1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * System Control and Management Interface (SCMI) Message Protocol driver
4 *
5 * SCMI Message Protocol is used between the System Control Processor(SCP)
6 * and the Application Processors(AP). The Message Handling Unit(MHU)
7 * provides a mechanism for inter-processor communication between SCP's
8 * Cortex M3 and AP.
9 *
10 * SCP offers control and management of the core/cluster power states,
11 * various power domain DVFS including the core/cluster, certain system
12 * clocks configuration, thermal sensors and many others.
13 *
14 * Copyright (C) 2018-2021 ARM Ltd.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/hashtable.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of.h>
32 #include <linux/platform_device.h>
33 #include <linux/processor.h>
34 #include <linux/refcount.h>
35 #include <linux/slab.h>
36
37 #include "common.h"
38 #include "notify.h"
39
40 #include "raw_mode.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/scmi.h>
44
45 static DEFINE_IDA(scmi_id);
46
47 static DEFINE_IDR(scmi_protocols);
48 static DEFINE_SPINLOCK(protocol_lock);
49
50 /* List of all SCMI devices active in system */
51 static LIST_HEAD(scmi_list);
52 /* Protection for the entire list */
53 static DEFINE_MUTEX(scmi_list_mutex);
54 /* Track the unique id for the transfers for debug & profiling purpose */
55 static atomic_t transfer_last_id;
56
57 static struct dentry *scmi_top_dentry;
58
59 /**
60 * struct scmi_xfers_info - Structure to manage transfer information
61 *
62 * @xfer_alloc_table: Bitmap table for allocated messages.
63 * Index of this bitmap table is also used for message
64 * sequence identifier.
65 * @xfer_lock: Protection for message allocation
66 * @max_msg: Maximum number of messages that can be pending
67 * @free_xfers: A free list for available to use xfers. It is initialized with
68 * a number of xfers equal to the maximum allowed in-flight
69 * messages.
70 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71 * currently in-flight messages.
72 */
73 struct scmi_xfers_info {
74 unsigned long *xfer_alloc_table;
75 spinlock_t xfer_lock;
76 int max_msg;
77 struct hlist_head free_xfers;
78 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79 };
80
81 /**
82 * struct scmi_protocol_instance - Describe an initialized protocol instance.
83 * @handle: Reference to the SCMI handle associated to this protocol instance.
84 * @proto: A reference to the protocol descriptor.
85 * @gid: A reference for per-protocol devres management.
86 * @users: A refcount to track effective users of this protocol.
87 * @priv: Reference for optional protocol private data.
88 * @version: Protocol version supported by the platform as detected at runtime.
89 * @ph: An embedded protocol handle that will be passed down to protocol
90 * initialization code to identify this instance.
91 *
92 * Each protocol is initialized independently once for each SCMI platform in
93 * which is defined by DT and implemented by the SCMI server fw.
94 */
95 struct scmi_protocol_instance {
96 const struct scmi_handle *handle;
97 const struct scmi_protocol *proto;
98 void *gid;
99 refcount_t users;
100 void *priv;
101 unsigned int version;
102 struct scmi_protocol_handle ph;
103 };
104
105 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph)
106
107 /**
108 * struct scmi_debug_info - Debug common info
109 * @top_dentry: A reference to the top debugfs dentry
110 * @name: Name of this SCMI instance
111 * @type: Type of this SCMI instance
112 * @is_atomic: Flag to state if the transport of this instance is atomic
113 */
114 struct scmi_debug_info {
115 struct dentry *top_dentry;
116 const char *name;
117 const char *type;
118 bool is_atomic;
119 };
120
121 /**
122 * struct scmi_info - Structure representing a SCMI instance
123 *
124 * @id: A sequence number starting from zero identifying this instance
125 * @dev: Device pointer
126 * @desc: SoC description for this instance
127 * @version: SCMI revision information containing protocol version,
128 * implementation version and (sub-)vendor identification.
129 * @handle: Instance of SCMI handle to send to clients
130 * @tx_minfo: Universal Transmit Message management info
131 * @rx_minfo: Universal Receive Message management info
132 * @tx_idr: IDR object to map protocol id to Tx channel info pointer
133 * @rx_idr: IDR object to map protocol id to Rx channel info pointer
134 * @protocols: IDR for protocols' instance descriptors initialized for
135 * this SCMI instance: populated on protocol's first attempted
136 * usage.
137 * @protocols_mtx: A mutex to protect protocols instances initialization.
138 * @protocols_imp: List of protocols implemented, currently maximum of
139 * scmi_revision_info.num_protocols elements allocated by the
140 * base protocol
141 * @active_protocols: IDR storing device_nodes for protocols actually defined
142 * in the DT and confirmed as implemented by fw.
143 * @atomic_threshold: Optional system wide DT-configured threshold, expressed
144 * in microseconds, for atomic operations.
145 * Only SCMI synchronous commands reported by the platform
146 * to have an execution latency lesser-equal to the threshold
147 * should be considered for atomic mode operation: such
148 * decision is finally left up to the SCMI drivers.
149 * @notify_priv: Pointer to private data structure specific to notifications.
150 * @node: List head
151 * @users: Number of users of this instance
152 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
153 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
154 * bus
155 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
156 * @dbg: A pointer to debugfs related data (if any)
157 * @raw: An opaque reference handle used by SCMI Raw mode.
158 */
159 struct scmi_info {
160 int id;
161 struct device *dev;
162 const struct scmi_desc *desc;
163 struct scmi_revision_info version;
164 struct scmi_handle handle;
165 struct scmi_xfers_info tx_minfo;
166 struct scmi_xfers_info rx_minfo;
167 struct idr tx_idr;
168 struct idr rx_idr;
169 struct idr protocols;
170 /* Ensure mutual exclusive access to protocols instance array */
171 struct mutex protocols_mtx;
172 u8 *protocols_imp;
173 struct idr active_protocols;
174 unsigned int atomic_threshold;
175 void *notify_priv;
176 struct list_head node;
177 int users;
178 struct notifier_block bus_nb;
179 struct notifier_block dev_req_nb;
180 /* Serialize device creation process for this instance */
181 struct mutex devreq_mtx;
182 struct scmi_debug_info *dbg;
183 void *raw;
184 };
185
186 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle)
187 #define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb)
188 #define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb)
189
scmi_protocol_get(int protocol_id)190 static const struct scmi_protocol *scmi_protocol_get(int protocol_id)
191 {
192 const struct scmi_protocol *proto;
193
194 proto = idr_find(&scmi_protocols, protocol_id);
195 if (!proto || !try_module_get(proto->owner)) {
196 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
197 return NULL;
198 }
199
200 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
201
202 return proto;
203 }
204
scmi_protocol_put(int protocol_id)205 static void scmi_protocol_put(int protocol_id)
206 {
207 const struct scmi_protocol *proto;
208
209 proto = idr_find(&scmi_protocols, protocol_id);
210 if (proto)
211 module_put(proto->owner);
212 }
213
scmi_protocol_register(const struct scmi_protocol * proto)214 int scmi_protocol_register(const struct scmi_protocol *proto)
215 {
216 int ret;
217
218 if (!proto) {
219 pr_err("invalid protocol\n");
220 return -EINVAL;
221 }
222
223 if (!proto->instance_init) {
224 pr_err("missing init for protocol 0x%x\n", proto->id);
225 return -EINVAL;
226 }
227
228 spin_lock(&protocol_lock);
229 ret = idr_alloc(&scmi_protocols, (void *)proto,
230 proto->id, proto->id + 1, GFP_ATOMIC);
231 spin_unlock(&protocol_lock);
232 if (ret != proto->id) {
233 pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n",
234 proto->id, ret);
235 return ret;
236 }
237
238 pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
239
240 return 0;
241 }
242 EXPORT_SYMBOL_GPL(scmi_protocol_register);
243
scmi_protocol_unregister(const struct scmi_protocol * proto)244 void scmi_protocol_unregister(const struct scmi_protocol *proto)
245 {
246 spin_lock(&protocol_lock);
247 idr_remove(&scmi_protocols, proto->id);
248 spin_unlock(&protocol_lock);
249
250 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
251 }
252 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
253
254 /**
255 * scmi_create_protocol_devices - Create devices for all pending requests for
256 * this SCMI instance.
257 *
258 * @np: The device node describing the protocol
259 * @info: The SCMI instance descriptor
260 * @prot_id: The protocol ID
261 * @name: The optional name of the device to be created: if not provided this
262 * call will lead to the creation of all the devices currently requested
263 * for the specified protocol.
264 */
scmi_create_protocol_devices(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)265 static void scmi_create_protocol_devices(struct device_node *np,
266 struct scmi_info *info,
267 int prot_id, const char *name)
268 {
269 struct scmi_device *sdev;
270
271 mutex_lock(&info->devreq_mtx);
272 sdev = scmi_device_create(np, info->dev, prot_id, name);
273 if (name && !sdev)
274 dev_err(info->dev,
275 "failed to create device for protocol 0x%X (%s)\n",
276 prot_id, name);
277 mutex_unlock(&info->devreq_mtx);
278 }
279
scmi_destroy_protocol_devices(struct scmi_info * info,int prot_id,const char * name)280 static void scmi_destroy_protocol_devices(struct scmi_info *info,
281 int prot_id, const char *name)
282 {
283 mutex_lock(&info->devreq_mtx);
284 scmi_device_destroy(info->dev, prot_id, name);
285 mutex_unlock(&info->devreq_mtx);
286 }
287
scmi_notification_instance_data_set(const struct scmi_handle * handle,void * priv)288 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
289 void *priv)
290 {
291 struct scmi_info *info = handle_to_scmi_info(handle);
292
293 info->notify_priv = priv;
294 /* Ensure updated protocol private date are visible */
295 smp_wmb();
296 }
297
scmi_notification_instance_data_get(const struct scmi_handle * handle)298 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
299 {
300 struct scmi_info *info = handle_to_scmi_info(handle);
301
302 /* Ensure protocols_private_data has been updated */
303 smp_rmb();
304 return info->notify_priv;
305 }
306
307 /**
308 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand
309 *
310 * @minfo: Pointer to Tx/Rx Message management info based on channel type
311 * @xfer: The xfer to act upon
312 *
313 * Pick the next unused monotonically increasing token and set it into
314 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
315 * reuse of freshly completed or timed-out xfers, thus mitigating the risk
316 * of incorrect association of a late and expired xfer with a live in-flight
317 * transaction, both happening to re-use the same token identifier.
318 *
319 * Since platform is NOT required to answer our request in-order we should
320 * account for a few rare but possible scenarios:
321 *
322 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
323 * using find_next_zero_bit() starting from candidate next_token bit
324 *
325 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
326 * are plenty of free tokens at start, so try a second pass using
327 * find_next_zero_bit() and starting from 0.
328 *
329 * X = used in-flight
330 *
331 * Normal
332 * ------
333 *
334 * |- xfer_id picked
335 * -----------+----------------------------------------------------------
336 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
337 * ----------------------------------------------------------------------
338 * ^
339 * |- next_token
340 *
341 * Out-of-order pending at start
342 * -----------------------------
343 *
344 * |- xfer_id picked, last_token fixed
345 * -----+----------------------------------------------------------------
346 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
347 * ----------------------------------------------------------------------
348 * ^
349 * |- next_token
350 *
351 *
352 * Out-of-order pending at end
353 * ---------------------------
354 *
355 * |- xfer_id picked, last_token fixed
356 * -----+----------------------------------------------------------------
357 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
358 * ----------------------------------------------------------------------
359 * ^
360 * |- next_token
361 *
362 * Context: Assumes to be called with @xfer_lock already acquired.
363 *
364 * Return: 0 on Success or error
365 */
scmi_xfer_token_set(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)366 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
367 struct scmi_xfer *xfer)
368 {
369 unsigned long xfer_id, next_token;
370
371 /*
372 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
373 * using the pre-allocated transfer_id as a base.
374 * Note that the global transfer_id is shared across all message types
375 * so there could be holes in the allocated set of monotonic sequence
376 * numbers, but that is going to limit the effectiveness of the
377 * mitigation only in very rare limit conditions.
378 */
379 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
380
381 /* Pick the next available xfer_id >= next_token */
382 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
383 MSG_TOKEN_MAX, next_token);
384 if (xfer_id == MSG_TOKEN_MAX) {
385 /*
386 * After heavily out-of-order responses, there are no free
387 * tokens ahead, but only at start of xfer_alloc_table so
388 * try again from the beginning.
389 */
390 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
391 MSG_TOKEN_MAX, 0);
392 /*
393 * Something is wrong if we got here since there can be a
394 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
395 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
396 */
397 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
398 return -ENOMEM;
399 }
400
401 /* Update +/- last_token accordingly if we skipped some hole */
402 if (xfer_id != next_token)
403 atomic_add((int)(xfer_id - next_token), &transfer_last_id);
404
405 xfer->hdr.seq = (u16)xfer_id;
406
407 return 0;
408 }
409
410 /**
411 * scmi_xfer_token_clear - Release the token
412 *
413 * @minfo: Pointer to Tx/Rx Message management info based on channel type
414 * @xfer: The xfer to act upon
415 */
scmi_xfer_token_clear(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)416 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
417 struct scmi_xfer *xfer)
418 {
419 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
420 }
421
422 /**
423 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight
424 *
425 * @xfer: The xfer to register
426 * @minfo: Pointer to Tx/Rx Message management info based on channel type
427 *
428 * Note that this helper assumes that the xfer to be registered as in-flight
429 * had been built using an xfer sequence number which still corresponds to a
430 * free slot in the xfer_alloc_table.
431 *
432 * Context: Assumes to be called with @xfer_lock already acquired.
433 */
434 static inline void
scmi_xfer_inflight_register_unlocked(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)435 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
436 struct scmi_xfers_info *minfo)
437 {
438 /* Set in-flight */
439 set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
440 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
441 xfer->pending = true;
442 }
443
444 /**
445 * scmi_xfer_inflight_register - Try to register an xfer as in-flight
446 *
447 * @xfer: The xfer to register
448 * @minfo: Pointer to Tx/Rx Message management info based on channel type
449 *
450 * Note that this helper does NOT assume anything about the sequence number
451 * that was baked into the provided xfer, so it checks at first if it can
452 * be mapped to a free slot and fails with an error if another xfer with the
453 * same sequence number is currently still registered as in-flight.
454 *
455 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
456 * could not rbe mapped to a free slot in the xfer_alloc_table.
457 */
scmi_xfer_inflight_register(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)458 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
459 struct scmi_xfers_info *minfo)
460 {
461 int ret = 0;
462 unsigned long flags;
463
464 spin_lock_irqsave(&minfo->xfer_lock, flags);
465 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
466 scmi_xfer_inflight_register_unlocked(xfer, minfo);
467 else
468 ret = -EBUSY;
469 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
470
471 return ret;
472 }
473
474 /**
475 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in
476 * flight on the TX channel, if possible.
477 *
478 * @handle: Pointer to SCMI entity handle
479 * @xfer: The xfer to register
480 *
481 * Return: 0 on Success, error otherwise
482 */
scmi_xfer_raw_inflight_register(const struct scmi_handle * handle,struct scmi_xfer * xfer)483 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
484 struct scmi_xfer *xfer)
485 {
486 struct scmi_info *info = handle_to_scmi_info(handle);
487
488 return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
489 }
490
491 /**
492 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer
493 * as pending in-flight
494 *
495 * @xfer: The xfer to act upon
496 * @minfo: Pointer to Tx/Rx Message management info based on channel type
497 *
498 * Return: 0 on Success or error otherwise
499 */
scmi_xfer_pending_set(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)500 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
501 struct scmi_xfers_info *minfo)
502 {
503 int ret;
504 unsigned long flags;
505
506 spin_lock_irqsave(&minfo->xfer_lock, flags);
507 /* Set a new monotonic token as the xfer sequence number */
508 ret = scmi_xfer_token_set(minfo, xfer);
509 if (!ret)
510 scmi_xfer_inflight_register_unlocked(xfer, minfo);
511 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
512
513 return ret;
514 }
515
516 /**
517 * scmi_xfer_get() - Allocate one message
518 *
519 * @handle: Pointer to SCMI entity handle
520 * @minfo: Pointer to Tx/Rx Message management info based on channel type
521 *
522 * Helper function which is used by various message functions that are
523 * exposed to clients of this driver for allocating a message traffic event.
524 *
525 * Picks an xfer from the free list @free_xfers (if any available) and perform
526 * a basic initialization.
527 *
528 * Note that, at this point, still no sequence number is assigned to the
529 * allocated xfer, nor it is registered as a pending transaction.
530 *
531 * The successfully initialized xfer is refcounted.
532 *
533 * Context: Holds @xfer_lock while manipulating @free_xfers.
534 *
535 * Return: An initialized xfer if all went fine, else pointer error.
536 */
scmi_xfer_get(const struct scmi_handle * handle,struct scmi_xfers_info * minfo)537 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
538 struct scmi_xfers_info *minfo)
539 {
540 unsigned long flags;
541 struct scmi_xfer *xfer;
542
543 spin_lock_irqsave(&minfo->xfer_lock, flags);
544 if (hlist_empty(&minfo->free_xfers)) {
545 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
546 return ERR_PTR(-ENOMEM);
547 }
548
549 /* grab an xfer from the free_list */
550 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
551 hlist_del_init(&xfer->node);
552
553 /*
554 * Allocate transfer_id early so that can be used also as base for
555 * monotonic sequence number generation if needed.
556 */
557 xfer->transfer_id = atomic_inc_return(&transfer_last_id);
558
559 refcount_set(&xfer->users, 1);
560 atomic_set(&xfer->busy, SCMI_XFER_FREE);
561 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
562
563 return xfer;
564 }
565
566 /**
567 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel
568 *
569 * @handle: Pointer to SCMI entity handle
570 *
571 * Note that xfer is taken from the TX channel structures.
572 *
573 * Return: A valid xfer on Success, or an error-pointer otherwise
574 */
scmi_xfer_raw_get(const struct scmi_handle * handle)575 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
576 {
577 struct scmi_xfer *xfer;
578 struct scmi_info *info = handle_to_scmi_info(handle);
579
580 xfer = scmi_xfer_get(handle, &info->tx_minfo);
581 if (!IS_ERR(xfer))
582 xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
583
584 return xfer;
585 }
586
587 /**
588 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel
589 * to use for a specific protocol_id Raw transaction.
590 *
591 * @handle: Pointer to SCMI entity handle
592 * @protocol_id: Identifier of the protocol
593 *
594 * Note that in a regular SCMI stack, usually, a protocol has to be defined in
595 * the DT to have an associated channel and be usable; but in Raw mode any
596 * protocol in range is allowed, re-using the Base channel, so as to enable
597 * fuzzing on any protocol without the need of a fully compiled DT.
598 *
599 * Return: A reference to the channel to use, or an ERR_PTR
600 */
601 struct scmi_chan_info *
scmi_xfer_raw_channel_get(const struct scmi_handle * handle,u8 protocol_id)602 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
603 {
604 struct scmi_chan_info *cinfo;
605 struct scmi_info *info = handle_to_scmi_info(handle);
606
607 cinfo = idr_find(&info->tx_idr, protocol_id);
608 if (!cinfo) {
609 if (protocol_id == SCMI_PROTOCOL_BASE)
610 return ERR_PTR(-EINVAL);
611 /* Use Base channel for protocols not defined for DT */
612 cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
613 if (!cinfo)
614 return ERR_PTR(-EINVAL);
615 dev_warn_once(handle->dev,
616 "Using Base channel for protocol 0x%X\n",
617 protocol_id);
618 }
619
620 return cinfo;
621 }
622
623 /**
624 * __scmi_xfer_put() - Release a message
625 *
626 * @minfo: Pointer to Tx/Rx Message management info based on channel type
627 * @xfer: message that was reserved by scmi_xfer_get
628 *
629 * After refcount check, possibly release an xfer, clearing the token slot,
630 * removing xfer from @pending_xfers and putting it back into free_xfers.
631 *
632 * This holds a spinlock to maintain integrity of internal data structures.
633 */
634 static void
__scmi_xfer_put(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)635 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
636 {
637 unsigned long flags;
638
639 spin_lock_irqsave(&minfo->xfer_lock, flags);
640 if (refcount_dec_and_test(&xfer->users)) {
641 if (xfer->pending) {
642 scmi_xfer_token_clear(minfo, xfer);
643 hash_del(&xfer->node);
644 xfer->pending = false;
645 }
646 hlist_add_head(&xfer->node, &minfo->free_xfers);
647 }
648 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
649 }
650
651 /**
652 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get
653 *
654 * @handle: Pointer to SCMI entity handle
655 * @xfer: A reference to the xfer to put
656 *
657 * Note that as with other xfer_put() handlers the xfer is really effectively
658 * released only if there are no more users on the system.
659 */
scmi_xfer_raw_put(const struct scmi_handle * handle,struct scmi_xfer * xfer)660 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
661 {
662 struct scmi_info *info = handle_to_scmi_info(handle);
663
664 xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
665 xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
666 return __scmi_xfer_put(&info->tx_minfo, xfer);
667 }
668
669 /**
670 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id
671 *
672 * @minfo: Pointer to Tx/Rx Message management info based on channel type
673 * @xfer_id: Token ID to lookup in @pending_xfers
674 *
675 * Refcounting is untouched.
676 *
677 * Context: Assumes to be called with @xfer_lock already acquired.
678 *
679 * Return: A valid xfer on Success or error otherwise
680 */
681 static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info * minfo,u16 xfer_id)682 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
683 {
684 struct scmi_xfer *xfer = NULL;
685
686 if (test_bit(xfer_id, minfo->xfer_alloc_table))
687 xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
688
689 return xfer ?: ERR_PTR(-EINVAL);
690 }
691
692 /**
693 * scmi_msg_response_validate - Validate message type against state of related
694 * xfer
695 *
696 * @cinfo: A reference to the channel descriptor.
697 * @msg_type: Message type to check
698 * @xfer: A reference to the xfer to validate against @msg_type
699 *
700 * This function checks if @msg_type is congruent with the current state of
701 * a pending @xfer; if an asynchronous delayed response is received before the
702 * related synchronous response (Out-of-Order Delayed Response) the missing
703 * synchronous response is assumed to be OK and completed, carrying on with the
704 * Delayed Response: this is done to address the case in which the underlying
705 * SCMI transport can deliver such out-of-order responses.
706 *
707 * Context: Assumes to be called with xfer->lock already acquired.
708 *
709 * Return: 0 on Success, error otherwise
710 */
scmi_msg_response_validate(struct scmi_chan_info * cinfo,u8 msg_type,struct scmi_xfer * xfer)711 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
712 u8 msg_type,
713 struct scmi_xfer *xfer)
714 {
715 /*
716 * Even if a response was indeed expected on this slot at this point,
717 * a buggy platform could wrongly reply feeding us an unexpected
718 * delayed response we're not prepared to handle: bail-out safely
719 * blaming firmware.
720 */
721 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
722 dev_err(cinfo->dev,
723 "Delayed Response for %d not expected! Buggy F/W ?\n",
724 xfer->hdr.seq);
725 return -EINVAL;
726 }
727
728 switch (xfer->state) {
729 case SCMI_XFER_SENT_OK:
730 if (msg_type == MSG_TYPE_DELAYED_RESP) {
731 /*
732 * Delayed Response expected but delivered earlier.
733 * Assume message RESPONSE was OK and skip state.
734 */
735 xfer->hdr.status = SCMI_SUCCESS;
736 xfer->state = SCMI_XFER_RESP_OK;
737 complete(&xfer->done);
738 dev_warn(cinfo->dev,
739 "Received valid OoO Delayed Response for %d\n",
740 xfer->hdr.seq);
741 }
742 break;
743 case SCMI_XFER_RESP_OK:
744 if (msg_type != MSG_TYPE_DELAYED_RESP)
745 return -EINVAL;
746 break;
747 case SCMI_XFER_DRESP_OK:
748 /* No further message expected once in SCMI_XFER_DRESP_OK */
749 return -EINVAL;
750 }
751
752 return 0;
753 }
754
755 /**
756 * scmi_xfer_state_update - Update xfer state
757 *
758 * @xfer: A reference to the xfer to update
759 * @msg_type: Type of message being processed.
760 *
761 * Note that this message is assumed to have been already successfully validated
762 * by @scmi_msg_response_validate(), so here we just update the state.
763 *
764 * Context: Assumes to be called on an xfer exclusively acquired using the
765 * busy flag.
766 */
scmi_xfer_state_update(struct scmi_xfer * xfer,u8 msg_type)767 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
768 {
769 xfer->hdr.type = msg_type;
770
771 /* Unknown command types were already discarded earlier */
772 if (xfer->hdr.type == MSG_TYPE_COMMAND)
773 xfer->state = SCMI_XFER_RESP_OK;
774 else
775 xfer->state = SCMI_XFER_DRESP_OK;
776 }
777
scmi_xfer_acquired(struct scmi_xfer * xfer)778 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
779 {
780 int ret;
781
782 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
783
784 return ret == SCMI_XFER_FREE;
785 }
786
787 /**
788 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer
789 *
790 * @cinfo: A reference to the channel descriptor.
791 * @msg_hdr: A message header to use as lookup key
792 *
793 * When a valid xfer is found for the sequence number embedded in the provided
794 * msg_hdr, reference counting is properly updated and exclusive access to this
795 * xfer is granted till released with @scmi_xfer_command_release.
796 *
797 * Return: A valid @xfer on Success or error otherwise.
798 */
799 static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info * cinfo,u32 msg_hdr)800 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
801 {
802 int ret;
803 unsigned long flags;
804 struct scmi_xfer *xfer;
805 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
806 struct scmi_xfers_info *minfo = &info->tx_minfo;
807 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
808 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
809
810 /* Are we even expecting this? */
811 spin_lock_irqsave(&minfo->xfer_lock, flags);
812 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
813 if (IS_ERR(xfer)) {
814 dev_err(cinfo->dev,
815 "Message for %d type %d is not expected!\n",
816 xfer_id, msg_type);
817 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
818 return xfer;
819 }
820 refcount_inc(&xfer->users);
821 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
822
823 spin_lock_irqsave(&xfer->lock, flags);
824 ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
825 /*
826 * If a pending xfer was found which was also in a congruent state with
827 * the received message, acquire exclusive access to it setting the busy
828 * flag.
829 * Spins only on the rare limit condition of concurrent reception of
830 * RESP and DRESP for the same xfer.
831 */
832 if (!ret) {
833 spin_until_cond(scmi_xfer_acquired(xfer));
834 scmi_xfer_state_update(xfer, msg_type);
835 }
836 spin_unlock_irqrestore(&xfer->lock, flags);
837
838 if (ret) {
839 dev_err(cinfo->dev,
840 "Invalid message type:%d for %d - HDR:0x%X state:%d\n",
841 msg_type, xfer_id, msg_hdr, xfer->state);
842 /* On error the refcount incremented above has to be dropped */
843 __scmi_xfer_put(minfo, xfer);
844 xfer = ERR_PTR(-EINVAL);
845 }
846
847 return xfer;
848 }
849
scmi_xfer_command_release(struct scmi_info * info,struct scmi_xfer * xfer)850 static inline void scmi_xfer_command_release(struct scmi_info *info,
851 struct scmi_xfer *xfer)
852 {
853 atomic_set(&xfer->busy, SCMI_XFER_FREE);
854 __scmi_xfer_put(&info->tx_minfo, xfer);
855 }
856
scmi_clear_channel(struct scmi_info * info,struct scmi_chan_info * cinfo)857 static inline void scmi_clear_channel(struct scmi_info *info,
858 struct scmi_chan_info *cinfo)
859 {
860 if (info->desc->ops->clear_channel)
861 info->desc->ops->clear_channel(cinfo);
862 }
863
scmi_handle_notification(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)864 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
865 u32 msg_hdr, void *priv)
866 {
867 struct scmi_xfer *xfer;
868 struct device *dev = cinfo->dev;
869 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
870 struct scmi_xfers_info *minfo = &info->rx_minfo;
871 ktime_t ts;
872
873 ts = ktime_get_boottime();
874 xfer = scmi_xfer_get(cinfo->handle, minfo);
875 if (IS_ERR(xfer)) {
876 dev_err(dev, "failed to get free message slot (%ld)\n",
877 PTR_ERR(xfer));
878 scmi_clear_channel(info, cinfo);
879 return;
880 }
881
882 unpack_scmi_header(msg_hdr, &xfer->hdr);
883 if (priv)
884 /* Ensure order between xfer->priv store and following ops */
885 smp_store_mb(xfer->priv, priv);
886 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
887 xfer);
888
889 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
890 xfer->hdr.id, "NOTI", xfer->hdr.seq,
891 xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
892
893 scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
894 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
895
896 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
897 xfer->hdr.protocol_id, xfer->hdr.seq,
898 MSG_TYPE_NOTIFICATION);
899
900 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
901 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
902 scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
903 cinfo->id);
904 }
905
906 __scmi_xfer_put(minfo, xfer);
907
908 scmi_clear_channel(info, cinfo);
909 }
910
scmi_handle_response(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)911 static void scmi_handle_response(struct scmi_chan_info *cinfo,
912 u32 msg_hdr, void *priv)
913 {
914 struct scmi_xfer *xfer;
915 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
916
917 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
918 if (IS_ERR(xfer)) {
919 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
920 scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
921
922 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
923 scmi_clear_channel(info, cinfo);
924 return;
925 }
926
927 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
928 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
929 xfer->rx.len = info->desc->max_msg_size;
930
931 if (priv)
932 /* Ensure order between xfer->priv store and following ops */
933 smp_store_mb(xfer->priv, priv);
934 info->desc->ops->fetch_response(cinfo, xfer);
935
936 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
937 xfer->hdr.id,
938 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
939 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
940 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
941 xfer->hdr.seq, xfer->hdr.status,
942 xfer->rx.buf, xfer->rx.len);
943
944 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
945 xfer->hdr.protocol_id, xfer->hdr.seq,
946 xfer->hdr.type);
947
948 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
949 scmi_clear_channel(info, cinfo);
950 complete(xfer->async_done);
951 } else {
952 complete(&xfer->done);
953 }
954
955 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
956 /*
957 * When in polling mode avoid to queue the Raw xfer on the IRQ
958 * RX path since it will be already queued at the end of the TX
959 * poll loop.
960 */
961 if (!xfer->hdr.poll_completion)
962 scmi_raw_message_report(info->raw, xfer,
963 SCMI_RAW_REPLY_QUEUE,
964 cinfo->id);
965 }
966
967 scmi_xfer_command_release(info, xfer);
968 }
969
970 /**
971 * scmi_rx_callback() - callback for receiving messages
972 *
973 * @cinfo: SCMI channel info
974 * @msg_hdr: Message header
975 * @priv: Transport specific private data.
976 *
977 * Processes one received message to appropriate transfer information and
978 * signals completion of the transfer.
979 *
980 * NOTE: This function will be invoked in IRQ context, hence should be
981 * as optimal as possible.
982 */
scmi_rx_callback(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)983 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
984 {
985 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
986
987 switch (msg_type) {
988 case MSG_TYPE_NOTIFICATION:
989 scmi_handle_notification(cinfo, msg_hdr, priv);
990 break;
991 case MSG_TYPE_COMMAND:
992 case MSG_TYPE_DELAYED_RESP:
993 scmi_handle_response(cinfo, msg_hdr, priv);
994 break;
995 default:
996 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
997 break;
998 }
999 }
1000
1001 /**
1002 * xfer_put() - Release a transmit message
1003 *
1004 * @ph: Pointer to SCMI protocol handle
1005 * @xfer: message that was reserved by xfer_get_init
1006 */
xfer_put(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1007 static void xfer_put(const struct scmi_protocol_handle *ph,
1008 struct scmi_xfer *xfer)
1009 {
1010 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1011 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1012
1013 __scmi_xfer_put(&info->tx_minfo, xfer);
1014 }
1015
scmi_xfer_done_no_timeout(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,ktime_t stop)1016 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1017 struct scmi_xfer *xfer, ktime_t stop)
1018 {
1019 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1020
1021 /*
1022 * Poll also on xfer->done so that polling can be forcibly terminated
1023 * in case of out-of-order receptions of delayed responses
1024 */
1025 return info->desc->ops->poll_done(cinfo, xfer) ||
1026 try_wait_for_completion(&xfer->done) ||
1027 ktime_after(ktime_get(), stop);
1028 }
1029
scmi_wait_for_reply(struct device * dev,const struct scmi_desc * desc,struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1030 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1031 struct scmi_chan_info *cinfo,
1032 struct scmi_xfer *xfer, unsigned int timeout_ms)
1033 {
1034 int ret = 0;
1035
1036 if (xfer->hdr.poll_completion) {
1037 /*
1038 * Real polling is needed only if transport has NOT declared
1039 * itself to support synchronous commands replies.
1040 */
1041 if (!desc->sync_cmds_completed_on_ret) {
1042 /*
1043 * Poll on xfer using transport provided .poll_done();
1044 * assumes no completion interrupt was available.
1045 */
1046 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1047
1048 spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
1049 xfer, stop));
1050 if (ktime_after(ktime_get(), stop)) {
1051 dev_err(dev,
1052 "timed out in resp(caller: %pS) - polling\n",
1053 (void *)_RET_IP_);
1054 ret = -ETIMEDOUT;
1055 }
1056 }
1057
1058 if (!ret) {
1059 unsigned long flags;
1060 struct scmi_info *info =
1061 handle_to_scmi_info(cinfo->handle);
1062
1063 /*
1064 * Do not fetch_response if an out-of-order delayed
1065 * response is being processed.
1066 */
1067 spin_lock_irqsave(&xfer->lock, flags);
1068 if (xfer->state == SCMI_XFER_SENT_OK) {
1069 desc->ops->fetch_response(cinfo, xfer);
1070 xfer->state = SCMI_XFER_RESP_OK;
1071 }
1072 spin_unlock_irqrestore(&xfer->lock, flags);
1073
1074 /* Trace polled replies. */
1075 trace_scmi_msg_dump(info->id, cinfo->id,
1076 xfer->hdr.protocol_id, xfer->hdr.id,
1077 !SCMI_XFER_IS_RAW(xfer) ?
1078 "RESP" : "resp",
1079 xfer->hdr.seq, xfer->hdr.status,
1080 xfer->rx.buf, xfer->rx.len);
1081
1082 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1083 struct scmi_info *info =
1084 handle_to_scmi_info(cinfo->handle);
1085
1086 scmi_raw_message_report(info->raw, xfer,
1087 SCMI_RAW_REPLY_QUEUE,
1088 cinfo->id);
1089 }
1090 }
1091 } else {
1092 /* And we wait for the response. */
1093 if (!wait_for_completion_timeout(&xfer->done,
1094 msecs_to_jiffies(timeout_ms))) {
1095 dev_err(dev, "timed out in resp(caller: %pS)\n",
1096 (void *)_RET_IP_);
1097 ret = -ETIMEDOUT;
1098 }
1099 }
1100
1101 return ret;
1102 }
1103
1104 /**
1105 * scmi_wait_for_message_response - An helper to group all the possible ways of
1106 * waiting for a synchronous message response.
1107 *
1108 * @cinfo: SCMI channel info
1109 * @xfer: Reference to the transfer being waited for.
1110 *
1111 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1112 * configuration flags like xfer->hdr.poll_completion.
1113 *
1114 * Return: 0 on Success, error otherwise.
1115 */
scmi_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer)1116 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1117 struct scmi_xfer *xfer)
1118 {
1119 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1120 struct device *dev = info->dev;
1121
1122 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1123 xfer->hdr.protocol_id, xfer->hdr.seq,
1124 info->desc->max_rx_timeout_ms,
1125 xfer->hdr.poll_completion);
1126
1127 return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1128 info->desc->max_rx_timeout_ms);
1129 }
1130
1131 /**
1132 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message
1133 * reply to an xfer raw request on a specific channel for the required timeout.
1134 *
1135 * @cinfo: SCMI channel info
1136 * @xfer: Reference to the transfer being waited for.
1137 * @timeout_ms: The maximum timeout in milliseconds
1138 *
1139 * Return: 0 on Success, error otherwise.
1140 */
scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1141 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1142 struct scmi_xfer *xfer,
1143 unsigned int timeout_ms)
1144 {
1145 int ret;
1146 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1147 struct device *dev = info->dev;
1148
1149 ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1150 if (ret)
1151 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1152 pack_scmi_header(&xfer->hdr));
1153
1154 return ret;
1155 }
1156
1157 /**
1158 * do_xfer() - Do one transfer
1159 *
1160 * @ph: Pointer to SCMI protocol handle
1161 * @xfer: Transfer to initiate and wait for response
1162 *
1163 * Return: -ETIMEDOUT in case of no response, if transmit error,
1164 * return corresponding error, else if all goes well,
1165 * return 0.
1166 */
do_xfer(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1167 static int do_xfer(const struct scmi_protocol_handle *ph,
1168 struct scmi_xfer *xfer)
1169 {
1170 int ret;
1171 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1172 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1173 struct device *dev = info->dev;
1174 struct scmi_chan_info *cinfo;
1175
1176 /* Check for polling request on custom command xfers at first */
1177 if (xfer->hdr.poll_completion &&
1178 !is_transport_polling_capable(info->desc)) {
1179 dev_warn_once(dev,
1180 "Polling mode is not supported by transport.\n");
1181 return -EINVAL;
1182 }
1183
1184 cinfo = idr_find(&info->tx_idr, pi->proto->id);
1185 if (unlikely(!cinfo))
1186 return -EINVAL;
1187
1188 /* True ONLY if also supported by transport. */
1189 if (is_polling_enabled(cinfo, info->desc))
1190 xfer->hdr.poll_completion = true;
1191
1192 /*
1193 * Initialise protocol id now from protocol handle to avoid it being
1194 * overridden by mistake (or malice) by the protocol code mangling with
1195 * the scmi_xfer structure prior to this.
1196 */
1197 xfer->hdr.protocol_id = pi->proto->id;
1198 reinit_completion(&xfer->done);
1199
1200 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1201 xfer->hdr.protocol_id, xfer->hdr.seq,
1202 xfer->hdr.poll_completion);
1203
1204 /* Clear any stale status */
1205 xfer->hdr.status = SCMI_SUCCESS;
1206 xfer->state = SCMI_XFER_SENT_OK;
1207 /*
1208 * Even though spinlocking is not needed here since no race is possible
1209 * on xfer->state due to the monotonically increasing tokens allocation,
1210 * we must anyway ensure xfer->state initialization is not re-ordered
1211 * after the .send_message() to be sure that on the RX path an early
1212 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1213 */
1214 smp_mb();
1215
1216 ret = info->desc->ops->send_message(cinfo, xfer);
1217 if (ret < 0) {
1218 dev_dbg(dev, "Failed to send message %d\n", ret);
1219 return ret;
1220 }
1221
1222 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1223 xfer->hdr.id, "CMND", xfer->hdr.seq,
1224 xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1225
1226 ret = scmi_wait_for_message_response(cinfo, xfer);
1227 if (!ret && xfer->hdr.status)
1228 ret = scmi_to_linux_errno(xfer->hdr.status);
1229
1230 if (info->desc->ops->mark_txdone)
1231 info->desc->ops->mark_txdone(cinfo, ret, xfer);
1232
1233 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1234 xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1235
1236 return ret;
1237 }
1238
reset_rx_to_maxsz(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1239 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1240 struct scmi_xfer *xfer)
1241 {
1242 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1243 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1244
1245 xfer->rx.len = info->desc->max_msg_size;
1246 }
1247
1248 /**
1249 * do_xfer_with_response() - Do one transfer and wait until the delayed
1250 * response is received
1251 *
1252 * @ph: Pointer to SCMI protocol handle
1253 * @xfer: Transfer to initiate and wait for response
1254 *
1255 * Using asynchronous commands in atomic/polling mode should be avoided since
1256 * it could cause long busy-waiting here, so ignore polling for the delayed
1257 * response and WARN if it was requested for this command transaction since
1258 * upper layers should refrain from issuing such kind of requests.
1259 *
1260 * The only other option would have been to refrain from using any asynchronous
1261 * command even if made available, when an atomic transport is detected, and
1262 * instead forcibly use the synchronous version (thing that can be easily
1263 * attained at the protocol layer), but this would also have led to longer
1264 * stalls of the channel for synchronous commands and possibly timeouts.
1265 * (in other words there is usually a good reason if a platform provides an
1266 * asynchronous version of a command and we should prefer to use it...just not
1267 * when using atomic/polling mode)
1268 *
1269 * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1270 * return corresponding error, else if all goes well, return 0.
1271 */
do_xfer_with_response(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1272 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1273 struct scmi_xfer *xfer)
1274 {
1275 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1276 DECLARE_COMPLETION_ONSTACK(async_response);
1277
1278 xfer->async_done = &async_response;
1279
1280 /*
1281 * Delayed responses should not be polled, so an async command should
1282 * not have been used when requiring an atomic/poll context; WARN and
1283 * perform instead a sleeping wait.
1284 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1285 */
1286 WARN_ON_ONCE(xfer->hdr.poll_completion);
1287
1288 ret = do_xfer(ph, xfer);
1289 if (!ret) {
1290 if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1291 dev_err(ph->dev,
1292 "timed out in delayed resp(caller: %pS)\n",
1293 (void *)_RET_IP_);
1294 ret = -ETIMEDOUT;
1295 } else if (xfer->hdr.status) {
1296 ret = scmi_to_linux_errno(xfer->hdr.status);
1297 }
1298 }
1299
1300 xfer->async_done = NULL;
1301 return ret;
1302 }
1303
1304 /**
1305 * xfer_get_init() - Allocate and initialise one message for transmit
1306 *
1307 * @ph: Pointer to SCMI protocol handle
1308 * @msg_id: Message identifier
1309 * @tx_size: transmit message size
1310 * @rx_size: receive message size
1311 * @p: pointer to the allocated and initialised message
1312 *
1313 * This function allocates the message using @scmi_xfer_get and
1314 * initialise the header.
1315 *
1316 * Return: 0 if all went fine with @p pointing to message, else
1317 * corresponding error.
1318 */
xfer_get_init(const struct scmi_protocol_handle * ph,u8 msg_id,size_t tx_size,size_t rx_size,struct scmi_xfer ** p)1319 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1320 u8 msg_id, size_t tx_size, size_t rx_size,
1321 struct scmi_xfer **p)
1322 {
1323 int ret;
1324 struct scmi_xfer *xfer;
1325 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1326 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1327 struct scmi_xfers_info *minfo = &info->tx_minfo;
1328 struct device *dev = info->dev;
1329
1330 /* Ensure we have sane transfer sizes */
1331 if (rx_size > info->desc->max_msg_size ||
1332 tx_size > info->desc->max_msg_size)
1333 return -ERANGE;
1334
1335 xfer = scmi_xfer_get(pi->handle, minfo);
1336 if (IS_ERR(xfer)) {
1337 ret = PTR_ERR(xfer);
1338 dev_err(dev, "failed to get free message slot(%d)\n", ret);
1339 return ret;
1340 }
1341
1342 /* Pick a sequence number and register this xfer as in-flight */
1343 ret = scmi_xfer_pending_set(xfer, minfo);
1344 if (ret) {
1345 dev_err(pi->handle->dev,
1346 "Failed to get monotonic token %d\n", ret);
1347 __scmi_xfer_put(minfo, xfer);
1348 return ret;
1349 }
1350
1351 xfer->tx.len = tx_size;
1352 xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1353 xfer->hdr.type = MSG_TYPE_COMMAND;
1354 xfer->hdr.id = msg_id;
1355 xfer->hdr.poll_completion = false;
1356
1357 *p = xfer;
1358
1359 return 0;
1360 }
1361
1362 /**
1363 * version_get() - command to get the revision of the SCMI entity
1364 *
1365 * @ph: Pointer to SCMI protocol handle
1366 * @version: Holds returned version of protocol.
1367 *
1368 * Updates the SCMI information in the internal data structure.
1369 *
1370 * Return: 0 if all went fine, else return appropriate error.
1371 */
version_get(const struct scmi_protocol_handle * ph,u32 * version)1372 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1373 {
1374 int ret;
1375 __le32 *rev_info;
1376 struct scmi_xfer *t;
1377
1378 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1379 if (ret)
1380 return ret;
1381
1382 ret = do_xfer(ph, t);
1383 if (!ret) {
1384 rev_info = t->rx.buf;
1385 *version = le32_to_cpu(*rev_info);
1386 }
1387
1388 xfer_put(ph, t);
1389 return ret;
1390 }
1391
1392 /**
1393 * scmi_set_protocol_priv - Set protocol specific data at init time
1394 *
1395 * @ph: A reference to the protocol handle.
1396 * @priv: The private data to set.
1397 * @version: The detected protocol version for the core to register.
1398 *
1399 * Return: 0 on Success
1400 */
scmi_set_protocol_priv(const struct scmi_protocol_handle * ph,void * priv,u32 version)1401 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1402 void *priv, u32 version)
1403 {
1404 struct scmi_protocol_instance *pi = ph_to_pi(ph);
1405
1406 pi->priv = priv;
1407 pi->version = version;
1408
1409 return 0;
1410 }
1411
1412 /**
1413 * scmi_get_protocol_priv - Set protocol specific data at init time
1414 *
1415 * @ph: A reference to the protocol handle.
1416 *
1417 * Return: Protocol private data if any was set.
1418 */
scmi_get_protocol_priv(const struct scmi_protocol_handle * ph)1419 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1420 {
1421 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1422
1423 return pi->priv;
1424 }
1425
1426 static const struct scmi_xfer_ops xfer_ops = {
1427 .version_get = version_get,
1428 .xfer_get_init = xfer_get_init,
1429 .reset_rx_to_maxsz = reset_rx_to_maxsz,
1430 .do_xfer = do_xfer,
1431 .do_xfer_with_response = do_xfer_with_response,
1432 .xfer_put = xfer_put,
1433 };
1434
1435 struct scmi_msg_resp_domain_name_get {
1436 __le32 flags;
1437 u8 name[SCMI_MAX_STR_SIZE];
1438 };
1439
1440 /**
1441 * scmi_common_extended_name_get - Common helper to get extended resources name
1442 * @ph: A protocol handle reference.
1443 * @cmd_id: The specific command ID to use.
1444 * @res_id: The specific resource ID to use.
1445 * @flags: A pointer to specific flags to use, if any.
1446 * @name: A pointer to the preallocated area where the retrieved name will be
1447 * stored as a NULL terminated string.
1448 * @len: The len in bytes of the @name char array.
1449 *
1450 * Return: 0 on Succcess
1451 */
scmi_common_extended_name_get(const struct scmi_protocol_handle * ph,u8 cmd_id,u32 res_id,u32 * flags,char * name,size_t len)1452 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1453 u8 cmd_id, u32 res_id, u32 *flags,
1454 char *name, size_t len)
1455 {
1456 int ret;
1457 size_t txlen;
1458 struct scmi_xfer *t;
1459 struct scmi_msg_resp_domain_name_get *resp;
1460
1461 txlen = !flags ? sizeof(res_id) : sizeof(res_id) + sizeof(*flags);
1462 ret = ph->xops->xfer_get_init(ph, cmd_id, txlen, sizeof(*resp), &t);
1463 if (ret)
1464 goto out;
1465
1466 put_unaligned_le32(res_id, t->tx.buf);
1467 if (flags)
1468 put_unaligned_le32(*flags, t->tx.buf + sizeof(res_id));
1469 resp = t->rx.buf;
1470
1471 ret = ph->xops->do_xfer(ph, t);
1472 if (!ret)
1473 strscpy(name, resp->name, len);
1474
1475 ph->xops->xfer_put(ph, t);
1476 out:
1477 if (ret)
1478 dev_warn(ph->dev,
1479 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1480 res_id, ret, name);
1481 return ret;
1482 }
1483
1484 /**
1485 * scmi_common_get_max_msg_size - Get maximum message size
1486 * @ph: A protocol handle reference.
1487 *
1488 * Return: Maximum message size for the current protocol.
1489 */
scmi_common_get_max_msg_size(const struct scmi_protocol_handle * ph)1490 static int scmi_common_get_max_msg_size(const struct scmi_protocol_handle *ph)
1491 {
1492 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1493 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1494
1495 return info->desc->max_msg_size;
1496 }
1497
1498 /**
1499 * struct scmi_iterator - Iterator descriptor
1500 * @msg: A reference to the message TX buffer; filled by @prepare_message with
1501 * a proper custom command payload for each multi-part command request.
1502 * @resp: A reference to the response RX buffer; used by @update_state and
1503 * @process_response to parse the multi-part replies.
1504 * @t: A reference to the underlying xfer initialized and used transparently by
1505 * the iterator internal routines.
1506 * @ph: A reference to the associated protocol handle to be used.
1507 * @ops: A reference to the custom provided iterator operations.
1508 * @state: The current iterator state; used and updated in turn by the iterators
1509 * internal routines and by the caller-provided @scmi_iterator_ops.
1510 * @priv: A reference to optional private data as provided by the caller and
1511 * passed back to the @@scmi_iterator_ops.
1512 */
1513 struct scmi_iterator {
1514 void *msg;
1515 void *resp;
1516 struct scmi_xfer *t;
1517 const struct scmi_protocol_handle *ph;
1518 struct scmi_iterator_ops *ops;
1519 struct scmi_iterator_state state;
1520 void *priv;
1521 };
1522
scmi_iterator_init(const struct scmi_protocol_handle * ph,struct scmi_iterator_ops * ops,unsigned int max_resources,u8 msg_id,size_t tx_size,void * priv)1523 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1524 struct scmi_iterator_ops *ops,
1525 unsigned int max_resources, u8 msg_id,
1526 size_t tx_size, void *priv)
1527 {
1528 int ret;
1529 struct scmi_iterator *i;
1530
1531 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1532 if (!i)
1533 return ERR_PTR(-ENOMEM);
1534
1535 i->ph = ph;
1536 i->ops = ops;
1537 i->priv = priv;
1538
1539 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1540 if (ret) {
1541 devm_kfree(ph->dev, i);
1542 return ERR_PTR(ret);
1543 }
1544
1545 i->state.max_resources = max_resources;
1546 i->msg = i->t->tx.buf;
1547 i->resp = i->t->rx.buf;
1548
1549 return i;
1550 }
1551
scmi_iterator_run(void * iter)1552 static int scmi_iterator_run(void *iter)
1553 {
1554 int ret = -EINVAL;
1555 struct scmi_iterator_ops *iops;
1556 const struct scmi_protocol_handle *ph;
1557 struct scmi_iterator_state *st;
1558 struct scmi_iterator *i = iter;
1559
1560 if (!i || !i->ops || !i->ph)
1561 return ret;
1562
1563 iops = i->ops;
1564 ph = i->ph;
1565 st = &i->state;
1566
1567 do {
1568 iops->prepare_message(i->msg, st->desc_index, i->priv);
1569 ret = ph->xops->do_xfer(ph, i->t);
1570 if (ret)
1571 break;
1572
1573 st->rx_len = i->t->rx.len;
1574 ret = iops->update_state(st, i->resp, i->priv);
1575 if (ret)
1576 break;
1577
1578 if (st->num_returned > st->max_resources - st->desc_index) {
1579 dev_err(ph->dev,
1580 "No. of resources can't exceed %d\n",
1581 st->max_resources);
1582 ret = -EINVAL;
1583 break;
1584 }
1585
1586 for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1587 st->loop_idx++) {
1588 ret = iops->process_response(ph, i->resp, st, i->priv);
1589 if (ret)
1590 goto out;
1591 }
1592
1593 st->desc_index += st->num_returned;
1594 ph->xops->reset_rx_to_maxsz(ph, i->t);
1595 /*
1596 * check for both returned and remaining to avoid infinite
1597 * loop due to buggy firmware
1598 */
1599 } while (st->num_returned && st->num_remaining);
1600
1601 out:
1602 /* Finalize and destroy iterator */
1603 ph->xops->xfer_put(ph, i->t);
1604 devm_kfree(ph->dev, i);
1605
1606 return ret;
1607 }
1608
1609 struct scmi_msg_get_fc_info {
1610 __le32 domain;
1611 __le32 message_id;
1612 };
1613
1614 struct scmi_msg_resp_desc_fc {
1615 __le32 attr;
1616 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0))
1617 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x))
1618 __le32 rate_limit;
1619 __le32 chan_addr_low;
1620 __le32 chan_addr_high;
1621 __le32 chan_size;
1622 __le32 db_addr_low;
1623 __le32 db_addr_high;
1624 __le32 db_set_lmask;
1625 __le32 db_set_hmask;
1626 __le32 db_preserve_lmask;
1627 __le32 db_preserve_hmask;
1628 };
1629
1630 static void
scmi_common_fastchannel_init(const struct scmi_protocol_handle * ph,u8 describe_id,u32 message_id,u32 valid_size,u32 domain,void __iomem ** p_addr,struct scmi_fc_db_info ** p_db)1631 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1632 u8 describe_id, u32 message_id, u32 valid_size,
1633 u32 domain, void __iomem **p_addr,
1634 struct scmi_fc_db_info **p_db)
1635 {
1636 int ret;
1637 u32 flags;
1638 u64 phys_addr;
1639 u8 size;
1640 void __iomem *addr;
1641 struct scmi_xfer *t;
1642 struct scmi_fc_db_info *db = NULL;
1643 struct scmi_msg_get_fc_info *info;
1644 struct scmi_msg_resp_desc_fc *resp;
1645 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1646
1647 if (!p_addr) {
1648 ret = -EINVAL;
1649 goto err_out;
1650 }
1651
1652 ret = ph->xops->xfer_get_init(ph, describe_id,
1653 sizeof(*info), sizeof(*resp), &t);
1654 if (ret)
1655 goto err_out;
1656
1657 info = t->tx.buf;
1658 info->domain = cpu_to_le32(domain);
1659 info->message_id = cpu_to_le32(message_id);
1660
1661 /*
1662 * Bail out on error leaving fc_info addresses zeroed; this includes
1663 * the case in which the requested domain/message_id does NOT support
1664 * fastchannels at all.
1665 */
1666 ret = ph->xops->do_xfer(ph, t);
1667 if (ret)
1668 goto err_xfer;
1669
1670 resp = t->rx.buf;
1671 flags = le32_to_cpu(resp->attr);
1672 size = le32_to_cpu(resp->chan_size);
1673 if (size != valid_size) {
1674 ret = -EINVAL;
1675 goto err_xfer;
1676 }
1677
1678 phys_addr = le32_to_cpu(resp->chan_addr_low);
1679 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1680 addr = devm_ioremap(ph->dev, phys_addr, size);
1681 if (!addr) {
1682 ret = -EADDRNOTAVAIL;
1683 goto err_xfer;
1684 }
1685
1686 *p_addr = addr;
1687
1688 if (p_db && SUPPORTS_DOORBELL(flags)) {
1689 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1690 if (!db) {
1691 ret = -ENOMEM;
1692 goto err_db;
1693 }
1694
1695 size = 1 << DOORBELL_REG_WIDTH(flags);
1696 phys_addr = le32_to_cpu(resp->db_addr_low);
1697 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1698 addr = devm_ioremap(ph->dev, phys_addr, size);
1699 if (!addr) {
1700 ret = -EADDRNOTAVAIL;
1701 goto err_db_mem;
1702 }
1703
1704 db->addr = addr;
1705 db->width = size;
1706 db->set = le32_to_cpu(resp->db_set_lmask);
1707 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1708 db->mask = le32_to_cpu(resp->db_preserve_lmask);
1709 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1710
1711 *p_db = db;
1712 }
1713
1714 ph->xops->xfer_put(ph, t);
1715
1716 dev_dbg(ph->dev,
1717 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1718 pi->proto->id, message_id, domain);
1719
1720 return;
1721
1722 err_db_mem:
1723 devm_kfree(ph->dev, db);
1724
1725 err_db:
1726 *p_addr = NULL;
1727
1728 err_xfer:
1729 ph->xops->xfer_put(ph, t);
1730
1731 err_out:
1732 dev_warn(ph->dev,
1733 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1734 pi->proto->id, message_id, domain, ret);
1735 }
1736
1737 #define SCMI_PROTO_FC_RING_DB(w) \
1738 do { \
1739 u##w val = 0; \
1740 \
1741 if (db->mask) \
1742 val = ioread##w(db->addr) & db->mask; \
1743 iowrite##w((u##w)db->set | val, db->addr); \
1744 } while (0)
1745
scmi_common_fastchannel_db_ring(struct scmi_fc_db_info * db)1746 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1747 {
1748 if (!db || !db->addr)
1749 return;
1750
1751 if (db->width == 1)
1752 SCMI_PROTO_FC_RING_DB(8);
1753 else if (db->width == 2)
1754 SCMI_PROTO_FC_RING_DB(16);
1755 else if (db->width == 4)
1756 SCMI_PROTO_FC_RING_DB(32);
1757 else /* db->width == 8 */
1758 #ifdef CONFIG_64BIT
1759 SCMI_PROTO_FC_RING_DB(64);
1760 #else
1761 {
1762 u64 val = 0;
1763
1764 if (db->mask)
1765 val = ioread64_hi_lo(db->addr) & db->mask;
1766 iowrite64_hi_lo(db->set | val, db->addr);
1767 }
1768 #endif
1769 }
1770
1771 static const struct scmi_proto_helpers_ops helpers_ops = {
1772 .extended_name_get = scmi_common_extended_name_get,
1773 .get_max_msg_size = scmi_common_get_max_msg_size,
1774 .iter_response_init = scmi_iterator_init,
1775 .iter_response_run = scmi_iterator_run,
1776 .fastchannel_init = scmi_common_fastchannel_init,
1777 .fastchannel_db_ring = scmi_common_fastchannel_db_ring,
1778 };
1779
1780 /**
1781 * scmi_revision_area_get - Retrieve version memory area.
1782 *
1783 * @ph: A reference to the protocol handle.
1784 *
1785 * A helper to grab the version memory area reference during SCMI Base protocol
1786 * initialization.
1787 *
1788 * Return: A reference to the version memory area associated to the SCMI
1789 * instance underlying this protocol handle.
1790 */
1791 struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle * ph)1792 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1793 {
1794 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1795
1796 return pi->handle->version;
1797 }
1798
1799 /**
1800 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol
1801 * instance descriptor.
1802 * @info: The reference to the related SCMI instance.
1803 * @proto: The protocol descriptor.
1804 *
1805 * Allocate a new protocol instance descriptor, using the provided @proto
1806 * description, against the specified SCMI instance @info, and initialize it;
1807 * all resources management is handled via a dedicated per-protocol devres
1808 * group.
1809 *
1810 * Context: Assumes to be called with @protocols_mtx already acquired.
1811 * Return: A reference to a freshly allocated and initialized protocol instance
1812 * or ERR_PTR on failure. On failure the @proto reference is at first
1813 * put using @scmi_protocol_put() before releasing all the devres group.
1814 */
1815 static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info * info,const struct scmi_protocol * proto)1816 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1817 const struct scmi_protocol *proto)
1818 {
1819 int ret = -ENOMEM;
1820 void *gid;
1821 struct scmi_protocol_instance *pi;
1822 const struct scmi_handle *handle = &info->handle;
1823
1824 /* Protocol specific devres group */
1825 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1826 if (!gid) {
1827 scmi_protocol_put(proto->id);
1828 goto out;
1829 }
1830
1831 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1832 if (!pi)
1833 goto clean;
1834
1835 pi->gid = gid;
1836 pi->proto = proto;
1837 pi->handle = handle;
1838 pi->ph.dev = handle->dev;
1839 pi->ph.xops = &xfer_ops;
1840 pi->ph.hops = &helpers_ops;
1841 pi->ph.set_priv = scmi_set_protocol_priv;
1842 pi->ph.get_priv = scmi_get_protocol_priv;
1843 refcount_set(&pi->users, 1);
1844 /* proto->init is assured NON NULL by scmi_protocol_register */
1845 ret = pi->proto->instance_init(&pi->ph);
1846 if (ret)
1847 goto clean;
1848
1849 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1850 GFP_KERNEL);
1851 if (ret != proto->id)
1852 goto clean;
1853
1854 /*
1855 * Warn but ignore events registration errors since we do not want
1856 * to skip whole protocols if their notifications are messed up.
1857 */
1858 if (pi->proto->events) {
1859 ret = scmi_register_protocol_events(handle, pi->proto->id,
1860 &pi->ph,
1861 pi->proto->events);
1862 if (ret)
1863 dev_warn(handle->dev,
1864 "Protocol:%X - Events Registration Failed - err:%d\n",
1865 pi->proto->id, ret);
1866 }
1867
1868 devres_close_group(handle->dev, pi->gid);
1869 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1870
1871 if (pi->version > proto->supported_version)
1872 dev_warn(handle->dev,
1873 "Detected UNSUPPORTED higher version 0x%X for protocol 0x%X."
1874 "Backward compatibility is NOT assured.\n",
1875 pi->version, pi->proto->id);
1876
1877 return pi;
1878
1879 clean:
1880 /* Take care to put the protocol module's owner before releasing all */
1881 scmi_protocol_put(proto->id);
1882 devres_release_group(handle->dev, gid);
1883 out:
1884 return ERR_PTR(ret);
1885 }
1886
1887 /**
1888 * scmi_get_protocol_instance - Protocol initialization helper.
1889 * @handle: A reference to the SCMI platform instance.
1890 * @protocol_id: The protocol being requested.
1891 *
1892 * In case the required protocol has never been requested before for this
1893 * instance, allocate and initialize all the needed structures while handling
1894 * resource allocation with a dedicated per-protocol devres subgroup.
1895 *
1896 * Return: A reference to an initialized protocol instance or error on failure:
1897 * in particular returns -EPROBE_DEFER when the desired protocol could
1898 * NOT be found.
1899 */
1900 static struct scmi_protocol_instance * __must_check
scmi_get_protocol_instance(const struct scmi_handle * handle,u8 protocol_id)1901 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1902 {
1903 struct scmi_protocol_instance *pi;
1904 struct scmi_info *info = handle_to_scmi_info(handle);
1905
1906 mutex_lock(&info->protocols_mtx);
1907 pi = idr_find(&info->protocols, protocol_id);
1908
1909 if (pi) {
1910 refcount_inc(&pi->users);
1911 } else {
1912 const struct scmi_protocol *proto;
1913
1914 /* Fails if protocol not registered on bus */
1915 proto = scmi_protocol_get(protocol_id);
1916 if (proto)
1917 pi = scmi_alloc_init_protocol_instance(info, proto);
1918 else
1919 pi = ERR_PTR(-EPROBE_DEFER);
1920 }
1921 mutex_unlock(&info->protocols_mtx);
1922
1923 return pi;
1924 }
1925
1926 /**
1927 * scmi_protocol_acquire - Protocol acquire
1928 * @handle: A reference to the SCMI platform instance.
1929 * @protocol_id: The protocol being requested.
1930 *
1931 * Register a new user for the requested protocol on the specified SCMI
1932 * platform instance, possibly triggering its initialization on first user.
1933 *
1934 * Return: 0 if protocol was acquired successfully.
1935 */
scmi_protocol_acquire(const struct scmi_handle * handle,u8 protocol_id)1936 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
1937 {
1938 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
1939 }
1940
1941 /**
1942 * scmi_protocol_release - Protocol de-initialization helper.
1943 * @handle: A reference to the SCMI platform instance.
1944 * @protocol_id: The protocol being requested.
1945 *
1946 * Remove one user for the specified protocol and triggers de-initialization
1947 * and resources de-allocation once the last user has gone.
1948 */
scmi_protocol_release(const struct scmi_handle * handle,u8 protocol_id)1949 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
1950 {
1951 struct scmi_info *info = handle_to_scmi_info(handle);
1952 struct scmi_protocol_instance *pi;
1953
1954 mutex_lock(&info->protocols_mtx);
1955 pi = idr_find(&info->protocols, protocol_id);
1956 if (WARN_ON(!pi))
1957 goto out;
1958
1959 if (refcount_dec_and_test(&pi->users)) {
1960 void *gid = pi->gid;
1961
1962 if (pi->proto->events)
1963 scmi_deregister_protocol_events(handle, protocol_id);
1964
1965 if (pi->proto->instance_deinit)
1966 pi->proto->instance_deinit(&pi->ph);
1967
1968 idr_remove(&info->protocols, protocol_id);
1969
1970 scmi_protocol_put(protocol_id);
1971
1972 devres_release_group(handle->dev, gid);
1973 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
1974 protocol_id);
1975 }
1976
1977 out:
1978 mutex_unlock(&info->protocols_mtx);
1979 }
1980
scmi_setup_protocol_implemented(const struct scmi_protocol_handle * ph,u8 * prot_imp)1981 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
1982 u8 *prot_imp)
1983 {
1984 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1985 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1986
1987 info->protocols_imp = prot_imp;
1988 }
1989
1990 static bool
scmi_is_protocol_implemented(const struct scmi_handle * handle,u8 prot_id)1991 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
1992 {
1993 int i;
1994 struct scmi_info *info = handle_to_scmi_info(handle);
1995 struct scmi_revision_info *rev = handle->version;
1996
1997 if (!info->protocols_imp)
1998 return false;
1999
2000 for (i = 0; i < rev->num_protocols; i++)
2001 if (info->protocols_imp[i] == prot_id)
2002 return true;
2003 return false;
2004 }
2005
2006 struct scmi_protocol_devres {
2007 const struct scmi_handle *handle;
2008 u8 protocol_id;
2009 };
2010
scmi_devm_release_protocol(struct device * dev,void * res)2011 static void scmi_devm_release_protocol(struct device *dev, void *res)
2012 {
2013 struct scmi_protocol_devres *dres = res;
2014
2015 scmi_protocol_release(dres->handle, dres->protocol_id);
2016 }
2017
2018 static struct scmi_protocol_instance __must_check *
scmi_devres_protocol_instance_get(struct scmi_device * sdev,u8 protocol_id)2019 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2020 {
2021 struct scmi_protocol_instance *pi;
2022 struct scmi_protocol_devres *dres;
2023
2024 dres = devres_alloc(scmi_devm_release_protocol,
2025 sizeof(*dres), GFP_KERNEL);
2026 if (!dres)
2027 return ERR_PTR(-ENOMEM);
2028
2029 pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2030 if (IS_ERR(pi)) {
2031 devres_free(dres);
2032 return pi;
2033 }
2034
2035 dres->handle = sdev->handle;
2036 dres->protocol_id = protocol_id;
2037 devres_add(&sdev->dev, dres);
2038
2039 return pi;
2040 }
2041
2042 /**
2043 * scmi_devm_protocol_get - Devres managed get protocol operations and handle
2044 * @sdev: A reference to an scmi_device whose embedded struct device is to
2045 * be used for devres accounting.
2046 * @protocol_id: The protocol being requested.
2047 * @ph: A pointer reference used to pass back the associated protocol handle.
2048 *
2049 * Get hold of a protocol accounting for its usage, eventually triggering its
2050 * initialization, and returning the protocol specific operations and related
2051 * protocol handle which will be used as first argument in most of the
2052 * protocols operations methods.
2053 * Being a devres based managed method, protocol hold will be automatically
2054 * released, and possibly de-initialized on last user, once the SCMI driver
2055 * owning the scmi_device is unbound from it.
2056 *
2057 * Return: A reference to the requested protocol operations or error.
2058 * Must be checked for errors by caller.
2059 */
2060 static const void __must_check *
scmi_devm_protocol_get(struct scmi_device * sdev,u8 protocol_id,struct scmi_protocol_handle ** ph)2061 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2062 struct scmi_protocol_handle **ph)
2063 {
2064 struct scmi_protocol_instance *pi;
2065
2066 if (!ph)
2067 return ERR_PTR(-EINVAL);
2068
2069 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2070 if (IS_ERR(pi))
2071 return pi;
2072
2073 *ph = &pi->ph;
2074
2075 return pi->proto->ops;
2076 }
2077
2078 /**
2079 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol
2080 * @sdev: A reference to an scmi_device whose embedded struct device is to
2081 * be used for devres accounting.
2082 * @protocol_id: The protocol being requested.
2083 *
2084 * Get hold of a protocol accounting for its usage, possibly triggering its
2085 * initialization but without getting access to its protocol specific operations
2086 * and handle.
2087 *
2088 * Being a devres based managed method, protocol hold will be automatically
2089 * released, and possibly de-initialized on last user, once the SCMI driver
2090 * owning the scmi_device is unbound from it.
2091 *
2092 * Return: 0 on SUCCESS
2093 */
scmi_devm_protocol_acquire(struct scmi_device * sdev,u8 protocol_id)2094 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2095 u8 protocol_id)
2096 {
2097 struct scmi_protocol_instance *pi;
2098
2099 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2100 if (IS_ERR(pi))
2101 return PTR_ERR(pi);
2102
2103 return 0;
2104 }
2105
scmi_devm_protocol_match(struct device * dev,void * res,void * data)2106 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2107 {
2108 struct scmi_protocol_devres *dres = res;
2109
2110 if (WARN_ON(!dres || !data))
2111 return 0;
2112
2113 return dres->protocol_id == *((u8 *)data);
2114 }
2115
2116 /**
2117 * scmi_devm_protocol_put - Devres managed put protocol operations and handle
2118 * @sdev: A reference to an scmi_device whose embedded struct device is to
2119 * be used for devres accounting.
2120 * @protocol_id: The protocol being requested.
2121 *
2122 * Explicitly release a protocol hold previously obtained calling the above
2123 * @scmi_devm_protocol_get.
2124 */
scmi_devm_protocol_put(struct scmi_device * sdev,u8 protocol_id)2125 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2126 {
2127 int ret;
2128
2129 ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2130 scmi_devm_protocol_match, &protocol_id);
2131 WARN_ON(ret);
2132 }
2133
2134 /**
2135 * scmi_is_transport_atomic - Method to check if underlying transport for an
2136 * SCMI instance is configured as atomic.
2137 *
2138 * @handle: A reference to the SCMI platform instance.
2139 * @atomic_threshold: An optional return value for the system wide currently
2140 * configured threshold for atomic operations.
2141 *
2142 * Return: True if transport is configured as atomic
2143 */
scmi_is_transport_atomic(const struct scmi_handle * handle,unsigned int * atomic_threshold)2144 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2145 unsigned int *atomic_threshold)
2146 {
2147 bool ret;
2148 struct scmi_info *info = handle_to_scmi_info(handle);
2149
2150 ret = info->desc->atomic_enabled &&
2151 is_transport_polling_capable(info->desc);
2152 if (ret && atomic_threshold)
2153 *atomic_threshold = info->atomic_threshold;
2154
2155 return ret;
2156 }
2157
2158 /**
2159 * scmi_handle_get() - Get the SCMI handle for a device
2160 *
2161 * @dev: pointer to device for which we want SCMI handle
2162 *
2163 * NOTE: The function does not track individual clients of the framework
2164 * and is expected to be maintained by caller of SCMI protocol library.
2165 * scmi_handle_put must be balanced with successful scmi_handle_get
2166 *
2167 * Return: pointer to handle if successful, NULL on error
2168 */
scmi_handle_get(struct device * dev)2169 static struct scmi_handle *scmi_handle_get(struct device *dev)
2170 {
2171 struct list_head *p;
2172 struct scmi_info *info;
2173 struct scmi_handle *handle = NULL;
2174
2175 mutex_lock(&scmi_list_mutex);
2176 list_for_each(p, &scmi_list) {
2177 info = list_entry(p, struct scmi_info, node);
2178 if (dev->parent == info->dev) {
2179 info->users++;
2180 handle = &info->handle;
2181 break;
2182 }
2183 }
2184 mutex_unlock(&scmi_list_mutex);
2185
2186 return handle;
2187 }
2188
2189 /**
2190 * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2191 *
2192 * @handle: handle acquired by scmi_handle_get
2193 *
2194 * NOTE: The function does not track individual clients of the framework
2195 * and is expected to be maintained by caller of SCMI protocol library.
2196 * scmi_handle_put must be balanced with successful scmi_handle_get
2197 *
2198 * Return: 0 is successfully released
2199 * if null was passed, it returns -EINVAL;
2200 */
scmi_handle_put(const struct scmi_handle * handle)2201 static int scmi_handle_put(const struct scmi_handle *handle)
2202 {
2203 struct scmi_info *info;
2204
2205 if (!handle)
2206 return -EINVAL;
2207
2208 info = handle_to_scmi_info(handle);
2209 mutex_lock(&scmi_list_mutex);
2210 if (!WARN_ON(!info->users))
2211 info->users--;
2212 mutex_unlock(&scmi_list_mutex);
2213
2214 return 0;
2215 }
2216
scmi_device_link_add(struct device * consumer,struct device * supplier)2217 static void scmi_device_link_add(struct device *consumer,
2218 struct device *supplier)
2219 {
2220 struct device_link *link;
2221
2222 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2223
2224 WARN_ON(!link);
2225 }
2226
scmi_set_handle(struct scmi_device * scmi_dev)2227 static void scmi_set_handle(struct scmi_device *scmi_dev)
2228 {
2229 scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2230 if (scmi_dev->handle)
2231 scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2232 }
2233
__scmi_xfer_info_init(struct scmi_info * sinfo,struct scmi_xfers_info * info)2234 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2235 struct scmi_xfers_info *info)
2236 {
2237 int i;
2238 struct scmi_xfer *xfer;
2239 struct device *dev = sinfo->dev;
2240 const struct scmi_desc *desc = sinfo->desc;
2241
2242 /* Pre-allocated messages, no more than what hdr.seq can support */
2243 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2244 dev_err(dev,
2245 "Invalid maximum messages %d, not in range [1 - %lu]\n",
2246 info->max_msg, MSG_TOKEN_MAX);
2247 return -EINVAL;
2248 }
2249
2250 hash_init(info->pending_xfers);
2251
2252 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2253 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2254 GFP_KERNEL);
2255 if (!info->xfer_alloc_table)
2256 return -ENOMEM;
2257
2258 /*
2259 * Preallocate a number of xfers equal to max inflight messages,
2260 * pre-initialize the buffer pointer to pre-allocated buffers and
2261 * attach all of them to the free list
2262 */
2263 INIT_HLIST_HEAD(&info->free_xfers);
2264 for (i = 0; i < info->max_msg; i++) {
2265 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2266 if (!xfer)
2267 return -ENOMEM;
2268
2269 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2270 GFP_KERNEL);
2271 if (!xfer->rx.buf)
2272 return -ENOMEM;
2273
2274 xfer->tx.buf = xfer->rx.buf;
2275 init_completion(&xfer->done);
2276 spin_lock_init(&xfer->lock);
2277
2278 /* Add initialized xfer to the free list */
2279 hlist_add_head(&xfer->node, &info->free_xfers);
2280 }
2281
2282 spin_lock_init(&info->xfer_lock);
2283
2284 return 0;
2285 }
2286
scmi_channels_max_msg_configure(struct scmi_info * sinfo)2287 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2288 {
2289 const struct scmi_desc *desc = sinfo->desc;
2290
2291 if (!desc->ops->get_max_msg) {
2292 sinfo->tx_minfo.max_msg = desc->max_msg;
2293 sinfo->rx_minfo.max_msg = desc->max_msg;
2294 } else {
2295 struct scmi_chan_info *base_cinfo;
2296
2297 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2298 if (!base_cinfo)
2299 return -EINVAL;
2300 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2301
2302 /* RX channel is optional so can be skipped */
2303 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2304 if (base_cinfo)
2305 sinfo->rx_minfo.max_msg =
2306 desc->ops->get_max_msg(base_cinfo);
2307 }
2308
2309 return 0;
2310 }
2311
scmi_xfer_info_init(struct scmi_info * sinfo)2312 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2313 {
2314 int ret;
2315
2316 ret = scmi_channels_max_msg_configure(sinfo);
2317 if (ret)
2318 return ret;
2319
2320 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2321 if (!ret && !idr_is_empty(&sinfo->rx_idr))
2322 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2323
2324 return ret;
2325 }
2326
scmi_chan_setup(struct scmi_info * info,struct device_node * of_node,int prot_id,bool tx)2327 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2328 int prot_id, bool tx)
2329 {
2330 int ret, idx;
2331 char name[32];
2332 struct scmi_chan_info *cinfo;
2333 struct idr *idr;
2334 struct scmi_device *tdev = NULL;
2335
2336 /* Transmit channel is first entry i.e. index 0 */
2337 idx = tx ? 0 : 1;
2338 idr = tx ? &info->tx_idr : &info->rx_idr;
2339
2340 if (!info->desc->ops->chan_available(of_node, idx)) {
2341 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2342 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2343 return -EINVAL;
2344 goto idr_alloc;
2345 }
2346
2347 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2348 if (!cinfo)
2349 return -ENOMEM;
2350
2351 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2352
2353 /* Create a unique name for this transport device */
2354 snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2355 idx ? "rx" : "tx", prot_id);
2356 /* Create a uniquely named, dedicated transport device for this chan */
2357 tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2358 if (!tdev) {
2359 dev_err(info->dev,
2360 "failed to create transport device (%s)\n", name);
2361 devm_kfree(info->dev, cinfo);
2362 return -EINVAL;
2363 }
2364 of_node_get(of_node);
2365
2366 cinfo->id = prot_id;
2367 cinfo->dev = &tdev->dev;
2368 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2369 if (ret) {
2370 of_node_put(of_node);
2371 scmi_device_destroy(info->dev, prot_id, name);
2372 devm_kfree(info->dev, cinfo);
2373 return ret;
2374 }
2375
2376 if (tx && is_polling_required(cinfo, info->desc)) {
2377 if (is_transport_polling_capable(info->desc))
2378 dev_info(&tdev->dev,
2379 "Enabled polling mode TX channel - prot_id:%d\n",
2380 prot_id);
2381 else
2382 dev_warn(&tdev->dev,
2383 "Polling mode NOT supported by transport.\n");
2384 }
2385
2386 idr_alloc:
2387 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2388 if (ret != prot_id) {
2389 dev_err(info->dev,
2390 "unable to allocate SCMI idr slot err %d\n", ret);
2391 /* Destroy channel and device only if created by this call. */
2392 if (tdev) {
2393 of_node_put(of_node);
2394 scmi_device_destroy(info->dev, prot_id, name);
2395 devm_kfree(info->dev, cinfo);
2396 }
2397 return ret;
2398 }
2399
2400 cinfo->handle = &info->handle;
2401 return 0;
2402 }
2403
2404 static inline int
scmi_txrx_setup(struct scmi_info * info,struct device_node * of_node,int prot_id)2405 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2406 int prot_id)
2407 {
2408 int ret = scmi_chan_setup(info, of_node, prot_id, true);
2409
2410 if (!ret) {
2411 /* Rx is optional, report only memory errors */
2412 ret = scmi_chan_setup(info, of_node, prot_id, false);
2413 if (ret && ret != -ENOMEM)
2414 ret = 0;
2415 }
2416
2417 return ret;
2418 }
2419
2420 /**
2421 * scmi_channels_setup - Helper to initialize all required channels
2422 *
2423 * @info: The SCMI instance descriptor.
2424 *
2425 * Initialize all the channels found described in the DT against the underlying
2426 * configured transport using custom defined dedicated devices instead of
2427 * borrowing devices from the SCMI drivers; this way channels are initialized
2428 * upfront during core SCMI stack probing and are no more coupled with SCMI
2429 * devices used by SCMI drivers.
2430 *
2431 * Note that, even though a pair of TX/RX channels is associated to each
2432 * protocol defined in the DT, a distinct freshly initialized channel is
2433 * created only if the DT node for the protocol at hand describes a dedicated
2434 * channel: in all the other cases the common BASE protocol channel is reused.
2435 *
2436 * Return: 0 on Success
2437 */
scmi_channels_setup(struct scmi_info * info)2438 static int scmi_channels_setup(struct scmi_info *info)
2439 {
2440 int ret;
2441 struct device_node *child, *top_np = info->dev->of_node;
2442
2443 /* Initialize a common generic channel at first */
2444 ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2445 if (ret)
2446 return ret;
2447
2448 for_each_available_child_of_node(top_np, child) {
2449 u32 prot_id;
2450
2451 if (of_property_read_u32(child, "reg", &prot_id))
2452 continue;
2453
2454 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2455 dev_err(info->dev,
2456 "Out of range protocol %d\n", prot_id);
2457
2458 ret = scmi_txrx_setup(info, child, prot_id);
2459 if (ret) {
2460 of_node_put(child);
2461 return ret;
2462 }
2463 }
2464
2465 return 0;
2466 }
2467
scmi_chan_destroy(int id,void * p,void * idr)2468 static int scmi_chan_destroy(int id, void *p, void *idr)
2469 {
2470 struct scmi_chan_info *cinfo = p;
2471
2472 if (cinfo->dev) {
2473 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2474 struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2475
2476 of_node_put(cinfo->dev->of_node);
2477 scmi_device_destroy(info->dev, id, sdev->name);
2478 cinfo->dev = NULL;
2479 }
2480
2481 idr_remove(idr, id);
2482
2483 return 0;
2484 }
2485
scmi_cleanup_channels(struct scmi_info * info,struct idr * idr)2486 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2487 {
2488 /* At first free all channels at the transport layer ... */
2489 idr_for_each(idr, info->desc->ops->chan_free, idr);
2490
2491 /* ...then destroy all underlying devices */
2492 idr_for_each(idr, scmi_chan_destroy, idr);
2493
2494 idr_destroy(idr);
2495 }
2496
scmi_cleanup_txrx_channels(struct scmi_info * info)2497 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2498 {
2499 scmi_cleanup_channels(info, &info->tx_idr);
2500
2501 scmi_cleanup_channels(info, &info->rx_idr);
2502 }
2503
scmi_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)2504 static int scmi_bus_notifier(struct notifier_block *nb,
2505 unsigned long action, void *data)
2506 {
2507 struct scmi_info *info = bus_nb_to_scmi_info(nb);
2508 struct scmi_device *sdev = to_scmi_dev(data);
2509
2510 /* Skip transport devices and devices of different SCMI instances */
2511 if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2512 sdev->dev.parent != info->dev)
2513 return NOTIFY_DONE;
2514
2515 switch (action) {
2516 case BUS_NOTIFY_BIND_DRIVER:
2517 /* setup handle now as the transport is ready */
2518 scmi_set_handle(sdev);
2519 break;
2520 case BUS_NOTIFY_UNBOUND_DRIVER:
2521 scmi_handle_put(sdev->handle);
2522 sdev->handle = NULL;
2523 break;
2524 default:
2525 return NOTIFY_DONE;
2526 }
2527
2528 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2529 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2530 "about to be BOUND." : "UNBOUND.");
2531
2532 return NOTIFY_OK;
2533 }
2534
scmi_device_request_notifier(struct notifier_block * nb,unsigned long action,void * data)2535 static int scmi_device_request_notifier(struct notifier_block *nb,
2536 unsigned long action, void *data)
2537 {
2538 struct device_node *np;
2539 struct scmi_device_id *id_table = data;
2540 struct scmi_info *info = req_nb_to_scmi_info(nb);
2541
2542 np = idr_find(&info->active_protocols, id_table->protocol_id);
2543 if (!np)
2544 return NOTIFY_DONE;
2545
2546 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2547 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2548 id_table->name, id_table->protocol_id);
2549
2550 switch (action) {
2551 case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2552 scmi_create_protocol_devices(np, info, id_table->protocol_id,
2553 id_table->name);
2554 break;
2555 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2556 scmi_destroy_protocol_devices(info, id_table->protocol_id,
2557 id_table->name);
2558 break;
2559 default:
2560 return NOTIFY_DONE;
2561 }
2562
2563 return NOTIFY_OK;
2564 }
2565
scmi_debugfs_common_cleanup(void * d)2566 static void scmi_debugfs_common_cleanup(void *d)
2567 {
2568 struct scmi_debug_info *dbg = d;
2569
2570 if (!dbg)
2571 return;
2572
2573 debugfs_remove_recursive(dbg->top_dentry);
2574 kfree(dbg->name);
2575 kfree(dbg->type);
2576 }
2577
scmi_debugfs_common_setup(struct scmi_info * info)2578 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2579 {
2580 char top_dir[16];
2581 struct dentry *trans, *top_dentry;
2582 struct scmi_debug_info *dbg;
2583 const char *c_ptr = NULL;
2584
2585 dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2586 if (!dbg)
2587 return NULL;
2588
2589 dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2590 if (!dbg->name) {
2591 devm_kfree(info->dev, dbg);
2592 return NULL;
2593 }
2594
2595 of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2596 dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2597 if (!dbg->type) {
2598 kfree(dbg->name);
2599 devm_kfree(info->dev, dbg);
2600 return NULL;
2601 }
2602
2603 snprintf(top_dir, 16, "%d", info->id);
2604 top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2605 trans = debugfs_create_dir("transport", top_dentry);
2606
2607 dbg->is_atomic = info->desc->atomic_enabled &&
2608 is_transport_polling_capable(info->desc);
2609
2610 debugfs_create_str("instance_name", 0400, top_dentry,
2611 (char **)&dbg->name);
2612
2613 debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2614 &info->atomic_threshold);
2615
2616 debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2617
2618 debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2619
2620 debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2621 (u32 *)&info->desc->max_rx_timeout_ms);
2622
2623 debugfs_create_u32("max_msg_size", 0400, trans,
2624 (u32 *)&info->desc->max_msg_size);
2625
2626 debugfs_create_u32("tx_max_msg", 0400, trans,
2627 (u32 *)&info->tx_minfo.max_msg);
2628
2629 debugfs_create_u32("rx_max_msg", 0400, trans,
2630 (u32 *)&info->rx_minfo.max_msg);
2631
2632 dbg->top_dentry = top_dentry;
2633
2634 if (devm_add_action_or_reset(info->dev,
2635 scmi_debugfs_common_cleanup, dbg)) {
2636 scmi_debugfs_common_cleanup(dbg);
2637 return NULL;
2638 }
2639
2640 return dbg;
2641 }
2642
scmi_debugfs_raw_mode_setup(struct scmi_info * info)2643 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2644 {
2645 int id, num_chans = 0, ret = 0;
2646 struct scmi_chan_info *cinfo;
2647 u8 channels[SCMI_MAX_CHANNELS] = {};
2648 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2649
2650 if (!info->dbg)
2651 return -EINVAL;
2652
2653 /* Enumerate all channels to collect their ids */
2654 idr_for_each_entry(&info->tx_idr, cinfo, id) {
2655 /*
2656 * Cannot happen, but be defensive.
2657 * Zero as num_chans is ok, warn and carry on.
2658 */
2659 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
2660 dev_warn(info->dev,
2661 "SCMI RAW - Error enumerating channels\n");
2662 break;
2663 }
2664
2665 if (!test_bit(cinfo->id, protos)) {
2666 channels[num_chans++] = cinfo->id;
2667 set_bit(cinfo->id, protos);
2668 }
2669 }
2670
2671 info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
2672 info->id, channels, num_chans,
2673 info->desc, info->tx_minfo.max_msg);
2674 if (IS_ERR(info->raw)) {
2675 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
2676 ret = PTR_ERR(info->raw);
2677 info->raw = NULL;
2678 }
2679
2680 return ret;
2681 }
2682
scmi_probe(struct platform_device * pdev)2683 static int scmi_probe(struct platform_device *pdev)
2684 {
2685 int ret;
2686 struct scmi_handle *handle;
2687 const struct scmi_desc *desc;
2688 struct scmi_info *info;
2689 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
2690 struct device *dev = &pdev->dev;
2691 struct device_node *child, *np = dev->of_node;
2692
2693 desc = of_device_get_match_data(dev);
2694 if (!desc)
2695 return -EINVAL;
2696
2697 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2698 if (!info)
2699 return -ENOMEM;
2700
2701 info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
2702 if (info->id < 0)
2703 return info->id;
2704
2705 info->dev = dev;
2706 info->desc = desc;
2707 info->bus_nb.notifier_call = scmi_bus_notifier;
2708 info->dev_req_nb.notifier_call = scmi_device_request_notifier;
2709 INIT_LIST_HEAD(&info->node);
2710 idr_init(&info->protocols);
2711 mutex_init(&info->protocols_mtx);
2712 idr_init(&info->active_protocols);
2713 mutex_init(&info->devreq_mtx);
2714
2715 platform_set_drvdata(pdev, info);
2716 idr_init(&info->tx_idr);
2717 idr_init(&info->rx_idr);
2718
2719 handle = &info->handle;
2720 handle->dev = info->dev;
2721 handle->version = &info->version;
2722 handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
2723 handle->devm_protocol_get = scmi_devm_protocol_get;
2724 handle->devm_protocol_put = scmi_devm_protocol_put;
2725
2726 /* System wide atomic threshold for atomic ops .. if any */
2727 if (!of_property_read_u32(np, "atomic-threshold-us",
2728 &info->atomic_threshold))
2729 dev_info(dev,
2730 "SCMI System wide atomic threshold set to %d us\n",
2731 info->atomic_threshold);
2732 handle->is_transport_atomic = scmi_is_transport_atomic;
2733
2734 if (desc->ops->link_supplier) {
2735 ret = desc->ops->link_supplier(dev);
2736 if (ret)
2737 goto clear_ida;
2738 }
2739
2740 /* Setup all channels described in the DT at first */
2741 ret = scmi_channels_setup(info);
2742 if (ret)
2743 goto clear_ida;
2744
2745 ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
2746 if (ret)
2747 goto clear_txrx_setup;
2748
2749 ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
2750 &info->dev_req_nb);
2751 if (ret)
2752 goto clear_bus_notifier;
2753
2754 ret = scmi_xfer_info_init(info);
2755 if (ret)
2756 goto clear_dev_req_notifier;
2757
2758 if (scmi_top_dentry) {
2759 info->dbg = scmi_debugfs_common_setup(info);
2760 if (!info->dbg)
2761 dev_warn(dev, "Failed to setup SCMI debugfs.\n");
2762
2763 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
2764 ret = scmi_debugfs_raw_mode_setup(info);
2765 if (!coex) {
2766 if (ret)
2767 goto clear_dev_req_notifier;
2768
2769 /* Bail out anyway when coex disabled. */
2770 return 0;
2771 }
2772
2773 /* Coex enabled, carry on in any case. */
2774 dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
2775 }
2776 }
2777
2778 if (scmi_notification_init(handle))
2779 dev_err(dev, "SCMI Notifications NOT available.\n");
2780
2781 if (info->desc->atomic_enabled &&
2782 !is_transport_polling_capable(info->desc))
2783 dev_err(dev,
2784 "Transport is not polling capable. Atomic mode not supported.\n");
2785
2786 /*
2787 * Trigger SCMI Base protocol initialization.
2788 * It's mandatory and won't be ever released/deinit until the
2789 * SCMI stack is shutdown/unloaded as a whole.
2790 */
2791 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
2792 if (ret) {
2793 dev_err(dev, "unable to communicate with SCMI\n");
2794 if (coex)
2795 return 0;
2796 goto notification_exit;
2797 }
2798
2799 mutex_lock(&scmi_list_mutex);
2800 list_add_tail(&info->node, &scmi_list);
2801 mutex_unlock(&scmi_list_mutex);
2802
2803 for_each_available_child_of_node(np, child) {
2804 u32 prot_id;
2805
2806 if (of_property_read_u32(child, "reg", &prot_id))
2807 continue;
2808
2809 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2810 dev_err(dev, "Out of range protocol %d\n", prot_id);
2811
2812 if (!scmi_is_protocol_implemented(handle, prot_id)) {
2813 dev_err(dev, "SCMI protocol %d not implemented\n",
2814 prot_id);
2815 continue;
2816 }
2817
2818 /*
2819 * Save this valid DT protocol descriptor amongst
2820 * @active_protocols for this SCMI instance/
2821 */
2822 ret = idr_alloc(&info->active_protocols, child,
2823 prot_id, prot_id + 1, GFP_KERNEL);
2824 if (ret != prot_id) {
2825 dev_err(dev, "SCMI protocol %d already activated. Skip\n",
2826 prot_id);
2827 continue;
2828 }
2829
2830 of_node_get(child);
2831 scmi_create_protocol_devices(child, info, prot_id, NULL);
2832 }
2833
2834 return 0;
2835
2836 notification_exit:
2837 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2838 scmi_raw_mode_cleanup(info->raw);
2839 scmi_notification_exit(&info->handle);
2840 clear_dev_req_notifier:
2841 blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2842 &info->dev_req_nb);
2843 clear_bus_notifier:
2844 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2845 clear_txrx_setup:
2846 scmi_cleanup_txrx_channels(info);
2847 clear_ida:
2848 ida_free(&scmi_id, info->id);
2849 return ret;
2850 }
2851
scmi_remove(struct platform_device * pdev)2852 static int scmi_remove(struct platform_device *pdev)
2853 {
2854 int id;
2855 struct scmi_info *info = platform_get_drvdata(pdev);
2856 struct device_node *child;
2857
2858 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2859 scmi_raw_mode_cleanup(info->raw);
2860
2861 mutex_lock(&scmi_list_mutex);
2862 if (info->users)
2863 dev_warn(&pdev->dev,
2864 "Still active SCMI users will be forcibly unbound.\n");
2865 list_del(&info->node);
2866 mutex_unlock(&scmi_list_mutex);
2867
2868 scmi_notification_exit(&info->handle);
2869
2870 mutex_lock(&info->protocols_mtx);
2871 idr_destroy(&info->protocols);
2872 mutex_unlock(&info->protocols_mtx);
2873
2874 idr_for_each_entry(&info->active_protocols, child, id)
2875 of_node_put(child);
2876 idr_destroy(&info->active_protocols);
2877
2878 blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2879 &info->dev_req_nb);
2880 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2881
2882 /* Safe to free channels since no more users */
2883 scmi_cleanup_txrx_channels(info);
2884
2885 ida_free(&scmi_id, info->id);
2886
2887 return 0;
2888 }
2889
protocol_version_show(struct device * dev,struct device_attribute * attr,char * buf)2890 static ssize_t protocol_version_show(struct device *dev,
2891 struct device_attribute *attr, char *buf)
2892 {
2893 struct scmi_info *info = dev_get_drvdata(dev);
2894
2895 return sprintf(buf, "%u.%u\n", info->version.major_ver,
2896 info->version.minor_ver);
2897 }
2898 static DEVICE_ATTR_RO(protocol_version);
2899
firmware_version_show(struct device * dev,struct device_attribute * attr,char * buf)2900 static ssize_t firmware_version_show(struct device *dev,
2901 struct device_attribute *attr, char *buf)
2902 {
2903 struct scmi_info *info = dev_get_drvdata(dev);
2904
2905 return sprintf(buf, "0x%x\n", info->version.impl_ver);
2906 }
2907 static DEVICE_ATTR_RO(firmware_version);
2908
vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)2909 static ssize_t vendor_id_show(struct device *dev,
2910 struct device_attribute *attr, char *buf)
2911 {
2912 struct scmi_info *info = dev_get_drvdata(dev);
2913
2914 return sprintf(buf, "%s\n", info->version.vendor_id);
2915 }
2916 static DEVICE_ATTR_RO(vendor_id);
2917
sub_vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)2918 static ssize_t sub_vendor_id_show(struct device *dev,
2919 struct device_attribute *attr, char *buf)
2920 {
2921 struct scmi_info *info = dev_get_drvdata(dev);
2922
2923 return sprintf(buf, "%s\n", info->version.sub_vendor_id);
2924 }
2925 static DEVICE_ATTR_RO(sub_vendor_id);
2926
2927 static struct attribute *versions_attrs[] = {
2928 &dev_attr_firmware_version.attr,
2929 &dev_attr_protocol_version.attr,
2930 &dev_attr_vendor_id.attr,
2931 &dev_attr_sub_vendor_id.attr,
2932 NULL,
2933 };
2934 ATTRIBUTE_GROUPS(versions);
2935
2936 /* Each compatible listed below must have descriptor associated with it */
2937 static const struct of_device_id scmi_of_match[] = {
2938 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
2939 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
2940 #endif
2941 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
2942 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
2943 #endif
2944 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
2945 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
2946 { .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc},
2947 #endif
2948 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
2949 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
2950 #endif
2951 { /* Sentinel */ },
2952 };
2953
2954 MODULE_DEVICE_TABLE(of, scmi_of_match);
2955
2956 static struct platform_driver scmi_driver = {
2957 .driver = {
2958 .name = "arm-scmi",
2959 .suppress_bind_attrs = true,
2960 .of_match_table = scmi_of_match,
2961 .dev_groups = versions_groups,
2962 },
2963 .probe = scmi_probe,
2964 .remove = scmi_remove,
2965 };
2966
2967 /**
2968 * __scmi_transports_setup - Common helper to call transport-specific
2969 * .init/.exit code if provided.
2970 *
2971 * @init: A flag to distinguish between init and exit.
2972 *
2973 * Note that, if provided, we invoke .init/.exit functions for all the
2974 * transports currently compiled in.
2975 *
2976 * Return: 0 on Success.
2977 */
__scmi_transports_setup(bool init)2978 static inline int __scmi_transports_setup(bool init)
2979 {
2980 int ret = 0;
2981 const struct of_device_id *trans;
2982
2983 for (trans = scmi_of_match; trans->data; trans++) {
2984 const struct scmi_desc *tdesc = trans->data;
2985
2986 if ((init && !tdesc->transport_init) ||
2987 (!init && !tdesc->transport_exit))
2988 continue;
2989
2990 if (init)
2991 ret = tdesc->transport_init();
2992 else
2993 tdesc->transport_exit();
2994
2995 if (ret) {
2996 pr_err("SCMI transport %s FAILED initialization!\n",
2997 trans->compatible);
2998 break;
2999 }
3000 }
3001
3002 return ret;
3003 }
3004
scmi_transports_init(void)3005 static int __init scmi_transports_init(void)
3006 {
3007 return __scmi_transports_setup(true);
3008 }
3009
scmi_transports_exit(void)3010 static void __exit scmi_transports_exit(void)
3011 {
3012 __scmi_transports_setup(false);
3013 }
3014
scmi_debugfs_init(void)3015 static struct dentry *scmi_debugfs_init(void)
3016 {
3017 struct dentry *d;
3018
3019 d = debugfs_create_dir("scmi", NULL);
3020 if (IS_ERR(d)) {
3021 pr_err("Could NOT create SCMI top dentry.\n");
3022 return NULL;
3023 }
3024
3025 return d;
3026 }
3027
scmi_driver_init(void)3028 static int __init scmi_driver_init(void)
3029 {
3030 int ret;
3031
3032 /* Bail out if no SCMI transport was configured */
3033 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3034 return -EINVAL;
3035
3036 /* Initialize any compiled-in transport which provided an init/exit */
3037 ret = scmi_transports_init();
3038 if (ret)
3039 return ret;
3040
3041 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3042 scmi_top_dentry = scmi_debugfs_init();
3043
3044 scmi_base_register();
3045
3046 scmi_clock_register();
3047 scmi_perf_register();
3048 scmi_power_register();
3049 scmi_reset_register();
3050 scmi_sensors_register();
3051 scmi_voltage_register();
3052 scmi_system_register();
3053 scmi_powercap_register();
3054 scmi_pinctrl_register();
3055
3056 return platform_driver_register(&scmi_driver);
3057 }
3058 module_init(scmi_driver_init);
3059
scmi_driver_exit(void)3060 static void __exit scmi_driver_exit(void)
3061 {
3062 scmi_base_unregister();
3063
3064 scmi_clock_unregister();
3065 scmi_perf_unregister();
3066 scmi_power_unregister();
3067 scmi_reset_unregister();
3068 scmi_sensors_unregister();
3069 scmi_voltage_unregister();
3070 scmi_system_unregister();
3071 scmi_powercap_unregister();
3072 scmi_pinctrl_unregister();
3073
3074 scmi_transports_exit();
3075
3076 platform_driver_unregister(&scmi_driver);
3077
3078 debugfs_remove_recursive(scmi_top_dentry);
3079 }
3080 module_exit(scmi_driver_exit);
3081
3082 MODULE_ALIAS("platform:arm-scmi");
3083 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3084 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3085 MODULE_LICENSE("GPL v2");
3086