1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10
11 #include <drm/drm_cache.h>
12
13 #include "gem/i915_gem_internal.h"
14 #include "gem/i915_gem_lmem.h"
15 #include "i915_reg.h"
16 #include "i915_trace.h"
17 #include "i915_utils.h"
18 #include "intel_gt.h"
19 #include "intel_gt_mcr.h"
20 #include "intel_gt_print.h"
21 #include "intel_gt_regs.h"
22 #include "intel_gtt.h"
23
24
intel_ggtt_update_needs_vtd_wa(struct drm_i915_private * i915)25 static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915)
26 {
27 return IS_BROXTON(i915) && i915_vtd_active(i915);
28 }
29
intel_vm_no_concurrent_access_wa(struct drm_i915_private * i915)30 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915)
31 {
32 return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915);
33 }
34
alloc_pt_lmem(struct i915_address_space * vm,int sz)35 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
36 {
37 struct drm_i915_gem_object *obj;
38
39 /*
40 * To avoid severe over-allocation when dealing with min_page_size
41 * restrictions, we override that behaviour here by allowing an object
42 * size and page layout which can be smaller. In practice this should be
43 * totally fine, since GTT paging structures are not typically inserted
44 * into the GTT.
45 *
46 * Note that we also hit this path for the scratch page, and for this
47 * case it might need to be 64K, but that should work fine here since we
48 * used the passed in size for the page size, which should ensure it
49 * also has the same alignment.
50 */
51 obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
52 vm->lmem_pt_obj_flags);
53 /*
54 * Ensure all paging structures for this vm share the same dma-resv
55 * object underneath, with the idea that one object_lock() will lock
56 * them all at once.
57 */
58 if (!IS_ERR(obj)) {
59 obj->base.resv = i915_vm_resv_get(vm);
60 obj->shares_resv_from = vm;
61 }
62
63 return obj;
64 }
65
alloc_pt_dma(struct i915_address_space * vm,int sz)66 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
67 {
68 struct drm_i915_gem_object *obj;
69
70 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
71 i915_gem_shrink_all(vm->i915);
72
73 obj = i915_gem_object_create_internal(vm->i915, sz);
74 /*
75 * Ensure all paging structures for this vm share the same dma-resv
76 * object underneath, with the idea that one object_lock() will lock
77 * them all at once.
78 */
79 if (!IS_ERR(obj)) {
80 obj->base.resv = i915_vm_resv_get(vm);
81 obj->shares_resv_from = vm;
82 }
83
84 return obj;
85 }
86
map_pt_dma(struct i915_address_space * vm,struct drm_i915_gem_object * obj)87 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
88 {
89 enum i915_map_type type;
90 void *vaddr;
91
92 type = intel_gt_coherent_map_type(vm->gt, obj, true);
93 vaddr = i915_gem_object_pin_map_unlocked(obj, type);
94 if (IS_ERR(vaddr))
95 return PTR_ERR(vaddr);
96
97 i915_gem_object_make_unshrinkable(obj);
98 return 0;
99 }
100
map_pt_dma_locked(struct i915_address_space * vm,struct drm_i915_gem_object * obj)101 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
102 {
103 enum i915_map_type type;
104 void *vaddr;
105
106 type = intel_gt_coherent_map_type(vm->gt, obj, true);
107 vaddr = i915_gem_object_pin_map(obj, type);
108 if (IS_ERR(vaddr))
109 return PTR_ERR(vaddr);
110
111 i915_gem_object_make_unshrinkable(obj);
112 return 0;
113 }
114
clear_vm_list(struct list_head * list)115 static void clear_vm_list(struct list_head *list)
116 {
117 struct i915_vma *vma, *vn;
118
119 list_for_each_entry_safe(vma, vn, list, vm_link) {
120 struct drm_i915_gem_object *obj = vma->obj;
121
122 if (!i915_gem_object_get_rcu(obj)) {
123 /*
124 * Object is dying, but has not yet cleared its
125 * vma list.
126 * Unbind the dying vma to ensure our list
127 * is completely drained. We leave the destruction to
128 * the object destructor to avoid the vma
129 * disappearing under it.
130 */
131 atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
132 WARN_ON(__i915_vma_unbind(vma));
133
134 /* Remove from the unbound list */
135 list_del_init(&vma->vm_link);
136
137 /*
138 * Delay the vm and vm mutex freeing until the
139 * object is done with destruction.
140 */
141 i915_vm_resv_get(vma->vm);
142 vma->vm_ddestroy = true;
143 } else {
144 i915_vma_destroy_locked(vma);
145 i915_gem_object_put(obj);
146 }
147
148 }
149 }
150
__i915_vm_close(struct i915_address_space * vm)151 static void __i915_vm_close(struct i915_address_space *vm)
152 {
153 mutex_lock(&vm->mutex);
154
155 clear_vm_list(&vm->bound_list);
156 clear_vm_list(&vm->unbound_list);
157
158 /* Check for must-fix unanticipated side-effects */
159 GEM_BUG_ON(!list_empty(&vm->bound_list));
160 GEM_BUG_ON(!list_empty(&vm->unbound_list));
161
162 mutex_unlock(&vm->mutex);
163 }
164
165 /* lock the vm into the current ww, if we lock one, we lock all */
i915_vm_lock_objects(struct i915_address_space * vm,struct i915_gem_ww_ctx * ww)166 int i915_vm_lock_objects(struct i915_address_space *vm,
167 struct i915_gem_ww_ctx *ww)
168 {
169 if (vm->scratch[0]->base.resv == &vm->_resv) {
170 return i915_gem_object_lock(vm->scratch[0], ww);
171 } else {
172 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
173
174 /* We borrowed the scratch page from ggtt, take the top level object */
175 return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
176 }
177 }
178
i915_address_space_fini(struct i915_address_space * vm)179 void i915_address_space_fini(struct i915_address_space *vm)
180 {
181 drm_mm_takedown(&vm->mm);
182 }
183
184 /**
185 * i915_vm_resv_release - Final struct i915_address_space destructor
186 * @kref: Pointer to the &i915_address_space.resv_ref member.
187 *
188 * This function is called when the last lock sharer no longer shares the
189 * &i915_address_space._resv lock, and also if we raced when
190 * destroying a vma by the vma destruction
191 */
i915_vm_resv_release(struct kref * kref)192 void i915_vm_resv_release(struct kref *kref)
193 {
194 struct i915_address_space *vm =
195 container_of(kref, typeof(*vm), resv_ref);
196
197 dma_resv_fini(&vm->_resv);
198 mutex_destroy(&vm->mutex);
199
200 kfree(vm);
201 }
202
__i915_vm_release(struct work_struct * work)203 static void __i915_vm_release(struct work_struct *work)
204 {
205 struct i915_address_space *vm =
206 container_of(work, struct i915_address_space, release_work);
207
208 __i915_vm_close(vm);
209
210 /* Synchronize async unbinds. */
211 i915_vma_resource_bind_dep_sync_all(vm);
212
213 vm->cleanup(vm);
214 i915_address_space_fini(vm);
215
216 i915_vm_resv_put(vm);
217 }
218
i915_vm_release(struct kref * kref)219 void i915_vm_release(struct kref *kref)
220 {
221 struct i915_address_space *vm =
222 container_of(kref, struct i915_address_space, ref);
223
224 GEM_BUG_ON(i915_is_ggtt(vm));
225 trace_i915_ppgtt_release(vm);
226
227 queue_work(vm->i915->wq, &vm->release_work);
228 }
229
i915_address_space_init(struct i915_address_space * vm,int subclass)230 void i915_address_space_init(struct i915_address_space *vm, int subclass)
231 {
232 kref_init(&vm->ref);
233
234 /*
235 * Special case for GGTT that has already done an early
236 * kref_init here.
237 */
238 if (!kref_read(&vm->resv_ref))
239 kref_init(&vm->resv_ref);
240
241 vm->pending_unbind = RB_ROOT_CACHED;
242 INIT_WORK(&vm->release_work, __i915_vm_release);
243
244 /*
245 * The vm->mutex must be reclaim safe (for use in the shrinker).
246 * Do a dummy acquire now under fs_reclaim so that any allocation
247 * attempt holding the lock is immediately reported by lockdep.
248 */
249 mutex_init(&vm->mutex);
250 lockdep_set_subclass(&vm->mutex, subclass);
251
252 if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
253 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
254 } else {
255 /*
256 * CHV + BXT VTD workaround use stop_machine(),
257 * which is allowed to allocate memory. This means &vm->mutex
258 * is the outer lock, and in theory we can allocate memory inside
259 * it through stop_machine().
260 *
261 * Add the annotation for this, we use trylock in shrinker.
262 */
263 mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
264 might_alloc(GFP_KERNEL);
265 mutex_release(&vm->mutex.dep_map, _THIS_IP_);
266 }
267 dma_resv_init(&vm->_resv);
268
269 GEM_BUG_ON(!vm->total);
270 drm_mm_init(&vm->mm, 0, vm->total);
271
272 memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT,
273 ARRAY_SIZE(vm->min_alignment));
274
275 if (HAS_64K_PAGES(vm->i915)) {
276 vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K;
277 vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K;
278 }
279
280 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
281
282 INIT_LIST_HEAD(&vm->bound_list);
283 INIT_LIST_HEAD(&vm->unbound_list);
284 }
285
__px_vaddr(struct drm_i915_gem_object * p)286 void *__px_vaddr(struct drm_i915_gem_object *p)
287 {
288 enum i915_map_type type;
289
290 GEM_BUG_ON(!i915_gem_object_has_pages(p));
291 return page_unpack_bits(p->mm.mapping, &type);
292 }
293
__px_dma(struct drm_i915_gem_object * p)294 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
295 {
296 GEM_BUG_ON(!i915_gem_object_has_pages(p));
297 return sg_dma_address(p->mm.pages->sgl);
298 }
299
__px_page(struct drm_i915_gem_object * p)300 struct page *__px_page(struct drm_i915_gem_object *p)
301 {
302 GEM_BUG_ON(!i915_gem_object_has_pages(p));
303 return sg_page(p->mm.pages->sgl);
304 }
305
306 void
fill_page_dma(struct drm_i915_gem_object * p,const u64 val,unsigned int count)307 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
308 {
309 void *vaddr = __px_vaddr(p);
310
311 memset64(vaddr, val, count);
312 drm_clflush_virt_range(vaddr, PAGE_SIZE);
313 }
314
poison_scratch_page(struct drm_i915_gem_object * scratch)315 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
316 {
317 void *vaddr = __px_vaddr(scratch);
318 u8 val;
319
320 val = 0;
321 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
322 val = POISON_FREE;
323
324 memset(vaddr, val, scratch->base.size);
325 drm_clflush_virt_range(vaddr, scratch->base.size);
326 }
327
setup_scratch_page(struct i915_address_space * vm)328 int setup_scratch_page(struct i915_address_space *vm)
329 {
330 unsigned long size;
331
332 /*
333 * In order to utilize 64K pages for an object with a size < 2M, we will
334 * need to support a 64K scratch page, given that every 16th entry for a
335 * page-table operating in 64K mode must point to a properly aligned 64K
336 * region, including any PTEs which happen to point to scratch.
337 *
338 * This is only relevant for the 48b PPGTT where we support
339 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
340 * scratch (read-only) between all vm, we create one 64k scratch page
341 * for all.
342 */
343 size = I915_GTT_PAGE_SIZE_4K;
344 if (i915_vm_is_4lvl(vm) &&
345 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) &&
346 !HAS_64K_PAGES(vm->i915))
347 size = I915_GTT_PAGE_SIZE_64K;
348
349 do {
350 struct drm_i915_gem_object *obj;
351
352 obj = vm->alloc_scratch_dma(vm, size);
353 if (IS_ERR(obj))
354 goto skip;
355
356 if (map_pt_dma(vm, obj))
357 goto skip_obj;
358
359 /* We need a single contiguous page for our scratch */
360 if (obj->mm.page_sizes.sg < size)
361 goto skip_obj;
362
363 /* And it needs to be correspondingly aligned */
364 if (__px_dma(obj) & (size - 1))
365 goto skip_obj;
366
367 /*
368 * Use a non-zero scratch page for debugging.
369 *
370 * We want a value that should be reasonably obvious
371 * to spot in the error state, while also causing a GPU hang
372 * if executed. We prefer using a clear page in production, so
373 * should it ever be accidentally used, the effect should be
374 * fairly benign.
375 */
376 poison_scratch_page(obj);
377
378 vm->scratch[0] = obj;
379 vm->scratch_order = get_order(size);
380 return 0;
381
382 skip_obj:
383 i915_gem_object_put(obj);
384 skip:
385 if (size == I915_GTT_PAGE_SIZE_4K)
386 return -ENOMEM;
387
388 size = I915_GTT_PAGE_SIZE_4K;
389 } while (1);
390 }
391
free_scratch(struct i915_address_space * vm)392 void free_scratch(struct i915_address_space *vm)
393 {
394 int i;
395
396 if (!vm->scratch[0])
397 return;
398
399 for (i = 0; i <= vm->top; i++)
400 i915_gem_object_put(vm->scratch[i]);
401 }
402
gtt_write_workarounds(struct intel_gt * gt)403 void gtt_write_workarounds(struct intel_gt *gt)
404 {
405 struct drm_i915_private *i915 = gt->i915;
406 struct intel_uncore *uncore = gt->uncore;
407
408 /*
409 * This function is for gtt related workarounds. This function is
410 * called on driver load and after a GPU reset, so you can place
411 * workarounds here even if they get overwritten by GPU reset.
412 */
413 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
414 if (IS_BROADWELL(i915))
415 intel_uncore_write(uncore,
416 GEN8_L3_LRA_1_GPGPU,
417 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
418 else if (IS_CHERRYVIEW(i915))
419 intel_uncore_write(uncore,
420 GEN8_L3_LRA_1_GPGPU,
421 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
422 else if (IS_GEN9_LP(i915))
423 intel_uncore_write(uncore,
424 GEN8_L3_LRA_1_GPGPU,
425 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
426 else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
427 intel_uncore_write(uncore,
428 GEN8_L3_LRA_1_GPGPU,
429 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
430
431 /*
432 * To support 64K PTEs we need to first enable the use of the
433 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
434 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
435 * shouldn't be needed after GEN10.
436 *
437 * 64K pages were first introduced from BDW+, although technically they
438 * only *work* from gen9+. For pre-BDW we instead have the option for
439 * 32K pages, but we don't currently have any support for it in our
440 * driver.
441 */
442 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
443 GRAPHICS_VER(i915) <= 10)
444 intel_uncore_rmw(uncore,
445 GEN8_GAMW_ECO_DEV_RW_IA,
446 0,
447 GAMW_ECO_ENABLE_64K_IPS_FIELD);
448
449 if (IS_GRAPHICS_VER(i915, 8, 11)) {
450 bool can_use_gtt_cache = true;
451
452 /*
453 * According to the BSpec if we use 2M/1G pages then we also
454 * need to disable the GTT cache. At least on BDW we can see
455 * visual corruption when using 2M pages, and not disabling the
456 * GTT cache.
457 */
458 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
459 can_use_gtt_cache = false;
460
461 /* WaGttCachingOffByDefault */
462 intel_uncore_write(uncore,
463 HSW_GTT_CACHE_EN,
464 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
465 gt_WARN_ON_ONCE(gt, can_use_gtt_cache &&
466 intel_uncore_read(uncore,
467 HSW_GTT_CACHE_EN) == 0);
468 }
469 }
470
xelpmp_setup_private_ppat(struct intel_uncore * uncore)471 static void xelpmp_setup_private_ppat(struct intel_uncore *uncore)
472 {
473 intel_uncore_write(uncore, XELPMP_PAT_INDEX(0),
474 MTL_PPAT_L4_0_WB);
475 intel_uncore_write(uncore, XELPMP_PAT_INDEX(1),
476 MTL_PPAT_L4_1_WT);
477 intel_uncore_write(uncore, XELPMP_PAT_INDEX(2),
478 MTL_PPAT_L4_3_UC);
479 intel_uncore_write(uncore, XELPMP_PAT_INDEX(3),
480 MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
481 intel_uncore_write(uncore, XELPMP_PAT_INDEX(4),
482 MTL_PPAT_L4_0_WB | MTL_3_COH_2W);
483
484 /*
485 * Remaining PAT entries are left at the hardware-default
486 * fully-cached setting
487 */
488 }
489
xelpg_setup_private_ppat(struct intel_gt * gt)490 static void xelpg_setup_private_ppat(struct intel_gt *gt)
491 {
492 intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(0),
493 MTL_PPAT_L4_0_WB);
494 intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(1),
495 MTL_PPAT_L4_1_WT);
496 intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(2),
497 MTL_PPAT_L4_3_UC);
498 intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(3),
499 MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
500 intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(4),
501 MTL_PPAT_L4_0_WB | MTL_3_COH_2W);
502
503 /*
504 * Remaining PAT entries are left at the hardware-default
505 * fully-cached setting
506 */
507 }
508
tgl_setup_private_ppat(struct intel_uncore * uncore)509 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
510 {
511 /* TGL doesn't support LLC or AGE settings */
512 intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
513 intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
514 intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
515 intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
516 intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
517 intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
518 intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
519 intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
520 }
521
xehp_setup_private_ppat(struct intel_gt * gt)522 static void xehp_setup_private_ppat(struct intel_gt *gt)
523 {
524 enum forcewake_domains fw;
525 unsigned long flags;
526
527 fw = intel_uncore_forcewake_for_reg(gt->uncore, _MMIO(XEHP_PAT_INDEX(0).reg),
528 FW_REG_WRITE);
529 intel_uncore_forcewake_get(gt->uncore, fw);
530
531 intel_gt_mcr_lock(gt, &flags);
532 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB);
533 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC);
534 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT);
535 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC);
536 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB);
537 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB);
538 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB);
539 intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB);
540 intel_gt_mcr_unlock(gt, flags);
541
542 intel_uncore_forcewake_put(gt->uncore, fw);
543 }
544
icl_setup_private_ppat(struct intel_uncore * uncore)545 static void icl_setup_private_ppat(struct intel_uncore *uncore)
546 {
547 intel_uncore_write(uncore,
548 GEN10_PAT_INDEX(0),
549 GEN8_PPAT_WB | GEN8_PPAT_LLC);
550 intel_uncore_write(uncore,
551 GEN10_PAT_INDEX(1),
552 GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
553 intel_uncore_write(uncore,
554 GEN10_PAT_INDEX(2),
555 GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
556 intel_uncore_write(uncore,
557 GEN10_PAT_INDEX(3),
558 GEN8_PPAT_UC);
559 intel_uncore_write(uncore,
560 GEN10_PAT_INDEX(4),
561 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
562 intel_uncore_write(uncore,
563 GEN10_PAT_INDEX(5),
564 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
565 intel_uncore_write(uncore,
566 GEN10_PAT_INDEX(6),
567 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
568 intel_uncore_write(uncore,
569 GEN10_PAT_INDEX(7),
570 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
571 }
572
573 /*
574 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
575 * bits. When using advanced contexts each context stores its own PAT, but
576 * writing this data shouldn't be harmful even in those cases.
577 */
bdw_setup_private_ppat(struct intel_uncore * uncore)578 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
579 {
580 struct drm_i915_private *i915 = uncore->i915;
581 u64 pat;
582
583 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
584 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
585 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
586 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
587 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
588 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
589 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
590
591 /* for scanout with eLLC */
592 if (GRAPHICS_VER(i915) >= 9)
593 pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
594 else
595 pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
596
597 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
598 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
599 }
600
chv_setup_private_ppat(struct intel_uncore * uncore)601 static void chv_setup_private_ppat(struct intel_uncore *uncore)
602 {
603 u64 pat;
604
605 /*
606 * Map WB on BDW to snooped on CHV.
607 *
608 * Only the snoop bit has meaning for CHV, the rest is
609 * ignored.
610 *
611 * The hardware will never snoop for certain types of accesses:
612 * - CPU GTT (GMADR->GGTT->no snoop->memory)
613 * - PPGTT page tables
614 * - some other special cycles
615 *
616 * As with BDW, we also need to consider the following for GT accesses:
617 * "For GGTT, there is NO pat_sel[2:0] from the entry,
618 * so RTL will always use the value corresponding to
619 * pat_sel = 000".
620 * Which means we must set the snoop bit in PAT entry 0
621 * in order to keep the global status page working.
622 */
623
624 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
625 GEN8_PPAT(1, 0) |
626 GEN8_PPAT(2, 0) |
627 GEN8_PPAT(3, 0) |
628 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
629 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
630 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
631 GEN8_PPAT(7, CHV_PPAT_SNOOP);
632
633 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
634 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
635 }
636
setup_private_pat(struct intel_gt * gt)637 void setup_private_pat(struct intel_gt *gt)
638 {
639 struct intel_uncore *uncore = gt->uncore;
640 struct drm_i915_private *i915 = gt->i915;
641
642 GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
643
644 if (gt->type == GT_MEDIA) {
645 xelpmp_setup_private_ppat(gt->uncore);
646 return;
647 }
648
649 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
650 xelpg_setup_private_ppat(gt);
651 else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
652 xehp_setup_private_ppat(gt);
653 else if (GRAPHICS_VER(i915) >= 12)
654 tgl_setup_private_ppat(uncore);
655 else if (GRAPHICS_VER(i915) >= 11)
656 icl_setup_private_ppat(uncore);
657 else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
658 chv_setup_private_ppat(uncore);
659 else
660 bdw_setup_private_ppat(uncore);
661 }
662
663 struct i915_vma *
__vm_create_scratch_for_read(struct i915_address_space * vm,unsigned long size)664 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
665 {
666 struct drm_i915_gem_object *obj;
667 struct i915_vma *vma;
668
669 obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
670 if (IS_ERR(obj))
671 return ERR_CAST(obj);
672
673 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
674
675 vma = i915_vma_instance(obj, vm, NULL);
676 if (IS_ERR(vma)) {
677 i915_gem_object_put(obj);
678 return vma;
679 }
680
681 return vma;
682 }
683
684 struct i915_vma *
__vm_create_scratch_for_read_pinned(struct i915_address_space * vm,unsigned long size)685 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
686 {
687 struct i915_vma *vma;
688 int err;
689
690 vma = __vm_create_scratch_for_read(vm, size);
691 if (IS_ERR(vma))
692 return vma;
693
694 err = i915_vma_pin(vma, 0, 0,
695 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
696 if (err) {
697 i915_vma_put(vma);
698 return ERR_PTR(err);
699 }
700
701 return vma;
702 }
703
704 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
705 #include "selftests/mock_gtt.c"
706 #endif
707