 return NULL;
442
443 /* Assume maps are set up if there are any */
444 if (maps__nr_maps(thread__maps(thread)))
445 return thread;
446
447 host_thread = machine__find_thread(host_machine, -1, pid);
448 if (!host_thread)
449 goto out_err;
450
451 thread__set_guest_comm(thread, pid);
452
453 /*
454 * Guest code can be found in hypervisor process at the same address
455 * so copy host maps.
456 */
457 err = maps__clone(thread, thread__maps(host_thread));
458 thread__put(host_thread);
459 if (err)
460 goto out_err;
461
462 return thread;
463
464 out_err:
465 thread__zput(thread);
466 return NULL;
467 }
468
machines__findnew_guest_code(struct machines * machines,pid_t pid)469 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
470 {
471 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
472 struct machine *machine = machines__findnew(machines, pid);
473
474 return findnew_guest_code(machine, host_machine, pid);
475 }
476
machine__findnew_guest_code(struct machine * machine,pid_t pid)477 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
478 {
479 struct machines *machines = machine->machines;
480 struct machine *host_machine;
481
482 if (!machines)
483 return NULL;
484
485 host_machine = machines__find(machines, HOST_KERNEL_ID);
486
487 return findnew_guest_code(machine, host_machine, pid);
488 }
489
machines__process_guests(struct machines * machines,machine__process_t process,void * data)490 void machines__process_guests(struct machines *machines,
491 machine__process_t process, void *data)
492 {
493 struct rb_node *nd;
494
495 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
496 struct machine *pos = rb_entry(nd, struct machine, rb_node);
497 process(pos, data);
498 }
499 }
500
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)501 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
502 {
503 struct rb_node *node;
504 struct machine *machine;
505
506 machines->host.id_hdr_size = id_hdr_size;
507
508 for (node = rb_first_cached(&machines->guests); node;
509 node = rb_next(node)) {
510 machine = rb_entry(node, struct machine, rb_node);
511 machine->id_hdr_size = id_hdr_size;
512 }
513
514 return;
515 }
516
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)517 static void machine__update_thread_pid(struct machine *machine,
518 struct thread *th, pid_t pid)
519 {
520 struct thread *leader;
521
522 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
523 return;
524
525 thread__set_pid(th, pid);
526
527 if (thread__pid(th) == thread__tid(th))
528 return;
529
530 leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
531 if (!leader)
532 goto out_err;
533
534 if (!thread__maps(leader))
535 thread__set_maps(leader, maps__new(machine));
536
537 if (!thread__maps(leader))
538 goto out_err;
539
540 if (thread__maps(th) == thread__maps(leader))
541 goto out_put;
542
543 if (thread__maps(th)) {
544 /*
545 * Maps are created from MMAP events which provide the pid and
546 * tid. Consequently there never should be any maps on a thread
547 * with an unknown pid. Just print an error if there are.
548 */
549 if (!maps__empty(thread__maps(th)))
550 pr_err("Discarding thread maps for %d:%d\n",
551 thread__pid(th), thread__tid(th));
552 maps__put(thread__maps(th));
553 }
554
555 thread__set_maps(th, maps__get(thread__maps(leader)));
556 out_put:
557 thread__put(leader);
558 return;
559 out_err:
560 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
561 goto out_put;
562 }
563
564 /*
565 * Front-end cache - TID lookups come in blocks,
566 * so most of the time we dont have to look up
567 * the full rbtree:
568 */
569 static struct thread*
__threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)570 __threads__get_last_match(struct threads *threads, struct machine *machine,
571 int pid, int tid)
572 {
573 struct thread *th;
574
575 th = threads->last_match;
576 if (th != NULL) {
577 if (thread__tid(th) == tid) {
578 machine__update_thread_pid(machine, th, pid);
579 return thread__get(th);
580 }
581 thread__put(threads->last_match);
582 threads->last_match = NULL;
583 }
584
585 return NULL;
586 }
587
588 static struct thread*
threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)589 threads__get_last_match(struct threads *threads, struct machine *machine,
590 int pid, int tid)
591 {
592 struct thread *th = NULL;
593
594 if (perf_singlethreaded)
595 th = __threads__get_last_match(threads, machine, pid, tid);
596
597 return th;
598 }
599
600 static void
__threads__set_last_match(struct threads * threads,struct thread * th)601 __threads__set_last_match(struct threads *threads, struct thread *th)
602 {
603 thread__put(threads->last_match);
604 threads->last_match = thread__get(th);
605 }
606
607 static void
threads__set_last_match(struct threads * threads,struct thread * th)608 threads__set_last_match(struct threads *threads, struct thread *th)
609 {
610 if (perf_singlethreaded)
611 __threads__set_last_match(threads, th);
612 }
613
614 /*
615 * Caller must eventually drop thread->refcnt returned with a successful
616 * lookup/new thread inserted.
617 */
____machine__findnew_thread(struct machine * machine,struct threads * threads,pid_t pid,pid_t tid,bool create)618 static struct thread *____machine__findnew_thread(struct machine *machine,
619 struct threads *threads,
620 pid_t pid, pid_t tid,
621 bool create)
622 {
623 struct rb_node **p = &threads->entries.rb_root.rb_node;
624 struct rb_node *parent = NULL;
625 struct thread *th;
626 struct thread_rb_node *nd;
627 bool leftmost = true;
628
629 th = threads__get_last_match(threads, machine, pid, tid);
630 if (th)
631 return th;
632
633 while (*p != NULL) {
634 parent = *p;
635 th = rb_entry(parent, struct thread_rb_node, rb_node)->thread;
636
637 if (thread__tid(th) == tid) {
638 threads__set_last_match(threads, th);
639 machine__update_thread_pid(machine, th, pid);
640 return thread__get(th);
641 }
642
643 if (tid < thread__tid(th))
644 p = &(*p)->rb_left;
645 else {
646 p = &(*p)->rb_right;
647 leftmost = false;
648 }
649 }
650
651 if (!create)
652 return NULL;
653
654 th = thread__new(pid, tid);
655 if (th == NULL)
656 return NULL;
657
658 nd = malloc(sizeof(*nd));
659 if (nd == NULL) {
660 thread__put(th);
661 return NULL;
662 }
663 nd->thread = th;
664
665 rb_link_node(&nd->rb_node, parent, p);
666 rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost);
667 /*
668 * We have to initialize maps separately after rb tree is updated.
669 *
670 * The reason is that we call machine__findnew_thread within
671 * thread__init_maps to find the thread leader and that would screwed
672 * the rb tree.
673 */
674 if (thread__init_maps(th, machine)) {
675 pr_err("Thread init failed thread %d\n", pid);
676 rb_erase_cached(&nd->rb_node, &threads->entries);
677 RB_CLEAR_NODE(&nd->rb_node);
678 free(nd);
679 thread__put(th);
680 return NULL;
681 }
682 /*
683 * It is now in the rbtree, get a ref
684 */
685 threads__set_last_match(threads, th);
686 ++threads->nr;
687
688 return thread__get(th);
689 }
690
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)691 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
692 {
693 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
694 }
695
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)696 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
697 pid_t tid)
698 {
699 struct threads *threads = machine__threads(machine, tid);
700 struct thread *th;
701
702 down_write(&threads->lock);
703 th = __machine__findnew_thread(machine, pid, tid);
704 up_write(&threads->lock);
705 return th;
706 }
707
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)708 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
709 pid_t tid)
710 {
711 struct threads *threads = machine__threads(machine, tid);
712 struct thread *th;
713
714 down_read(&threads->lock);
715 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
716 up_read(&threads->lock);
717 return th;
718 }
719
720 /*
721 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
722 * So here a single thread is created for that, but actually there is a separate
723 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
724 * is only 1. That causes problems for some tools, requiring workarounds. For
725 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
726 */
machine__idle_thread(struct machine * machine)727 struct thread *machine__idle_thread(struct machine *machine)
728 {
729 struct thread *thread = machine__findnew_thread(machine, 0, 0);
730
731 if (!thread || thread__set_comm(thread, "swapper", 0) ||
732 thread__set_namespaces(thread, 0, NULL))
733 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
734
735 return thread;
736 }
737
machine__thread_exec_comm(struct machine * machine,struct thread * thread)738 struct comm *machine__thread_exec_comm(struct machine *machine,
739 struct thread *thread)
740 {
741 if (machine->comm_exec)
742 return thread__exec_comm(thread);
743 else
744 return thread__comm(thread);
745 }
746
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)747 int machine__process_comm_event(struct machine *machine, union perf_event *event,
748 struct perf_sample *sample)
749 {
750 struct thread *thread = machine__findnew_thread(machine,
751 event->comm.pid,
752 event->comm.tid);
753 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
754 int err = 0;
755
756 if (exec)
757 machine->comm_exec = true;
758
759 if (dump_trace)
760 perf_event__fprintf_comm(event, stdout);
761
762 if (thread == NULL ||
763 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
764 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
765 err = -1;
766 }
767
768 thread__put(thread);
769
770 return err;
771 }
772
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)773 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
774 union perf_event *event,
775 struct perf_sample *sample __maybe_unused)
776 {
777 struct thread *thread = machine__findnew_thread(machine,
778 event->namespaces.pid,
779 event->namespaces.tid);
780 int err = 0;
781
782 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
783 "\nWARNING: kernel seems to support more namespaces than perf"
784 " tool.\nTry updating the perf tool..\n\n");
785
786 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
787 "\nWARNING: perf tool seems to support more namespaces than"
788 " the kernel.\nTry updating the kernel..\n\n");
789
790 if (dump_trace)
791 perf_event__fprintf_namespaces(event, stdout);
792
793 if (thread == NULL ||
794 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
795 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
796 err = -1;
797 }
798
799 thread__put(thread);
800
801 return err;
802 }
803
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)804 int machine__process_cgroup_event(struct machine *machine,
805 union perf_event *event,
806 struct perf_sample *sample __maybe_unused)
807 {
808 struct cgroup *cgrp;
809
810 if (dump_trace)
811 perf_event__fprintf_cgroup(event, stdout);
812
813 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
814 if (cgrp == NULL)
815 return -ENOMEM;
816
817 return 0;
818 }
819
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)820 int machine__process_lost_event(struct machine *machine __maybe_unused,
821 union perf_event *event, struct perf_sample *sample __maybe_unused)
822 {
823 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
824 event->lost.id, event->lost.lost);
825 return 0;
826 }
827
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)828 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
829 union perf_event *event, struct perf_sample *sample)
830 {
831 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
832 sample->id, event->lost_samples.lost);
833 return 0;
834 }
835
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)836 static struct dso *machine__findnew_module_dso(struct machine *machine,
837 struct kmod_path *m,
838 const char *filename)
839 {
840 struct dso *dso;
841
842 down_write(&machine->dsos.lock);
843
844 dso = __dsos__find(&machine->dsos, m->name, true);
845 if (!dso) {
846 dso = __dsos__addnew(&machine->dsos, m->name);
847 if (dso == NULL)
848 goto out_unlock;
849
850 dso__set_module_info(dso, m, machine);
851 dso__set_long_name(dso, strdup(filename), true);
852 dso->kernel = DSO_SPACE__KERNEL;
853 }
854
855 dso__get(dso);
856 out_unlock:
857 up_write(&machine->dsos.lock);
858 return dso;
859 }
860
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)861 int machine__process_aux_event(struct machine *machine __maybe_unused,
862 union perf_event *event)
863 {
864 if (dump_trace)
865 perf_event__fprintf_aux(event, stdout);
866 return 0;
867 }
868
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)869 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
870 union perf_event *event)
871 {
872 if (dump_trace)
873 perf_event__fprintf_itrace_start(event, stdout);
874 return 0;
875 }
876
machine__process_aux_output_hw_id_event(struct machine * machine __maybe_unused,union perf_event * event)877 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
878 union perf_event *event)
879 {
880 if (dump_trace)
881 perf_event__fprintf_aux_output_hw_id(event, stdout);
882 return 0;
883 }
884
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)885 int machine__process_switch_event(struct machine *machine __maybe_unused,
886 union perf_event *event)
887 {
888 if (dump_trace)
889 perf_event__fprintf_switch(event, stdout);
890 return 0;
891 }
892
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)893 static int machine__process_ksymbol_register(struct machine *machine,
894 union perf_event *event,
895 struct perf_sample *sample __maybe_unused)
896 {
897 struct symbol *sym;
898 struct dso *dso;
899 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
900 bool put_map = false;
901 int err = 0;
902
903 if (!map) {
904 dso = dso__new(event->ksymbol.name);
905
906 if (!dso) {
907 err = -ENOMEM;
908 goto out;
909 }
910 dso->kernel = DSO_SPACE__KERNEL;
911 map = map__new2(0, dso);
912 dso__put(dso);
913 if (!map) {
914 err = -ENOMEM;
915 goto out;
916 }
917 /*
918 * The inserted map has a get on it, we need to put to release
919 * the reference count here, but do it after all accesses are
920 * done.
921 */
922 put_map = true;
923 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
924 dso->binary_type = DSO_BINARY_TYPE__OOL;
925 dso->data.file_size = event->ksymbol.len;
926 dso__set_loaded(dso);
927 }
928
929 map__set_start(map, event->ksymbol.addr);
930 map__set_end(map, map__start(map) + event->ksymbol.len);
931 err = maps__insert(machine__kernel_maps(machine), map);
932 if (err) {
933 err = -ENOMEM;
934 goto out;
935 }
936
937 dso__set_loaded(dso);
938
939 if (is_bpf_image(event->ksymbol.name)) {
940 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
941 dso__set_long_name(dso, "", false);
942 }
943 } else {
944 dso = map__dso(map);
945 }
946
947 sym = symbol__new(map__map_ip(map, map__start(map)),
948 event->ksymbol.len,
949 0, 0, event->ksymbol.name);
950 if (!sym) {
951 err = -ENOMEM;
952 goto out;
953 }
954 dso__insert_symbol(dso, sym);
955 out:
956 if (put_map)
957 map__put(map);
958 return err;
959 }
960
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)961 static int machine__process_ksymbol_unregister(struct machine *machine,
962 union perf_event *event,
963 struct perf_sample *sample __maybe_unused)
964 {
965 struct symbol *sym;
966 struct map *map;
967
968 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
969 if (!map)
970 return 0;
971
972 if (RC_CHK_ACCESS(map) != RC_CHK_ACCESS(machine->vmlinux_map))
973 maps__remove(machine__kernel_maps(machine), map);
974 else {
975 struct dso *dso = map__dso(map);
976
977 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
978 if (sym)
979 dso__delete_symbol(dso, sym);
980 }
981
982 return 0;
983 }
984
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)985 int machine__process_ksymbol(struct machine *machine __maybe_unused,
986 union perf_event *event,
987 struct perf_sample *sample)
988 {
989 if (dump_trace)
990 perf_event__fprintf_ksymbol(event, stdout);
991
992 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
993 return machine__process_ksymbol_unregister(machine, event,
994 sample);
995 return machine__process_ksymbol_register(machine, event, sample);
996 }
997
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)998 int machine__process_text_poke(struct machine *machine, union perf_event *event,
999 struct perf_sample *sample __maybe_unused)
1000 {
1001 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
1002 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1003 struct dso *dso = map ? map__dso(map) : NULL;
1004
1005 if (dump_trace)
1006 perf_event__fprintf_text_poke(event, machine, stdout);
1007
1008 if (!event->text_poke.new_len)
1009 return 0;
1010
1011 if (cpumode != PERF_RECORD_MISC_KERNEL) {
1012 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
1013 return 0;
1014 }
1015
1016 if (dso) {
1017 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1018 int ret;
1019
1020 /*
1021 * Kernel maps might be changed when loading symbols so loading
1022 * must be done prior to using kernel maps.
1023 */
1024 map__load(map);
1025 ret = dso__data_write_cache_addr(dso, map, machine,
1026 event->text_poke.addr,
1027 new_bytes,
1028 event->text_poke.new_len);
1029 if (ret != event->text_poke.new_len)
1030 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1031 event->text_poke.addr);
1032 } else {
1033 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1034 event->text_poke.addr);
1035 }
1036
1037 return 0;
1038 }
1039
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)1040 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1041 const char *filename)
1042 {
1043 struct map *map = NULL;
1044 struct kmod_path m;
1045 struct dso *dso;
1046 int err;
1047
1048 if (kmod_path__parse_name(&m, filename))
1049 return NULL;
1050
1051 dso = machine__findnew_module_dso(machine, &m, filename);
1052 if (dso == NULL)
1053 goto out;
1054
1055 map = map__new2(start, dso);
1056 if (map == NULL)
1057 goto out;
1058
1059 err = maps__insert(machine__kernel_maps(machine), map);
1060 /* If maps__insert failed, return NULL. */
1061 if (err) {
1062 map__put(map);
1063 map = NULL;
1064 }
1065 out:
1066 /* put the dso here, corresponding to machine__findnew_module_dso */
1067 dso__put(dso);
1068 zfree(&m.name);
1069 return map;
1070 }
1071
machines__fprintf_dsos(struct machines * machines,FILE * fp)1072 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1073 {
1074 struct rb_node *nd;
1075 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1076
1077 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1078 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1079 ret += __dsos__fprintf(&pos->dsos.head, fp);
1080 }
1081
1082 return ret;
1083 }
1084
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)1085 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1086 bool (skip)(struct dso *dso, int parm), int parm)
1087 {
1088 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1089 }
1090
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)1091 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1092 bool (skip)(struct dso *dso, int parm), int parm)
1093 {
1094 struct rb_node *nd;
1095 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1096
1097 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1098 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1099 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1100 }
1101 return ret;
1102 }
1103
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)1104 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1105 {
1106 int i;
1107 size_t printed = 0;
1108 struct dso *kdso = machine__kernel_dso(machine);
1109
1110 if (kdso->has_build_id) {
1111 char filename[PATH_MAX];
1112 if (dso__build_id_filename(kdso, filename, sizeof(filename),
1113 false))
1114 printed += fprintf(fp, "[0] %s\n", filename);
1115 }
1116
1117 for (i = 0; i < vmlinux_path__nr_entries; ++i)
1118 printed += fprintf(fp, "[%d] %s\n",
1119 i + kdso->has_build_id, vmlinux_path[i]);
1120
1121 return printed;
1122 }
1123
machine__fprintf(struct machine * machine,FILE * fp)1124 size_t machine__fprintf(struct machine *machine, FILE *fp)
1125 {
1126 struct rb_node *nd;
1127 size_t ret;
1128 int i;
1129
1130 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1131 struct threads *threads = &machine->threads[i];
1132
1133 down_read(&threads->lock);
1134
1135 ret = fprintf(fp, "Threads: %u\n", threads->nr);
1136
1137 for (nd = rb_first_cached(&threads->entries); nd;
1138 nd = rb_next(nd)) {
1139 struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread;
1140
1141 ret += thread__fprintf(pos, fp);
1142 }
1143
1144 up_read(&threads->lock);
1145 }
1146 return ret;
1147 }
1148
machine__get_kernel(struct machine * machine)1149 static struct dso *machine__get_kernel(struct machine *machine)
1150 {
1151 const char *vmlinux_name = machine->mmap_name;
1152 struct dso *kernel;
1153
1154 if (machine__is_host(machine)) {
1155 if (symbol_conf.vmlinux_name)
1156 vmlinux_name = symbol_conf.vmlinux_name;
1157
1158 kernel = machine__findnew_kernel(machine, vmlinux_name,
1159 "[kernel]", DSO_SPACE__KERNEL);
1160 } else {
1161 if (symbol_conf.default_guest_vmlinux_name)
1162 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1163
1164 kernel = machine__findnew_kernel(machine, vmlinux_name,
1165 "[guest.kernel]",
1166 DSO_SPACE__KERNEL_GUEST);
1167 }
1168
1169 if (kernel != NULL && (!kernel->has_build_id))
1170 dso__read_running_kernel_build_id(kernel, machine);
1171
1172 return kernel;
1173 }
1174
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)1175 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1176 size_t bufsz)
1177 {
1178 if (machine__is_default_guest(machine))
1179 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1180 else
1181 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1182 }
1183
1184 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1185
1186 /* Figure out the start address of kernel map from /proc/kallsyms.
1187 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1188 * symbol_name if it's not that important.
1189 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)1190 static int machine__get_running_kernel_start(struct machine *machine,
1191 const char **symbol_name,
1192 u64 *start, u64 *end)
1193 {
1194 char filename[PATH_MAX];
1195 int i, err = -1;
1196 const char *name;
1197 u64 addr = 0;
1198
1199 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1200
1201 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1202 return 0;
1203
1204 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1205 err = kallsyms__get_function_start(filename, name, &addr);
1206 if (!err)
1207 break;
1208 }
1209
1210 if (err)
1211 return -1;
1212
1213 if (symbol_name)
1214 *symbol_name = name;
1215
1216 *start = addr;
1217
1218 err = kallsyms__get_symbol_start(filename, "_edata", &addr);
1219 if (err)
1220 err = kallsyms__get_function_start(filename, "_etext", &addr);
1221 if (!err)
1222 *end = addr;
1223
1224 return 0;
1225 }
1226
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1227 int machine__create_extra_kernel_map(struct machine *machine,
1228 struct dso *kernel,
1229 struct extra_kernel_map *xm)
1230 {
1231 struct kmap *kmap;
1232 struct map *map;
1233 int err;
1234
1235 map = map__new2(xm->start, kernel);
1236 if (!map)
1237 return -ENOMEM;
1238
1239 map__set_end(map, xm->end);
1240 map__set_pgoff(map, xm->pgoff);
1241
1242 kmap = map__kmap(map);
1243
1244 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1245
1246 err = maps__insert(machine__kernel_maps(machine), map);
1247
1248 if (!err) {
1249 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1250 kmap->name, map__start(map), map__end(map));
1251 }
1252
1253 map__put(map);
1254
1255 return err;
1256 }
1257
find_entry_trampoline(struct dso * dso)1258 static u64 find_entry_trampoline(struct dso *dso)
1259 {
1260 /* Duplicates are removed so lookup all aliases */
1261 const char *syms[] = {
1262 "_entry_trampoline",
1263 "__entry_trampoline_start",
1264 "entry_SYSCALL_64_trampoline",
1265 };
1266 struct symbol *sym = dso__first_symbol(dso);
1267 unsigned int i;
1268
1269 for (; sym; sym = dso__next_symbol(sym)) {
1270 if (sym->binding != STB_GLOBAL)
1271 continue;
1272 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1273 if (!strcmp(sym->name, syms[i]))
1274 return sym->start;
1275 }
1276 }
1277
1278 return 0;
1279 }
1280
1281 /*
1282 * These values can be used for kernels that do not have symbols for the entry
1283 * trampolines in kallsyms.
1284 */
1285 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1286 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1287 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1288
1289 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1290 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1291 struct dso *kernel)
1292 {
1293 struct maps *kmaps = machine__kernel_maps(machine);
1294 int nr_cpus_avail, cpu;
1295 bool found = false;
1296 struct map_rb_node *rb_node;
1297 u64 pgoff;
1298
1299 /*
1300 * In the vmlinux case, pgoff is a virtual address which must now be
1301 * mapped to a vmlinux offset.
1302 */
1303 maps__for_each_entry(kmaps, rb_node) {
1304 struct map *dest_map, *map = rb_node->map;
1305 struct kmap *kmap = __map__kmap(map);
1306
1307 if (!kmap || !is_entry_trampoline(kmap->name))
1308 continue;
1309
1310 dest_map = maps__find(kmaps, map__pgoff(map));
1311 if (dest_map != map)
1312 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1313 found = true;
1314 }
1315 if (found || machine->trampolines_mapped)
1316 return 0;
1317
1318 pgoff = find_entry_trampoline(kernel);
1319 if (!pgoff)
1320 return 0;
1321
1322 nr_cpus_avail = machine__nr_cpus_avail(machine);
1323
1324 /* Add a 1 page map for each CPU's entry trampoline */
1325 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1326 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1327 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1328 X86_64_ENTRY_TRAMPOLINE;
1329 struct extra_kernel_map xm = {
1330 .start = va,
1331 .end = va + page_size,
1332 .pgoff = pgoff,
1333 };
1334
1335 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1336
1337 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1338 return -1;
1339 }
1340
1341 machine->trampolines_mapped = nr_cpus_avail;
1342
1343 return 0;
1344 }
1345
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1346 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1347 struct dso *kernel __maybe_unused)
1348 {
1349 return 0;
1350 }
1351
1352 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1353 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1354 {
1355 /* In case of renewal the kernel map, destroy previous one */
1356 machine__destroy_kernel_maps(machine);
1357
1358 map__put(machine->vmlinux_map);
1359 machine->vmlinux_map = map__new2(0, kernel);
1360 if (machine->vmlinux_map == NULL)
1361 return -ENOMEM;
1362
1363 map__set_map_ip(machine->vmlinux_map, identity__map_ip);
1364 map__set_unmap_ip(machine->vmlinux_map, identity__map_ip);
1365 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1366 }
1367
machine__destroy_kernel_maps(struct machine * machine)1368 void machine__destroy_kernel_maps(struct machine *machine)
1369 {
1370 struct kmap *kmap;
1371 struct map *map = machine__kernel_map(machine);
1372
1373 if (map == NULL)
1374 return;
1375
1376 kmap = map__kmap(map);
1377 maps__remove(machine__kernel_maps(machine), map);
1378 if (kmap && kmap->ref_reloc_sym) {
1379 zfree((char **)&kmap->ref_reloc_sym->name);
1380 zfree(&kmap->ref_reloc_sym);
1381 }
1382
1383 map__zput(machine->vmlinux_map);
1384 }
1385
machines__create_guest_kernel_maps(struct machines * machines)1386 int machines__create_guest_kernel_maps(struct machines *machines)
1387 {
1388 int ret = 0;
1389 struct dirent **namelist = NULL;
1390 int i, items = 0;
1391 char path[PATH_MAX];
1392 pid_t pid;
1393 char *endp;
1394
1395 if (symbol_conf.default_guest_vmlinux_name ||
1396 symbol_conf.default_guest_modules ||
1397 symbol_conf.default_guest_kallsyms) {
1398 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1399 }
1400
1401 if (symbol_conf.guestmount) {
1402 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1403 if (items <= 0)
1404 return -ENOENT;
1405 for (i = 0; i < items; i++) {
1406 if (!isdigit(namelist[i]->d_name[0])) {
1407 /* Filter out . and .. */
1408 continue;
1409 }
1410 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1411 if ((*endp != '\0') ||
1412 (endp == namelist[i]->d_name) ||
1413 (errno == ERANGE)) {
1414 pr_debug("invalid directory (%s). Skipping.\n",
1415 namelist[i]->d_name);
1416 continue;
1417 }
1418 sprintf(path, "%s/%s/proc/kallsyms",
1419 symbol_conf.guestmount,
1420 namelist[i]->d_name);
1421 ret = access(path, R_OK);
1422 if (ret) {
1423 pr_debug("Can't access file %s\n", path);
1424 goto failure;
1425 }
1426 machines__create_kernel_maps(machines, pid);
1427 }
1428 failure:
1429 free(namelist);
1430 }
1431
1432 return ret;
1433 }
1434
machines__destroy_kernel_maps(struct machines * machines)1435 void machines__destroy_kernel_maps(struct machines *machines)
1436 {
1437 struct rb_node *next = rb_first_cached(&machines->guests);
1438
1439 machine__destroy_kernel_maps(&machines->host);
1440
1441 while (next) {
1442 struct machine *pos = rb_entry(next, struct machine, rb_node);
1443
1444 next = rb_next(&pos->rb_node);
1445 rb_erase_cached(&pos->rb_node, &machines->guests);
1446 machine__delete(pos);
1447 }
1448 }
1449
machines__create_kernel_maps(struct machines * machines,pid_t pid)1450 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1451 {
1452 struct machine *machine = machines__findnew(machines, pid);
1453
1454 if (machine == NULL)
1455 return -1;
1456
1457 return machine__create_kernel_maps(machine);
1458 }
1459
machine__load_kallsyms(struct machine * machine,const char * filename)1460 int machine__load_kallsyms(struct machine *machine, const char *filename)
1461 {
1462 struct map *map = machine__kernel_map(machine);
1463 struct dso *dso = map__dso(map);
1464 int ret = __dso__load_kallsyms(dso, filename, map, true);
1465
1466 if (ret > 0) {
1467 dso__set_loaded(dso);
1468 /*
1469 * Since /proc/kallsyms will have multiple sessions for the
1470 * kernel, with modules between them, fixup the end of all
1471 * sections.
1472 */
1473 maps__fixup_end(machine__kernel_maps(machine));
1474 }
1475
1476 return ret;
1477 }
1478
machine__load_vmlinux_path(struct machine * machine)1479 int machine__load_vmlinux_path(struct machine *machine)
1480 {
1481 struct map *map = machine__kernel_map(machine);
1482 struct dso *dso = map__dso(map);
1483 int ret = dso__load_vmlinux_path(dso, map);
1484
1485 if (ret > 0)
1486 dso__set_loaded(dso);
1487
1488 return ret;
1489 }
1490
get_kernel_version(const char * root_dir)1491 static char *get_kernel_version(const char *root_dir)
1492 {
1493 char version[PATH_MAX];
1494 FILE *file;
1495 char *name, *tmp;
1496 const char *prefix = "Linux version ";
1497
1498 sprintf(version, "%s/proc/version", root_dir);
1499 file = fopen(version, "r");
1500 if (!file)
1501 return NULL;
1502
1503 tmp = fgets(version, sizeof(version), file);
1504 fclose(file);
1505 if (!tmp)
1506 return NULL;
1507
1508 name = strstr(version, prefix);
1509 if (!name)
1510 return NULL;
1511 name += strlen(prefix);
1512 tmp = strchr(name, ' ');
1513 if (tmp)
1514 *tmp = '\0';
1515
1516 return strdup(name);
1517 }
1518
is_kmod_dso(struct dso * dso)1519 static bool is_kmod_dso(struct dso *dso)
1520 {
1521 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1522 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1523 }
1524
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1525 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1526 {
1527 char *long_name;
1528 struct dso *dso;
1529 struct map *map = maps__find_by_name(maps, m->name);
1530
1531 if (map == NULL)
1532 return 0;
1533
1534 long_name = strdup(path);
1535 if (long_name == NULL)
1536 return -ENOMEM;
1537
1538 dso = map__dso(map);
1539 dso__set_long_name(dso, long_name, true);
1540 dso__kernel_module_get_build_id(dso, "");
1541
1542 /*
1543 * Full name could reveal us kmod compression, so
1544 * we need to update the symtab_type if needed.
1545 */
1546 if (m->comp && is_kmod_dso(dso)) {
1547 dso->symtab_type++;
1548 dso->comp = m->comp;
1549 }
1550
1551 return 0;
1552 }
1553
maps__set_modules_path_dir(struct maps * maps,const char * dir_name,int depth)1554 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1555 {
1556 struct dirent *dent;
1557 DIR *dir = opendir(dir_name);
1558 int ret = 0;
1559
1560 if (!dir) {
1561 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1562 return -1;
1563 }
1564
1565 while ((dent = readdir(dir)) != NULL) {
1566 char path[PATH_MAX];
1567 struct stat st;
1568
1569 /*sshfs might return bad dent->d_type, so we have to stat*/
1570 path__join(path, sizeof(path), dir_name, dent->d_name);
1571 if (stat(path, &st))
1572 continue;
1573
1574 if (S_ISDIR(st.st_mode)) {
1575 if (!strcmp(dent->d_name, ".") ||
1576 !strcmp(dent->d_name, ".."))
1577 continue;
1578
1579 /* Do not follow top-level source and build symlinks */
1580 if (depth == 0) {
1581 if (!strcmp(dent->d_name, "source") ||
1582 !strcmp(dent->d_name, "build"))
1583 continue;
1584 }
1585
1586 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1587 if (ret < 0)
1588 goto out;
1589 } else {
1590 struct kmod_path m;
1591
1592 ret = kmod_path__parse_name(&m, dent->d_name);
1593 if (ret)
1594 goto out;
1595
1596 if (m.kmod)
1597 ret = maps__set_module_path(maps, path, &m);
1598
1599 zfree(&m.name);
1600
1601 if (ret)
1602 goto out;
1603 }
1604 }
1605
1606 out:
1607 closedir(dir);
1608 return ret;
1609 }
1610
machine__set_modules_path(struct machine * machine)1611 static int machine__set_modules_path(struct machine *machine)
1612 {
1613 char *version;
1614 char modules_path[PATH_MAX];
1615
1616 version = get_kernel_version(machine->root_dir);
1617 if (!version)
1618 return -1;
1619
1620 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1621 machine->root_dir, version);
1622 free(version);
1623
1624 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1625 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1626 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1627 u64 *size __maybe_unused,
1628 const char *name __maybe_unused)
1629 {
1630 return 0;
1631 }
1632
machine__create_module(void * arg,const char * name,u64 start,u64 size)1633 static int machine__create_module(void *arg, const char *name, u64 start,
1634 u64 size)
1635 {
1636 struct machine *machine = arg;
1637 struct map *map;
1638
1639 if (arch__fix_module_text_start(&start, &size, name) < 0)
1640 return -1;
1641
1642 map = machine__addnew_module_map(machine, start, name);
1643 if (map == NULL)
1644 return -1;
1645 map__set_end(map, start + size);
1646
1647 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1648 map__put(map);
1649 return 0;
1650 }
1651
machine__create_modules(struct machine * machine)1652 static int machine__create_modules(struct machine *machine)
1653 {
1654 const char *modules;
1655 char path[PATH_MAX];
1656
1657 if (machine__is_default_guest(machine)) {
1658 modules = symbol_conf.default_guest_modules;
1659 } else {
1660 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1661 modules = path;
1662 }
1663
1664 if (symbol__restricted_filename(modules, "/proc/modules"))
1665 return -1;
1666
1667 if (modules__parse(modules, machine, machine__create_module))
1668 return -1;
1669
1670 if (!machine__set_modules_path(machine))
1671 return 0;
1672
1673 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1674
1675 return 0;
1676 }
1677
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1678 static void machine__set_kernel_mmap(struct machine *machine,
1679 u64 start, u64 end)
1680 {
1681 map__set_start(machine->vmlinux_map, start);
1682 map__set_end(machine->vmlinux_map, end);
1683 /*
1684 * Be a bit paranoid here, some perf.data file came with
1685 * a zero sized synthesized MMAP event for the kernel.
1686 */
1687 if (start == 0 && end == 0)
1688 map__set_end(machine->vmlinux_map, ~0ULL);
1689 }
1690
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1691 static int machine__update_kernel_mmap(struct machine *machine,
1692 u64 start, u64 end)
1693 {
1694 struct map *orig, *updated;
1695 int err;
1696
1697 orig = machine->vmlinux_map;
1698 updated = map__get(orig);
1699
1700 machine->vmlinux_map = updated;
1701 machine__set_kernel_mmap(machine, start, end);
1702 maps__remove(machine__kernel_maps(machine), orig);
1703 err = maps__insert(machine__kernel_maps(machine), updated);
1704 map__put(orig);
1705
1706 return err;
1707 }
1708
machine__create_kernel_maps(struct machine * machine)1709 int machine__create_kernel_maps(struct machine *machine)
1710 {
1711 struct dso *kernel = machine__get_kernel(machine);
1712 const char *name = NULL;
1713 u64 start = 0, end = ~0ULL;
1714 int ret;
1715
1716 if (kernel == NULL)
1717 return -1;
1718
1719 ret = __machine__create_kernel_maps(machine, kernel);
1720 if (ret < 0)
1721 goto out_put;
1722
1723 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1724 if (machine__is_host(machine))
1725 pr_debug("Problems creating module maps, "
1726 "continuing anyway...\n");
1727 else
1728 pr_debug("Problems creating module maps for guest %d, "
1729 "continuing anyway...\n", machine->pid);
1730 }
1731
1732 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1733 if (name &&
1734 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1735 machine__destroy_kernel_maps(machine);
1736 ret = -1;
1737 goto out_put;
1738 }
1739
1740 /*
1741 * we have a real start address now, so re-order the kmaps
1742 * assume it's the last in the kmaps
1743 */
1744 ret = machine__update_kernel_mmap(machine, start, end);
1745 if (ret < 0)
1746 goto out_put;
1747 }
1748
1749 if (machine__create_extra_kernel_maps(machine, kernel))
1750 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1751
1752 if (end == ~0ULL) {
1753 /* update end address of the kernel map using adjacent module address */
1754 struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine),
1755 machine__kernel_map(machine));
1756 struct map_rb_node *next = map_rb_node__next(rb_node);
1757
1758 if (next)
1759 machine__set_kernel_mmap(machine, start, map__start(next->map));
1760 }
1761
1762 out_put:
1763 dso__put(kernel);
1764 return ret;
1765 }
1766
machine__uses_kcore(struct machine * machine)1767 static bool machine__uses_kcore(struct machine *machine)
1768 {
1769 struct dso *dso;
1770
1771 list_for_each_entry(dso, &machine->dsos.head, node) {
1772 if (dso__is_kcore(dso))
1773 return true;
1774 }
1775
1776 return false;
1777 }
1778
perf_event__is_extra_kernel_mmap(struct machine * machine,struct extra_kernel_map * xm)1779 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1780 struct extra_kernel_map *xm)
1781 {
1782 return machine__is(machine, "x86_64") &&
1783 is_entry_trampoline(xm->name);
1784 }
1785
machine__process_extra_kernel_map(struct machine * machine,struct extra_kernel_map * xm)1786 static int machine__process_extra_kernel_map(struct machine *machine,
1787 struct extra_kernel_map *xm)
1788 {
1789 struct dso *kernel = machine__kernel_dso(machine);
1790
1791 if (kernel == NULL)
1792 return -1;
1793
1794 return machine__create_extra_kernel_map(machine, kernel, xm);
1795 }
1796
machine__process_kernel_mmap_event(struct machine * machine,struct extra_kernel_map * xm,struct build_id * bid)1797 static int machine__process_kernel_mmap_event(struct machine *machine,
1798 struct extra_kernel_map *xm,
1799 struct build_id *bid)
1800 {
1801 enum dso_space_type dso_space;
1802 bool is_kernel_mmap;
1803 const char *mmap_name = machine->mmap_name;
1804
1805 /* If we have maps from kcore then we do not need or want any others */
1806 if (machine__uses_kcore(machine))
1807 return 0;
1808
1809 if (machine__is_host(machine))
1810 dso_space = DSO_SPACE__KERNEL;
1811 else
1812 dso_space = DSO_SPACE__KERNEL_GUEST;
1813
1814 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1815 if (!is_kernel_mmap && !machine__is_host(machine)) {
1816 /*
1817 * If the event was recorded inside the guest and injected into
1818 * the host perf.data file, then it will match a host mmap_name,
1819 * so try that - see machine__set_mmap_name().
1820 */
1821 mmap_name = "[kernel.kallsyms]";
1822 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1823 }
1824 if (xm->name[0] == '/' ||
1825 (!is_kernel_mmap && xm->name[0] == '[')) {
1826 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1827
1828 if (map == NULL)
1829 goto out_problem;
1830
1831 map__set_end(map, map__start(map) + xm->end - xm->start);
1832
1833 if (build_id__is_defined(bid))
1834 dso__set_build_id(map__dso(map), bid);
1835
1836 map__put(map);
1837 } else if (is_kernel_mmap) {
1838 const char *symbol_name = xm->name + strlen(mmap_name);
1839 /*
1840 * Should be there already, from the build-id table in
1841 * the header.
1842 */
1843 struct dso *kernel = NULL;
1844 struct dso *dso;
1845
1846 down_read(&machine->dsos.lock);
1847
1848 list_for_each_entry(dso, &machine->dsos.head, node) {
1849
1850 /*
1851 * The cpumode passed to is_kernel_module is not the
1852 * cpumode of *this* event. If we insist on passing
1853 * correct cpumode to is_kernel_module, we should
1854 * record the cpumode when we adding this dso to the
1855 * linked list.
1856 *
1857 * However we don't really need passing correct
1858 * cpumode. We know the correct cpumode must be kernel
1859 * mode (if not, we should not link it onto kernel_dsos
1860 * list).
1861 *
1862 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1863 * is_kernel_module() treats it as a kernel cpumode.
1864 */
1865
1866 if (!dso->kernel ||
1867 is_kernel_module(dso->long_name,
1868 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1869 continue;
1870
1871
1872 kernel = dso__get(dso);
1873 break;
1874 }
1875
1876 up_read(&machine->dsos.lock);
1877
1878 if (kernel == NULL)
1879 kernel = machine__findnew_dso(machine, machine->mmap_name);
1880 if (kernel == NULL)
1881 goto out_problem;
1882
1883 kernel->kernel = dso_space;
1884 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1885 dso__put(kernel);
1886 goto out_problem;
1887 }
1888
1889 if (strstr(kernel->long_name, "vmlinux"))
1890 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1891
1892 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1893 dso__put(kernel);
1894 goto out_problem;
1895 }
1896
1897 if (build_id__is_defined(bid))
1898 dso__set_build_id(kernel, bid);
1899
1900 /*
1901 * Avoid using a zero address (kptr_restrict) for the ref reloc
1902 * symbol. Effectively having zero here means that at record
1903 * time /proc/sys/kernel/kptr_restrict was non zero.
1904 */
1905 if (xm->pgoff != 0) {
1906 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1907 symbol_name,
1908 xm->pgoff);
1909 }
1910
1911 if (machine__is_default_guest(machine)) {
1912 /*
1913 * preload dso of guest kernel and modules
1914 */
1915 dso__load(kernel, machine__kernel_map(machine));
1916 }
1917 dso__put(kernel);
1918 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1919 return machine__process_extra_kernel_map(machine, xm);
1920 }
1921 return 0;
1922 out_problem:
1923 return -1;
1924 }
1925
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1926 int machine__process_mmap2_event(struct machine *machine,
1927 union perf_event *event,
1928 struct perf_sample *sample)
1929 {
1930 struct thread *thread;
1931 struct map *map;
1932 struct dso_id dso_id = {
1933 .maj = event->mmap2.maj,
1934 .min = event->mmap2.min,
1935 .ino = event->mmap2.ino,
1936 .ino_generation = event->mmap2.ino_generation,
1937 };
1938 struct build_id __bid, *bid = NULL;
1939 int ret = 0;
1940
1941 if (dump_trace)
1942 perf_event__fprintf_mmap2(event, stdout);
1943
1944 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1945 bid = &__bid;
1946 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1947 }
1948
1949 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1950 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1951 struct extra_kernel_map xm = {
1952 .start = event->mmap2.start,
1953 .end = event->mmap2.start + event->mmap2.len,
1954 .pgoff = event->mmap2.pgoff,
1955 };
1956
1957 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1958 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1959 if (ret < 0)
1960 goto out_problem;
1961 return 0;
1962 }
1963
1964 thread = machine__findnew_thread(machine, event->mmap2.pid,
1965 event->mmap2.tid);
1966 if (thread == NULL)
1967 goto out_problem;
1968
1969 map = map__new(machine, event->mmap2.start,
1970 event->mmap2.len, event->mmap2.pgoff,
1971 &dso_id, event->mmap2.prot,
1972 event->mmap2.flags, bid,
1973 event->mmap2.filename, thread);
1974
1975 if (map == NULL)
1976 goto out_problem_map;
1977
1978 ret = thread__insert_map(thread, map);
1979 if (ret)
1980 goto out_problem_insert;
1981
1982 thread__put(thread);
1983 map__put(map);
1984 return 0;
1985
1986 out_problem_insert:
1987 map__put(map);
1988 out_problem_map:
1989 thread__put(thread);
1990 out_problem:
1991 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1992 return 0;
1993 }
1994
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1995 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1996 struct perf_sample *sample)
1997 {
1998 struct thread *thread;
1999 struct map *map;
2000 u32 prot = 0;
2001 int ret = 0;
2002
2003 if (dump_trace)
2004 perf_event__fprintf_mmap(event, stdout);
2005
2006 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
2007 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
2008 struct extra_kernel_map xm = {
2009 .start = event->mmap.start,
2010 .end = event->mmap.start + event->mmap.len,
2011 .pgoff = event->mmap.pgoff,
2012 };
2013
2014 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
2015 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
2016 if (ret < 0)
2017 goto out_problem;
2018 return 0;
2019 }
2020
2021 thread = machine__findnew_thread(machine, event->mmap.pid,
2022 event->mmap.tid);
2023 if (thread == NULL)
2024 goto out_problem;
2025
2026 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2027 prot = PROT_EXEC;
2028
2029 map = map__new(machine, event->mmap.start,
2030 event->mmap.len, event->mmap.pgoff,
2031 NULL, prot, 0, NULL, event->mmap.filename, thread);
2032
2033 if (map == NULL)
2034 goto out_problem_map;
2035
2036 ret = thread__insert_map(thread, map);
2037 if (ret)
2038 goto out_problem_insert;
2039
2040 thread__put(thread);
2041 map__put(map);
2042 return 0;
2043
2044 out_problem_insert:
2045 map__put(map);
2046 out_problem_map:
2047 thread__put(thread);
2048 out_problem:
2049 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2050 return 0;
2051 }
2052
__machine__remove_thread(struct machine * machine,struct thread_rb_node * nd,struct thread * th,bool lock)2053 static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
2054 struct thread *th, bool lock)
2055 {
2056 struct threads *threads = machine__threads(machine, thread__tid(th));
2057
2058 if (!nd)
2059 nd = thread_rb_node__find(th, &threads->entries.rb_root);
2060
2061 if (threads->last_match && RC_CHK_ACCESS(threads->last_match) == RC_CHK_ACCESS(th))
2062 threads__set_last_match(threads, NULL);
2063
2064 if (lock)
2065 down_write(&threads->lock);
2066
2067 BUG_ON(refcount_read(thread__refcnt(th)) == 0);
2068
2069 thread__put(nd->thread);
2070 rb_erase_cached(&nd->rb_node, &threads->entries);
2071 RB_CLEAR_NODE(&nd->rb_node);
2072 --threads->nr;
2073
2074 free(nd);
2075
2076 if (lock)
2077 up_write(&threads->lock);
2078 }
2079
machine__remove_thread(struct machine * machine,struct thread * th)2080 void machine__remove_thread(struct machine *machine, struct thread *th)
2081 {
2082 return __machine__remove_thread(machine, NULL, th, true);
2083 }
2084
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)2085 int machine__process_fork_event(struct machine *machine, union perf_event *event,
2086 struct perf_sample *sample)
2087 {
2088 struct thread *thread = machine__find_thread(machine,
2089 event->fork.pid,
2090 event->fork.tid);
2091 struct thread *parent = machine__findnew_thread(machine,
2092 event->fork.ppid,
2093 event->fork.ptid);
2094 bool do_maps_clone = true;
2095 int err = 0;
2096
2097 if (dump_trace)
2098 perf_event__fprintf_task(event, stdout);
2099
2100 /*
2101 * There may be an existing thread that is not actually the parent,
2102 * either because we are processing events out of order, or because the
2103 * (fork) event that would have removed the thread was lost. Assume the
2104 * latter case and continue on as best we can.
2105 */
2106 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
2107 dump_printf("removing erroneous parent thread %d/%d\n",
2108 thread__pid(parent), thread__tid(parent));
2109 machine__remove_thread(machine, parent);
2110 thread__put(parent);
2111 parent = machine__findnew_thread(machine, event->fork.ppid,
2112 event->fork.ptid);
2113 }
2114
2115 /* if a thread currently exists for the thread id remove it */
2116 if (thread != NULL) {
2117 machine__remove_thread(machine, thread);
2118 thread__put(thread);
2119 }
2120
2121 thread = machine__findnew_thread(machine, event->fork.pid,
2122 event->fork.tid);
2123 /*
2124 * When synthesizing FORK events, we are trying to create thread
2125 * objects for the already running tasks on the machine.
2126 *
2127 * Normally, for a kernel FORK event, we want to clone the parent's
2128 * maps because that is what the kernel just did.
2129 *
2130 * But when synthesizing, this should not be done. If we do, we end up
2131 * with overlapping maps as we process the synthesized MMAP2 events that
2132 * get delivered shortly thereafter.
2133 *
2134 * Use the FORK event misc flags in an internal way to signal this
2135 * situation, so we can elide the map clone when appropriate.
2136 */
2137 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2138 do_maps_clone = false;
2139
2140 if (thread == NULL || parent == NULL ||
2141 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2142 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2143 err = -1;
2144 }
2145 thread__put(thread);
2146 thread__put(parent);
2147
2148 return err;
2149 }
2150
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)2151 int machine__process_exit_event(struct machine *machine, union perf_event *event,
2152 struct perf_sample *sample __maybe_unused)
2153 {
2154 struct thread *thread = machine__find_thread(machine,
2155 event->fork.pid,
2156 event->fork.tid);
2157
2158 if (dump_trace)
2159 perf_event__fprintf_task(event, stdout);
2160
2161 if (thread != NULL) {
2162 if (symbol_conf.keep_exited_threads)
2163 thread__set_exited(thread, /*exited=*/true);
2164 else
2165 machine__remove_thread(machine, thread);
2166 }
2167 thread__put(thread);
2168 return 0;
2169 }
2170
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)2171 int machine__process_event(struct machine *machine, union perf_event *event,
2172 struct perf_sample *sample)
2173 {
2174 int ret;
2175
2176 switch (event->header.type) {
2177 case PERF_RECORD_COMM:
2178 ret = machine__process_comm_event(machine, event, sample); break;
2179 case PERF_RECORD_MMAP:
2180 ret = machine__process_mmap_event(machine, event, sample); break;
2181 case PERF_RECORD_NAMESPACES:
2182 ret = machine__process_namespaces_event(machine, event, sample); break;
2183 case PERF_RECORD_CGROUP:
2184 ret = machine__process_cgroup_event(machine, event, sample); break;
2185 case PERF_RECORD_MMAP2:
2186 ret = machine__process_mmap2_event(machine, event, sample); break;
2187 case PERF_RECORD_FORK:
2188 ret = machine__process_fork_event(machine, event, sample); break;
2189 case PERF_RECORD_EXIT:
2190 ret = machine__process_exit_event(machine, event, sample); break;
2191 case PERF_RECORD_LOST:
2192 ret = machine__process_lost_event(machine, event, sample); break;
2193 case PERF_RECORD_AUX:
2194 ret = machine__process_aux_event(machine, event); break;
2195 case PERF_RECORD_ITRACE_START:
2196 ret = machine__process_itrace_start_event(machine, event); break;
2197 case PERF_RECORD_LOST_SAMPLES:
2198 ret = machine__process_lost_samples_event(machine, event, sample); break;
2199 case PERF_RECORD_SWITCH:
2200 case PERF_RECORD_SWITCH_CPU_WIDE:
2201 ret = machine__process_switch_event(machine, event); break;
2202 case PERF_RECORD_KSYMBOL:
2203 ret = machine__process_ksymbol(machine, event, sample); break;
2204 case PERF_RECORD_BPF_EVENT:
2205 ret = machine__process_bpf(machine, event, sample); break;
2206 case PERF_RECORD_TEXT_POKE:
2207 ret = machine__process_text_poke(machine, event, sample); break;
2208 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2209 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2210 default:
2211 ret = -1;
2212 break;
2213 }
2214
2215 return ret;
2216 }
2217
symbol__match_regex(struct symbol * sym,regex_t * regex)2218 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2219 {
2220 if (!regexec(regex, sym->name, 0, NULL, 0))
2221 return true;
2222 return false;
2223 }
2224
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)2225 static void ip__resolve_ams(struct thread *thread,
2226 struct addr_map_symbol *ams,
2227 u64 ip)
2228 {
2229 struct addr_location al;
2230
2231 addr_location__init(&al);
2232 /*
2233 * We cannot use the header.misc hint to determine whether a
2234 * branch stack address is user, kernel, guest, hypervisor.
2235 * Branches may straddle the kernel/user/hypervisor boundaries.
2236 * Thus, we have to try consecutively until we find a match
2237 * or else, the symbol is unknown
2238 */
2239 thread__find_cpumode_addr_location(thread, ip, &al);
2240
2241 ams->addr = ip;
2242 ams->al_addr = al.addr;
2243 ams->al_level = al.level;
2244 ams->ms.maps = maps__get(al.maps);
2245 ams->ms.sym = al.sym;
2246 ams->ms.map = map__get(al.map);
2247 ams->phys_addr = 0;
2248 ams->data_page_size = 0;
2249 addr_location__exit(&al);
2250 }
2251
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr,u64 daddr_page_size)2252 static void ip__resolve_data(struct thread *thread,
2253 u8 m, struct addr_map_symbol *ams,
2254 u64 addr, u64 phys_addr, u64 daddr_page_size)
2255 {
2256 struct addr_location al;
2257
2258 addr_location__init(&al);
2259
2260 thread__find_symbol(thread, m, addr, &al);
2261
2262 ams->addr = addr;
2263 ams->al_addr = al.addr;
2264 ams->al_level = al.level;
2265 ams->ms.maps = maps__get(al.maps);
2266 ams->ms.sym = al.sym;
2267 ams->ms.map = map__get(al.map);
2268 ams->phys_addr = phys_addr;
2269 ams->data_page_size = daddr_page_size;
2270 addr_location__exit(&al);
2271 }
2272
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2273 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2274 struct addr_location *al)
2275 {
2276 struct mem_info *mi = mem_info__new();
2277
2278 if (!mi)
2279 return NULL;
2280
2281 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2282 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2283 sample->addr, sample->phys_addr,
2284 sample->data_page_size);
2285 mi->data_src.val = sample->data_src;
2286
2287 return mi;
2288 }
2289
callchain_srcline(struct map_symbol * ms,u64 ip)2290 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2291 {
2292 struct map *map = ms->map;
2293 char *srcline = NULL;
2294 struct dso *dso;
2295
2296 if (!map || callchain_param.key == CCKEY_FUNCTION)
2297 return srcline;
2298
2299 dso = map__dso(map);
2300 srcline = srcline__tree_find(&dso->srclines, ip);
2301 if (!srcline) {
2302 bool show_sym = false;
2303 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2304
2305 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2306 ms->sym, show_sym, show_addr, ip);
2307 srcline__tree_insert(&dso->srclines, ip, srcline);
2308 }
2309
2310 return srcline;
2311 }
2312
2313 struct iterations {
2314 int nr_loop_iter;
2315 u64 cycles;
2316 };
2317
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)2318 static int add_callchain_ip(struct thread *thread,
2319 struct callchain_cursor *cursor,
2320 struct symbol **parent,
2321 struct addr_location *root_al,
2322 u8 *cpumode,
2323 u64 ip,
2324 bool branch,
2325 struct branch_flags *flags,
2326 struct iterations *iter,
2327 u64 branch_from)
2328 {
2329 struct map_symbol ms = {};
2330 struct addr_location al;
2331 int nr_loop_iter = 0, err = 0;
2332 u64 iter_cycles = 0;
2333 const char *srcline = NULL;
2334
2335 addr_location__init(&al);
2336 al.filtered = 0;
2337 al.sym = NULL;
2338 al.srcline = NULL;
2339 if (!cpumode) {
2340 thread__find_cpumode_addr_location(thread, ip, &al);
2341 } else {
2342 if (ip >= PERF_CONTEXT_MAX) {
2343 switch (ip) {
2344 case PERF_CONTEXT_HV:
2345 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2346 break;
2347 case PERF_CONTEXT_KERNEL:
2348 *cpumode = PERF_RECORD_MISC_KERNEL;
2349 break;
2350 case PERF_CONTEXT_USER:
2351 *cpumode = PERF_RECORD_MISC_USER;
2352 break;
2353 default:
2354 pr_debug("invalid callchain context: "
2355 "%"PRId64"\n", (s64) ip);
2356 /*
2357 * It seems the callchain is corrupted.
2358 * Discard all.
2359 */
2360 callchain_cursor_reset(cursor);
2361 err = 1;
2362 goto out;
2363 }
2364 goto out;
2365 }
2366 thread__find_symbol(thread, *cpumode, ip, &al);
2367 }
2368
2369 if (al.sym != NULL) {
2370 if (perf_hpp_list.parent && !*parent &&
2371 symbol__match_regex(al.sym, &parent_regex))
2372 *parent = al.sym;
2373 else if (have_ignore_callees && root_al &&
2374 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2375 /* Treat this symbol as the root,
2376 forgetting its callees. */
2377 addr_location__copy(root_al, &al);
2378 callchain_cursor_reset(cursor);
2379 }
2380 }
2381
2382 if (symbol_conf.hide_unresolved && al.sym == NULL)
2383 goto out;
2384
2385 if (iter) {
2386 nr_loop_iter = iter->nr_loop_iter;
2387 iter_cycles = iter->cycles;
2388 }
2389
2390 ms.maps = maps__get(al.maps);
2391 ms.map = map__get(al.map);
2392 ms.sym = al.sym;
2393 srcline = callchain_srcline(&ms, al.addr);
2394 err = callchain_cursor_append(cursor, ip, &ms,
2395 branch, flags, nr_loop_iter,
2396 iter_cycles, branch_from, srcline);
2397 out:
2398 addr_location__exit(&al);
2399 maps__put(ms.maps);
2400 map__put(ms.map);
2401 return err;
2402 }
2403
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2404 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2405 struct addr_location *al)
2406 {
2407 unsigned int i;
2408 const struct branch_stack *bs = sample->branch_stack;
2409 struct branch_entry *entries = perf_sample__branch_entries(sample);
2410 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2411
2412 if (!bi)
2413 return NULL;
2414
2415 for (i = 0; i < bs->nr; i++) {
2416 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2417 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2418 bi[i].flags = entries[i].flags;
2419 }
2420 return bi;
2421 }
2422
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2423 static void save_iterations(struct iterations *iter,
2424 struct branch_entry *be, int nr)
2425 {
2426 int i;
2427
2428 iter->nr_loop_iter++;
2429 iter->cycles = 0;
2430
2431 for (i = 0; i < nr; i++)
2432 iter->cycles += be[i].flags.cycles;
2433 }
2434
2435 #define CHASHSZ 127
2436 #define CHASHBITS 7
2437 #define NO_ENTRY 0xff
2438
2439 #define PERF_MAX_BRANCH_DEPTH 127
2440
2441 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2442 static int remove_loops(struct branch_entry *l, int nr,
2443 struct iterations *iter)
2444 {
2445 int i, j, off;
2446 unsigned char chash[CHASHSZ];
2447
2448 memset(chash, NO_ENTRY, sizeof(chash));
2449
2450 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2451
2452 for (i = 0; i < nr; i++) {
2453 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2454
2455 /* no collision handling for now */
2456 if (chash[h] == NO_ENTRY) {
2457 chash[h] = i;
2458 } else if (l[chash[h]].from == l[i].from) {
2459 bool is_loop = true;
2460 /* check if it is a real loop */
2461 off = 0;
2462 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2463 if (l[j].from != l[i + off].from) {
2464 is_loop = false;
2465 break;
2466 }
2467 if (is_loop) {
2468 j = nr - (i + off);
2469 if (j > 0) {
2470 save_iterations(iter + i + off,
2471 l + i, off);
2472
2473 memmove(iter + i, iter + i + off,
2474 j * sizeof(*iter));
2475
2476 memmove(l + i, l + i + off,
2477 j * sizeof(*l));
2478 }
2479
2480 nr -= off;
2481 }
2482 }
2483 }
2484 return nr;
2485 }
2486
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end)2487 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2488 struct callchain_cursor *cursor,
2489 struct perf_sample *sample,
2490 struct symbol **parent,
2491 struct addr_location *root_al,
2492 u64 branch_from,
2493 bool callee, int end)
2494 {
2495 struct ip_callchain *chain = sample->callchain;
2496 u8 cpumode = PERF_RECORD_MISC_USER;
2497 int err, i;
2498
2499 if (callee) {
2500 for (i = 0; i < end + 1; i++) {
2501 err = add_callchain_ip(thread, cursor, parent,
2502 root_al, &cpumode, chain->ips[i],
2503 false, NULL, NULL, branch_from);
2504 if (err)
2505 return err;
2506 }
2507 return 0;
2508 }
2509
2510 for (i = end; i >= 0; i--) {
2511 err = add_callchain_ip(thread, cursor, parent,
2512 root_al, &cpumode, chain->ips[i],
2513 false, NULL, NULL, branch_from);
2514 if (err)
2515 return err;
2516 }
2517
2518 return 0;
2519 }
2520
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2521 static void save_lbr_cursor_node(struct thread *thread,
2522 struct callchain_cursor *cursor,
2523 int idx)
2524 {
2525 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2526
2527 if (!lbr_stitch)
2528 return;
2529
2530 if (cursor->pos == cursor->nr) {
2531 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2532 return;
2533 }
2534
2535 if (!cursor->curr)
2536 cursor->curr = cursor->first;
2537 else
2538 cursor->curr = cursor->curr->next;
2539 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2540 sizeof(struct callchain_cursor_node));
2541
2542 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2543 cursor->pos++;
2544 }
2545
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee)2546 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2547 struct callchain_cursor *cursor,
2548 struct perf_sample *sample,
2549 struct symbol **parent,
2550 struct addr_location *root_al,
2551 u64 *branch_from,
2552 bool callee)
2553 {
2554 struct branch_stack *lbr_stack = sample->branch_stack;
2555 struct branch_entry *entries = perf_sample__branch_entries(sample);
2556 u8 cpumode = PERF_RECORD_MISC_USER;
2557 int lbr_nr = lbr_stack->nr;
2558 struct branch_flags *flags;
2559 int err, i;
2560 u64 ip;
2561
2562 /*
2563 * The curr and pos are not used in writing session. They are cleared
2564 * in callchain_cursor_commit() when the writing session is closed.
2565 * Using curr and pos to track the current cursor node.
2566 */
2567 if (thread__lbr_stitch(thread)) {
2568 cursor->curr = NULL;
2569 cursor->pos = cursor->nr;
2570 if (cursor->nr) {
2571 cursor->curr = cursor->first;
2572 for (i = 0; i < (int)(cursor->nr - 1); i++)
2573 cursor->curr = cursor->curr->next;
2574 }
2575 }
2576
2577 if (callee) {
2578 /* Add LBR ip from first entries.to */
2579 ip = entries[0].to;
2580 flags = &entries[0].flags;
2581 *branch_from = entries[0].from;
2582 err = add_callchain_ip(thread, cursor, parent,
2583 root_al, &cpumode, ip,
2584 true, flags, NULL,
2585 *branch_from);
2586 if (err)
2587 return err;
2588
2589 /*
2590 * The number of cursor node increases.
2591 * Move the current cursor node.
2592 * But does not need to save current cursor node for entry 0.
2593 * It's impossible to stitch the whole LBRs of previous sample.
2594 */
2595 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2596 if (!cursor->curr)
2597 cursor->curr = cursor->first;
2598 else
2599 cursor->curr = cursor->curr->next;
2600 cursor->pos++;
2601 }
2602
2603 /* Add LBR ip from entries.from one by one. */
2604 for (i = 0; i < lbr_nr; i++) {
2605 ip = entries[i].from;
2606 flags = &entries[i].flags;
2607 err = add_callchain_ip(thread, cursor, parent,
2608 root_al, &cpumode, ip,
2609 true, flags, NULL,
2610 *branch_from);
2611 if (err)
2612 return err;
2613 save_lbr_cursor_node(thread, cursor, i);
2614 }
2615 return 0;
2616 }
2617
2618 /* Add LBR ip from entries.from one by one. */
2619 for (i = lbr_nr - 1; i >= 0; i--) {
2620 ip = entries[i].from;
2621 flags = &entries[i].flags;
2622 err = add_callchain_ip(thread, cursor, parent,
2623 root_al, &cpumode, ip,
2624 true, flags, NULL,
2625 *branch_from);
2626 if (err)
2627 return err;
2628 save_lbr_cursor_node(thread, cursor, i);
2629 }
2630
2631 if (lbr_nr > 0) {
2632 /* Add LBR ip from first entries.to */
2633 ip = entries[0].to;
2634 flags = &entries[0].flags;
2635 *branch_from = entries[0].from;
2636 err = add_callchain_ip(thread, cursor, parent,
2637 root_al, &cpumode, ip,
2638 true, flags, NULL,
2639 *branch_from);
2640 if (err)
2641 return err;
2642 }
2643
2644 return 0;
2645 }
2646
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2647 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2648 struct callchain_cursor *cursor)
2649 {
2650 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2651 struct callchain_cursor_node *cnode;
2652 struct stitch_list *stitch_node;
2653 int err;
2654
2655 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2656 cnode = &stitch_node->cursor;
2657
2658 err = callchain_cursor_append(cursor, cnode->ip,
2659 &cnode->ms,
2660 cnode->branch,
2661 &cnode->branch_flags,
2662 cnode->nr_loop_iter,
2663 cnode->iter_cycles,
2664 cnode->branch_from,
2665 cnode->srcline);
2666 if (err)
2667 return err;
2668 }
2669 return 0;
2670 }
2671
get_stitch_node(struct thread * thread)2672 static struct stitch_list *get_stitch_node(struct thread *thread)
2673 {
2674 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2675 struct stitch_list *stitch_node;
2676
2677 if (!list_empty(&lbr_stitch->free_lists)) {
2678 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2679 struct stitch_list, node);
2680 list_del(&stitch_node->node);
2681
2682 return stitch_node;
2683 }
2684
2685 return malloc(sizeof(struct stitch_list));
2686 }
2687
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2688 static bool has_stitched_lbr(struct thread *thread,
2689 struct perf_sample *cur,
2690 struct perf_sample *prev,
2691 unsigned int max_lbr,
2692 bool callee)
2693 {
2694 struct branch_stack *cur_stack = cur->branch_stack;
2695 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2696 struct branch_stack *prev_stack = prev->branch_stack;
2697 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2698 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2699 int i, j, nr_identical_branches = 0;
2700 struct stitch_list *stitch_node;
2701 u64 cur_base, distance;
2702
2703 if (!cur_stack || !prev_stack)
2704 return false;
2705
2706 /* Find the physical index of the base-of-stack for current sample. */
2707 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2708
2709 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2710 (max_lbr + prev_stack->hw_idx - cur_base);
2711 /* Previous sample has shorter stack. Nothing can be stitched. */
2712 if (distance + 1 > prev_stack->nr)
2713 return false;
2714
2715 /*
2716 * Check if there are identical LBRs between two samples.
2717 * Identical LBRs must have same from, to and flags values. Also,
2718 * they have to be saved in the same LBR registers (same physical
2719 * index).
2720 *
2721 * Starts from the base-of-stack of current sample.
2722 */
2723 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2724 if ((prev_entries[i].from != cur_entries[j].from) ||
2725 (prev_entries[i].to != cur_entries[j].to) ||
2726 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2727 break;
2728 nr_identical_branches++;
2729 }
2730
2731 if (!nr_identical_branches)
2732 return false;
2733
2734 /*
2735 * Save the LBRs between the base-of-stack of previous sample
2736 * and the base-of-stack of current sample into lbr_stitch->lists.
2737 * These LBRs will be stitched later.
2738 */
2739 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2740
2741 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2742 continue;
2743
2744 stitch_node = get_stitch_node(thread);
2745 if (!stitch_node)
2746 return false;
2747
2748 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2749 sizeof(struct callchain_cursor_node));
2750
2751 if (callee)
2752 list_add(&stitch_node->node, &lbr_stitch->lists);
2753 else
2754 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2755 }
2756
2757 return true;
2758 }
2759
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2760 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2761 {
2762 if (thread__lbr_stitch(thread))
2763 return true;
2764
2765 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2766 if (!thread__lbr_stitch(thread))
2767 goto err;
2768
2769 thread__lbr_stitch(thread)->prev_lbr_cursor =
2770 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2771 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2772 goto free_lbr_stitch;
2773
2774 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2775 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2776
2777 return true;
2778
2779 free_lbr_stitch:
2780 free(thread__lbr_stitch(thread));
2781 thread__set_lbr_stitch(thread, NULL);
2782 err:
2783 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2784 thread__set_lbr_stitch_enable(thread, false);
2785 return false;
2786 }
2787
2788 /*
2789 * Resolve LBR callstack chain sample
2790 * Return:
2791 * 1 on success get LBR callchain information
2792 * 0 no available LBR callchain information, should try fp
2793 * negative error code on other errors.
2794 */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr)2795 static int resolve_lbr_callchain_sample(struct thread *thread,
2796 struct callchain_cursor *cursor,
2797 struct perf_sample *sample,
2798 struct symbol **parent,
2799 struct addr_location *root_al,
2800 int max_stack,
2801 unsigned int max_lbr)
2802 {
2803 bool callee = (callchain_param.order == ORDER_CALLEE);
2804 struct ip_callchain *chain = sample->callchain;
2805 int chain_nr = min(max_stack, (int)chain->nr), i;
2806 struct lbr_stitch *lbr_stitch;
2807 bool stitched_lbr = false;
2808 u64 branch_from = 0;
2809 int err;
2810
2811 for (i = 0; i < chain_nr; i++) {
2812 if (chain->ips[i] == PERF_CONTEXT_USER)
2813 break;
2814 }
2815
2816 /* LBR only affects the user callchain */
2817 if (i == chain_nr)
2818 return 0;
2819
2820 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2821 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2822 lbr_stitch = thread__lbr_stitch(thread);
2823
2824 stitched_lbr = has_stitched_lbr(thread, sample,
2825 &lbr_stitch->prev_sample,
2826 max_lbr, callee);
2827
2828 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2829 list_replace_init(&lbr_stitch->lists,
2830 &lbr_stitch->free_lists);
2831 }
2832 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2833 }
2834
2835 if (callee) {
2836 /* Add kernel ip */
2837 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2838 parent, root_al, branch_from,
2839 true, i);
2840 if (err)
2841 goto error;
2842
2843 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2844 root_al, &branch_from, true);
2845 if (err)
2846 goto error;
2847
2848 if (stitched_lbr) {
2849 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2850 if (err)
2851 goto error;
2852 }
2853
2854 } else {
2855 if (stitched_lbr) {
2856 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2857 if (err)
2858 goto error;
2859 }
2860 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2861 root_al, &branch_from, false);
2862 if (err)
2863 goto error;
2864
2865 /* Add kernel ip */
2866 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2867 parent, root_al, branch_from,
2868 false, i);
2869 if (err)
2870 goto error;
2871 }
2872 return 1;
2873
2874 error:
2875 return (err < 0) ? err : 0;
2876 }
2877
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent)2878 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2879 struct callchain_cursor *cursor,
2880 struct symbol **parent,
2881 struct addr_location *root_al,
2882 u8 *cpumode, int ent)
2883 {
2884 int err = 0;
2885
2886 while (--ent >= 0) {
2887 u64 ip = chain->ips[ent];
2888
2889 if (ip >= PERF_CONTEXT_MAX) {
2890 err = add_callchain_ip(thread, cursor, parent,
2891 root_al, cpumode, ip,
2892 false, NULL, NULL, 0);
2893 break;
2894 }
2895 }
2896 return err;
2897 }
2898
get_leaf_frame_caller(struct perf_sample * sample,struct thread * thread,int usr_idx)2899 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2900 struct thread *thread, int usr_idx)
2901 {
2902 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2903 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2904 else
2905 return 0;
2906 }
2907
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2908 static int thread__resolve_callchain_sample(struct thread *thread,
2909 struct callchain_cursor *cursor,
2910 struct evsel *evsel,
2911 struct perf_sample *sample,
2912 struct symbol **parent,
2913 struct addr_location *root_al,
2914 int max_stack)
2915 {
2916 struct branch_stack *branch = sample->branch_stack;
2917 struct branch_entry *entries = perf_sample__branch_entries(sample);
2918 struct ip_callchain *chain = sample->callchain;
2919 int chain_nr = 0;
2920 u8 cpumode = PERF_RECORD_MISC_USER;
2921 int i, j, err, nr_entries, usr_idx;
2922 int skip_idx = -1;
2923 int first_call = 0;
2924 u64 leaf_frame_caller;
2925
2926 if (chain)
2927 chain_nr = chain->nr;
2928
2929 if (evsel__has_branch_callstack(evsel)) {
2930 struct perf_env *env = evsel__env(evsel);
2931
2932 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2933 root_al, max_stack,
2934 !env ? 0 : env->max_branches);
2935 if (err)
2936 return (err < 0) ? err : 0;
2937 }
2938
2939 /*
2940 * Based on DWARF debug information, some architectures skip
2941 * a callchain entry saved by the kernel.
2942 */
2943 skip_idx = arch_skip_callchain_idx(thread, chain);
2944
2945 /*
2946 * Add branches to call stack for easier browsing. This gives
2947 * more context for a sample than just the callers.
2948 *
2949 * This uses individual histograms of paths compared to the
2950 * aggregated histograms the normal LBR mode uses.
2951 *
2952 * Limitations for now:
2953 * - No extra filters
2954 * - No annotations (should annotate somehow)
2955 */
2956
2957 if (branch && callchain_param.branch_callstack) {
2958 int nr = min(max_stack, (int)branch->nr);
2959 struct branch_entry be[nr];
2960 struct iterations iter[nr];
2961
2962 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2963 pr_warning("corrupted branch chain. skipping...\n");
2964 goto check_calls;
2965 }
2966
2967 for (i = 0; i < nr; i++) {
2968 if (callchain_param.order == ORDER_CALLEE) {
2969 be[i] = entries[i];
2970
2971 if (chain == NULL)
2972 continue;
2973
2974 /*
2975 * Check for overlap into the callchain.
2976 * The return address is one off compared to
2977 * the branch entry. To adjust for this
2978 * assume the calling instruction is not longer
2979 * than 8 bytes.
2980 */
2981 if (i == skip_idx ||
2982 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2983 first_call++;
2984 else if (be[i].from < chain->ips[first_call] &&
2985 be[i].from >= chain->ips[first_call] - 8)
2986 first_call++;
2987 } else
2988 be[i] = entries[branch->nr - i - 1];
2989 }
2990
2991 memset(iter, 0, sizeof(struct iterations) * nr);
2992 nr = remove_loops(be, nr, iter);
2993
2994 for (i = 0; i < nr; i++) {
2995 err = add_callchain_ip(thread, cursor, parent,
2996 root_al,
2997 NULL, be[i].to,
2998 true, &be[i].flags,
2999 NULL, be[i].from);
3000
3001 if (!err)
3002 err = add_callchain_ip(thread, cursor, parent, root_al,
3003 NULL, be[i].from,
3004 true, &be[i].flags,
3005 &iter[i], 0);
3006 if (err == -EINVAL)
3007 break;
3008 if (err)
3009 return err;
3010 }
3011
3012 if (chain_nr == 0)
3013 return 0;
3014
3015 chain_nr -= nr;
3016 }
3017
3018 check_calls:
3019 if (chain && callchain_param.order != ORDER_CALLEE) {
3020 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
3021 &cpumode, chain->nr - first_call);
3022 if (err)
3023 return (err < 0) ? err : 0;
3024 }
3025 for (i = first_call, nr_entries = 0;
3026 i < chain_nr && nr_entries < max_stack; i++) {
3027 u64 ip;
3028
3029 if (callchain_param.order == ORDER_CALLEE)
3030 j = i;
3031 else
3032 j = chain->nr - i - 1;
3033
3034 #ifdef HAVE_SKIP_CALLCHAIN_IDX
3035 if (j == skip_idx)
3036 continue;
3037 #endif
3038 ip = chain->ips[j];
3039 if (ip < PERF_CONTEXT_MAX)
3040 ++nr_entries;
3041 else if (callchain_param.order != ORDER_CALLEE) {
3042 err = find_prev_cpumode(chain, thread, cursor, parent,
3043 root_al, &cpumode, j);
3044 if (err)
3045 return (err < 0) ? err : 0;
3046 continue;
3047 }
3048
3049 /*
3050 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3051 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3052 * the index will be different in order to add the missing frame
3053 * at the right place.
3054 */
3055
3056 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3057
3058 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3059
3060 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3061
3062 /*
3063 * check if leaf_frame_Caller != ip to not add the same
3064 * value twice.
3065 */
3066
3067 if (leaf_frame_caller && leaf_frame_caller != ip) {
3068
3069 err = add_callchain_ip(thread, cursor, parent,
3070 root_al, &cpumode, leaf_frame_caller,
3071 false, NULL, NULL, 0);
3072 if (err)
3073 return (err < 0) ? err : 0;
3074 }
3075 }
3076
3077 err = add_callchain_ip(thread, cursor, parent,
3078 root_al, &cpumode, ip,
3079 false, NULL, NULL, 0);
3080
3081 if (err)
3082 return (err < 0) ? err : 0;
3083 }
3084
3085 return 0;
3086 }
3087
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip)3088 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3089 {
3090 struct symbol *sym = ms->sym;
3091 struct map *map = ms->map;
3092 struct inline_node *inline_node;
3093 struct inline_list *ilist;
3094 struct dso *dso;
3095 u64 addr;
3096 int ret = 1;
3097 struct map_symbol ilist_ms;
3098
3099 if (!symbol_conf.inline_name || !map || !sym)
3100 return ret;
3101
3102 addr = map__dso_map_ip(map, ip);
3103 addr = map__rip_2objdump(map, addr);
3104 dso = map__dso(map);
3105
3106 inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3107 if (!inline_node) {
3108 inline_node = dso__parse_addr_inlines(dso, addr, sym);
3109 if (!inline_node)
3110 return ret;
3111 inlines__tree_insert(&dso->inlined_nodes, inline_node);
3112 }
3113
3114 ilist_ms = (struct map_symbol) {
3115 .maps = maps__get(ms->maps),
3116 .map = map__get(map),
3117 };
3118 list_for_each_entry(ilist, &inline_node->val, list) {
3119 ilist_ms.sym = ilist->symbol;
3120 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3121 NULL, 0, 0, 0, ilist->srcline);
3122
3123 if (ret != 0)
3124 return ret;
3125 }
3126 map__put(ilist_ms.map);
3127 maps__put(ilist_ms.maps);
3128
3129 return ret;
3130 }
3131
unwind_entry(struct unwind_entry * entry,void * arg)3132 static int unwind_entry(struct unwind_entry *entry, void *arg)
3133 {
3134 struct callchain_cursor *cursor = arg;
3135 const char *srcline = NULL;
3136 u64 addr = entry->ip;
3137
3138 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3139 return 0;
3140
3141 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3142 return 0;
3143
3144 /*
3145 * Convert entry->ip from a virtual address to an offset in
3146 * its corresponding binary.
3147 */
3148 if (entry->ms.map)
3149 addr = map__dso_map_ip(entry->ms.map, entry->ip);
3150
3151 srcline = callchain_srcline(&entry->ms, addr);
3152 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3153 false, NULL, 0, 0, 0, srcline);
3154 }
3155
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack)3156 static int thread__resolve_callchain_unwind(struct thread *thread,
3157 struct callchain_cursor *cursor,
3158 struct evsel *evsel,
3159 struct perf_sample *sample,
3160 int max_stack)
3161 {
3162 /* Can we do dwarf post unwind? */
3163 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3164 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3165 return 0;
3166
3167 /* Bail out if nothing was captured. */
3168 if ((!sample->user_regs.regs) ||
3169 (!sample->user_stack.size))
3170 return 0;
3171
3172 return unwind__get_entries(unwind_entry, cursor,
3173 thread, sample, max_stack, false);
3174 }
3175
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)3176 int thread__resolve_callchain(struct thread *thread,
3177 struct callchain_cursor *cursor,
3178 struct evsel *evsel,
3179 struct perf_sample *sample,
3180 struct symbol **parent,
3181 struct addr_location *root_al,
3182 int max_stack)
3183 {
3184 int ret = 0;
3185
3186 if (cursor == NULL)
3187 return -ENOMEM;
3188
3189 callchain_cursor_reset(cursor);
3190
3191 if (callchain_param.order == ORDER_CALLEE) {
3192 ret = thread__resolve_callchain_sample(thread, cursor,
3193 evsel, sample,
3194 parent, root_al,
3195 max_stack);
3196 if (ret)
3197 return ret;
3198 ret = thread__resolve_callchain_unwind(thread, cursor,
3199 evsel, sample,
3200 max_stack);
3201 } else {
3202 ret = thread__resolve_callchain_unwind(thread, cursor,
3203 evsel, sample,
3204 max_stack);
3205 if (ret)
3206 return ret;
3207 ret = thread__resolve_callchain_sample(thread, cursor,
3208 evsel, sample,
3209 parent, root_al,
3210 max_stack);
3211 }
3212
3213 return ret;
3214 }
3215
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)3216 int machine__for_each_thread(struct machine *machine,
3217 int (*fn)(struct thread *thread, void *p),
3218 void *priv)
3219 {
3220 struct threads *threads;
3221 struct rb_node *nd;
3222 int rc = 0;
3223 int i;
3224
3225 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3226 threads = &machine->threads[i];
3227 for (nd = rb_first_cached(&threads->entries); nd;
3228 nd = rb_next(nd)) {
3229 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
3230
3231 rc = fn(trb->thread, priv);
3232 if (rc != 0)
3233 return rc;
3234 }
3235 }
3236 return rc;
3237 }
3238
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)3239 int machines__for_each_thread(struct machines *machines,
3240 int (*fn)(struct thread *thread, void *p),
3241 void *priv)
3242 {
3243 struct rb_node *nd;
3244 int rc = 0;
3245
3246 rc = machine__for_each_thread(&machines->host, fn, priv);
3247 if (rc != 0)
3248 return rc;
3249
3250 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3251 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3252
3253 rc = machine__for_each_thread(machine, fn, priv);
3254 if (rc != 0)
3255 return rc;
3256 }
3257 return rc;
3258 }
3259
machine__get_current_tid(struct machine * machine,int cpu)3260 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3261 {
3262 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3263 return -1;
3264
3265 return machine->current_tid[cpu];
3266 }
3267
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)3268 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3269 pid_t tid)
3270 {
3271 struct thread *thread;
3272 const pid_t init_val = -1;
3273
3274 if (cpu < 0)
3275 return -EINVAL;
3276
3277 if (realloc_array_as_needed(machine->current_tid,
3278 machine->current_tid_sz,
3279 (unsigned int)cpu,
3280 &init_val))
3281 return -ENOMEM;
3282
3283 machine->current_tid[cpu] = tid;
3284
3285 thread = machine__findnew_thread(machine, pid, tid);
3286 if (!thread)
3287 return -ENOMEM;
3288
3289 thread__set_cpu(thread, cpu);
3290 thread__put(thread);
3291
3292 return 0;
3293 }
3294
3295 /*
3296 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3297 * machine__normalized_is() if a normalized arch is needed.
3298 */
machine__is(struct machine * machine,const char * arch)3299 bool machine__is(struct machine *machine, const char *arch)
3300 {
3301 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3302 }
3303
machine__normalized_is(struct machine * machine,const char * arch)3304 bool machine__normalized_is(struct machine *machine, const char *arch)
3305 {
3306 return machine && !strcmp(perf_env__arch(machine->env), arch);
3307 }
3308
machine__nr_cpus_avail(struct machine * machine)3309 int machine__nr_cpus_avail(struct machine *machine)
3310 {
3311 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3312 }
3313
machine__get_kernel_start(struct machine * machine)3314 int machine__get_kernel_start(struct machine *machine)
3315 {
3316 struct map *map = machine__kernel_map(machine);
3317 int err = 0;
3318
3319 /*
3320 * The only addresses above 2^63 are kernel addresses of a 64-bit
3321 * kernel. Note that addresses are unsigned so that on a 32-bit system
3322 * all addresses including kernel addresses are less than 2^32. In
3323 * that case (32-bit system), if the kernel mapping is unknown, all
3324 * addresses will be assumed to be in user space - see
3325 * machine__kernel_ip().
3326 */
3327 machine->kernel_start = 1ULL << 63;
3328 if (map) {
3329 err = map__load(map);
3330 /*
3331 * On x86_64, PTI entry trampolines are less than the
3332 * start of kernel text, but still above 2^63. So leave
3333 * kernel_start = 1ULL << 63 for x86_64.
3334 */
3335 if (!err && !machine__is(machine, "x86_64"))
3336 machine->kernel_start = map__start(map);
3337 }
3338 return err;
3339 }
3340
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3341 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3342 {
3343 u8 addr_cpumode = cpumode;
3344 bool kernel_ip;
3345
3346 if (!machine->single_address_space)
3347 goto out;
3348
3349 kernel_ip = machine__kernel_ip(machine, addr);
3350 switch (cpumode) {
3351 case PERF_RECORD_MISC_KERNEL:
3352 case PERF_RECORD_MISC_USER:
3353 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3354 PERF_RECORD_MISC_USER;
3355 break;
3356 case PERF_RECORD_MISC_GUEST_KERNEL:
3357 case PERF_RECORD_MISC_GUEST_USER:
3358 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3359 PERF_RECORD_MISC_GUEST_USER;
3360 break;
3361 default:
3362 break;
3363 }
3364 out:
3365 return addr_cpumode;
3366 }
3367
machine__findnew_dso_id(struct machine * machine,const char * filename,struct dso_id * id)3368 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3369 {
3370 return dsos__findnew_id(&machine->dsos, filename, id);
3371 }
3372
machine__findnew_dso(struct machine * machine,const char * filename)3373 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3374 {
3375 return machine__findnew_dso_id(machine, filename, NULL);
3376 }
3377
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3378 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3379 {
3380 struct machine *machine = vmachine;
3381 struct map *map;
3382 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3383
3384 if (sym == NULL)
3385 return NULL;
3386
3387 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3388 *addrp = map__unmap_ip(map, sym->start);
3389 return sym->name;
3390 }
3391
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3392 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3393 {
3394 struct dso *pos;
3395 int err = 0;
3396
3397 list_for_each_entry(pos, &machine->dsos.head, node) {
3398 if (fn(pos, machine, priv))
3399 err = -1;
3400 }
3401 return err;
3402 }
3403
machine__for_each_kernel_map(struct machine * machine,machine__map_t fn,void * priv)3404 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3405 {
3406 struct maps *maps = machine__kernel_maps(machine);
3407 struct map_rb_node *pos;
3408 int err = 0;
3409
3410 maps__for_each_entry(maps, pos) {
3411 err = fn(pos->map, priv);
3412 if (err != 0) {
3413 break;
3414 }
3415 }
3416 return err;
3417 }
3418
machine__is_lock_function(struct machine * machine,u64 addr)3419 bool machine__is_lock_function(struct machine *machine, u64 addr)
3420 {
3421 if (!machine->sched.text_start) {
3422 struct map *kmap;
3423 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3424
3425 if (!sym) {
3426 /* to avoid retry */
3427 machine->sched.text_start = 1;
3428 return false;
3429 }
3430
3431 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3432
3433 /* should not fail from here */
3434 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3435 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3436
3437 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3438 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3439
3440 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3441 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3442 }
3443
3444 /* failed to get kernel symbols */
3445 if (machine->sched.text_start == 1)
3446 return false;
3447
3448 /* mutex and rwsem functions are in sched text section */
3449 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3450 return true;
3451
3452 /* spinlock functions are in lock text section */
3453 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3454 return true;
3455
3456 return false;
3457 }
3458