• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40 #include <linux/android_kabi.h>
41 #include <linux/android_vendor.h>
42 
43 /**
44  * DOC: skb checksums
45  *
46  * The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * IP checksum related features
50  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51  *
52  * Drivers advertise checksum offload capabilities in the features of a device.
53  * From the stack's point of view these are capabilities offered by the driver.
54  * A driver typically only advertises features that it is capable of offloading
55  * to its device.
56  *
57  * .. flat-table:: Checksum related device features
58  *   :widths: 1 10
59  *
60  *   * - %NETIF_F_HW_CSUM
61  *     - The driver (or its device) is able to compute one
62  *	 IP (one's complement) checksum for any combination
63  *	 of protocols or protocol layering. The checksum is
64  *	 computed and set in a packet per the CHECKSUM_PARTIAL
65  *	 interface (see below).
66  *
67  *   * - %NETIF_F_IP_CSUM
68  *     - Driver (device) is only able to checksum plain
69  *	 TCP or UDP packets over IPv4. These are specifically
70  *	 unencapsulated packets of the form IPv4|TCP or
71  *	 IPv4|UDP where the Protocol field in the IPv4 header
72  *	 is TCP or UDP. The IPv4 header may contain IP options.
73  *	 This feature cannot be set in features for a device
74  *	 with NETIF_F_HW_CSUM also set. This feature is being
75  *	 DEPRECATED (see below).
76  *
77  *   * - %NETIF_F_IPV6_CSUM
78  *     - Driver (device) is only able to checksum plain
79  *	 TCP or UDP packets over IPv6. These are specifically
80  *	 unencapsulated packets of the form IPv6|TCP or
81  *	 IPv6|UDP where the Next Header field in the IPv6
82  *	 header is either TCP or UDP. IPv6 extension headers
83  *	 are not supported with this feature. This feature
84  *	 cannot be set in features for a device with
85  *	 NETIF_F_HW_CSUM also set. This feature is being
86  *	 DEPRECATED (see below).
87  *
88  *   * - %NETIF_F_RXCSUM
89  *     - Driver (device) performs receive checksum offload.
90  *	 This flag is only used to disable the RX checksum
91  *	 feature for a device. The stack will accept receive
92  *	 checksum indication in packets received on a device
93  *	 regardless of whether NETIF_F_RXCSUM is set.
94  *
95  * Checksumming of received packets by device
96  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97  *
98  * Indication of checksum verification is set in &sk_buff.ip_summed.
99  * Possible values are:
100  *
101  * - %CHECKSUM_NONE
102  *
103  *   Device did not checksum this packet e.g. due to lack of capabilities.
104  *   The packet contains full (though not verified) checksum in packet but
105  *   not in skb->csum. Thus, skb->csum is undefined in this case.
106  *
107  * - %CHECKSUM_UNNECESSARY
108  *
109  *   The hardware you're dealing with doesn't calculate the full checksum
110  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
111  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
112  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
113  *   though. A driver or device must never modify the checksum field in the
114  *   packet even if checksum is verified.
115  *
116  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
117  *
118  *     - TCP: IPv6 and IPv4.
119  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
120  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
121  *       may perform further validation in this case.
122  *     - GRE: only if the checksum is present in the header.
123  *     - SCTP: indicates the CRC in SCTP header has been validated.
124  *     - FCOE: indicates the CRC in FC frame has been validated.
125  *
126  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
127  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
128  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
129  *   and a device is able to verify the checksums for UDP (possibly zero),
130  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
131  *   two. If the device were only able to verify the UDP checksum and not
132  *   GRE, either because it doesn't support GRE checksum or because GRE
133  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
134  *   not considered in this case).
135  *
136  * - %CHECKSUM_COMPLETE
137  *
138  *   This is the most generic way. The device supplied checksum of the _whole_
139  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
140  *   hardware doesn't need to parse L3/L4 headers to implement this.
141  *
142  *   Notes:
143  *
144  *   - Even if device supports only some protocols, but is able to produce
145  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
146  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
147  *
148  * - %CHECKSUM_PARTIAL
149  *
150  *   A checksum is set up to be offloaded to a device as described in the
151  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
152  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
153  *   on the same host, or it may be set in the input path in GRO or remote
154  *   checksum offload. For the purposes of checksum verification, the checksum
155  *   referred to by skb->csum_start + skb->csum_offset and any preceding
156  *   checksums in the packet are considered verified. Any checksums in the
157  *   packet that are after the checksum being offloaded are not considered to
158  *   be verified.
159  *
160  * Checksumming on transmit for non-GSO
161  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162  *
163  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
164  * Values are:
165  *
166  * - %CHECKSUM_PARTIAL
167  *
168  *   The driver is required to checksum the packet as seen by hard_start_xmit()
169  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
170  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
171  *   A driver may verify that the
172  *   csum_start and csum_offset values are valid values given the length and
173  *   offset of the packet, but it should not attempt to validate that the
174  *   checksum refers to a legitimate transport layer checksum -- it is the
175  *   purview of the stack to validate that csum_start and csum_offset are set
176  *   correctly.
177  *
178  *   When the stack requests checksum offload for a packet, the driver MUST
179  *   ensure that the checksum is set correctly. A driver can either offload the
180  *   checksum calculation to the device, or call skb_checksum_help (in the case
181  *   that the device does not support offload for a particular checksum).
182  *
183  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
184  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
185  *   checksum offload capability.
186  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
187  *   on network device checksumming capabilities: if a packet does not match
188  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
189  *   &sk_buff.csum_not_inet, see :ref:`crc`)
190  *   is called to resolve the checksum.
191  *
192  * - %CHECKSUM_NONE
193  *
194  *   The skb was already checksummed by the protocol, or a checksum is not
195  *   required.
196  *
197  * - %CHECKSUM_UNNECESSARY
198  *
199  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
200  *   output.
201  *
202  * - %CHECKSUM_COMPLETE
203  *
204  *   Not used in checksum output. If a driver observes a packet with this value
205  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
206  *
207  * .. _crc:
208  *
209  * Non-IP checksum (CRC) offloads
210  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211  *
212  * .. flat-table::
213  *   :widths: 1 10
214  *
215  *   * - %NETIF_F_SCTP_CRC
216  *     - This feature indicates that a device is capable of
217  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
218  *	 will set csum_start and csum_offset accordingly, set ip_summed to
219  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
220  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
221  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
222  *	 must verify which offload is configured for a packet by testing the
223  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
224  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
225  *
226  *   * - %NETIF_F_FCOE_CRC
227  *     - This feature indicates that a device is capable of offloading the FCOE
228  *	 CRC in a packet. To perform this offload the stack will set ip_summed
229  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
230  *	 accordingly. Note that there is no indication in the skbuff that the
231  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
232  *	 both IP checksum offload and FCOE CRC offload must verify which offload
233  *	 is configured for a packet, presumably by inspecting packet headers.
234  *
235  * Checksumming on output with GSO
236  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237  *
238  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
239  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
240  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
241  * part of the GSO operation is implied. If a checksum is being offloaded
242  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
243  * csum_offset are set to refer to the outermost checksum being offloaded
244  * (two offloaded checksums are possible with UDP encapsulation).
245  */
246 
247 /* Don't change this without changing skb_csum_unnecessary! */
248 #define CHECKSUM_NONE		0
249 #define CHECKSUM_UNNECESSARY	1
250 #define CHECKSUM_COMPLETE	2
251 #define CHECKSUM_PARTIAL	3
252 
253 /* Maximum value in skb->csum_level */
254 #define SKB_MAX_CSUM_LEVEL	3
255 
256 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
257 #define SKB_WITH_OVERHEAD(X)	\
258 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
259 
260 /* For X bytes available in skb->head, what is the minimal
261  * allocation needed, knowing struct skb_shared_info needs
262  * to be aligned.
263  */
264 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
265 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266 
267 #define SKB_MAX_ORDER(X, ORDER) \
268 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
269 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
270 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
271 
272 /* return minimum truesize of one skb containing X bytes of data */
273 #define SKB_TRUESIZE(X) ((X) +						\
274 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
275 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
276 
277 struct ahash_request;
278 struct net_device;
279 struct scatterlist;
280 struct pipe_inode_info;
281 struct iov_iter;
282 struct napi_struct;
283 struct bpf_prog;
284 union bpf_attr;
285 struct skb_ext;
286 struct ts_config;
287 
288 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
289 struct nf_bridge_info {
290 	enum {
291 		BRNF_PROTO_UNCHANGED,
292 		BRNF_PROTO_8021Q,
293 		BRNF_PROTO_PPPOE
294 	} orig_proto:8;
295 	u8			pkt_otherhost:1;
296 	u8			in_prerouting:1;
297 	u8			bridged_dnat:1;
298 	u8			sabotage_in_done:1;
299 	__u16			frag_max_size;
300 	int			physinif;
301 
302 	/* always valid & non-NULL from FORWARD on, for physdev match */
303 	struct net_device	*physoutdev;
304 	union {
305 		/* prerouting: detect dnat in orig/reply direction */
306 		__be32          ipv4_daddr;
307 		struct in6_addr ipv6_daddr;
308 
309 		/* after prerouting + nat detected: store original source
310 		 * mac since neigh resolution overwrites it, only used while
311 		 * skb is out in neigh layer.
312 		 */
313 		char neigh_header[8];
314 	};
315 };
316 #endif
317 
318 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
319 /* Chain in tc_skb_ext will be used to share the tc chain with
320  * ovs recirc_id. It will be set to the current chain by tc
321  * and read by ovs to recirc_id.
322  */
323 struct tc_skb_ext {
324 	union {
325 		u64 act_miss_cookie;
326 		__u32 chain;
327 	};
328 	__u16 mru;
329 	__u16 zone;
330 	u8 post_ct:1;
331 	u8 post_ct_snat:1;
332 	u8 post_ct_dnat:1;
333 	u8 act_miss:1; /* Set if act_miss_cookie is used */
334 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
335 };
336 #endif
337 
338 struct sk_buff_head {
339 	/* These two members must be first to match sk_buff. */
340 	struct_group_tagged(sk_buff_list, list,
341 		struct sk_buff	*next;
342 		struct sk_buff	*prev;
343 	);
344 
345 	__u32		qlen;
346 	spinlock_t	lock;
347 };
348 
349 struct sk_buff;
350 
351 #ifndef CONFIG_MAX_SKB_FRAGS
352 # define CONFIG_MAX_SKB_FRAGS 17
353 #endif
354 
355 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
356 
357 extern int sysctl_max_skb_frags;
358 
359 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
360  * segment using its current segmentation instead.
361  */
362 #define GSO_BY_FRAGS	0xFFFF
363 
364 typedef struct bio_vec skb_frag_t;
365 
366 /**
367  * skb_frag_size() - Returns the size of a skb fragment
368  * @frag: skb fragment
369  */
skb_frag_size(const skb_frag_t * frag)370 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
371 {
372 	return frag->bv_len;
373 }
374 
375 /**
376  * skb_frag_size_set() - Sets the size of a skb fragment
377  * @frag: skb fragment
378  * @size: size of fragment
379  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)380 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
381 {
382 	frag->bv_len = size;
383 }
384 
385 /**
386  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
387  * @frag: skb fragment
388  * @delta: value to add
389  */
skb_frag_size_add(skb_frag_t * frag,int delta)390 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
391 {
392 	frag->bv_len += delta;
393 }
394 
395 /**
396  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
397  * @frag: skb fragment
398  * @delta: value to subtract
399  */
skb_frag_size_sub(skb_frag_t * frag,int delta)400 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
401 {
402 	frag->bv_len -= delta;
403 }
404 
405 /**
406  * skb_frag_must_loop - Test if %p is a high memory page
407  * @p: fragment's page
408  */
skb_frag_must_loop(struct page * p)409 static inline bool skb_frag_must_loop(struct page *p)
410 {
411 #if defined(CONFIG_HIGHMEM)
412 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
413 		return true;
414 #endif
415 	return false;
416 }
417 
418 /**
419  *	skb_frag_foreach_page - loop over pages in a fragment
420  *
421  *	@f:		skb frag to operate on
422  *	@f_off:		offset from start of f->bv_page
423  *	@f_len:		length from f_off to loop over
424  *	@p:		(temp var) current page
425  *	@p_off:		(temp var) offset from start of current page,
426  *	                           non-zero only on first page.
427  *	@p_len:		(temp var) length in current page,
428  *				   < PAGE_SIZE only on first and last page.
429  *	@copied:	(temp var) length so far, excluding current p_len.
430  *
431  *	A fragment can hold a compound page, in which case per-page
432  *	operations, notably kmap_atomic, must be called for each
433  *	regular page.
434  */
435 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
436 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
437 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
438 	     p_len = skb_frag_must_loop(p) ?				\
439 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
440 	     copied = 0;						\
441 	     copied < f_len;						\
442 	     copied += p_len, p++, p_off = 0,				\
443 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
444 
445 /**
446  * struct skb_shared_hwtstamps - hardware time stamps
447  * @hwtstamp:		hardware time stamp transformed into duration
448  *			since arbitrary point in time
449  * @netdev_data:	address/cookie of network device driver used as
450  *			reference to actual hardware time stamp
451  *
452  * Software time stamps generated by ktime_get_real() are stored in
453  * skb->tstamp.
454  *
455  * hwtstamps can only be compared against other hwtstamps from
456  * the same device.
457  *
458  * This structure is attached to packets as part of the
459  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
460  */
461 struct skb_shared_hwtstamps {
462 	union {
463 		ktime_t	hwtstamp;
464 		void *netdev_data;
465 	};
466 };
467 
468 /* Definitions for tx_flags in struct skb_shared_info */
469 enum {
470 	/* generate hardware time stamp */
471 	SKBTX_HW_TSTAMP = 1 << 0,
472 
473 	/* generate software time stamp when queueing packet to NIC */
474 	SKBTX_SW_TSTAMP = 1 << 1,
475 
476 	/* device driver is going to provide hardware time stamp */
477 	SKBTX_IN_PROGRESS = 1 << 2,
478 
479 	/* generate hardware time stamp based on cycles if supported */
480 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
481 
482 	/* generate wifi status information (where possible) */
483 	SKBTX_WIFI_STATUS = 1 << 4,
484 
485 	/* determine hardware time stamp based on time or cycles */
486 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
487 
488 	/* generate software time stamp when entering packet scheduling */
489 	SKBTX_SCHED_TSTAMP = 1 << 6,
490 };
491 
492 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
493 				 SKBTX_SCHED_TSTAMP)
494 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
495 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
496 				 SKBTX_ANY_SW_TSTAMP)
497 
498 /* Definitions for flags in struct skb_shared_info */
499 enum {
500 	/* use zcopy routines */
501 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
502 
503 	/* This indicates at least one fragment might be overwritten
504 	 * (as in vmsplice(), sendfile() ...)
505 	 * If we need to compute a TX checksum, we'll need to copy
506 	 * all frags to avoid possible bad checksum
507 	 */
508 	SKBFL_SHARED_FRAG = BIT(1),
509 
510 	/* segment contains only zerocopy data and should not be
511 	 * charged to the kernel memory.
512 	 */
513 	SKBFL_PURE_ZEROCOPY = BIT(2),
514 
515 	SKBFL_DONT_ORPHAN = BIT(3),
516 
517 	/* page references are managed by the ubuf_info, so it's safe to
518 	 * use frags only up until ubuf_info is released
519 	 */
520 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
521 };
522 
523 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
524 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
525 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
526 
527 /*
528  * The callback notifies userspace to release buffers when skb DMA is done in
529  * lower device, the skb last reference should be 0 when calling this.
530  * The zerocopy_success argument is true if zero copy transmit occurred,
531  * false on data copy or out of memory error caused by data copy attempt.
532  * The ctx field is used to track device context.
533  * The desc field is used to track userspace buffer index.
534  */
535 struct ubuf_info {
536 	void (*callback)(struct sk_buff *, struct ubuf_info *,
537 			 bool zerocopy_success);
538 	refcount_t refcnt;
539 	u8 flags;
540 };
541 
542 struct ubuf_info_msgzc {
543 	struct ubuf_info ubuf;
544 
545 	union {
546 		struct {
547 			unsigned long desc;
548 			void *ctx;
549 		};
550 		struct {
551 			u32 id;
552 			u16 len;
553 			u16 zerocopy:1;
554 			u32 bytelen;
555 		};
556 	};
557 
558 	struct mmpin {
559 		struct user_struct *user;
560 		unsigned int num_pg;
561 	} mmp;
562 };
563 
564 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
565 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
566 					     ubuf)
567 
568 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
569 void mm_unaccount_pinned_pages(struct mmpin *mmp);
570 
571 /* This data is invariant across clones and lives at
572  * the end of the header data, ie. at skb->end.
573  */
574 struct skb_shared_info {
575 	__u8		flags;
576 	__u8		meta_len;
577 	__u8		nr_frags;
578 	__u8		tx_flags;
579 	unsigned short	gso_size;
580 	/* Warning: this field is not always filled in (UFO)! */
581 	unsigned short	gso_segs;
582 	struct sk_buff	*frag_list;
583 	struct skb_shared_hwtstamps hwtstamps;
584 	unsigned int	gso_type;
585 	u32		tskey;
586 
587 	/*
588 	 * Warning : all fields before dataref are cleared in __alloc_skb()
589 	 */
590 	atomic_t	dataref;
591 	unsigned int	xdp_frags_size;
592 
593 	/* Intermediate layers must ensure that destructor_arg
594 	 * remains valid until skb destructor */
595 	void *		destructor_arg;
596 
597 	ANDROID_KABI_RESERVE(1);
598 	ANDROID_KABI_RESERVE(2);
599 	ANDROID_OEM_DATA_ARRAY(1, 3);
600 
601 	/* must be last field, see pskb_expand_head() */
602 	skb_frag_t	frags[MAX_SKB_FRAGS];
603 };
604 
605 /**
606  * DOC: dataref and headerless skbs
607  *
608  * Transport layers send out clones of payload skbs they hold for
609  * retransmissions. To allow lower layers of the stack to prepend their headers
610  * we split &skb_shared_info.dataref into two halves.
611  * The lower 16 bits count the overall number of references.
612  * The higher 16 bits indicate how many of the references are payload-only.
613  * skb_header_cloned() checks if skb is allowed to add / write the headers.
614  *
615  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
616  * (via __skb_header_release()). Any clone created from marked skb will get
617  * &sk_buff.hdr_len populated with the available headroom.
618  * If there's the only clone in existence it's able to modify the headroom
619  * at will. The sequence of calls inside the transport layer is::
620  *
621  *  <alloc skb>
622  *  skb_reserve()
623  *  __skb_header_release()
624  *  skb_clone()
625  *  // send the clone down the stack
626  *
627  * This is not a very generic construct and it depends on the transport layers
628  * doing the right thing. In practice there's usually only one payload-only skb.
629  * Having multiple payload-only skbs with different lengths of hdr_len is not
630  * possible. The payload-only skbs should never leave their owner.
631  */
632 #define SKB_DATAREF_SHIFT 16
633 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
634 
635 
636 enum {
637 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
638 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
639 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
640 };
641 
642 enum {
643 	SKB_GSO_TCPV4 = 1 << 0,
644 
645 	/* This indicates the skb is from an untrusted source. */
646 	SKB_GSO_DODGY = 1 << 1,
647 
648 	/* This indicates the tcp segment has CWR set. */
649 	SKB_GSO_TCP_ECN = 1 << 2,
650 
651 	SKB_GSO_TCP_FIXEDID = 1 << 3,
652 
653 	SKB_GSO_TCPV6 = 1 << 4,
654 
655 	SKB_GSO_FCOE = 1 << 5,
656 
657 	SKB_GSO_GRE = 1 << 6,
658 
659 	SKB_GSO_GRE_CSUM = 1 << 7,
660 
661 	SKB_GSO_IPXIP4 = 1 << 8,
662 
663 	SKB_GSO_IPXIP6 = 1 << 9,
664 
665 	SKB_GSO_UDP_TUNNEL = 1 << 10,
666 
667 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
668 
669 	SKB_GSO_PARTIAL = 1 << 12,
670 
671 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
672 
673 	SKB_GSO_SCTP = 1 << 14,
674 
675 	SKB_GSO_ESP = 1 << 15,
676 
677 	SKB_GSO_UDP = 1 << 16,
678 
679 	SKB_GSO_UDP_L4 = 1 << 17,
680 
681 	SKB_GSO_FRAGLIST = 1 << 18,
682 };
683 
684 #if BITS_PER_LONG > 32
685 #define NET_SKBUFF_DATA_USES_OFFSET 1
686 #endif
687 
688 #ifdef NET_SKBUFF_DATA_USES_OFFSET
689 typedef unsigned int sk_buff_data_t;
690 #else
691 typedef unsigned char *sk_buff_data_t;
692 #endif
693 
694 /**
695  * DOC: Basic sk_buff geometry
696  *
697  * struct sk_buff itself is a metadata structure and does not hold any packet
698  * data. All the data is held in associated buffers.
699  *
700  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
701  * into two parts:
702  *
703  *  - data buffer, containing headers and sometimes payload;
704  *    this is the part of the skb operated on by the common helpers
705  *    such as skb_put() or skb_pull();
706  *  - shared info (struct skb_shared_info) which holds an array of pointers
707  *    to read-only data in the (page, offset, length) format.
708  *
709  * Optionally &skb_shared_info.frag_list may point to another skb.
710  *
711  * Basic diagram may look like this::
712  *
713  *                                  ---------------
714  *                                 | sk_buff       |
715  *                                  ---------------
716  *     ,---------------------------  + head
717  *    /          ,-----------------  + data
718  *   /          /      ,-----------  + tail
719  *  |          |      |            , + end
720  *  |          |      |           |
721  *  v          v      v           v
722  *   -----------------------------------------------
723  *  | headroom | data |  tailroom | skb_shared_info |
724  *   -----------------------------------------------
725  *                                 + [page frag]
726  *                                 + [page frag]
727  *                                 + [page frag]
728  *                                 + [page frag]       ---------
729  *                                 + frag_list    --> | sk_buff |
730  *                                                     ---------
731  *
732  */
733 
734 /**
735  *	struct sk_buff - socket buffer
736  *	@next: Next buffer in list
737  *	@prev: Previous buffer in list
738  *	@tstamp: Time we arrived/left
739  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
740  *		for retransmit timer
741  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
742  *	@list: queue head
743  *	@ll_node: anchor in an llist (eg socket defer_list)
744  *	@sk: Socket we are owned by
745  *	@dev: Device we arrived on/are leaving by
746  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
747  *	@cb: Control buffer. Free for use by every layer. Put private vars here
748  *	@_skb_refdst: destination entry (with norefcount bit)
749  *	@sp: the security path, used for xfrm
750  *	@len: Length of actual data
751  *	@data_len: Data length
752  *	@mac_len: Length of link layer header
753  *	@hdr_len: writable header length of cloned skb
754  *	@csum: Checksum (must include start/offset pair)
755  *	@csum_start: Offset from skb->head where checksumming should start
756  *	@csum_offset: Offset from csum_start where checksum should be stored
757  *	@priority: Packet queueing priority
758  *	@ignore_df: allow local fragmentation
759  *	@cloned: Head may be cloned (check refcnt to be sure)
760  *	@ip_summed: Driver fed us an IP checksum
761  *	@nohdr: Payload reference only, must not modify header
762  *	@pkt_type: Packet class
763  *	@fclone: skbuff clone status
764  *	@ipvs_property: skbuff is owned by ipvs
765  *	@inner_protocol_type: whether the inner protocol is
766  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
767  *	@remcsum_offload: remote checksum offload is enabled
768  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
769  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
770  *	@tc_skip_classify: do not classify packet. set by IFB device
771  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
772  *	@redirected: packet was redirected by packet classifier
773  *	@from_ingress: packet was redirected from the ingress path
774  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
775  *	@peeked: this packet has been seen already, so stats have been
776  *		done for it, don't do them again
777  *	@nf_trace: netfilter packet trace flag
778  *	@protocol: Packet protocol from driver
779  *	@destructor: Destruct function
780  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
781  *	@_sk_redir: socket redirection information for skmsg
782  *	@_nfct: Associated connection, if any (with nfctinfo bits)
783  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
784  *	@skb_iif: ifindex of device we arrived on
785  *	@tc_index: Traffic control index
786  *	@hash: the packet hash
787  *	@queue_mapping: Queue mapping for multiqueue devices
788  *	@head_frag: skb was allocated from page fragments,
789  *		not allocated by kmalloc() or vmalloc().
790  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
791  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
792  *		page_pool support on driver)
793  *	@active_extensions: active extensions (skb_ext_id types)
794  *	@ndisc_nodetype: router type (from link layer)
795  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
796  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
797  *		ports.
798  *	@sw_hash: indicates hash was computed in software stack
799  *	@wifi_acked_valid: wifi_acked was set
800  *	@wifi_acked: whether frame was acked on wifi or not
801  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
802  *	@encapsulation: indicates the inner headers in the skbuff are valid
803  *	@encap_hdr_csum: software checksum is needed
804  *	@csum_valid: checksum is already valid
805  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
806  *	@csum_complete_sw: checksum was completed by software
807  *	@csum_level: indicates the number of consecutive checksums found in
808  *		the packet minus one that have been verified as
809  *		CHECKSUM_UNNECESSARY (max 3)
810  *	@dst_pending_confirm: need to confirm neighbour
811  *	@decrypted: Decrypted SKB
812  *	@slow_gro: state present at GRO time, slower prepare step required
813  *	@mono_delivery_time: When set, skb->tstamp has the
814  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
815  *		skb->tstamp has the (rcv) timestamp at ingress and
816  *		delivery_time at egress.
817  *	@napi_id: id of the NAPI struct this skb came from
818  *	@sender_cpu: (aka @napi_id) source CPU in XPS
819  *	@alloc_cpu: CPU which did the skb allocation.
820  *	@secmark: security marking
821  *	@mark: Generic packet mark
822  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
823  *		at the tail of an sk_buff
824  *	@vlan_all: vlan fields (proto & tci)
825  *	@vlan_proto: vlan encapsulation protocol
826  *	@vlan_tci: vlan tag control information
827  *	@inner_protocol: Protocol (encapsulation)
828  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
829  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
830  *	@inner_transport_header: Inner transport layer header (encapsulation)
831  *	@inner_network_header: Network layer header (encapsulation)
832  *	@inner_mac_header: Link layer header (encapsulation)
833  *	@transport_header: Transport layer header
834  *	@network_header: Network layer header
835  *	@mac_header: Link layer header
836  *	@kcov_handle: KCOV remote handle for remote coverage collection
837  *	@tail: Tail pointer
838  *	@end: End pointer
839  *	@head: Head of buffer
840  *	@data: Data head pointer
841  *	@truesize: Buffer size
842  *	@users: User count - see {datagram,tcp}.c
843  *	@extensions: allocated extensions, valid if active_extensions is nonzero
844  */
845 
846 struct sk_buff {
847 	union {
848 		struct {
849 			/* These two members must be first to match sk_buff_head. */
850 			struct sk_buff		*next;
851 			struct sk_buff		*prev;
852 
853 			union {
854 				struct net_device	*dev;
855 				/* Some protocols might use this space to store information,
856 				 * while device pointer would be NULL.
857 				 * UDP receive path is one user.
858 				 */
859 				unsigned long		dev_scratch;
860 			};
861 		};
862 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
863 		struct list_head	list;
864 		struct llist_node	ll_node;
865 	};
866 
867 	struct sock		*sk;
868 
869 	union {
870 		ktime_t		tstamp;
871 		u64		skb_mstamp_ns; /* earliest departure time */
872 	};
873 	/*
874 	 * This is the control buffer. It is free to use for every
875 	 * layer. Please put your private variables there. If you
876 	 * want to keep them across layers you have to do a skb_clone()
877 	 * first. This is owned by whoever has the skb queued ATM.
878 	 */
879 	char			cb[48] __aligned(8);
880 
881 	union {
882 		struct {
883 			unsigned long	_skb_refdst;
884 			void		(*destructor)(struct sk_buff *skb);
885 		};
886 		struct list_head	tcp_tsorted_anchor;
887 #ifdef CONFIG_NET_SOCK_MSG
888 		unsigned long		_sk_redir;
889 #endif
890 	};
891 
892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
893 	unsigned long		 _nfct;
894 #endif
895 	unsigned int		len,
896 				data_len;
897 	__u16			mac_len,
898 				hdr_len;
899 
900 	/* Following fields are _not_ copied in __copy_skb_header()
901 	 * Note that queue_mapping is here mostly to fill a hole.
902 	 */
903 	__u16			queue_mapping;
904 
905 /* if you move cloned around you also must adapt those constants */
906 #ifdef __BIG_ENDIAN_BITFIELD
907 #define CLONED_MASK	(1 << 7)
908 #else
909 #define CLONED_MASK	1
910 #endif
911 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
912 
913 	/* private: */
914 	__u8			__cloned_offset[0];
915 	/* public: */
916 	__u8			cloned:1,
917 				nohdr:1,
918 				fclone:2,
919 				peeked:1,
920 				head_frag:1,
921 				pfmemalloc:1,
922 				pp_recycle:1; /* page_pool recycle indicator */
923 #ifdef CONFIG_SKB_EXTENSIONS
924 	__u8			active_extensions;
925 #endif
926 
927 	/* Fields enclosed in headers group are copied
928 	 * using a single memcpy() in __copy_skb_header()
929 	 */
930 	struct_group(headers,
931 
932 	/* private: */
933 	__u8			__pkt_type_offset[0];
934 	/* public: */
935 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
936 	__u8			ignore_df:1;
937 	__u8			dst_pending_confirm:1;
938 	__u8			ip_summed:2;
939 	__u8			ooo_okay:1;
940 
941 	/* private: */
942 	__u8			__mono_tc_offset[0];
943 	/* public: */
944 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
945 #ifdef CONFIG_NET_XGRESS
946 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
947 	__u8			tc_skip_classify:1;
948 #endif
949 	__u8			remcsum_offload:1;
950 	__u8			csum_complete_sw:1;
951 	__u8			csum_level:2;
952 	__u8			inner_protocol_type:1;
953 
954 	__u8			l4_hash:1;
955 	__u8			sw_hash:1;
956 #ifdef CONFIG_WIRELESS
957 	__u8			wifi_acked_valid:1;
958 	__u8			wifi_acked:1;
959 #endif
960 	__u8			no_fcs:1;
961 	/* Indicates the inner headers are valid in the skbuff. */
962 	__u8			encapsulation:1;
963 	__u8			encap_hdr_csum:1;
964 	__u8			csum_valid:1;
965 #ifdef CONFIG_IPV6_NDISC_NODETYPE
966 	__u8			ndisc_nodetype:2;
967 #endif
968 
969 #if IS_ENABLED(CONFIG_IP_VS)
970 	__u8			ipvs_property:1;
971 #endif
972 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
973 	__u8			nf_trace:1;
974 #endif
975 #ifdef CONFIG_NET_SWITCHDEV
976 	__u8			offload_fwd_mark:1;
977 	__u8			offload_l3_fwd_mark:1;
978 #endif
979 	__u8			redirected:1;
980 #ifdef CONFIG_NET_REDIRECT
981 	__u8			from_ingress:1;
982 #endif
983 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
984 	__u8			nf_skip_egress:1;
985 #endif
986 #ifdef CONFIG_TLS_DEVICE
987 	__u8			decrypted:1;
988 #endif
989 	__u8			slow_gro:1;
990 #if IS_ENABLED(CONFIG_IP_SCTP)
991 	__u8			csum_not_inet:1;
992 #endif
993 
994 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
995 	__u16			tc_index;	/* traffic control index */
996 #endif
997 
998 	u16			alloc_cpu;
999 
1000 	union {
1001 		__wsum		csum;
1002 		struct {
1003 			__u16	csum_start;
1004 			__u16	csum_offset;
1005 		};
1006 	};
1007 	__u32			priority;
1008 	int			skb_iif;
1009 	__u32			hash;
1010 	union {
1011 		u32		vlan_all;
1012 		struct {
1013 			__be16	vlan_proto;
1014 			__u16	vlan_tci;
1015 		};
1016 	};
1017 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1018 	union {
1019 		unsigned int	napi_id;
1020 		unsigned int	sender_cpu;
1021 	};
1022 #endif
1023 #ifdef CONFIG_NETWORK_SECMARK
1024 	__u32		secmark;
1025 #endif
1026 
1027 	union {
1028 		__u32		mark;
1029 		__u32		reserved_tailroom;
1030 	};
1031 
1032 	union {
1033 		__be16		inner_protocol;
1034 		__u8		inner_ipproto;
1035 	};
1036 
1037 	__u16			inner_transport_header;
1038 	__u16			inner_network_header;
1039 	__u16			inner_mac_header;
1040 
1041 	__be16			protocol;
1042 	__u16			transport_header;
1043 	__u16			network_header;
1044 	__u16			mac_header;
1045 
1046 #ifdef CONFIG_KCOV
1047 	u64			kcov_handle;
1048 #endif
1049 
1050 	ANDROID_KABI_RESERVE(1);
1051 	ANDROID_KABI_RESERVE(2);
1052 
1053 	); /* end headers group */
1054 
1055 	/* These elements must be at the end, see alloc_skb() for details.  */
1056 	sk_buff_data_t		tail;
1057 	sk_buff_data_t		end;
1058 	unsigned char		*head,
1059 				*data;
1060 	unsigned int		truesize;
1061 	refcount_t		users;
1062 
1063 #ifdef CONFIG_SKB_EXTENSIONS
1064 	/* only useable after checking ->active_extensions != 0 */
1065 	struct skb_ext		*extensions;
1066 #endif
1067 };
1068 
1069 /* if you move pkt_type around you also must adapt those constants */
1070 #ifdef __BIG_ENDIAN_BITFIELD
1071 #define PKT_TYPE_MAX	(7 << 5)
1072 #else
1073 #define PKT_TYPE_MAX	7
1074 #endif
1075 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1076 
1077 /* if you move tc_at_ingress or mono_delivery_time
1078  * around, you also must adapt these constants.
1079  */
1080 #ifdef __BIG_ENDIAN_BITFIELD
1081 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1082 #define TC_AT_INGRESS_MASK		(1 << 6)
1083 #else
1084 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1085 #define TC_AT_INGRESS_MASK		(1 << 1)
1086 #endif
1087 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1088 
1089 #ifdef __KERNEL__
1090 /*
1091  *	Handling routines are only of interest to the kernel
1092  */
1093 
1094 #define SKB_ALLOC_FCLONE	0x01
1095 #define SKB_ALLOC_RX		0x02
1096 #define SKB_ALLOC_NAPI		0x04
1097 
1098 /**
1099  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1100  * @skb: buffer
1101  */
skb_pfmemalloc(const struct sk_buff * skb)1102 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1103 {
1104 	return unlikely(skb->pfmemalloc);
1105 }
1106 
1107 /*
1108  * skb might have a dst pointer attached, refcounted or not.
1109  * _skb_refdst low order bit is set if refcount was _not_ taken
1110  */
1111 #define SKB_DST_NOREF	1UL
1112 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1113 
1114 /**
1115  * skb_dst - returns skb dst_entry
1116  * @skb: buffer
1117  *
1118  * Returns skb dst_entry, regardless of reference taken or not.
1119  */
skb_dst(const struct sk_buff * skb)1120 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1121 {
1122 	/* If refdst was not refcounted, check we still are in a
1123 	 * rcu_read_lock section
1124 	 */
1125 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1126 		!rcu_read_lock_held() &&
1127 		!rcu_read_lock_bh_held());
1128 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1129 }
1130 
1131 /**
1132  * skb_dst_set - sets skb dst
1133  * @skb: buffer
1134  * @dst: dst entry
1135  *
1136  * Sets skb dst, assuming a reference was taken on dst and should
1137  * be released by skb_dst_drop()
1138  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1139 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1140 {
1141 	skb->slow_gro |= !!dst;
1142 	skb->_skb_refdst = (unsigned long)dst;
1143 }
1144 
1145 /**
1146  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1147  * @skb: buffer
1148  * @dst: dst entry
1149  *
1150  * Sets skb dst, assuming a reference was not taken on dst.
1151  * If dst entry is cached, we do not take reference and dst_release
1152  * will be avoided by refdst_drop. If dst entry is not cached, we take
1153  * reference, so that last dst_release can destroy the dst immediately.
1154  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1155 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1156 {
1157 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1158 	skb->slow_gro |= !!dst;
1159 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1160 }
1161 
1162 /**
1163  * skb_dst_is_noref - Test if skb dst isn't refcounted
1164  * @skb: buffer
1165  */
skb_dst_is_noref(const struct sk_buff * skb)1166 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1167 {
1168 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1169 }
1170 
1171 /**
1172  * skb_rtable - Returns the skb &rtable
1173  * @skb: buffer
1174  */
skb_rtable(const struct sk_buff * skb)1175 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1176 {
1177 	return (struct rtable *)skb_dst(skb);
1178 }
1179 
1180 /* For mangling skb->pkt_type from user space side from applications
1181  * such as nft, tc, etc, we only allow a conservative subset of
1182  * possible pkt_types to be set.
1183 */
skb_pkt_type_ok(u32 ptype)1184 static inline bool skb_pkt_type_ok(u32 ptype)
1185 {
1186 	return ptype <= PACKET_OTHERHOST;
1187 }
1188 
1189 /**
1190  * skb_napi_id - Returns the skb's NAPI id
1191  * @skb: buffer
1192  */
skb_napi_id(const struct sk_buff * skb)1193 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1194 {
1195 #ifdef CONFIG_NET_RX_BUSY_POLL
1196 	return skb->napi_id;
1197 #else
1198 	return 0;
1199 #endif
1200 }
1201 
skb_wifi_acked_valid(const struct sk_buff * skb)1202 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1203 {
1204 #ifdef CONFIG_WIRELESS
1205 	return skb->wifi_acked_valid;
1206 #else
1207 	return 0;
1208 #endif
1209 }
1210 
1211 /**
1212  * skb_unref - decrement the skb's reference count
1213  * @skb: buffer
1214  *
1215  * Returns true if we can free the skb.
1216  */
skb_unref(struct sk_buff * skb)1217 static inline bool skb_unref(struct sk_buff *skb)
1218 {
1219 	if (unlikely(!skb))
1220 		return false;
1221 	if (likely(refcount_read(&skb->users) == 1))
1222 		smp_rmb();
1223 	else if (likely(!refcount_dec_and_test(&skb->users)))
1224 		return false;
1225 
1226 	return true;
1227 }
1228 
1229 void __fix_address
1230 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1231 
1232 /**
1233  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1234  *	@skb: buffer to free
1235  */
kfree_skb(struct sk_buff * skb)1236 static inline void kfree_skb(struct sk_buff *skb)
1237 {
1238 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1239 }
1240 
1241 void skb_release_head_state(struct sk_buff *skb);
1242 void kfree_skb_list_reason(struct sk_buff *segs,
1243 			   enum skb_drop_reason reason);
1244 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1245 void skb_tx_error(struct sk_buff *skb);
1246 
kfree_skb_list(struct sk_buff * segs)1247 static inline void kfree_skb_list(struct sk_buff *segs)
1248 {
1249 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1250 }
1251 
1252 #ifdef CONFIG_TRACEPOINTS
1253 void consume_skb(struct sk_buff *skb);
1254 #else
consume_skb(struct sk_buff * skb)1255 static inline void consume_skb(struct sk_buff *skb)
1256 {
1257 	return kfree_skb(skb);
1258 }
1259 #endif
1260 
1261 void __consume_stateless_skb(struct sk_buff *skb);
1262 void  __kfree_skb(struct sk_buff *skb);
1263 extern struct kmem_cache *skbuff_cache;
1264 
1265 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1266 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1267 		      bool *fragstolen, int *delta_truesize);
1268 
1269 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1270 			    int node);
1271 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1272 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1273 struct sk_buff *build_skb_around(struct sk_buff *skb,
1274 				 void *data, unsigned int frag_size);
1275 void skb_attempt_defer_free(struct sk_buff *skb);
1276 
1277 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1278 struct sk_buff *slab_build_skb(void *data);
1279 
1280 /**
1281  * alloc_skb - allocate a network buffer
1282  * @size: size to allocate
1283  * @priority: allocation mask
1284  *
1285  * This function is a convenient wrapper around __alloc_skb().
1286  */
alloc_skb(unsigned int size,gfp_t priority)1287 static inline struct sk_buff *alloc_skb(unsigned int size,
1288 					gfp_t priority)
1289 {
1290 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1291 }
1292 
1293 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1294 				     unsigned long data_len,
1295 				     int max_page_order,
1296 				     int *errcode,
1297 				     gfp_t gfp_mask);
1298 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1299 
1300 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1301 struct sk_buff_fclones {
1302 	struct sk_buff	skb1;
1303 
1304 	struct sk_buff	skb2;
1305 
1306 	refcount_t	fclone_ref;
1307 };
1308 
1309 /**
1310  *	skb_fclone_busy - check if fclone is busy
1311  *	@sk: socket
1312  *	@skb: buffer
1313  *
1314  * Returns true if skb is a fast clone, and its clone is not freed.
1315  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1316  * so we also check that didn't happen.
1317  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1318 static inline bool skb_fclone_busy(const struct sock *sk,
1319 				   const struct sk_buff *skb)
1320 {
1321 	const struct sk_buff_fclones *fclones;
1322 
1323 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1324 
1325 	return skb->fclone == SKB_FCLONE_ORIG &&
1326 	       refcount_read(&fclones->fclone_ref) > 1 &&
1327 	       READ_ONCE(fclones->skb2.sk) == sk;
1328 }
1329 
1330 /**
1331  * alloc_skb_fclone - allocate a network buffer from fclone cache
1332  * @size: size to allocate
1333  * @priority: allocation mask
1334  *
1335  * This function is a convenient wrapper around __alloc_skb().
1336  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1337 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1338 					       gfp_t priority)
1339 {
1340 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1341 }
1342 
1343 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1344 void skb_headers_offset_update(struct sk_buff *skb, int off);
1345 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1346 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1347 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1348 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1349 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1350 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1351 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1352 					  gfp_t gfp_mask)
1353 {
1354 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1355 }
1356 
1357 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1358 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1359 				     unsigned int headroom);
1360 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1361 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1362 				int newtailroom, gfp_t priority);
1363 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1364 				     int offset, int len);
1365 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1366 			      int offset, int len);
1367 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1368 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1369 
1370 /**
1371  *	skb_pad			-	zero pad the tail of an skb
1372  *	@skb: buffer to pad
1373  *	@pad: space to pad
1374  *
1375  *	Ensure that a buffer is followed by a padding area that is zero
1376  *	filled. Used by network drivers which may DMA or transfer data
1377  *	beyond the buffer end onto the wire.
1378  *
1379  *	May return error in out of memory cases. The skb is freed on error.
1380  */
skb_pad(struct sk_buff * skb,int pad)1381 static inline int skb_pad(struct sk_buff *skb, int pad)
1382 {
1383 	return __skb_pad(skb, pad, true);
1384 }
1385 #define dev_kfree_skb(a)	consume_skb(a)
1386 
1387 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1388 			 int offset, size_t size, size_t max_frags);
1389 
1390 struct skb_seq_state {
1391 	__u32		lower_offset;
1392 	__u32		upper_offset;
1393 	__u32		frag_idx;
1394 	__u32		stepped_offset;
1395 	struct sk_buff	*root_skb;
1396 	struct sk_buff	*cur_skb;
1397 	__u8		*frag_data;
1398 	__u32		frag_off;
1399 };
1400 
1401 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1402 			  unsigned int to, struct skb_seq_state *st);
1403 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1404 			  struct skb_seq_state *st);
1405 void skb_abort_seq_read(struct skb_seq_state *st);
1406 
1407 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1408 			   unsigned int to, struct ts_config *config);
1409 
1410 /*
1411  * Packet hash types specify the type of hash in skb_set_hash.
1412  *
1413  * Hash types refer to the protocol layer addresses which are used to
1414  * construct a packet's hash. The hashes are used to differentiate or identify
1415  * flows of the protocol layer for the hash type. Hash types are either
1416  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1417  *
1418  * Properties of hashes:
1419  *
1420  * 1) Two packets in different flows have different hash values
1421  * 2) Two packets in the same flow should have the same hash value
1422  *
1423  * A hash at a higher layer is considered to be more specific. A driver should
1424  * set the most specific hash possible.
1425  *
1426  * A driver cannot indicate a more specific hash than the layer at which a hash
1427  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1428  *
1429  * A driver may indicate a hash level which is less specific than the
1430  * actual layer the hash was computed on. For instance, a hash computed
1431  * at L4 may be considered an L3 hash. This should only be done if the
1432  * driver can't unambiguously determine that the HW computed the hash at
1433  * the higher layer. Note that the "should" in the second property above
1434  * permits this.
1435  */
1436 enum pkt_hash_types {
1437 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1438 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1439 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1440 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1441 };
1442 
skb_clear_hash(struct sk_buff * skb)1443 static inline void skb_clear_hash(struct sk_buff *skb)
1444 {
1445 	skb->hash = 0;
1446 	skb->sw_hash = 0;
1447 	skb->l4_hash = 0;
1448 }
1449 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1450 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1451 {
1452 	if (!skb->l4_hash)
1453 		skb_clear_hash(skb);
1454 }
1455 
1456 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1457 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1458 {
1459 	skb->l4_hash = is_l4;
1460 	skb->sw_hash = is_sw;
1461 	skb->hash = hash;
1462 }
1463 
1464 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1465 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1466 {
1467 	/* Used by drivers to set hash from HW */
1468 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1469 }
1470 
1471 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1472 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1473 {
1474 	__skb_set_hash(skb, hash, true, is_l4);
1475 }
1476 
1477 void __skb_get_hash(struct sk_buff *skb);
1478 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1479 u32 skb_get_poff(const struct sk_buff *skb);
1480 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1481 		   const struct flow_keys_basic *keys, int hlen);
1482 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1483 			    const void *data, int hlen_proto);
1484 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1485 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1486 					int thoff, u8 ip_proto)
1487 {
1488 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1489 }
1490 
1491 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1492 			     const struct flow_dissector_key *key,
1493 			     unsigned int key_count);
1494 
1495 struct bpf_flow_dissector;
1496 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1497 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1498 
1499 bool __skb_flow_dissect(const struct net *net,
1500 			const struct sk_buff *skb,
1501 			struct flow_dissector *flow_dissector,
1502 			void *target_container, const void *data,
1503 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1504 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1505 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1506 				    struct flow_dissector *flow_dissector,
1507 				    void *target_container, unsigned int flags)
1508 {
1509 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1510 				  target_container, NULL, 0, 0, 0, flags);
1511 }
1512 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1513 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1514 					      struct flow_keys *flow,
1515 					      unsigned int flags)
1516 {
1517 	memset(flow, 0, sizeof(*flow));
1518 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1519 				  flow, NULL, 0, 0, 0, flags);
1520 }
1521 
1522 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1523 skb_flow_dissect_flow_keys_basic(const struct net *net,
1524 				 const struct sk_buff *skb,
1525 				 struct flow_keys_basic *flow,
1526 				 const void *data, __be16 proto,
1527 				 int nhoff, int hlen, unsigned int flags)
1528 {
1529 	memset(flow, 0, sizeof(*flow));
1530 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1531 				  data, proto, nhoff, hlen, flags);
1532 }
1533 
1534 void skb_flow_dissect_meta(const struct sk_buff *skb,
1535 			   struct flow_dissector *flow_dissector,
1536 			   void *target_container);
1537 
1538 /* Gets a skb connection tracking info, ctinfo map should be a
1539  * map of mapsize to translate enum ip_conntrack_info states
1540  * to user states.
1541  */
1542 void
1543 skb_flow_dissect_ct(const struct sk_buff *skb,
1544 		    struct flow_dissector *flow_dissector,
1545 		    void *target_container,
1546 		    u16 *ctinfo_map, size_t mapsize,
1547 		    bool post_ct, u16 zone);
1548 void
1549 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1550 			     struct flow_dissector *flow_dissector,
1551 			     void *target_container);
1552 
1553 void skb_flow_dissect_hash(const struct sk_buff *skb,
1554 			   struct flow_dissector *flow_dissector,
1555 			   void *target_container);
1556 
skb_get_hash(struct sk_buff * skb)1557 static inline __u32 skb_get_hash(struct sk_buff *skb)
1558 {
1559 	if (!skb->l4_hash && !skb->sw_hash)
1560 		__skb_get_hash(skb);
1561 
1562 	return skb->hash;
1563 }
1564 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1565 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1566 {
1567 	if (!skb->l4_hash && !skb->sw_hash) {
1568 		struct flow_keys keys;
1569 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1570 
1571 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1572 	}
1573 
1574 	return skb->hash;
1575 }
1576 
1577 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1578 			   const siphash_key_t *perturb);
1579 
skb_get_hash_raw(const struct sk_buff * skb)1580 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1581 {
1582 	return skb->hash;
1583 }
1584 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1585 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1586 {
1587 	to->hash = from->hash;
1588 	to->sw_hash = from->sw_hash;
1589 	to->l4_hash = from->l4_hash;
1590 };
1591 
skb_cmp_decrypted(const struct sk_buff * skb1,const struct sk_buff * skb2)1592 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1593 				    const struct sk_buff *skb2)
1594 {
1595 #ifdef CONFIG_TLS_DEVICE
1596 	return skb2->decrypted - skb1->decrypted;
1597 #else
1598 	return 0;
1599 #endif
1600 }
1601 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1602 static inline void skb_copy_decrypted(struct sk_buff *to,
1603 				      const struct sk_buff *from)
1604 {
1605 #ifdef CONFIG_TLS_DEVICE
1606 	to->decrypted = from->decrypted;
1607 #endif
1608 }
1609 
1610 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1611 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1612 {
1613 	return skb->head + skb->end;
1614 }
1615 
skb_end_offset(const struct sk_buff * skb)1616 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1617 {
1618 	return skb->end;
1619 }
1620 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1621 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1622 {
1623 	skb->end = offset;
1624 }
1625 #else
skb_end_pointer(const struct sk_buff * skb)1626 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1627 {
1628 	return skb->end;
1629 }
1630 
skb_end_offset(const struct sk_buff * skb)1631 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1632 {
1633 	return skb->end - skb->head;
1634 }
1635 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1636 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1637 {
1638 	skb->end = skb->head + offset;
1639 }
1640 #endif
1641 
1642 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1643 				       struct ubuf_info *uarg);
1644 
1645 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1646 
1647 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1648 			   bool success);
1649 
1650 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1651 			    struct sk_buff *skb, struct iov_iter *from,
1652 			    size_t length);
1653 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1654 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1655 					  struct msghdr *msg, int len)
1656 {
1657 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1658 }
1659 
1660 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1661 			     struct msghdr *msg, int len,
1662 			     struct ubuf_info *uarg);
1663 
1664 /* Internal */
1665 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1666 
skb_hwtstamps(struct sk_buff * skb)1667 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1668 {
1669 	return &skb_shinfo(skb)->hwtstamps;
1670 }
1671 
skb_zcopy(struct sk_buff * skb)1672 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1673 {
1674 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1675 
1676 	return is_zcopy ? skb_uarg(skb) : NULL;
1677 }
1678 
skb_zcopy_pure(const struct sk_buff * skb)1679 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1680 {
1681 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1682 }
1683 
skb_zcopy_managed(const struct sk_buff * skb)1684 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1685 {
1686 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1687 }
1688 
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1689 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1690 				       const struct sk_buff *skb2)
1691 {
1692 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1693 }
1694 
net_zcopy_get(struct ubuf_info * uarg)1695 static inline void net_zcopy_get(struct ubuf_info *uarg)
1696 {
1697 	refcount_inc(&uarg->refcnt);
1698 }
1699 
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1700 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1701 {
1702 	skb_shinfo(skb)->destructor_arg = uarg;
1703 	skb_shinfo(skb)->flags |= uarg->flags;
1704 }
1705 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1706 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1707 				 bool *have_ref)
1708 {
1709 	if (skb && uarg && !skb_zcopy(skb)) {
1710 		if (unlikely(have_ref && *have_ref))
1711 			*have_ref = false;
1712 		else
1713 			net_zcopy_get(uarg);
1714 		skb_zcopy_init(skb, uarg);
1715 	}
1716 }
1717 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1718 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1719 {
1720 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1721 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1722 }
1723 
skb_zcopy_is_nouarg(struct sk_buff * skb)1724 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1725 {
1726 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1727 }
1728 
skb_zcopy_get_nouarg(struct sk_buff * skb)1729 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1730 {
1731 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1732 }
1733 
net_zcopy_put(struct ubuf_info * uarg)1734 static inline void net_zcopy_put(struct ubuf_info *uarg)
1735 {
1736 	if (uarg)
1737 		uarg->callback(NULL, uarg, true);
1738 }
1739 
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1740 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1741 {
1742 	if (uarg) {
1743 		if (uarg->callback == msg_zerocopy_callback)
1744 			msg_zerocopy_put_abort(uarg, have_uref);
1745 		else if (have_uref)
1746 			net_zcopy_put(uarg);
1747 	}
1748 }
1749 
1750 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1751 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1752 {
1753 	struct ubuf_info *uarg = skb_zcopy(skb);
1754 
1755 	if (uarg) {
1756 		if (!skb_zcopy_is_nouarg(skb))
1757 			uarg->callback(skb, uarg, zerocopy_success);
1758 
1759 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1760 	}
1761 }
1762 
1763 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1764 
skb_zcopy_downgrade_managed(struct sk_buff * skb)1765 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1766 {
1767 	if (unlikely(skb_zcopy_managed(skb)))
1768 		__skb_zcopy_downgrade_managed(skb);
1769 }
1770 
skb_mark_not_on_list(struct sk_buff * skb)1771 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1772 {
1773 	skb->next = NULL;
1774 }
1775 
skb_poison_list(struct sk_buff * skb)1776 static inline void skb_poison_list(struct sk_buff *skb)
1777 {
1778 #ifdef CONFIG_DEBUG_NET
1779 	skb->next = SKB_LIST_POISON_NEXT;
1780 #endif
1781 }
1782 
1783 /* Iterate through singly-linked GSO fragments of an skb. */
1784 #define skb_list_walk_safe(first, skb, next_skb)                               \
1785 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1786 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1787 
skb_list_del_init(struct sk_buff * skb)1788 static inline void skb_list_del_init(struct sk_buff *skb)
1789 {
1790 	__list_del_entry(&skb->list);
1791 	skb_mark_not_on_list(skb);
1792 }
1793 
1794 /**
1795  *	skb_queue_empty - check if a queue is empty
1796  *	@list: queue head
1797  *
1798  *	Returns true if the queue is empty, false otherwise.
1799  */
skb_queue_empty(const struct sk_buff_head * list)1800 static inline int skb_queue_empty(const struct sk_buff_head *list)
1801 {
1802 	return list->next == (const struct sk_buff *) list;
1803 }
1804 
1805 /**
1806  *	skb_queue_empty_lockless - check if a queue is empty
1807  *	@list: queue head
1808  *
1809  *	Returns true if the queue is empty, false otherwise.
1810  *	This variant can be used in lockless contexts.
1811  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1812 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1813 {
1814 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1815 }
1816 
1817 
1818 /**
1819  *	skb_queue_is_last - check if skb is the last entry in the queue
1820  *	@list: queue head
1821  *	@skb: buffer
1822  *
1823  *	Returns true if @skb is the last buffer on the list.
1824  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1825 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1826 				     const struct sk_buff *skb)
1827 {
1828 	return skb->next == (const struct sk_buff *) list;
1829 }
1830 
1831 /**
1832  *	skb_queue_is_first - check if skb is the first entry in the queue
1833  *	@list: queue head
1834  *	@skb: buffer
1835  *
1836  *	Returns true if @skb is the first buffer on the list.
1837  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1838 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1839 				      const struct sk_buff *skb)
1840 {
1841 	return skb->prev == (const struct sk_buff *) list;
1842 }
1843 
1844 /**
1845  *	skb_queue_next - return the next packet in the queue
1846  *	@list: queue head
1847  *	@skb: current buffer
1848  *
1849  *	Return the next packet in @list after @skb.  It is only valid to
1850  *	call this if skb_queue_is_last() evaluates to false.
1851  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1852 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1853 					     const struct sk_buff *skb)
1854 {
1855 	/* This BUG_ON may seem severe, but if we just return then we
1856 	 * are going to dereference garbage.
1857 	 */
1858 	BUG_ON(skb_queue_is_last(list, skb));
1859 	return skb->next;
1860 }
1861 
1862 /**
1863  *	skb_queue_prev - return the prev packet in the queue
1864  *	@list: queue head
1865  *	@skb: current buffer
1866  *
1867  *	Return the prev packet in @list before @skb.  It is only valid to
1868  *	call this if skb_queue_is_first() evaluates to false.
1869  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1870 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1871 					     const struct sk_buff *skb)
1872 {
1873 	/* This BUG_ON may seem severe, but if we just return then we
1874 	 * are going to dereference garbage.
1875 	 */
1876 	BUG_ON(skb_queue_is_first(list, skb));
1877 	return skb->prev;
1878 }
1879 
1880 /**
1881  *	skb_get - reference buffer
1882  *	@skb: buffer to reference
1883  *
1884  *	Makes another reference to a socket buffer and returns a pointer
1885  *	to the buffer.
1886  */
skb_get(struct sk_buff * skb)1887 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1888 {
1889 	refcount_inc(&skb->users);
1890 	return skb;
1891 }
1892 
1893 /*
1894  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1895  */
1896 
1897 /**
1898  *	skb_cloned - is the buffer a clone
1899  *	@skb: buffer to check
1900  *
1901  *	Returns true if the buffer was generated with skb_clone() and is
1902  *	one of multiple shared copies of the buffer. Cloned buffers are
1903  *	shared data so must not be written to under normal circumstances.
1904  */
skb_cloned(const struct sk_buff * skb)1905 static inline int skb_cloned(const struct sk_buff *skb)
1906 {
1907 	return skb->cloned &&
1908 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1909 }
1910 
skb_unclone(struct sk_buff * skb,gfp_t pri)1911 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1912 {
1913 	might_sleep_if(gfpflags_allow_blocking(pri));
1914 
1915 	if (skb_cloned(skb))
1916 		return pskb_expand_head(skb, 0, 0, pri);
1917 
1918 	return 0;
1919 }
1920 
1921 /* This variant of skb_unclone() makes sure skb->truesize
1922  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1923  *
1924  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1925  * when various debugging features are in place.
1926  */
1927 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1928 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1929 {
1930 	might_sleep_if(gfpflags_allow_blocking(pri));
1931 
1932 	if (skb_cloned(skb))
1933 		return __skb_unclone_keeptruesize(skb, pri);
1934 	return 0;
1935 }
1936 
1937 /**
1938  *	skb_header_cloned - is the header a clone
1939  *	@skb: buffer to check
1940  *
1941  *	Returns true if modifying the header part of the buffer requires
1942  *	the data to be copied.
1943  */
skb_header_cloned(const struct sk_buff * skb)1944 static inline int skb_header_cloned(const struct sk_buff *skb)
1945 {
1946 	int dataref;
1947 
1948 	if (!skb->cloned)
1949 		return 0;
1950 
1951 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1952 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1953 	return dataref != 1;
1954 }
1955 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1956 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1957 {
1958 	might_sleep_if(gfpflags_allow_blocking(pri));
1959 
1960 	if (skb_header_cloned(skb))
1961 		return pskb_expand_head(skb, 0, 0, pri);
1962 
1963 	return 0;
1964 }
1965 
1966 /**
1967  * __skb_header_release() - allow clones to use the headroom
1968  * @skb: buffer to operate on
1969  *
1970  * See "DOC: dataref and headerless skbs".
1971  */
__skb_header_release(struct sk_buff * skb)1972 static inline void __skb_header_release(struct sk_buff *skb)
1973 {
1974 	skb->nohdr = 1;
1975 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1976 }
1977 
1978 
1979 /**
1980  *	skb_shared - is the buffer shared
1981  *	@skb: buffer to check
1982  *
1983  *	Returns true if more than one person has a reference to this
1984  *	buffer.
1985  */
skb_shared(const struct sk_buff * skb)1986 static inline int skb_shared(const struct sk_buff *skb)
1987 {
1988 	return refcount_read(&skb->users) != 1;
1989 }
1990 
1991 /**
1992  *	skb_share_check - check if buffer is shared and if so clone it
1993  *	@skb: buffer to check
1994  *	@pri: priority for memory allocation
1995  *
1996  *	If the buffer is shared the buffer is cloned and the old copy
1997  *	drops a reference. A new clone with a single reference is returned.
1998  *	If the buffer is not shared the original buffer is returned. When
1999  *	being called from interrupt status or with spinlocks held pri must
2000  *	be GFP_ATOMIC.
2001  *
2002  *	NULL is returned on a memory allocation failure.
2003  */
skb_share_check(struct sk_buff * skb,gfp_t pri)2004 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2005 {
2006 	might_sleep_if(gfpflags_allow_blocking(pri));
2007 	if (skb_shared(skb)) {
2008 		struct sk_buff *nskb = skb_clone(skb, pri);
2009 
2010 		if (likely(nskb))
2011 			consume_skb(skb);
2012 		else
2013 			kfree_skb(skb);
2014 		skb = nskb;
2015 	}
2016 	return skb;
2017 }
2018 
2019 /*
2020  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2021  *	packets to handle cases where we have a local reader and forward
2022  *	and a couple of other messy ones. The normal one is tcpdumping
2023  *	a packet that's being forwarded.
2024  */
2025 
2026 /**
2027  *	skb_unshare - make a copy of a shared buffer
2028  *	@skb: buffer to check
2029  *	@pri: priority for memory allocation
2030  *
2031  *	If the socket buffer is a clone then this function creates a new
2032  *	copy of the data, drops a reference count on the old copy and returns
2033  *	the new copy with the reference count at 1. If the buffer is not a clone
2034  *	the original buffer is returned. When called with a spinlock held or
2035  *	from interrupt state @pri must be %GFP_ATOMIC
2036  *
2037  *	%NULL is returned on a memory allocation failure.
2038  */
skb_unshare(struct sk_buff * skb,gfp_t pri)2039 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2040 					  gfp_t pri)
2041 {
2042 	might_sleep_if(gfpflags_allow_blocking(pri));
2043 	if (skb_cloned(skb)) {
2044 		struct sk_buff *nskb = skb_copy(skb, pri);
2045 
2046 		/* Free our shared copy */
2047 		if (likely(nskb))
2048 			consume_skb(skb);
2049 		else
2050 			kfree_skb(skb);
2051 		skb = nskb;
2052 	}
2053 	return skb;
2054 }
2055 
2056 /**
2057  *	skb_peek - peek at the head of an &sk_buff_head
2058  *	@list_: list to peek at
2059  *
2060  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2061  *	be careful with this one. A peek leaves the buffer on the
2062  *	list and someone else may run off with it. You must hold
2063  *	the appropriate locks or have a private queue to do this.
2064  *
2065  *	Returns %NULL for an empty list or a pointer to the head element.
2066  *	The reference count is not incremented and the reference is therefore
2067  *	volatile. Use with caution.
2068  */
skb_peek(const struct sk_buff_head * list_)2069 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2070 {
2071 	struct sk_buff *skb = list_->next;
2072 
2073 	if (skb == (struct sk_buff *)list_)
2074 		skb = NULL;
2075 	return skb;
2076 }
2077 
2078 /**
2079  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2080  *	@list_: list to peek at
2081  *
2082  *	Like skb_peek(), but the caller knows that the list is not empty.
2083  */
__skb_peek(const struct sk_buff_head * list_)2084 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2085 {
2086 	return list_->next;
2087 }
2088 
2089 /**
2090  *	skb_peek_next - peek skb following the given one from a queue
2091  *	@skb: skb to start from
2092  *	@list_: list to peek at
2093  *
2094  *	Returns %NULL when the end of the list is met or a pointer to the
2095  *	next element. The reference count is not incremented and the
2096  *	reference is therefore volatile. Use with caution.
2097  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2098 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2099 		const struct sk_buff_head *list_)
2100 {
2101 	struct sk_buff *next = skb->next;
2102 
2103 	if (next == (struct sk_buff *)list_)
2104 		next = NULL;
2105 	return next;
2106 }
2107 
2108 /**
2109  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2110  *	@list_: list to peek at
2111  *
2112  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2113  *	be careful with this one. A peek leaves the buffer on the
2114  *	list and someone else may run off with it. You must hold
2115  *	the appropriate locks or have a private queue to do this.
2116  *
2117  *	Returns %NULL for an empty list or a pointer to the tail element.
2118  *	The reference count is not incremented and the reference is therefore
2119  *	volatile. Use with caution.
2120  */
skb_peek_tail(const struct sk_buff_head * list_)2121 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2122 {
2123 	struct sk_buff *skb = READ_ONCE(list_->prev);
2124 
2125 	if (skb == (struct sk_buff *)list_)
2126 		skb = NULL;
2127 	return skb;
2128 
2129 }
2130 
2131 /**
2132  *	skb_queue_len	- get queue length
2133  *	@list_: list to measure
2134  *
2135  *	Return the length of an &sk_buff queue.
2136  */
skb_queue_len(const struct sk_buff_head * list_)2137 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2138 {
2139 	return list_->qlen;
2140 }
2141 
2142 /**
2143  *	skb_queue_len_lockless	- get queue length
2144  *	@list_: list to measure
2145  *
2146  *	Return the length of an &sk_buff queue.
2147  *	This variant can be used in lockless contexts.
2148  */
skb_queue_len_lockless(const struct sk_buff_head * list_)2149 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2150 {
2151 	return READ_ONCE(list_->qlen);
2152 }
2153 
2154 /**
2155  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2156  *	@list: queue to initialize
2157  *
2158  *	This initializes only the list and queue length aspects of
2159  *	an sk_buff_head object.  This allows to initialize the list
2160  *	aspects of an sk_buff_head without reinitializing things like
2161  *	the spinlock.  It can also be used for on-stack sk_buff_head
2162  *	objects where the spinlock is known to not be used.
2163  */
__skb_queue_head_init(struct sk_buff_head * list)2164 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2165 {
2166 	list->prev = list->next = (struct sk_buff *)list;
2167 	list->qlen = 0;
2168 }
2169 
2170 /*
2171  * This function creates a split out lock class for each invocation;
2172  * this is needed for now since a whole lot of users of the skb-queue
2173  * infrastructure in drivers have different locking usage (in hardirq)
2174  * than the networking core (in softirq only). In the long run either the
2175  * network layer or drivers should need annotation to consolidate the
2176  * main types of usage into 3 classes.
2177  */
skb_queue_head_init(struct sk_buff_head * list)2178 static inline void skb_queue_head_init(struct sk_buff_head *list)
2179 {
2180 	spin_lock_init(&list->lock);
2181 	__skb_queue_head_init(list);
2182 }
2183 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2184 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2185 		struct lock_class_key *class)
2186 {
2187 	skb_queue_head_init(list);
2188 	lockdep_set_class(&list->lock, class);
2189 }
2190 
2191 /*
2192  *	Insert an sk_buff on a list.
2193  *
2194  *	The "__skb_xxxx()" functions are the non-atomic ones that
2195  *	can only be called with interrupts disabled.
2196  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2197 static inline void __skb_insert(struct sk_buff *newsk,
2198 				struct sk_buff *prev, struct sk_buff *next,
2199 				struct sk_buff_head *list)
2200 {
2201 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2202 	 * for the opposite READ_ONCE()
2203 	 */
2204 	WRITE_ONCE(newsk->next, next);
2205 	WRITE_ONCE(newsk->prev, prev);
2206 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2207 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2208 	WRITE_ONCE(list->qlen, list->qlen + 1);
2209 }
2210 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2211 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2212 				      struct sk_buff *prev,
2213 				      struct sk_buff *next)
2214 {
2215 	struct sk_buff *first = list->next;
2216 	struct sk_buff *last = list->prev;
2217 
2218 	WRITE_ONCE(first->prev, prev);
2219 	WRITE_ONCE(prev->next, first);
2220 
2221 	WRITE_ONCE(last->next, next);
2222 	WRITE_ONCE(next->prev, last);
2223 }
2224 
2225 /**
2226  *	skb_queue_splice - join two skb lists, this is designed for stacks
2227  *	@list: the new list to add
2228  *	@head: the place to add it in the first list
2229  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2230 static inline void skb_queue_splice(const struct sk_buff_head *list,
2231 				    struct sk_buff_head *head)
2232 {
2233 	if (!skb_queue_empty(list)) {
2234 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2235 		head->qlen += list->qlen;
2236 	}
2237 }
2238 
2239 /**
2240  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2241  *	@list: the new list to add
2242  *	@head: the place to add it in the first list
2243  *
2244  *	The list at @list is reinitialised
2245  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2246 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2247 					 struct sk_buff_head *head)
2248 {
2249 	if (!skb_queue_empty(list)) {
2250 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2251 		head->qlen += list->qlen;
2252 		__skb_queue_head_init(list);
2253 	}
2254 }
2255 
2256 /**
2257  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2258  *	@list: the new list to add
2259  *	@head: the place to add it in the first list
2260  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2261 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2262 					 struct sk_buff_head *head)
2263 {
2264 	if (!skb_queue_empty(list)) {
2265 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2266 		head->qlen += list->qlen;
2267 	}
2268 }
2269 
2270 /**
2271  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2272  *	@list: the new list to add
2273  *	@head: the place to add it in the first list
2274  *
2275  *	Each of the lists is a queue.
2276  *	The list at @list is reinitialised
2277  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2278 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2279 					      struct sk_buff_head *head)
2280 {
2281 	if (!skb_queue_empty(list)) {
2282 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2283 		head->qlen += list->qlen;
2284 		__skb_queue_head_init(list);
2285 	}
2286 }
2287 
2288 /**
2289  *	__skb_queue_after - queue a buffer at the list head
2290  *	@list: list to use
2291  *	@prev: place after this buffer
2292  *	@newsk: buffer to queue
2293  *
2294  *	Queue a buffer int the middle of a list. This function takes no locks
2295  *	and you must therefore hold required locks before calling it.
2296  *
2297  *	A buffer cannot be placed on two lists at the same time.
2298  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2299 static inline void __skb_queue_after(struct sk_buff_head *list,
2300 				     struct sk_buff *prev,
2301 				     struct sk_buff *newsk)
2302 {
2303 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2304 }
2305 
2306 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2307 		struct sk_buff_head *list);
2308 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2309 static inline void __skb_queue_before(struct sk_buff_head *list,
2310 				      struct sk_buff *next,
2311 				      struct sk_buff *newsk)
2312 {
2313 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2314 }
2315 
2316 /**
2317  *	__skb_queue_head - queue a buffer at the list head
2318  *	@list: list to use
2319  *	@newsk: buffer to queue
2320  *
2321  *	Queue a buffer at the start of a list. This function takes no locks
2322  *	and you must therefore hold required locks before calling it.
2323  *
2324  *	A buffer cannot be placed on two lists at the same time.
2325  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2326 static inline void __skb_queue_head(struct sk_buff_head *list,
2327 				    struct sk_buff *newsk)
2328 {
2329 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2330 }
2331 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2332 
2333 /**
2334  *	__skb_queue_tail - queue a buffer at the list tail
2335  *	@list: list to use
2336  *	@newsk: buffer to queue
2337  *
2338  *	Queue a buffer at the end of a list. This function takes no locks
2339  *	and you must therefore hold required locks before calling it.
2340  *
2341  *	A buffer cannot be placed on two lists at the same time.
2342  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2343 static inline void __skb_queue_tail(struct sk_buff_head *list,
2344 				   struct sk_buff *newsk)
2345 {
2346 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2347 }
2348 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2349 
2350 /*
2351  * remove sk_buff from list. _Must_ be called atomically, and with
2352  * the list known..
2353  */
2354 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2355 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2356 {
2357 	struct sk_buff *next, *prev;
2358 
2359 	WRITE_ONCE(list->qlen, list->qlen - 1);
2360 	next	   = skb->next;
2361 	prev	   = skb->prev;
2362 	skb->next  = skb->prev = NULL;
2363 	WRITE_ONCE(next->prev, prev);
2364 	WRITE_ONCE(prev->next, next);
2365 }
2366 
2367 /**
2368  *	__skb_dequeue - remove from the head of the queue
2369  *	@list: list to dequeue from
2370  *
2371  *	Remove the head of the list. This function does not take any locks
2372  *	so must be used with appropriate locks held only. The head item is
2373  *	returned or %NULL if the list is empty.
2374  */
__skb_dequeue(struct sk_buff_head * list)2375 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2376 {
2377 	struct sk_buff *skb = skb_peek(list);
2378 	if (skb)
2379 		__skb_unlink(skb, list);
2380 	return skb;
2381 }
2382 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2383 
2384 /**
2385  *	__skb_dequeue_tail - remove from the tail of the queue
2386  *	@list: list to dequeue from
2387  *
2388  *	Remove the tail of the list. This function does not take any locks
2389  *	so must be used with appropriate locks held only. The tail item is
2390  *	returned or %NULL if the list is empty.
2391  */
__skb_dequeue_tail(struct sk_buff_head * list)2392 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2393 {
2394 	struct sk_buff *skb = skb_peek_tail(list);
2395 	if (skb)
2396 		__skb_unlink(skb, list);
2397 	return skb;
2398 }
2399 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2400 
2401 
skb_is_nonlinear(const struct sk_buff * skb)2402 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2403 {
2404 	return skb->data_len;
2405 }
2406 
skb_headlen(const struct sk_buff * skb)2407 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2408 {
2409 	return skb->len - skb->data_len;
2410 }
2411 
__skb_pagelen(const struct sk_buff * skb)2412 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2413 {
2414 	unsigned int i, len = 0;
2415 
2416 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2417 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2418 	return len;
2419 }
2420 
skb_pagelen(const struct sk_buff * skb)2421 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2422 {
2423 	return skb_headlen(skb) + __skb_pagelen(skb);
2424 }
2425 
skb_frag_fill_page_desc(skb_frag_t * frag,struct page * page,int off,int size)2426 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2427 					   struct page *page,
2428 					   int off, int size)
2429 {
2430 	frag->bv_page = page;
2431 	frag->bv_offset = off;
2432 	skb_frag_size_set(frag, size);
2433 }
2434 
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2435 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2436 					      int i, struct page *page,
2437 					      int off, int size)
2438 {
2439 	skb_frag_t *frag = &shinfo->frags[i];
2440 
2441 	skb_frag_fill_page_desc(frag, page, off, size);
2442 }
2443 
2444 /**
2445  * skb_len_add - adds a number to len fields of skb
2446  * @skb: buffer to add len to
2447  * @delta: number of bytes to add
2448  */
skb_len_add(struct sk_buff * skb,int delta)2449 static inline void skb_len_add(struct sk_buff *skb, int delta)
2450 {
2451 	skb->len += delta;
2452 	skb->data_len += delta;
2453 	skb->truesize += delta;
2454 }
2455 
2456 /**
2457  * __skb_fill_page_desc - initialise a paged fragment in an skb
2458  * @skb: buffer containing fragment to be initialised
2459  * @i: paged fragment index to initialise
2460  * @page: the page to use for this fragment
2461  * @off: the offset to the data with @page
2462  * @size: the length of the data
2463  *
2464  * Initialises the @i'th fragment of @skb to point to &size bytes at
2465  * offset @off within @page.
2466  *
2467  * Does not take any additional reference on the fragment.
2468  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2469 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2470 					struct page *page, int off, int size)
2471 {
2472 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2473 
2474 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2475 	 * that not all callers have unique ownership of the page but rely
2476 	 * on page_is_pfmemalloc doing the right thing(tm).
2477 	 */
2478 	page = compound_head(page);
2479 	if (page_is_pfmemalloc(page))
2480 		skb->pfmemalloc	= true;
2481 }
2482 
2483 /**
2484  * skb_fill_page_desc - initialise a paged fragment in an skb
2485  * @skb: buffer containing fragment to be initialised
2486  * @i: paged fragment index to initialise
2487  * @page: the page to use for this fragment
2488  * @off: the offset to the data with @page
2489  * @size: the length of the data
2490  *
2491  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2492  * @skb to point to @size bytes at offset @off within @page. In
2493  * addition updates @skb such that @i is the last fragment.
2494  *
2495  * Does not take any additional reference on the fragment.
2496  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2497 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2498 				      struct page *page, int off, int size)
2499 {
2500 	__skb_fill_page_desc(skb, i, page, off, size);
2501 	skb_shinfo(skb)->nr_frags = i + 1;
2502 }
2503 
2504 /**
2505  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2506  * @skb: buffer containing fragment to be initialised
2507  * @i: paged fragment index to initialise
2508  * @page: the page to use for this fragment
2509  * @off: the offset to the data with @page
2510  * @size: the length of the data
2511  *
2512  * Variant of skb_fill_page_desc() which does not deal with
2513  * pfmemalloc, if page is not owned by us.
2514  */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2515 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2516 					    struct page *page, int off,
2517 					    int size)
2518 {
2519 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2520 
2521 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2522 	shinfo->nr_frags = i + 1;
2523 }
2524 
2525 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2526 		     int size, unsigned int truesize);
2527 
2528 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2529 			  unsigned int truesize);
2530 
2531 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2532 
2533 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2534 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2535 {
2536 	return skb->head + skb->tail;
2537 }
2538 
skb_reset_tail_pointer(struct sk_buff * skb)2539 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2540 {
2541 	skb->tail = skb->data - skb->head;
2542 }
2543 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2544 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2545 {
2546 	skb_reset_tail_pointer(skb);
2547 	skb->tail += offset;
2548 }
2549 
2550 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2551 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2552 {
2553 	return skb->tail;
2554 }
2555 
skb_reset_tail_pointer(struct sk_buff * skb)2556 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2557 {
2558 	skb->tail = skb->data;
2559 }
2560 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2561 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2562 {
2563 	skb->tail = skb->data + offset;
2564 }
2565 
2566 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2567 
skb_assert_len(struct sk_buff * skb)2568 static inline void skb_assert_len(struct sk_buff *skb)
2569 {
2570 #ifdef CONFIG_DEBUG_NET
2571 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2572 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2573 #endif /* CONFIG_DEBUG_NET */
2574 }
2575 
2576 /*
2577  *	Add data to an sk_buff
2578  */
2579 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2580 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2581 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2582 {
2583 	void *tmp = skb_tail_pointer(skb);
2584 	SKB_LINEAR_ASSERT(skb);
2585 	skb->tail += len;
2586 	skb->len  += len;
2587 	return tmp;
2588 }
2589 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2590 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2591 {
2592 	void *tmp = __skb_put(skb, len);
2593 
2594 	memset(tmp, 0, len);
2595 	return tmp;
2596 }
2597 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2598 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2599 				   unsigned int len)
2600 {
2601 	void *tmp = __skb_put(skb, len);
2602 
2603 	memcpy(tmp, data, len);
2604 	return tmp;
2605 }
2606 
__skb_put_u8(struct sk_buff * skb,u8 val)2607 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2608 {
2609 	*(u8 *)__skb_put(skb, 1) = val;
2610 }
2611 
skb_put_zero(struct sk_buff * skb,unsigned int len)2612 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2613 {
2614 	void *tmp = skb_put(skb, len);
2615 
2616 	memset(tmp, 0, len);
2617 
2618 	return tmp;
2619 }
2620 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2621 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2622 				 unsigned int len)
2623 {
2624 	void *tmp = skb_put(skb, len);
2625 
2626 	memcpy(tmp, data, len);
2627 
2628 	return tmp;
2629 }
2630 
skb_put_u8(struct sk_buff * skb,u8 val)2631 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2632 {
2633 	*(u8 *)skb_put(skb, 1) = val;
2634 }
2635 
2636 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2637 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2638 {
2639 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2640 
2641 	skb->data -= len;
2642 	skb->len  += len;
2643 	return skb->data;
2644 }
2645 
2646 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2647 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2648 {
2649 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2650 
2651 	skb->len -= len;
2652 	if (unlikely(skb->len < skb->data_len)) {
2653 #if defined(CONFIG_DEBUG_NET)
2654 		skb->len += len;
2655 		pr_err("__skb_pull(len=%u)\n", len);
2656 		skb_dump(KERN_ERR, skb, false);
2657 #endif
2658 		BUG();
2659 	}
2660 	return skb->data += len;
2661 }
2662 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2663 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2664 {
2665 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2666 }
2667 
2668 void *skb_pull_data(struct sk_buff *skb, size_t len);
2669 
2670 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2671 
2672 static inline enum skb_drop_reason
pskb_may_pull_reason(struct sk_buff * skb,unsigned int len)2673 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2674 {
2675 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2676 
2677 	if (likely(len <= skb_headlen(skb)))
2678 		return SKB_NOT_DROPPED_YET;
2679 
2680 	if (unlikely(len > skb->len))
2681 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2682 
2683 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2684 		return SKB_DROP_REASON_NOMEM;
2685 
2686 	return SKB_NOT_DROPPED_YET;
2687 }
2688 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2689 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2690 {
2691 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2692 }
2693 
pskb_pull(struct sk_buff * skb,unsigned int len)2694 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2695 {
2696 	if (!pskb_may_pull(skb, len))
2697 		return NULL;
2698 
2699 	skb->len -= len;
2700 	return skb->data += len;
2701 }
2702 
2703 void skb_condense(struct sk_buff *skb);
2704 
2705 /**
2706  *	skb_headroom - bytes at buffer head
2707  *	@skb: buffer to check
2708  *
2709  *	Return the number of bytes of free space at the head of an &sk_buff.
2710  */
skb_headroom(const struct sk_buff * skb)2711 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2712 {
2713 	return skb->data - skb->head;
2714 }
2715 
2716 /**
2717  *	skb_tailroom - bytes at buffer end
2718  *	@skb: buffer to check
2719  *
2720  *	Return the number of bytes of free space at the tail of an sk_buff
2721  */
skb_tailroom(const struct sk_buff * skb)2722 static inline int skb_tailroom(const struct sk_buff *skb)
2723 {
2724 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2725 }
2726 
2727 /**
2728  *	skb_availroom - bytes at buffer end
2729  *	@skb: buffer to check
2730  *
2731  *	Return the number of bytes of free space at the tail of an sk_buff
2732  *	allocated by sk_stream_alloc()
2733  */
skb_availroom(const struct sk_buff * skb)2734 static inline int skb_availroom(const struct sk_buff *skb)
2735 {
2736 	if (skb_is_nonlinear(skb))
2737 		return 0;
2738 
2739 	return skb->end - skb->tail - skb->reserved_tailroom;
2740 }
2741 
2742 /**
2743  *	skb_reserve - adjust headroom
2744  *	@skb: buffer to alter
2745  *	@len: bytes to move
2746  *
2747  *	Increase the headroom of an empty &sk_buff by reducing the tail
2748  *	room. This is only allowed for an empty buffer.
2749  */
skb_reserve(struct sk_buff * skb,int len)2750 static inline void skb_reserve(struct sk_buff *skb, int len)
2751 {
2752 	skb->data += len;
2753 	skb->tail += len;
2754 }
2755 
2756 /**
2757  *	skb_tailroom_reserve - adjust reserved_tailroom
2758  *	@skb: buffer to alter
2759  *	@mtu: maximum amount of headlen permitted
2760  *	@needed_tailroom: minimum amount of reserved_tailroom
2761  *
2762  *	Set reserved_tailroom so that headlen can be as large as possible but
2763  *	not larger than mtu and tailroom cannot be smaller than
2764  *	needed_tailroom.
2765  *	The required headroom should already have been reserved before using
2766  *	this function.
2767  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2768 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2769 					unsigned int needed_tailroom)
2770 {
2771 	SKB_LINEAR_ASSERT(skb);
2772 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2773 		/* use at most mtu */
2774 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2775 	else
2776 		/* use up to all available space */
2777 		skb->reserved_tailroom = needed_tailroom;
2778 }
2779 
2780 #define ENCAP_TYPE_ETHER	0
2781 #define ENCAP_TYPE_IPPROTO	1
2782 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2783 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2784 					  __be16 protocol)
2785 {
2786 	skb->inner_protocol = protocol;
2787 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2788 }
2789 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2790 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2791 					 __u8 ipproto)
2792 {
2793 	skb->inner_ipproto = ipproto;
2794 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2795 }
2796 
skb_reset_inner_headers(struct sk_buff * skb)2797 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2798 {
2799 	skb->inner_mac_header = skb->mac_header;
2800 	skb->inner_network_header = skb->network_header;
2801 	skb->inner_transport_header = skb->transport_header;
2802 }
2803 
skb_reset_mac_len(struct sk_buff * skb)2804 static inline void skb_reset_mac_len(struct sk_buff *skb)
2805 {
2806 	skb->mac_len = skb->network_header - skb->mac_header;
2807 }
2808 
skb_inner_transport_header(const struct sk_buff * skb)2809 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2810 							*skb)
2811 {
2812 	return skb->head + skb->inner_transport_header;
2813 }
2814 
skb_inner_transport_offset(const struct sk_buff * skb)2815 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2816 {
2817 	return skb_inner_transport_header(skb) - skb->data;
2818 }
2819 
skb_reset_inner_transport_header(struct sk_buff * skb)2820 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2821 {
2822 	skb->inner_transport_header = skb->data - skb->head;
2823 }
2824 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2825 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2826 						   const int offset)
2827 {
2828 	skb_reset_inner_transport_header(skb);
2829 	skb->inner_transport_header += offset;
2830 }
2831 
skb_inner_network_header(const struct sk_buff * skb)2832 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2833 {
2834 	return skb->head + skb->inner_network_header;
2835 }
2836 
skb_reset_inner_network_header(struct sk_buff * skb)2837 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2838 {
2839 	skb->inner_network_header = skb->data - skb->head;
2840 }
2841 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2842 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2843 						const int offset)
2844 {
2845 	skb_reset_inner_network_header(skb);
2846 	skb->inner_network_header += offset;
2847 }
2848 
skb_inner_network_header_was_set(const struct sk_buff * skb)2849 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2850 {
2851 	return skb->inner_network_header > 0;
2852 }
2853 
skb_inner_mac_header(const struct sk_buff * skb)2854 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2855 {
2856 	return skb->head + skb->inner_mac_header;
2857 }
2858 
skb_reset_inner_mac_header(struct sk_buff * skb)2859 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2860 {
2861 	skb->inner_mac_header = skb->data - skb->head;
2862 }
2863 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2864 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2865 					    const int offset)
2866 {
2867 	skb_reset_inner_mac_header(skb);
2868 	skb->inner_mac_header += offset;
2869 }
skb_transport_header_was_set(const struct sk_buff * skb)2870 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2871 {
2872 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2873 }
2874 
skb_transport_header(const struct sk_buff * skb)2875 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2876 {
2877 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2878 	return skb->head + skb->transport_header;
2879 }
2880 
skb_reset_transport_header(struct sk_buff * skb)2881 static inline void skb_reset_transport_header(struct sk_buff *skb)
2882 {
2883 	skb->transport_header = skb->data - skb->head;
2884 }
2885 
skb_set_transport_header(struct sk_buff * skb,const int offset)2886 static inline void skb_set_transport_header(struct sk_buff *skb,
2887 					    const int offset)
2888 {
2889 	skb_reset_transport_header(skb);
2890 	skb->transport_header += offset;
2891 }
2892 
skb_network_header(const struct sk_buff * skb)2893 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2894 {
2895 	return skb->head + skb->network_header;
2896 }
2897 
skb_reset_network_header(struct sk_buff * skb)2898 static inline void skb_reset_network_header(struct sk_buff *skb)
2899 {
2900 	skb->network_header = skb->data - skb->head;
2901 }
2902 
skb_set_network_header(struct sk_buff * skb,const int offset)2903 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2904 {
2905 	skb_reset_network_header(skb);
2906 	skb->network_header += offset;
2907 }
2908 
skb_mac_header_was_set(const struct sk_buff * skb)2909 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2910 {
2911 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2912 }
2913 
skb_mac_header(const struct sk_buff * skb)2914 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2915 {
2916 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2917 	return skb->head + skb->mac_header;
2918 }
2919 
skb_mac_offset(const struct sk_buff * skb)2920 static inline int skb_mac_offset(const struct sk_buff *skb)
2921 {
2922 	return skb_mac_header(skb) - skb->data;
2923 }
2924 
skb_mac_header_len(const struct sk_buff * skb)2925 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2926 {
2927 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2928 	return skb->network_header - skb->mac_header;
2929 }
2930 
skb_unset_mac_header(struct sk_buff * skb)2931 static inline void skb_unset_mac_header(struct sk_buff *skb)
2932 {
2933 	skb->mac_header = (typeof(skb->mac_header))~0U;
2934 }
2935 
skb_reset_mac_header(struct sk_buff * skb)2936 static inline void skb_reset_mac_header(struct sk_buff *skb)
2937 {
2938 	skb->mac_header = skb->data - skb->head;
2939 }
2940 
skb_set_mac_header(struct sk_buff * skb,const int offset)2941 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2942 {
2943 	skb_reset_mac_header(skb);
2944 	skb->mac_header += offset;
2945 }
2946 
skb_pop_mac_header(struct sk_buff * skb)2947 static inline void skb_pop_mac_header(struct sk_buff *skb)
2948 {
2949 	skb->mac_header = skb->network_header;
2950 }
2951 
skb_probe_transport_header(struct sk_buff * skb)2952 static inline void skb_probe_transport_header(struct sk_buff *skb)
2953 {
2954 	struct flow_keys_basic keys;
2955 
2956 	if (skb_transport_header_was_set(skb))
2957 		return;
2958 
2959 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2960 					     NULL, 0, 0, 0, 0))
2961 		skb_set_transport_header(skb, keys.control.thoff);
2962 }
2963 
skb_mac_header_rebuild(struct sk_buff * skb)2964 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2965 {
2966 	if (skb_mac_header_was_set(skb)) {
2967 		const unsigned char *old_mac = skb_mac_header(skb);
2968 
2969 		skb_set_mac_header(skb, -skb->mac_len);
2970 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2971 	}
2972 }
2973 
2974 /* Move the full mac header up to current network_header.
2975  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
2976  * Must be provided the complete mac header length.
2977  */
skb_mac_header_rebuild_full(struct sk_buff * skb,u32 full_mac_len)2978 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
2979 {
2980 	if (skb_mac_header_was_set(skb)) {
2981 		const unsigned char *old_mac = skb_mac_header(skb);
2982 
2983 		skb_set_mac_header(skb, -full_mac_len);
2984 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
2985 		__skb_push(skb, full_mac_len - skb->mac_len);
2986 	}
2987 }
2988 
skb_checksum_start_offset(const struct sk_buff * skb)2989 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2990 {
2991 	return skb->csum_start - skb_headroom(skb);
2992 }
2993 
skb_checksum_start(const struct sk_buff * skb)2994 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2995 {
2996 	return skb->head + skb->csum_start;
2997 }
2998 
skb_transport_offset(const struct sk_buff * skb)2999 static inline int skb_transport_offset(const struct sk_buff *skb)
3000 {
3001 	return skb_transport_header(skb) - skb->data;
3002 }
3003 
skb_network_header_len(const struct sk_buff * skb)3004 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3005 {
3006 	return skb->transport_header - skb->network_header;
3007 }
3008 
skb_inner_network_header_len(const struct sk_buff * skb)3009 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3010 {
3011 	return skb->inner_transport_header - skb->inner_network_header;
3012 }
3013 
skb_network_offset(const struct sk_buff * skb)3014 static inline int skb_network_offset(const struct sk_buff *skb)
3015 {
3016 	return skb_network_header(skb) - skb->data;
3017 }
3018 
skb_inner_network_offset(const struct sk_buff * skb)3019 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3020 {
3021 	return skb_inner_network_header(skb) - skb->data;
3022 }
3023 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)3024 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3025 {
3026 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3027 }
3028 
3029 /*
3030  * CPUs often take a performance hit when accessing unaligned memory
3031  * locations. The actual performance hit varies, it can be small if the
3032  * hardware handles it or large if we have to take an exception and fix it
3033  * in software.
3034  *
3035  * Since an ethernet header is 14 bytes network drivers often end up with
3036  * the IP header at an unaligned offset. The IP header can be aligned by
3037  * shifting the start of the packet by 2 bytes. Drivers should do this
3038  * with:
3039  *
3040  * skb_reserve(skb, NET_IP_ALIGN);
3041  *
3042  * The downside to this alignment of the IP header is that the DMA is now
3043  * unaligned. On some architectures the cost of an unaligned DMA is high
3044  * and this cost outweighs the gains made by aligning the IP header.
3045  *
3046  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3047  * to be overridden.
3048  */
3049 #ifndef NET_IP_ALIGN
3050 #define NET_IP_ALIGN	2
3051 #endif
3052 
3053 /*
3054  * The networking layer reserves some headroom in skb data (via
3055  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3056  * the header has to grow. In the default case, if the header has to grow
3057  * 32 bytes or less we avoid the reallocation.
3058  *
3059  * Unfortunately this headroom changes the DMA alignment of the resulting
3060  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3061  * on some architectures. An architecture can override this value,
3062  * perhaps setting it to a cacheline in size (since that will maintain
3063  * cacheline alignment of the DMA). It must be a power of 2.
3064  *
3065  * Various parts of the networking layer expect at least 32 bytes of
3066  * headroom, you should not reduce this.
3067  *
3068  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3069  * to reduce average number of cache lines per packet.
3070  * get_rps_cpu() for example only access one 64 bytes aligned block :
3071  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3072  */
3073 #ifndef NET_SKB_PAD
3074 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3075 #endif
3076 
3077 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3078 
__skb_set_length(struct sk_buff * skb,unsigned int len)3079 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3080 {
3081 	if (WARN_ON(skb_is_nonlinear(skb)))
3082 		return;
3083 	skb->len = len;
3084 	skb_set_tail_pointer(skb, len);
3085 }
3086 
__skb_trim(struct sk_buff * skb,unsigned int len)3087 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3088 {
3089 	__skb_set_length(skb, len);
3090 }
3091 
3092 void skb_trim(struct sk_buff *skb, unsigned int len);
3093 
__pskb_trim(struct sk_buff * skb,unsigned int len)3094 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3095 {
3096 	if (skb->data_len)
3097 		return ___pskb_trim(skb, len);
3098 	__skb_trim(skb, len);
3099 	return 0;
3100 }
3101 
pskb_trim(struct sk_buff * skb,unsigned int len)3102 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3103 {
3104 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3105 }
3106 
3107 /**
3108  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3109  *	@skb: buffer to alter
3110  *	@len: new length
3111  *
3112  *	This is identical to pskb_trim except that the caller knows that
3113  *	the skb is not cloned so we should never get an error due to out-
3114  *	of-memory.
3115  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3116 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3117 {
3118 	int err = pskb_trim(skb, len);
3119 	BUG_ON(err);
3120 }
3121 
__skb_grow(struct sk_buff * skb,unsigned int len)3122 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3123 {
3124 	unsigned int diff = len - skb->len;
3125 
3126 	if (skb_tailroom(skb) < diff) {
3127 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3128 					   GFP_ATOMIC);
3129 		if (ret)
3130 			return ret;
3131 	}
3132 	__skb_set_length(skb, len);
3133 	return 0;
3134 }
3135 
3136 /**
3137  *	skb_orphan - orphan a buffer
3138  *	@skb: buffer to orphan
3139  *
3140  *	If a buffer currently has an owner then we call the owner's
3141  *	destructor function and make the @skb unowned. The buffer continues
3142  *	to exist but is no longer charged to its former owner.
3143  */
skb_orphan(struct sk_buff * skb)3144 static inline void skb_orphan(struct sk_buff *skb)
3145 {
3146 	if (skb->destructor) {
3147 		skb->destructor(skb);
3148 		skb->destructor = NULL;
3149 		skb->sk		= NULL;
3150 	} else {
3151 		BUG_ON(skb->sk);
3152 	}
3153 }
3154 
3155 /**
3156  *	skb_orphan_frags - orphan the frags contained in a buffer
3157  *	@skb: buffer to orphan frags from
3158  *	@gfp_mask: allocation mask for replacement pages
3159  *
3160  *	For each frag in the SKB which needs a destructor (i.e. has an
3161  *	owner) create a copy of that frag and release the original
3162  *	page by calling the destructor.
3163  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3164 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3165 {
3166 	if (likely(!skb_zcopy(skb)))
3167 		return 0;
3168 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3169 		return 0;
3170 	return skb_copy_ubufs(skb, gfp_mask);
3171 }
3172 
3173 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3174 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3175 {
3176 	if (likely(!skb_zcopy(skb)))
3177 		return 0;
3178 	return skb_copy_ubufs(skb, gfp_mask);
3179 }
3180 
3181 /**
3182  *	__skb_queue_purge_reason - empty a list
3183  *	@list: list to empty
3184  *	@reason: drop reason
3185  *
3186  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3187  *	the list and one reference dropped. This function does not take the
3188  *	list lock and the caller must hold the relevant locks to use it.
3189  */
__skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3190 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3191 					    enum skb_drop_reason reason)
3192 {
3193 	struct sk_buff *skb;
3194 
3195 	while ((skb = __skb_dequeue(list)) != NULL)
3196 		kfree_skb_reason(skb, reason);
3197 }
3198 
__skb_queue_purge(struct sk_buff_head * list)3199 static inline void __skb_queue_purge(struct sk_buff_head *list)
3200 {
3201 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3202 }
3203 
3204 void skb_queue_purge_reason(struct sk_buff_head *list,
3205 			    enum skb_drop_reason reason);
3206 
skb_queue_purge(struct sk_buff_head * list)3207 static inline void skb_queue_purge(struct sk_buff_head *list)
3208 {
3209 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3210 }
3211 
3212 unsigned int skb_rbtree_purge(struct rb_root *root);
3213 void skb_errqueue_purge(struct sk_buff_head *list);
3214 
3215 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3216 
3217 /**
3218  * netdev_alloc_frag - allocate a page fragment
3219  * @fragsz: fragment size
3220  *
3221  * Allocates a frag from a page for receive buffer.
3222  * Uses GFP_ATOMIC allocations.
3223  */
netdev_alloc_frag(unsigned int fragsz)3224 static inline void *netdev_alloc_frag(unsigned int fragsz)
3225 {
3226 	return __netdev_alloc_frag_align(fragsz, ~0u);
3227 }
3228 
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3229 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3230 					    unsigned int align)
3231 {
3232 	WARN_ON_ONCE(!is_power_of_2(align));
3233 	return __netdev_alloc_frag_align(fragsz, -align);
3234 }
3235 
3236 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3237 				   gfp_t gfp_mask);
3238 
3239 /**
3240  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3241  *	@dev: network device to receive on
3242  *	@length: length to allocate
3243  *
3244  *	Allocate a new &sk_buff and assign it a usage count of one. The
3245  *	buffer has unspecified headroom built in. Users should allocate
3246  *	the headroom they think they need without accounting for the
3247  *	built in space. The built in space is used for optimisations.
3248  *
3249  *	%NULL is returned if there is no free memory. Although this function
3250  *	allocates memory it can be called from an interrupt.
3251  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3252 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3253 					       unsigned int length)
3254 {
3255 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3256 }
3257 
3258 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3259 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3260 					      gfp_t gfp_mask)
3261 {
3262 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3263 }
3264 
3265 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3266 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3267 {
3268 	return netdev_alloc_skb(NULL, length);
3269 }
3270 
3271 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3272 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3273 		unsigned int length, gfp_t gfp)
3274 {
3275 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3276 
3277 	if (NET_IP_ALIGN && skb)
3278 		skb_reserve(skb, NET_IP_ALIGN);
3279 	return skb;
3280 }
3281 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3282 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3283 		unsigned int length)
3284 {
3285 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3286 }
3287 
skb_free_frag(void * addr)3288 static inline void skb_free_frag(void *addr)
3289 {
3290 	page_frag_free(addr);
3291 }
3292 
3293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3294 
napi_alloc_frag(unsigned int fragsz)3295 static inline void *napi_alloc_frag(unsigned int fragsz)
3296 {
3297 	return __napi_alloc_frag_align(fragsz, ~0u);
3298 }
3299 
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3300 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3301 					  unsigned int align)
3302 {
3303 	WARN_ON_ONCE(!is_power_of_2(align));
3304 	return __napi_alloc_frag_align(fragsz, -align);
3305 }
3306 
3307 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3308 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)3309 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3310 					     unsigned int length)
3311 {
3312 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3313 }
3314 void napi_consume_skb(struct sk_buff *skb, int budget);
3315 
3316 void napi_skb_free_stolen_head(struct sk_buff *skb);
3317 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3318 
3319 /**
3320  * __dev_alloc_pages - allocate page for network Rx
3321  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3322  * @order: size of the allocation
3323  *
3324  * Allocate a new page.
3325  *
3326  * %NULL is returned if there is no free memory.
3327 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3328 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3329 					     unsigned int order)
3330 {
3331 	/* This piece of code contains several assumptions.
3332 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3333 	 * 2.  The expectation is the user wants a compound page.
3334 	 * 3.  If requesting a order 0 page it will not be compound
3335 	 *     due to the check to see if order has a value in prep_new_page
3336 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3337 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3338 	 */
3339 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3340 
3341 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3342 }
3343 
dev_alloc_pages(unsigned int order)3344 static inline struct page *dev_alloc_pages(unsigned int order)
3345 {
3346 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3347 }
3348 
3349 /**
3350  * __dev_alloc_page - allocate a page for network Rx
3351  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3352  *
3353  * Allocate a new page.
3354  *
3355  * %NULL is returned if there is no free memory.
3356  */
__dev_alloc_page(gfp_t gfp_mask)3357 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3358 {
3359 	return __dev_alloc_pages(gfp_mask, 0);
3360 }
3361 
dev_alloc_page(void)3362 static inline struct page *dev_alloc_page(void)
3363 {
3364 	return dev_alloc_pages(0);
3365 }
3366 
3367 /**
3368  * dev_page_is_reusable - check whether a page can be reused for network Rx
3369  * @page: the page to test
3370  *
3371  * A page shouldn't be considered for reusing/recycling if it was allocated
3372  * under memory pressure or at a distant memory node.
3373  *
3374  * Returns false if this page should be returned to page allocator, true
3375  * otherwise.
3376  */
dev_page_is_reusable(const struct page * page)3377 static inline bool dev_page_is_reusable(const struct page *page)
3378 {
3379 	return likely(page_to_nid(page) == numa_mem_id() &&
3380 		      !page_is_pfmemalloc(page));
3381 }
3382 
3383 /**
3384  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3385  *	@page: The page that was allocated from skb_alloc_page
3386  *	@skb: The skb that may need pfmemalloc set
3387  */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3388 static inline void skb_propagate_pfmemalloc(const struct page *page,
3389 					    struct sk_buff *skb)
3390 {
3391 	if (page_is_pfmemalloc(page))
3392 		skb->pfmemalloc = true;
3393 }
3394 
3395 /**
3396  * skb_frag_off() - Returns the offset of a skb fragment
3397  * @frag: the paged fragment
3398  */
skb_frag_off(const skb_frag_t * frag)3399 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3400 {
3401 	return frag->bv_offset;
3402 }
3403 
3404 /**
3405  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3406  * @frag: skb fragment
3407  * @delta: value to add
3408  */
skb_frag_off_add(skb_frag_t * frag,int delta)3409 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3410 {
3411 	frag->bv_offset += delta;
3412 }
3413 
3414 /**
3415  * skb_frag_off_set() - Sets the offset of a skb fragment
3416  * @frag: skb fragment
3417  * @offset: offset of fragment
3418  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3419 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3420 {
3421 	frag->bv_offset = offset;
3422 }
3423 
3424 /**
3425  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3426  * @fragto: skb fragment where offset is set
3427  * @fragfrom: skb fragment offset is copied from
3428  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3429 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3430 				     const skb_frag_t *fragfrom)
3431 {
3432 	fragto->bv_offset = fragfrom->bv_offset;
3433 }
3434 
3435 /**
3436  * skb_frag_page - retrieve the page referred to by a paged fragment
3437  * @frag: the paged fragment
3438  *
3439  * Returns the &struct page associated with @frag.
3440  */
skb_frag_page(const skb_frag_t * frag)3441 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3442 {
3443 	return frag->bv_page;
3444 }
3445 
3446 /**
3447  * __skb_frag_ref - take an addition reference on a paged fragment.
3448  * @frag: the paged fragment
3449  *
3450  * Takes an additional reference on the paged fragment @frag.
3451  */
__skb_frag_ref(skb_frag_t * frag)3452 static inline void __skb_frag_ref(skb_frag_t *frag)
3453 {
3454 	get_page(skb_frag_page(frag));
3455 }
3456 
3457 /**
3458  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3459  * @skb: the buffer
3460  * @f: the fragment offset.
3461  *
3462  * Takes an additional reference on the @f'th paged fragment of @skb.
3463  */
skb_frag_ref(struct sk_buff * skb,int f)3464 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3465 {
3466 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3467 }
3468 
3469 bool napi_pp_put_page(struct page *page, bool napi_safe);
3470 
3471 static inline void
skb_page_unref(const struct sk_buff * skb,struct page * page,bool napi_safe)3472 skb_page_unref(const struct sk_buff *skb, struct page *page, bool napi_safe)
3473 {
3474 #ifdef CONFIG_PAGE_POOL
3475 	if (skb->pp_recycle && napi_pp_put_page(page, napi_safe))
3476 		return;
3477 #endif
3478 	put_page(page);
3479 }
3480 
3481 static inline void
napi_frag_unref(skb_frag_t * frag,bool recycle,bool napi_safe)3482 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3483 {
3484 	struct page *page = skb_frag_page(frag);
3485 
3486 #ifdef CONFIG_PAGE_POOL
3487 	if (recycle && napi_pp_put_page(page, napi_safe))
3488 		return;
3489 #endif
3490 	put_page(page);
3491 }
3492 
3493 /**
3494  * __skb_frag_unref - release a reference on a paged fragment.
3495  * @frag: the paged fragment
3496  * @recycle: recycle the page if allocated via page_pool
3497  *
3498  * Releases a reference on the paged fragment @frag
3499  * or recycles the page via the page_pool API.
3500  */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3501 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3502 {
3503 	napi_frag_unref(frag, recycle, false);
3504 }
3505 
3506 /**
3507  * skb_frag_unref - release a reference on a paged fragment of an skb.
3508  * @skb: the buffer
3509  * @f: the fragment offset
3510  *
3511  * Releases a reference on the @f'th paged fragment of @skb.
3512  */
skb_frag_unref(struct sk_buff * skb,int f)3513 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3514 {
3515 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3516 
3517 	if (!skb_zcopy_managed(skb))
3518 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3519 }
3520 
3521 /**
3522  * skb_frag_address - gets the address of the data contained in a paged fragment
3523  * @frag: the paged fragment buffer
3524  *
3525  * Returns the address of the data within @frag. The page must already
3526  * be mapped.
3527  */
skb_frag_address(const skb_frag_t * frag)3528 static inline void *skb_frag_address(const skb_frag_t *frag)
3529 {
3530 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3531 }
3532 
3533 /**
3534  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3535  * @frag: the paged fragment buffer
3536  *
3537  * Returns the address of the data within @frag. Checks that the page
3538  * is mapped and returns %NULL otherwise.
3539  */
skb_frag_address_safe(const skb_frag_t * frag)3540 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3541 {
3542 	void *ptr = page_address(skb_frag_page(frag));
3543 	if (unlikely(!ptr))
3544 		return NULL;
3545 
3546 	return ptr + skb_frag_off(frag);
3547 }
3548 
3549 /**
3550  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3551  * @fragto: skb fragment where page is set
3552  * @fragfrom: skb fragment page is copied from
3553  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3554 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3555 				      const skb_frag_t *fragfrom)
3556 {
3557 	fragto->bv_page = fragfrom->bv_page;
3558 }
3559 
3560 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3561 
3562 /**
3563  * skb_frag_dma_map - maps a paged fragment via the DMA API
3564  * @dev: the device to map the fragment to
3565  * @frag: the paged fragment to map
3566  * @offset: the offset within the fragment (starting at the
3567  *          fragment's own offset)
3568  * @size: the number of bytes to map
3569  * @dir: the direction of the mapping (``PCI_DMA_*``)
3570  *
3571  * Maps the page associated with @frag to @device.
3572  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3573 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3574 					  const skb_frag_t *frag,
3575 					  size_t offset, size_t size,
3576 					  enum dma_data_direction dir)
3577 {
3578 	return dma_map_page(dev, skb_frag_page(frag),
3579 			    skb_frag_off(frag) + offset, size, dir);
3580 }
3581 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3582 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3583 					gfp_t gfp_mask)
3584 {
3585 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3586 }
3587 
3588 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3589 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3590 						  gfp_t gfp_mask)
3591 {
3592 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3593 }
3594 
3595 
3596 /**
3597  *	skb_clone_writable - is the header of a clone writable
3598  *	@skb: buffer to check
3599  *	@len: length up to which to write
3600  *
3601  *	Returns true if modifying the header part of the cloned buffer
3602  *	does not requires the data to be copied.
3603  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3604 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3605 {
3606 	return !skb_header_cloned(skb) &&
3607 	       skb_headroom(skb) + len <= skb->hdr_len;
3608 }
3609 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3610 static inline int skb_try_make_writable(struct sk_buff *skb,
3611 					unsigned int write_len)
3612 {
3613 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3614 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3615 }
3616 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3617 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3618 			    int cloned)
3619 {
3620 	int delta = 0;
3621 
3622 	if (headroom > skb_headroom(skb))
3623 		delta = headroom - skb_headroom(skb);
3624 
3625 	if (delta || cloned)
3626 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3627 					GFP_ATOMIC);
3628 	return 0;
3629 }
3630 
3631 /**
3632  *	skb_cow - copy header of skb when it is required
3633  *	@skb: buffer to cow
3634  *	@headroom: needed headroom
3635  *
3636  *	If the skb passed lacks sufficient headroom or its data part
3637  *	is shared, data is reallocated. If reallocation fails, an error
3638  *	is returned and original skb is not changed.
3639  *
3640  *	The result is skb with writable area skb->head...skb->tail
3641  *	and at least @headroom of space at head.
3642  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3643 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3644 {
3645 	return __skb_cow(skb, headroom, skb_cloned(skb));
3646 }
3647 
3648 /**
3649  *	skb_cow_head - skb_cow but only making the head writable
3650  *	@skb: buffer to cow
3651  *	@headroom: needed headroom
3652  *
3653  *	This function is identical to skb_cow except that we replace the
3654  *	skb_cloned check by skb_header_cloned.  It should be used when
3655  *	you only need to push on some header and do not need to modify
3656  *	the data.
3657  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3658 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3659 {
3660 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3661 }
3662 
3663 /**
3664  *	skb_padto	- pad an skbuff up to a minimal size
3665  *	@skb: buffer to pad
3666  *	@len: minimal length
3667  *
3668  *	Pads up a buffer to ensure the trailing bytes exist and are
3669  *	blanked. If the buffer already contains sufficient data it
3670  *	is untouched. Otherwise it is extended. Returns zero on
3671  *	success. The skb is freed on error.
3672  */
skb_padto(struct sk_buff * skb,unsigned int len)3673 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3674 {
3675 	unsigned int size = skb->len;
3676 	if (likely(size >= len))
3677 		return 0;
3678 	return skb_pad(skb, len - size);
3679 }
3680 
3681 /**
3682  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3683  *	@skb: buffer to pad
3684  *	@len: minimal length
3685  *	@free_on_error: free buffer on error
3686  *
3687  *	Pads up a buffer to ensure the trailing bytes exist and are
3688  *	blanked. If the buffer already contains sufficient data it
3689  *	is untouched. Otherwise it is extended. Returns zero on
3690  *	success. The skb is freed on error if @free_on_error is true.
3691  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3692 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3693 					       unsigned int len,
3694 					       bool free_on_error)
3695 {
3696 	unsigned int size = skb->len;
3697 
3698 	if (unlikely(size < len)) {
3699 		len -= size;
3700 		if (__skb_pad(skb, len, free_on_error))
3701 			return -ENOMEM;
3702 		__skb_put(skb, len);
3703 	}
3704 	return 0;
3705 }
3706 
3707 /**
3708  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3709  *	@skb: buffer to pad
3710  *	@len: minimal length
3711  *
3712  *	Pads up a buffer to ensure the trailing bytes exist and are
3713  *	blanked. If the buffer already contains sufficient data it
3714  *	is untouched. Otherwise it is extended. Returns zero on
3715  *	success. The skb is freed on error.
3716  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3717 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3718 {
3719 	return __skb_put_padto(skb, len, true);
3720 }
3721 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3722 static inline int skb_add_data(struct sk_buff *skb,
3723 			       struct iov_iter *from, int copy)
3724 {
3725 	const int off = skb->len;
3726 
3727 	if (skb->ip_summed == CHECKSUM_NONE) {
3728 		__wsum csum = 0;
3729 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3730 					         &csum, from)) {
3731 			skb->csum = csum_block_add(skb->csum, csum, off);
3732 			return 0;
3733 		}
3734 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3735 		return 0;
3736 
3737 	__skb_trim(skb, off);
3738 	return -EFAULT;
3739 }
3740 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3741 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3742 				    const struct page *page, int off)
3743 {
3744 	if (skb_zcopy(skb))
3745 		return false;
3746 	if (i) {
3747 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3748 
3749 		return page == skb_frag_page(frag) &&
3750 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3751 	}
3752 	return false;
3753 }
3754 
__skb_linearize(struct sk_buff * skb)3755 static inline int __skb_linearize(struct sk_buff *skb)
3756 {
3757 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3758 }
3759 
3760 /**
3761  *	skb_linearize - convert paged skb to linear one
3762  *	@skb: buffer to linarize
3763  *
3764  *	If there is no free memory -ENOMEM is returned, otherwise zero
3765  *	is returned and the old skb data released.
3766  */
skb_linearize(struct sk_buff * skb)3767 static inline int skb_linearize(struct sk_buff *skb)
3768 {
3769 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3770 }
3771 
3772 /**
3773  * skb_has_shared_frag - can any frag be overwritten
3774  * @skb: buffer to test
3775  *
3776  * Return true if the skb has at least one frag that might be modified
3777  * by an external entity (as in vmsplice()/sendfile())
3778  */
skb_has_shared_frag(const struct sk_buff * skb)3779 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3780 {
3781 	return skb_is_nonlinear(skb) &&
3782 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3783 }
3784 
3785 /**
3786  *	skb_linearize_cow - make sure skb is linear and writable
3787  *	@skb: buffer to process
3788  *
3789  *	If there is no free memory -ENOMEM is returned, otherwise zero
3790  *	is returned and the old skb data released.
3791  */
skb_linearize_cow(struct sk_buff * skb)3792 static inline int skb_linearize_cow(struct sk_buff *skb)
3793 {
3794 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3795 	       __skb_linearize(skb) : 0;
3796 }
3797 
3798 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3799 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3800 		     unsigned int off)
3801 {
3802 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3803 		skb->csum = csum_block_sub(skb->csum,
3804 					   csum_partial(start, len, 0), off);
3805 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3806 		 skb_checksum_start_offset(skb) < 0)
3807 		skb->ip_summed = CHECKSUM_NONE;
3808 }
3809 
3810 /**
3811  *	skb_postpull_rcsum - update checksum for received skb after pull
3812  *	@skb: buffer to update
3813  *	@start: start of data before pull
3814  *	@len: length of data pulled
3815  *
3816  *	After doing a pull on a received packet, you need to call this to
3817  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3818  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3819  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3820 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3821 				      const void *start, unsigned int len)
3822 {
3823 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3824 		skb->csum = wsum_negate(csum_partial(start, len,
3825 						     wsum_negate(skb->csum)));
3826 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3827 		 skb_checksum_start_offset(skb) < 0)
3828 		skb->ip_summed = CHECKSUM_NONE;
3829 }
3830 
3831 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3832 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3833 		     unsigned int off)
3834 {
3835 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3836 		skb->csum = csum_block_add(skb->csum,
3837 					   csum_partial(start, len, 0), off);
3838 }
3839 
3840 /**
3841  *	skb_postpush_rcsum - update checksum for received skb after push
3842  *	@skb: buffer to update
3843  *	@start: start of data after push
3844  *	@len: length of data pushed
3845  *
3846  *	After doing a push on a received packet, you need to call this to
3847  *	update the CHECKSUM_COMPLETE checksum.
3848  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3849 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3850 				      const void *start, unsigned int len)
3851 {
3852 	__skb_postpush_rcsum(skb, start, len, 0);
3853 }
3854 
3855 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3856 
3857 /**
3858  *	skb_push_rcsum - push skb and update receive checksum
3859  *	@skb: buffer to update
3860  *	@len: length of data pulled
3861  *
3862  *	This function performs an skb_push on the packet and updates
3863  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3864  *	receive path processing instead of skb_push unless you know
3865  *	that the checksum difference is zero (e.g., a valid IP header)
3866  *	or you are setting ip_summed to CHECKSUM_NONE.
3867  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3868 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3869 {
3870 	skb_push(skb, len);
3871 	skb_postpush_rcsum(skb, skb->data, len);
3872 	return skb->data;
3873 }
3874 
3875 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3876 /**
3877  *	pskb_trim_rcsum - trim received skb and update checksum
3878  *	@skb: buffer to trim
3879  *	@len: new length
3880  *
3881  *	This is exactly the same as pskb_trim except that it ensures the
3882  *	checksum of received packets are still valid after the operation.
3883  *	It can change skb pointers.
3884  */
3885 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3886 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3887 {
3888 	if (likely(len >= skb->len))
3889 		return 0;
3890 	return pskb_trim_rcsum_slow(skb, len);
3891 }
3892 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3893 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3894 {
3895 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3896 		skb->ip_summed = CHECKSUM_NONE;
3897 	__skb_trim(skb, len);
3898 	return 0;
3899 }
3900 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3901 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3902 {
3903 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3904 		skb->ip_summed = CHECKSUM_NONE;
3905 	return __skb_grow(skb, len);
3906 }
3907 
3908 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3909 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3910 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3911 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3912 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3913 
3914 #define skb_queue_walk(queue, skb) \
3915 		for (skb = (queue)->next;					\
3916 		     skb != (struct sk_buff *)(queue);				\
3917 		     skb = skb->next)
3918 
3919 #define skb_queue_walk_safe(queue, skb, tmp)					\
3920 		for (skb = (queue)->next, tmp = skb->next;			\
3921 		     skb != (struct sk_buff *)(queue);				\
3922 		     skb = tmp, tmp = skb->next)
3923 
3924 #define skb_queue_walk_from(queue, skb)						\
3925 		for (; skb != (struct sk_buff *)(queue);			\
3926 		     skb = skb->next)
3927 
3928 #define skb_rbtree_walk(skb, root)						\
3929 		for (skb = skb_rb_first(root); skb != NULL;			\
3930 		     skb = skb_rb_next(skb))
3931 
3932 #define skb_rbtree_walk_from(skb)						\
3933 		for (; skb != NULL;						\
3934 		     skb = skb_rb_next(skb))
3935 
3936 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3937 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3938 		     skb = tmp)
3939 
3940 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3941 		for (tmp = skb->next;						\
3942 		     skb != (struct sk_buff *)(queue);				\
3943 		     skb = tmp, tmp = skb->next)
3944 
3945 #define skb_queue_reverse_walk(queue, skb) \
3946 		for (skb = (queue)->prev;					\
3947 		     skb != (struct sk_buff *)(queue);				\
3948 		     skb = skb->prev)
3949 
3950 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3951 		for (skb = (queue)->prev, tmp = skb->prev;			\
3952 		     skb != (struct sk_buff *)(queue);				\
3953 		     skb = tmp, tmp = skb->prev)
3954 
3955 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3956 		for (tmp = skb->prev;						\
3957 		     skb != (struct sk_buff *)(queue);				\
3958 		     skb = tmp, tmp = skb->prev)
3959 
skb_has_frag_list(const struct sk_buff * skb)3960 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3961 {
3962 	return skb_shinfo(skb)->frag_list != NULL;
3963 }
3964 
skb_frag_list_init(struct sk_buff * skb)3965 static inline void skb_frag_list_init(struct sk_buff *skb)
3966 {
3967 	skb_shinfo(skb)->frag_list = NULL;
3968 }
3969 
3970 #define skb_walk_frags(skb, iter)	\
3971 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3972 
3973 
3974 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3975 				int *err, long *timeo_p,
3976 				const struct sk_buff *skb);
3977 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3978 					  struct sk_buff_head *queue,
3979 					  unsigned int flags,
3980 					  int *off, int *err,
3981 					  struct sk_buff **last);
3982 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3983 					struct sk_buff_head *queue,
3984 					unsigned int flags, int *off, int *err,
3985 					struct sk_buff **last);
3986 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3987 				    struct sk_buff_head *sk_queue,
3988 				    unsigned int flags, int *off, int *err);
3989 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3990 __poll_t datagram_poll(struct file *file, struct socket *sock,
3991 			   struct poll_table_struct *wait);
3992 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3993 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3994 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3995 					struct msghdr *msg, int size)
3996 {
3997 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3998 }
3999 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4000 				   struct msghdr *msg);
4001 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4002 			   struct iov_iter *to, int len,
4003 			   struct ahash_request *hash);
4004 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4005 				 struct iov_iter *from, int len);
4006 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4007 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4008 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)4009 static inline void skb_free_datagram_locked(struct sock *sk,
4010 					    struct sk_buff *skb)
4011 {
4012 	__skb_free_datagram_locked(sk, skb, 0);
4013 }
4014 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4015 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4016 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4017 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4018 			      int len);
4019 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4020 		    struct pipe_inode_info *pipe, unsigned int len,
4021 		    unsigned int flags);
4022 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4023 			 int len);
4024 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4025 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4026 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4027 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4028 		 int len, int hlen);
4029 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4030 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4031 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4032 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4033 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4034 				 unsigned int offset);
4035 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4036 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4037 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4038 int skb_vlan_pop(struct sk_buff *skb);
4039 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4040 int skb_eth_pop(struct sk_buff *skb);
4041 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4042 		 const unsigned char *src);
4043 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4044 		  int mac_len, bool ethernet);
4045 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4046 		 bool ethernet);
4047 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4048 int skb_mpls_dec_ttl(struct sk_buff *skb);
4049 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4050 			     gfp_t gfp);
4051 
memcpy_from_msg(void * data,struct msghdr * msg,int len)4052 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4053 {
4054 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4055 }
4056 
memcpy_to_msg(struct msghdr * msg,void * data,int len)4057 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4058 {
4059 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4060 }
4061 
4062 struct skb_checksum_ops {
4063 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4064 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4065 };
4066 
4067 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4068 
4069 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4070 		      __wsum csum, const struct skb_checksum_ops *ops);
4071 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4072 		    __wsum csum);
4073 
4074 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4075 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4076 		     const void *data, int hlen, void *buffer)
4077 {
4078 	if (likely(hlen - offset >= len))
4079 		return (void *)data + offset;
4080 
4081 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4082 		return NULL;
4083 
4084 	return buffer;
4085 }
4086 
4087 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4088 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4089 {
4090 	return __skb_header_pointer(skb, offset, len, skb->data,
4091 				    skb_headlen(skb), buffer);
4092 }
4093 
4094 static inline void * __must_check
skb_pointer_if_linear(const struct sk_buff * skb,int offset,int len)4095 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4096 {
4097 	if (likely(skb_headlen(skb) - offset >= len))
4098 		return skb->data + offset;
4099 	return NULL;
4100 }
4101 
4102 /**
4103  *	skb_needs_linearize - check if we need to linearize a given skb
4104  *			      depending on the given device features.
4105  *	@skb: socket buffer to check
4106  *	@features: net device features
4107  *
4108  *	Returns true if either:
4109  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4110  *	2. skb is fragmented and the device does not support SG.
4111  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4112 static inline bool skb_needs_linearize(struct sk_buff *skb,
4113 				       netdev_features_t features)
4114 {
4115 	return skb_is_nonlinear(skb) &&
4116 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4117 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4118 }
4119 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4120 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4121 					     void *to,
4122 					     const unsigned int len)
4123 {
4124 	memcpy(to, skb->data, len);
4125 }
4126 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4127 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4128 						    const int offset, void *to,
4129 						    const unsigned int len)
4130 {
4131 	memcpy(to, skb->data + offset, len);
4132 }
4133 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4134 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4135 					   const void *from,
4136 					   const unsigned int len)
4137 {
4138 	memcpy(skb->data, from, len);
4139 }
4140 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4141 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4142 						  const int offset,
4143 						  const void *from,
4144 						  const unsigned int len)
4145 {
4146 	memcpy(skb->data + offset, from, len);
4147 }
4148 
4149 void skb_init(void);
4150 
skb_get_ktime(const struct sk_buff * skb)4151 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4152 {
4153 	return skb->tstamp;
4154 }
4155 
4156 /**
4157  *	skb_get_timestamp - get timestamp from a skb
4158  *	@skb: skb to get stamp from
4159  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4160  *
4161  *	Timestamps are stored in the skb as offsets to a base timestamp.
4162  *	This function converts the offset back to a struct timeval and stores
4163  *	it in stamp.
4164  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4165 static inline void skb_get_timestamp(const struct sk_buff *skb,
4166 				     struct __kernel_old_timeval *stamp)
4167 {
4168 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4169 }
4170 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4171 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4172 					 struct __kernel_sock_timeval *stamp)
4173 {
4174 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4175 
4176 	stamp->tv_sec = ts.tv_sec;
4177 	stamp->tv_usec = ts.tv_nsec / 1000;
4178 }
4179 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4180 static inline void skb_get_timestampns(const struct sk_buff *skb,
4181 				       struct __kernel_old_timespec *stamp)
4182 {
4183 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4184 
4185 	stamp->tv_sec = ts.tv_sec;
4186 	stamp->tv_nsec = ts.tv_nsec;
4187 }
4188 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4189 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4190 					   struct __kernel_timespec *stamp)
4191 {
4192 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4193 
4194 	stamp->tv_sec = ts.tv_sec;
4195 	stamp->tv_nsec = ts.tv_nsec;
4196 }
4197 
__net_timestamp(struct sk_buff * skb)4198 static inline void __net_timestamp(struct sk_buff *skb)
4199 {
4200 	skb->tstamp = ktime_get_real();
4201 	skb->mono_delivery_time = 0;
4202 }
4203 
net_timedelta(ktime_t t)4204 static inline ktime_t net_timedelta(ktime_t t)
4205 {
4206 	return ktime_sub(ktime_get_real(), t);
4207 }
4208 
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,bool mono)4209 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4210 					 bool mono)
4211 {
4212 	skb->tstamp = kt;
4213 	skb->mono_delivery_time = kt && mono;
4214 }
4215 
4216 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4217 
4218 /* It is used in the ingress path to clear the delivery_time.
4219  * If needed, set the skb->tstamp to the (rcv) timestamp.
4220  */
skb_clear_delivery_time(struct sk_buff * skb)4221 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4222 {
4223 	if (skb->mono_delivery_time) {
4224 		skb->mono_delivery_time = 0;
4225 		if (static_branch_unlikely(&netstamp_needed_key))
4226 			skb->tstamp = ktime_get_real();
4227 		else
4228 			skb->tstamp = 0;
4229 	}
4230 }
4231 
skb_clear_tstamp(struct sk_buff * skb)4232 static inline void skb_clear_tstamp(struct sk_buff *skb)
4233 {
4234 	if (skb->mono_delivery_time)
4235 		return;
4236 
4237 	skb->tstamp = 0;
4238 }
4239 
skb_tstamp(const struct sk_buff * skb)4240 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4241 {
4242 	if (skb->mono_delivery_time)
4243 		return 0;
4244 
4245 	return skb->tstamp;
4246 }
4247 
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4248 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4249 {
4250 	if (!skb->mono_delivery_time && skb->tstamp)
4251 		return skb->tstamp;
4252 
4253 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4254 		return ktime_get_real();
4255 
4256 	return 0;
4257 }
4258 
skb_metadata_len(const struct sk_buff * skb)4259 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4260 {
4261 	return skb_shinfo(skb)->meta_len;
4262 }
4263 
skb_metadata_end(const struct sk_buff * skb)4264 static inline void *skb_metadata_end(const struct sk_buff *skb)
4265 {
4266 	return skb_mac_header(skb);
4267 }
4268 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4269 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4270 					  const struct sk_buff *skb_b,
4271 					  u8 meta_len)
4272 {
4273 	const void *a = skb_metadata_end(skb_a);
4274 	const void *b = skb_metadata_end(skb_b);
4275 	/* Using more efficient varaiant than plain call to memcmp(). */
4276 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4277 	u64 diffs = 0;
4278 
4279 	switch (meta_len) {
4280 #define __it(x, op) (x -= sizeof(u##op))
4281 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4282 	case 32: diffs |= __it_diff(a, b, 64);
4283 		fallthrough;
4284 	case 24: diffs |= __it_diff(a, b, 64);
4285 		fallthrough;
4286 	case 16: diffs |= __it_diff(a, b, 64);
4287 		fallthrough;
4288 	case  8: diffs |= __it_diff(a, b, 64);
4289 		break;
4290 	case 28: diffs |= __it_diff(a, b, 64);
4291 		fallthrough;
4292 	case 20: diffs |= __it_diff(a, b, 64);
4293 		fallthrough;
4294 	case 12: diffs |= __it_diff(a, b, 64);
4295 		fallthrough;
4296 	case  4: diffs |= __it_diff(a, b, 32);
4297 		break;
4298 	}
4299 	return diffs;
4300 #else
4301 	return memcmp(a - meta_len, b - meta_len, meta_len);
4302 #endif
4303 }
4304 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4305 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4306 					const struct sk_buff *skb_b)
4307 {
4308 	u8 len_a = skb_metadata_len(skb_a);
4309 	u8 len_b = skb_metadata_len(skb_b);
4310 
4311 	if (!(len_a | len_b))
4312 		return false;
4313 
4314 	return len_a != len_b ?
4315 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4316 }
4317 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4318 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4319 {
4320 	skb_shinfo(skb)->meta_len = meta_len;
4321 }
4322 
skb_metadata_clear(struct sk_buff * skb)4323 static inline void skb_metadata_clear(struct sk_buff *skb)
4324 {
4325 	skb_metadata_set(skb, 0);
4326 }
4327 
4328 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4329 
4330 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4331 
4332 void skb_clone_tx_timestamp(struct sk_buff *skb);
4333 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4334 
4335 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4336 
skb_clone_tx_timestamp(struct sk_buff * skb)4337 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4338 {
4339 }
4340 
skb_defer_rx_timestamp(struct sk_buff * skb)4341 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4342 {
4343 	return false;
4344 }
4345 
4346 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4347 
4348 /**
4349  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4350  *
4351  * PHY drivers may accept clones of transmitted packets for
4352  * timestamping via their phy_driver.txtstamp method. These drivers
4353  * must call this function to return the skb back to the stack with a
4354  * timestamp.
4355  *
4356  * @skb: clone of the original outgoing packet
4357  * @hwtstamps: hardware time stamps
4358  *
4359  */
4360 void skb_complete_tx_timestamp(struct sk_buff *skb,
4361 			       struct skb_shared_hwtstamps *hwtstamps);
4362 
4363 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4364 		     struct skb_shared_hwtstamps *hwtstamps,
4365 		     struct sock *sk, int tstype);
4366 
4367 /**
4368  * skb_tstamp_tx - queue clone of skb with send time stamps
4369  * @orig_skb:	the original outgoing packet
4370  * @hwtstamps:	hardware time stamps, may be NULL if not available
4371  *
4372  * If the skb has a socket associated, then this function clones the
4373  * skb (thus sharing the actual data and optional structures), stores
4374  * the optional hardware time stamping information (if non NULL) or
4375  * generates a software time stamp (otherwise), then queues the clone
4376  * to the error queue of the socket.  Errors are silently ignored.
4377  */
4378 void skb_tstamp_tx(struct sk_buff *orig_skb,
4379 		   struct skb_shared_hwtstamps *hwtstamps);
4380 
4381 /**
4382  * skb_tx_timestamp() - Driver hook for transmit timestamping
4383  *
4384  * Ethernet MAC Drivers should call this function in their hard_xmit()
4385  * function immediately before giving the sk_buff to the MAC hardware.
4386  *
4387  * Specifically, one should make absolutely sure that this function is
4388  * called before TX completion of this packet can trigger.  Otherwise
4389  * the packet could potentially already be freed.
4390  *
4391  * @skb: A socket buffer.
4392  */
skb_tx_timestamp(struct sk_buff * skb)4393 static inline void skb_tx_timestamp(struct sk_buff *skb)
4394 {
4395 	skb_clone_tx_timestamp(skb);
4396 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4397 		skb_tstamp_tx(skb, NULL);
4398 }
4399 
4400 /**
4401  * skb_complete_wifi_ack - deliver skb with wifi status
4402  *
4403  * @skb: the original outgoing packet
4404  * @acked: ack status
4405  *
4406  */
4407 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4408 
4409 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4410 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4411 
skb_csum_unnecessary(const struct sk_buff * skb)4412 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4413 {
4414 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4415 		skb->csum_valid ||
4416 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4417 		 skb_checksum_start_offset(skb) >= 0));
4418 }
4419 
4420 /**
4421  *	skb_checksum_complete - Calculate checksum of an entire packet
4422  *	@skb: packet to process
4423  *
4424  *	This function calculates the checksum over the entire packet plus
4425  *	the value of skb->csum.  The latter can be used to supply the
4426  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4427  *	checksum.
4428  *
4429  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4430  *	this function can be used to verify that checksum on received
4431  *	packets.  In that case the function should return zero if the
4432  *	checksum is correct.  In particular, this function will return zero
4433  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4434  *	hardware has already verified the correctness of the checksum.
4435  */
skb_checksum_complete(struct sk_buff * skb)4436 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4437 {
4438 	return skb_csum_unnecessary(skb) ?
4439 	       0 : __skb_checksum_complete(skb);
4440 }
4441 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4442 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4443 {
4444 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4445 		if (skb->csum_level == 0)
4446 			skb->ip_summed = CHECKSUM_NONE;
4447 		else
4448 			skb->csum_level--;
4449 	}
4450 }
4451 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4452 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4453 {
4454 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4455 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4456 			skb->csum_level++;
4457 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4458 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4459 		skb->csum_level = 0;
4460 	}
4461 }
4462 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4463 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4464 {
4465 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4466 		skb->ip_summed = CHECKSUM_NONE;
4467 		skb->csum_level = 0;
4468 	}
4469 }
4470 
4471 /* Check if we need to perform checksum complete validation.
4472  *
4473  * Returns true if checksum complete is needed, false otherwise
4474  * (either checksum is unnecessary or zero checksum is allowed).
4475  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4476 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4477 						  bool zero_okay,
4478 						  __sum16 check)
4479 {
4480 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4481 		skb->csum_valid = 1;
4482 		__skb_decr_checksum_unnecessary(skb);
4483 		return false;
4484 	}
4485 
4486 	return true;
4487 }
4488 
4489 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4490  * in checksum_init.
4491  */
4492 #define CHECKSUM_BREAK 76
4493 
4494 /* Unset checksum-complete
4495  *
4496  * Unset checksum complete can be done when packet is being modified
4497  * (uncompressed for instance) and checksum-complete value is
4498  * invalidated.
4499  */
skb_checksum_complete_unset(struct sk_buff * skb)4500 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4501 {
4502 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4503 		skb->ip_summed = CHECKSUM_NONE;
4504 }
4505 
4506 /* Validate (init) checksum based on checksum complete.
4507  *
4508  * Return values:
4509  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4510  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4511  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4512  *   non-zero: value of invalid checksum
4513  *
4514  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4515 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4516 						       bool complete,
4517 						       __wsum psum)
4518 {
4519 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4520 		if (!csum_fold(csum_add(psum, skb->csum))) {
4521 			skb->csum_valid = 1;
4522 			return 0;
4523 		}
4524 	}
4525 
4526 	skb->csum = psum;
4527 
4528 	if (complete || skb->len <= CHECKSUM_BREAK) {
4529 		__sum16 csum;
4530 
4531 		csum = __skb_checksum_complete(skb);
4532 		skb->csum_valid = !csum;
4533 		return csum;
4534 	}
4535 
4536 	return 0;
4537 }
4538 
null_compute_pseudo(struct sk_buff * skb,int proto)4539 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4540 {
4541 	return 0;
4542 }
4543 
4544 /* Perform checksum validate (init). Note that this is a macro since we only
4545  * want to calculate the pseudo header which is an input function if necessary.
4546  * First we try to validate without any computation (checksum unnecessary) and
4547  * then calculate based on checksum complete calling the function to compute
4548  * pseudo header.
4549  *
4550  * Return values:
4551  *   0: checksum is validated or try to in skb_checksum_complete
4552  *   non-zero: value of invalid checksum
4553  */
4554 #define __skb_checksum_validate(skb, proto, complete,			\
4555 				zero_okay, check, compute_pseudo)	\
4556 ({									\
4557 	__sum16 __ret = 0;						\
4558 	skb->csum_valid = 0;						\
4559 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4560 		__ret = __skb_checksum_validate_complete(skb,		\
4561 				complete, compute_pseudo(skb, proto));	\
4562 	__ret;								\
4563 })
4564 
4565 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4566 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4567 
4568 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4569 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4570 
4571 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4572 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4573 
4574 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4575 					 compute_pseudo)		\
4576 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4577 
4578 #define skb_checksum_simple_validate(skb)				\
4579 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4580 
__skb_checksum_convert_check(struct sk_buff * skb)4581 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4582 {
4583 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4584 }
4585 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4586 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4587 {
4588 	skb->csum = ~pseudo;
4589 	skb->ip_summed = CHECKSUM_COMPLETE;
4590 }
4591 
4592 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4593 do {									\
4594 	if (__skb_checksum_convert_check(skb))				\
4595 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4596 } while (0)
4597 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4598 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4599 					      u16 start, u16 offset)
4600 {
4601 	skb->ip_summed = CHECKSUM_PARTIAL;
4602 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4603 	skb->csum_offset = offset - start;
4604 }
4605 
4606 /* Update skbuf and packet to reflect the remote checksum offload operation.
4607  * When called, ptr indicates the starting point for skb->csum when
4608  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4609  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4610  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4611 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4612 				       int start, int offset, bool nopartial)
4613 {
4614 	__wsum delta;
4615 
4616 	if (!nopartial) {
4617 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4618 		return;
4619 	}
4620 
4621 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4622 		__skb_checksum_complete(skb);
4623 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4624 	}
4625 
4626 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4627 
4628 	/* Adjust skb->csum since we changed the packet */
4629 	skb->csum = csum_add(skb->csum, delta);
4630 }
4631 
skb_nfct(const struct sk_buff * skb)4632 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4633 {
4634 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4635 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4636 #else
4637 	return NULL;
4638 #endif
4639 }
4640 
skb_get_nfct(const struct sk_buff * skb)4641 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4642 {
4643 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4644 	return skb->_nfct;
4645 #else
4646 	return 0UL;
4647 #endif
4648 }
4649 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4650 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4651 {
4652 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4653 	skb->slow_gro |= !!nfct;
4654 	skb->_nfct = nfct;
4655 #endif
4656 }
4657 
4658 #ifdef CONFIG_SKB_EXTENSIONS
4659 enum skb_ext_id {
4660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4661 	SKB_EXT_BRIDGE_NF,
4662 #endif
4663 #ifdef CONFIG_XFRM
4664 	SKB_EXT_SEC_PATH,
4665 #endif
4666 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4667 	TC_SKB_EXT,
4668 #endif
4669 #if IS_ENABLED(CONFIG_MPTCP)
4670 	SKB_EXT_MPTCP,
4671 #endif
4672 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4673 	SKB_EXT_MCTP,
4674 #endif
4675 	SKB_EXT_NUM, /* must be last */
4676 };
4677 
4678 /**
4679  *	struct skb_ext - sk_buff extensions
4680  *	@refcnt: 1 on allocation, deallocated on 0
4681  *	@offset: offset to add to @data to obtain extension address
4682  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4683  *	@data: start of extension data, variable sized
4684  *
4685  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4686  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4687  */
4688 struct skb_ext {
4689 	refcount_t refcnt;
4690 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4691 	u8 chunks;		/* same */
4692 	char data[] __aligned(8);
4693 };
4694 
4695 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4696 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4697 		    struct skb_ext *ext);
4698 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4699 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4700 void __skb_ext_put(struct skb_ext *ext);
4701 
skb_ext_put(struct sk_buff * skb)4702 static inline void skb_ext_put(struct sk_buff *skb)
4703 {
4704 	if (skb->active_extensions)
4705 		__skb_ext_put(skb->extensions);
4706 }
4707 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4708 static inline void __skb_ext_copy(struct sk_buff *dst,
4709 				  const struct sk_buff *src)
4710 {
4711 	dst->active_extensions = src->active_extensions;
4712 
4713 	if (src->active_extensions) {
4714 		struct skb_ext *ext = src->extensions;
4715 
4716 		refcount_inc(&ext->refcnt);
4717 		dst->extensions = ext;
4718 	}
4719 }
4720 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4721 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4722 {
4723 	skb_ext_put(dst);
4724 	__skb_ext_copy(dst, src);
4725 }
4726 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4727 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4728 {
4729 	return !!ext->offset[i];
4730 }
4731 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4732 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4733 {
4734 	return skb->active_extensions & (1 << id);
4735 }
4736 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4737 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4738 {
4739 	if (skb_ext_exist(skb, id))
4740 		__skb_ext_del(skb, id);
4741 }
4742 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4743 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4744 {
4745 	if (skb_ext_exist(skb, id)) {
4746 		struct skb_ext *ext = skb->extensions;
4747 
4748 		return (void *)ext + (ext->offset[id] << 3);
4749 	}
4750 
4751 	return NULL;
4752 }
4753 
skb_ext_reset(struct sk_buff * skb)4754 static inline void skb_ext_reset(struct sk_buff *skb)
4755 {
4756 	if (unlikely(skb->active_extensions)) {
4757 		__skb_ext_put(skb->extensions);
4758 		skb->active_extensions = 0;
4759 	}
4760 }
4761 
skb_has_extensions(struct sk_buff * skb)4762 static inline bool skb_has_extensions(struct sk_buff *skb)
4763 {
4764 	return unlikely(skb->active_extensions);
4765 }
4766 #else
skb_ext_put(struct sk_buff * skb)4767 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4768 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4769 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4770 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4771 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4772 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4773 #endif /* CONFIG_SKB_EXTENSIONS */
4774 
nf_reset_ct(struct sk_buff * skb)4775 static inline void nf_reset_ct(struct sk_buff *skb)
4776 {
4777 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4778 	nf_conntrack_put(skb_nfct(skb));
4779 	skb->_nfct = 0;
4780 #endif
4781 }
4782 
nf_reset_trace(struct sk_buff * skb)4783 static inline void nf_reset_trace(struct sk_buff *skb)
4784 {
4785 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4786 	skb->nf_trace = 0;
4787 #endif
4788 }
4789 
ipvs_reset(struct sk_buff * skb)4790 static inline void ipvs_reset(struct sk_buff *skb)
4791 {
4792 #if IS_ENABLED(CONFIG_IP_VS)
4793 	skb->ipvs_property = 0;
4794 #endif
4795 }
4796 
4797 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4798 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4799 			     bool copy)
4800 {
4801 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4802 	dst->_nfct = src->_nfct;
4803 	nf_conntrack_get(skb_nfct(src));
4804 #endif
4805 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4806 	if (copy)
4807 		dst->nf_trace = src->nf_trace;
4808 #endif
4809 }
4810 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4811 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4812 {
4813 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4814 	nf_conntrack_put(skb_nfct(dst));
4815 #endif
4816 	dst->slow_gro = src->slow_gro;
4817 	__nf_copy(dst, src, true);
4818 }
4819 
4820 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4821 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4822 {
4823 	to->secmark = from->secmark;
4824 }
4825 
skb_init_secmark(struct sk_buff * skb)4826 static inline void skb_init_secmark(struct sk_buff *skb)
4827 {
4828 	skb->secmark = 0;
4829 }
4830 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4831 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4832 { }
4833 
skb_init_secmark(struct sk_buff * skb)4834 static inline void skb_init_secmark(struct sk_buff *skb)
4835 { }
4836 #endif
4837 
secpath_exists(const struct sk_buff * skb)4838 static inline int secpath_exists(const struct sk_buff *skb)
4839 {
4840 #ifdef CONFIG_XFRM
4841 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4842 #else
4843 	return 0;
4844 #endif
4845 }
4846 
skb_irq_freeable(const struct sk_buff * skb)4847 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4848 {
4849 	return !skb->destructor &&
4850 		!secpath_exists(skb) &&
4851 		!skb_nfct(skb) &&
4852 		!skb->_skb_refdst &&
4853 		!skb_has_frag_list(skb);
4854 }
4855 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4856 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4857 {
4858 	skb->queue_mapping = queue_mapping;
4859 }
4860 
skb_get_queue_mapping(const struct sk_buff * skb)4861 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4862 {
4863 	return skb->queue_mapping;
4864 }
4865 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4866 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4867 {
4868 	to->queue_mapping = from->queue_mapping;
4869 }
4870 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4871 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4872 {
4873 	skb->queue_mapping = rx_queue + 1;
4874 }
4875 
skb_get_rx_queue(const struct sk_buff * skb)4876 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4877 {
4878 	return skb->queue_mapping - 1;
4879 }
4880 
skb_rx_queue_recorded(const struct sk_buff * skb)4881 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4882 {
4883 	return skb->queue_mapping != 0;
4884 }
4885 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4886 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4887 {
4888 	skb->dst_pending_confirm = val;
4889 }
4890 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4891 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4892 {
4893 	return skb->dst_pending_confirm != 0;
4894 }
4895 
skb_sec_path(const struct sk_buff * skb)4896 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4897 {
4898 #ifdef CONFIG_XFRM
4899 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4900 #else
4901 	return NULL;
4902 #endif
4903 }
4904 
skb_is_gso(const struct sk_buff * skb)4905 static inline bool skb_is_gso(const struct sk_buff *skb)
4906 {
4907 	return skb_shinfo(skb)->gso_size;
4908 }
4909 
4910 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4911 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4912 {
4913 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4914 }
4915 
4916 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4917 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4918 {
4919 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4920 }
4921 
4922 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4923 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4924 {
4925 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4926 }
4927 
skb_gso_reset(struct sk_buff * skb)4928 static inline void skb_gso_reset(struct sk_buff *skb)
4929 {
4930 	skb_shinfo(skb)->gso_size = 0;
4931 	skb_shinfo(skb)->gso_segs = 0;
4932 	skb_shinfo(skb)->gso_type = 0;
4933 }
4934 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4935 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4936 					 u16 increment)
4937 {
4938 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4939 		return;
4940 	shinfo->gso_size += increment;
4941 }
4942 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4943 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4944 					 u16 decrement)
4945 {
4946 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4947 		return;
4948 	shinfo->gso_size -= decrement;
4949 }
4950 
4951 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4952 
skb_warn_if_lro(const struct sk_buff * skb)4953 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4954 {
4955 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4956 	 * wanted then gso_type will be set. */
4957 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4958 
4959 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4960 	    unlikely(shinfo->gso_type == 0)) {
4961 		__skb_warn_lro_forwarding(skb);
4962 		return true;
4963 	}
4964 	return false;
4965 }
4966 
skb_forward_csum(struct sk_buff * skb)4967 static inline void skb_forward_csum(struct sk_buff *skb)
4968 {
4969 	/* Unfortunately we don't support this one.  Any brave souls? */
4970 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4971 		skb->ip_summed = CHECKSUM_NONE;
4972 }
4973 
4974 /**
4975  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4976  * @skb: skb to check
4977  *
4978  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4979  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4980  * use this helper, to document places where we make this assertion.
4981  */
skb_checksum_none_assert(const struct sk_buff * skb)4982 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4983 {
4984 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4985 }
4986 
4987 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4988 
4989 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4990 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4991 				     unsigned int transport_len,
4992 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4993 
4994 /**
4995  * skb_head_is_locked - Determine if the skb->head is locked down
4996  * @skb: skb to check
4997  *
4998  * The head on skbs build around a head frag can be removed if they are
4999  * not cloned.  This function returns true if the skb head is locked down
5000  * due to either being allocated via kmalloc, or by being a clone with
5001  * multiple references to the head.
5002  */
skb_head_is_locked(const struct sk_buff * skb)5003 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5004 {
5005 	return !skb->head_frag || skb_cloned(skb);
5006 }
5007 
5008 /* Local Checksum Offload.
5009  * Compute outer checksum based on the assumption that the
5010  * inner checksum will be offloaded later.
5011  * See Documentation/networking/checksum-offloads.rst for
5012  * explanation of how this works.
5013  * Fill in outer checksum adjustment (e.g. with sum of outer
5014  * pseudo-header) before calling.
5015  * Also ensure that inner checksum is in linear data area.
5016  */
lco_csum(struct sk_buff * skb)5017 static inline __wsum lco_csum(struct sk_buff *skb)
5018 {
5019 	unsigned char *csum_start = skb_checksum_start(skb);
5020 	unsigned char *l4_hdr = skb_transport_header(skb);
5021 	__wsum partial;
5022 
5023 	/* Start with complement of inner checksum adjustment */
5024 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5025 						    skb->csum_offset));
5026 
5027 	/* Add in checksum of our headers (incl. outer checksum
5028 	 * adjustment filled in by caller) and return result.
5029 	 */
5030 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5031 }
5032 
skb_is_redirected(const struct sk_buff * skb)5033 static inline bool skb_is_redirected(const struct sk_buff *skb)
5034 {
5035 	return skb->redirected;
5036 }
5037 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5038 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5039 {
5040 	skb->redirected = 1;
5041 #ifdef CONFIG_NET_REDIRECT
5042 	skb->from_ingress = from_ingress;
5043 	if (skb->from_ingress)
5044 		skb_clear_tstamp(skb);
5045 #endif
5046 }
5047 
skb_reset_redirect(struct sk_buff * skb)5048 static inline void skb_reset_redirect(struct sk_buff *skb)
5049 {
5050 	skb->redirected = 0;
5051 }
5052 
skb_set_redirected_noclear(struct sk_buff * skb,bool from_ingress)5053 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5054 					      bool from_ingress)
5055 {
5056 	skb->redirected = 1;
5057 #ifdef CONFIG_NET_REDIRECT
5058 	skb->from_ingress = from_ingress;
5059 #endif
5060 }
5061 
skb_csum_is_sctp(struct sk_buff * skb)5062 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5063 {
5064 #if IS_ENABLED(CONFIG_IP_SCTP)
5065 	return skb->csum_not_inet;
5066 #else
5067 	return 0;
5068 #endif
5069 }
5070 
skb_reset_csum_not_inet(struct sk_buff * skb)5071 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5072 {
5073 	skb->ip_summed = CHECKSUM_NONE;
5074 #if IS_ENABLED(CONFIG_IP_SCTP)
5075 	skb->csum_not_inet = 0;
5076 #endif
5077 }
5078 
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5079 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5080 				       const u64 kcov_handle)
5081 {
5082 #ifdef CONFIG_KCOV
5083 	skb->kcov_handle = kcov_handle;
5084 #endif
5085 }
5086 
skb_get_kcov_handle(struct sk_buff * skb)5087 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5088 {
5089 #ifdef CONFIG_KCOV
5090 	return skb->kcov_handle;
5091 #else
5092 	return 0;
5093 #endif
5094 }
5095 
skb_mark_for_recycle(struct sk_buff * skb)5096 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5097 {
5098 #ifdef CONFIG_PAGE_POOL
5099 	skb->pp_recycle = 1;
5100 #endif
5101 }
5102 
5103 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5104 			     ssize_t maxsize, gfp_t gfp);
5105 
5106 #endif	/* __KERNEL__ */
5107 #endif	/* _LINUX_SKBUFF_H */
5108