• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 #include <trace/hooks/sched.h>
8 
9 int sched_rr_timeslice = RR_TIMESLICE;
10 /* More than 4 hours if BW_SHIFT equals 20. */
11 static const u64 max_rt_runtime = MAX_BW;
12 
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14 
15 struct rt_bandwidth def_rt_bandwidth;
16 
17 /*
18  * period over which we measure -rt task CPU usage in us.
19  * default: 1s
20  */
21 unsigned int sysctl_sched_rt_period = 1000000;
22 
23 /*
24  * part of the period that we allow rt tasks to run in us.
25  * default: 0.95s
26  */
27 int sysctl_sched_rt_runtime = 950000;
28 
29 #ifdef CONFIG_SYSCTL
30 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
31 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
32 		size_t *lenp, loff_t *ppos);
33 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
34 		size_t *lenp, loff_t *ppos);
35 static struct ctl_table sched_rt_sysctls[] = {
36 	{
37 		.procname       = "sched_rt_period_us",
38 		.data           = &sysctl_sched_rt_period,
39 		.maxlen         = sizeof(unsigned int),
40 		.mode           = 0644,
41 		.proc_handler   = sched_rt_handler,
42 		.extra1         = SYSCTL_ONE,
43 		.extra2         = SYSCTL_INT_MAX,
44 	},
45 	{
46 		.procname       = "sched_rt_runtime_us",
47 		.data           = &sysctl_sched_rt_runtime,
48 		.maxlen         = sizeof(int),
49 		.mode           = 0644,
50 		.proc_handler   = sched_rt_handler,
51 		.extra1         = SYSCTL_NEG_ONE,
52 		.extra2         = SYSCTL_INT_MAX,
53 	},
54 	{
55 		.procname       = "sched_rr_timeslice_ms",
56 		.data           = &sysctl_sched_rr_timeslice,
57 		.maxlen         = sizeof(int),
58 		.mode           = 0644,
59 		.proc_handler   = sched_rr_handler,
60 	},
61 	{}
62 };
63 
sched_rt_sysctl_init(void)64 static int __init sched_rt_sysctl_init(void)
65 {
66 	register_sysctl_init("kernel", sched_rt_sysctls);
67 	return 0;
68 }
69 late_initcall(sched_rt_sysctl_init);
70 #endif
71 
sched_rt_period_timer(struct hrtimer * timer)72 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
73 {
74 	struct rt_bandwidth *rt_b =
75 		container_of(timer, struct rt_bandwidth, rt_period_timer);
76 	int idle = 0;
77 	int overrun;
78 
79 	raw_spin_lock(&rt_b->rt_runtime_lock);
80 	for (;;) {
81 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
82 		if (!overrun)
83 			break;
84 
85 		raw_spin_unlock(&rt_b->rt_runtime_lock);
86 		idle = do_sched_rt_period_timer(rt_b, overrun);
87 		raw_spin_lock(&rt_b->rt_runtime_lock);
88 	}
89 	if (idle)
90 		rt_b->rt_period_active = 0;
91 	raw_spin_unlock(&rt_b->rt_runtime_lock);
92 
93 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
94 }
95 
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)96 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
97 {
98 	rt_b->rt_period = ns_to_ktime(period);
99 	rt_b->rt_runtime = runtime;
100 
101 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
102 
103 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
104 		     HRTIMER_MODE_REL_HARD);
105 	rt_b->rt_period_timer.function = sched_rt_period_timer;
106 }
107 
do_start_rt_bandwidth(struct rt_bandwidth * rt_b)108 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110 	raw_spin_lock(&rt_b->rt_runtime_lock);
111 	if (!rt_b->rt_period_active) {
112 		rt_b->rt_period_active = 1;
113 		/*
114 		 * SCHED_DEADLINE updates the bandwidth, as a run away
115 		 * RT task with a DL task could hog a CPU. But DL does
116 		 * not reset the period. If a deadline task was running
117 		 * without an RT task running, it can cause RT tasks to
118 		 * throttle when they start up. Kick the timer right away
119 		 * to update the period.
120 		 */
121 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
122 		hrtimer_start_expires(&rt_b->rt_period_timer,
123 				      HRTIMER_MODE_ABS_PINNED_HARD);
124 	}
125 	raw_spin_unlock(&rt_b->rt_runtime_lock);
126 }
127 
start_rt_bandwidth(struct rt_bandwidth * rt_b)128 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
129 {
130 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
131 		return;
132 
133 	do_start_rt_bandwidth(rt_b);
134 }
135 
init_rt_rq(struct rt_rq * rt_rq)136 void init_rt_rq(struct rt_rq *rt_rq)
137 {
138 	struct rt_prio_array *array;
139 	int i;
140 
141 	array = &rt_rq->active;
142 	for (i = 0; i < MAX_RT_PRIO; i++) {
143 		INIT_LIST_HEAD(array->queue + i);
144 		__clear_bit(i, array->bitmap);
145 	}
146 	/* delimiter for bitsearch: */
147 	__set_bit(MAX_RT_PRIO, array->bitmap);
148 
149 #if defined CONFIG_SMP
150 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
151 	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
152 	rt_rq->rt_nr_migratory = 0;
153 	rt_rq->overloaded = 0;
154 	plist_head_init(&rt_rq->pushable_tasks);
155 #endif /* CONFIG_SMP */
156 	/* We start is dequeued state, because no RT tasks are queued */
157 	rt_rq->rt_queued = 0;
158 
159 	rt_rq->rt_time = 0;
160 	rt_rq->rt_throttled = 0;
161 	rt_rq->rt_runtime = 0;
162 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
163 }
164 
165 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)166 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
167 {
168 	hrtimer_cancel(&rt_b->rt_period_timer);
169 }
170 
171 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
172 
rt_task_of(struct sched_rt_entity * rt_se)173 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
174 {
175 #ifdef CONFIG_SCHED_DEBUG
176 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
177 #endif
178 	return container_of(rt_se, struct task_struct, rt);
179 }
180 
rq_of_rt_rq(struct rt_rq * rt_rq)181 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
182 {
183 	return rt_rq->rq;
184 }
185 
rt_rq_of_se(struct sched_rt_entity * rt_se)186 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
187 {
188 	return rt_se->rt_rq;
189 }
190 
rq_of_rt_se(struct sched_rt_entity * rt_se)191 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
192 {
193 	struct rt_rq *rt_rq = rt_se->rt_rq;
194 
195 	return rt_rq->rq;
196 }
197 
unregister_rt_sched_group(struct task_group * tg)198 void unregister_rt_sched_group(struct task_group *tg)
199 {
200 	if (tg->rt_se)
201 		destroy_rt_bandwidth(&tg->rt_bandwidth);
202 
203 }
204 
free_rt_sched_group(struct task_group * tg)205 void free_rt_sched_group(struct task_group *tg)
206 {
207 	int i;
208 
209 	for_each_possible_cpu(i) {
210 		if (tg->rt_rq)
211 			kfree(tg->rt_rq[i]);
212 		if (tg->rt_se)
213 			kfree(tg->rt_se[i]);
214 	}
215 
216 	kfree(tg->rt_rq);
217 	kfree(tg->rt_se);
218 }
219 
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)220 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
221 		struct sched_rt_entity *rt_se, int cpu,
222 		struct sched_rt_entity *parent)
223 {
224 	struct rq *rq = cpu_rq(cpu);
225 
226 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
227 	rt_rq->rt_nr_boosted = 0;
228 	rt_rq->rq = rq;
229 	rt_rq->tg = tg;
230 
231 	tg->rt_rq[cpu] = rt_rq;
232 	tg->rt_se[cpu] = rt_se;
233 
234 	if (!rt_se)
235 		return;
236 
237 	if (!parent)
238 		rt_se->rt_rq = &rq->rt;
239 	else
240 		rt_se->rt_rq = parent->my_q;
241 
242 	rt_se->my_q = rt_rq;
243 	rt_se->parent = parent;
244 	INIT_LIST_HEAD(&rt_se->run_list);
245 }
246 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)247 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
248 {
249 	struct rt_rq *rt_rq;
250 	struct sched_rt_entity *rt_se;
251 	int i;
252 
253 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
254 	if (!tg->rt_rq)
255 		goto err;
256 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
257 	if (!tg->rt_se)
258 		goto err;
259 
260 	init_rt_bandwidth(&tg->rt_bandwidth,
261 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
262 
263 	for_each_possible_cpu(i) {
264 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
265 				     GFP_KERNEL, cpu_to_node(i));
266 		if (!rt_rq)
267 			goto err;
268 
269 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
270 				     GFP_KERNEL, cpu_to_node(i));
271 		if (!rt_se)
272 			goto err_free_rq;
273 
274 		init_rt_rq(rt_rq);
275 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
276 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
277 	}
278 
279 	return 1;
280 
281 err_free_rq:
282 	kfree(rt_rq);
283 err:
284 	return 0;
285 }
286 
287 #else /* CONFIG_RT_GROUP_SCHED */
288 
289 #define rt_entity_is_task(rt_se) (1)
290 
rt_task_of(struct sched_rt_entity * rt_se)291 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
292 {
293 	return container_of(rt_se, struct task_struct, rt);
294 }
295 
rq_of_rt_rq(struct rt_rq * rt_rq)296 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
297 {
298 	return container_of(rt_rq, struct rq, rt);
299 }
300 
rq_of_rt_se(struct sched_rt_entity * rt_se)301 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
302 {
303 	struct task_struct *p = rt_task_of(rt_se);
304 
305 	return task_rq(p);
306 }
307 
rt_rq_of_se(struct sched_rt_entity * rt_se)308 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
309 {
310 	struct rq *rq = rq_of_rt_se(rt_se);
311 
312 	return &rq->rt;
313 }
314 
unregister_rt_sched_group(struct task_group * tg)315 void unregister_rt_sched_group(struct task_group *tg) { }
316 
free_rt_sched_group(struct task_group * tg)317 void free_rt_sched_group(struct task_group *tg) { }
318 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)319 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
320 {
321 	return 1;
322 }
323 #endif /* CONFIG_RT_GROUP_SCHED */
324 
325 #ifdef CONFIG_SMP
326 
need_pull_rt_task(struct rq * rq,struct task_struct * prev)327 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
328 {
329 	/* Try to pull RT tasks here if we lower this rq's prio */
330 	return rq->online && rq->rt.highest_prio.curr > prev->prio;
331 }
332 
rt_overloaded(struct rq * rq)333 static inline int rt_overloaded(struct rq *rq)
334 {
335 	return atomic_read(&rq->rd->rto_count);
336 }
337 
rt_set_overload(struct rq * rq)338 static inline void rt_set_overload(struct rq *rq)
339 {
340 	if (!rq->online)
341 		return;
342 
343 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
344 	/*
345 	 * Make sure the mask is visible before we set
346 	 * the overload count. That is checked to determine
347 	 * if we should look at the mask. It would be a shame
348 	 * if we looked at the mask, but the mask was not
349 	 * updated yet.
350 	 *
351 	 * Matched by the barrier in pull_rt_task().
352 	 */
353 	smp_wmb();
354 	atomic_inc(&rq->rd->rto_count);
355 }
356 
rt_clear_overload(struct rq * rq)357 static inline void rt_clear_overload(struct rq *rq)
358 {
359 	if (!rq->online)
360 		return;
361 
362 	/* the order here really doesn't matter */
363 	atomic_dec(&rq->rd->rto_count);
364 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
365 }
366 
update_rt_migration(struct rt_rq * rt_rq)367 static void update_rt_migration(struct rt_rq *rt_rq)
368 {
369 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
370 		if (!rt_rq->overloaded) {
371 			rt_set_overload(rq_of_rt_rq(rt_rq));
372 			rt_rq->overloaded = 1;
373 		}
374 	} else if (rt_rq->overloaded) {
375 		rt_clear_overload(rq_of_rt_rq(rt_rq));
376 		rt_rq->overloaded = 0;
377 	}
378 }
379 
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)380 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
381 {
382 	struct task_struct *p;
383 
384 	if (!rt_entity_is_task(rt_se))
385 		return;
386 
387 	p = rt_task_of(rt_se);
388 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
389 
390 	rt_rq->rt_nr_total++;
391 	if (p->nr_cpus_allowed > 1)
392 		rt_rq->rt_nr_migratory++;
393 
394 	update_rt_migration(rt_rq);
395 }
396 
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)397 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
398 {
399 	struct task_struct *p;
400 
401 	if (!rt_entity_is_task(rt_se))
402 		return;
403 
404 	p = rt_task_of(rt_se);
405 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
406 
407 	rt_rq->rt_nr_total--;
408 	if (p->nr_cpus_allowed > 1)
409 		rt_rq->rt_nr_migratory--;
410 
411 	update_rt_migration(rt_rq);
412 }
413 
has_pushable_tasks(struct rq * rq)414 static inline int has_pushable_tasks(struct rq *rq)
415 {
416 	return !plist_head_empty(&rq->rt.pushable_tasks);
417 }
418 
419 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
420 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
421 
422 static void push_rt_tasks(struct rq *);
423 static void pull_rt_task(struct rq *);
424 
rt_queue_push_tasks(struct rq * rq)425 static inline void rt_queue_push_tasks(struct rq *rq)
426 {
427 	if (!has_pushable_tasks(rq))
428 		return;
429 
430 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
431 }
432 
rt_queue_pull_task(struct rq * rq)433 static inline void rt_queue_pull_task(struct rq *rq)
434 {
435 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
436 }
437 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)438 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
439 {
440 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
441 	plist_node_init(&p->pushable_tasks, p->prio);
442 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
443 
444 	/* Update the highest prio pushable task */
445 	if (p->prio < rq->rt.highest_prio.next)
446 		rq->rt.highest_prio.next = p->prio;
447 }
448 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)449 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
450 {
451 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
452 
453 	/* Update the new highest prio pushable task */
454 	if (has_pushable_tasks(rq)) {
455 		p = plist_first_entry(&rq->rt.pushable_tasks,
456 				      struct task_struct, pushable_tasks);
457 		rq->rt.highest_prio.next = p->prio;
458 	} else {
459 		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
460 	}
461 }
462 
463 #else
464 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)465 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
466 {
467 }
468 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)469 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
470 {
471 }
472 
473 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)474 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
475 {
476 }
477 
478 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)479 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
480 {
481 }
482 
rt_queue_push_tasks(struct rq * rq)483 static inline void rt_queue_push_tasks(struct rq *rq)
484 {
485 }
486 #endif /* CONFIG_SMP */
487 
488 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
489 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
490 
on_rt_rq(struct sched_rt_entity * rt_se)491 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
492 {
493 	return rt_se->on_rq;
494 }
495 
496 #ifdef CONFIG_UCLAMP_TASK
497 /*
498  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
499  * settings.
500  *
501  * This check is only important for heterogeneous systems where uclamp_min value
502  * is higher than the capacity of a @cpu. For non-heterogeneous system this
503  * function will always return true.
504  *
505  * The function will return true if the capacity of the @cpu is >= the
506  * uclamp_min and false otherwise.
507  *
508  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
509  * > uclamp_max.
510  */
rt_task_fits_capacity(struct task_struct * p,int cpu)511 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
512 {
513 	unsigned int min_cap;
514 	unsigned int max_cap;
515 	unsigned int cpu_cap;
516 
517 	/* Only heterogeneous systems can benefit from this check */
518 	if (!sched_asym_cpucap_active())
519 		return true;
520 
521 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
522 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
523 
524 	cpu_cap = capacity_orig_of(cpu);
525 
526 	return cpu_cap >= min(min_cap, max_cap);
527 }
528 #else
rt_task_fits_capacity(struct task_struct * p,int cpu)529 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
530 {
531 	return true;
532 }
533 #endif
534 
535 #ifdef CONFIG_RT_GROUP_SCHED
536 
sched_rt_runtime(struct rt_rq * rt_rq)537 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
538 {
539 	if (!rt_rq->tg)
540 		return RUNTIME_INF;
541 
542 	return rt_rq->rt_runtime;
543 }
544 
sched_rt_period(struct rt_rq * rt_rq)545 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
546 {
547 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
548 }
549 
550 typedef struct task_group *rt_rq_iter_t;
551 
next_task_group(struct task_group * tg)552 static inline struct task_group *next_task_group(struct task_group *tg)
553 {
554 	do {
555 		tg = list_entry_rcu(tg->list.next,
556 			typeof(struct task_group), list);
557 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
558 
559 	if (&tg->list == &task_groups)
560 		tg = NULL;
561 
562 	return tg;
563 }
564 
565 #define for_each_rt_rq(rt_rq, iter, rq)					\
566 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
567 		(iter = next_task_group(iter)) &&			\
568 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
569 
570 #define for_each_sched_rt_entity(rt_se) \
571 	for (; rt_se; rt_se = rt_se->parent)
572 
group_rt_rq(struct sched_rt_entity * rt_se)573 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
574 {
575 	return rt_se->my_q;
576 }
577 
578 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
579 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
580 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)581 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
582 {
583 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
584 	struct rq *rq = rq_of_rt_rq(rt_rq);
585 	struct sched_rt_entity *rt_se;
586 
587 	int cpu = cpu_of(rq);
588 
589 	rt_se = rt_rq->tg->rt_se[cpu];
590 
591 	if (rt_rq->rt_nr_running) {
592 		if (!rt_se)
593 			enqueue_top_rt_rq(rt_rq);
594 		else if (!on_rt_rq(rt_se))
595 			enqueue_rt_entity(rt_se, 0);
596 
597 		if (rt_rq->highest_prio.curr < curr->prio)
598 			resched_curr(rq);
599 	}
600 }
601 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)602 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
603 {
604 	struct sched_rt_entity *rt_se;
605 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
606 
607 	rt_se = rt_rq->tg->rt_se[cpu];
608 
609 	if (!rt_se) {
610 		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
611 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
612 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
613 	}
614 	else if (on_rt_rq(rt_se))
615 		dequeue_rt_entity(rt_se, 0);
616 }
617 
rt_rq_throttled(struct rt_rq * rt_rq)618 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
619 {
620 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
621 }
622 
rt_se_boosted(struct sched_rt_entity * rt_se)623 static int rt_se_boosted(struct sched_rt_entity *rt_se)
624 {
625 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
626 	struct task_struct *p;
627 
628 	if (rt_rq)
629 		return !!rt_rq->rt_nr_boosted;
630 
631 	p = rt_task_of(rt_se);
632 	return p->prio != p->normal_prio;
633 }
634 
635 #ifdef CONFIG_SMP
sched_rt_period_mask(void)636 static inline const struct cpumask *sched_rt_period_mask(void)
637 {
638 	return this_rq()->rd->span;
639 }
640 #else
sched_rt_period_mask(void)641 static inline const struct cpumask *sched_rt_period_mask(void)
642 {
643 	return cpu_online_mask;
644 }
645 #endif
646 
647 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)648 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
649 {
650 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
651 }
652 
sched_rt_bandwidth(struct rt_rq * rt_rq)653 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
654 {
655 	return &rt_rq->tg->rt_bandwidth;
656 }
657 
658 #else /* !CONFIG_RT_GROUP_SCHED */
659 
sched_rt_runtime(struct rt_rq * rt_rq)660 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
661 {
662 	return rt_rq->rt_runtime;
663 }
664 
sched_rt_period(struct rt_rq * rt_rq)665 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
666 {
667 	return ktime_to_ns(def_rt_bandwidth.rt_period);
668 }
669 
670 typedef struct rt_rq *rt_rq_iter_t;
671 
672 #define for_each_rt_rq(rt_rq, iter, rq) \
673 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
674 
675 #define for_each_sched_rt_entity(rt_se) \
676 	for (; rt_se; rt_se = NULL)
677 
group_rt_rq(struct sched_rt_entity * rt_se)678 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
679 {
680 	return NULL;
681 }
682 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)683 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
684 {
685 	struct rq *rq = rq_of_rt_rq(rt_rq);
686 
687 	if (!rt_rq->rt_nr_running)
688 		return;
689 
690 	enqueue_top_rt_rq(rt_rq);
691 	resched_curr(rq);
692 }
693 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)694 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
695 {
696 	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
697 }
698 
rt_rq_throttled(struct rt_rq * rt_rq)699 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
700 {
701 	return rt_rq->rt_throttled;
702 }
703 
sched_rt_period_mask(void)704 static inline const struct cpumask *sched_rt_period_mask(void)
705 {
706 	return cpu_online_mask;
707 }
708 
709 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)710 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
711 {
712 	return &cpu_rq(cpu)->rt;
713 }
714 
sched_rt_bandwidth(struct rt_rq * rt_rq)715 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
716 {
717 	return &def_rt_bandwidth;
718 }
719 
720 #endif /* CONFIG_RT_GROUP_SCHED */
721 
sched_rt_bandwidth_account(struct rt_rq * rt_rq)722 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
723 {
724 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
725 
726 	return (hrtimer_active(&rt_b->rt_period_timer) ||
727 		rt_rq->rt_time < rt_b->rt_runtime);
728 }
729 
730 #ifdef CONFIG_SMP
731 /*
732  * We ran out of runtime, see if we can borrow some from our neighbours.
733  */
do_balance_runtime(struct rt_rq * rt_rq)734 static void do_balance_runtime(struct rt_rq *rt_rq)
735 {
736 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
737 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
738 	int i, weight;
739 	u64 rt_period;
740 
741 	weight = cpumask_weight(rd->span);
742 
743 	raw_spin_lock(&rt_b->rt_runtime_lock);
744 	rt_period = ktime_to_ns(rt_b->rt_period);
745 	for_each_cpu(i, rd->span) {
746 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
747 		s64 diff;
748 
749 		if (iter == rt_rq)
750 			continue;
751 
752 		raw_spin_lock(&iter->rt_runtime_lock);
753 		/*
754 		 * Either all rqs have inf runtime and there's nothing to steal
755 		 * or __disable_runtime() below sets a specific rq to inf to
756 		 * indicate its been disabled and disallow stealing.
757 		 */
758 		if (iter->rt_runtime == RUNTIME_INF)
759 			goto next;
760 
761 		/*
762 		 * From runqueues with spare time, take 1/n part of their
763 		 * spare time, but no more than our period.
764 		 */
765 		diff = iter->rt_runtime - iter->rt_time;
766 		if (diff > 0) {
767 			diff = div_u64((u64)diff, weight);
768 			if (rt_rq->rt_runtime + diff > rt_period)
769 				diff = rt_period - rt_rq->rt_runtime;
770 			iter->rt_runtime -= diff;
771 			rt_rq->rt_runtime += diff;
772 			if (rt_rq->rt_runtime == rt_period) {
773 				raw_spin_unlock(&iter->rt_runtime_lock);
774 				break;
775 			}
776 		}
777 next:
778 		raw_spin_unlock(&iter->rt_runtime_lock);
779 	}
780 	raw_spin_unlock(&rt_b->rt_runtime_lock);
781 }
782 
783 /*
784  * Ensure this RQ takes back all the runtime it lend to its neighbours.
785  */
__disable_runtime(struct rq * rq)786 static void __disable_runtime(struct rq *rq)
787 {
788 	struct root_domain *rd = rq->rd;
789 	rt_rq_iter_t iter;
790 	struct rt_rq *rt_rq;
791 
792 	if (unlikely(!scheduler_running))
793 		return;
794 
795 	for_each_rt_rq(rt_rq, iter, rq) {
796 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
797 		s64 want;
798 		int i;
799 
800 		raw_spin_lock(&rt_b->rt_runtime_lock);
801 		raw_spin_lock(&rt_rq->rt_runtime_lock);
802 		/*
803 		 * Either we're all inf and nobody needs to borrow, or we're
804 		 * already disabled and thus have nothing to do, or we have
805 		 * exactly the right amount of runtime to take out.
806 		 */
807 		if (rt_rq->rt_runtime == RUNTIME_INF ||
808 				rt_rq->rt_runtime == rt_b->rt_runtime)
809 			goto balanced;
810 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
811 
812 		/*
813 		 * Calculate the difference between what we started out with
814 		 * and what we current have, that's the amount of runtime
815 		 * we lend and now have to reclaim.
816 		 */
817 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
818 
819 		/*
820 		 * Greedy reclaim, take back as much as we can.
821 		 */
822 		for_each_cpu(i, rd->span) {
823 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
824 			s64 diff;
825 
826 			/*
827 			 * Can't reclaim from ourselves or disabled runqueues.
828 			 */
829 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
830 				continue;
831 
832 			raw_spin_lock(&iter->rt_runtime_lock);
833 			if (want > 0) {
834 				diff = min_t(s64, iter->rt_runtime, want);
835 				iter->rt_runtime -= diff;
836 				want -= diff;
837 			} else {
838 				iter->rt_runtime -= want;
839 				want -= want;
840 			}
841 			raw_spin_unlock(&iter->rt_runtime_lock);
842 
843 			if (!want)
844 				break;
845 		}
846 
847 		raw_spin_lock(&rt_rq->rt_runtime_lock);
848 		/*
849 		 * We cannot be left wanting - that would mean some runtime
850 		 * leaked out of the system.
851 		 */
852 		WARN_ON_ONCE(want);
853 balanced:
854 		/*
855 		 * Disable all the borrow logic by pretending we have inf
856 		 * runtime - in which case borrowing doesn't make sense.
857 		 */
858 		rt_rq->rt_runtime = RUNTIME_INF;
859 		rt_rq->rt_throttled = 0;
860 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
861 		raw_spin_unlock(&rt_b->rt_runtime_lock);
862 
863 		/* Make rt_rq available for pick_next_task() */
864 		sched_rt_rq_enqueue(rt_rq);
865 	}
866 }
867 
__enable_runtime(struct rq * rq)868 static void __enable_runtime(struct rq *rq)
869 {
870 	rt_rq_iter_t iter;
871 	struct rt_rq *rt_rq;
872 
873 	if (unlikely(!scheduler_running))
874 		return;
875 
876 	/*
877 	 * Reset each runqueue's bandwidth settings
878 	 */
879 	for_each_rt_rq(rt_rq, iter, rq) {
880 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
881 
882 		raw_spin_lock(&rt_b->rt_runtime_lock);
883 		raw_spin_lock(&rt_rq->rt_runtime_lock);
884 		rt_rq->rt_runtime = rt_b->rt_runtime;
885 		rt_rq->rt_time = 0;
886 		rt_rq->rt_throttled = 0;
887 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
888 		raw_spin_unlock(&rt_b->rt_runtime_lock);
889 	}
890 }
891 
balance_runtime(struct rt_rq * rt_rq)892 static void balance_runtime(struct rt_rq *rt_rq)
893 {
894 	if (!sched_feat(RT_RUNTIME_SHARE))
895 		return;
896 
897 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
898 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
899 		do_balance_runtime(rt_rq);
900 		raw_spin_lock(&rt_rq->rt_runtime_lock);
901 	}
902 }
903 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)904 static inline void balance_runtime(struct rt_rq *rt_rq) {}
905 #endif /* CONFIG_SMP */
906 
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)907 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
908 {
909 	int i, idle = 1, throttled = 0;
910 	const struct cpumask *span;
911 
912 	span = sched_rt_period_mask();
913 #ifdef CONFIG_RT_GROUP_SCHED
914 	/*
915 	 * FIXME: isolated CPUs should really leave the root task group,
916 	 * whether they are isolcpus or were isolated via cpusets, lest
917 	 * the timer run on a CPU which does not service all runqueues,
918 	 * potentially leaving other CPUs indefinitely throttled.  If
919 	 * isolation is really required, the user will turn the throttle
920 	 * off to kill the perturbations it causes anyway.  Meanwhile,
921 	 * this maintains functionality for boot and/or troubleshooting.
922 	 */
923 	if (rt_b == &root_task_group.rt_bandwidth)
924 		span = cpu_online_mask;
925 #endif
926 	for_each_cpu(i, span) {
927 		int enqueue = 0;
928 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
929 		struct rq *rq = rq_of_rt_rq(rt_rq);
930 		struct rq_flags rf;
931 		int skip;
932 
933 		/*
934 		 * When span == cpu_online_mask, taking each rq->lock
935 		 * can be time-consuming. Try to avoid it when possible.
936 		 */
937 		raw_spin_lock(&rt_rq->rt_runtime_lock);
938 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
939 			rt_rq->rt_runtime = rt_b->rt_runtime;
940 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
941 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
942 		if (skip)
943 			continue;
944 
945 		rq_lock(rq, &rf);
946 		update_rq_clock(rq);
947 
948 		if (rt_rq->rt_time) {
949 			u64 runtime;
950 
951 			raw_spin_lock(&rt_rq->rt_runtime_lock);
952 			if (rt_rq->rt_throttled)
953 				balance_runtime(rt_rq);
954 			runtime = rt_rq->rt_runtime;
955 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
956 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
957 				rt_rq->rt_throttled = 0;
958 				enqueue = 1;
959 
960 				/*
961 				 * When we're idle and a woken (rt) task is
962 				 * throttled check_preempt_curr() will set
963 				 * skip_update and the time between the wakeup
964 				 * and this unthrottle will get accounted as
965 				 * 'runtime'.
966 				 */
967 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
968 					rq_clock_cancel_skipupdate(rq);
969 			}
970 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
971 				idle = 0;
972 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
973 		} else if (rt_rq->rt_nr_running) {
974 			idle = 0;
975 			if (!rt_rq_throttled(rt_rq))
976 				enqueue = 1;
977 		}
978 		if (rt_rq->rt_throttled)
979 			throttled = 1;
980 
981 		if (enqueue)
982 			sched_rt_rq_enqueue(rt_rq);
983 		rq_unlock(rq, &rf);
984 	}
985 
986 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
987 		return 1;
988 
989 	return idle;
990 }
991 
rt_se_prio(struct sched_rt_entity * rt_se)992 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
993 {
994 #ifdef CONFIG_RT_GROUP_SCHED
995 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
996 
997 	if (rt_rq)
998 		return rt_rq->highest_prio.curr;
999 #endif
1000 
1001 	return rt_task_of(rt_se)->prio;
1002 }
1003 
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)1004 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
1005 {
1006 	u64 runtime = sched_rt_runtime(rt_rq);
1007 
1008 	if (rt_rq->rt_throttled)
1009 		return rt_rq_throttled(rt_rq);
1010 
1011 	if (runtime >= sched_rt_period(rt_rq))
1012 		return 0;
1013 
1014 	balance_runtime(rt_rq);
1015 	runtime = sched_rt_runtime(rt_rq);
1016 	if (runtime == RUNTIME_INF)
1017 		return 0;
1018 
1019 	if (rt_rq->rt_time > runtime) {
1020 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1021 
1022 		/*
1023 		 * Don't actually throttle groups that have no runtime assigned
1024 		 * but accrue some time due to boosting.
1025 		 */
1026 		if (likely(rt_b->rt_runtime)) {
1027 			rt_rq->rt_throttled = 1;
1028 			printk_deferred_once("sched: RT throttling activated\n");
1029 
1030 			trace_android_vh_dump_throttled_rt_tasks(
1031 				raw_smp_processor_id(),
1032 				rq_clock(rq_of_rt_rq(rt_rq)),
1033 				sched_rt_period(rt_rq),
1034 				runtime,
1035 				hrtimer_get_expires_ns(&rt_b->rt_period_timer));
1036 		} else {
1037 			/*
1038 			 * In case we did anyway, make it go away,
1039 			 * replenishment is a joke, since it will replenish us
1040 			 * with exactly 0 ns.
1041 			 */
1042 			rt_rq->rt_time = 0;
1043 		}
1044 
1045 		if (rt_rq_throttled(rt_rq)) {
1046 			sched_rt_rq_dequeue(rt_rq);
1047 			return 1;
1048 		}
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 /*
1055  * Update the current task's runtime statistics. Skip current tasks that
1056  * are not in our scheduling class.
1057  */
update_curr_rt(struct rq * rq)1058 static void update_curr_rt(struct rq *rq)
1059 {
1060 	struct task_struct *curr = rq->curr;
1061 	struct sched_rt_entity *rt_se = &curr->rt;
1062 	u64 delta_exec;
1063 	u64 now;
1064 
1065 	if (curr->sched_class != &rt_sched_class)
1066 		return;
1067 
1068 	now = rq_clock_task(rq);
1069 	delta_exec = now - curr->se.exec_start;
1070 	if (unlikely((s64)delta_exec <= 0))
1071 		return;
1072 
1073 	schedstat_set(curr->stats.exec_max,
1074 		      max(curr->stats.exec_max, delta_exec));
1075 
1076 	trace_sched_stat_runtime(curr, delta_exec, 0);
1077 
1078 	update_current_exec_runtime(curr, now, delta_exec);
1079 
1080 	trace_android_vh_sched_stat_runtime_rt(curr, delta_exec);
1081 
1082 	if (!rt_bandwidth_enabled())
1083 		return;
1084 
1085 	for_each_sched_rt_entity(rt_se) {
1086 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1087 		int exceeded;
1088 
1089 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1090 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1091 			rt_rq->rt_time += delta_exec;
1092 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1093 			if (exceeded)
1094 				resched_curr(rq);
1095 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1096 			if (exceeded)
1097 				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1098 		}
1099 	}
1100 }
1101 
1102 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq,unsigned int count)1103 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1104 {
1105 	struct rq *rq = rq_of_rt_rq(rt_rq);
1106 
1107 	BUG_ON(&rq->rt != rt_rq);
1108 
1109 	if (!rt_rq->rt_queued)
1110 		return;
1111 
1112 	BUG_ON(!rq->nr_running);
1113 
1114 	sub_nr_running(rq, count);
1115 	rt_rq->rt_queued = 0;
1116 
1117 }
1118 
1119 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1120 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1121 {
1122 	struct rq *rq = rq_of_rt_rq(rt_rq);
1123 
1124 	BUG_ON(&rq->rt != rt_rq);
1125 
1126 	if (rt_rq->rt_queued)
1127 		return;
1128 
1129 	if (rt_rq_throttled(rt_rq))
1130 		return;
1131 
1132 	if (rt_rq->rt_nr_running) {
1133 		add_nr_running(rq, rt_rq->rt_nr_running);
1134 		rt_rq->rt_queued = 1;
1135 	}
1136 
1137 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1138 	cpufreq_update_util(rq, 0);
1139 }
1140 
1141 #if defined CONFIG_SMP
1142 
1143 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1144 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1145 {
1146 	struct rq *rq = rq_of_rt_rq(rt_rq);
1147 
1148 #ifdef CONFIG_RT_GROUP_SCHED
1149 	/*
1150 	 * Change rq's cpupri only if rt_rq is the top queue.
1151 	 */
1152 	if (&rq->rt != rt_rq)
1153 		return;
1154 #endif
1155 	if (rq->online && prio < prev_prio)
1156 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1157 }
1158 
1159 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1160 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1161 {
1162 	struct rq *rq = rq_of_rt_rq(rt_rq);
1163 
1164 #ifdef CONFIG_RT_GROUP_SCHED
1165 	/*
1166 	 * Change rq's cpupri only if rt_rq is the top queue.
1167 	 */
1168 	if (&rq->rt != rt_rq)
1169 		return;
1170 #endif
1171 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1172 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1173 }
1174 
1175 #else /* CONFIG_SMP */
1176 
1177 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1178 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1179 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1180 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1181 
1182 #endif /* CONFIG_SMP */
1183 
1184 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1185 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1186 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1187 {
1188 	int prev_prio = rt_rq->highest_prio.curr;
1189 
1190 	if (prio < prev_prio)
1191 		rt_rq->highest_prio.curr = prio;
1192 
1193 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1194 }
1195 
1196 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1197 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1198 {
1199 	int prev_prio = rt_rq->highest_prio.curr;
1200 
1201 	if (rt_rq->rt_nr_running) {
1202 
1203 		WARN_ON(prio < prev_prio);
1204 
1205 		/*
1206 		 * This may have been our highest task, and therefore
1207 		 * we may have some recomputation to do
1208 		 */
1209 		if (prio == prev_prio) {
1210 			struct rt_prio_array *array = &rt_rq->active;
1211 
1212 			rt_rq->highest_prio.curr =
1213 				sched_find_first_bit(array->bitmap);
1214 		}
1215 
1216 	} else {
1217 		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1218 	}
1219 
1220 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1221 }
1222 
1223 #else
1224 
inc_rt_prio(struct rt_rq * rt_rq,int prio)1225 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1226 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1227 
1228 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1229 
1230 #ifdef CONFIG_RT_GROUP_SCHED
1231 
1232 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1233 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1234 {
1235 	if (rt_se_boosted(rt_se))
1236 		rt_rq->rt_nr_boosted++;
1237 
1238 	if (rt_rq->tg)
1239 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1240 }
1241 
1242 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1243 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1244 {
1245 	if (rt_se_boosted(rt_se))
1246 		rt_rq->rt_nr_boosted--;
1247 
1248 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1249 }
1250 
1251 #else /* CONFIG_RT_GROUP_SCHED */
1252 
1253 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1254 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1255 {
1256 	start_rt_bandwidth(&def_rt_bandwidth);
1257 }
1258 
1259 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1260 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1261 
1262 #endif /* CONFIG_RT_GROUP_SCHED */
1263 
1264 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1265 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1266 {
1267 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1268 
1269 	if (group_rq)
1270 		return group_rq->rt_nr_running;
1271 	else
1272 		return 1;
1273 }
1274 
1275 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1276 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1277 {
1278 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1279 	struct task_struct *tsk;
1280 
1281 	if (group_rq)
1282 		return group_rq->rr_nr_running;
1283 
1284 	tsk = rt_task_of(rt_se);
1285 
1286 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1287 }
1288 
1289 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1290 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1291 {
1292 	int prio = rt_se_prio(rt_se);
1293 
1294 	WARN_ON(!rt_prio(prio));
1295 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1296 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1297 
1298 	inc_rt_prio(rt_rq, prio);
1299 	inc_rt_migration(rt_se, rt_rq);
1300 	inc_rt_group(rt_se, rt_rq);
1301 }
1302 
1303 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1304 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1305 {
1306 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1307 	WARN_ON(!rt_rq->rt_nr_running);
1308 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1309 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1310 
1311 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1312 	dec_rt_migration(rt_se, rt_rq);
1313 	dec_rt_group(rt_se, rt_rq);
1314 }
1315 
1316 /*
1317  * Change rt_se->run_list location unless SAVE && !MOVE
1318  *
1319  * assumes ENQUEUE/DEQUEUE flags match
1320  */
move_entity(unsigned int flags)1321 static inline bool move_entity(unsigned int flags)
1322 {
1323 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1324 		return false;
1325 
1326 	return true;
1327 }
1328 
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1329 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1330 {
1331 	list_del_init(&rt_se->run_list);
1332 
1333 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1334 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1335 
1336 	rt_se->on_list = 0;
1337 }
1338 
1339 static inline struct sched_statistics *
__schedstats_from_rt_se(struct sched_rt_entity * rt_se)1340 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1341 {
1342 #ifdef CONFIG_RT_GROUP_SCHED
1343 	/* schedstats is not supported for rt group. */
1344 	if (!rt_entity_is_task(rt_se))
1345 		return NULL;
1346 #endif
1347 
1348 	return &rt_task_of(rt_se)->stats;
1349 }
1350 
1351 static inline void
update_stats_wait_start_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1352 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1353 {
1354 	struct sched_statistics *stats;
1355 	struct task_struct *p = NULL;
1356 
1357 	if (!schedstat_enabled())
1358 		return;
1359 
1360 	if (rt_entity_is_task(rt_se))
1361 		p = rt_task_of(rt_se);
1362 
1363 	stats = __schedstats_from_rt_se(rt_se);
1364 	if (!stats)
1365 		return;
1366 
1367 	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1368 }
1369 
1370 static inline void
update_stats_enqueue_sleeper_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1371 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1372 {
1373 	struct sched_statistics *stats;
1374 	struct task_struct *p = NULL;
1375 
1376 	if (!schedstat_enabled())
1377 		return;
1378 
1379 	if (rt_entity_is_task(rt_se))
1380 		p = rt_task_of(rt_se);
1381 
1382 	stats = __schedstats_from_rt_se(rt_se);
1383 	if (!stats)
1384 		return;
1385 
1386 	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1387 }
1388 
1389 static inline void
update_stats_enqueue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1390 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1391 			int flags)
1392 {
1393 	if (!schedstat_enabled())
1394 		return;
1395 
1396 	if (flags & ENQUEUE_WAKEUP)
1397 		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1398 }
1399 
1400 static inline void
update_stats_wait_end_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1401 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1402 {
1403 	struct sched_statistics *stats;
1404 	struct task_struct *p = NULL;
1405 
1406 	if (!schedstat_enabled())
1407 		return;
1408 
1409 	if (rt_entity_is_task(rt_se))
1410 		p = rt_task_of(rt_se);
1411 
1412 	stats = __schedstats_from_rt_se(rt_se);
1413 	if (!stats)
1414 		return;
1415 
1416 	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1417 }
1418 
1419 static inline void
update_stats_dequeue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1420 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1421 			int flags)
1422 {
1423 	struct task_struct *p = NULL;
1424 
1425 	if (!schedstat_enabled())
1426 		return;
1427 
1428 	if (rt_entity_is_task(rt_se))
1429 		p = rt_task_of(rt_se);
1430 
1431 	if ((flags & DEQUEUE_SLEEP) && p) {
1432 		unsigned int state;
1433 
1434 		state = READ_ONCE(p->__state);
1435 		if (state & TASK_INTERRUPTIBLE)
1436 			__schedstat_set(p->stats.sleep_start,
1437 					rq_clock(rq_of_rt_rq(rt_rq)));
1438 
1439 		if (state & TASK_UNINTERRUPTIBLE)
1440 			__schedstat_set(p->stats.block_start,
1441 					rq_clock(rq_of_rt_rq(rt_rq)));
1442 	}
1443 }
1444 
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1445 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1446 {
1447 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1448 	struct rt_prio_array *array = &rt_rq->active;
1449 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1450 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1451 
1452 	/*
1453 	 * Don't enqueue the group if its throttled, or when empty.
1454 	 * The latter is a consequence of the former when a child group
1455 	 * get throttled and the current group doesn't have any other
1456 	 * active members.
1457 	 */
1458 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1459 		if (rt_se->on_list)
1460 			__delist_rt_entity(rt_se, array);
1461 		return;
1462 	}
1463 
1464 	if (move_entity(flags)) {
1465 		WARN_ON_ONCE(rt_se->on_list);
1466 		if (flags & ENQUEUE_HEAD)
1467 			list_add(&rt_se->run_list, queue);
1468 		else
1469 			list_add_tail(&rt_se->run_list, queue);
1470 
1471 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1472 		rt_se->on_list = 1;
1473 	}
1474 	rt_se->on_rq = 1;
1475 
1476 	inc_rt_tasks(rt_se, rt_rq);
1477 }
1478 
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1479 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1480 {
1481 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1482 	struct rt_prio_array *array = &rt_rq->active;
1483 
1484 	if (move_entity(flags)) {
1485 		WARN_ON_ONCE(!rt_se->on_list);
1486 		__delist_rt_entity(rt_se, array);
1487 	}
1488 	rt_se->on_rq = 0;
1489 
1490 	dec_rt_tasks(rt_se, rt_rq);
1491 }
1492 
1493 /*
1494  * Because the prio of an upper entry depends on the lower
1495  * entries, we must remove entries top - down.
1496  */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1497 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1498 {
1499 	struct sched_rt_entity *back = NULL;
1500 	unsigned int rt_nr_running;
1501 
1502 	for_each_sched_rt_entity(rt_se) {
1503 		rt_se->back = back;
1504 		back = rt_se;
1505 	}
1506 
1507 	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1508 
1509 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1510 		if (on_rt_rq(rt_se))
1511 			__dequeue_rt_entity(rt_se, flags);
1512 	}
1513 
1514 	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1515 }
1516 
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1517 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1518 {
1519 	struct rq *rq = rq_of_rt_se(rt_se);
1520 
1521 	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1522 
1523 	dequeue_rt_stack(rt_se, flags);
1524 	for_each_sched_rt_entity(rt_se)
1525 		__enqueue_rt_entity(rt_se, flags);
1526 	enqueue_top_rt_rq(&rq->rt);
1527 }
1528 
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1529 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1530 {
1531 	struct rq *rq = rq_of_rt_se(rt_se);
1532 
1533 	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1534 
1535 	dequeue_rt_stack(rt_se, flags);
1536 
1537 	for_each_sched_rt_entity(rt_se) {
1538 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1539 
1540 		if (rt_rq && rt_rq->rt_nr_running)
1541 			__enqueue_rt_entity(rt_se, flags);
1542 	}
1543 	enqueue_top_rt_rq(&rq->rt);
1544 }
1545 
1546 #ifdef CONFIG_SMP
should_honor_rt_sync(struct rq * rq,struct task_struct * p,bool sync)1547 static inline bool should_honor_rt_sync(struct rq *rq, struct task_struct *p,
1548 					bool sync)
1549 {
1550 	/*
1551 	 * If the waker is CFS, then an RT sync wakeup would preempt the waker
1552 	 * and force it to run for a likely small time after the RT wakee is
1553 	 * done. So, only honor RT sync wakeups from RT wakers.
1554 	 */
1555 	return sync && task_has_rt_policy(rq->curr) &&
1556 		p->prio <= rq->rt.highest_prio.next &&
1557 		rq->rt.rt_nr_running <= 2;
1558 }
1559 #else
should_honor_rt_sync(struct rq * rq,struct task_struct * p,bool sync)1560 static inline bool should_honor_rt_sync(struct rq *rq, struct task_struct *p,
1561 					bool sync)
1562 {
1563 	return 0;
1564 }
1565 #endif
1566 
1567 /*
1568  * Adding/removing a task to/from a priority array:
1569  */
1570 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1571 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1572 {
1573 	struct sched_rt_entity *rt_se = &p->rt;
1574 	bool sync = !!(flags & ENQUEUE_WAKEUP_SYNC);
1575 
1576 	if (flags & ENQUEUE_WAKEUP)
1577 		rt_se->timeout = 0;
1578 
1579 	check_schedstat_required();
1580 	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1581 
1582 	enqueue_rt_entity(rt_se, flags);
1583 
1584 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1 &&
1585 	    !should_honor_rt_sync(rq, p, sync))
1586 		enqueue_pushable_task(rq, p);
1587 }
1588 
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1589 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1590 {
1591 	struct sched_rt_entity *rt_se = &p->rt;
1592 
1593 	update_curr_rt(rq);
1594 	dequeue_rt_entity(rt_se, flags);
1595 
1596 	dequeue_pushable_task(rq, p);
1597 }
1598 
1599 /*
1600  * Put task to the head or the end of the run list without the overhead of
1601  * dequeue followed by enqueue.
1602  */
1603 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1604 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1605 {
1606 	if (on_rt_rq(rt_se)) {
1607 		struct rt_prio_array *array = &rt_rq->active;
1608 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1609 
1610 		if (head)
1611 			list_move(&rt_se->run_list, queue);
1612 		else
1613 			list_move_tail(&rt_se->run_list, queue);
1614 	}
1615 }
1616 
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1617 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1618 {
1619 	struct sched_rt_entity *rt_se = &p->rt;
1620 	struct rt_rq *rt_rq;
1621 
1622 	for_each_sched_rt_entity(rt_se) {
1623 		rt_rq = rt_rq_of_se(rt_se);
1624 		requeue_rt_entity(rt_rq, rt_se, head);
1625 	}
1626 }
1627 
yield_task_rt(struct rq * rq)1628 static void yield_task_rt(struct rq *rq)
1629 {
1630 	requeue_task_rt(rq, rq->curr, 0);
1631 }
1632 
1633 #ifdef CONFIG_SMP
1634 static int find_lowest_rq(struct task_struct *task);
1635 
1636 #ifdef CONFIG_RT_SOFTIRQ_AWARE_SCHED
1637 /*
1638  * Return whether the given cpu is currently non-preemptible
1639  * while handling a potentially long softirq, or if the current
1640  * task is likely to block preemptions soon because it is a
1641  * ksoftirq thread that is handling softirqs.
1642  */
cpu_busy_with_softirqs(int cpu)1643 bool cpu_busy_with_softirqs(int cpu)
1644 {
1645 	u32 softirqs = per_cpu(active_softirqs, cpu) |
1646 		       __cpu_softirq_pending(cpu);
1647 
1648 	return softirqs & LONG_SOFTIRQ_MASK;
1649 }
1650 EXPORT_SYMBOL_GPL(cpu_busy_with_softirqs);
1651 #endif /* CONFIG_RT_SOFTIRQ_AWARE_SCHED */
1652 
rt_task_fits_cpu(struct task_struct * p,int cpu)1653 static bool rt_task_fits_cpu(struct task_struct *p, int cpu)
1654 {
1655 	return rt_task_fits_capacity(p, cpu) && !cpu_busy_with_softirqs(cpu);
1656 }
1657 
1658 static int
select_task_rq_rt(struct task_struct * p,int cpu,int flags)1659 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1660 {
1661 	struct task_struct *curr;
1662 	struct rq *rq;
1663 	struct rq *this_cpu_rq;
1664 	bool test;
1665 	int target_cpu = -1;
1666 	bool sync = !!(flags & WF_SYNC);
1667 	int this_cpu;
1668 
1669 	trace_android_rvh_select_task_rq_rt(p, cpu, flags & 0xF,
1670 					flags, &target_cpu);
1671 	if (target_cpu >= 0)
1672 		return target_cpu;
1673 
1674 	/* For anything but wake ups, just return the task_cpu */
1675 	if (!(flags & (WF_TTWU | WF_FORK)))
1676 		goto out;
1677 
1678 	rq = cpu_rq(cpu);
1679 
1680 	rcu_read_lock();
1681 	curr = READ_ONCE(rq->curr); /* unlocked access */
1682 	this_cpu = smp_processor_id();
1683 	this_cpu_rq = cpu_rq(this_cpu);
1684 
1685 	/*
1686 	 * If the current task on @p's runqueue is an RT task, then
1687 	 * try to see if we can wake this RT task up on another
1688 	 * runqueue. Otherwise simply start this RT task
1689 	 * on its current runqueue.
1690 	 *
1691 	 * We want to avoid overloading runqueues. If the woken
1692 	 * task is a higher priority, then it will stay on this CPU
1693 	 * and the lower prio task should be moved to another CPU.
1694 	 * Even though this will probably make the lower prio task
1695 	 * lose its cache, we do not want to bounce a higher task
1696 	 * around just because it gave up its CPU, perhaps for a
1697 	 * lock?
1698 	 *
1699 	 * For equal prio tasks, we just let the scheduler sort it out.
1700 	 *
1701 	 * Otherwise, just let it ride on the affined RQ and the
1702 	 * post-schedule router will push the preempted task away
1703 	 *
1704 	 * This test is optimistic, if we get it wrong the load-balancer
1705 	 * will have to sort it out.
1706 	 *
1707 	 * We use rt_task_fits_cpu() to evaluate if the CPU is busy with
1708 	 * potentially long-running softirq work, as well as take into
1709 	 * account the capacity of the CPU to ensure it fits the
1710 	 * requirement of the task - which is only important on
1711 	 * heterogeneous systems like big.LITTLE.
1712 	 */
1713 	test = curr &&
1714 	       unlikely(rt_task(curr)) &&
1715 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1716 
1717 	/*
1718 	 * Respect the sync flag as long as the task can run on this CPU.
1719 	 */
1720 	if (should_honor_rt_sync(this_cpu_rq, p, sync) &&
1721 	    cpumask_test_cpu(this_cpu, p->cpus_ptr)) {
1722 		cpu = this_cpu;
1723 		goto out_unlock;
1724 	}
1725 
1726 	if (test || !rt_task_fits_cpu(p, cpu)) {
1727 		int target = find_lowest_rq(p);
1728 
1729 		/*
1730 		 * Bail out if we were forcing a migration to find a better
1731 		 * fitting CPU but our search failed.
1732 		 */
1733 		if (!test && target != -1 && !rt_task_fits_cpu(p, target))
1734 			goto out_unlock;
1735 
1736 		/*
1737 		 * Don't bother moving it if the destination CPU is
1738 		 * not running a lower priority task.
1739 		 */
1740 		if (target != -1 &&
1741 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1742 			cpu = target;
1743 	}
1744 
1745 out_unlock:
1746 	rcu_read_unlock();
1747 
1748 out:
1749 	return cpu;
1750 }
1751 
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1752 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1753 {
1754 	/*
1755 	 * Current can't be migrated, useless to reschedule,
1756 	 * let's hope p can move out.
1757 	 */
1758 	if (rq->curr->nr_cpus_allowed == 1 ||
1759 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1760 		return;
1761 
1762 	/*
1763 	 * p is migratable, so let's not schedule it and
1764 	 * see if it is pushed or pulled somewhere else.
1765 	 */
1766 	if (p->nr_cpus_allowed != 1 &&
1767 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1768 		return;
1769 
1770 	/*
1771 	 * There appear to be other CPUs that can accept
1772 	 * the current task but none can run 'p', so lets reschedule
1773 	 * to try and push the current task away:
1774 	 */
1775 	requeue_task_rt(rq, p, 1);
1776 	resched_curr(rq);
1777 }
1778 
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1779 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1780 {
1781 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1782 		int done = 0;
1783 
1784 		/*
1785 		 * This is OK, because current is on_cpu, which avoids it being
1786 		 * picked for load-balance and preemption/IRQs are still
1787 		 * disabled avoiding further scheduler activity on it and we've
1788 		 * not yet started the picking loop.
1789 		 */
1790 		rq_unpin_lock(rq, rf);
1791 		trace_android_rvh_sched_balance_rt(rq, p, &done);
1792 		if (!done)
1793 			pull_rt_task(rq);
1794 		rq_repin_lock(rq, rf);
1795 	}
1796 
1797 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1798 }
1799 #endif /* CONFIG_SMP */
1800 
1801 /*
1802  * Preempt the current task with a newly woken task if needed:
1803  */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1804 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1805 {
1806 	if (p->prio < rq->curr->prio) {
1807 		resched_curr(rq);
1808 		return;
1809 	}
1810 
1811 #ifdef CONFIG_SMP
1812 	/*
1813 	 * If:
1814 	 *
1815 	 * - the newly woken task is of equal priority to the current task
1816 	 * - the newly woken task is non-migratable while current is migratable
1817 	 * - current will be preempted on the next reschedule
1818 	 *
1819 	 * we should check to see if current can readily move to a different
1820 	 * cpu.  If so, we will reschedule to allow the push logic to try
1821 	 * to move current somewhere else, making room for our non-migratable
1822 	 * task.
1823 	 */
1824 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1825 		check_preempt_equal_prio(rq, p);
1826 #endif
1827 }
1828 
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1829 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1830 {
1831 	struct sched_rt_entity *rt_se = &p->rt;
1832 	struct rt_rq *rt_rq = &rq->rt;
1833 
1834 	p->se.exec_start = rq_clock_task(rq);
1835 	if (on_rt_rq(&p->rt))
1836 		update_stats_wait_end_rt(rt_rq, rt_se);
1837 
1838 	/* The running task is never eligible for pushing */
1839 	dequeue_pushable_task(rq, p);
1840 
1841 	if (!first)
1842 		return;
1843 
1844 	/*
1845 	 * If prev task was rt, put_prev_task() has already updated the
1846 	 * utilization. We only care of the case where we start to schedule a
1847 	 * rt task
1848 	 */
1849 	if (rq->curr->sched_class != &rt_sched_class)
1850 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1851 
1852 	/* Should always be called unlike update_rt_rq_load_avg() */
1853 	trace_android_rvh_update_rt_rq_load_avg(rq_clock_pelt(rq), rq, p, 0);
1854 
1855 	rt_queue_push_tasks(rq);
1856 }
1857 
pick_next_rt_entity(struct rt_rq * rt_rq)1858 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1859 {
1860 	struct rt_prio_array *array = &rt_rq->active;
1861 	struct sched_rt_entity *next = NULL;
1862 	struct list_head *queue;
1863 	int idx;
1864 
1865 	idx = sched_find_first_bit(array->bitmap);
1866 	BUG_ON(idx >= MAX_RT_PRIO);
1867 
1868 	queue = array->queue + idx;
1869 	if (SCHED_WARN_ON(list_empty(queue)))
1870 		return NULL;
1871 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1872 
1873 	return next;
1874 }
1875 
_pick_next_task_rt(struct rq * rq)1876 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1877 {
1878 	struct sched_rt_entity *rt_se;
1879 	struct rt_rq *rt_rq  = &rq->rt;
1880 
1881 	do {
1882 		rt_se = pick_next_rt_entity(rt_rq);
1883 		if (unlikely(!rt_se))
1884 			return NULL;
1885 		rt_rq = group_rt_rq(rt_se);
1886 	} while (rt_rq);
1887 
1888 	return rt_task_of(rt_se);
1889 }
1890 
pick_task_rt(struct rq * rq)1891 static struct task_struct *pick_task_rt(struct rq *rq)
1892 {
1893 	struct task_struct *p;
1894 
1895 	if (!sched_rt_runnable(rq))
1896 		return NULL;
1897 
1898 	p = _pick_next_task_rt(rq);
1899 
1900 	return p;
1901 }
1902 
pick_next_task_rt(struct rq * rq)1903 static struct task_struct *pick_next_task_rt(struct rq *rq)
1904 {
1905 	struct task_struct *p = pick_task_rt(rq);
1906 
1907 	if (p)
1908 		set_next_task_rt(rq, p, true);
1909 
1910 	return p;
1911 }
1912 
put_prev_task_rt(struct rq * rq,struct task_struct * p)1913 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1914 {
1915 	struct sched_rt_entity *rt_se = &p->rt;
1916 	struct rt_rq *rt_rq = &rq->rt;
1917 
1918 	if (on_rt_rq(&p->rt))
1919 		update_stats_wait_start_rt(rt_rq, rt_se);
1920 
1921 	update_curr_rt(rq);
1922 
1923 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1924 	trace_android_rvh_update_rt_rq_load_avg(rq_clock_pelt(rq), rq, p, 1);
1925 
1926 	/*
1927 	 * The previous task needs to be made eligible for pushing
1928 	 * if it is still active
1929 	 */
1930 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1931 		enqueue_pushable_task(rq, p);
1932 }
1933 
1934 #ifdef CONFIG_SMP
1935 
1936 /* Only try algorithms three times */
1937 #define RT_MAX_TRIES 3
1938 
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1939 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1940 {
1941 	if (!task_on_cpu(rq, p) &&
1942 	    cpumask_test_cpu(cpu, &p->cpus_mask))
1943 		return 1;
1944 
1945 	return 0;
1946 }
1947 
1948 /*
1949  * Return the highest pushable rq's task, which is suitable to be executed
1950  * on the CPU, NULL otherwise
1951  */
pick_highest_pushable_task(struct rq * rq,int cpu)1952 struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1953 {
1954 	struct plist_head *head = &rq->rt.pushable_tasks;
1955 	struct task_struct *p;
1956 
1957 	if (!has_pushable_tasks(rq))
1958 		return NULL;
1959 
1960 	plist_for_each_entry(p, head, pushable_tasks) {
1961 		if (pick_rt_task(rq, p, cpu))
1962 			return p;
1963 	}
1964 
1965 	return NULL;
1966 }
1967 EXPORT_SYMBOL_GPL(pick_highest_pushable_task);
1968 
1969 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1970 
find_lowest_rq(struct task_struct * task)1971 static int find_lowest_rq(struct task_struct *task)
1972 {
1973 	struct sched_domain *sd;
1974 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1975 	int this_cpu = smp_processor_id();
1976 	int cpu      = -1;
1977 	int ret;
1978 
1979 	/* Make sure the mask is initialized first */
1980 	if (unlikely(!lowest_mask))
1981 		return -1;
1982 
1983 	if (task->nr_cpus_allowed == 1)
1984 		return -1; /* No other targets possible */
1985 
1986 	/*
1987 	 * If we're using the softirq optimization or if we are
1988 	 * on asym system, ensure we consider the softirq processing
1989 	 * or different capacities of the CPUs when searching for the
1990 	 * lowest_mask.
1991 	 */
1992 	if (IS_ENABLED(CONFIG_RT_SOFTIRQ_AWARE_SCHED) ||
1993 	    sched_asym_cpucap_active()) {
1994 
1995 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1996 					  task, lowest_mask,
1997 					  rt_task_fits_cpu);
1998 	} else {
1999 
2000 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
2001 				  task, lowest_mask);
2002 	}
2003 
2004 	trace_android_rvh_find_lowest_rq(task, lowest_mask, ret, &cpu);
2005 	if (cpu >= 0)
2006 		return cpu;
2007 
2008 	if (!ret)
2009 		return -1; /* No targets found */
2010 
2011 	cpu = task_cpu(task);
2012 
2013 	/*
2014 	 * At this point we have built a mask of CPUs representing the
2015 	 * lowest priority tasks in the system.  Now we want to elect
2016 	 * the best one based on our affinity and topology.
2017 	 *
2018 	 * We prioritize the last CPU that the task executed on since
2019 	 * it is most likely cache-hot in that location.
2020 	 */
2021 	if (cpumask_test_cpu(cpu, lowest_mask))
2022 		return cpu;
2023 
2024 	/*
2025 	 * Otherwise, we consult the sched_domains span maps to figure
2026 	 * out which CPU is logically closest to our hot cache data.
2027 	 */
2028 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
2029 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
2030 
2031 	rcu_read_lock();
2032 	for_each_domain(cpu, sd) {
2033 		if (sd->flags & SD_WAKE_AFFINE) {
2034 			int best_cpu;
2035 
2036 			/*
2037 			 * "this_cpu" is cheaper to preempt than a
2038 			 * remote processor.
2039 			 */
2040 			if (this_cpu != -1 &&
2041 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2042 				rcu_read_unlock();
2043 				return this_cpu;
2044 			}
2045 
2046 			best_cpu = cpumask_any_and_distribute(lowest_mask,
2047 							      sched_domain_span(sd));
2048 			if (best_cpu < nr_cpu_ids) {
2049 				rcu_read_unlock();
2050 				return best_cpu;
2051 			}
2052 		}
2053 	}
2054 	rcu_read_unlock();
2055 
2056 	/*
2057 	 * And finally, if there were no matches within the domains
2058 	 * just give the caller *something* to work with from the compatible
2059 	 * locations.
2060 	 */
2061 	if (this_cpu != -1)
2062 		return this_cpu;
2063 
2064 	cpu = cpumask_any_distribute(lowest_mask);
2065 	if (cpu < nr_cpu_ids)
2066 		return cpu;
2067 
2068 	return -1;
2069 }
2070 
2071 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)2072 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
2073 {
2074 	struct rq *lowest_rq = NULL;
2075 	int tries;
2076 	int cpu;
2077 
2078 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
2079 		cpu = find_lowest_rq(task);
2080 
2081 		if ((cpu == -1) || (cpu == rq->cpu))
2082 			break;
2083 
2084 		lowest_rq = cpu_rq(cpu);
2085 
2086 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
2087 			/*
2088 			 * Target rq has tasks of equal or higher priority,
2089 			 * retrying does not release any lock and is unlikely
2090 			 * to yield a different result.
2091 			 */
2092 			lowest_rq = NULL;
2093 			break;
2094 		}
2095 
2096 		/* if the prio of this runqueue changed, try again */
2097 		if (double_lock_balance(rq, lowest_rq)) {
2098 			/*
2099 			 * We had to unlock the run queue. In
2100 			 * the mean time, task could have
2101 			 * migrated already or had its affinity changed.
2102 			 * Also make sure that it wasn't scheduled on its rq.
2103 			 * It is possible the task was scheduled, set
2104 			 * "migrate_disabled" and then got preempted, so we must
2105 			 * check the task migration disable flag here too.
2106 			 */
2107 			if (unlikely(task_rq(task) != rq ||
2108 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2109 				     task_on_cpu(rq, task) ||
2110 				     !rt_task(task) ||
2111 				     is_migration_disabled(task) ||
2112 				     !task_on_rq_queued(task))) {
2113 
2114 				double_unlock_balance(rq, lowest_rq);
2115 				lowest_rq = NULL;
2116 				break;
2117 			}
2118 		}
2119 
2120 		/* If this rq is still suitable use it. */
2121 		if (lowest_rq->rt.highest_prio.curr > task->prio)
2122 			break;
2123 
2124 		/* try again */
2125 		double_unlock_balance(rq, lowest_rq);
2126 		lowest_rq = NULL;
2127 	}
2128 
2129 	return lowest_rq;
2130 }
2131 
pick_next_pushable_task(struct rq * rq)2132 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2133 {
2134 	struct task_struct *p;
2135 
2136 	if (!has_pushable_tasks(rq))
2137 		return NULL;
2138 
2139 	p = plist_first_entry(&rq->rt.pushable_tasks,
2140 			      struct task_struct, pushable_tasks);
2141 
2142 	BUG_ON(rq->cpu != task_cpu(p));
2143 	BUG_ON(task_current(rq, p));
2144 	BUG_ON(p->nr_cpus_allowed <= 1);
2145 
2146 	BUG_ON(!task_on_rq_queued(p));
2147 	BUG_ON(!rt_task(p));
2148 
2149 	return p;
2150 }
2151 
2152 /*
2153  * If the current CPU has more than one RT task, see if the non
2154  * running task can migrate over to a CPU that is running a task
2155  * of lesser priority.
2156  */
push_rt_task(struct rq * rq,bool pull)2157 static int push_rt_task(struct rq *rq, bool pull)
2158 {
2159 	struct task_struct *next_task;
2160 	struct rq *lowest_rq;
2161 	int ret = 0;
2162 
2163 	if (!rq->rt.overloaded)
2164 		return 0;
2165 
2166 	next_task = pick_next_pushable_task(rq);
2167 	if (!next_task)
2168 		return 0;
2169 
2170 retry:
2171 	/*
2172 	 * It's possible that the next_task slipped in of
2173 	 * higher priority than current. If that's the case
2174 	 * just reschedule current.
2175 	 */
2176 	if (unlikely(next_task->prio < rq->curr->prio)) {
2177 		resched_curr(rq);
2178 		return 0;
2179 	}
2180 
2181 	if (is_migration_disabled(next_task)) {
2182 		struct task_struct *push_task = NULL;
2183 		int cpu;
2184 
2185 		if (!pull || rq->push_busy)
2186 			return 0;
2187 
2188 		/*
2189 		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2190 		 * make sense. Per the above priority check, curr has to
2191 		 * be of higher priority than next_task, so no need to
2192 		 * reschedule when bailing out.
2193 		 *
2194 		 * Note that the stoppers are masqueraded as SCHED_FIFO
2195 		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2196 		 */
2197 		if (rq->curr->sched_class != &rt_sched_class)
2198 			return 0;
2199 
2200 		cpu = find_lowest_rq(rq->curr);
2201 		if (cpu == -1 || cpu == rq->cpu)
2202 			return 0;
2203 
2204 		/*
2205 		 * Given we found a CPU with lower priority than @next_task,
2206 		 * therefore it should be running. However we cannot migrate it
2207 		 * to this other CPU, instead attempt to push the current
2208 		 * running task on this CPU away.
2209 		 */
2210 		push_task = get_push_task(rq);
2211 		if (push_task) {
2212 			preempt_disable();
2213 			raw_spin_rq_unlock(rq);
2214 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2215 					    push_task, &rq->push_work);
2216 			preempt_enable();
2217 			raw_spin_rq_lock(rq);
2218 		}
2219 
2220 		return 0;
2221 	}
2222 
2223 	if (WARN_ON(next_task == rq->curr))
2224 		return 0;
2225 
2226 	/* We might release rq lock */
2227 	get_task_struct(next_task);
2228 
2229 	/* find_lock_lowest_rq locks the rq if found */
2230 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2231 	if (!lowest_rq) {
2232 		struct task_struct *task;
2233 		/*
2234 		 * find_lock_lowest_rq releases rq->lock
2235 		 * so it is possible that next_task has migrated.
2236 		 *
2237 		 * We need to make sure that the task is still on the same
2238 		 * run-queue and is also still the next task eligible for
2239 		 * pushing.
2240 		 */
2241 		task = pick_next_pushable_task(rq);
2242 		if (task == next_task) {
2243 			/*
2244 			 * The task hasn't migrated, and is still the next
2245 			 * eligible task, but we failed to find a run-queue
2246 			 * to push it to.  Do not retry in this case, since
2247 			 * other CPUs will pull from us when ready.
2248 			 */
2249 			goto out;
2250 		}
2251 
2252 		if (!task)
2253 			/* No more tasks, just exit */
2254 			goto out;
2255 
2256 		/*
2257 		 * Something has shifted, try again.
2258 		 */
2259 		put_task_struct(next_task);
2260 		next_task = task;
2261 		goto retry;
2262 	}
2263 
2264 	deactivate_task(rq, next_task, 0);
2265 	set_task_cpu(next_task, lowest_rq->cpu);
2266 	activate_task(lowest_rq, next_task, 0);
2267 	resched_curr(lowest_rq);
2268 	ret = 1;
2269 
2270 	double_unlock_balance(rq, lowest_rq);
2271 out:
2272 	put_task_struct(next_task);
2273 
2274 	return ret;
2275 }
2276 
push_rt_tasks(struct rq * rq)2277 static void push_rt_tasks(struct rq *rq)
2278 {
2279 	/* push_rt_task will return true if it moved an RT */
2280 	while (push_rt_task(rq, false))
2281 		;
2282 }
2283 
2284 #ifdef HAVE_RT_PUSH_IPI
2285 
2286 /*
2287  * When a high priority task schedules out from a CPU and a lower priority
2288  * task is scheduled in, a check is made to see if there's any RT tasks
2289  * on other CPUs that are waiting to run because a higher priority RT task
2290  * is currently running on its CPU. In this case, the CPU with multiple RT
2291  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2292  * up that may be able to run one of its non-running queued RT tasks.
2293  *
2294  * All CPUs with overloaded RT tasks need to be notified as there is currently
2295  * no way to know which of these CPUs have the highest priority task waiting
2296  * to run. Instead of trying to take a spinlock on each of these CPUs,
2297  * which has shown to cause large latency when done on machines with many
2298  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2299  * RT tasks waiting to run.
2300  *
2301  * Just sending an IPI to each of the CPUs is also an issue, as on large
2302  * count CPU machines, this can cause an IPI storm on a CPU, especially
2303  * if its the only CPU with multiple RT tasks queued, and a large number
2304  * of CPUs scheduling a lower priority task at the same time.
2305  *
2306  * Each root domain has its own irq work function that can iterate over
2307  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2308  * task must be checked if there's one or many CPUs that are lowering
2309  * their priority, there's a single irq work iterator that will try to
2310  * push off RT tasks that are waiting to run.
2311  *
2312  * When a CPU schedules a lower priority task, it will kick off the
2313  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2314  * As it only takes the first CPU that schedules a lower priority task
2315  * to start the process, the rto_start variable is incremented and if
2316  * the atomic result is one, then that CPU will try to take the rto_lock.
2317  * This prevents high contention on the lock as the process handles all
2318  * CPUs scheduling lower priority tasks.
2319  *
2320  * All CPUs that are scheduling a lower priority task will increment the
2321  * rt_loop_next variable. This will make sure that the irq work iterator
2322  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2323  * priority task, even if the iterator is in the middle of a scan. Incrementing
2324  * the rt_loop_next will cause the iterator to perform another scan.
2325  *
2326  */
rto_next_cpu(struct root_domain * rd)2327 static int rto_next_cpu(struct root_domain *rd)
2328 {
2329 	int next;
2330 	int cpu;
2331 
2332 	/*
2333 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2334 	 * rt_next_cpu() will simply return the first CPU found in
2335 	 * the rto_mask.
2336 	 *
2337 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2338 	 * will return the next CPU found in the rto_mask.
2339 	 *
2340 	 * If there are no more CPUs left in the rto_mask, then a check is made
2341 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2342 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2343 	 * without any locking.
2344 	 */
2345 	for (;;) {
2346 
2347 		/* When rto_cpu is -1 this acts like cpumask_first() */
2348 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2349 
2350 		/* this will be any CPU in the rd->rto_mask, and can be a halted cpu update it */
2351 		trace_android_rvh_rto_next_cpu(rd->rto_cpu, rd->rto_mask, &cpu);
2352 
2353 		rd->rto_cpu = cpu;
2354 
2355 		if (cpu < nr_cpu_ids)
2356 			return cpu;
2357 
2358 		rd->rto_cpu = -1;
2359 
2360 		/*
2361 		 * ACQUIRE ensures we see the @rto_mask changes
2362 		 * made prior to the @next value observed.
2363 		 *
2364 		 * Matches WMB in rt_set_overload().
2365 		 */
2366 		next = atomic_read_acquire(&rd->rto_loop_next);
2367 
2368 		if (rd->rto_loop == next)
2369 			break;
2370 
2371 		rd->rto_loop = next;
2372 	}
2373 
2374 	return -1;
2375 }
2376 
rto_start_trylock(atomic_t * v)2377 static inline bool rto_start_trylock(atomic_t *v)
2378 {
2379 	return !atomic_cmpxchg_acquire(v, 0, 1);
2380 }
2381 
rto_start_unlock(atomic_t * v)2382 static inline void rto_start_unlock(atomic_t *v)
2383 {
2384 	atomic_set_release(v, 0);
2385 }
2386 
tell_cpu_to_push(struct rq * rq)2387 static void tell_cpu_to_push(struct rq *rq)
2388 {
2389 	int cpu = -1;
2390 
2391 	/* Keep the loop going if the IPI is currently active */
2392 	atomic_inc(&rq->rd->rto_loop_next);
2393 
2394 	/* Only one CPU can initiate a loop at a time */
2395 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2396 		return;
2397 
2398 	raw_spin_lock(&rq->rd->rto_lock);
2399 
2400 	/*
2401 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2402 	 * then the IPI is still running and will continue due to the
2403 	 * update to loop_next, and nothing needs to be done here.
2404 	 * Otherwise it is finishing up and an ipi needs to be sent.
2405 	 */
2406 	if (rq->rd->rto_cpu < 0)
2407 		cpu = rto_next_cpu(rq->rd);
2408 
2409 	raw_spin_unlock(&rq->rd->rto_lock);
2410 
2411 	rto_start_unlock(&rq->rd->rto_loop_start);
2412 
2413 	if (cpu >= 0) {
2414 		/* Make sure the rd does not get freed while pushing */
2415 		sched_get_rd(rq->rd);
2416 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2417 	}
2418 }
2419 
2420 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2421 void rto_push_irq_work_func(struct irq_work *work)
2422 {
2423 	struct root_domain *rd =
2424 		container_of(work, struct root_domain, rto_push_work);
2425 	struct rq *rq;
2426 	int cpu;
2427 
2428 	rq = this_rq();
2429 
2430 	/*
2431 	 * We do not need to grab the lock to check for has_pushable_tasks.
2432 	 * When it gets updated, a check is made if a push is possible.
2433 	 */
2434 	if (has_pushable_tasks(rq)) {
2435 		raw_spin_rq_lock(rq);
2436 		while (push_rt_task(rq, true))
2437 			;
2438 		raw_spin_rq_unlock(rq);
2439 	}
2440 
2441 	raw_spin_lock(&rd->rto_lock);
2442 
2443 	/* Pass the IPI to the next rt overloaded queue */
2444 	cpu = rto_next_cpu(rd);
2445 
2446 	raw_spin_unlock(&rd->rto_lock);
2447 
2448 	if (cpu < 0) {
2449 		sched_put_rd(rd);
2450 		return;
2451 	}
2452 
2453 	/* Try the next RT overloaded CPU */
2454 	irq_work_queue_on(&rd->rto_push_work, cpu);
2455 }
2456 #endif /* HAVE_RT_PUSH_IPI */
2457 
pull_rt_task(struct rq * this_rq)2458 static void pull_rt_task(struct rq *this_rq)
2459 {
2460 	int this_cpu = this_rq->cpu, cpu;
2461 	bool resched = false;
2462 	struct task_struct *p, *push_task;
2463 	struct rq *src_rq;
2464 	int rt_overload_count = rt_overloaded(this_rq);
2465 
2466 	if (likely(!rt_overload_count))
2467 		return;
2468 
2469 	/*
2470 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2471 	 * see overloaded we must also see the rto_mask bit.
2472 	 */
2473 	smp_rmb();
2474 
2475 	/* If we are the only overloaded CPU do nothing */
2476 	if (rt_overload_count == 1 &&
2477 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2478 		return;
2479 
2480 #ifdef HAVE_RT_PUSH_IPI
2481 	if (sched_feat(RT_PUSH_IPI)) {
2482 		tell_cpu_to_push(this_rq);
2483 		return;
2484 	}
2485 #endif
2486 
2487 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2488 		if (this_cpu == cpu)
2489 			continue;
2490 
2491 		src_rq = cpu_rq(cpu);
2492 
2493 		/*
2494 		 * Don't bother taking the src_rq->lock if the next highest
2495 		 * task is known to be lower-priority than our current task.
2496 		 * This may look racy, but if this value is about to go
2497 		 * logically higher, the src_rq will push this task away.
2498 		 * And if its going logically lower, we do not care
2499 		 */
2500 		if (src_rq->rt.highest_prio.next >=
2501 		    this_rq->rt.highest_prio.curr)
2502 			continue;
2503 
2504 		/*
2505 		 * We can potentially drop this_rq's lock in
2506 		 * double_lock_balance, and another CPU could
2507 		 * alter this_rq
2508 		 */
2509 		push_task = NULL;
2510 		double_lock_balance(this_rq, src_rq);
2511 
2512 		/*
2513 		 * We can pull only a task, which is pushable
2514 		 * on its rq, and no others.
2515 		 */
2516 		p = pick_highest_pushable_task(src_rq, this_cpu);
2517 
2518 		/*
2519 		 * Do we have an RT task that preempts
2520 		 * the to-be-scheduled task?
2521 		 */
2522 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2523 			WARN_ON(p == src_rq->curr);
2524 			WARN_ON(!task_on_rq_queued(p));
2525 
2526 			/*
2527 			 * There's a chance that p is higher in priority
2528 			 * than what's currently running on its CPU.
2529 			 * This is just that p is waking up and hasn't
2530 			 * had a chance to schedule. We only pull
2531 			 * p if it is lower in priority than the
2532 			 * current task on the run queue
2533 			 */
2534 			if (p->prio < src_rq->curr->prio)
2535 				goto skip;
2536 
2537 			if (is_migration_disabled(p)) {
2538 				push_task = get_push_task(src_rq);
2539 			} else {
2540 				deactivate_task(src_rq, p, 0);
2541 				set_task_cpu(p, this_cpu);
2542 				activate_task(this_rq, p, 0);
2543 				resched = true;
2544 			}
2545 			/*
2546 			 * We continue with the search, just in
2547 			 * case there's an even higher prio task
2548 			 * in another runqueue. (low likelihood
2549 			 * but possible)
2550 			 */
2551 		}
2552 skip:
2553 		double_unlock_balance(this_rq, src_rq);
2554 
2555 		if (push_task) {
2556 			preempt_disable();
2557 			raw_spin_rq_unlock(this_rq);
2558 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2559 					    push_task, &src_rq->push_work);
2560 			preempt_enable();
2561 			raw_spin_rq_lock(this_rq);
2562 		}
2563 	}
2564 
2565 	if (resched)
2566 		resched_curr(this_rq);
2567 }
2568 
2569 /*
2570  * If we are not running and we are not going to reschedule soon, we should
2571  * try to push tasks away now
2572  */
task_woken_rt(struct rq * rq,struct task_struct * p)2573 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2574 {
2575 	bool need_to_push = !task_on_cpu(rq, p) &&
2576 			    !test_tsk_need_resched(rq->curr) &&
2577 			    p->nr_cpus_allowed > 1 &&
2578 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2579 			    (rq->curr->nr_cpus_allowed < 2 ||
2580 			     rq->curr->prio <= p->prio);
2581 
2582 	if (need_to_push)
2583 		push_rt_tasks(rq);
2584 }
2585 
2586 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2587 static void rq_online_rt(struct rq *rq)
2588 {
2589 	if (rq->rt.overloaded)
2590 		rt_set_overload(rq);
2591 
2592 	__enable_runtime(rq);
2593 
2594 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2595 }
2596 
2597 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2598 static void rq_offline_rt(struct rq *rq)
2599 {
2600 	if (rq->rt.overloaded)
2601 		rt_clear_overload(rq);
2602 
2603 	__disable_runtime(rq);
2604 
2605 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2606 }
2607 
2608 /*
2609  * When switch from the rt queue, we bring ourselves to a position
2610  * that we might want to pull RT tasks from other runqueues.
2611  */
switched_from_rt(struct rq * rq,struct task_struct * p)2612 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2613 {
2614 	/*
2615 	 * If there are other RT tasks then we will reschedule
2616 	 * and the scheduling of the other RT tasks will handle
2617 	 * the balancing. But if we are the last RT task
2618 	 * we may need to handle the pulling of RT tasks
2619 	 * now.
2620 	 */
2621 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2622 		return;
2623 
2624 	rt_queue_pull_task(rq);
2625 }
2626 
init_sched_rt_class(void)2627 void __init init_sched_rt_class(void)
2628 {
2629 	unsigned int i;
2630 
2631 	for_each_possible_cpu(i) {
2632 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2633 					GFP_KERNEL, cpu_to_node(i));
2634 	}
2635 }
2636 #endif /* CONFIG_SMP */
2637 
2638 /*
2639  * When switching a task to RT, we may overload the runqueue
2640  * with RT tasks. In this case we try to push them off to
2641  * other runqueues.
2642  */
switched_to_rt(struct rq * rq,struct task_struct * p)2643 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2644 {
2645 	/*
2646 	 * If we are running, update the avg_rt tracking, as the running time
2647 	 * will now on be accounted into the latter.
2648 	 */
2649 	if (task_current(rq, p)) {
2650 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2651 		return;
2652 	}
2653 
2654 	/*
2655 	 * If we are not running we may need to preempt the current
2656 	 * running task. If that current running task is also an RT task
2657 	 * then see if we can move to another run queue.
2658 	 */
2659 	if (task_on_rq_queued(p)) {
2660 #ifdef CONFIG_SMP
2661 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2662 			rt_queue_push_tasks(rq);
2663 #endif /* CONFIG_SMP */
2664 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2665 			resched_curr(rq);
2666 	}
2667 }
2668 
2669 /*
2670  * Priority of the task has changed. This may cause
2671  * us to initiate a push or pull.
2672  */
2673 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2674 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2675 {
2676 	if (!task_on_rq_queued(p))
2677 		return;
2678 
2679 	if (task_current(rq, p)) {
2680 #ifdef CONFIG_SMP
2681 		/*
2682 		 * If our priority decreases while running, we
2683 		 * may need to pull tasks to this runqueue.
2684 		 */
2685 		if (oldprio < p->prio)
2686 			rt_queue_pull_task(rq);
2687 
2688 		/*
2689 		 * If there's a higher priority task waiting to run
2690 		 * then reschedule.
2691 		 */
2692 		if (p->prio > rq->rt.highest_prio.curr)
2693 			resched_curr(rq);
2694 #else
2695 		/* For UP simply resched on drop of prio */
2696 		if (oldprio < p->prio)
2697 			resched_curr(rq);
2698 #endif /* CONFIG_SMP */
2699 	} else {
2700 		/*
2701 		 * This task is not running, but if it is
2702 		 * greater than the current running task
2703 		 * then reschedule.
2704 		 */
2705 		if (p->prio < rq->curr->prio)
2706 			resched_curr(rq);
2707 	}
2708 }
2709 
2710 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2711 static void watchdog(struct rq *rq, struct task_struct *p)
2712 {
2713 	unsigned long soft, hard;
2714 
2715 	/* max may change after cur was read, this will be fixed next tick */
2716 	soft = task_rlimit(p, RLIMIT_RTTIME);
2717 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2718 
2719 	if (soft != RLIM_INFINITY) {
2720 		unsigned long next;
2721 
2722 		if (p->rt.watchdog_stamp != jiffies) {
2723 			p->rt.timeout++;
2724 			p->rt.watchdog_stamp = jiffies;
2725 		}
2726 
2727 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2728 		if (p->rt.timeout > next) {
2729 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2730 						    p->se.sum_exec_runtime);
2731 		}
2732 	}
2733 }
2734 #else
watchdog(struct rq * rq,struct task_struct * p)2735 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2736 #endif
2737 
2738 /*
2739  * scheduler tick hitting a task of our scheduling class.
2740  *
2741  * NOTE: This function can be called remotely by the tick offload that
2742  * goes along full dynticks. Therefore no local assumption can be made
2743  * and everything must be accessed through the @rq and @curr passed in
2744  * parameters.
2745  */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2746 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2747 {
2748 	struct sched_rt_entity *rt_se = &p->rt;
2749 
2750 	update_curr_rt(rq);
2751 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2752 	trace_android_rvh_update_rt_rq_load_avg(rq_clock_pelt(rq), rq, p, 1);
2753 
2754 	watchdog(rq, p);
2755 
2756 	/*
2757 	 * RR tasks need a special form of timeslice management.
2758 	 * FIFO tasks have no timeslices.
2759 	 */
2760 	if (p->policy != SCHED_RR)
2761 		return;
2762 
2763 	if (--p->rt.time_slice)
2764 		return;
2765 
2766 	p->rt.time_slice = sched_rr_timeslice;
2767 
2768 	/*
2769 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2770 	 * the only element on the queue
2771 	 */
2772 	for_each_sched_rt_entity(rt_se) {
2773 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2774 			requeue_task_rt(rq, p, 0);
2775 			resched_curr(rq);
2776 			return;
2777 		}
2778 	}
2779 }
2780 
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2781 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2782 {
2783 	/*
2784 	 * Time slice is 0 for SCHED_FIFO tasks
2785 	 */
2786 	if (task->policy == SCHED_RR)
2787 		return sched_rr_timeslice;
2788 	else
2789 		return 0;
2790 }
2791 
2792 #ifdef CONFIG_SCHED_CORE
task_is_throttled_rt(struct task_struct * p,int cpu)2793 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2794 {
2795 	struct rt_rq *rt_rq;
2796 
2797 #ifdef CONFIG_RT_GROUP_SCHED
2798 	rt_rq = task_group(p)->rt_rq[cpu];
2799 #else
2800 	rt_rq = &cpu_rq(cpu)->rt;
2801 #endif
2802 
2803 	return rt_rq_throttled(rt_rq);
2804 }
2805 #endif
2806 
2807 DEFINE_SCHED_CLASS(rt) = {
2808 
2809 	.enqueue_task		= enqueue_task_rt,
2810 	.dequeue_task		= dequeue_task_rt,
2811 	.yield_task		= yield_task_rt,
2812 
2813 	.check_preempt_curr	= check_preempt_curr_rt,
2814 
2815 	.pick_next_task		= pick_next_task_rt,
2816 	.put_prev_task		= put_prev_task_rt,
2817 	.set_next_task          = set_next_task_rt,
2818 
2819 #ifdef CONFIG_SMP
2820 	.balance		= balance_rt,
2821 	.pick_task		= pick_task_rt,
2822 	.select_task_rq		= select_task_rq_rt,
2823 	.set_cpus_allowed       = set_cpus_allowed_common,
2824 	.rq_online              = rq_online_rt,
2825 	.rq_offline             = rq_offline_rt,
2826 	.task_woken		= task_woken_rt,
2827 	.switched_from		= switched_from_rt,
2828 	.find_lock_rq		= find_lock_lowest_rq,
2829 #endif
2830 
2831 	.task_tick		= task_tick_rt,
2832 
2833 	.get_rr_interval	= get_rr_interval_rt,
2834 
2835 	.prio_changed		= prio_changed_rt,
2836 	.switched_to		= switched_to_rt,
2837 
2838 	.update_curr		= update_curr_rt,
2839 
2840 #ifdef CONFIG_SCHED_CORE
2841 	.task_is_throttled	= task_is_throttled_rt,
2842 #endif
2843 
2844 #ifdef CONFIG_UCLAMP_TASK
2845 	.uclamp_enabled		= 1,
2846 #endif
2847 };
2848 
2849 #ifdef CONFIG_RT_GROUP_SCHED
2850 /*
2851  * Ensure that the real time constraints are schedulable.
2852  */
2853 static DEFINE_MUTEX(rt_constraints_mutex);
2854 
tg_has_rt_tasks(struct task_group * tg)2855 static inline int tg_has_rt_tasks(struct task_group *tg)
2856 {
2857 	struct task_struct *task;
2858 	struct css_task_iter it;
2859 	int ret = 0;
2860 
2861 	/*
2862 	 * Autogroups do not have RT tasks; see autogroup_create().
2863 	 */
2864 	if (task_group_is_autogroup(tg))
2865 		return 0;
2866 
2867 	css_task_iter_start(&tg->css, 0, &it);
2868 	while (!ret && (task = css_task_iter_next(&it)))
2869 		ret |= rt_task(task);
2870 	css_task_iter_end(&it);
2871 
2872 	return ret;
2873 }
2874 
2875 struct rt_schedulable_data {
2876 	struct task_group *tg;
2877 	u64 rt_period;
2878 	u64 rt_runtime;
2879 };
2880 
tg_rt_schedulable(struct task_group * tg,void * data)2881 static int tg_rt_schedulable(struct task_group *tg, void *data)
2882 {
2883 	struct rt_schedulable_data *d = data;
2884 	struct task_group *child;
2885 	unsigned long total, sum = 0;
2886 	u64 period, runtime;
2887 
2888 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2889 	runtime = tg->rt_bandwidth.rt_runtime;
2890 
2891 	if (tg == d->tg) {
2892 		period = d->rt_period;
2893 		runtime = d->rt_runtime;
2894 	}
2895 
2896 	/*
2897 	 * Cannot have more runtime than the period.
2898 	 */
2899 	if (runtime > period && runtime != RUNTIME_INF)
2900 		return -EINVAL;
2901 
2902 	/*
2903 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2904 	 */
2905 	if (rt_bandwidth_enabled() && !runtime &&
2906 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2907 		return -EBUSY;
2908 
2909 	total = to_ratio(period, runtime);
2910 
2911 	/*
2912 	 * Nobody can have more than the global setting allows.
2913 	 */
2914 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2915 		return -EINVAL;
2916 
2917 	/*
2918 	 * The sum of our children's runtime should not exceed our own.
2919 	 */
2920 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2921 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2922 		runtime = child->rt_bandwidth.rt_runtime;
2923 
2924 		if (child == d->tg) {
2925 			period = d->rt_period;
2926 			runtime = d->rt_runtime;
2927 		}
2928 
2929 		sum += to_ratio(period, runtime);
2930 	}
2931 
2932 	if (sum > total)
2933 		return -EINVAL;
2934 
2935 	return 0;
2936 }
2937 
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2938 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2939 {
2940 	int ret;
2941 
2942 	struct rt_schedulable_data data = {
2943 		.tg = tg,
2944 		.rt_period = period,
2945 		.rt_runtime = runtime,
2946 	};
2947 
2948 	rcu_read_lock();
2949 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2950 	rcu_read_unlock();
2951 
2952 	return ret;
2953 }
2954 
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2955 static int tg_set_rt_bandwidth(struct task_group *tg,
2956 		u64 rt_period, u64 rt_runtime)
2957 {
2958 	int i, err = 0;
2959 
2960 	/*
2961 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2962 	 * kernel creating (and or operating) RT threads.
2963 	 */
2964 	if (tg == &root_task_group && rt_runtime == 0)
2965 		return -EINVAL;
2966 
2967 	/* No period doesn't make any sense. */
2968 	if (rt_period == 0)
2969 		return -EINVAL;
2970 
2971 	/*
2972 	 * Bound quota to defend quota against overflow during bandwidth shift.
2973 	 */
2974 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2975 		return -EINVAL;
2976 
2977 	mutex_lock(&rt_constraints_mutex);
2978 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2979 	if (err)
2980 		goto unlock;
2981 
2982 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2983 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2984 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2985 
2986 	for_each_possible_cpu(i) {
2987 		struct rt_rq *rt_rq = tg->rt_rq[i];
2988 
2989 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2990 		rt_rq->rt_runtime = rt_runtime;
2991 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2992 	}
2993 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2994 unlock:
2995 	mutex_unlock(&rt_constraints_mutex);
2996 
2997 	return err;
2998 }
2999 
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)3000 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
3001 {
3002 	u64 rt_runtime, rt_period;
3003 
3004 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
3005 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
3006 	if (rt_runtime_us < 0)
3007 		rt_runtime = RUNTIME_INF;
3008 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
3009 		return -EINVAL;
3010 
3011 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
3012 }
3013 
sched_group_rt_runtime(struct task_group * tg)3014 long sched_group_rt_runtime(struct task_group *tg)
3015 {
3016 	u64 rt_runtime_us;
3017 
3018 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
3019 		return -1;
3020 
3021 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
3022 	do_div(rt_runtime_us, NSEC_PER_USEC);
3023 	return rt_runtime_us;
3024 }
3025 
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)3026 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
3027 {
3028 	u64 rt_runtime, rt_period;
3029 
3030 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
3031 		return -EINVAL;
3032 
3033 	rt_period = rt_period_us * NSEC_PER_USEC;
3034 	rt_runtime = tg->rt_bandwidth.rt_runtime;
3035 
3036 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
3037 }
3038 
sched_group_rt_period(struct task_group * tg)3039 long sched_group_rt_period(struct task_group *tg)
3040 {
3041 	u64 rt_period_us;
3042 
3043 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
3044 	do_div(rt_period_us, NSEC_PER_USEC);
3045 	return rt_period_us;
3046 }
3047 
3048 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)3049 static int sched_rt_global_constraints(void)
3050 {
3051 	int ret = 0;
3052 
3053 	mutex_lock(&rt_constraints_mutex);
3054 	ret = __rt_schedulable(NULL, 0, 0);
3055 	mutex_unlock(&rt_constraints_mutex);
3056 
3057 	return ret;
3058 }
3059 #endif /* CONFIG_SYSCTL */
3060 
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)3061 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
3062 {
3063 	/* Don't accept realtime tasks when there is no way for them to run */
3064 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
3065 		return 0;
3066 
3067 	return 1;
3068 }
3069 
3070 #else /* !CONFIG_RT_GROUP_SCHED */
3071 
3072 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)3073 static int sched_rt_global_constraints(void)
3074 {
3075 	unsigned long flags;
3076 	int i;
3077 
3078 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
3079 	for_each_possible_cpu(i) {
3080 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
3081 
3082 		raw_spin_lock(&rt_rq->rt_runtime_lock);
3083 		rt_rq->rt_runtime = global_rt_runtime();
3084 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
3085 	}
3086 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
3087 
3088 	return 0;
3089 }
3090 #endif /* CONFIG_SYSCTL */
3091 #endif /* CONFIG_RT_GROUP_SCHED */
3092 
3093 #ifdef CONFIG_SYSCTL
sched_rt_global_validate(void)3094 static int sched_rt_global_validate(void)
3095 {
3096 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
3097 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
3098 		 ((u64)sysctl_sched_rt_runtime *
3099 			NSEC_PER_USEC > max_rt_runtime)))
3100 		return -EINVAL;
3101 
3102 	return 0;
3103 }
3104 
sched_rt_do_global(void)3105 static void sched_rt_do_global(void)
3106 {
3107 	unsigned long flags;
3108 
3109 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
3110 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
3111 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
3112 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
3113 }
3114 
sched_rt_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3115 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
3116 		size_t *lenp, loff_t *ppos)
3117 {
3118 	int old_period, old_runtime;
3119 	static DEFINE_MUTEX(mutex);
3120 	int ret;
3121 
3122 	mutex_lock(&mutex);
3123 	old_period = sysctl_sched_rt_period;
3124 	old_runtime = sysctl_sched_rt_runtime;
3125 
3126 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3127 
3128 	if (!ret && write) {
3129 		ret = sched_rt_global_validate();
3130 		if (ret)
3131 			goto undo;
3132 
3133 		ret = sched_dl_global_validate();
3134 		if (ret)
3135 			goto undo;
3136 
3137 		ret = sched_rt_global_constraints();
3138 		if (ret)
3139 			goto undo;
3140 
3141 		sched_rt_do_global();
3142 		sched_dl_do_global();
3143 	}
3144 	if (0) {
3145 undo:
3146 		sysctl_sched_rt_period = old_period;
3147 		sysctl_sched_rt_runtime = old_runtime;
3148 	}
3149 	mutex_unlock(&mutex);
3150 
3151 	return ret;
3152 }
3153 
sched_rr_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3154 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3155 		size_t *lenp, loff_t *ppos)
3156 {
3157 	int ret;
3158 	static DEFINE_MUTEX(mutex);
3159 
3160 	mutex_lock(&mutex);
3161 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3162 	/*
3163 	 * Make sure that internally we keep jiffies.
3164 	 * Also, writing zero resets the timeslice to default:
3165 	 */
3166 	if (!ret && write) {
3167 		sched_rr_timeslice =
3168 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3169 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3170 
3171 		if (sysctl_sched_rr_timeslice <= 0)
3172 			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3173 	}
3174 	mutex_unlock(&mutex);
3175 
3176 	return ret;
3177 }
3178 #endif /* CONFIG_SYSCTL */
3179 
3180 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)3181 void print_rt_stats(struct seq_file *m, int cpu)
3182 {
3183 	rt_rq_iter_t iter;
3184 	struct rt_rq *rt_rq;
3185 
3186 	rcu_read_lock();
3187 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3188 		print_rt_rq(m, cpu, rt_rq);
3189 	rcu_read_unlock();
3190 }
3191 #endif /* CONFIG_SCHED_DEBUG */
3192