• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 #include <linux/android_kabi.h>
73 #include <linux/android_vendor.h>
74 
75 /*
76  * This structure really needs to be cleaned up.
77  * Most of it is for TCP, and not used by any of
78  * the other protocols.
79  */
80 
81 /* Define this to get the SOCK_DBG debugging facility. */
82 #define SOCK_DEBUGGING
83 #ifdef SOCK_DEBUGGING
84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85 					printk(KERN_DEBUG msg); } while (0)
86 #else
87 /* Validate arguments and do nothing */
88 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90 {
91 }
92 #endif
93 
94 /* This is the per-socket lock.  The spinlock provides a synchronization
95  * between user contexts and software interrupt processing, whereas the
96  * mini-semaphore synchronizes multiple users amongst themselves.
97  */
98 typedef struct {
99 	spinlock_t		slock;
100 	int			owned;
101 	wait_queue_head_t	wq;
102 	/*
103 	 * We express the mutex-alike socket_lock semantics
104 	 * to the lock validator by explicitly managing
105 	 * the slock as a lock variant (in addition to
106 	 * the slock itself):
107 	 */
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 	struct lockdep_map dep_map;
110 #endif
111 } socket_lock_t;
112 
113 struct sock;
114 struct proto;
115 struct net;
116 
117 typedef __u32 __bitwise __portpair;
118 typedef __u64 __bitwise __addrpair;
119 
120 /**
121  *	struct sock_common - minimal network layer representation of sockets
122  *	@skc_daddr: Foreign IPv4 addr
123  *	@skc_rcv_saddr: Bound local IPv4 addr
124  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
125  *	@skc_hash: hash value used with various protocol lookup tables
126  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
127  *	@skc_dport: placeholder for inet_dport/tw_dport
128  *	@skc_num: placeholder for inet_num/tw_num
129  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
130  *	@skc_family: network address family
131  *	@skc_state: Connection state
132  *	@skc_reuse: %SO_REUSEADDR setting
133  *	@skc_reuseport: %SO_REUSEPORT setting
134  *	@skc_ipv6only: socket is IPV6 only
135  *	@skc_net_refcnt: socket is using net ref counting
136  *	@skc_bound_dev_if: bound device index if != 0
137  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
138  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
139  *	@skc_prot: protocol handlers inside a network family
140  *	@skc_net: reference to the network namespace of this socket
141  *	@skc_v6_daddr: IPV6 destination address
142  *	@skc_v6_rcv_saddr: IPV6 source address
143  *	@skc_cookie: socket's cookie value
144  *	@skc_node: main hash linkage for various protocol lookup tables
145  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
146  *	@skc_tx_queue_mapping: tx queue number for this connection
147  *	@skc_rx_queue_mapping: rx queue number for this connection
148  *	@skc_flags: place holder for sk_flags
149  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
150  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
151  *	@skc_listener: connection request listener socket (aka rsk_listener)
152  *		[union with @skc_flags]
153  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
154  *		[union with @skc_flags]
155  *	@skc_incoming_cpu: record/match cpu processing incoming packets
156  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
157  *		[union with @skc_incoming_cpu]
158  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
159  *		[union with @skc_incoming_cpu]
160  *	@skc_refcnt: reference count
161  *
162  *	This is the minimal network layer representation of sockets, the header
163  *	for struct sock and struct inet_timewait_sock.
164  */
165 struct sock_common {
166 	union {
167 		__addrpair	skc_addrpair;
168 		struct {
169 			__be32	skc_daddr;
170 			__be32	skc_rcv_saddr;
171 		};
172 	};
173 	union  {
174 		unsigned int	skc_hash;
175 		__u16		skc_u16hashes[2];
176 	};
177 	/* skc_dport && skc_num must be grouped as well */
178 	union {
179 		__portpair	skc_portpair;
180 		struct {
181 			__be16	skc_dport;
182 			__u16	skc_num;
183 		};
184 	};
185 
186 	unsigned short		skc_family;
187 	volatile unsigned char	skc_state;
188 	unsigned char		skc_reuse:4;
189 	unsigned char		skc_reuseport:1;
190 	unsigned char		skc_ipv6only:1;
191 	unsigned char		skc_net_refcnt:1;
192 	int			skc_bound_dev_if;
193 	union {
194 		struct hlist_node	skc_bind_node;
195 		struct hlist_node	skc_portaddr_node;
196 	};
197 	struct proto		*skc_prot;
198 	possible_net_t		skc_net;
199 
200 #if IS_ENABLED(CONFIG_IPV6)
201 	struct in6_addr		skc_v6_daddr;
202 	struct in6_addr		skc_v6_rcv_saddr;
203 #endif
204 
205 	atomic64_t		skc_cookie;
206 
207 	/* following fields are padding to force
208 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 	 * assuming IPV6 is enabled. We use this padding differently
210 	 * for different kind of 'sockets'
211 	 */
212 	union {
213 		unsigned long	skc_flags;
214 		struct sock	*skc_listener; /* request_sock */
215 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 	};
217 	/*
218 	 * fields between dontcopy_begin/dontcopy_end
219 	 * are not copied in sock_copy()
220 	 */
221 	/* private: */
222 	int			skc_dontcopy_begin[0];
223 	/* public: */
224 	union {
225 		struct hlist_node	skc_node;
226 		struct hlist_nulls_node skc_nulls_node;
227 	};
228 	unsigned short		skc_tx_queue_mapping;
229 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
230 	unsigned short		skc_rx_queue_mapping;
231 #endif
232 	union {
233 		int		skc_incoming_cpu;
234 		u32		skc_rcv_wnd;
235 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
236 	};
237 
238 	refcount_t		skc_refcnt;
239 	/* private: */
240 	int                     skc_dontcopy_end[0];
241 	union {
242 		u32		skc_rxhash;
243 		u32		skc_window_clamp;
244 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
245 	};
246 	/* public: */
247 };
248 
249 struct bpf_local_storage;
250 struct sk_filter;
251 
252 /**
253   *	struct sock - network layer representation of sockets
254   *	@__sk_common: shared layout with inet_timewait_sock
255   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257   *	@sk_lock:	synchronizer
258   *	@sk_kern_sock: True if sock is using kernel lock classes
259   *	@sk_rcvbuf: size of receive buffer in bytes
260   *	@sk_wq: sock wait queue and async head
261   *	@sk_rx_dst: receive input route used by early demux
262   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
263   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
264   *	@sk_dst_cache: destination cache
265   *	@sk_dst_pending_confirm: need to confirm neighbour
266   *	@sk_policy: flow policy
267   *	@sk_receive_queue: incoming packets
268   *	@sk_wmem_alloc: transmit queue bytes committed
269   *	@sk_tsq_flags: TCP Small Queues flags
270   *	@sk_write_queue: Packet sending queue
271   *	@sk_omem_alloc: "o" is "option" or "other"
272   *	@sk_wmem_queued: persistent queue size
273   *	@sk_forward_alloc: space allocated forward
274   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
275   *	@sk_napi_id: id of the last napi context to receive data for sk
276   *	@sk_ll_usec: usecs to busypoll when there is no data
277   *	@sk_allocation: allocation mode
278   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
279   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
280   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
281   *	@sk_sndbuf: size of send buffer in bytes
282   *	@__sk_flags_offset: empty field used to determine location of bitfield
283   *	@sk_padding: unused element for alignment
284   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
285   *	@sk_no_check_rx: allow zero checksum in RX packets
286   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
287   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
288   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
289   *	@sk_gso_max_size: Maximum GSO segment size to build
290   *	@sk_gso_max_segs: Maximum number of GSO segments
291   *	@sk_pacing_shift: scaling factor for TCP Small Queues
292   *	@sk_lingertime: %SO_LINGER l_linger setting
293   *	@sk_backlog: always used with the per-socket spinlock held
294   *	@sk_callback_lock: used with the callbacks in the end of this struct
295   *	@sk_error_queue: rarely used
296   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
297   *			  IPV6_ADDRFORM for instance)
298   *	@sk_err: last error
299   *	@sk_err_soft: errors that don't cause failure but are the cause of a
300   *		      persistent failure not just 'timed out'
301   *	@sk_drops: raw/udp drops counter
302   *	@sk_ack_backlog: current listen backlog
303   *	@sk_max_ack_backlog: listen backlog set in listen()
304   *	@sk_uid: user id of owner
305   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
306   *	@sk_busy_poll_budget: napi processing budget when busypolling
307   *	@sk_priority: %SO_PRIORITY setting
308   *	@sk_type: socket type (%SOCK_STREAM, etc)
309   *	@sk_protocol: which protocol this socket belongs in this network family
310   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
311   *	@sk_peer_pid: &struct pid for this socket's peer
312   *	@sk_peer_cred: %SO_PEERCRED setting
313   *	@sk_rcvlowat: %SO_RCVLOWAT setting
314   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
315   *	@sk_sndtimeo: %SO_SNDTIMEO setting
316   *	@sk_txhash: computed flow hash for use on transmit
317   *	@sk_txrehash: enable TX hash rethink
318   *	@sk_filter: socket filtering instructions
319   *	@sk_timer: sock cleanup timer
320   *	@sk_stamp: time stamp of last packet received
321   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
322   *	@sk_tsflags: SO_TIMESTAMPING flags
323   *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
324   *			   Sockets that can be used under memory reclaim should
325   *			   set this to false.
326   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
327   *	              for timestamping
328   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
329   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
330   *	@sk_socket: Identd and reporting IO signals
331   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
332   *	@sk_frag: cached page frag
333   *	@sk_peek_off: current peek_offset value
334   *	@sk_send_head: front of stuff to transmit
335   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
336   *	@sk_security: used by security modules
337   *	@sk_mark: generic packet mark
338   *	@sk_cgrp_data: cgroup data for this cgroup
339   *	@sk_memcg: this socket's memory cgroup association
340   *	@sk_write_pending: a write to stream socket waits to start
341   *	@sk_disconnects: number of disconnect operations performed on this sock
342   *	@sk_state_change: callback to indicate change in the state of the sock
343   *	@sk_data_ready: callback to indicate there is data to be processed
344   *	@sk_write_space: callback to indicate there is bf sending space available
345   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
346   *	@sk_backlog_rcv: callback to process the backlog
347   *	@sk_validate_xmit_skb: ptr to an optional validate function
348   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
349   *	@sk_reuseport_cb: reuseport group container
350   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
351   *	@sk_rcu: used during RCU grace period
352   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
353   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
354   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
355   *	@sk_txtime_unused: unused txtime flags
356   *	@ns_tracker: tracker for netns reference
357   *	@sk_bind2_node: bind node in the bhash2 table
358   */
359 struct sock {
360 	/*
361 	 * Now struct inet_timewait_sock also uses sock_common, so please just
362 	 * don't add nothing before this first member (__sk_common) --acme
363 	 */
364 	struct sock_common	__sk_common;
365 #define sk_node			__sk_common.skc_node
366 #define sk_nulls_node		__sk_common.skc_nulls_node
367 #define sk_refcnt		__sk_common.skc_refcnt
368 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
369 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
370 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
371 #endif
372 
373 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
374 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
375 #define sk_hash			__sk_common.skc_hash
376 #define sk_portpair		__sk_common.skc_portpair
377 #define sk_num			__sk_common.skc_num
378 #define sk_dport		__sk_common.skc_dport
379 #define sk_addrpair		__sk_common.skc_addrpair
380 #define sk_daddr		__sk_common.skc_daddr
381 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
382 #define sk_family		__sk_common.skc_family
383 #define sk_state		__sk_common.skc_state
384 #define sk_reuse		__sk_common.skc_reuse
385 #define sk_reuseport		__sk_common.skc_reuseport
386 #define sk_ipv6only		__sk_common.skc_ipv6only
387 #define sk_net_refcnt		__sk_common.skc_net_refcnt
388 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
389 #define sk_bind_node		__sk_common.skc_bind_node
390 #define sk_prot			__sk_common.skc_prot
391 #define sk_net			__sk_common.skc_net
392 #define sk_v6_daddr		__sk_common.skc_v6_daddr
393 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
394 #define sk_cookie		__sk_common.skc_cookie
395 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
396 #define sk_flags		__sk_common.skc_flags
397 #define sk_rxhash		__sk_common.skc_rxhash
398 
399 	/* early demux fields */
400 	struct dst_entry __rcu	*sk_rx_dst;
401 	int			sk_rx_dst_ifindex;
402 	u32			sk_rx_dst_cookie;
403 
404 	socket_lock_t		sk_lock;
405 	atomic_t		sk_drops;
406 	int			sk_rcvlowat;
407 	struct sk_buff_head	sk_error_queue;
408 	struct sk_buff_head	sk_receive_queue;
409 	/*
410 	 * The backlog queue is special, it is always used with
411 	 * the per-socket spinlock held and requires low latency
412 	 * access. Therefore we special case it's implementation.
413 	 * Note : rmem_alloc is in this structure to fill a hole
414 	 * on 64bit arches, not because its logically part of
415 	 * backlog.
416 	 */
417 	struct {
418 		atomic_t	rmem_alloc;
419 		int		len;
420 		struct sk_buff	*head;
421 		struct sk_buff	*tail;
422 	} sk_backlog;
423 
424 #define sk_rmem_alloc sk_backlog.rmem_alloc
425 
426 	int			sk_forward_alloc;
427 	u32			sk_reserved_mem;
428 #ifdef CONFIG_NET_RX_BUSY_POLL
429 	unsigned int		sk_ll_usec;
430 	/* ===== mostly read cache line ===== */
431 	unsigned int		sk_napi_id;
432 #endif
433 	int			sk_rcvbuf;
434 	int			sk_disconnects;
435 
436 	struct sk_filter __rcu	*sk_filter;
437 	union {
438 		struct socket_wq __rcu	*sk_wq;
439 		/* private: */
440 		struct socket_wq	*sk_wq_raw;
441 		/* public: */
442 	};
443 #ifdef CONFIG_XFRM
444 	struct xfrm_policy __rcu *sk_policy[2];
445 #endif
446 
447 	struct dst_entry __rcu	*sk_dst_cache;
448 	atomic_t		sk_omem_alloc;
449 	int			sk_sndbuf;
450 
451 	/* ===== cache line for TX ===== */
452 	int			sk_wmem_queued;
453 	refcount_t		sk_wmem_alloc;
454 	unsigned long		sk_tsq_flags;
455 	union {
456 		struct sk_buff	*sk_send_head;
457 		struct rb_root	tcp_rtx_queue;
458 	};
459 	struct sk_buff_head	sk_write_queue;
460 	__s32			sk_peek_off;
461 	int			sk_write_pending;
462 	__u32			sk_dst_pending_confirm;
463 	u32			sk_pacing_status; /* see enum sk_pacing */
464 	long			sk_sndtimeo;
465 	struct timer_list	sk_timer;
466 	__u32			sk_priority;
467 	__u32			sk_mark;
468 	unsigned long		sk_pacing_rate; /* bytes per second */
469 	unsigned long		sk_max_pacing_rate;
470 	struct page_frag	sk_frag;
471 	netdev_features_t	sk_route_caps;
472 	int			sk_gso_type;
473 	unsigned int		sk_gso_max_size;
474 	gfp_t			sk_allocation;
475 	__u32			sk_txhash;
476 
477 	/*
478 	 * Because of non atomicity rules, all
479 	 * changes are protected by socket lock.
480 	 */
481 	u8			sk_gso_disabled : 1,
482 				sk_kern_sock : 1,
483 				sk_no_check_tx : 1,
484 				sk_no_check_rx : 1,
485 				sk_userlocks : 4;
486 	u8			sk_pacing_shift;
487 	u16			sk_type;
488 	u16			sk_protocol;
489 	u16			sk_gso_max_segs;
490 	unsigned long	        sk_lingertime;
491 	struct proto		*sk_prot_creator;
492 	rwlock_t		sk_callback_lock;
493 	int			sk_err,
494 				sk_err_soft;
495 	u32			sk_ack_backlog;
496 	u32			sk_max_ack_backlog;
497 	kuid_t			sk_uid;
498 	u8			sk_txrehash;
499 #ifdef CONFIG_NET_RX_BUSY_POLL
500 	u8			sk_prefer_busy_poll;
501 	u16			sk_busy_poll_budget;
502 #endif
503 	spinlock_t		sk_peer_lock;
504 	int			sk_bind_phc;
505 	struct pid		*sk_peer_pid;
506 	const struct cred	*sk_peer_cred;
507 
508 	long			sk_rcvtimeo;
509 	ktime_t			sk_stamp;
510 #if BITS_PER_LONG==32
511 	seqlock_t		sk_stamp_seq;
512 #endif
513 	atomic_t		sk_tskey;
514 	atomic_t		sk_zckey;
515 	u32			sk_tsflags;
516 	u8			sk_shutdown;
517 
518 	u8			sk_clockid;
519 	u8			sk_txtime_deadline_mode : 1,
520 				sk_txtime_report_errors : 1,
521 				sk_txtime_unused : 6;
522 	bool			sk_use_task_frag;
523 
524 	struct socket		*sk_socket;
525 	void			*sk_user_data;
526 #ifdef CONFIG_SECURITY
527 	void			*sk_security;
528 #endif
529 	struct sock_cgroup_data	sk_cgrp_data;
530 	struct mem_cgroup	*sk_memcg;
531 	void			(*sk_state_change)(struct sock *sk);
532 	void			(*sk_data_ready)(struct sock *sk);
533 	void			(*sk_write_space)(struct sock *sk);
534 	void			(*sk_error_report)(struct sock *sk);
535 	int			(*sk_backlog_rcv)(struct sock *sk,
536 						  struct sk_buff *skb);
537 #ifdef CONFIG_SOCK_VALIDATE_XMIT
538 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
539 							struct net_device *dev,
540 							struct sk_buff *skb);
541 #endif
542 	void                    (*sk_destruct)(struct sock *sk);
543 	struct sock_reuseport __rcu	*sk_reuseport_cb;
544 #ifdef CONFIG_BPF_SYSCALL
545 	struct bpf_local_storage __rcu	*sk_bpf_storage;
546 #endif
547 	struct rcu_head		sk_rcu;
548 	netns_tracker		ns_tracker;
549 	struct hlist_node	sk_bind2_node;
550 
551 	ANDROID_KABI_RESERVE(1);
552 	ANDROID_KABI_RESERVE(2);
553 	ANDROID_KABI_RESERVE(3);
554 	ANDROID_KABI_RESERVE(4);
555 	ANDROID_KABI_RESERVE(5);
556 	ANDROID_KABI_RESERVE(6);
557 	ANDROID_KABI_RESERVE(7);
558 	ANDROID_KABI_RESERVE(8);
559 	ANDROID_OEM_DATA(1);
560 };
561 
562 enum sk_pacing {
563 	SK_PACING_NONE		= 0,
564 	SK_PACING_NEEDED	= 1,
565 	SK_PACING_FQ		= 2,
566 };
567 
568 /* flag bits in sk_user_data
569  *
570  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
571  *   not be suitable for copying when cloning the socket. For instance,
572  *   it can point to a reference counted object. sk_user_data bottom
573  *   bit is set if pointer must not be copied.
574  *
575  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
576  *   managed/owned by a BPF reuseport array. This bit should be set
577  *   when sk_user_data's sk is added to the bpf's reuseport_array.
578  *
579  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
580  *   sk_user_data points to psock type. This bit should be set
581  *   when sk_user_data is assigned to a psock object.
582  */
583 #define SK_USER_DATA_NOCOPY	1UL
584 #define SK_USER_DATA_BPF	2UL
585 #define SK_USER_DATA_PSOCK	4UL
586 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
587 				  SK_USER_DATA_PSOCK)
588 
589 /**
590  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
591  * @sk: socket
592  */
sk_user_data_is_nocopy(const struct sock * sk)593 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
594 {
595 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
596 }
597 
598 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
599 
600 /**
601  * __locked_read_sk_user_data_with_flags - return the pointer
602  * only if argument flags all has been set in sk_user_data. Otherwise
603  * return NULL
604  *
605  * @sk: socket
606  * @flags: flag bits
607  *
608  * The caller must be holding sk->sk_callback_lock.
609  */
610 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)611 __locked_read_sk_user_data_with_flags(const struct sock *sk,
612 				      uintptr_t flags)
613 {
614 	uintptr_t sk_user_data =
615 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
616 						 lockdep_is_held(&sk->sk_callback_lock));
617 
618 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
619 
620 	if ((sk_user_data & flags) == flags)
621 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
622 	return NULL;
623 }
624 
625 /**
626  * __rcu_dereference_sk_user_data_with_flags - return the pointer
627  * only if argument flags all has been set in sk_user_data. Otherwise
628  * return NULL
629  *
630  * @sk: socket
631  * @flags: flag bits
632  */
633 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)634 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
635 					  uintptr_t flags)
636 {
637 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
638 
639 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
640 
641 	if ((sk_user_data & flags) == flags)
642 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
643 	return NULL;
644 }
645 
646 #define rcu_dereference_sk_user_data(sk)				\
647 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
648 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
649 ({									\
650 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
651 		  __tmp2 = (uintptr_t)(flags);				\
652 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
653 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
654 	rcu_assign_pointer(__sk_user_data((sk)),			\
655 			   __tmp1 | __tmp2);				\
656 })
657 #define rcu_assign_sk_user_data(sk, ptr)				\
658 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
659 
660 static inline
sock_net(const struct sock * sk)661 struct net *sock_net(const struct sock *sk)
662 {
663 	return read_pnet(&sk->sk_net);
664 }
665 
666 static inline
sock_net_set(struct sock * sk,struct net * net)667 void sock_net_set(struct sock *sk, struct net *net)
668 {
669 	write_pnet(&sk->sk_net, net);
670 }
671 
672 /*
673  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
674  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
675  * on a socket means that the socket will reuse everybody else's port
676  * without looking at the other's sk_reuse value.
677  */
678 
679 #define SK_NO_REUSE	0
680 #define SK_CAN_REUSE	1
681 #define SK_FORCE_REUSE	2
682 
683 int sk_set_peek_off(struct sock *sk, int val);
684 
sk_peek_offset(const struct sock * sk,int flags)685 static inline int sk_peek_offset(const struct sock *sk, int flags)
686 {
687 	if (unlikely(flags & MSG_PEEK)) {
688 		return READ_ONCE(sk->sk_peek_off);
689 	}
690 
691 	return 0;
692 }
693 
sk_peek_offset_bwd(struct sock * sk,int val)694 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
695 {
696 	s32 off = READ_ONCE(sk->sk_peek_off);
697 
698 	if (unlikely(off >= 0)) {
699 		off = max_t(s32, off - val, 0);
700 		WRITE_ONCE(sk->sk_peek_off, off);
701 	}
702 }
703 
sk_peek_offset_fwd(struct sock * sk,int val)704 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
705 {
706 	sk_peek_offset_bwd(sk, -val);
707 }
708 
709 /*
710  * Hashed lists helper routines
711  */
sk_entry(const struct hlist_node * node)712 static inline struct sock *sk_entry(const struct hlist_node *node)
713 {
714 	return hlist_entry(node, struct sock, sk_node);
715 }
716 
__sk_head(const struct hlist_head * head)717 static inline struct sock *__sk_head(const struct hlist_head *head)
718 {
719 	return hlist_entry(head->first, struct sock, sk_node);
720 }
721 
sk_head(const struct hlist_head * head)722 static inline struct sock *sk_head(const struct hlist_head *head)
723 {
724 	return hlist_empty(head) ? NULL : __sk_head(head);
725 }
726 
__sk_nulls_head(const struct hlist_nulls_head * head)727 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
728 {
729 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
730 }
731 
sk_nulls_head(const struct hlist_nulls_head * head)732 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
733 {
734 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
735 }
736 
sk_next(const struct sock * sk)737 static inline struct sock *sk_next(const struct sock *sk)
738 {
739 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
740 }
741 
sk_nulls_next(const struct sock * sk)742 static inline struct sock *sk_nulls_next(const struct sock *sk)
743 {
744 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
745 		hlist_nulls_entry(sk->sk_nulls_node.next,
746 				  struct sock, sk_nulls_node) :
747 		NULL;
748 }
749 
sk_unhashed(const struct sock * sk)750 static inline bool sk_unhashed(const struct sock *sk)
751 {
752 	return hlist_unhashed(&sk->sk_node);
753 }
754 
sk_hashed(const struct sock * sk)755 static inline bool sk_hashed(const struct sock *sk)
756 {
757 	return !sk_unhashed(sk);
758 }
759 
sk_node_init(struct hlist_node * node)760 static inline void sk_node_init(struct hlist_node *node)
761 {
762 	node->pprev = NULL;
763 }
764 
__sk_del_node(struct sock * sk)765 static inline void __sk_del_node(struct sock *sk)
766 {
767 	__hlist_del(&sk->sk_node);
768 }
769 
770 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)771 static inline bool __sk_del_node_init(struct sock *sk)
772 {
773 	if (sk_hashed(sk)) {
774 		__sk_del_node(sk);
775 		sk_node_init(&sk->sk_node);
776 		return true;
777 	}
778 	return false;
779 }
780 
781 /* Grab socket reference count. This operation is valid only
782    when sk is ALREADY grabbed f.e. it is found in hash table
783    or a list and the lookup is made under lock preventing hash table
784    modifications.
785  */
786 
sock_hold(struct sock * sk)787 static __always_inline void sock_hold(struct sock *sk)
788 {
789 	refcount_inc(&sk->sk_refcnt);
790 }
791 
792 /* Ungrab socket in the context, which assumes that socket refcnt
793    cannot hit zero, f.e. it is true in context of any socketcall.
794  */
__sock_put(struct sock * sk)795 static __always_inline void __sock_put(struct sock *sk)
796 {
797 	refcount_dec(&sk->sk_refcnt);
798 }
799 
sk_del_node_init(struct sock * sk)800 static inline bool sk_del_node_init(struct sock *sk)
801 {
802 	bool rc = __sk_del_node_init(sk);
803 
804 	if (rc) {
805 		/* paranoid for a while -acme */
806 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
807 		__sock_put(sk);
808 	}
809 	return rc;
810 }
811 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
812 
__sk_nulls_del_node_init_rcu(struct sock * sk)813 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
814 {
815 	if (sk_hashed(sk)) {
816 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
817 		return true;
818 	}
819 	return false;
820 }
821 
sk_nulls_del_node_init_rcu(struct sock * sk)822 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
823 {
824 	bool rc = __sk_nulls_del_node_init_rcu(sk);
825 
826 	if (rc) {
827 		/* paranoid for a while -acme */
828 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
829 		__sock_put(sk);
830 	}
831 	return rc;
832 }
833 
__sk_add_node(struct sock * sk,struct hlist_head * list)834 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
835 {
836 	hlist_add_head(&sk->sk_node, list);
837 }
838 
sk_add_node(struct sock * sk,struct hlist_head * list)839 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
840 {
841 	sock_hold(sk);
842 	__sk_add_node(sk, list);
843 }
844 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)845 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
846 {
847 	sock_hold(sk);
848 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
849 	    sk->sk_family == AF_INET6)
850 		hlist_add_tail_rcu(&sk->sk_node, list);
851 	else
852 		hlist_add_head_rcu(&sk->sk_node, list);
853 }
854 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)855 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
856 {
857 	sock_hold(sk);
858 	hlist_add_tail_rcu(&sk->sk_node, list);
859 }
860 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)861 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
862 {
863 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
864 }
865 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)866 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
867 {
868 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
869 }
870 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)871 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
872 {
873 	sock_hold(sk);
874 	__sk_nulls_add_node_rcu(sk, list);
875 }
876 
__sk_del_bind_node(struct sock * sk)877 static inline void __sk_del_bind_node(struct sock *sk)
878 {
879 	__hlist_del(&sk->sk_bind_node);
880 }
881 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)882 static inline void sk_add_bind_node(struct sock *sk,
883 					struct hlist_head *list)
884 {
885 	hlist_add_head(&sk->sk_bind_node, list);
886 }
887 
__sk_del_bind2_node(struct sock * sk)888 static inline void __sk_del_bind2_node(struct sock *sk)
889 {
890 	__hlist_del(&sk->sk_bind2_node);
891 }
892 
sk_add_bind2_node(struct sock * sk,struct hlist_head * list)893 static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list)
894 {
895 	hlist_add_head(&sk->sk_bind2_node, list);
896 }
897 
898 #define sk_for_each(__sk, list) \
899 	hlist_for_each_entry(__sk, list, sk_node)
900 #define sk_for_each_rcu(__sk, list) \
901 	hlist_for_each_entry_rcu(__sk, list, sk_node)
902 #define sk_nulls_for_each(__sk, node, list) \
903 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
904 #define sk_nulls_for_each_rcu(__sk, node, list) \
905 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
906 #define sk_for_each_from(__sk) \
907 	hlist_for_each_entry_from(__sk, sk_node)
908 #define sk_nulls_for_each_from(__sk, node) \
909 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
910 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
911 #define sk_for_each_safe(__sk, tmp, list) \
912 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
913 #define sk_for_each_bound(__sk, list) \
914 	hlist_for_each_entry(__sk, list, sk_bind_node)
915 #define sk_for_each_bound_bhash2(__sk, list) \
916 	hlist_for_each_entry(__sk, list, sk_bind2_node)
917 
918 /**
919  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
920  * @tpos:	the type * to use as a loop cursor.
921  * @pos:	the &struct hlist_node to use as a loop cursor.
922  * @head:	the head for your list.
923  * @offset:	offset of hlist_node within the struct.
924  *
925  */
926 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
927 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
928 	     pos != NULL &&						       \
929 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
930 	     pos = rcu_dereference(hlist_next_rcu(pos)))
931 
sk_user_ns(const struct sock * sk)932 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
933 {
934 	/* Careful only use this in a context where these parameters
935 	 * can not change and must all be valid, such as recvmsg from
936 	 * userspace.
937 	 */
938 	return sk->sk_socket->file->f_cred->user_ns;
939 }
940 
941 /* Sock flags */
942 enum sock_flags {
943 	SOCK_DEAD,
944 	SOCK_DONE,
945 	SOCK_URGINLINE,
946 	SOCK_KEEPOPEN,
947 	SOCK_LINGER,
948 	SOCK_DESTROY,
949 	SOCK_BROADCAST,
950 	SOCK_TIMESTAMP,
951 	SOCK_ZAPPED,
952 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
953 	SOCK_DBG, /* %SO_DEBUG setting */
954 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
955 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
956 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
957 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
958 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
959 	SOCK_FASYNC, /* fasync() active */
960 	SOCK_RXQ_OVFL,
961 	SOCK_ZEROCOPY, /* buffers from userspace */
962 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
963 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
964 		     * Will use last 4 bytes of packet sent from
965 		     * user-space instead.
966 		     */
967 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
968 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
969 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
970 	SOCK_TXTIME,
971 	SOCK_XDP, /* XDP is attached */
972 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
973 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
974 };
975 
976 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
977 
sock_copy_flags(struct sock * nsk,const struct sock * osk)978 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
979 {
980 	nsk->sk_flags = osk->sk_flags;
981 }
982 
sock_set_flag(struct sock * sk,enum sock_flags flag)983 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
984 {
985 	__set_bit(flag, &sk->sk_flags);
986 }
987 
sock_reset_flag(struct sock * sk,enum sock_flags flag)988 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
989 {
990 	__clear_bit(flag, &sk->sk_flags);
991 }
992 
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)993 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
994 				     int valbool)
995 {
996 	if (valbool)
997 		sock_set_flag(sk, bit);
998 	else
999 		sock_reset_flag(sk, bit);
1000 }
1001 
sock_flag(const struct sock * sk,enum sock_flags flag)1002 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
1003 {
1004 	return test_bit(flag, &sk->sk_flags);
1005 }
1006 
1007 #ifdef CONFIG_NET
1008 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)1009 static inline int sk_memalloc_socks(void)
1010 {
1011 	return static_branch_unlikely(&memalloc_socks_key);
1012 }
1013 
1014 void __receive_sock(struct file *file);
1015 #else
1016 
sk_memalloc_socks(void)1017 static inline int sk_memalloc_socks(void)
1018 {
1019 	return 0;
1020 }
1021 
__receive_sock(struct file * file)1022 static inline void __receive_sock(struct file *file)
1023 { }
1024 #endif
1025 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1026 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1027 {
1028 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1029 }
1030 
sk_acceptq_removed(struct sock * sk)1031 static inline void sk_acceptq_removed(struct sock *sk)
1032 {
1033 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1034 }
1035 
sk_acceptq_added(struct sock * sk)1036 static inline void sk_acceptq_added(struct sock *sk)
1037 {
1038 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1039 }
1040 
1041 /* Note: If you think the test should be:
1042  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1043  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1044  */
sk_acceptq_is_full(const struct sock * sk)1045 static inline bool sk_acceptq_is_full(const struct sock *sk)
1046 {
1047 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1048 }
1049 
1050 /*
1051  * Compute minimal free write space needed to queue new packets.
1052  */
sk_stream_min_wspace(const struct sock * sk)1053 static inline int sk_stream_min_wspace(const struct sock *sk)
1054 {
1055 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1056 }
1057 
sk_stream_wspace(const struct sock * sk)1058 static inline int sk_stream_wspace(const struct sock *sk)
1059 {
1060 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1061 }
1062 
sk_wmem_queued_add(struct sock * sk,int val)1063 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1064 {
1065 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1066 }
1067 
sk_forward_alloc_add(struct sock * sk,int val)1068 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1069 {
1070 	/* Paired with lockless reads of sk->sk_forward_alloc */
1071 	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1072 }
1073 
1074 void sk_stream_write_space(struct sock *sk);
1075 
1076 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1077 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1078 {
1079 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1080 	skb_dst_force(skb);
1081 
1082 	if (!sk->sk_backlog.tail)
1083 		WRITE_ONCE(sk->sk_backlog.head, skb);
1084 	else
1085 		sk->sk_backlog.tail->next = skb;
1086 
1087 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1088 	skb->next = NULL;
1089 }
1090 
1091 /*
1092  * Take into account size of receive queue and backlog queue
1093  * Do not take into account this skb truesize,
1094  * to allow even a single big packet to come.
1095  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1096 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1097 {
1098 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1099 
1100 	return qsize > limit;
1101 }
1102 
1103 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1104 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1105 					      unsigned int limit)
1106 {
1107 	if (sk_rcvqueues_full(sk, limit))
1108 		return -ENOBUFS;
1109 
1110 	/*
1111 	 * If the skb was allocated from pfmemalloc reserves, only
1112 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1113 	 * helping free memory
1114 	 */
1115 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1116 		return -ENOMEM;
1117 
1118 	__sk_add_backlog(sk, skb);
1119 	sk->sk_backlog.len += skb->truesize;
1120 	return 0;
1121 }
1122 
1123 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1124 
1125 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1126 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1127 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1128 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1129 {
1130 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1131 		return __sk_backlog_rcv(sk, skb);
1132 
1133 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1134 				  tcp_v6_do_rcv,
1135 				  tcp_v4_do_rcv,
1136 				  sk, skb);
1137 }
1138 
sk_incoming_cpu_update(struct sock * sk)1139 static inline void sk_incoming_cpu_update(struct sock *sk)
1140 {
1141 	int cpu = raw_smp_processor_id();
1142 
1143 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1144 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1145 }
1146 
sock_rps_record_flow_hash(__u32 hash)1147 static inline void sock_rps_record_flow_hash(__u32 hash)
1148 {
1149 #ifdef CONFIG_RPS
1150 	struct rps_sock_flow_table *sock_flow_table;
1151 
1152 	rcu_read_lock();
1153 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1154 	rps_record_sock_flow(sock_flow_table, hash);
1155 	rcu_read_unlock();
1156 #endif
1157 }
1158 
sock_rps_record_flow(const struct sock * sk)1159 static inline void sock_rps_record_flow(const struct sock *sk)
1160 {
1161 #ifdef CONFIG_RPS
1162 	if (static_branch_unlikely(&rfs_needed)) {
1163 		/* Reading sk->sk_rxhash might incur an expensive cache line
1164 		 * miss.
1165 		 *
1166 		 * TCP_ESTABLISHED does cover almost all states where RFS
1167 		 * might be useful, and is cheaper [1] than testing :
1168 		 *	IPv4: inet_sk(sk)->inet_daddr
1169 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1170 		 * OR	an additional socket flag
1171 		 * [1] : sk_state and sk_prot are in the same cache line.
1172 		 */
1173 		if (sk->sk_state == TCP_ESTABLISHED) {
1174 			/* This READ_ONCE() is paired with the WRITE_ONCE()
1175 			 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1176 			 */
1177 			sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1178 		}
1179 	}
1180 #endif
1181 }
1182 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1183 static inline void sock_rps_save_rxhash(struct sock *sk,
1184 					const struct sk_buff *skb)
1185 {
1186 #ifdef CONFIG_RPS
1187 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1188 	 * here, and another one in sock_rps_record_flow().
1189 	 */
1190 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1191 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1192 #endif
1193 }
1194 
sock_rps_reset_rxhash(struct sock * sk)1195 static inline void sock_rps_reset_rxhash(struct sock *sk)
1196 {
1197 #ifdef CONFIG_RPS
1198 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1199 	WRITE_ONCE(sk->sk_rxhash, 0);
1200 #endif
1201 }
1202 
1203 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1204 	({	int __rc, __dis = __sk->sk_disconnects;			\
1205 		release_sock(__sk);					\
1206 		__rc = __condition;					\
1207 		if (!__rc) {						\
1208 			*(__timeo) = wait_woken(__wait,			\
1209 						TASK_INTERRUPTIBLE,	\
1210 						*(__timeo));		\
1211 		}							\
1212 		sched_annotate_sleep();					\
1213 		lock_sock(__sk);					\
1214 		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1215 		__rc;							\
1216 	})
1217 
1218 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1219 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1220 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1221 int sk_stream_error(struct sock *sk, int flags, int err);
1222 void sk_stream_kill_queues(struct sock *sk);
1223 void sk_set_memalloc(struct sock *sk);
1224 void sk_clear_memalloc(struct sock *sk);
1225 
1226 void __sk_flush_backlog(struct sock *sk);
1227 
sk_flush_backlog(struct sock * sk)1228 static inline bool sk_flush_backlog(struct sock *sk)
1229 {
1230 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1231 		__sk_flush_backlog(sk);
1232 		return true;
1233 	}
1234 	return false;
1235 }
1236 
1237 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1238 
1239 struct request_sock_ops;
1240 struct timewait_sock_ops;
1241 struct inet_hashinfo;
1242 struct raw_hashinfo;
1243 struct smc_hashinfo;
1244 struct module;
1245 struct sk_psock;
1246 
1247 /*
1248  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1249  * un-modified. Special care is taken when initializing object to zero.
1250  */
sk_prot_clear_nulls(struct sock * sk,int size)1251 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1252 {
1253 	if (offsetof(struct sock, sk_node.next) != 0)
1254 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1255 	memset(&sk->sk_node.pprev, 0,
1256 	       size - offsetof(struct sock, sk_node.pprev));
1257 }
1258 
1259 /* Networking protocol blocks we attach to sockets.
1260  * socket layer -> transport layer interface
1261  */
1262 struct proto {
1263 	void			(*close)(struct sock *sk,
1264 					long timeout);
1265 	int			(*pre_connect)(struct sock *sk,
1266 					struct sockaddr *uaddr,
1267 					int addr_len);
1268 	int			(*connect)(struct sock *sk,
1269 					struct sockaddr *uaddr,
1270 					int addr_len);
1271 	int			(*disconnect)(struct sock *sk, int flags);
1272 
1273 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1274 					  bool kern);
1275 
1276 	int			(*ioctl)(struct sock *sk, int cmd,
1277 					 int *karg);
1278 	int			(*init)(struct sock *sk);
1279 	void			(*destroy)(struct sock *sk);
1280 	void			(*shutdown)(struct sock *sk, int how);
1281 	int			(*setsockopt)(struct sock *sk, int level,
1282 					int optname, sockptr_t optval,
1283 					unsigned int optlen);
1284 	int			(*getsockopt)(struct sock *sk, int level,
1285 					int optname, char __user *optval,
1286 					int __user *option);
1287 	void			(*keepalive)(struct sock *sk, int valbool);
1288 #ifdef CONFIG_COMPAT
1289 	int			(*compat_ioctl)(struct sock *sk,
1290 					unsigned int cmd, unsigned long arg);
1291 #endif
1292 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1293 					   size_t len);
1294 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1295 					   size_t len, int flags, int *addr_len);
1296 	void			(*splice_eof)(struct socket *sock);
1297 	int			(*bind)(struct sock *sk,
1298 					struct sockaddr *addr, int addr_len);
1299 	int			(*bind_add)(struct sock *sk,
1300 					struct sockaddr *addr, int addr_len);
1301 
1302 	int			(*backlog_rcv) (struct sock *sk,
1303 						struct sk_buff *skb);
1304 	bool			(*bpf_bypass_getsockopt)(int level,
1305 							 int optname);
1306 
1307 	void		(*release_cb)(struct sock *sk);
1308 
1309 	/* Keeping track of sk's, looking them up, and port selection methods. */
1310 	int			(*hash)(struct sock *sk);
1311 	void			(*unhash)(struct sock *sk);
1312 	void			(*rehash)(struct sock *sk);
1313 	int			(*get_port)(struct sock *sk, unsigned short snum);
1314 	void			(*put_port)(struct sock *sk);
1315 #ifdef CONFIG_BPF_SYSCALL
1316 	int			(*psock_update_sk_prot)(struct sock *sk,
1317 							struct sk_psock *psock,
1318 							bool restore);
1319 #endif
1320 
1321 	/* Keeping track of sockets in use */
1322 #ifdef CONFIG_PROC_FS
1323 	unsigned int		inuse_idx;
1324 #endif
1325 
1326 #if IS_ENABLED(CONFIG_MPTCP)
1327 	int			(*forward_alloc_get)(const struct sock *sk);
1328 #endif
1329 
1330 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1331 	bool			(*sock_is_readable)(struct sock *sk);
1332 	/* Memory pressure */
1333 	void			(*enter_memory_pressure)(struct sock *sk);
1334 	void			(*leave_memory_pressure)(struct sock *sk);
1335 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1336 	int  __percpu		*per_cpu_fw_alloc;
1337 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1338 
1339 	/*
1340 	 * Pressure flag: try to collapse.
1341 	 * Technical note: it is used by multiple contexts non atomically.
1342 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1343 	 * All the __sk_mem_schedule() is of this nature: accounting
1344 	 * is strict, actions are advisory and have some latency.
1345 	 */
1346 	unsigned long		*memory_pressure;
1347 	long			*sysctl_mem;
1348 
1349 	int			*sysctl_wmem;
1350 	int			*sysctl_rmem;
1351 	u32			sysctl_wmem_offset;
1352 	u32			sysctl_rmem_offset;
1353 
1354 	int			max_header;
1355 	bool			no_autobind;
1356 
1357 	struct kmem_cache	*slab;
1358 	unsigned int		obj_size;
1359 	unsigned int		ipv6_pinfo_offset;
1360 	slab_flags_t		slab_flags;
1361 	unsigned int		useroffset;	/* Usercopy region offset */
1362 	unsigned int		usersize;	/* Usercopy region size */
1363 
1364 	unsigned int __percpu	*orphan_count;
1365 
1366 	struct request_sock_ops	*rsk_prot;
1367 	struct timewait_sock_ops *twsk_prot;
1368 
1369 	union {
1370 		struct inet_hashinfo	*hashinfo;
1371 		struct udp_table	*udp_table;
1372 		struct raw_hashinfo	*raw_hash;
1373 		struct smc_hashinfo	*smc_hash;
1374 	} h;
1375 
1376 	struct module		*owner;
1377 
1378 	char			name[32];
1379 
1380 	struct list_head	node;
1381 	int			(*diag_destroy)(struct sock *sk, int err);
1382 } __randomize_layout;
1383 
1384 int proto_register(struct proto *prot, int alloc_slab);
1385 void proto_unregister(struct proto *prot);
1386 int sock_load_diag_module(int family, int protocol);
1387 
1388 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1389 
sk_forward_alloc_get(const struct sock * sk)1390 static inline int sk_forward_alloc_get(const struct sock *sk)
1391 {
1392 #if IS_ENABLED(CONFIG_MPTCP)
1393 	if (sk->sk_prot->forward_alloc_get)
1394 		return sk->sk_prot->forward_alloc_get(sk);
1395 #endif
1396 	return READ_ONCE(sk->sk_forward_alloc);
1397 }
1398 
__sk_stream_memory_free(const struct sock * sk,int wake)1399 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1400 {
1401 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1402 		return false;
1403 
1404 	return sk->sk_prot->stream_memory_free ?
1405 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1406 				     tcp_stream_memory_free, sk, wake) : true;
1407 }
1408 
sk_stream_memory_free(const struct sock * sk)1409 static inline bool sk_stream_memory_free(const struct sock *sk)
1410 {
1411 	return __sk_stream_memory_free(sk, 0);
1412 }
1413 
__sk_stream_is_writeable(const struct sock * sk,int wake)1414 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1415 {
1416 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1417 	       __sk_stream_memory_free(sk, wake);
1418 }
1419 
sk_stream_is_writeable(const struct sock * sk)1420 static inline bool sk_stream_is_writeable(const struct sock *sk)
1421 {
1422 	return __sk_stream_is_writeable(sk, 0);
1423 }
1424 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1425 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1426 					    struct cgroup *ancestor)
1427 {
1428 #ifdef CONFIG_SOCK_CGROUP_DATA
1429 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1430 				    ancestor);
1431 #else
1432 	return -ENOTSUPP;
1433 #endif
1434 }
1435 
sk_has_memory_pressure(const struct sock * sk)1436 static inline bool sk_has_memory_pressure(const struct sock *sk)
1437 {
1438 	return sk->sk_prot->memory_pressure != NULL;
1439 }
1440 
sk_under_global_memory_pressure(const struct sock * sk)1441 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1442 {
1443 	return sk->sk_prot->memory_pressure &&
1444 		!!READ_ONCE(*sk->sk_prot->memory_pressure);
1445 }
1446 
sk_under_memory_pressure(const struct sock * sk)1447 static inline bool sk_under_memory_pressure(const struct sock *sk)
1448 {
1449 	if (!sk->sk_prot->memory_pressure)
1450 		return false;
1451 
1452 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1453 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1454 		return true;
1455 
1456 	return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1457 }
1458 
1459 static inline long
proto_memory_allocated(const struct proto * prot)1460 proto_memory_allocated(const struct proto *prot)
1461 {
1462 	return max(0L, atomic_long_read(prot->memory_allocated));
1463 }
1464 
1465 static inline long
sk_memory_allocated(const struct sock * sk)1466 sk_memory_allocated(const struct sock *sk)
1467 {
1468 	return proto_memory_allocated(sk->sk_prot);
1469 }
1470 
1471 /* 1 MB per cpu, in page units */
1472 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1473 extern int sysctl_mem_pcpu_rsv;
1474 
proto_memory_pcpu_drain(struct proto * proto)1475 static inline void proto_memory_pcpu_drain(struct proto *proto)
1476 {
1477 	int val = this_cpu_xchg(*proto->per_cpu_fw_alloc, 0);
1478 
1479 	if (val)
1480 		atomic_long_add(val, proto->memory_allocated);
1481 }
1482 
1483 static inline void
sk_memory_allocated_add(const struct sock * sk,int val)1484 sk_memory_allocated_add(const struct sock *sk, int val)
1485 {
1486 	struct proto *proto = sk->sk_prot;
1487 
1488 	val = this_cpu_add_return(*proto->per_cpu_fw_alloc, val);
1489 
1490 	if (unlikely(val >= READ_ONCE(sysctl_mem_pcpu_rsv)))
1491 		proto_memory_pcpu_drain(proto);
1492 }
1493 
1494 static inline void
sk_memory_allocated_sub(const struct sock * sk,int val)1495 sk_memory_allocated_sub(const struct sock *sk, int val)
1496 {
1497 	struct proto *proto = sk->sk_prot;
1498 
1499 	val = this_cpu_sub_return(*proto->per_cpu_fw_alloc, val);
1500 
1501 	if (unlikely(val <= -READ_ONCE(sysctl_mem_pcpu_rsv)))
1502 		proto_memory_pcpu_drain(proto);
1503 }
1504 
1505 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1506 
sk_sockets_allocated_dec(struct sock * sk)1507 static inline void sk_sockets_allocated_dec(struct sock *sk)
1508 {
1509 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1510 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1511 }
1512 
sk_sockets_allocated_inc(struct sock * sk)1513 static inline void sk_sockets_allocated_inc(struct sock *sk)
1514 {
1515 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1516 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1517 }
1518 
1519 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1520 sk_sockets_allocated_read_positive(struct sock *sk)
1521 {
1522 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1523 }
1524 
1525 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1526 proto_sockets_allocated_sum_positive(struct proto *prot)
1527 {
1528 	return percpu_counter_sum_positive(prot->sockets_allocated);
1529 }
1530 
1531 static inline bool
proto_memory_pressure(struct proto * prot)1532 proto_memory_pressure(struct proto *prot)
1533 {
1534 	if (!prot->memory_pressure)
1535 		return false;
1536 	return !!READ_ONCE(*prot->memory_pressure);
1537 }
1538 
1539 
1540 #ifdef CONFIG_PROC_FS
1541 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1542 struct prot_inuse {
1543 	int all;
1544 	int val[PROTO_INUSE_NR];
1545 };
1546 
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1547 static inline void sock_prot_inuse_add(const struct net *net,
1548 				       const struct proto *prot, int val)
1549 {
1550 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1551 }
1552 
sock_inuse_add(const struct net * net,int val)1553 static inline void sock_inuse_add(const struct net *net, int val)
1554 {
1555 	this_cpu_add(net->core.prot_inuse->all, val);
1556 }
1557 
1558 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1559 int sock_inuse_get(struct net *net);
1560 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1561 static inline void sock_prot_inuse_add(const struct net *net,
1562 				       const struct proto *prot, int val)
1563 {
1564 }
1565 
sock_inuse_add(const struct net * net,int val)1566 static inline void sock_inuse_add(const struct net *net, int val)
1567 {
1568 }
1569 #endif
1570 
1571 
1572 /* With per-bucket locks this operation is not-atomic, so that
1573  * this version is not worse.
1574  */
__sk_prot_rehash(struct sock * sk)1575 static inline int __sk_prot_rehash(struct sock *sk)
1576 {
1577 	sk->sk_prot->unhash(sk);
1578 	return sk->sk_prot->hash(sk);
1579 }
1580 
1581 /* About 10 seconds */
1582 #define SOCK_DESTROY_TIME (10*HZ)
1583 
1584 /* Sockets 0-1023 can't be bound to unless you are superuser */
1585 #define PROT_SOCK	1024
1586 
1587 #define SHUTDOWN_MASK	3
1588 #define RCV_SHUTDOWN	1
1589 #define SEND_SHUTDOWN	2
1590 
1591 #define SOCK_BINDADDR_LOCK	4
1592 #define SOCK_BINDPORT_LOCK	8
1593 
1594 struct socket_alloc {
1595 	struct socket socket;
1596 	struct inode vfs_inode;
1597 };
1598 
SOCKET_I(struct inode * inode)1599 static inline struct socket *SOCKET_I(struct inode *inode)
1600 {
1601 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1602 }
1603 
SOCK_INODE(struct socket * socket)1604 static inline struct inode *SOCK_INODE(struct socket *socket)
1605 {
1606 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1607 }
1608 
1609 /*
1610  * Functions for memory accounting
1611  */
1612 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1613 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1614 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1615 void __sk_mem_reclaim(struct sock *sk, int amount);
1616 
1617 #define SK_MEM_SEND	0
1618 #define SK_MEM_RECV	1
1619 
1620 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1621 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1622 {
1623 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1624 }
1625 
sk_mem_pages(int amt)1626 static inline int sk_mem_pages(int amt)
1627 {
1628 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1629 }
1630 
sk_has_account(struct sock * sk)1631 static inline bool sk_has_account(struct sock *sk)
1632 {
1633 	/* return true if protocol supports memory accounting */
1634 	return !!sk->sk_prot->memory_allocated;
1635 }
1636 
sk_wmem_schedule(struct sock * sk,int size)1637 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1638 {
1639 	int delta;
1640 
1641 	if (!sk_has_account(sk))
1642 		return true;
1643 	delta = size - sk->sk_forward_alloc;
1644 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1645 }
1646 
1647 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1648 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1649 {
1650 	int delta;
1651 
1652 	if (!sk_has_account(sk))
1653 		return true;
1654 	delta = size - sk->sk_forward_alloc;
1655 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1656 		skb_pfmemalloc(skb);
1657 }
1658 
sk_unused_reserved_mem(const struct sock * sk)1659 static inline int sk_unused_reserved_mem(const struct sock *sk)
1660 {
1661 	int unused_mem;
1662 
1663 	if (likely(!sk->sk_reserved_mem))
1664 		return 0;
1665 
1666 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1667 			atomic_read(&sk->sk_rmem_alloc);
1668 
1669 	return unused_mem > 0 ? unused_mem : 0;
1670 }
1671 
sk_mem_reclaim(struct sock * sk)1672 static inline void sk_mem_reclaim(struct sock *sk)
1673 {
1674 	int reclaimable;
1675 
1676 	if (!sk_has_account(sk))
1677 		return;
1678 
1679 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1680 
1681 	if (reclaimable >= (int)PAGE_SIZE)
1682 		__sk_mem_reclaim(sk, reclaimable);
1683 }
1684 
sk_mem_reclaim_final(struct sock * sk)1685 static inline void sk_mem_reclaim_final(struct sock *sk)
1686 {
1687 	sk->sk_reserved_mem = 0;
1688 	sk_mem_reclaim(sk);
1689 }
1690 
sk_mem_charge(struct sock * sk,int size)1691 static inline void sk_mem_charge(struct sock *sk, int size)
1692 {
1693 	if (!sk_has_account(sk))
1694 		return;
1695 	sk_forward_alloc_add(sk, -size);
1696 }
1697 
sk_mem_uncharge(struct sock * sk,int size)1698 static inline void sk_mem_uncharge(struct sock *sk, int size)
1699 {
1700 	if (!sk_has_account(sk))
1701 		return;
1702 	sk_forward_alloc_add(sk, size);
1703 	sk_mem_reclaim(sk);
1704 }
1705 
1706 /*
1707  * Macro so as to not evaluate some arguments when
1708  * lockdep is not enabled.
1709  *
1710  * Mark both the sk_lock and the sk_lock.slock as a
1711  * per-address-family lock class.
1712  */
1713 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1714 do {									\
1715 	sk->sk_lock.owned = 0;						\
1716 	init_waitqueue_head(&sk->sk_lock.wq);				\
1717 	spin_lock_init(&(sk)->sk_lock.slock);				\
1718 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1719 			sizeof((sk)->sk_lock));				\
1720 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1721 				(skey), (sname));				\
1722 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1723 } while (0)
1724 
lockdep_sock_is_held(const struct sock * sk)1725 static inline bool lockdep_sock_is_held(const struct sock *sk)
1726 {
1727 	return lockdep_is_held(&sk->sk_lock) ||
1728 	       lockdep_is_held(&sk->sk_lock.slock);
1729 }
1730 
1731 void lock_sock_nested(struct sock *sk, int subclass);
1732 
lock_sock(struct sock * sk)1733 static inline void lock_sock(struct sock *sk)
1734 {
1735 	lock_sock_nested(sk, 0);
1736 }
1737 
1738 void __lock_sock(struct sock *sk);
1739 void __release_sock(struct sock *sk);
1740 void release_sock(struct sock *sk);
1741 
1742 /* BH context may only use the following locking interface. */
1743 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1744 #define bh_lock_sock_nested(__sk) \
1745 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1746 				SINGLE_DEPTH_NESTING)
1747 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1748 
1749 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1750 
1751 /**
1752  * lock_sock_fast - fast version of lock_sock
1753  * @sk: socket
1754  *
1755  * This version should be used for very small section, where process wont block
1756  * return false if fast path is taken:
1757  *
1758  *   sk_lock.slock locked, owned = 0, BH disabled
1759  *
1760  * return true if slow path is taken:
1761  *
1762  *   sk_lock.slock unlocked, owned = 1, BH enabled
1763  */
lock_sock_fast(struct sock * sk)1764 static inline bool lock_sock_fast(struct sock *sk)
1765 {
1766 	/* The sk_lock has mutex_lock() semantics here. */
1767 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1768 
1769 	return __lock_sock_fast(sk);
1770 }
1771 
1772 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1773 static inline bool lock_sock_fast_nested(struct sock *sk)
1774 {
1775 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1776 
1777 	return __lock_sock_fast(sk);
1778 }
1779 
1780 /**
1781  * unlock_sock_fast - complement of lock_sock_fast
1782  * @sk: socket
1783  * @slow: slow mode
1784  *
1785  * fast unlock socket for user context.
1786  * If slow mode is on, we call regular release_sock()
1787  */
unlock_sock_fast(struct sock * sk,bool slow)1788 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1789 	__releases(&sk->sk_lock.slock)
1790 {
1791 	if (slow) {
1792 		release_sock(sk);
1793 		__release(&sk->sk_lock.slock);
1794 	} else {
1795 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1796 		spin_unlock_bh(&sk->sk_lock.slock);
1797 	}
1798 }
1799 
1800 void sockopt_lock_sock(struct sock *sk);
1801 void sockopt_release_sock(struct sock *sk);
1802 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1803 bool sockopt_capable(int cap);
1804 
1805 /* Used by processes to "lock" a socket state, so that
1806  * interrupts and bottom half handlers won't change it
1807  * from under us. It essentially blocks any incoming
1808  * packets, so that we won't get any new data or any
1809  * packets that change the state of the socket.
1810  *
1811  * While locked, BH processing will add new packets to
1812  * the backlog queue.  This queue is processed by the
1813  * owner of the socket lock right before it is released.
1814  *
1815  * Since ~2.3.5 it is also exclusive sleep lock serializing
1816  * accesses from user process context.
1817  */
1818 
sock_owned_by_me(const struct sock * sk)1819 static inline void sock_owned_by_me(const struct sock *sk)
1820 {
1821 #ifdef CONFIG_LOCKDEP
1822 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1823 #endif
1824 }
1825 
sock_not_owned_by_me(const struct sock * sk)1826 static inline void sock_not_owned_by_me(const struct sock *sk)
1827 {
1828 #ifdef CONFIG_LOCKDEP
1829 	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1830 #endif
1831 }
1832 
sock_owned_by_user(const struct sock * sk)1833 static inline bool sock_owned_by_user(const struct sock *sk)
1834 {
1835 	sock_owned_by_me(sk);
1836 	return sk->sk_lock.owned;
1837 }
1838 
sock_owned_by_user_nocheck(const struct sock * sk)1839 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1840 {
1841 	return sk->sk_lock.owned;
1842 }
1843 
sock_release_ownership(struct sock * sk)1844 static inline void sock_release_ownership(struct sock *sk)
1845 {
1846 	if (sock_owned_by_user_nocheck(sk)) {
1847 		sk->sk_lock.owned = 0;
1848 
1849 		/* The sk_lock has mutex_unlock() semantics: */
1850 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1851 	}
1852 }
1853 
1854 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1855 static inline bool sock_allow_reclassification(const struct sock *csk)
1856 {
1857 	struct sock *sk = (struct sock *)csk;
1858 
1859 	return !sock_owned_by_user_nocheck(sk) &&
1860 		!spin_is_locked(&sk->sk_lock.slock);
1861 }
1862 
1863 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1864 		      struct proto *prot, int kern);
1865 void sk_free(struct sock *sk);
1866 void sk_destruct(struct sock *sk);
1867 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1868 void sk_free_unlock_clone(struct sock *sk);
1869 
1870 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1871 			     gfp_t priority);
1872 void __sock_wfree(struct sk_buff *skb);
1873 void sock_wfree(struct sk_buff *skb);
1874 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1875 			     gfp_t priority);
1876 void skb_orphan_partial(struct sk_buff *skb);
1877 void sock_rfree(struct sk_buff *skb);
1878 void sock_efree(struct sk_buff *skb);
1879 #ifdef CONFIG_INET
1880 void sock_edemux(struct sk_buff *skb);
1881 void sock_pfree(struct sk_buff *skb);
1882 #else
1883 #define sock_edemux sock_efree
1884 #endif
1885 
1886 int sk_setsockopt(struct sock *sk, int level, int optname,
1887 		  sockptr_t optval, unsigned int optlen);
1888 int sock_setsockopt(struct socket *sock, int level, int op,
1889 		    sockptr_t optval, unsigned int optlen);
1890 
1891 int sk_getsockopt(struct sock *sk, int level, int optname,
1892 		  sockptr_t optval, sockptr_t optlen);
1893 int sock_getsockopt(struct socket *sock, int level, int op,
1894 		    char __user *optval, int __user *optlen);
1895 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1896 		   bool timeval, bool time32);
1897 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1898 				     unsigned long data_len, int noblock,
1899 				     int *errcode, int max_page_order);
1900 
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1901 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1902 						  unsigned long size,
1903 						  int noblock, int *errcode)
1904 {
1905 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1906 }
1907 
1908 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1909 void sock_kfree_s(struct sock *sk, void *mem, int size);
1910 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1911 void sk_send_sigurg(struct sock *sk);
1912 
sock_replace_proto(struct sock * sk,struct proto * proto)1913 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1914 {
1915 	if (sk->sk_socket)
1916 		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1917 	WRITE_ONCE(sk->sk_prot, proto);
1918 }
1919 
1920 struct sockcm_cookie {
1921 	u64 transmit_time;
1922 	u32 mark;
1923 	u32 tsflags;
1924 };
1925 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1926 static inline void sockcm_init(struct sockcm_cookie *sockc,
1927 			       const struct sock *sk)
1928 {
1929 	*sockc = (struct sockcm_cookie) {
1930 		.tsflags = READ_ONCE(sk->sk_tsflags)
1931 	};
1932 }
1933 
1934 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1935 		     struct sockcm_cookie *sockc);
1936 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1937 		   struct sockcm_cookie *sockc);
1938 
1939 /*
1940  * Functions to fill in entries in struct proto_ops when a protocol
1941  * does not implement a particular function.
1942  */
1943 int sock_no_bind(struct socket *, struct sockaddr *, int);
1944 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1945 int sock_no_socketpair(struct socket *, struct socket *);
1946 int sock_no_accept(struct socket *, struct socket *, int, bool);
1947 int sock_no_getname(struct socket *, struct sockaddr *, int);
1948 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1949 int sock_no_listen(struct socket *, int);
1950 int sock_no_shutdown(struct socket *, int);
1951 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1952 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1953 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1954 int sock_no_mmap(struct file *file, struct socket *sock,
1955 		 struct vm_area_struct *vma);
1956 
1957 /*
1958  * Functions to fill in entries in struct proto_ops when a protocol
1959  * uses the inet style.
1960  */
1961 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1962 				  char __user *optval, int __user *optlen);
1963 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1964 			int flags);
1965 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1966 			   sockptr_t optval, unsigned int optlen);
1967 
1968 void sk_common_release(struct sock *sk);
1969 
1970 /*
1971  *	Default socket callbacks and setup code
1972  */
1973 
1974 /* Initialise core socket variables using an explicit uid. */
1975 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1976 
1977 /* Initialise core socket variables.
1978  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1979  */
1980 void sock_init_data(struct socket *sock, struct sock *sk);
1981 
1982 /*
1983  * Socket reference counting postulates.
1984  *
1985  * * Each user of socket SHOULD hold a reference count.
1986  * * Each access point to socket (an hash table bucket, reference from a list,
1987  *   running timer, skb in flight MUST hold a reference count.
1988  * * When reference count hits 0, it means it will never increase back.
1989  * * When reference count hits 0, it means that no references from
1990  *   outside exist to this socket and current process on current CPU
1991  *   is last user and may/should destroy this socket.
1992  * * sk_free is called from any context: process, BH, IRQ. When
1993  *   it is called, socket has no references from outside -> sk_free
1994  *   may release descendant resources allocated by the socket, but
1995  *   to the time when it is called, socket is NOT referenced by any
1996  *   hash tables, lists etc.
1997  * * Packets, delivered from outside (from network or from another process)
1998  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1999  *   when they sit in queue. Otherwise, packets will leak to hole, when
2000  *   socket is looked up by one cpu and unhasing is made by another CPU.
2001  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
2002  *   (leak to backlog). Packet socket does all the processing inside
2003  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
2004  *   use separate SMP lock, so that they are prone too.
2005  */
2006 
2007 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)2008 static inline void sock_put(struct sock *sk)
2009 {
2010 	if (refcount_dec_and_test(&sk->sk_refcnt))
2011 		sk_free(sk);
2012 }
2013 /* Generic version of sock_put(), dealing with all sockets
2014  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
2015  */
2016 void sock_gen_put(struct sock *sk);
2017 
2018 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
2019 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)2020 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
2021 				 const int nested)
2022 {
2023 	return __sk_receive_skb(sk, skb, nested, 1, true);
2024 }
2025 
sk_tx_queue_set(struct sock * sk,int tx_queue)2026 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
2027 {
2028 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
2029 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
2030 		return;
2031 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
2032 	 * other WRITE_ONCE() because socket lock might be not held.
2033 	 */
2034 	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
2035 }
2036 
2037 #define NO_QUEUE_MAPPING	USHRT_MAX
2038 
sk_tx_queue_clear(struct sock * sk)2039 static inline void sk_tx_queue_clear(struct sock *sk)
2040 {
2041 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
2042 	 * other WRITE_ONCE() because socket lock might be not held.
2043 	 */
2044 	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
2045 }
2046 
sk_tx_queue_get(const struct sock * sk)2047 static inline int sk_tx_queue_get(const struct sock *sk)
2048 {
2049 	if (sk) {
2050 		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
2051 		 * and sk_tx_queue_set().
2052 		 */
2053 		int val = READ_ONCE(sk->sk_tx_queue_mapping);
2054 
2055 		if (val != NO_QUEUE_MAPPING)
2056 			return val;
2057 	}
2058 	return -1;
2059 }
2060 
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)2061 static inline void __sk_rx_queue_set(struct sock *sk,
2062 				     const struct sk_buff *skb,
2063 				     bool force_set)
2064 {
2065 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2066 	if (skb_rx_queue_recorded(skb)) {
2067 		u16 rx_queue = skb_get_rx_queue(skb);
2068 
2069 		if (force_set ||
2070 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2071 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2072 	}
2073 #endif
2074 }
2075 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2076 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2077 {
2078 	__sk_rx_queue_set(sk, skb, true);
2079 }
2080 
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2081 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2082 {
2083 	__sk_rx_queue_set(sk, skb, false);
2084 }
2085 
sk_rx_queue_clear(struct sock * sk)2086 static inline void sk_rx_queue_clear(struct sock *sk)
2087 {
2088 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2089 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2090 #endif
2091 }
2092 
sk_rx_queue_get(const struct sock * sk)2093 static inline int sk_rx_queue_get(const struct sock *sk)
2094 {
2095 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2096 	if (sk) {
2097 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2098 
2099 		if (res != NO_QUEUE_MAPPING)
2100 			return res;
2101 	}
2102 #endif
2103 
2104 	return -1;
2105 }
2106 
sk_set_socket(struct sock * sk,struct socket * sock)2107 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2108 {
2109 	sk->sk_socket = sock;
2110 }
2111 
sk_sleep(struct sock * sk)2112 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2113 {
2114 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2115 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2116 }
2117 /* Detach socket from process context.
2118  * Announce socket dead, detach it from wait queue and inode.
2119  * Note that parent inode held reference count on this struct sock,
2120  * we do not release it in this function, because protocol
2121  * probably wants some additional cleanups or even continuing
2122  * to work with this socket (TCP).
2123  */
sock_orphan(struct sock * sk)2124 static inline void sock_orphan(struct sock *sk)
2125 {
2126 	write_lock_bh(&sk->sk_callback_lock);
2127 	sock_set_flag(sk, SOCK_DEAD);
2128 	sk_set_socket(sk, NULL);
2129 	sk->sk_wq  = NULL;
2130 	write_unlock_bh(&sk->sk_callback_lock);
2131 }
2132 
sock_graft(struct sock * sk,struct socket * parent)2133 static inline void sock_graft(struct sock *sk, struct socket *parent)
2134 {
2135 	WARN_ON(parent->sk);
2136 	write_lock_bh(&sk->sk_callback_lock);
2137 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2138 	parent->sk = sk;
2139 	sk_set_socket(sk, parent);
2140 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2141 	security_sock_graft(sk, parent);
2142 	write_unlock_bh(&sk->sk_callback_lock);
2143 }
2144 
2145 kuid_t sock_i_uid(struct sock *sk);
2146 unsigned long __sock_i_ino(struct sock *sk);
2147 unsigned long sock_i_ino(struct sock *sk);
2148 
sock_net_uid(const struct net * net,const struct sock * sk)2149 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2150 {
2151 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2152 }
2153 
net_tx_rndhash(void)2154 static inline u32 net_tx_rndhash(void)
2155 {
2156 	u32 v = get_random_u32();
2157 
2158 	return v ?: 1;
2159 }
2160 
sk_set_txhash(struct sock * sk)2161 static inline void sk_set_txhash(struct sock *sk)
2162 {
2163 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2164 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2165 }
2166 
sk_rethink_txhash(struct sock * sk)2167 static inline bool sk_rethink_txhash(struct sock *sk)
2168 {
2169 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2170 		sk_set_txhash(sk);
2171 		return true;
2172 	}
2173 	return false;
2174 }
2175 
2176 static inline struct dst_entry *
__sk_dst_get(const struct sock * sk)2177 __sk_dst_get(const struct sock *sk)
2178 {
2179 	return rcu_dereference_check(sk->sk_dst_cache,
2180 				     lockdep_sock_is_held(sk));
2181 }
2182 
2183 static inline struct dst_entry *
sk_dst_get(const struct sock * sk)2184 sk_dst_get(const struct sock *sk)
2185 {
2186 	struct dst_entry *dst;
2187 
2188 	rcu_read_lock();
2189 	dst = rcu_dereference(sk->sk_dst_cache);
2190 	if (dst && !rcuref_get(&dst->__rcuref))
2191 		dst = NULL;
2192 	rcu_read_unlock();
2193 	return dst;
2194 }
2195 
__dst_negative_advice(struct sock * sk)2196 static inline void __dst_negative_advice(struct sock *sk)
2197 {
2198 	/* *** ANDROID FIXUP ***
2199 	 * See b/343727534 for more details why this typedef is needed here.
2200 	 * *** ANDROID FIXUP ***
2201 	 */
2202 	android_dst_ops_negative_advice_new_t negative_advice;
2203 	void *c_is_fun;		/* Work around --Werror=cast-function-type */
2204 
2205 	struct dst_entry *dst = __sk_dst_get(sk);
2206 
2207 	if (dst && dst->ops->negative_advice) {
2208 		c_is_fun = dst->ops->negative_advice;
2209 		negative_advice = c_is_fun;
2210 		negative_advice(sk, dst);
2211 	}
2212 }
2213 
dst_negative_advice(struct sock * sk)2214 static inline void dst_negative_advice(struct sock *sk)
2215 {
2216 	sk_rethink_txhash(sk);
2217 	__dst_negative_advice(sk);
2218 }
2219 
2220 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2221 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2222 {
2223 	struct dst_entry *old_dst;
2224 
2225 	sk_tx_queue_clear(sk);
2226 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2227 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2228 					    lockdep_sock_is_held(sk));
2229 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2230 	dst_release(old_dst);
2231 }
2232 
2233 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2234 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2235 {
2236 	struct dst_entry *old_dst;
2237 
2238 	sk_tx_queue_clear(sk);
2239 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2240 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2241 	dst_release(old_dst);
2242 }
2243 
2244 static inline void
__sk_dst_reset(struct sock * sk)2245 __sk_dst_reset(struct sock *sk)
2246 {
2247 	__sk_dst_set(sk, NULL);
2248 }
2249 
2250 static inline void
sk_dst_reset(struct sock * sk)2251 sk_dst_reset(struct sock *sk)
2252 {
2253 	sk_dst_set(sk, NULL);
2254 }
2255 
2256 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2257 
2258 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2259 
sk_dst_confirm(struct sock * sk)2260 static inline void sk_dst_confirm(struct sock *sk)
2261 {
2262 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2263 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2264 }
2265 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2266 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2267 {
2268 	if (skb_get_dst_pending_confirm(skb)) {
2269 		struct sock *sk = skb->sk;
2270 
2271 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2272 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2273 		neigh_confirm(n);
2274 	}
2275 }
2276 
2277 bool sk_mc_loop(struct sock *sk);
2278 
sk_can_gso(const struct sock * sk)2279 static inline bool sk_can_gso(const struct sock *sk)
2280 {
2281 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2282 }
2283 
2284 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2285 
sk_gso_disable(struct sock * sk)2286 static inline void sk_gso_disable(struct sock *sk)
2287 {
2288 	sk->sk_gso_disabled = 1;
2289 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2290 }
2291 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2292 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2293 					   struct iov_iter *from, char *to,
2294 					   int copy, int offset)
2295 {
2296 	if (skb->ip_summed == CHECKSUM_NONE) {
2297 		__wsum csum = 0;
2298 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2299 			return -EFAULT;
2300 		skb->csum = csum_block_add(skb->csum, csum, offset);
2301 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2302 		if (!copy_from_iter_full_nocache(to, copy, from))
2303 			return -EFAULT;
2304 	} else if (!copy_from_iter_full(to, copy, from))
2305 		return -EFAULT;
2306 
2307 	return 0;
2308 }
2309 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2310 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2311 				       struct iov_iter *from, int copy)
2312 {
2313 	int err, offset = skb->len;
2314 
2315 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2316 				       copy, offset);
2317 	if (err)
2318 		__skb_trim(skb, offset);
2319 
2320 	return err;
2321 }
2322 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2323 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2324 					   struct sk_buff *skb,
2325 					   struct page *page,
2326 					   int off, int copy)
2327 {
2328 	int err;
2329 
2330 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2331 				       copy, skb->len);
2332 	if (err)
2333 		return err;
2334 
2335 	skb_len_add(skb, copy);
2336 	sk_wmem_queued_add(sk, copy);
2337 	sk_mem_charge(sk, copy);
2338 	return 0;
2339 }
2340 
2341 /**
2342  * sk_wmem_alloc_get - returns write allocations
2343  * @sk: socket
2344  *
2345  * Return: sk_wmem_alloc minus initial offset of one
2346  */
sk_wmem_alloc_get(const struct sock * sk)2347 static inline int sk_wmem_alloc_get(const struct sock *sk)
2348 {
2349 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2350 }
2351 
2352 /**
2353  * sk_rmem_alloc_get - returns read allocations
2354  * @sk: socket
2355  *
2356  * Return: sk_rmem_alloc
2357  */
sk_rmem_alloc_get(const struct sock * sk)2358 static inline int sk_rmem_alloc_get(const struct sock *sk)
2359 {
2360 	return atomic_read(&sk->sk_rmem_alloc);
2361 }
2362 
2363 /**
2364  * sk_has_allocations - check if allocations are outstanding
2365  * @sk: socket
2366  *
2367  * Return: true if socket has write or read allocations
2368  */
sk_has_allocations(const struct sock * sk)2369 static inline bool sk_has_allocations(const struct sock *sk)
2370 {
2371 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2372 }
2373 
2374 /**
2375  * skwq_has_sleeper - check if there are any waiting processes
2376  * @wq: struct socket_wq
2377  *
2378  * Return: true if socket_wq has waiting processes
2379  *
2380  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2381  * barrier call. They were added due to the race found within the tcp code.
2382  *
2383  * Consider following tcp code paths::
2384  *
2385  *   CPU1                CPU2
2386  *   sys_select          receive packet
2387  *   ...                 ...
2388  *   __add_wait_queue    update tp->rcv_nxt
2389  *   ...                 ...
2390  *   tp->rcv_nxt check   sock_def_readable
2391  *   ...                 {
2392  *   schedule               rcu_read_lock();
2393  *                          wq = rcu_dereference(sk->sk_wq);
2394  *                          if (wq && waitqueue_active(&wq->wait))
2395  *                              wake_up_interruptible(&wq->wait)
2396  *                          ...
2397  *                       }
2398  *
2399  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2400  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2401  * could then endup calling schedule and sleep forever if there are no more
2402  * data on the socket.
2403  *
2404  */
skwq_has_sleeper(struct socket_wq * wq)2405 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2406 {
2407 	return wq && wq_has_sleeper(&wq->wait);
2408 }
2409 
2410 /**
2411  * sock_poll_wait - place memory barrier behind the poll_wait call.
2412  * @filp:           file
2413  * @sock:           socket to wait on
2414  * @p:              poll_table
2415  *
2416  * See the comments in the wq_has_sleeper function.
2417  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2418 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2419 				  poll_table *p)
2420 {
2421 	if (!poll_does_not_wait(p)) {
2422 		poll_wait(filp, &sock->wq.wait, p);
2423 		/* We need to be sure we are in sync with the
2424 		 * socket flags modification.
2425 		 *
2426 		 * This memory barrier is paired in the wq_has_sleeper.
2427 		 */
2428 		smp_mb();
2429 	}
2430 }
2431 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2432 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2433 {
2434 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2435 	u32 txhash = READ_ONCE(sk->sk_txhash);
2436 
2437 	if (txhash) {
2438 		skb->l4_hash = 1;
2439 		skb->hash = txhash;
2440 	}
2441 }
2442 
2443 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2444 
2445 /*
2446  *	Queue a received datagram if it will fit. Stream and sequenced
2447  *	protocols can't normally use this as they need to fit buffers in
2448  *	and play with them.
2449  *
2450  *	Inlined as it's very short and called for pretty much every
2451  *	packet ever received.
2452  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2453 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2454 {
2455 	skb_orphan(skb);
2456 	skb->sk = sk;
2457 	skb->destructor = sock_rfree;
2458 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2459 	sk_mem_charge(sk, skb->truesize);
2460 }
2461 
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2462 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2463 {
2464 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2465 		skb_orphan(skb);
2466 		skb->destructor = sock_efree;
2467 		skb->sk = sk;
2468 		return true;
2469 	}
2470 	return false;
2471 }
2472 
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2473 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2474 {
2475 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2476 	if (skb) {
2477 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2478 			skb_set_owner_r(skb, sk);
2479 			return skb;
2480 		}
2481 		__kfree_skb(skb);
2482 	}
2483 	return NULL;
2484 }
2485 
skb_prepare_for_gro(struct sk_buff * skb)2486 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2487 {
2488 	if (skb->destructor != sock_wfree) {
2489 		skb_orphan(skb);
2490 		return;
2491 	}
2492 	skb->slow_gro = 1;
2493 }
2494 
2495 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2496 		    unsigned long expires);
2497 
2498 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2499 
2500 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2501 
2502 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2503 			struct sk_buff *skb, unsigned int flags,
2504 			void (*destructor)(struct sock *sk,
2505 					   struct sk_buff *skb));
2506 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2507 
2508 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2509 			      enum skb_drop_reason *reason);
2510 
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2511 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2512 {
2513 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2514 }
2515 
2516 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2517 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2518 
2519 /*
2520  *	Recover an error report and clear atomically
2521  */
2522 
sock_error(struct sock * sk)2523 static inline int sock_error(struct sock *sk)
2524 {
2525 	int err;
2526 
2527 	/* Avoid an atomic operation for the common case.
2528 	 * This is racy since another cpu/thread can change sk_err under us.
2529 	 */
2530 	if (likely(data_race(!sk->sk_err)))
2531 		return 0;
2532 
2533 	err = xchg(&sk->sk_err, 0);
2534 	return -err;
2535 }
2536 
2537 void sk_error_report(struct sock *sk);
2538 
sock_wspace(struct sock * sk)2539 static inline unsigned long sock_wspace(struct sock *sk)
2540 {
2541 	int amt = 0;
2542 
2543 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2544 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2545 		if (amt < 0)
2546 			amt = 0;
2547 	}
2548 	return amt;
2549 }
2550 
2551 /* Note:
2552  *  We use sk->sk_wq_raw, from contexts knowing this
2553  *  pointer is not NULL and cannot disappear/change.
2554  */
sk_set_bit(int nr,struct sock * sk)2555 static inline void sk_set_bit(int nr, struct sock *sk)
2556 {
2557 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2558 	    !sock_flag(sk, SOCK_FASYNC))
2559 		return;
2560 
2561 	set_bit(nr, &sk->sk_wq_raw->flags);
2562 }
2563 
sk_clear_bit(int nr,struct sock * sk)2564 static inline void sk_clear_bit(int nr, struct sock *sk)
2565 {
2566 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2567 	    !sock_flag(sk, SOCK_FASYNC))
2568 		return;
2569 
2570 	clear_bit(nr, &sk->sk_wq_raw->flags);
2571 }
2572 
sk_wake_async(const struct sock * sk,int how,int band)2573 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2574 {
2575 	if (sock_flag(sk, SOCK_FASYNC)) {
2576 		rcu_read_lock();
2577 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2578 		rcu_read_unlock();
2579 	}
2580 }
2581 
2582 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2583  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2584  * Note: for send buffers, TCP works better if we can build two skbs at
2585  * minimum.
2586  */
2587 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2588 
2589 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2590 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2591 
sk_stream_moderate_sndbuf(struct sock * sk)2592 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2593 {
2594 	u32 val;
2595 
2596 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2597 		return;
2598 
2599 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2600 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2601 
2602 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2603 }
2604 
2605 /**
2606  * sk_page_frag - return an appropriate page_frag
2607  * @sk: socket
2608  *
2609  * Use the per task page_frag instead of the per socket one for
2610  * optimization when we know that we're in process context and own
2611  * everything that's associated with %current.
2612  *
2613  * Both direct reclaim and page faults can nest inside other
2614  * socket operations and end up recursing into sk_page_frag()
2615  * while it's already in use: explicitly avoid task page_frag
2616  * when users disable sk_use_task_frag.
2617  *
2618  * Return: a per task page_frag if context allows that,
2619  * otherwise a per socket one.
2620  */
sk_page_frag(struct sock * sk)2621 static inline struct page_frag *sk_page_frag(struct sock *sk)
2622 {
2623 	if (sk->sk_use_task_frag)
2624 		return &current->task_frag;
2625 
2626 	return &sk->sk_frag;
2627 }
2628 
2629 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2630 
2631 /*
2632  *	Default write policy as shown to user space via poll/select/SIGIO
2633  */
sock_writeable(const struct sock * sk)2634 static inline bool sock_writeable(const struct sock *sk)
2635 {
2636 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2637 }
2638 
gfp_any(void)2639 static inline gfp_t gfp_any(void)
2640 {
2641 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2642 }
2643 
gfp_memcg_charge(void)2644 static inline gfp_t gfp_memcg_charge(void)
2645 {
2646 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2647 }
2648 
sock_rcvtimeo(const struct sock * sk,bool noblock)2649 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2650 {
2651 	return noblock ? 0 : sk->sk_rcvtimeo;
2652 }
2653 
sock_sndtimeo(const struct sock * sk,bool noblock)2654 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2655 {
2656 	return noblock ? 0 : sk->sk_sndtimeo;
2657 }
2658 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2659 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2660 {
2661 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2662 
2663 	return v ?: 1;
2664 }
2665 
2666 /* Alas, with timeout socket operations are not restartable.
2667  * Compare this to poll().
2668  */
sock_intr_errno(long timeo)2669 static inline int sock_intr_errno(long timeo)
2670 {
2671 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2672 }
2673 
2674 struct sock_skb_cb {
2675 	u32 dropcount;
2676 };
2677 
2678 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2679  * using skb->cb[] would keep using it directly and utilize its
2680  * alignement guarantee.
2681  */
2682 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2683 			    sizeof(struct sock_skb_cb)))
2684 
2685 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2686 			    SOCK_SKB_CB_OFFSET))
2687 
2688 #define sock_skb_cb_check_size(size) \
2689 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2690 
2691 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2692 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2693 {
2694 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2695 						atomic_read(&sk->sk_drops) : 0;
2696 }
2697 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2698 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2699 {
2700 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2701 
2702 	atomic_add(segs, &sk->sk_drops);
2703 }
2704 
sock_read_timestamp(struct sock * sk)2705 static inline ktime_t sock_read_timestamp(struct sock *sk)
2706 {
2707 #if BITS_PER_LONG==32
2708 	unsigned int seq;
2709 	ktime_t kt;
2710 
2711 	do {
2712 		seq = read_seqbegin(&sk->sk_stamp_seq);
2713 		kt = sk->sk_stamp;
2714 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2715 
2716 	return kt;
2717 #else
2718 	return READ_ONCE(sk->sk_stamp);
2719 #endif
2720 }
2721 
sock_write_timestamp(struct sock * sk,ktime_t kt)2722 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2723 {
2724 #if BITS_PER_LONG==32
2725 	write_seqlock(&sk->sk_stamp_seq);
2726 	sk->sk_stamp = kt;
2727 	write_sequnlock(&sk->sk_stamp_seq);
2728 #else
2729 	WRITE_ONCE(sk->sk_stamp, kt);
2730 #endif
2731 }
2732 
2733 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2734 			   struct sk_buff *skb);
2735 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2736 			     struct sk_buff *skb);
2737 
2738 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2739 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2740 {
2741 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2742 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2743 	ktime_t kt = skb->tstamp;
2744 	/*
2745 	 * generate control messages if
2746 	 * - receive time stamping in software requested
2747 	 * - software time stamp available and wanted
2748 	 * - hardware time stamps available and wanted
2749 	 */
2750 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2751 	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2752 	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2753 	    (hwtstamps->hwtstamp &&
2754 	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2755 		__sock_recv_timestamp(msg, sk, skb);
2756 	else
2757 		sock_write_timestamp(sk, kt);
2758 
2759 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2760 		__sock_recv_wifi_status(msg, sk, skb);
2761 }
2762 
2763 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2764 		       struct sk_buff *skb);
2765 
2766 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2767 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2768 				   struct sk_buff *skb)
2769 {
2770 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2771 			   (1UL << SOCK_RCVTSTAMP)			| \
2772 			   (1UL << SOCK_RCVMARK))
2773 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2774 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2775 
2776 	if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2777 	    READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2778 		__sock_recv_cmsgs(msg, sk, skb);
2779 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2780 		sock_write_timestamp(sk, skb->tstamp);
2781 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2782 		sock_write_timestamp(sk, 0);
2783 }
2784 
2785 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2786 
2787 /**
2788  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2789  * @sk:		socket sending this packet
2790  * @tsflags:	timestamping flags to use
2791  * @tx_flags:	completed with instructions for time stamping
2792  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2793  *
2794  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2795  */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2796 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2797 				      __u8 *tx_flags, __u32 *tskey)
2798 {
2799 	if (unlikely(tsflags)) {
2800 		__sock_tx_timestamp(tsflags, tx_flags);
2801 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2802 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2803 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2804 	}
2805 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2806 		*tx_flags |= SKBTX_WIFI_STATUS;
2807 }
2808 
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2809 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2810 				     __u8 *tx_flags)
2811 {
2812 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2813 }
2814 
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2815 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2816 {
2817 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2818 			   &skb_shinfo(skb)->tskey);
2819 }
2820 
sk_is_inet(const struct sock * sk)2821 static inline bool sk_is_inet(const struct sock *sk)
2822 {
2823 	int family = READ_ONCE(sk->sk_family);
2824 
2825 	return family == AF_INET || family == AF_INET6;
2826 }
2827 
sk_is_tcp(const struct sock * sk)2828 static inline bool sk_is_tcp(const struct sock *sk)
2829 {
2830 	return sk_is_inet(sk) &&
2831 	       sk->sk_type == SOCK_STREAM &&
2832 	       sk->sk_protocol == IPPROTO_TCP;
2833 }
2834 
sk_is_udp(const struct sock * sk)2835 static inline bool sk_is_udp(const struct sock *sk)
2836 {
2837 	return sk_is_inet(sk) &&
2838 	       sk->sk_type == SOCK_DGRAM &&
2839 	       sk->sk_protocol == IPPROTO_UDP;
2840 }
2841 
sk_is_stream_unix(const struct sock * sk)2842 static inline bool sk_is_stream_unix(const struct sock *sk)
2843 {
2844 	return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2845 }
2846 
2847 /**
2848  * sk_eat_skb - Release a skb if it is no longer needed
2849  * @sk: socket to eat this skb from
2850  * @skb: socket buffer to eat
2851  *
2852  * This routine must be called with interrupts disabled or with the socket
2853  * locked so that the sk_buff queue operation is ok.
2854 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2855 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2856 {
2857 	__skb_unlink(skb, &sk->sk_receive_queue);
2858 	__kfree_skb(skb);
2859 }
2860 
2861 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2862 skb_sk_is_prefetched(struct sk_buff *skb)
2863 {
2864 #ifdef CONFIG_INET
2865 	return skb->destructor == sock_pfree;
2866 #else
2867 	return false;
2868 #endif /* CONFIG_INET */
2869 }
2870 
2871 /* This helper checks if a socket is a full socket,
2872  * ie _not_ a timewait or request socket.
2873  */
sk_fullsock(const struct sock * sk)2874 static inline bool sk_fullsock(const struct sock *sk)
2875 {
2876 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2877 }
2878 
2879 static inline bool
sk_is_refcounted(struct sock * sk)2880 sk_is_refcounted(struct sock *sk)
2881 {
2882 	/* Only full sockets have sk->sk_flags. */
2883 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2884 }
2885 
2886 /**
2887  * skb_steal_sock - steal a socket from an sk_buff
2888  * @skb: sk_buff to steal the socket from
2889  * @refcounted: is set to true if the socket is reference-counted
2890  * @prefetched: is set to true if the socket was assigned from bpf
2891  */
2892 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted,bool * prefetched)2893 skb_steal_sock(struct sk_buff *skb, bool *refcounted, bool *prefetched)
2894 {
2895 	if (skb->sk) {
2896 		struct sock *sk = skb->sk;
2897 
2898 		*refcounted = true;
2899 		*prefetched = skb_sk_is_prefetched(skb);
2900 		if (*prefetched)
2901 			*refcounted = sk_is_refcounted(sk);
2902 		skb->destructor = NULL;
2903 		skb->sk = NULL;
2904 		return sk;
2905 	}
2906 	*prefetched = false;
2907 	*refcounted = false;
2908 	return NULL;
2909 }
2910 
2911 /* Checks if this SKB belongs to an HW offloaded socket
2912  * and whether any SW fallbacks are required based on dev.
2913  * Check decrypted mark in case skb_orphan() cleared socket.
2914  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2915 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2916 						   struct net_device *dev)
2917 {
2918 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2919 	struct sock *sk = skb->sk;
2920 
2921 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2922 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2923 #ifdef CONFIG_TLS_DEVICE
2924 	} else if (unlikely(skb->decrypted)) {
2925 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2926 		kfree_skb(skb);
2927 		skb = NULL;
2928 #endif
2929 	}
2930 #endif
2931 
2932 	return skb;
2933 }
2934 
2935 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2936  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2937  */
sk_listener(const struct sock * sk)2938 static inline bool sk_listener(const struct sock *sk)
2939 {
2940 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2941 }
2942 
2943 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2944 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2945 		       int type);
2946 
2947 bool sk_ns_capable(const struct sock *sk,
2948 		   struct user_namespace *user_ns, int cap);
2949 bool sk_capable(const struct sock *sk, int cap);
2950 bool sk_net_capable(const struct sock *sk, int cap);
2951 
2952 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2953 
2954 /* Take into consideration the size of the struct sk_buff overhead in the
2955  * determination of these values, since that is non-constant across
2956  * platforms.  This makes socket queueing behavior and performance
2957  * not depend upon such differences.
2958  */
2959 #define _SK_MEM_PACKETS		256
2960 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2961 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2962 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2963 
2964 extern __u32 sysctl_wmem_max;
2965 extern __u32 sysctl_rmem_max;
2966 
2967 extern int sysctl_tstamp_allow_data;
2968 extern int sysctl_optmem_max;
2969 
2970 extern __u32 sysctl_wmem_default;
2971 extern __u32 sysctl_rmem_default;
2972 
2973 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2974 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2975 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2976 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2977 {
2978 	/* Does this proto have per netns sysctl_wmem ? */
2979 	if (proto->sysctl_wmem_offset)
2980 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2981 
2982 	return READ_ONCE(*proto->sysctl_wmem);
2983 }
2984 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2985 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2986 {
2987 	/* Does this proto have per netns sysctl_rmem ? */
2988 	if (proto->sysctl_rmem_offset)
2989 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2990 
2991 	return READ_ONCE(*proto->sysctl_rmem);
2992 }
2993 
2994 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2995  * Some wifi drivers need to tweak it to get more chunks.
2996  * They can use this helper from their ndo_start_xmit()
2997  */
sk_pacing_shift_update(struct sock * sk,int val)2998 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2999 {
3000 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
3001 		return;
3002 	WRITE_ONCE(sk->sk_pacing_shift, val);
3003 }
3004 
3005 /* if a socket is bound to a device, check that the given device
3006  * index is either the same or that the socket is bound to an L3
3007  * master device and the given device index is also enslaved to
3008  * that L3 master
3009  */
sk_dev_equal_l3scope(struct sock * sk,int dif)3010 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
3011 {
3012 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
3013 	int mdif;
3014 
3015 	if (!bound_dev_if || bound_dev_if == dif)
3016 		return true;
3017 
3018 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
3019 	if (mdif && mdif == bound_dev_if)
3020 		return true;
3021 
3022 	return false;
3023 }
3024 
3025 void sock_def_readable(struct sock *sk);
3026 
3027 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
3028 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
3029 int sock_set_timestamping(struct sock *sk, int optname,
3030 			  struct so_timestamping timestamping);
3031 
3032 void sock_enable_timestamps(struct sock *sk);
3033 void sock_no_linger(struct sock *sk);
3034 void sock_set_keepalive(struct sock *sk);
3035 void sock_set_priority(struct sock *sk, u32 priority);
3036 void sock_set_rcvbuf(struct sock *sk, int val);
3037 void sock_set_mark(struct sock *sk, u32 val);
3038 void sock_set_reuseaddr(struct sock *sk);
3039 void sock_set_reuseport(struct sock *sk);
3040 void sock_set_sndtimeo(struct sock *sk, s64 secs);
3041 
3042 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
3043 
3044 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
3045 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
3046 			   sockptr_t optval, int optlen, bool old_timeval);
3047 
3048 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
3049 		     void __user *arg, void *karg, size_t size);
3050 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
sk_is_readable(struct sock * sk)3051 static inline bool sk_is_readable(struct sock *sk)
3052 {
3053 	if (sk->sk_prot->sock_is_readable)
3054 		return sk->sk_prot->sock_is_readable(sk);
3055 	return false;
3056 }
3057 #endif	/* _SOCK_H */
3058