1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 struct kstat *stat, u32 request_mask,
33 unsigned int query_flags)
34 {
35 struct inode *inode = d_inode(path->dentry);
36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41
simple_statfs(struct dentry * dentry,struct kstatfs * buf)42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 buf->f_type = dentry->d_sb->s_magic;
45 buf->f_bsize = PAGE_SIZE;
46 buf->f_namelen = NAME_MAX;
47 return 0;
48 }
49 EXPORT_SYMBOL(simple_statfs);
50
51 /*
52 * Retaining negative dentries for an in-memory filesystem just wastes
53 * memory and lookup time: arrange for them to be deleted immediately.
54 */
always_delete_dentry(const struct dentry * dentry)55 int always_delete_dentry(const struct dentry *dentry)
56 {
57 return 1;
58 }
59 EXPORT_SYMBOL(always_delete_dentry);
60
61 const struct dentry_operations simple_dentry_operations = {
62 .d_delete = always_delete_dentry,
63 };
64 EXPORT_SYMBOL(simple_dentry_operations);
65
66 /*
67 * Lookup the data. This is trivial - if the dentry didn't already
68 * exist, we know it is negative. Set d_op to delete negative dentries.
69 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 if (dentry->d_name.len > NAME_MAX)
73 return ERR_PTR(-ENAMETOOLONG);
74 if (!dentry->d_sb->s_d_op)
75 d_set_d_op(dentry, &simple_dentry_operations);
76 d_add(dentry, NULL);
77 return NULL;
78 }
79 EXPORT_SYMBOL(simple_lookup);
80
dcache_dir_open(struct inode * inode,struct file * file)81 int dcache_dir_open(struct inode *inode, struct file *file)
82 {
83 file->private_data = d_alloc_cursor(file->f_path.dentry);
84
85 return file->private_data ? 0 : -ENOMEM;
86 }
87 EXPORT_SYMBOL(dcache_dir_open);
88
dcache_dir_close(struct inode * inode,struct file * file)89 int dcache_dir_close(struct inode *inode, struct file *file)
90 {
91 dput(file->private_data);
92 return 0;
93 }
94 EXPORT_SYMBOL(dcache_dir_close);
95
96 /* parent is locked at least shared */
97 /*
98 * Returns an element of siblings' list.
99 * We are looking for <count>th positive after <p>; if
100 * found, dentry is grabbed and returned to caller.
101 * If no such element exists, NULL is returned.
102 */
scan_positives(struct dentry * cursor,struct list_head * p,loff_t count,struct dentry * last)103 static struct dentry *scan_positives(struct dentry *cursor,
104 struct list_head *p,
105 loff_t count,
106 struct dentry *last)
107 {
108 struct dentry *dentry = cursor->d_parent, *found = NULL;
109
110 spin_lock(&dentry->d_lock);
111 while ((p = p->next) != &dentry->d_subdirs) {
112 struct dentry *d = list_entry(p, struct dentry, d_child);
113 // we must at least skip cursors, to avoid livelocks
114 if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 continue;
116 if (simple_positive(d) && !--count) {
117 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 if (simple_positive(d))
119 found = dget_dlock(d);
120 spin_unlock(&d->d_lock);
121 if (likely(found))
122 break;
123 count = 1;
124 }
125 if (need_resched()) {
126 list_move(&cursor->d_child, p);
127 p = &cursor->d_child;
128 spin_unlock(&dentry->d_lock);
129 cond_resched();
130 spin_lock(&dentry->d_lock);
131 }
132 }
133 spin_unlock(&dentry->d_lock);
134 dput(last);
135 return found;
136 }
137
dcache_dir_lseek(struct file * file,loff_t offset,int whence)138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 {
140 struct dentry *dentry = file->f_path.dentry;
141 switch (whence) {
142 case 1:
143 offset += file->f_pos;
144 fallthrough;
145 case 0:
146 if (offset >= 0)
147 break;
148 fallthrough;
149 default:
150 return -EINVAL;
151 }
152 if (offset != file->f_pos) {
153 struct dentry *cursor = file->private_data;
154 struct dentry *to = NULL;
155
156 inode_lock_shared(dentry->d_inode);
157
158 if (offset > 2)
159 to = scan_positives(cursor, &dentry->d_subdirs,
160 offset - 2, NULL);
161 spin_lock(&dentry->d_lock);
162 if (to)
163 list_move(&cursor->d_child, &to->d_child);
164 else
165 list_del_init(&cursor->d_child);
166 spin_unlock(&dentry->d_lock);
167 dput(to);
168
169 file->f_pos = offset;
170
171 inode_unlock_shared(dentry->d_inode);
172 }
173 return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176
177 /*
178 * Directory is locked and all positive dentries in it are safe, since
179 * for ramfs-type trees they can't go away without unlink() or rmdir(),
180 * both impossible due to the lock on directory.
181 */
182
dcache_readdir(struct file * file,struct dir_context * ctx)183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 struct dentry *dentry = file->f_path.dentry;
186 struct dentry *cursor = file->private_data;
187 struct list_head *anchor = &dentry->d_subdirs;
188 struct dentry *next = NULL;
189 struct list_head *p;
190
191 if (!dir_emit_dots(file, ctx))
192 return 0;
193
194 if (ctx->pos == 2)
195 p = anchor;
196 else if (!list_empty(&cursor->d_child))
197 p = &cursor->d_child;
198 else
199 return 0;
200
201 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203 d_inode(next)->i_ino,
204 fs_umode_to_dtype(d_inode(next)->i_mode)))
205 break;
206 ctx->pos++;
207 p = &next->d_child;
208 }
209 spin_lock(&dentry->d_lock);
210 if (next)
211 list_move_tail(&cursor->d_child, &next->d_child);
212 else
213 list_del_init(&cursor->d_child);
214 spin_unlock(&dentry->d_lock);
215 dput(next);
216
217 return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 return -EISDIR;
224 }
225 EXPORT_SYMBOL_NS(generic_read_dir, ANDROID_GKI_VFS_EXPORT_ONLY);
226
227 const struct file_operations simple_dir_operations = {
228 .open = dcache_dir_open,
229 .release = dcache_dir_close,
230 .llseek = dcache_dir_lseek,
231 .read = generic_read_dir,
232 .iterate_shared = dcache_readdir,
233 .fsync = noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236
237 const struct inode_operations simple_dir_inode_operations = {
238 .lookup = simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241
offset_set(struct dentry * dentry,u32 offset)242 static void offset_set(struct dentry *dentry, u32 offset)
243 {
244 dentry->d_fsdata = (void *)((uintptr_t)(offset));
245 }
246
dentry2offset(struct dentry * dentry)247 static u32 dentry2offset(struct dentry *dentry)
248 {
249 return (u32)((uintptr_t)(dentry->d_fsdata));
250 }
251
252 static struct lock_class_key simple_offset_xa_lock;
253
254 /**
255 * simple_offset_init - initialize an offset_ctx
256 * @octx: directory offset map to be initialized
257 *
258 */
simple_offset_init(struct offset_ctx * octx)259 void simple_offset_init(struct offset_ctx *octx)
260 {
261 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
262 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
263
264 /* 0 is '.', 1 is '..', so always start with offset 2 */
265 octx->next_offset = 2;
266 }
267
268 /**
269 * simple_offset_add - Add an entry to a directory's offset map
270 * @octx: directory offset ctx to be updated
271 * @dentry: new dentry being added
272 *
273 * Returns zero on success. @so_ctx and the dentry offset are updated.
274 * Otherwise, a negative errno value is returned.
275 */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)276 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
277 {
278 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
279 u32 offset;
280 int ret;
281
282 if (dentry2offset(dentry) != 0)
283 return -EBUSY;
284
285 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
286 &octx->next_offset, GFP_KERNEL);
287 if (ret < 0)
288 return ret;
289
290 offset_set(dentry, offset);
291 return 0;
292 }
293
294 /**
295 * simple_offset_remove - Remove an entry to a directory's offset map
296 * @octx: directory offset ctx to be updated
297 * @dentry: dentry being removed
298 *
299 */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)300 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
301 {
302 u32 offset;
303
304 offset = dentry2offset(dentry);
305 if (offset == 0)
306 return;
307
308 xa_erase(&octx->xa, offset);
309 offset_set(dentry, 0);
310 }
311
312 /**
313 * simple_offset_rename_exchange - exchange rename with directory offsets
314 * @old_dir: parent of dentry being moved
315 * @old_dentry: dentry being moved
316 * @new_dir: destination parent
317 * @new_dentry: destination dentry
318 *
319 * Returns zero on success. Otherwise a negative errno is returned and the
320 * rename is rolled back.
321 */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)322 int simple_offset_rename_exchange(struct inode *old_dir,
323 struct dentry *old_dentry,
324 struct inode *new_dir,
325 struct dentry *new_dentry)
326 {
327 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
328 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
329 u32 old_index = dentry2offset(old_dentry);
330 u32 new_index = dentry2offset(new_dentry);
331 int ret;
332
333 simple_offset_remove(old_ctx, old_dentry);
334 simple_offset_remove(new_ctx, new_dentry);
335
336 ret = simple_offset_add(new_ctx, old_dentry);
337 if (ret)
338 goto out_restore;
339
340 ret = simple_offset_add(old_ctx, new_dentry);
341 if (ret) {
342 simple_offset_remove(new_ctx, old_dentry);
343 goto out_restore;
344 }
345
346 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
347 if (ret) {
348 simple_offset_remove(new_ctx, old_dentry);
349 simple_offset_remove(old_ctx, new_dentry);
350 goto out_restore;
351 }
352 return 0;
353
354 out_restore:
355 offset_set(old_dentry, old_index);
356 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
357 offset_set(new_dentry, new_index);
358 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
359 return ret;
360 }
361
362 /**
363 * simple_offset_destroy - Release offset map
364 * @octx: directory offset ctx that is about to be destroyed
365 *
366 * During fs teardown (eg. umount), a directory's offset map might still
367 * contain entries. xa_destroy() cleans out anything that remains.
368 */
simple_offset_destroy(struct offset_ctx * octx)369 void simple_offset_destroy(struct offset_ctx *octx)
370 {
371 xa_destroy(&octx->xa);
372 }
373
374 /**
375 * offset_dir_llseek - Advance the read position of a directory descriptor
376 * @file: an open directory whose position is to be updated
377 * @offset: a byte offset
378 * @whence: enumerator describing the starting position for this update
379 *
380 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
381 *
382 * Returns the updated read position if successful; otherwise a
383 * negative errno is returned and the read position remains unchanged.
384 */
offset_dir_llseek(struct file * file,loff_t offset,int whence)385 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
386 {
387 switch (whence) {
388 case SEEK_CUR:
389 offset += file->f_pos;
390 fallthrough;
391 case SEEK_SET:
392 if (offset >= 0)
393 break;
394 fallthrough;
395 default:
396 return -EINVAL;
397 }
398
399 /* In this case, ->private_data is protected by f_pos_lock */
400 file->private_data = NULL;
401 return vfs_setpos(file, offset, U32_MAX);
402 }
403
offset_find_next(struct xa_state * xas)404 static struct dentry *offset_find_next(struct xa_state *xas)
405 {
406 struct dentry *child, *found = NULL;
407
408 rcu_read_lock();
409 child = xas_next_entry(xas, U32_MAX);
410 if (!child)
411 goto out;
412 spin_lock(&child->d_lock);
413 if (simple_positive(child))
414 found = dget_dlock(child);
415 spin_unlock(&child->d_lock);
416 out:
417 rcu_read_unlock();
418 return found;
419 }
420
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)421 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
422 {
423 u32 offset = dentry2offset(dentry);
424 struct inode *inode = d_inode(dentry);
425
426 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
427 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
428 }
429
offset_iterate_dir(struct inode * inode,struct dir_context * ctx)430 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
431 {
432 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
433 XA_STATE(xas, &so_ctx->xa, ctx->pos);
434 struct dentry *dentry;
435
436 while (true) {
437 dentry = offset_find_next(&xas);
438 if (!dentry)
439 return ERR_PTR(-ENOENT);
440
441 if (!offset_dir_emit(ctx, dentry)) {
442 dput(dentry);
443 break;
444 }
445
446 dput(dentry);
447 ctx->pos = xas.xa_index + 1;
448 }
449 return NULL;
450 }
451
452 /**
453 * offset_readdir - Emit entries starting at offset @ctx->pos
454 * @file: an open directory to iterate over
455 * @ctx: directory iteration context
456 *
457 * Caller must hold @file's i_rwsem to prevent insertion or removal of
458 * entries during this call.
459 *
460 * On entry, @ctx->pos contains an offset that represents the first entry
461 * to be read from the directory.
462 *
463 * The operation continues until there are no more entries to read, or
464 * until the ctx->actor indicates there is no more space in the caller's
465 * output buffer.
466 *
467 * On return, @ctx->pos contains an offset that will read the next entry
468 * in this directory when offset_readdir() is called again with @ctx.
469 *
470 * Return values:
471 * %0 - Complete
472 */
offset_readdir(struct file * file,struct dir_context * ctx)473 static int offset_readdir(struct file *file, struct dir_context *ctx)
474 {
475 struct dentry *dir = file->f_path.dentry;
476
477 lockdep_assert_held(&d_inode(dir)->i_rwsem);
478
479 if (!dir_emit_dots(file, ctx))
480 return 0;
481
482 /* In this case, ->private_data is protected by f_pos_lock */
483 if (ctx->pos == 2)
484 file->private_data = NULL;
485 else if (file->private_data == ERR_PTR(-ENOENT))
486 return 0;
487 file->private_data = offset_iterate_dir(d_inode(dir), ctx);
488 return 0;
489 }
490
491 const struct file_operations simple_offset_dir_operations = {
492 .llseek = offset_dir_llseek,
493 .iterate_shared = offset_readdir,
494 .read = generic_read_dir,
495 .fsync = noop_fsync,
496 };
497
find_next_child(struct dentry * parent,struct dentry * prev)498 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
499 {
500 struct dentry *child = NULL;
501 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
502
503 spin_lock(&parent->d_lock);
504 while ((p = p->next) != &parent->d_subdirs) {
505 struct dentry *d = container_of(p, struct dentry, d_child);
506 if (simple_positive(d)) {
507 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
508 if (simple_positive(d))
509 child = dget_dlock(d);
510 spin_unlock(&d->d_lock);
511 if (likely(child))
512 break;
513 }
514 }
515 spin_unlock(&parent->d_lock);
516 dput(prev);
517 return child;
518 }
519
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))520 void simple_recursive_removal(struct dentry *dentry,
521 void (*callback)(struct dentry *))
522 {
523 struct dentry *this = dget(dentry);
524 while (true) {
525 struct dentry *victim = NULL, *child;
526 struct inode *inode = this->d_inode;
527
528 inode_lock(inode);
529 if (d_is_dir(this))
530 inode->i_flags |= S_DEAD;
531 while ((child = find_next_child(this, victim)) == NULL) {
532 // kill and ascend
533 // update metadata while it's still locked
534 inode_set_ctime_current(inode);
535 clear_nlink(inode);
536 inode_unlock(inode);
537 victim = this;
538 this = this->d_parent;
539 inode = this->d_inode;
540 inode_lock(inode);
541 if (simple_positive(victim)) {
542 d_invalidate(victim); // avoid lost mounts
543 if (d_is_dir(victim))
544 fsnotify_rmdir(inode, victim);
545 else
546 fsnotify_unlink(inode, victim);
547 if (callback)
548 callback(victim);
549 dput(victim); // unpin it
550 }
551 if (victim == dentry) {
552 inode_set_mtime_to_ts(inode,
553 inode_set_ctime_current(inode));
554 if (d_is_dir(dentry))
555 drop_nlink(inode);
556 inode_unlock(inode);
557 dput(dentry);
558 return;
559 }
560 }
561 inode_unlock(inode);
562 this = child;
563 }
564 }
565 EXPORT_SYMBOL(simple_recursive_removal);
566
567 static const struct super_operations simple_super_operations = {
568 .statfs = simple_statfs,
569 };
570
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)571 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
572 {
573 struct pseudo_fs_context *ctx = fc->fs_private;
574 struct inode *root;
575
576 s->s_maxbytes = MAX_LFS_FILESIZE;
577 s->s_blocksize = PAGE_SIZE;
578 s->s_blocksize_bits = PAGE_SHIFT;
579 s->s_magic = ctx->magic;
580 s->s_op = ctx->ops ?: &simple_super_operations;
581 s->s_xattr = ctx->xattr;
582 s->s_time_gran = 1;
583 root = new_inode(s);
584 if (!root)
585 return -ENOMEM;
586
587 /*
588 * since this is the first inode, make it number 1. New inodes created
589 * after this must take care not to collide with it (by passing
590 * max_reserved of 1 to iunique).
591 */
592 root->i_ino = 1;
593 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
594 simple_inode_init_ts(root);
595 s->s_root = d_make_root(root);
596 if (!s->s_root)
597 return -ENOMEM;
598 s->s_d_op = ctx->dops;
599 return 0;
600 }
601
pseudo_fs_get_tree(struct fs_context * fc)602 static int pseudo_fs_get_tree(struct fs_context *fc)
603 {
604 return get_tree_nodev(fc, pseudo_fs_fill_super);
605 }
606
pseudo_fs_free(struct fs_context * fc)607 static void pseudo_fs_free(struct fs_context *fc)
608 {
609 kfree(fc->fs_private);
610 }
611
612 static const struct fs_context_operations pseudo_fs_context_ops = {
613 .free = pseudo_fs_free,
614 .get_tree = pseudo_fs_get_tree,
615 };
616
617 /*
618 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
619 * will never be mountable)
620 */
init_pseudo(struct fs_context * fc,unsigned long magic)621 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
622 unsigned long magic)
623 {
624 struct pseudo_fs_context *ctx;
625
626 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
627 if (likely(ctx)) {
628 ctx->magic = magic;
629 fc->fs_private = ctx;
630 fc->ops = &pseudo_fs_context_ops;
631 fc->sb_flags |= SB_NOUSER;
632 fc->global = true;
633 }
634 return ctx;
635 }
636 EXPORT_SYMBOL(init_pseudo);
637
simple_open(struct inode * inode,struct file * file)638 int simple_open(struct inode *inode, struct file *file)
639 {
640 if (inode->i_private)
641 file->private_data = inode->i_private;
642 return 0;
643 }
644 EXPORT_SYMBOL(simple_open);
645
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)646 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
647 {
648 struct inode *inode = d_inode(old_dentry);
649
650 inode_set_mtime_to_ts(dir,
651 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
652 inc_nlink(inode);
653 ihold(inode);
654 dget(dentry);
655 d_instantiate(dentry, inode);
656 return 0;
657 }
658 EXPORT_SYMBOL(simple_link);
659
simple_empty(struct dentry * dentry)660 int simple_empty(struct dentry *dentry)
661 {
662 struct dentry *child;
663 int ret = 0;
664
665 spin_lock(&dentry->d_lock);
666 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
667 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
668 if (simple_positive(child)) {
669 spin_unlock(&child->d_lock);
670 goto out;
671 }
672 spin_unlock(&child->d_lock);
673 }
674 ret = 1;
675 out:
676 spin_unlock(&dentry->d_lock);
677 return ret;
678 }
679 EXPORT_SYMBOL(simple_empty);
680
simple_unlink(struct inode * dir,struct dentry * dentry)681 int simple_unlink(struct inode *dir, struct dentry *dentry)
682 {
683 struct inode *inode = d_inode(dentry);
684
685 inode_set_mtime_to_ts(dir,
686 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
687 drop_nlink(inode);
688 dput(dentry);
689 return 0;
690 }
691 EXPORT_SYMBOL(simple_unlink);
692
simple_rmdir(struct inode * dir,struct dentry * dentry)693 int simple_rmdir(struct inode *dir, struct dentry *dentry)
694 {
695 if (!simple_empty(dentry))
696 return -ENOTEMPTY;
697
698 drop_nlink(d_inode(dentry));
699 simple_unlink(dir, dentry);
700 drop_nlink(dir);
701 return 0;
702 }
703 EXPORT_SYMBOL(simple_rmdir);
704
705 /**
706 * simple_rename_timestamp - update the various inode timestamps for rename
707 * @old_dir: old parent directory
708 * @old_dentry: dentry that is being renamed
709 * @new_dir: new parent directory
710 * @new_dentry: target for rename
711 *
712 * POSIX mandates that the old and new parent directories have their ctime and
713 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
714 * their ctime updated.
715 */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)716 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
717 struct inode *new_dir, struct dentry *new_dentry)
718 {
719 struct inode *newino = d_inode(new_dentry);
720
721 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
722 if (new_dir != old_dir)
723 inode_set_mtime_to_ts(new_dir,
724 inode_set_ctime_current(new_dir));
725 inode_set_ctime_current(d_inode(old_dentry));
726 if (newino)
727 inode_set_ctime_current(newino);
728 }
729 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
730
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)731 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
732 struct inode *new_dir, struct dentry *new_dentry)
733 {
734 bool old_is_dir = d_is_dir(old_dentry);
735 bool new_is_dir = d_is_dir(new_dentry);
736
737 if (old_dir != new_dir && old_is_dir != new_is_dir) {
738 if (old_is_dir) {
739 drop_nlink(old_dir);
740 inc_nlink(new_dir);
741 } else {
742 drop_nlink(new_dir);
743 inc_nlink(old_dir);
744 }
745 }
746 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
747 return 0;
748 }
749 EXPORT_SYMBOL_GPL(simple_rename_exchange);
750
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)751 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
752 struct dentry *old_dentry, struct inode *new_dir,
753 struct dentry *new_dentry, unsigned int flags)
754 {
755 int they_are_dirs = d_is_dir(old_dentry);
756
757 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
758 return -EINVAL;
759
760 if (flags & RENAME_EXCHANGE)
761 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
762
763 if (!simple_empty(new_dentry))
764 return -ENOTEMPTY;
765
766 if (d_really_is_positive(new_dentry)) {
767 simple_unlink(new_dir, new_dentry);
768 if (they_are_dirs) {
769 drop_nlink(d_inode(new_dentry));
770 drop_nlink(old_dir);
771 }
772 } else if (they_are_dirs) {
773 drop_nlink(old_dir);
774 inc_nlink(new_dir);
775 }
776
777 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
778 return 0;
779 }
780 EXPORT_SYMBOL(simple_rename);
781
782 /**
783 * simple_setattr - setattr for simple filesystem
784 * @idmap: idmap of the target mount
785 * @dentry: dentry
786 * @iattr: iattr structure
787 *
788 * Returns 0 on success, -error on failure.
789 *
790 * simple_setattr is a simple ->setattr implementation without a proper
791 * implementation of size changes.
792 *
793 * It can either be used for in-memory filesystems or special files
794 * on simple regular filesystems. Anything that needs to change on-disk
795 * or wire state on size changes needs its own setattr method.
796 */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)797 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
798 struct iattr *iattr)
799 {
800 struct inode *inode = d_inode(dentry);
801 int error;
802
803 error = setattr_prepare(idmap, dentry, iattr);
804 if (error)
805 return error;
806
807 if (iattr->ia_valid & ATTR_SIZE)
808 truncate_setsize(inode, iattr->ia_size);
809 setattr_copy(idmap, inode, iattr);
810 mark_inode_dirty(inode);
811 return 0;
812 }
813 EXPORT_SYMBOL(simple_setattr);
814
simple_read_folio(struct file * file,struct folio * folio)815 static int simple_read_folio(struct file *file, struct folio *folio)
816 {
817 folio_zero_range(folio, 0, folio_size(folio));
818 flush_dcache_folio(folio);
819 folio_mark_uptodate(folio);
820 folio_unlock(folio);
821 return 0;
822 }
823
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)824 int simple_write_begin(struct file *file, struct address_space *mapping,
825 loff_t pos, unsigned len,
826 struct page **pagep, void **fsdata)
827 {
828 struct folio *folio;
829
830 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
831 mapping_gfp_mask(mapping));
832 if (IS_ERR(folio))
833 return PTR_ERR(folio);
834
835 *pagep = &folio->page;
836
837 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
838 size_t from = offset_in_folio(folio, pos);
839
840 folio_zero_segments(folio, 0, from,
841 from + len, folio_size(folio));
842 }
843 return 0;
844 }
845 EXPORT_SYMBOL(simple_write_begin);
846
847 /**
848 * simple_write_end - .write_end helper for non-block-device FSes
849 * @file: See .write_end of address_space_operations
850 * @mapping: "
851 * @pos: "
852 * @len: "
853 * @copied: "
854 * @page: "
855 * @fsdata: "
856 *
857 * simple_write_end does the minimum needed for updating a page after writing is
858 * done. It has the same API signature as the .write_end of
859 * address_space_operations vector. So it can just be set onto .write_end for
860 * FSes that don't need any other processing. i_mutex is assumed to be held.
861 * Block based filesystems should use generic_write_end().
862 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
863 * is not called, so a filesystem that actually does store data in .write_inode
864 * should extend on what's done here with a call to mark_inode_dirty() in the
865 * case that i_size has changed.
866 *
867 * Use *ONLY* with simple_read_folio()
868 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)869 static int simple_write_end(struct file *file, struct address_space *mapping,
870 loff_t pos, unsigned len, unsigned copied,
871 struct page *page, void *fsdata)
872 {
873 struct folio *folio = page_folio(page);
874 struct inode *inode = folio->mapping->host;
875 loff_t last_pos = pos + copied;
876
877 /* zero the stale part of the folio if we did a short copy */
878 if (!folio_test_uptodate(folio)) {
879 if (copied < len) {
880 size_t from = offset_in_folio(folio, pos);
881
882 folio_zero_range(folio, from + copied, len - copied);
883 }
884 folio_mark_uptodate(folio);
885 }
886 /*
887 * No need to use i_size_read() here, the i_size
888 * cannot change under us because we hold the i_mutex.
889 */
890 if (last_pos > inode->i_size)
891 i_size_write(inode, last_pos);
892
893 folio_mark_dirty(folio);
894 folio_unlock(folio);
895 folio_put(folio);
896
897 return copied;
898 }
899
900 /*
901 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
902 */
903 const struct address_space_operations ram_aops = {
904 .read_folio = simple_read_folio,
905 .write_begin = simple_write_begin,
906 .write_end = simple_write_end,
907 .dirty_folio = noop_dirty_folio,
908 };
909 EXPORT_SYMBOL(ram_aops);
910
911 /*
912 * the inodes created here are not hashed. If you use iunique to generate
913 * unique inode values later for this filesystem, then you must take care
914 * to pass it an appropriate max_reserved value to avoid collisions.
915 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)916 int simple_fill_super(struct super_block *s, unsigned long magic,
917 const struct tree_descr *files)
918 {
919 struct inode *inode;
920 struct dentry *root;
921 struct dentry *dentry;
922 int i;
923
924 s->s_blocksize = PAGE_SIZE;
925 s->s_blocksize_bits = PAGE_SHIFT;
926 s->s_magic = magic;
927 s->s_op = &simple_super_operations;
928 s->s_time_gran = 1;
929
930 inode = new_inode(s);
931 if (!inode)
932 return -ENOMEM;
933 /*
934 * because the root inode is 1, the files array must not contain an
935 * entry at index 1
936 */
937 inode->i_ino = 1;
938 inode->i_mode = S_IFDIR | 0755;
939 simple_inode_init_ts(inode);
940 inode->i_op = &simple_dir_inode_operations;
941 inode->i_fop = &simple_dir_operations;
942 set_nlink(inode, 2);
943 root = d_make_root(inode);
944 if (!root)
945 return -ENOMEM;
946 for (i = 0; !files->name || files->name[0]; i++, files++) {
947 if (!files->name)
948 continue;
949
950 /* warn if it tries to conflict with the root inode */
951 if (unlikely(i == 1))
952 printk(KERN_WARNING "%s: %s passed in a files array"
953 "with an index of 1!\n", __func__,
954 s->s_type->name);
955
956 dentry = d_alloc_name(root, files->name);
957 if (!dentry)
958 goto out;
959 inode = new_inode(s);
960 if (!inode) {
961 dput(dentry);
962 goto out;
963 }
964 inode->i_mode = S_IFREG | files->mode;
965 simple_inode_init_ts(inode);
966 inode->i_fop = files->ops;
967 inode->i_ino = i;
968 d_add(dentry, inode);
969 }
970 s->s_root = root;
971 return 0;
972 out:
973 d_genocide(root);
974 shrink_dcache_parent(root);
975 dput(root);
976 return -ENOMEM;
977 }
978 EXPORT_SYMBOL(simple_fill_super);
979
980 static DEFINE_SPINLOCK(pin_fs_lock);
981
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)982 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
983 {
984 struct vfsmount *mnt = NULL;
985 spin_lock(&pin_fs_lock);
986 if (unlikely(!*mount)) {
987 spin_unlock(&pin_fs_lock);
988 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
989 if (IS_ERR(mnt))
990 return PTR_ERR(mnt);
991 spin_lock(&pin_fs_lock);
992 if (!*mount)
993 *mount = mnt;
994 }
995 mntget(*mount);
996 ++*count;
997 spin_unlock(&pin_fs_lock);
998 mntput(mnt);
999 return 0;
1000 }
1001 EXPORT_SYMBOL(simple_pin_fs);
1002
simple_release_fs(struct vfsmount ** mount,int * count)1003 void simple_release_fs(struct vfsmount **mount, int *count)
1004 {
1005 struct vfsmount *mnt;
1006 spin_lock(&pin_fs_lock);
1007 mnt = *mount;
1008 if (!--*count)
1009 *mount = NULL;
1010 spin_unlock(&pin_fs_lock);
1011 mntput(mnt);
1012 }
1013 EXPORT_SYMBOL(simple_release_fs);
1014
1015 /**
1016 * simple_read_from_buffer - copy data from the buffer to user space
1017 * @to: the user space buffer to read to
1018 * @count: the maximum number of bytes to read
1019 * @ppos: the current position in the buffer
1020 * @from: the buffer to read from
1021 * @available: the size of the buffer
1022 *
1023 * The simple_read_from_buffer() function reads up to @count bytes from the
1024 * buffer @from at offset @ppos into the user space address starting at @to.
1025 *
1026 * On success, the number of bytes read is returned and the offset @ppos is
1027 * advanced by this number, or negative value is returned on error.
1028 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1029 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1030 const void *from, size_t available)
1031 {
1032 loff_t pos = *ppos;
1033 size_t ret;
1034
1035 if (pos < 0)
1036 return -EINVAL;
1037 if (pos >= available || !count)
1038 return 0;
1039 if (count > available - pos)
1040 count = available - pos;
1041 ret = copy_to_user(to, from + pos, count);
1042 if (ret == count)
1043 return -EFAULT;
1044 count -= ret;
1045 *ppos = pos + count;
1046 return count;
1047 }
1048 EXPORT_SYMBOL(simple_read_from_buffer);
1049
1050 /**
1051 * simple_write_to_buffer - copy data from user space to the buffer
1052 * @to: the buffer to write to
1053 * @available: the size of the buffer
1054 * @ppos: the current position in the buffer
1055 * @from: the user space buffer to read from
1056 * @count: the maximum number of bytes to read
1057 *
1058 * The simple_write_to_buffer() function reads up to @count bytes from the user
1059 * space address starting at @from into the buffer @to at offset @ppos.
1060 *
1061 * On success, the number of bytes written is returned and the offset @ppos is
1062 * advanced by this number, or negative value is returned on error.
1063 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1064 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1065 const void __user *from, size_t count)
1066 {
1067 loff_t pos = *ppos;
1068 size_t res;
1069
1070 if (pos < 0)
1071 return -EINVAL;
1072 if (pos >= available || !count)
1073 return 0;
1074 if (count > available - pos)
1075 count = available - pos;
1076 res = copy_from_user(to + pos, from, count);
1077 if (res == count)
1078 return -EFAULT;
1079 count -= res;
1080 *ppos = pos + count;
1081 return count;
1082 }
1083 EXPORT_SYMBOL(simple_write_to_buffer);
1084
1085 /**
1086 * memory_read_from_buffer - copy data from the buffer
1087 * @to: the kernel space buffer to read to
1088 * @count: the maximum number of bytes to read
1089 * @ppos: the current position in the buffer
1090 * @from: the buffer to read from
1091 * @available: the size of the buffer
1092 *
1093 * The memory_read_from_buffer() function reads up to @count bytes from the
1094 * buffer @from at offset @ppos into the kernel space address starting at @to.
1095 *
1096 * On success, the number of bytes read is returned and the offset @ppos is
1097 * advanced by this number, or negative value is returned on error.
1098 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1099 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1100 const void *from, size_t available)
1101 {
1102 loff_t pos = *ppos;
1103
1104 if (pos < 0)
1105 return -EINVAL;
1106 if (pos >= available)
1107 return 0;
1108 if (count > available - pos)
1109 count = available - pos;
1110 memcpy(to, from + pos, count);
1111 *ppos = pos + count;
1112
1113 return count;
1114 }
1115 EXPORT_SYMBOL(memory_read_from_buffer);
1116
1117 /*
1118 * Transaction based IO.
1119 * The file expects a single write which triggers the transaction, and then
1120 * possibly a read which collects the result - which is stored in a
1121 * file-local buffer.
1122 */
1123
simple_transaction_set(struct file * file,size_t n)1124 void simple_transaction_set(struct file *file, size_t n)
1125 {
1126 struct simple_transaction_argresp *ar = file->private_data;
1127
1128 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1129
1130 /*
1131 * The barrier ensures that ar->size will really remain zero until
1132 * ar->data is ready for reading.
1133 */
1134 smp_mb();
1135 ar->size = n;
1136 }
1137 EXPORT_SYMBOL(simple_transaction_set);
1138
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1139 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1140 {
1141 struct simple_transaction_argresp *ar;
1142 static DEFINE_SPINLOCK(simple_transaction_lock);
1143
1144 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1145 return ERR_PTR(-EFBIG);
1146
1147 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1148 if (!ar)
1149 return ERR_PTR(-ENOMEM);
1150
1151 spin_lock(&simple_transaction_lock);
1152
1153 /* only one write allowed per open */
1154 if (file->private_data) {
1155 spin_unlock(&simple_transaction_lock);
1156 free_page((unsigned long)ar);
1157 return ERR_PTR(-EBUSY);
1158 }
1159
1160 file->private_data = ar;
1161
1162 spin_unlock(&simple_transaction_lock);
1163
1164 if (copy_from_user(ar->data, buf, size))
1165 return ERR_PTR(-EFAULT);
1166
1167 return ar->data;
1168 }
1169 EXPORT_SYMBOL(simple_transaction_get);
1170
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1171 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1172 {
1173 struct simple_transaction_argresp *ar = file->private_data;
1174
1175 if (!ar)
1176 return 0;
1177 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1178 }
1179 EXPORT_SYMBOL(simple_transaction_read);
1180
simple_transaction_release(struct inode * inode,struct file * file)1181 int simple_transaction_release(struct inode *inode, struct file *file)
1182 {
1183 free_page((unsigned long)file->private_data);
1184 return 0;
1185 }
1186 EXPORT_SYMBOL(simple_transaction_release);
1187
1188 /* Simple attribute files */
1189
1190 struct simple_attr {
1191 int (*get)(void *, u64 *);
1192 int (*set)(void *, u64);
1193 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1194 char set_buf[24];
1195 void *data;
1196 const char *fmt; /* format for read operation */
1197 struct mutex mutex; /* protects access to these buffers */
1198 };
1199
1200 /* simple_attr_open is called by an actual attribute open file operation
1201 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1202 int simple_attr_open(struct inode *inode, struct file *file,
1203 int (*get)(void *, u64 *), int (*set)(void *, u64),
1204 const char *fmt)
1205 {
1206 struct simple_attr *attr;
1207
1208 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1209 if (!attr)
1210 return -ENOMEM;
1211
1212 attr->get = get;
1213 attr->set = set;
1214 attr->data = inode->i_private;
1215 attr->fmt = fmt;
1216 mutex_init(&attr->mutex);
1217
1218 file->private_data = attr;
1219
1220 return nonseekable_open(inode, file);
1221 }
1222 EXPORT_SYMBOL_GPL(simple_attr_open);
1223
simple_attr_release(struct inode * inode,struct file * file)1224 int simple_attr_release(struct inode *inode, struct file *file)
1225 {
1226 kfree(file->private_data);
1227 return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1230
1231 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1232 ssize_t simple_attr_read(struct file *file, char __user *buf,
1233 size_t len, loff_t *ppos)
1234 {
1235 struct simple_attr *attr;
1236 size_t size;
1237 ssize_t ret;
1238
1239 attr = file->private_data;
1240
1241 if (!attr->get)
1242 return -EACCES;
1243
1244 ret = mutex_lock_interruptible(&attr->mutex);
1245 if (ret)
1246 return ret;
1247
1248 if (*ppos && attr->get_buf[0]) {
1249 /* continued read */
1250 size = strlen(attr->get_buf);
1251 } else {
1252 /* first read */
1253 u64 val;
1254 ret = attr->get(attr->data, &val);
1255 if (ret)
1256 goto out;
1257
1258 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1259 attr->fmt, (unsigned long long)val);
1260 }
1261
1262 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1263 out:
1264 mutex_unlock(&attr->mutex);
1265 return ret;
1266 }
1267 EXPORT_SYMBOL_GPL(simple_attr_read);
1268
1269 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1270 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1271 size_t len, loff_t *ppos, bool is_signed)
1272 {
1273 struct simple_attr *attr;
1274 unsigned long long val;
1275 size_t size;
1276 ssize_t ret;
1277
1278 attr = file->private_data;
1279 if (!attr->set)
1280 return -EACCES;
1281
1282 ret = mutex_lock_interruptible(&attr->mutex);
1283 if (ret)
1284 return ret;
1285
1286 ret = -EFAULT;
1287 size = min(sizeof(attr->set_buf) - 1, len);
1288 if (copy_from_user(attr->set_buf, buf, size))
1289 goto out;
1290
1291 attr->set_buf[size] = '\0';
1292 if (is_signed)
1293 ret = kstrtoll(attr->set_buf, 0, &val);
1294 else
1295 ret = kstrtoull(attr->set_buf, 0, &val);
1296 if (ret)
1297 goto out;
1298 ret = attr->set(attr->data, val);
1299 if (ret == 0)
1300 ret = len; /* on success, claim we got the whole input */
1301 out:
1302 mutex_unlock(&attr->mutex);
1303 return ret;
1304 }
1305
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1306 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1307 size_t len, loff_t *ppos)
1308 {
1309 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1310 }
1311 EXPORT_SYMBOL_GPL(simple_attr_write);
1312
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1313 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1314 size_t len, loff_t *ppos)
1315 {
1316 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1317 }
1318 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1319
1320 /**
1321 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1322 * @sb: filesystem to do the file handle conversion on
1323 * @fid: file handle to convert
1324 * @fh_len: length of the file handle in bytes
1325 * @fh_type: type of file handle
1326 * @get_inode: filesystem callback to retrieve inode
1327 *
1328 * This function decodes @fid as long as it has one of the well-known
1329 * Linux filehandle types and calls @get_inode on it to retrieve the
1330 * inode for the object specified in the file handle.
1331 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1332 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1333 int fh_len, int fh_type, struct inode *(*get_inode)
1334 (struct super_block *sb, u64 ino, u32 gen))
1335 {
1336 struct inode *inode = NULL;
1337
1338 if (fh_len < 2)
1339 return NULL;
1340
1341 switch (fh_type) {
1342 case FILEID_INO32_GEN:
1343 case FILEID_INO32_GEN_PARENT:
1344 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1345 break;
1346 }
1347
1348 return d_obtain_alias(inode);
1349 }
1350 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1351
1352 /**
1353 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1354 * @sb: filesystem to do the file handle conversion on
1355 * @fid: file handle to convert
1356 * @fh_len: length of the file handle in bytes
1357 * @fh_type: type of file handle
1358 * @get_inode: filesystem callback to retrieve inode
1359 *
1360 * This function decodes @fid as long as it has one of the well-known
1361 * Linux filehandle types and calls @get_inode on it to retrieve the
1362 * inode for the _parent_ object specified in the file handle if it
1363 * is specified in the file handle, or NULL otherwise.
1364 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1365 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1366 int fh_len, int fh_type, struct inode *(*get_inode)
1367 (struct super_block *sb, u64 ino, u32 gen))
1368 {
1369 struct inode *inode = NULL;
1370
1371 if (fh_len <= 2)
1372 return NULL;
1373
1374 switch (fh_type) {
1375 case FILEID_INO32_GEN_PARENT:
1376 inode = get_inode(sb, fid->i32.parent_ino,
1377 (fh_len > 3 ? fid->i32.parent_gen : 0));
1378 break;
1379 }
1380
1381 return d_obtain_alias(inode);
1382 }
1383 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1384
1385 /**
1386 * __generic_file_fsync - generic fsync implementation for simple filesystems
1387 *
1388 * @file: file to synchronize
1389 * @start: start offset in bytes
1390 * @end: end offset in bytes (inclusive)
1391 * @datasync: only synchronize essential metadata if true
1392 *
1393 * This is a generic implementation of the fsync method for simple
1394 * filesystems which track all non-inode metadata in the buffers list
1395 * hanging off the address_space structure.
1396 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1397 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1398 int datasync)
1399 {
1400 struct inode *inode = file->f_mapping->host;
1401 int err;
1402 int ret;
1403
1404 err = file_write_and_wait_range(file, start, end);
1405 if (err)
1406 return err;
1407
1408 inode_lock(inode);
1409 ret = sync_mapping_buffers(inode->i_mapping);
1410 if (!(inode->i_state & I_DIRTY_ALL))
1411 goto out;
1412 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1413 goto out;
1414
1415 err = sync_inode_metadata(inode, 1);
1416 if (ret == 0)
1417 ret = err;
1418
1419 out:
1420 inode_unlock(inode);
1421 /* check and advance again to catch errors after syncing out buffers */
1422 err = file_check_and_advance_wb_err(file);
1423 if (ret == 0)
1424 ret = err;
1425 return ret;
1426 }
1427 EXPORT_SYMBOL_NS(__generic_file_fsync, ANDROID_GKI_VFS_EXPORT_ONLY);
1428
1429 /**
1430 * generic_file_fsync - generic fsync implementation for simple filesystems
1431 * with flush
1432 * @file: file to synchronize
1433 * @start: start offset in bytes
1434 * @end: end offset in bytes (inclusive)
1435 * @datasync: only synchronize essential metadata if true
1436 *
1437 */
1438
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1439 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1440 int datasync)
1441 {
1442 struct inode *inode = file->f_mapping->host;
1443 int err;
1444
1445 err = __generic_file_fsync(file, start, end, datasync);
1446 if (err)
1447 return err;
1448 return blkdev_issue_flush(inode->i_sb->s_bdev);
1449 }
1450 EXPORT_SYMBOL_NS(generic_file_fsync, ANDROID_GKI_VFS_EXPORT_ONLY);
1451
1452 /**
1453 * generic_check_addressable - Check addressability of file system
1454 * @blocksize_bits: log of file system block size
1455 * @num_blocks: number of blocks in file system
1456 *
1457 * Determine whether a file system with @num_blocks blocks (and a
1458 * block size of 2**@blocksize_bits) is addressable by the sector_t
1459 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1460 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1461 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1462 {
1463 u64 last_fs_block = num_blocks - 1;
1464 u64 last_fs_page =
1465 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1466
1467 if (unlikely(num_blocks == 0))
1468 return 0;
1469
1470 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1471 return -EINVAL;
1472
1473 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1474 (last_fs_page > (pgoff_t)(~0ULL))) {
1475 return -EFBIG;
1476 }
1477 return 0;
1478 }
1479 EXPORT_SYMBOL(generic_check_addressable);
1480
1481 /*
1482 * No-op implementation of ->fsync for in-memory filesystems.
1483 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1484 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1485 {
1486 return 0;
1487 }
1488 EXPORT_SYMBOL(noop_fsync);
1489
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1490 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1491 {
1492 /*
1493 * iomap based filesystems support direct I/O without need for
1494 * this callback. However, it still needs to be set in
1495 * inode->a_ops so that open/fcntl know that direct I/O is
1496 * generally supported.
1497 */
1498 return -EINVAL;
1499 }
1500 EXPORT_SYMBOL_GPL(noop_direct_IO);
1501
1502 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1503 void kfree_link(void *p)
1504 {
1505 kfree(p);
1506 }
1507 EXPORT_SYMBOL(kfree_link);
1508
alloc_anon_inode(struct super_block * s)1509 struct inode *alloc_anon_inode(struct super_block *s)
1510 {
1511 static const struct address_space_operations anon_aops = {
1512 .dirty_folio = noop_dirty_folio,
1513 };
1514 struct inode *inode = new_inode_pseudo(s);
1515
1516 if (!inode)
1517 return ERR_PTR(-ENOMEM);
1518
1519 inode->i_ino = get_next_ino();
1520 inode->i_mapping->a_ops = &anon_aops;
1521
1522 /*
1523 * Mark the inode dirty from the very beginning,
1524 * that way it will never be moved to the dirty
1525 * list because mark_inode_dirty() will think
1526 * that it already _is_ on the dirty list.
1527 */
1528 inode->i_state = I_DIRTY;
1529 inode->i_mode = S_IRUSR | S_IWUSR;
1530 inode->i_uid = current_fsuid();
1531 inode->i_gid = current_fsgid();
1532 inode->i_flags |= S_PRIVATE;
1533 simple_inode_init_ts(inode);
1534 return inode;
1535 }
1536 EXPORT_SYMBOL(alloc_anon_inode);
1537
1538 /**
1539 * simple_nosetlease - generic helper for prohibiting leases
1540 * @filp: file pointer
1541 * @arg: type of lease to obtain
1542 * @flp: new lease supplied for insertion
1543 * @priv: private data for lm_setup operation
1544 *
1545 * Generic helper for filesystems that do not wish to allow leases to be set.
1546 * All arguments are ignored and it just returns -EINVAL.
1547 */
1548 int
simple_nosetlease(struct file * filp,int arg,struct file_lock ** flp,void ** priv)1549 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1550 void **priv)
1551 {
1552 return -EINVAL;
1553 }
1554 EXPORT_SYMBOL(simple_nosetlease);
1555
1556 /**
1557 * simple_get_link - generic helper to get the target of "fast" symlinks
1558 * @dentry: not used here
1559 * @inode: the symlink inode
1560 * @done: not used here
1561 *
1562 * Generic helper for filesystems to use for symlink inodes where a pointer to
1563 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1564 * since as an optimization the path lookup code uses any non-NULL ->i_link
1565 * directly, without calling ->get_link(). But ->get_link() still must be set,
1566 * to mark the inode_operations as being for a symlink.
1567 *
1568 * Return: the symlink target
1569 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1570 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1571 struct delayed_call *done)
1572 {
1573 return inode->i_link;
1574 }
1575 EXPORT_SYMBOL(simple_get_link);
1576
1577 const struct inode_operations simple_symlink_inode_operations = {
1578 .get_link = simple_get_link,
1579 };
1580 EXPORT_SYMBOL(simple_symlink_inode_operations);
1581
1582 /*
1583 * Operations for a permanently empty directory.
1584 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1585 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1586 {
1587 return ERR_PTR(-ENOENT);
1588 }
1589
empty_dir_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1590 static int empty_dir_getattr(struct mnt_idmap *idmap,
1591 const struct path *path, struct kstat *stat,
1592 u32 request_mask, unsigned int query_flags)
1593 {
1594 struct inode *inode = d_inode(path->dentry);
1595 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1596 return 0;
1597 }
1598
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1599 static int empty_dir_setattr(struct mnt_idmap *idmap,
1600 struct dentry *dentry, struct iattr *attr)
1601 {
1602 return -EPERM;
1603 }
1604
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1605 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1606 {
1607 return -EOPNOTSUPP;
1608 }
1609
1610 static const struct inode_operations empty_dir_inode_operations = {
1611 .lookup = empty_dir_lookup,
1612 .permission = generic_permission,
1613 .setattr = empty_dir_setattr,
1614 .getattr = empty_dir_getattr,
1615 .listxattr = empty_dir_listxattr,
1616 };
1617
empty_dir_llseek(struct file * file,loff_t offset,int whence)1618 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1619 {
1620 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1621 return generic_file_llseek_size(file, offset, whence, 2, 2);
1622 }
1623
empty_dir_readdir(struct file * file,struct dir_context * ctx)1624 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1625 {
1626 dir_emit_dots(file, ctx);
1627 return 0;
1628 }
1629
1630 static const struct file_operations empty_dir_operations = {
1631 .llseek = empty_dir_llseek,
1632 .read = generic_read_dir,
1633 .iterate_shared = empty_dir_readdir,
1634 .fsync = noop_fsync,
1635 };
1636
1637
make_empty_dir_inode(struct inode * inode)1638 void make_empty_dir_inode(struct inode *inode)
1639 {
1640 set_nlink(inode, 2);
1641 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1642 inode->i_uid = GLOBAL_ROOT_UID;
1643 inode->i_gid = GLOBAL_ROOT_GID;
1644 inode->i_rdev = 0;
1645 inode->i_size = 0;
1646 inode->i_blkbits = PAGE_SHIFT;
1647 inode->i_blocks = 0;
1648
1649 inode->i_op = &empty_dir_inode_operations;
1650 inode->i_opflags &= ~IOP_XATTR;
1651 inode->i_fop = &empty_dir_operations;
1652 }
1653
is_empty_dir_inode(struct inode * inode)1654 bool is_empty_dir_inode(struct inode *inode)
1655 {
1656 return (inode->i_fop == &empty_dir_operations) &&
1657 (inode->i_op == &empty_dir_inode_operations);
1658 }
1659
1660 #if IS_ENABLED(CONFIG_UNICODE)
1661 /**
1662 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1663 * @dentry: dentry whose name we are checking against
1664 * @len: len of name of dentry
1665 * @str: str pointer to name of dentry
1666 * @name: Name to compare against
1667 *
1668 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1669 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1670 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1671 const char *str, const struct qstr *name)
1672 {
1673 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1674 const struct inode *dir = READ_ONCE(parent->d_inode);
1675 const struct super_block *sb = dentry->d_sb;
1676 const struct unicode_map *um = sb->s_encoding;
1677 struct qstr qstr = QSTR_INIT(str, len);
1678 char strbuf[DNAME_INLINE_LEN];
1679 int ret;
1680
1681 if (!dir || !IS_CASEFOLDED(dir))
1682 goto fallback;
1683 /*
1684 * If the dentry name is stored in-line, then it may be concurrently
1685 * modified by a rename. If this happens, the VFS will eventually retry
1686 * the lookup, so it doesn't matter what ->d_compare() returns.
1687 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1688 * string. Therefore, we have to copy the name into a temporary buffer.
1689 */
1690 if (len <= DNAME_INLINE_LEN - 1) {
1691 memcpy(strbuf, str, len);
1692 strbuf[len] = 0;
1693 qstr.name = strbuf;
1694 /* prevent compiler from optimizing out the temporary buffer */
1695 barrier();
1696 }
1697 ret = utf8_strncasecmp(um, name, &qstr);
1698 if (ret >= 0)
1699 return ret;
1700
1701 if (sb_has_strict_encoding(sb))
1702 return -EINVAL;
1703 fallback:
1704 if (len != name->len)
1705 return 1;
1706 return !!memcmp(str, name->name, len);
1707 }
1708
1709 /**
1710 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1711 * @dentry: dentry of the parent directory
1712 * @str: qstr of name whose hash we should fill in
1713 *
1714 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1715 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1716 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1717 {
1718 const struct inode *dir = READ_ONCE(dentry->d_inode);
1719 struct super_block *sb = dentry->d_sb;
1720 const struct unicode_map *um = sb->s_encoding;
1721 int ret = 0;
1722
1723 if (!dir || !IS_CASEFOLDED(dir))
1724 return 0;
1725
1726 ret = utf8_casefold_hash(um, dentry, str);
1727 if (ret < 0 && sb_has_strict_encoding(sb))
1728 return -EINVAL;
1729 return 0;
1730 }
1731
1732 static const struct dentry_operations generic_ci_dentry_ops = {
1733 .d_hash = generic_ci_d_hash,
1734 .d_compare = generic_ci_d_compare,
1735 };
1736 #endif
1737
1738 #ifdef CONFIG_FS_ENCRYPTION
1739 static const struct dentry_operations generic_encrypted_dentry_ops = {
1740 .d_revalidate = fscrypt_d_revalidate,
1741 };
1742 #endif
1743
1744 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1745 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1746 .d_hash = generic_ci_d_hash,
1747 .d_compare = generic_ci_d_compare,
1748 .d_revalidate = fscrypt_d_revalidate,
1749 };
1750 #endif
1751
1752 /**
1753 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1754 * @dentry: dentry to set ops on
1755 *
1756 * Casefolded directories need d_hash and d_compare set, so that the dentries
1757 * contained in them are handled case-insensitively. Note that these operations
1758 * are needed on the parent directory rather than on the dentries in it, and
1759 * while the casefolding flag can be toggled on and off on an empty directory,
1760 * dentry_operations can't be changed later. As a result, if the filesystem has
1761 * casefolding support enabled at all, we have to give all dentries the
1762 * casefolding operations even if their inode doesn't have the casefolding flag
1763 * currently (and thus the casefolding ops would be no-ops for now).
1764 *
1765 * Encryption works differently in that the only dentry operation it needs is
1766 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1767 * The no-key flag can't be set "later", so we don't have to worry about that.
1768 *
1769 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1770 * with certain dentry operations) and to avoid taking an unnecessary
1771 * performance hit, we use custom dentry_operations for each possible
1772 * combination rather than always installing all operations.
1773 */
generic_set_encrypted_ci_d_ops(struct dentry * dentry)1774 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1775 {
1776 #ifdef CONFIG_FS_ENCRYPTION
1777 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1778 #endif
1779 #if IS_ENABLED(CONFIG_UNICODE)
1780 bool needs_ci_ops = dentry->d_sb->s_encoding;
1781 #endif
1782 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1783 if (needs_encrypt_ops && needs_ci_ops) {
1784 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1785 return;
1786 }
1787 #endif
1788 #ifdef CONFIG_FS_ENCRYPTION
1789 if (needs_encrypt_ops) {
1790 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1791 return;
1792 }
1793 #endif
1794 #if IS_ENABLED(CONFIG_UNICODE)
1795 if (needs_ci_ops) {
1796 d_set_d_op(dentry, &generic_ci_dentry_ops);
1797 return;
1798 }
1799 #endif
1800 }
1801 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1802
1803 /**
1804 * inode_maybe_inc_iversion - increments i_version
1805 * @inode: inode with the i_version that should be updated
1806 * @force: increment the counter even if it's not necessary?
1807 *
1808 * Every time the inode is modified, the i_version field must be seen to have
1809 * changed by any observer.
1810 *
1811 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1812 * the value, and clear the queried flag.
1813 *
1814 * In the common case where neither is set, then we can return "false" without
1815 * updating i_version.
1816 *
1817 * If this function returns false, and no other metadata has changed, then we
1818 * can avoid logging the metadata.
1819 */
inode_maybe_inc_iversion(struct inode * inode,bool force)1820 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1821 {
1822 u64 cur, new;
1823
1824 /*
1825 * The i_version field is not strictly ordered with any other inode
1826 * information, but the legacy inode_inc_iversion code used a spinlock
1827 * to serialize increments.
1828 *
1829 * Here, we add full memory barriers to ensure that any de-facto
1830 * ordering with other info is preserved.
1831 *
1832 * This barrier pairs with the barrier in inode_query_iversion()
1833 */
1834 smp_mb();
1835 cur = inode_peek_iversion_raw(inode);
1836 do {
1837 /* If flag is clear then we needn't do anything */
1838 if (!force && !(cur & I_VERSION_QUERIED))
1839 return false;
1840
1841 /* Since lowest bit is flag, add 2 to avoid it */
1842 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1843 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1844 return true;
1845 }
1846 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1847
1848 /**
1849 * inode_query_iversion - read i_version for later use
1850 * @inode: inode from which i_version should be read
1851 *
1852 * Read the inode i_version counter. This should be used by callers that wish
1853 * to store the returned i_version for later comparison. This will guarantee
1854 * that a later query of the i_version will result in a different value if
1855 * anything has changed.
1856 *
1857 * In this implementation, we fetch the current value, set the QUERIED flag and
1858 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1859 * that fails, we try again with the newly fetched value from the cmpxchg.
1860 */
inode_query_iversion(struct inode * inode)1861 u64 inode_query_iversion(struct inode *inode)
1862 {
1863 u64 cur, new;
1864
1865 cur = inode_peek_iversion_raw(inode);
1866 do {
1867 /* If flag is already set, then no need to swap */
1868 if (cur & I_VERSION_QUERIED) {
1869 /*
1870 * This barrier (and the implicit barrier in the
1871 * cmpxchg below) pairs with the barrier in
1872 * inode_maybe_inc_iversion().
1873 */
1874 smp_mb();
1875 break;
1876 }
1877
1878 new = cur | I_VERSION_QUERIED;
1879 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1880 return cur >> I_VERSION_QUERIED_SHIFT;
1881 }
1882 EXPORT_SYMBOL(inode_query_iversion);
1883
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)1884 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1885 ssize_t direct_written, ssize_t buffered_written)
1886 {
1887 struct address_space *mapping = iocb->ki_filp->f_mapping;
1888 loff_t pos = iocb->ki_pos - buffered_written;
1889 loff_t end = iocb->ki_pos - 1;
1890 int err;
1891
1892 /*
1893 * If the buffered write fallback returned an error, we want to return
1894 * the number of bytes which were written by direct I/O, or the error
1895 * code if that was zero.
1896 *
1897 * Note that this differs from normal direct-io semantics, which will
1898 * return -EFOO even if some bytes were written.
1899 */
1900 if (unlikely(buffered_written < 0)) {
1901 if (direct_written)
1902 return direct_written;
1903 return buffered_written;
1904 }
1905
1906 /*
1907 * We need to ensure that the page cache pages are written to disk and
1908 * invalidated to preserve the expected O_DIRECT semantics.
1909 */
1910 err = filemap_write_and_wait_range(mapping, pos, end);
1911 if (err < 0) {
1912 /*
1913 * We don't know how much we wrote, so just return the number of
1914 * bytes which were direct-written
1915 */
1916 iocb->ki_pos -= buffered_written;
1917 if (direct_written)
1918 return direct_written;
1919 return err;
1920 }
1921 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1922 return direct_written + buffered_written;
1923 }
1924 EXPORT_SYMBOL_GPL(direct_write_fallback);
1925
1926 /**
1927 * simple_inode_init_ts - initialize the timestamps for a new inode
1928 * @inode: inode to be initialized
1929 *
1930 * When a new inode is created, most filesystems set the timestamps to the
1931 * current time. Add a helper to do this.
1932 */
simple_inode_init_ts(struct inode * inode)1933 struct timespec64 simple_inode_init_ts(struct inode *inode)
1934 {
1935 struct timespec64 ts = inode_set_ctime_current(inode);
1936
1937 inode_set_atime_to_ts(inode, ts);
1938 inode_set_mtime_to_ts(inode, ts);
1939 return ts;
1940 }
1941 EXPORT_SYMBOL(simple_inode_init_ts);
1942