1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel internal timers
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
8 *
9 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
10 * "A Kernel Model for Precision Timekeeping" by Dave Mills
11 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12 * serialize accesses to xtime/lost_ticks).
13 * Copyright (C) 1998 Andrea Arcangeli
14 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
15 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
16 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
17 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
18 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19 */
20
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47 #include <linux/sysctl.h>
48
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/div64.h>
52 #include <asm/timex.h>
53 #include <asm/io.h>
54
55 #include "tick-internal.h"
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/timer.h>
59 #undef CREATE_TRACE_POINTS
60 #include <trace/hooks/timer.h>
61
62 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
63
64 EXPORT_SYMBOL(jiffies_64);
65
66 /*
67 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
68 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
69 * level has a different granularity.
70 *
71 * The level granularity is: LVL_CLK_DIV ^ lvl
72 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
73 *
74 * The array level of a newly armed timer depends on the relative expiry
75 * time. The farther the expiry time is away the higher the array level and
76 * therefor the granularity becomes.
77 *
78 * Contrary to the original timer wheel implementation, which aims for 'exact'
79 * expiry of the timers, this implementation removes the need for recascading
80 * the timers into the lower array levels. The previous 'classic' timer wheel
81 * implementation of the kernel already violated the 'exact' expiry by adding
82 * slack to the expiry time to provide batched expiration. The granularity
83 * levels provide implicit batching.
84 *
85 * This is an optimization of the original timer wheel implementation for the
86 * majority of the timer wheel use cases: timeouts. The vast majority of
87 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
88 * the timeout expires it indicates that normal operation is disturbed, so it
89 * does not matter much whether the timeout comes with a slight delay.
90 *
91 * The only exception to this are networking timers with a small expiry
92 * time. They rely on the granularity. Those fit into the first wheel level,
93 * which has HZ granularity.
94 *
95 * We don't have cascading anymore. timers with a expiry time above the
96 * capacity of the last wheel level are force expired at the maximum timeout
97 * value of the last wheel level. From data sampling we know that the maximum
98 * value observed is 5 days (network connection tracking), so this should not
99 * be an issue.
100 *
101 * The currently chosen array constants values are a good compromise between
102 * array size and granularity.
103 *
104 * This results in the following granularity and range levels:
105 *
106 * HZ 1000 steps
107 * Level Offset Granularity Range
108 * 0 0 1 ms 0 ms - 63 ms
109 * 1 64 8 ms 64 ms - 511 ms
110 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
111 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
112 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
113 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
114 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
115 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
116 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
117 *
118 * HZ 300
119 * Level Offset Granularity Range
120 * 0 0 3 ms 0 ms - 210 ms
121 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
122 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
123 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
124 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
125 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
126 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
127 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
128 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
129 *
130 * HZ 250
131 * Level Offset Granularity Range
132 * 0 0 4 ms 0 ms - 255 ms
133 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
134 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
135 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
136 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
137 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
138 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
139 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
140 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
141 *
142 * HZ 100
143 * Level Offset Granularity Range
144 * 0 0 10 ms 0 ms - 630 ms
145 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
146 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
147 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
148 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
149 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
150 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
151 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
152 */
153
154 /* Clock divisor for the next level */
155 #define LVL_CLK_SHIFT 3
156 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
157 #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
158 #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
159 #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
160
161 /*
162 * The time start value for each level to select the bucket at enqueue
163 * time. We start from the last possible delta of the previous level
164 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
165 */
166 #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
167
168 /* Size of each clock level */
169 #define LVL_BITS 6
170 #define LVL_SIZE (1UL << LVL_BITS)
171 #define LVL_MASK (LVL_SIZE - 1)
172 #define LVL_OFFS(n) ((n) * LVL_SIZE)
173
174 /* Level depth */
175 #if HZ > 100
176 # define LVL_DEPTH 9
177 # else
178 # define LVL_DEPTH 8
179 #endif
180
181 /* The cutoff (max. capacity of the wheel) */
182 #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
183 #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
184
185 /*
186 * The resulting wheel size. If NOHZ is configured we allocate two
187 * wheels so we have a separate storage for the deferrable timers.
188 */
189 #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
190
191 #ifdef CONFIG_NO_HZ_COMMON
192 # define NR_BASES 2
193 # define BASE_STD 0
194 # define BASE_DEF 1
195 #else
196 # define NR_BASES 1
197 # define BASE_STD 0
198 # define BASE_DEF 0
199 #endif
200
201 struct timer_base {
202 raw_spinlock_t lock;
203 struct timer_list *running_timer;
204 #ifdef CONFIG_PREEMPT_RT
205 spinlock_t expiry_lock;
206 atomic_t timer_waiters;
207 #endif
208 unsigned long clk;
209 unsigned long next_expiry;
210 unsigned int cpu;
211 bool next_expiry_recalc;
212 bool is_idle;
213 bool timers_pending;
214 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
215 struct hlist_head vectors[WHEEL_SIZE];
216 } ____cacheline_aligned;
217
218 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
219
220 #ifdef CONFIG_NO_HZ_COMMON
221
222 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
223 static DEFINE_MUTEX(timer_keys_mutex);
224
225 static void timer_update_keys(struct work_struct *work);
226 static DECLARE_WORK(timer_update_work, timer_update_keys);
227
228 #ifdef CONFIG_SMP
229 static unsigned int sysctl_timer_migration = 1;
230
231 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
232
timers_update_migration(void)233 static void timers_update_migration(void)
234 {
235 if (sysctl_timer_migration && tick_nohz_active)
236 static_branch_enable(&timers_migration_enabled);
237 else
238 static_branch_disable(&timers_migration_enabled);
239 }
240
241 #ifdef CONFIG_SYSCTL
timer_migration_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)242 static int timer_migration_handler(struct ctl_table *table, int write,
243 void *buffer, size_t *lenp, loff_t *ppos)
244 {
245 int ret;
246
247 mutex_lock(&timer_keys_mutex);
248 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
249 if (!ret && write)
250 timers_update_migration();
251 mutex_unlock(&timer_keys_mutex);
252 return ret;
253 }
254
255 static struct ctl_table timer_sysctl[] = {
256 {
257 .procname = "timer_migration",
258 .data = &sysctl_timer_migration,
259 .maxlen = sizeof(unsigned int),
260 .mode = 0644,
261 .proc_handler = timer_migration_handler,
262 .extra1 = SYSCTL_ZERO,
263 .extra2 = SYSCTL_ONE,
264 },
265 {}
266 };
267
timer_sysctl_init(void)268 static int __init timer_sysctl_init(void)
269 {
270 register_sysctl("kernel", timer_sysctl);
271 return 0;
272 }
273 device_initcall(timer_sysctl_init);
274 #endif /* CONFIG_SYSCTL */
275 #else /* CONFIG_SMP */
timers_update_migration(void)276 static inline void timers_update_migration(void) { }
277 #endif /* !CONFIG_SMP */
278
timer_update_keys(struct work_struct * work)279 static void timer_update_keys(struct work_struct *work)
280 {
281 mutex_lock(&timer_keys_mutex);
282 timers_update_migration();
283 static_branch_enable(&timers_nohz_active);
284 mutex_unlock(&timer_keys_mutex);
285 }
286
timers_update_nohz(void)287 void timers_update_nohz(void)
288 {
289 schedule_work(&timer_update_work);
290 }
291
is_timers_nohz_active(void)292 static inline bool is_timers_nohz_active(void)
293 {
294 return static_branch_unlikely(&timers_nohz_active);
295 }
296 #else
is_timers_nohz_active(void)297 static inline bool is_timers_nohz_active(void) { return false; }
298 #endif /* NO_HZ_COMMON */
299
round_jiffies_common(unsigned long j,int cpu,bool force_up)300 static unsigned long round_jiffies_common(unsigned long j, int cpu,
301 bool force_up)
302 {
303 int rem;
304 unsigned long original = j;
305
306 /*
307 * We don't want all cpus firing their timers at once hitting the
308 * same lock or cachelines, so we skew each extra cpu with an extra
309 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
310 * already did this.
311 * The skew is done by adding 3*cpunr, then round, then subtract this
312 * extra offset again.
313 */
314 j += cpu * 3;
315
316 rem = j % HZ;
317
318 /*
319 * If the target jiffie is just after a whole second (which can happen
320 * due to delays of the timer irq, long irq off times etc etc) then
321 * we should round down to the whole second, not up. Use 1/4th second
322 * as cutoff for this rounding as an extreme upper bound for this.
323 * But never round down if @force_up is set.
324 */
325 if (rem < HZ/4 && !force_up) /* round down */
326 j = j - rem;
327 else /* round up */
328 j = j - rem + HZ;
329
330 /* now that we have rounded, subtract the extra skew again */
331 j -= cpu * 3;
332
333 /*
334 * Make sure j is still in the future. Otherwise return the
335 * unmodified value.
336 */
337 return time_is_after_jiffies(j) ? j : original;
338 }
339
340 /**
341 * __round_jiffies - function to round jiffies to a full second
342 * @j: the time in (absolute) jiffies that should be rounded
343 * @cpu: the processor number on which the timeout will happen
344 *
345 * __round_jiffies() rounds an absolute time in the future (in jiffies)
346 * up or down to (approximately) full seconds. This is useful for timers
347 * for which the exact time they fire does not matter too much, as long as
348 * they fire approximately every X seconds.
349 *
350 * By rounding these timers to whole seconds, all such timers will fire
351 * at the same time, rather than at various times spread out. The goal
352 * of this is to have the CPU wake up less, which saves power.
353 *
354 * The exact rounding is skewed for each processor to avoid all
355 * processors firing at the exact same time, which could lead
356 * to lock contention or spurious cache line bouncing.
357 *
358 * The return value is the rounded version of the @j parameter.
359 */
__round_jiffies(unsigned long j,int cpu)360 unsigned long __round_jiffies(unsigned long j, int cpu)
361 {
362 return round_jiffies_common(j, cpu, false);
363 }
364 EXPORT_SYMBOL_GPL(__round_jiffies);
365
366 /**
367 * __round_jiffies_relative - function to round jiffies to a full second
368 * @j: the time in (relative) jiffies that should be rounded
369 * @cpu: the processor number on which the timeout will happen
370 *
371 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
372 * up or down to (approximately) full seconds. This is useful for timers
373 * for which the exact time they fire does not matter too much, as long as
374 * they fire approximately every X seconds.
375 *
376 * By rounding these timers to whole seconds, all such timers will fire
377 * at the same time, rather than at various times spread out. The goal
378 * of this is to have the CPU wake up less, which saves power.
379 *
380 * The exact rounding is skewed for each processor to avoid all
381 * processors firing at the exact same time, which could lead
382 * to lock contention or spurious cache line bouncing.
383 *
384 * The return value is the rounded version of the @j parameter.
385 */
__round_jiffies_relative(unsigned long j,int cpu)386 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
387 {
388 unsigned long j0 = jiffies;
389
390 /* Use j0 because jiffies might change while we run */
391 return round_jiffies_common(j + j0, cpu, false) - j0;
392 }
393 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
394
395 /**
396 * round_jiffies - function to round jiffies to a full second
397 * @j: the time in (absolute) jiffies that should be rounded
398 *
399 * round_jiffies() rounds an absolute time in the future (in jiffies)
400 * up or down to (approximately) full seconds. This is useful for timers
401 * for which the exact time they fire does not matter too much, as long as
402 * they fire approximately every X seconds.
403 *
404 * By rounding these timers to whole seconds, all such timers will fire
405 * at the same time, rather than at various times spread out. The goal
406 * of this is to have the CPU wake up less, which saves power.
407 *
408 * The return value is the rounded version of the @j parameter.
409 */
round_jiffies(unsigned long j)410 unsigned long round_jiffies(unsigned long j)
411 {
412 return round_jiffies_common(j, raw_smp_processor_id(), false);
413 }
414 EXPORT_SYMBOL_GPL(round_jiffies);
415
416 /**
417 * round_jiffies_relative - function to round jiffies to a full second
418 * @j: the time in (relative) jiffies that should be rounded
419 *
420 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
421 * up or down to (approximately) full seconds. This is useful for timers
422 * for which the exact time they fire does not matter too much, as long as
423 * they fire approximately every X seconds.
424 *
425 * By rounding these timers to whole seconds, all such timers will fire
426 * at the same time, rather than at various times spread out. The goal
427 * of this is to have the CPU wake up less, which saves power.
428 *
429 * The return value is the rounded version of the @j parameter.
430 */
round_jiffies_relative(unsigned long j)431 unsigned long round_jiffies_relative(unsigned long j)
432 {
433 return __round_jiffies_relative(j, raw_smp_processor_id());
434 }
435 EXPORT_SYMBOL_GPL(round_jiffies_relative);
436
437 /**
438 * __round_jiffies_up - function to round jiffies up to a full second
439 * @j: the time in (absolute) jiffies that should be rounded
440 * @cpu: the processor number on which the timeout will happen
441 *
442 * This is the same as __round_jiffies() except that it will never
443 * round down. This is useful for timeouts for which the exact time
444 * of firing does not matter too much, as long as they don't fire too
445 * early.
446 */
__round_jiffies_up(unsigned long j,int cpu)447 unsigned long __round_jiffies_up(unsigned long j, int cpu)
448 {
449 return round_jiffies_common(j, cpu, true);
450 }
451 EXPORT_SYMBOL_GPL(__round_jiffies_up);
452
453 /**
454 * __round_jiffies_up_relative - function to round jiffies up to a full second
455 * @j: the time in (relative) jiffies that should be rounded
456 * @cpu: the processor number on which the timeout will happen
457 *
458 * This is the same as __round_jiffies_relative() except that it will never
459 * round down. This is useful for timeouts for which the exact time
460 * of firing does not matter too much, as long as they don't fire too
461 * early.
462 */
__round_jiffies_up_relative(unsigned long j,int cpu)463 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
464 {
465 unsigned long j0 = jiffies;
466
467 /* Use j0 because jiffies might change while we run */
468 return round_jiffies_common(j + j0, cpu, true) - j0;
469 }
470 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
471
472 /**
473 * round_jiffies_up - function to round jiffies up to a full second
474 * @j: the time in (absolute) jiffies that should be rounded
475 *
476 * This is the same as round_jiffies() except that it will never
477 * round down. This is useful for timeouts for which the exact time
478 * of firing does not matter too much, as long as they don't fire too
479 * early.
480 */
round_jiffies_up(unsigned long j)481 unsigned long round_jiffies_up(unsigned long j)
482 {
483 return round_jiffies_common(j, raw_smp_processor_id(), true);
484 }
485 EXPORT_SYMBOL_GPL(round_jiffies_up);
486
487 /**
488 * round_jiffies_up_relative - function to round jiffies up to a full second
489 * @j: the time in (relative) jiffies that should be rounded
490 *
491 * This is the same as round_jiffies_relative() except that it will never
492 * round down. This is useful for timeouts for which the exact time
493 * of firing does not matter too much, as long as they don't fire too
494 * early.
495 */
round_jiffies_up_relative(unsigned long j)496 unsigned long round_jiffies_up_relative(unsigned long j)
497 {
498 return __round_jiffies_up_relative(j, raw_smp_processor_id());
499 }
500 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
501
502
timer_get_idx(struct timer_list * timer)503 static inline unsigned int timer_get_idx(struct timer_list *timer)
504 {
505 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
506 }
507
timer_set_idx(struct timer_list * timer,unsigned int idx)508 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
509 {
510 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
511 idx << TIMER_ARRAYSHIFT;
512 }
513
514 /*
515 * Helper function to calculate the array index for a given expiry
516 * time.
517 */
calc_index(unsigned long expires,unsigned lvl,unsigned long * bucket_expiry)518 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
519 unsigned long *bucket_expiry)
520 {
521
522 /*
523 * The timer wheel has to guarantee that a timer does not fire
524 * early. Early expiry can happen due to:
525 * - Timer is armed at the edge of a tick
526 * - Truncation of the expiry time in the outer wheel levels
527 *
528 * Round up with level granularity to prevent this.
529 */
530 trace_android_vh_timer_calc_index(lvl, &expires);
531 expires = (expires >> LVL_SHIFT(lvl)) + 1;
532 *bucket_expiry = expires << LVL_SHIFT(lvl);
533 return LVL_OFFS(lvl) + (expires & LVL_MASK);
534 }
535
calc_wheel_index(unsigned long expires,unsigned long clk,unsigned long * bucket_expiry)536 static int calc_wheel_index(unsigned long expires, unsigned long clk,
537 unsigned long *bucket_expiry)
538 {
539 unsigned long delta = expires - clk;
540 unsigned int idx;
541
542 if (delta < LVL_START(1)) {
543 idx = calc_index(expires, 0, bucket_expiry);
544 } else if (delta < LVL_START(2)) {
545 idx = calc_index(expires, 1, bucket_expiry);
546 } else if (delta < LVL_START(3)) {
547 idx = calc_index(expires, 2, bucket_expiry);
548 } else if (delta < LVL_START(4)) {
549 idx = calc_index(expires, 3, bucket_expiry);
550 } else if (delta < LVL_START(5)) {
551 idx = calc_index(expires, 4, bucket_expiry);
552 } else if (delta < LVL_START(6)) {
553 idx = calc_index(expires, 5, bucket_expiry);
554 } else if (delta < LVL_START(7)) {
555 idx = calc_index(expires, 6, bucket_expiry);
556 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
557 idx = calc_index(expires, 7, bucket_expiry);
558 } else if ((long) delta < 0) {
559 idx = clk & LVL_MASK;
560 *bucket_expiry = clk;
561 } else {
562 /*
563 * Force expire obscene large timeouts to expire at the
564 * capacity limit of the wheel.
565 */
566 if (delta >= WHEEL_TIMEOUT_CUTOFF)
567 expires = clk + WHEEL_TIMEOUT_MAX;
568
569 idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
570 }
571 return idx;
572 }
573
574 static void
trigger_dyntick_cpu(struct timer_base * base,struct timer_list * timer)575 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
576 {
577 if (!is_timers_nohz_active())
578 return;
579
580 /*
581 * TODO: This wants some optimizing similar to the code below, but we
582 * will do that when we switch from push to pull for deferrable timers.
583 */
584 if (timer->flags & TIMER_DEFERRABLE) {
585 if (tick_nohz_full_cpu(base->cpu))
586 wake_up_nohz_cpu(base->cpu);
587 return;
588 }
589
590 /*
591 * We might have to IPI the remote CPU if the base is idle and the
592 * timer is not deferrable. If the other CPU is on the way to idle
593 * then it can't set base->is_idle as we hold the base lock:
594 */
595 if (base->is_idle)
596 wake_up_nohz_cpu(base->cpu);
597 }
598
599 /*
600 * Enqueue the timer into the hash bucket, mark it pending in
601 * the bitmap, store the index in the timer flags then wake up
602 * the target CPU if needed.
603 */
enqueue_timer(struct timer_base * base,struct timer_list * timer,unsigned int idx,unsigned long bucket_expiry)604 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
605 unsigned int idx, unsigned long bucket_expiry)
606 {
607
608 hlist_add_head(&timer->entry, base->vectors + idx);
609 __set_bit(idx, base->pending_map);
610 timer_set_idx(timer, idx);
611
612 trace_timer_start(timer, timer->expires, timer->flags);
613
614 /*
615 * Check whether this is the new first expiring timer. The
616 * effective expiry time of the timer is required here
617 * (bucket_expiry) instead of timer->expires.
618 */
619 if (time_before(bucket_expiry, base->next_expiry)) {
620 /*
621 * Set the next expiry time and kick the CPU so it
622 * can reevaluate the wheel:
623 */
624 base->next_expiry = bucket_expiry;
625 base->timers_pending = true;
626 base->next_expiry_recalc = false;
627 trigger_dyntick_cpu(base, timer);
628 }
629 }
630
internal_add_timer(struct timer_base * base,struct timer_list * timer)631 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
632 {
633 unsigned long bucket_expiry;
634 unsigned int idx;
635
636 idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
637 enqueue_timer(base, timer, idx, bucket_expiry);
638 }
639
640 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
641
642 static const struct debug_obj_descr timer_debug_descr;
643
644 struct timer_hint {
645 void (*function)(struct timer_list *t);
646 long offset;
647 };
648
649 #define TIMER_HINT(fn, container, timr, hintfn) \
650 { \
651 .function = fn, \
652 .offset = offsetof(container, hintfn) - \
653 offsetof(container, timr) \
654 }
655
656 static const struct timer_hint timer_hints[] = {
657 TIMER_HINT(delayed_work_timer_fn,
658 struct delayed_work, timer, work.func),
659 TIMER_HINT(kthread_delayed_work_timer_fn,
660 struct kthread_delayed_work, timer, work.func),
661 };
662
timer_debug_hint(void * addr)663 static void *timer_debug_hint(void *addr)
664 {
665 struct timer_list *timer = addr;
666 int i;
667
668 for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
669 if (timer_hints[i].function == timer->function) {
670 void (**fn)(void) = addr + timer_hints[i].offset;
671
672 return *fn;
673 }
674 }
675
676 return timer->function;
677 }
678
timer_is_static_object(void * addr)679 static bool timer_is_static_object(void *addr)
680 {
681 struct timer_list *timer = addr;
682
683 return (timer->entry.pprev == NULL &&
684 timer->entry.next == TIMER_ENTRY_STATIC);
685 }
686
687 /*
688 * fixup_init is called when:
689 * - an active object is initialized
690 */
timer_fixup_init(void * addr,enum debug_obj_state state)691 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
692 {
693 struct timer_list *timer = addr;
694
695 switch (state) {
696 case ODEBUG_STATE_ACTIVE:
697 del_timer_sync(timer);
698 debug_object_init(timer, &timer_debug_descr);
699 return true;
700 default:
701 return false;
702 }
703 }
704
705 /* Stub timer callback for improperly used timers. */
stub_timer(struct timer_list * unused)706 static void stub_timer(struct timer_list *unused)
707 {
708 WARN_ON(1);
709 }
710
711 /*
712 * fixup_activate is called when:
713 * - an active object is activated
714 * - an unknown non-static object is activated
715 */
timer_fixup_activate(void * addr,enum debug_obj_state state)716 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
717 {
718 struct timer_list *timer = addr;
719
720 switch (state) {
721 case ODEBUG_STATE_NOTAVAILABLE:
722 timer_setup(timer, stub_timer, 0);
723 return true;
724
725 case ODEBUG_STATE_ACTIVE:
726 WARN_ON(1);
727 fallthrough;
728 default:
729 return false;
730 }
731 }
732
733 /*
734 * fixup_free is called when:
735 * - an active object is freed
736 */
timer_fixup_free(void * addr,enum debug_obj_state state)737 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
738 {
739 struct timer_list *timer = addr;
740
741 switch (state) {
742 case ODEBUG_STATE_ACTIVE:
743 del_timer_sync(timer);
744 debug_object_free(timer, &timer_debug_descr);
745 return true;
746 default:
747 return false;
748 }
749 }
750
751 /*
752 * fixup_assert_init is called when:
753 * - an untracked/uninit-ed object is found
754 */
timer_fixup_assert_init(void * addr,enum debug_obj_state state)755 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
756 {
757 struct timer_list *timer = addr;
758
759 switch (state) {
760 case ODEBUG_STATE_NOTAVAILABLE:
761 timer_setup(timer, stub_timer, 0);
762 return true;
763 default:
764 return false;
765 }
766 }
767
768 static const struct debug_obj_descr timer_debug_descr = {
769 .name = "timer_list",
770 .debug_hint = timer_debug_hint,
771 .is_static_object = timer_is_static_object,
772 .fixup_init = timer_fixup_init,
773 .fixup_activate = timer_fixup_activate,
774 .fixup_free = timer_fixup_free,
775 .fixup_assert_init = timer_fixup_assert_init,
776 };
777
debug_timer_init(struct timer_list * timer)778 static inline void debug_timer_init(struct timer_list *timer)
779 {
780 debug_object_init(timer, &timer_debug_descr);
781 }
782
debug_timer_activate(struct timer_list * timer)783 static inline void debug_timer_activate(struct timer_list *timer)
784 {
785 debug_object_activate(timer, &timer_debug_descr);
786 }
787
debug_timer_deactivate(struct timer_list * timer)788 static inline void debug_timer_deactivate(struct timer_list *timer)
789 {
790 debug_object_deactivate(timer, &timer_debug_descr);
791 }
792
debug_timer_assert_init(struct timer_list * timer)793 static inline void debug_timer_assert_init(struct timer_list *timer)
794 {
795 debug_object_assert_init(timer, &timer_debug_descr);
796 }
797
798 static void do_init_timer(struct timer_list *timer,
799 void (*func)(struct timer_list *),
800 unsigned int flags,
801 const char *name, struct lock_class_key *key);
802
init_timer_on_stack_key(struct timer_list * timer,void (* func)(struct timer_list *),unsigned int flags,const char * name,struct lock_class_key * key)803 void init_timer_on_stack_key(struct timer_list *timer,
804 void (*func)(struct timer_list *),
805 unsigned int flags,
806 const char *name, struct lock_class_key *key)
807 {
808 debug_object_init_on_stack(timer, &timer_debug_descr);
809 do_init_timer(timer, func, flags, name, key);
810 }
811 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
812
destroy_timer_on_stack(struct timer_list * timer)813 void destroy_timer_on_stack(struct timer_list *timer)
814 {
815 debug_object_free(timer, &timer_debug_descr);
816 }
817 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
818
819 #else
debug_timer_init(struct timer_list * timer)820 static inline void debug_timer_init(struct timer_list *timer) { }
debug_timer_activate(struct timer_list * timer)821 static inline void debug_timer_activate(struct timer_list *timer) { }
debug_timer_deactivate(struct timer_list * timer)822 static inline void debug_timer_deactivate(struct timer_list *timer) { }
debug_timer_assert_init(struct timer_list * timer)823 static inline void debug_timer_assert_init(struct timer_list *timer) { }
824 #endif
825
debug_init(struct timer_list * timer)826 static inline void debug_init(struct timer_list *timer)
827 {
828 debug_timer_init(timer);
829 trace_timer_init(timer);
830 }
831
debug_deactivate(struct timer_list * timer)832 static inline void debug_deactivate(struct timer_list *timer)
833 {
834 debug_timer_deactivate(timer);
835 trace_timer_cancel(timer);
836 }
837
debug_assert_init(struct timer_list * timer)838 static inline void debug_assert_init(struct timer_list *timer)
839 {
840 debug_timer_assert_init(timer);
841 }
842
do_init_timer(struct timer_list * timer,void (* func)(struct timer_list *),unsigned int flags,const char * name,struct lock_class_key * key)843 static void do_init_timer(struct timer_list *timer,
844 void (*func)(struct timer_list *),
845 unsigned int flags,
846 const char *name, struct lock_class_key *key)
847 {
848 timer->entry.pprev = NULL;
849 timer->function = func;
850 if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
851 flags &= TIMER_INIT_FLAGS;
852 timer->flags = flags | raw_smp_processor_id();
853 lockdep_init_map(&timer->lockdep_map, name, key, 0);
854 }
855
856 /**
857 * init_timer_key - initialize a timer
858 * @timer: the timer to be initialized
859 * @func: timer callback function
860 * @flags: timer flags
861 * @name: name of the timer
862 * @key: lockdep class key of the fake lock used for tracking timer
863 * sync lock dependencies
864 *
865 * init_timer_key() must be done to a timer prior calling *any* of the
866 * other timer functions.
867 */
init_timer_key(struct timer_list * timer,void (* func)(struct timer_list *),unsigned int flags,const char * name,struct lock_class_key * key)868 void init_timer_key(struct timer_list *timer,
869 void (*func)(struct timer_list *), unsigned int flags,
870 const char *name, struct lock_class_key *key)
871 {
872 debug_init(timer);
873 do_init_timer(timer, func, flags, name, key);
874 }
875 EXPORT_SYMBOL(init_timer_key);
876
detach_timer(struct timer_list * timer,bool clear_pending)877 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
878 {
879 struct hlist_node *entry = &timer->entry;
880
881 debug_deactivate(timer);
882
883 __hlist_del(entry);
884 if (clear_pending)
885 entry->pprev = NULL;
886 entry->next = LIST_POISON2;
887 }
888
detach_if_pending(struct timer_list * timer,struct timer_base * base,bool clear_pending)889 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
890 bool clear_pending)
891 {
892 unsigned idx = timer_get_idx(timer);
893
894 if (!timer_pending(timer))
895 return 0;
896
897 if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
898 __clear_bit(idx, base->pending_map);
899 base->next_expiry_recalc = true;
900 }
901
902 detach_timer(timer, clear_pending);
903 return 1;
904 }
905
get_timer_cpu_base(u32 tflags,u32 cpu)906 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
907 {
908 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
909
910 /*
911 * If the timer is deferrable and NO_HZ_COMMON is set then we need
912 * to use the deferrable base.
913 */
914 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
915 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
916 return base;
917 }
918
get_timer_this_cpu_base(u32 tflags)919 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
920 {
921 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
922
923 /*
924 * If the timer is deferrable and NO_HZ_COMMON is set then we need
925 * to use the deferrable base.
926 */
927 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
928 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
929 return base;
930 }
931
get_timer_base(u32 tflags)932 static inline struct timer_base *get_timer_base(u32 tflags)
933 {
934 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
935 }
936
937 static inline struct timer_base *
get_target_base(struct timer_base * base,unsigned tflags)938 get_target_base(struct timer_base *base, unsigned tflags)
939 {
940 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
941 if (static_branch_likely(&timers_migration_enabled) &&
942 !(tflags & TIMER_PINNED))
943 return get_timer_cpu_base(tflags, get_nohz_timer_target());
944 #endif
945 return get_timer_this_cpu_base(tflags);
946 }
947
forward_timer_base(struct timer_base * base)948 static inline void forward_timer_base(struct timer_base *base)
949 {
950 unsigned long jnow = READ_ONCE(jiffies);
951
952 /*
953 * No need to forward if we are close enough below jiffies.
954 * Also while executing timers, base->clk is 1 offset ahead
955 * of jiffies to avoid endless requeuing to current jiffies.
956 */
957 if ((long)(jnow - base->clk) < 1)
958 return;
959
960 /*
961 * If the next expiry value is > jiffies, then we fast forward to
962 * jiffies otherwise we forward to the next expiry value.
963 */
964 if (time_after(base->next_expiry, jnow)) {
965 base->clk = jnow;
966 } else {
967 if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
968 return;
969 base->clk = base->next_expiry;
970 }
971 }
972
973
974 /*
975 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
976 * that all timers which are tied to this base are locked, and the base itself
977 * is locked too.
978 *
979 * So __run_timers/migrate_timers can safely modify all timers which could
980 * be found in the base->vectors array.
981 *
982 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
983 * to wait until the migration is done.
984 */
lock_timer_base(struct timer_list * timer,unsigned long * flags)985 static struct timer_base *lock_timer_base(struct timer_list *timer,
986 unsigned long *flags)
987 __acquires(timer->base->lock)
988 {
989 for (;;) {
990 struct timer_base *base;
991 u32 tf;
992
993 /*
994 * We need to use READ_ONCE() here, otherwise the compiler
995 * might re-read @tf between the check for TIMER_MIGRATING
996 * and spin_lock().
997 */
998 tf = READ_ONCE(timer->flags);
999
1000 if (!(tf & TIMER_MIGRATING)) {
1001 base = get_timer_base(tf);
1002 raw_spin_lock_irqsave(&base->lock, *flags);
1003 if (timer->flags == tf)
1004 return base;
1005 raw_spin_unlock_irqrestore(&base->lock, *flags);
1006 }
1007 cpu_relax();
1008 }
1009 }
1010
1011 #define MOD_TIMER_PENDING_ONLY 0x01
1012 #define MOD_TIMER_REDUCE 0x02
1013 #define MOD_TIMER_NOTPENDING 0x04
1014
1015 static inline int
__mod_timer(struct timer_list * timer,unsigned long expires,unsigned int options)1016 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1017 {
1018 unsigned long clk = 0, flags, bucket_expiry;
1019 struct timer_base *base, *new_base;
1020 unsigned int idx = UINT_MAX;
1021 int ret = 0;
1022
1023 debug_assert_init(timer);
1024
1025 /*
1026 * This is a common optimization triggered by the networking code - if
1027 * the timer is re-modified to have the same timeout or ends up in the
1028 * same array bucket then just return:
1029 */
1030 if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1031 /*
1032 * The downside of this optimization is that it can result in
1033 * larger granularity than you would get from adding a new
1034 * timer with this expiry.
1035 */
1036 long diff = timer->expires - expires;
1037
1038 if (!diff)
1039 return 1;
1040 if (options & MOD_TIMER_REDUCE && diff <= 0)
1041 return 1;
1042
1043 /*
1044 * We lock timer base and calculate the bucket index right
1045 * here. If the timer ends up in the same bucket, then we
1046 * just update the expiry time and avoid the whole
1047 * dequeue/enqueue dance.
1048 */
1049 base = lock_timer_base(timer, &flags);
1050 /*
1051 * Has @timer been shutdown? This needs to be evaluated
1052 * while holding base lock to prevent a race against the
1053 * shutdown code.
1054 */
1055 if (!timer->function)
1056 goto out_unlock;
1057
1058 forward_timer_base(base);
1059
1060 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1061 time_before_eq(timer->expires, expires)) {
1062 ret = 1;
1063 goto out_unlock;
1064 }
1065
1066 clk = base->clk;
1067 idx = calc_wheel_index(expires, clk, &bucket_expiry);
1068
1069 /*
1070 * Retrieve and compare the array index of the pending
1071 * timer. If it matches set the expiry to the new value so a
1072 * subsequent call will exit in the expires check above.
1073 */
1074 if (idx == timer_get_idx(timer)) {
1075 if (!(options & MOD_TIMER_REDUCE))
1076 timer->expires = expires;
1077 else if (time_after(timer->expires, expires))
1078 timer->expires = expires;
1079 ret = 1;
1080 goto out_unlock;
1081 }
1082 } else {
1083 base = lock_timer_base(timer, &flags);
1084 /*
1085 * Has @timer been shutdown? This needs to be evaluated
1086 * while holding base lock to prevent a race against the
1087 * shutdown code.
1088 */
1089 if (!timer->function)
1090 goto out_unlock;
1091
1092 forward_timer_base(base);
1093 }
1094
1095 ret = detach_if_pending(timer, base, false);
1096 if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1097 goto out_unlock;
1098
1099 new_base = get_target_base(base, timer->flags);
1100
1101 if (base != new_base) {
1102 /*
1103 * We are trying to schedule the timer on the new base.
1104 * However we can't change timer's base while it is running,
1105 * otherwise timer_delete_sync() can't detect that the timer's
1106 * handler yet has not finished. This also guarantees that the
1107 * timer is serialized wrt itself.
1108 */
1109 if (likely(base->running_timer != timer)) {
1110 /* See the comment in lock_timer_base() */
1111 timer->flags |= TIMER_MIGRATING;
1112
1113 raw_spin_unlock(&base->lock);
1114 base = new_base;
1115 raw_spin_lock(&base->lock);
1116 WRITE_ONCE(timer->flags,
1117 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1118 forward_timer_base(base);
1119 }
1120 }
1121
1122 debug_timer_activate(timer);
1123
1124 timer->expires = expires;
1125 /*
1126 * If 'idx' was calculated above and the base time did not advance
1127 * between calculating 'idx' and possibly switching the base, only
1128 * enqueue_timer() is required. Otherwise we need to (re)calculate
1129 * the wheel index via internal_add_timer().
1130 */
1131 if (idx != UINT_MAX && clk == base->clk)
1132 enqueue_timer(base, timer, idx, bucket_expiry);
1133 else
1134 internal_add_timer(base, timer);
1135
1136 out_unlock:
1137 raw_spin_unlock_irqrestore(&base->lock, flags);
1138
1139 return ret;
1140 }
1141
1142 /**
1143 * mod_timer_pending - Modify a pending timer's timeout
1144 * @timer: The pending timer to be modified
1145 * @expires: New absolute timeout in jiffies
1146 *
1147 * mod_timer_pending() is the same for pending timers as mod_timer(), but
1148 * will not activate inactive timers.
1149 *
1150 * If @timer->function == NULL then the start operation is silently
1151 * discarded.
1152 *
1153 * Return:
1154 * * %0 - The timer was inactive and not modified or was in
1155 * shutdown state and the operation was discarded
1156 * * %1 - The timer was active and requeued to expire at @expires
1157 */
mod_timer_pending(struct timer_list * timer,unsigned long expires)1158 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1159 {
1160 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1161 }
1162 EXPORT_SYMBOL(mod_timer_pending);
1163
1164 /**
1165 * mod_timer - Modify a timer's timeout
1166 * @timer: The timer to be modified
1167 * @expires: New absolute timeout in jiffies
1168 *
1169 * mod_timer(timer, expires) is equivalent to:
1170 *
1171 * del_timer(timer); timer->expires = expires; add_timer(timer);
1172 *
1173 * mod_timer() is more efficient than the above open coded sequence. In
1174 * case that the timer is inactive, the del_timer() part is a NOP. The
1175 * timer is in any case activated with the new expiry time @expires.
1176 *
1177 * Note that if there are multiple unserialized concurrent users of the
1178 * same timer, then mod_timer() is the only safe way to modify the timeout,
1179 * since add_timer() cannot modify an already running timer.
1180 *
1181 * If @timer->function == NULL then the start operation is silently
1182 * discarded. In this case the return value is 0 and meaningless.
1183 *
1184 * Return:
1185 * * %0 - The timer was inactive and started or was in shutdown
1186 * state and the operation was discarded
1187 * * %1 - The timer was active and requeued to expire at @expires or
1188 * the timer was active and not modified because @expires did
1189 * not change the effective expiry time
1190 */
mod_timer(struct timer_list * timer,unsigned long expires)1191 int mod_timer(struct timer_list *timer, unsigned long expires)
1192 {
1193 return __mod_timer(timer, expires, 0);
1194 }
1195 EXPORT_SYMBOL(mod_timer);
1196
1197 /**
1198 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1199 * @timer: The timer to be modified
1200 * @expires: New absolute timeout in jiffies
1201 *
1202 * timer_reduce() is very similar to mod_timer(), except that it will only
1203 * modify an enqueued timer if that would reduce the expiration time. If
1204 * @timer is not enqueued it starts the timer.
1205 *
1206 * If @timer->function == NULL then the start operation is silently
1207 * discarded.
1208 *
1209 * Return:
1210 * * %0 - The timer was inactive and started or was in shutdown
1211 * state and the operation was discarded
1212 * * %1 - The timer was active and requeued to expire at @expires or
1213 * the timer was active and not modified because @expires
1214 * did not change the effective expiry time such that the
1215 * timer would expire earlier than already scheduled
1216 */
timer_reduce(struct timer_list * timer,unsigned long expires)1217 int timer_reduce(struct timer_list *timer, unsigned long expires)
1218 {
1219 return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1220 }
1221 EXPORT_SYMBOL(timer_reduce);
1222
1223 /**
1224 * add_timer - Start a timer
1225 * @timer: The timer to be started
1226 *
1227 * Start @timer to expire at @timer->expires in the future. @timer->expires
1228 * is the absolute expiry time measured in 'jiffies'. When the timer expires
1229 * timer->function(timer) will be invoked from soft interrupt context.
1230 *
1231 * The @timer->expires and @timer->function fields must be set prior
1232 * to calling this function.
1233 *
1234 * If @timer->function == NULL then the start operation is silently
1235 * discarded.
1236 *
1237 * If @timer->expires is already in the past @timer will be queued to
1238 * expire at the next timer tick.
1239 *
1240 * This can only operate on an inactive timer. Attempts to invoke this on
1241 * an active timer are rejected with a warning.
1242 */
add_timer(struct timer_list * timer)1243 void add_timer(struct timer_list *timer)
1244 {
1245 if (WARN_ON_ONCE(timer_pending(timer)))
1246 return;
1247 __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1248 }
1249 EXPORT_SYMBOL(add_timer);
1250
1251 /**
1252 * add_timer_on - Start a timer on a particular CPU
1253 * @timer: The timer to be started
1254 * @cpu: The CPU to start it on
1255 *
1256 * Same as add_timer() except that it starts the timer on the given CPU.
1257 *
1258 * See add_timer() for further details.
1259 */
add_timer_on(struct timer_list * timer,int cpu)1260 void add_timer_on(struct timer_list *timer, int cpu)
1261 {
1262 struct timer_base *new_base, *base;
1263 unsigned long flags;
1264
1265 debug_assert_init(timer);
1266
1267 if (WARN_ON_ONCE(timer_pending(timer)))
1268 return;
1269
1270 new_base = get_timer_cpu_base(timer->flags, cpu);
1271
1272 /*
1273 * If @timer was on a different CPU, it should be migrated with the
1274 * old base locked to prevent other operations proceeding with the
1275 * wrong base locked. See lock_timer_base().
1276 */
1277 base = lock_timer_base(timer, &flags);
1278 /*
1279 * Has @timer been shutdown? This needs to be evaluated while
1280 * holding base lock to prevent a race against the shutdown code.
1281 */
1282 if (!timer->function)
1283 goto out_unlock;
1284
1285 if (base != new_base) {
1286 timer->flags |= TIMER_MIGRATING;
1287
1288 raw_spin_unlock(&base->lock);
1289 base = new_base;
1290 raw_spin_lock(&base->lock);
1291 WRITE_ONCE(timer->flags,
1292 (timer->flags & ~TIMER_BASEMASK) | cpu);
1293 }
1294 forward_timer_base(base);
1295
1296 debug_timer_activate(timer);
1297 internal_add_timer(base, timer);
1298 out_unlock:
1299 raw_spin_unlock_irqrestore(&base->lock, flags);
1300 }
1301 EXPORT_SYMBOL_GPL(add_timer_on);
1302
1303 /**
1304 * __timer_delete - Internal function: Deactivate a timer
1305 * @timer: The timer to be deactivated
1306 * @shutdown: If true, this indicates that the timer is about to be
1307 * shutdown permanently.
1308 *
1309 * If @shutdown is true then @timer->function is set to NULL under the
1310 * timer base lock which prevents further rearming of the time. In that
1311 * case any attempt to rearm @timer after this function returns will be
1312 * silently ignored.
1313 *
1314 * Return:
1315 * * %0 - The timer was not pending
1316 * * %1 - The timer was pending and deactivated
1317 */
__timer_delete(struct timer_list * timer,bool shutdown)1318 static int __timer_delete(struct timer_list *timer, bool shutdown)
1319 {
1320 struct timer_base *base;
1321 unsigned long flags;
1322 int ret = 0;
1323
1324 debug_assert_init(timer);
1325
1326 /*
1327 * If @shutdown is set then the lock has to be taken whether the
1328 * timer is pending or not to protect against a concurrent rearm
1329 * which might hit between the lockless pending check and the lock
1330 * aquisition. By taking the lock it is ensured that such a newly
1331 * enqueued timer is dequeued and cannot end up with
1332 * timer->function == NULL in the expiry code.
1333 *
1334 * If timer->function is currently executed, then this makes sure
1335 * that the callback cannot requeue the timer.
1336 */
1337 if (timer_pending(timer) || shutdown) {
1338 base = lock_timer_base(timer, &flags);
1339 ret = detach_if_pending(timer, base, true);
1340 if (shutdown)
1341 timer->function = NULL;
1342 raw_spin_unlock_irqrestore(&base->lock, flags);
1343 }
1344
1345 return ret;
1346 }
1347
1348 /**
1349 * timer_delete - Deactivate a timer
1350 * @timer: The timer to be deactivated
1351 *
1352 * The function only deactivates a pending timer, but contrary to
1353 * timer_delete_sync() it does not take into account whether the timer's
1354 * callback function is concurrently executed on a different CPU or not.
1355 * It neither prevents rearming of the timer. If @timer can be rearmed
1356 * concurrently then the return value of this function is meaningless.
1357 *
1358 * Return:
1359 * * %0 - The timer was not pending
1360 * * %1 - The timer was pending and deactivated
1361 */
timer_delete(struct timer_list * timer)1362 int timer_delete(struct timer_list *timer)
1363 {
1364 return __timer_delete(timer, false);
1365 }
1366 EXPORT_SYMBOL(timer_delete);
1367
1368 /**
1369 * timer_shutdown - Deactivate a timer and prevent rearming
1370 * @timer: The timer to be deactivated
1371 *
1372 * The function does not wait for an eventually running timer callback on a
1373 * different CPU but it prevents rearming of the timer. Any attempt to arm
1374 * @timer after this function returns will be silently ignored.
1375 *
1376 * This function is useful for teardown code and should only be used when
1377 * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1378 *
1379 * Return:
1380 * * %0 - The timer was not pending
1381 * * %1 - The timer was pending
1382 */
timer_shutdown(struct timer_list * timer)1383 int timer_shutdown(struct timer_list *timer)
1384 {
1385 return __timer_delete(timer, true);
1386 }
1387 EXPORT_SYMBOL_GPL(timer_shutdown);
1388
1389 /**
1390 * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1391 * @timer: Timer to deactivate
1392 * @shutdown: If true, this indicates that the timer is about to be
1393 * shutdown permanently.
1394 *
1395 * If @shutdown is true then @timer->function is set to NULL under the
1396 * timer base lock which prevents further rearming of the timer. Any
1397 * attempt to rearm @timer after this function returns will be silently
1398 * ignored.
1399 *
1400 * This function cannot guarantee that the timer cannot be rearmed
1401 * right after dropping the base lock if @shutdown is false. That
1402 * needs to be prevented by the calling code if necessary.
1403 *
1404 * Return:
1405 * * %0 - The timer was not pending
1406 * * %1 - The timer was pending and deactivated
1407 * * %-1 - The timer callback function is running on a different CPU
1408 */
__try_to_del_timer_sync(struct timer_list * timer,bool shutdown)1409 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1410 {
1411 struct timer_base *base;
1412 unsigned long flags;
1413 int ret = -1;
1414
1415 debug_assert_init(timer);
1416
1417 base = lock_timer_base(timer, &flags);
1418
1419 if (base->running_timer != timer)
1420 ret = detach_if_pending(timer, base, true);
1421 if (shutdown)
1422 timer->function = NULL;
1423
1424 raw_spin_unlock_irqrestore(&base->lock, flags);
1425
1426 return ret;
1427 }
1428
1429 /**
1430 * try_to_del_timer_sync - Try to deactivate a timer
1431 * @timer: Timer to deactivate
1432 *
1433 * This function tries to deactivate a timer. On success the timer is not
1434 * queued and the timer callback function is not running on any CPU.
1435 *
1436 * This function does not guarantee that the timer cannot be rearmed right
1437 * after dropping the base lock. That needs to be prevented by the calling
1438 * code if necessary.
1439 *
1440 * Return:
1441 * * %0 - The timer was not pending
1442 * * %1 - The timer was pending and deactivated
1443 * * %-1 - The timer callback function is running on a different CPU
1444 */
try_to_del_timer_sync(struct timer_list * timer)1445 int try_to_del_timer_sync(struct timer_list *timer)
1446 {
1447 return __try_to_del_timer_sync(timer, false);
1448 }
1449 EXPORT_SYMBOL(try_to_del_timer_sync);
1450
1451 #ifdef CONFIG_PREEMPT_RT
timer_base_init_expiry_lock(struct timer_base * base)1452 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1453 {
1454 spin_lock_init(&base->expiry_lock);
1455 }
1456
timer_base_lock_expiry(struct timer_base * base)1457 static inline void timer_base_lock_expiry(struct timer_base *base)
1458 {
1459 spin_lock(&base->expiry_lock);
1460 }
1461
timer_base_unlock_expiry(struct timer_base * base)1462 static inline void timer_base_unlock_expiry(struct timer_base *base)
1463 {
1464 spin_unlock(&base->expiry_lock);
1465 }
1466
1467 /*
1468 * The counterpart to del_timer_wait_running().
1469 *
1470 * If there is a waiter for base->expiry_lock, then it was waiting for the
1471 * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1472 * the waiter to acquire the lock and make progress.
1473 */
timer_sync_wait_running(struct timer_base * base)1474 static void timer_sync_wait_running(struct timer_base *base)
1475 {
1476 if (atomic_read(&base->timer_waiters)) {
1477 raw_spin_unlock_irq(&base->lock);
1478 spin_unlock(&base->expiry_lock);
1479 spin_lock(&base->expiry_lock);
1480 raw_spin_lock_irq(&base->lock);
1481 }
1482 }
1483
1484 /*
1485 * This function is called on PREEMPT_RT kernels when the fast path
1486 * deletion of a timer failed because the timer callback function was
1487 * running.
1488 *
1489 * This prevents priority inversion, if the softirq thread on a remote CPU
1490 * got preempted, and it prevents a life lock when the task which tries to
1491 * delete a timer preempted the softirq thread running the timer callback
1492 * function.
1493 */
del_timer_wait_running(struct timer_list * timer)1494 static void del_timer_wait_running(struct timer_list *timer)
1495 {
1496 u32 tf;
1497
1498 tf = READ_ONCE(timer->flags);
1499 if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1500 struct timer_base *base = get_timer_base(tf);
1501
1502 /*
1503 * Mark the base as contended and grab the expiry lock,
1504 * which is held by the softirq across the timer
1505 * callback. Drop the lock immediately so the softirq can
1506 * expire the next timer. In theory the timer could already
1507 * be running again, but that's more than unlikely and just
1508 * causes another wait loop.
1509 */
1510 atomic_inc(&base->timer_waiters);
1511 spin_lock_bh(&base->expiry_lock);
1512 atomic_dec(&base->timer_waiters);
1513 spin_unlock_bh(&base->expiry_lock);
1514 }
1515 }
1516 #else
timer_base_init_expiry_lock(struct timer_base * base)1517 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
timer_base_lock_expiry(struct timer_base * base)1518 static inline void timer_base_lock_expiry(struct timer_base *base) { }
timer_base_unlock_expiry(struct timer_base * base)1519 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
timer_sync_wait_running(struct timer_base * base)1520 static inline void timer_sync_wait_running(struct timer_base *base) { }
del_timer_wait_running(struct timer_list * timer)1521 static inline void del_timer_wait_running(struct timer_list *timer) { }
1522 #endif
1523
1524 /**
1525 * __timer_delete_sync - Internal function: Deactivate a timer and wait
1526 * for the handler to finish.
1527 * @timer: The timer to be deactivated
1528 * @shutdown: If true, @timer->function will be set to NULL under the
1529 * timer base lock which prevents rearming of @timer
1530 *
1531 * If @shutdown is not set the timer can be rearmed later. If the timer can
1532 * be rearmed concurrently, i.e. after dropping the base lock then the
1533 * return value is meaningless.
1534 *
1535 * If @shutdown is set then @timer->function is set to NULL under timer
1536 * base lock which prevents rearming of the timer. Any attempt to rearm
1537 * a shutdown timer is silently ignored.
1538 *
1539 * If the timer should be reused after shutdown it has to be initialized
1540 * again.
1541 *
1542 * Return:
1543 * * %0 - The timer was not pending
1544 * * %1 - The timer was pending and deactivated
1545 */
__timer_delete_sync(struct timer_list * timer,bool shutdown)1546 static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1547 {
1548 int ret;
1549
1550 #ifdef CONFIG_LOCKDEP
1551 unsigned long flags;
1552
1553 /*
1554 * If lockdep gives a backtrace here, please reference
1555 * the synchronization rules above.
1556 */
1557 local_irq_save(flags);
1558 lock_map_acquire(&timer->lockdep_map);
1559 lock_map_release(&timer->lockdep_map);
1560 local_irq_restore(flags);
1561 #endif
1562 /*
1563 * don't use it in hardirq context, because it
1564 * could lead to deadlock.
1565 */
1566 WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1567
1568 /*
1569 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1570 * del_timer_wait_running().
1571 */
1572 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1573 lockdep_assert_preemption_enabled();
1574
1575 do {
1576 ret = __try_to_del_timer_sync(timer, shutdown);
1577
1578 if (unlikely(ret < 0)) {
1579 del_timer_wait_running(timer);
1580 cpu_relax();
1581 }
1582 } while (ret < 0);
1583
1584 return ret;
1585 }
1586
1587 /**
1588 * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1589 * @timer: The timer to be deactivated
1590 *
1591 * Synchronization rules: Callers must prevent restarting of the timer,
1592 * otherwise this function is meaningless. It must not be called from
1593 * interrupt contexts unless the timer is an irqsafe one. The caller must
1594 * not hold locks which would prevent completion of the timer's callback
1595 * function. The timer's handler must not call add_timer_on(). Upon exit
1596 * the timer is not queued and the handler is not running on any CPU.
1597 *
1598 * For !irqsafe timers, the caller must not hold locks that are held in
1599 * interrupt context. Even if the lock has nothing to do with the timer in
1600 * question. Here's why::
1601 *
1602 * CPU0 CPU1
1603 * ---- ----
1604 * <SOFTIRQ>
1605 * call_timer_fn();
1606 * base->running_timer = mytimer;
1607 * spin_lock_irq(somelock);
1608 * <IRQ>
1609 * spin_lock(somelock);
1610 * timer_delete_sync(mytimer);
1611 * while (base->running_timer == mytimer);
1612 *
1613 * Now timer_delete_sync() will never return and never release somelock.
1614 * The interrupt on the other CPU is waiting to grab somelock but it has
1615 * interrupted the softirq that CPU0 is waiting to finish.
1616 *
1617 * This function cannot guarantee that the timer is not rearmed again by
1618 * some concurrent or preempting code, right after it dropped the base
1619 * lock. If there is the possibility of a concurrent rearm then the return
1620 * value of the function is meaningless.
1621 *
1622 * If such a guarantee is needed, e.g. for teardown situations then use
1623 * timer_shutdown_sync() instead.
1624 *
1625 * Return:
1626 * * %0 - The timer was not pending
1627 * * %1 - The timer was pending and deactivated
1628 */
timer_delete_sync(struct timer_list * timer)1629 int timer_delete_sync(struct timer_list *timer)
1630 {
1631 return __timer_delete_sync(timer, false);
1632 }
1633 EXPORT_SYMBOL(timer_delete_sync);
1634
1635 /**
1636 * timer_shutdown_sync - Shutdown a timer and prevent rearming
1637 * @timer: The timer to be shutdown
1638 *
1639 * When the function returns it is guaranteed that:
1640 * - @timer is not queued
1641 * - The callback function of @timer is not running
1642 * - @timer cannot be enqueued again. Any attempt to rearm
1643 * @timer is silently ignored.
1644 *
1645 * See timer_delete_sync() for synchronization rules.
1646 *
1647 * This function is useful for final teardown of an infrastructure where
1648 * the timer is subject to a circular dependency problem.
1649 *
1650 * A common pattern for this is a timer and a workqueue where the timer can
1651 * schedule work and work can arm the timer. On shutdown the workqueue must
1652 * be destroyed and the timer must be prevented from rearming. Unless the
1653 * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1654 * there is no way to get this correct with timer_delete_sync().
1655 *
1656 * timer_shutdown_sync() is solving the problem. The correct ordering of
1657 * calls in this case is:
1658 *
1659 * timer_shutdown_sync(&mything->timer);
1660 * workqueue_destroy(&mything->workqueue);
1661 *
1662 * After this 'mything' can be safely freed.
1663 *
1664 * This obviously implies that the timer is not required to be functional
1665 * for the rest of the shutdown operation.
1666 *
1667 * Return:
1668 * * %0 - The timer was not pending
1669 * * %1 - The timer was pending
1670 */
timer_shutdown_sync(struct timer_list * timer)1671 int timer_shutdown_sync(struct timer_list *timer)
1672 {
1673 return __timer_delete_sync(timer, true);
1674 }
1675 EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1676
call_timer_fn(struct timer_list * timer,void (* fn)(struct timer_list *),unsigned long baseclk)1677 static void call_timer_fn(struct timer_list *timer,
1678 void (*fn)(struct timer_list *),
1679 unsigned long baseclk)
1680 {
1681 int count = preempt_count();
1682
1683 #ifdef CONFIG_LOCKDEP
1684 /*
1685 * It is permissible to free the timer from inside the
1686 * function that is called from it, this we need to take into
1687 * account for lockdep too. To avoid bogus "held lock freed"
1688 * warnings as well as problems when looking into
1689 * timer->lockdep_map, make a copy and use that here.
1690 */
1691 struct lockdep_map lockdep_map;
1692
1693 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1694 #endif
1695 /*
1696 * Couple the lock chain with the lock chain at
1697 * timer_delete_sync() by acquiring the lock_map around the fn()
1698 * call here and in timer_delete_sync().
1699 */
1700 lock_map_acquire(&lockdep_map);
1701
1702 trace_timer_expire_entry(timer, baseclk);
1703 fn(timer);
1704 trace_timer_expire_exit(timer);
1705
1706 lock_map_release(&lockdep_map);
1707
1708 if (count != preempt_count()) {
1709 WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1710 fn, count, preempt_count());
1711 /*
1712 * Restore the preempt count. That gives us a decent
1713 * chance to survive and extract information. If the
1714 * callback kept a lock held, bad luck, but not worse
1715 * than the BUG() we had.
1716 */
1717 preempt_count_set(count);
1718 }
1719 }
1720
expire_timers(struct timer_base * base,struct hlist_head * head)1721 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1722 {
1723 /*
1724 * This value is required only for tracing. base->clk was
1725 * incremented directly before expire_timers was called. But expiry
1726 * is related to the old base->clk value.
1727 */
1728 unsigned long baseclk = base->clk - 1;
1729
1730 while (!hlist_empty(head)) {
1731 struct timer_list *timer;
1732 void (*fn)(struct timer_list *);
1733
1734 timer = hlist_entry(head->first, struct timer_list, entry);
1735
1736 base->running_timer = timer;
1737 detach_timer(timer, true);
1738
1739 fn = timer->function;
1740
1741 if (WARN_ON_ONCE(!fn)) {
1742 /* Should never happen. Emphasis on should! */
1743 base->running_timer = NULL;
1744 continue;
1745 }
1746
1747 if (timer->flags & TIMER_IRQSAFE) {
1748 raw_spin_unlock(&base->lock);
1749 call_timer_fn(timer, fn, baseclk);
1750 raw_spin_lock(&base->lock);
1751 base->running_timer = NULL;
1752 } else {
1753 raw_spin_unlock_irq(&base->lock);
1754 call_timer_fn(timer, fn, baseclk);
1755 raw_spin_lock_irq(&base->lock);
1756 base->running_timer = NULL;
1757 timer_sync_wait_running(base);
1758 }
1759 }
1760 }
1761
collect_expired_timers(struct timer_base * base,struct hlist_head * heads)1762 static int collect_expired_timers(struct timer_base *base,
1763 struct hlist_head *heads)
1764 {
1765 unsigned long clk = base->clk = base->next_expiry;
1766 struct hlist_head *vec;
1767 int i, levels = 0;
1768 unsigned int idx;
1769
1770 for (i = 0; i < LVL_DEPTH; i++) {
1771 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1772
1773 if (__test_and_clear_bit(idx, base->pending_map)) {
1774 vec = base->vectors + idx;
1775 hlist_move_list(vec, heads++);
1776 levels++;
1777 }
1778 /* Is it time to look at the next level? */
1779 if (clk & LVL_CLK_MASK)
1780 break;
1781 /* Shift clock for the next level granularity */
1782 clk >>= LVL_CLK_SHIFT;
1783 }
1784 return levels;
1785 }
1786
1787 /*
1788 * Find the next pending bucket of a level. Search from level start (@offset)
1789 * + @clk upwards and if nothing there, search from start of the level
1790 * (@offset) up to @offset + clk.
1791 */
next_pending_bucket(struct timer_base * base,unsigned offset,unsigned clk)1792 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1793 unsigned clk)
1794 {
1795 unsigned pos, start = offset + clk;
1796 unsigned end = offset + LVL_SIZE;
1797
1798 pos = find_next_bit(base->pending_map, end, start);
1799 if (pos < end)
1800 return pos - start;
1801
1802 pos = find_next_bit(base->pending_map, start, offset);
1803 return pos < start ? pos + LVL_SIZE - start : -1;
1804 }
1805
1806 /*
1807 * Search the first expiring timer in the various clock levels. Caller must
1808 * hold base->lock.
1809 */
__next_timer_interrupt(struct timer_base * base)1810 static unsigned long __next_timer_interrupt(struct timer_base *base)
1811 {
1812 unsigned long clk, next, adj;
1813 unsigned lvl, offset = 0;
1814
1815 next = base->clk + NEXT_TIMER_MAX_DELTA;
1816 clk = base->clk;
1817 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1818 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1819 unsigned long lvl_clk = clk & LVL_CLK_MASK;
1820
1821 if (pos >= 0) {
1822 unsigned long tmp = clk + (unsigned long) pos;
1823
1824 tmp <<= LVL_SHIFT(lvl);
1825 if (time_before(tmp, next))
1826 next = tmp;
1827
1828 /*
1829 * If the next expiration happens before we reach
1830 * the next level, no need to check further.
1831 */
1832 if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1833 break;
1834 }
1835 /*
1836 * Clock for the next level. If the current level clock lower
1837 * bits are zero, we look at the next level as is. If not we
1838 * need to advance it by one because that's going to be the
1839 * next expiring bucket in that level. base->clk is the next
1840 * expiring jiffie. So in case of:
1841 *
1842 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1843 * 0 0 0 0 0 0
1844 *
1845 * we have to look at all levels @index 0. With
1846 *
1847 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1848 * 0 0 0 0 0 2
1849 *
1850 * LVL0 has the next expiring bucket @index 2. The upper
1851 * levels have the next expiring bucket @index 1.
1852 *
1853 * In case that the propagation wraps the next level the same
1854 * rules apply:
1855 *
1856 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1857 * 0 0 0 0 F 2
1858 *
1859 * So after looking at LVL0 we get:
1860 *
1861 * LVL5 LVL4 LVL3 LVL2 LVL1
1862 * 0 0 0 1 0
1863 *
1864 * So no propagation from LVL1 to LVL2 because that happened
1865 * with the add already, but then we need to propagate further
1866 * from LVL2 to LVL3.
1867 *
1868 * So the simple check whether the lower bits of the current
1869 * level are 0 or not is sufficient for all cases.
1870 */
1871 adj = lvl_clk ? 1 : 0;
1872 clk >>= LVL_CLK_SHIFT;
1873 clk += adj;
1874 }
1875
1876 base->next_expiry_recalc = false;
1877 base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1878
1879 return next;
1880 }
1881
1882 #ifdef CONFIG_NO_HZ_COMMON
1883 /*
1884 * Check, if the next hrtimer event is before the next timer wheel
1885 * event:
1886 */
cmp_next_hrtimer_event(u64 basem,u64 expires)1887 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1888 {
1889 u64 nextevt = hrtimer_get_next_event();
1890
1891 /*
1892 * If high resolution timers are enabled
1893 * hrtimer_get_next_event() returns KTIME_MAX.
1894 */
1895 if (expires <= nextevt)
1896 return expires;
1897
1898 /*
1899 * If the next timer is already expired, return the tick base
1900 * time so the tick is fired immediately.
1901 */
1902 if (nextevt <= basem)
1903 return basem;
1904
1905 /*
1906 * Round up to the next jiffie. High resolution timers are
1907 * off, so the hrtimers are expired in the tick and we need to
1908 * make sure that this tick really expires the timer to avoid
1909 * a ping pong of the nohz stop code.
1910 *
1911 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1912 */
1913 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1914 }
1915
1916 /**
1917 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1918 * @basej: base time jiffies
1919 * @basem: base time clock monotonic
1920 *
1921 * Returns the tick aligned clock monotonic time of the next pending
1922 * timer or KTIME_MAX if no timer is pending.
1923 */
get_next_timer_interrupt(unsigned long basej,u64 basem)1924 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1925 {
1926 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1927 u64 expires = KTIME_MAX;
1928 unsigned long nextevt;
1929
1930 /*
1931 * Pretend that there is no timer pending if the cpu is offline.
1932 * Possible pending timers will be migrated later to an active cpu.
1933 */
1934 if (cpu_is_offline(smp_processor_id()))
1935 return expires;
1936
1937 raw_spin_lock(&base->lock);
1938 if (base->next_expiry_recalc)
1939 base->next_expiry = __next_timer_interrupt(base);
1940 nextevt = base->next_expiry;
1941
1942 /*
1943 * We have a fresh next event. Check whether we can forward the
1944 * base. We can only do that when @basej is past base->clk
1945 * otherwise we might rewind base->clk.
1946 */
1947 if (time_after(basej, base->clk)) {
1948 if (time_after(nextevt, basej))
1949 base->clk = basej;
1950 else if (time_after(nextevt, base->clk))
1951 base->clk = nextevt;
1952 }
1953
1954 if (time_before_eq(nextevt, basej)) {
1955 expires = basem;
1956 base->is_idle = false;
1957 } else {
1958 if (base->timers_pending)
1959 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1960 /*
1961 * If we expect to sleep more than a tick, mark the base idle.
1962 * Also the tick is stopped so any added timer must forward
1963 * the base clk itself to keep granularity small. This idle
1964 * logic is only maintained for the BASE_STD base, deferrable
1965 * timers may still see large granularity skew (by design).
1966 */
1967 if ((expires - basem) > TICK_NSEC)
1968 base->is_idle = true;
1969 }
1970 raw_spin_unlock(&base->lock);
1971
1972 return cmp_next_hrtimer_event(basem, expires);
1973 }
1974
1975 /**
1976 * timer_clear_idle - Clear the idle state of the timer base
1977 *
1978 * Called with interrupts disabled
1979 */
timer_clear_idle(void)1980 void timer_clear_idle(void)
1981 {
1982 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1983
1984 /*
1985 * We do this unlocked. The worst outcome is a remote enqueue sending
1986 * a pointless IPI, but taking the lock would just make the window for
1987 * sending the IPI a few instructions smaller for the cost of taking
1988 * the lock in the exit from idle path.
1989 */
1990 base->is_idle = false;
1991 }
1992 #endif
1993
1994 /**
1995 * __run_timers - run all expired timers (if any) on this CPU.
1996 * @base: the timer vector to be processed.
1997 */
__run_timers(struct timer_base * base)1998 static inline void __run_timers(struct timer_base *base)
1999 {
2000 struct hlist_head heads[LVL_DEPTH];
2001 int levels;
2002
2003 if (time_before(jiffies, base->next_expiry))
2004 return;
2005
2006 timer_base_lock_expiry(base);
2007 raw_spin_lock_irq(&base->lock);
2008
2009 while (time_after_eq(jiffies, base->clk) &&
2010 time_after_eq(jiffies, base->next_expiry)) {
2011 levels = collect_expired_timers(base, heads);
2012 /*
2013 * The two possible reasons for not finding any expired
2014 * timer at this clk are that all matching timers have been
2015 * dequeued or no timer has been queued since
2016 * base::next_expiry was set to base::clk +
2017 * NEXT_TIMER_MAX_DELTA.
2018 */
2019 WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2020 && base->timers_pending);
2021 base->clk++;
2022 base->next_expiry = __next_timer_interrupt(base);
2023
2024 while (levels--)
2025 expire_timers(base, heads + levels);
2026 }
2027 raw_spin_unlock_irq(&base->lock);
2028 timer_base_unlock_expiry(base);
2029 }
2030
2031 /*
2032 * This function runs timers and the timer-tq in bottom half context.
2033 */
run_timer_softirq(struct softirq_action * h)2034 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
2035 {
2036 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
2037
2038 __run_timers(base);
2039 if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
2040 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
2041 }
2042
2043 /*
2044 * Called by the local, per-CPU timer interrupt on SMP.
2045 */
run_local_timers(void)2046 static void run_local_timers(void)
2047 {
2048 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
2049
2050 hrtimer_run_queues();
2051 /* Raise the softirq only if required. */
2052 if (time_before(jiffies, base->next_expiry)) {
2053 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
2054 return;
2055 /* CPU is awake, so check the deferrable base. */
2056 base++;
2057 if (time_before(jiffies, base->next_expiry))
2058 return;
2059 }
2060 raise_softirq(TIMER_SOFTIRQ);
2061 }
2062
2063 /*
2064 * Called from the timer interrupt handler to charge one tick to the current
2065 * process. user_tick is 1 if the tick is user time, 0 for system.
2066 */
update_process_times(int user_tick)2067 void update_process_times(int user_tick)
2068 {
2069 struct task_struct *p = current;
2070
2071 /* Note: this timer irq context must be accounted for as well. */
2072 account_process_tick(p, user_tick);
2073 run_local_timers();
2074 rcu_sched_clock_irq(user_tick);
2075 #ifdef CONFIG_IRQ_WORK
2076 if (in_irq())
2077 irq_work_tick();
2078 #endif
2079 scheduler_tick();
2080 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2081 run_posix_cpu_timers();
2082 }
2083
2084 /*
2085 * Since schedule_timeout()'s timer is defined on the stack, it must store
2086 * the target task on the stack as well.
2087 */
2088 struct process_timer {
2089 struct timer_list timer;
2090 struct task_struct *task;
2091 };
2092
process_timeout(struct timer_list * t)2093 static void process_timeout(struct timer_list *t)
2094 {
2095 struct process_timer *timeout = from_timer(timeout, t, timer);
2096
2097 wake_up_process(timeout->task);
2098 }
2099
2100 /**
2101 * schedule_timeout - sleep until timeout
2102 * @timeout: timeout value in jiffies
2103 *
2104 * Make the current task sleep until @timeout jiffies have elapsed.
2105 * The function behavior depends on the current task state
2106 * (see also set_current_state() description):
2107 *
2108 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
2109 * at all. That happens because sched_submit_work() does nothing for
2110 * tasks in %TASK_RUNNING state.
2111 *
2112 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
2113 * pass before the routine returns unless the current task is explicitly
2114 * woken up, (e.g. by wake_up_process()).
2115 *
2116 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2117 * delivered to the current task or the current task is explicitly woken
2118 * up.
2119 *
2120 * The current task state is guaranteed to be %TASK_RUNNING when this
2121 * routine returns.
2122 *
2123 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
2124 * the CPU away without a bound on the timeout. In this case the return
2125 * value will be %MAX_SCHEDULE_TIMEOUT.
2126 *
2127 * Returns 0 when the timer has expired otherwise the remaining time in
2128 * jiffies will be returned. In all cases the return value is guaranteed
2129 * to be non-negative.
2130 */
schedule_timeout(signed long timeout)2131 signed long __sched schedule_timeout(signed long timeout)
2132 {
2133 struct process_timer timer;
2134 unsigned long expire;
2135
2136 switch (timeout)
2137 {
2138 case MAX_SCHEDULE_TIMEOUT:
2139 /*
2140 * These two special cases are useful to be comfortable
2141 * in the caller. Nothing more. We could take
2142 * MAX_SCHEDULE_TIMEOUT from one of the negative value
2143 * but I' d like to return a valid offset (>=0) to allow
2144 * the caller to do everything it want with the retval.
2145 */
2146 schedule();
2147 goto out;
2148 default:
2149 /*
2150 * Another bit of PARANOID. Note that the retval will be
2151 * 0 since no piece of kernel is supposed to do a check
2152 * for a negative retval of schedule_timeout() (since it
2153 * should never happens anyway). You just have the printk()
2154 * that will tell you if something is gone wrong and where.
2155 */
2156 if (timeout < 0) {
2157 printk(KERN_ERR "schedule_timeout: wrong timeout "
2158 "value %lx\n", timeout);
2159 dump_stack();
2160 __set_current_state(TASK_RUNNING);
2161 goto out;
2162 }
2163 }
2164
2165 expire = timeout + jiffies;
2166
2167 timer.task = current;
2168 timer_setup_on_stack(&timer.timer, process_timeout, 0);
2169 __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
2170 schedule();
2171 del_timer_sync(&timer.timer);
2172
2173 /* Remove the timer from the object tracker */
2174 destroy_timer_on_stack(&timer.timer);
2175
2176 timeout = expire - jiffies;
2177
2178 out:
2179 return timeout < 0 ? 0 : timeout;
2180 }
2181 EXPORT_SYMBOL(schedule_timeout);
2182
2183 /*
2184 * We can use __set_current_state() here because schedule_timeout() calls
2185 * schedule() unconditionally.
2186 */
schedule_timeout_interruptible(signed long timeout)2187 signed long __sched schedule_timeout_interruptible(signed long timeout)
2188 {
2189 __set_current_state(TASK_INTERRUPTIBLE);
2190 return schedule_timeout(timeout);
2191 }
2192 EXPORT_SYMBOL(schedule_timeout_interruptible);
2193
schedule_timeout_killable(signed long timeout)2194 signed long __sched schedule_timeout_killable(signed long timeout)
2195 {
2196 __set_current_state(TASK_KILLABLE);
2197 return schedule_timeout(timeout);
2198 }
2199 EXPORT_SYMBOL(schedule_timeout_killable);
2200
schedule_timeout_uninterruptible(signed long timeout)2201 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
2202 {
2203 __set_current_state(TASK_UNINTERRUPTIBLE);
2204 return schedule_timeout(timeout);
2205 }
2206 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
2207
2208 /*
2209 * Like schedule_timeout_uninterruptible(), except this task will not contribute
2210 * to load average.
2211 */
schedule_timeout_idle(signed long timeout)2212 signed long __sched schedule_timeout_idle(signed long timeout)
2213 {
2214 __set_current_state(TASK_IDLE);
2215 return schedule_timeout(timeout);
2216 }
2217 EXPORT_SYMBOL(schedule_timeout_idle);
2218
2219 #ifdef CONFIG_HOTPLUG_CPU
migrate_timer_list(struct timer_base * new_base,struct hlist_head * head)2220 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2221 {
2222 struct timer_list *timer;
2223 int cpu = new_base->cpu;
2224
2225 while (!hlist_empty(head)) {
2226 timer = hlist_entry(head->first, struct timer_list, entry);
2227 detach_timer(timer, false);
2228 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2229 internal_add_timer(new_base, timer);
2230 }
2231 }
2232
timers_prepare_cpu(unsigned int cpu)2233 int timers_prepare_cpu(unsigned int cpu)
2234 {
2235 struct timer_base *base;
2236 int b;
2237
2238 for (b = 0; b < NR_BASES; b++) {
2239 base = per_cpu_ptr(&timer_bases[b], cpu);
2240 base->clk = jiffies;
2241 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2242 base->next_expiry_recalc = false;
2243 base->timers_pending = false;
2244 base->is_idle = false;
2245 }
2246 return 0;
2247 }
2248
timers_dead_cpu(unsigned int cpu)2249 int timers_dead_cpu(unsigned int cpu)
2250 {
2251 struct timer_base *old_base;
2252 struct timer_base *new_base;
2253 int b, i;
2254
2255 for (b = 0; b < NR_BASES; b++) {
2256 old_base = per_cpu_ptr(&timer_bases[b], cpu);
2257 new_base = get_cpu_ptr(&timer_bases[b]);
2258 /*
2259 * The caller is globally serialized and nobody else
2260 * takes two locks at once, deadlock is not possible.
2261 */
2262 raw_spin_lock_irq(&new_base->lock);
2263 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2264
2265 /*
2266 * The current CPUs base clock might be stale. Update it
2267 * before moving the timers over.
2268 */
2269 forward_timer_base(new_base);
2270
2271 WARN_ON_ONCE(old_base->running_timer);
2272 old_base->running_timer = NULL;
2273
2274 for (i = 0; i < WHEEL_SIZE; i++)
2275 migrate_timer_list(new_base, old_base->vectors + i);
2276
2277 raw_spin_unlock(&old_base->lock);
2278 raw_spin_unlock_irq(&new_base->lock);
2279 put_cpu_ptr(&timer_bases);
2280 }
2281 return 0;
2282 }
2283
2284 #endif /* CONFIG_HOTPLUG_CPU */
2285
init_timer_cpu(int cpu)2286 static void __init init_timer_cpu(int cpu)
2287 {
2288 struct timer_base *base;
2289 int i;
2290
2291 for (i = 0; i < NR_BASES; i++) {
2292 base = per_cpu_ptr(&timer_bases[i], cpu);
2293 base->cpu = cpu;
2294 raw_spin_lock_init(&base->lock);
2295 base->clk = jiffies;
2296 base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2297 timer_base_init_expiry_lock(base);
2298 }
2299 }
2300
init_timer_cpus(void)2301 static void __init init_timer_cpus(void)
2302 {
2303 int cpu;
2304
2305 for_each_possible_cpu(cpu)
2306 init_timer_cpu(cpu);
2307 }
2308
init_timers(void)2309 void __init init_timers(void)
2310 {
2311 init_timer_cpus();
2312 posix_cputimers_init_work();
2313 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2314 }
2315
2316 /**
2317 * msleep - sleep safely even with waitqueue interruptions
2318 * @msecs: Time in milliseconds to sleep for
2319 */
msleep(unsigned int msecs)2320 void msleep(unsigned int msecs)
2321 {
2322 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2323
2324 while (timeout)
2325 timeout = schedule_timeout_uninterruptible(timeout);
2326 }
2327
2328 EXPORT_SYMBOL(msleep);
2329
2330 /**
2331 * msleep_interruptible - sleep waiting for signals
2332 * @msecs: Time in milliseconds to sleep for
2333 */
msleep_interruptible(unsigned int msecs)2334 unsigned long msleep_interruptible(unsigned int msecs)
2335 {
2336 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2337
2338 while (timeout && !signal_pending(current))
2339 timeout = schedule_timeout_interruptible(timeout);
2340 return jiffies_to_msecs(timeout);
2341 }
2342
2343 EXPORT_SYMBOL(msleep_interruptible);
2344
2345 /**
2346 * usleep_range_state - Sleep for an approximate time in a given state
2347 * @min: Minimum time in usecs to sleep
2348 * @max: Maximum time in usecs to sleep
2349 * @state: State of the current task that will be while sleeping
2350 *
2351 * In non-atomic context where the exact wakeup time is flexible, use
2352 * usleep_range_state() instead of udelay(). The sleep improves responsiveness
2353 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2354 * power usage by allowing hrtimers to take advantage of an already-
2355 * scheduled interrupt instead of scheduling a new one just for this sleep.
2356 */
usleep_range_state(unsigned long min,unsigned long max,unsigned int state)2357 void __sched usleep_range_state(unsigned long min, unsigned long max,
2358 unsigned int state)
2359 {
2360 ktime_t exp = ktime_add_us(ktime_get(), min);
2361 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2362
2363 for (;;) {
2364 __set_current_state(state);
2365 /* Do not return before the requested sleep time has elapsed */
2366 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2367 break;
2368 }
2369 }
2370 EXPORT_SYMBOL(usleep_range_state);
2371