• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/page_size_compat.h>
8 #include <linux/smp.h>
9 #include <linux/cpu.h>
10 #include <linux/prctl.h>
11 #include <linux/slab.h>
12 #include <linux/sched.h>
13 #include <linux/sched/idle.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/pm.h>
20 #include <linux/tick.h>
21 #include <linux/random.h>
22 #include <linux/user-return-notifier.h>
23 #include <linux/dmi.h>
24 #include <linux/utsname.h>
25 #include <linux/stackprotector.h>
26 #include <linux/cpuidle.h>
27 #include <linux/acpi.h>
28 #include <linux/elf-randomize.h>
29 #include <linux/static_call.h>
30 #include <trace/events/power.h>
31 #include <linux/hw_breakpoint.h>
32 #include <linux/entry-common.h>
33 #include <asm/cpu.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/shstk.h>
56 
57 #include "process.h"
58 
59 /*
60  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
61  * no more per-task TSS's. The TSS size is kept cacheline-aligned
62  * so they are allowed to end up in the .data..cacheline_aligned
63  * section. Since TSS's are completely CPU-local, we want them
64  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
65  */
66 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
67 	.x86_tss = {
68 		/*
69 		 * .sp0 is only used when entering ring 0 from a lower
70 		 * privilege level.  Since the init task never runs anything
71 		 * but ring 0 code, there is no need for a valid value here.
72 		 * Poison it.
73 		 */
74 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
75 
76 #ifdef CONFIG_X86_32
77 		.sp1 = TOP_OF_INIT_STACK,
78 
79 		.ss0 = __KERNEL_DS,
80 		.ss1 = __KERNEL_CS,
81 #endif
82 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
83 	 },
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86 
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89 
90 /*
91  * this gets called so that we can store lazy state into memory and copy the
92  * current task into the new thread.
93  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 	memcpy(dst, src, arch_task_struct_size);
97 #ifdef CONFIG_VM86
98 	dst->thread.vm86 = NULL;
99 #endif
100 	/* Drop the copied pointer to current's fpstate */
101 	dst->thread.fpu.fpstate = NULL;
102 
103 	return 0;
104 }
105 
106 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)107 void arch_release_task_struct(struct task_struct *tsk)
108 {
109 	if (fpu_state_size_dynamic())
110 		fpstate_free(&tsk->thread.fpu);
111 }
112 #endif
113 
114 /*
115  * Free thread data structures etc..
116  */
exit_thread(struct task_struct * tsk)117 void exit_thread(struct task_struct *tsk)
118 {
119 	struct thread_struct *t = &tsk->thread;
120 	struct fpu *fpu = &t->fpu;
121 
122 	if (test_thread_flag(TIF_IO_BITMAP))
123 		io_bitmap_exit(tsk);
124 
125 	free_vm86(t);
126 
127 	shstk_free(tsk);
128 	fpu__drop(fpu);
129 }
130 
set_new_tls(struct task_struct * p,unsigned long tls)131 static int set_new_tls(struct task_struct *p, unsigned long tls)
132 {
133 	struct user_desc __user *utls = (struct user_desc __user *)tls;
134 
135 	if (in_ia32_syscall())
136 		return do_set_thread_area(p, -1, utls, 0);
137 	else
138 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
139 }
140 
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)141 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
142 				     int (*fn)(void *), void *fn_arg)
143 {
144 	schedule_tail(prev);
145 
146 	/* Is this a kernel thread? */
147 	if (unlikely(fn)) {
148 		fn(fn_arg);
149 		/*
150 		 * A kernel thread is allowed to return here after successfully
151 		 * calling kernel_execve().  Exit to userspace to complete the
152 		 * execve() syscall.
153 		 */
154 		regs->ax = 0;
155 	}
156 
157 	syscall_exit_to_user_mode(regs);
158 }
159 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)160 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
161 {
162 	unsigned long clone_flags = args->flags;
163 	unsigned long sp = args->stack;
164 	unsigned long tls = args->tls;
165 	struct inactive_task_frame *frame;
166 	struct fork_frame *fork_frame;
167 	struct pt_regs *childregs;
168 	unsigned long new_ssp;
169 	int ret = 0;
170 
171 	childregs = task_pt_regs(p);
172 	fork_frame = container_of(childregs, struct fork_frame, regs);
173 	frame = &fork_frame->frame;
174 
175 	frame->bp = encode_frame_pointer(childregs);
176 	frame->ret_addr = (unsigned long) ret_from_fork_asm;
177 	p->thread.sp = (unsigned long) fork_frame;
178 	p->thread.io_bitmap = NULL;
179 	p->thread.iopl_warn = 0;
180 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
181 
182 #ifdef CONFIG_X86_64
183 	current_save_fsgs();
184 	p->thread.fsindex = current->thread.fsindex;
185 	p->thread.fsbase = current->thread.fsbase;
186 	p->thread.gsindex = current->thread.gsindex;
187 	p->thread.gsbase = current->thread.gsbase;
188 
189 	savesegment(es, p->thread.es);
190 	savesegment(ds, p->thread.ds);
191 
192 	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
193 		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
194 #else
195 	p->thread.sp0 = (unsigned long) (childregs + 1);
196 	savesegment(gs, p->thread.gs);
197 	/*
198 	 * Clear all status flags including IF and set fixed bit. 64bit
199 	 * does not have this initialization as the frame does not contain
200 	 * flags. The flags consistency (especially vs. AC) is there
201 	 * ensured via objtool, which lacks 32bit support.
202 	 */
203 	frame->flags = X86_EFLAGS_FIXED;
204 #endif
205 
206 	/*
207 	 * Allocate a new shadow stack for thread if needed. If shadow stack,
208 	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
209 	 * update it.
210 	 */
211 	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
212 	if (IS_ERR_VALUE(new_ssp))
213 		return PTR_ERR((void *)new_ssp);
214 
215 	fpu_clone(p, clone_flags, args->fn, new_ssp);
216 
217 	/* Kernel thread ? */
218 	if (unlikely(p->flags & PF_KTHREAD)) {
219 		p->thread.pkru = pkru_get_init_value();
220 		memset(childregs, 0, sizeof(struct pt_regs));
221 		kthread_frame_init(frame, args->fn, args->fn_arg);
222 		return 0;
223 	}
224 
225 	/*
226 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
227 	 * is only valid when scheduled out.
228 	 */
229 	p->thread.pkru = read_pkru();
230 
231 	frame->bx = 0;
232 	*childregs = *current_pt_regs();
233 	childregs->ax = 0;
234 	if (sp)
235 		childregs->sp = sp;
236 
237 	if (unlikely(args->fn)) {
238 		/*
239 		 * A user space thread, but it doesn't return to
240 		 * ret_after_fork().
241 		 *
242 		 * In order to indicate that to tools like gdb,
243 		 * we reset the stack and instruction pointers.
244 		 *
245 		 * It does the same kernel frame setup to return to a kernel
246 		 * function that a kernel thread does.
247 		 */
248 		childregs->sp = 0;
249 		childregs->ip = 0;
250 		kthread_frame_init(frame, args->fn, args->fn_arg);
251 		return 0;
252 	}
253 
254 	/* Set a new TLS for the child thread? */
255 	if (clone_flags & CLONE_SETTLS)
256 		ret = set_new_tls(p, tls);
257 
258 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
259 		io_bitmap_share(p);
260 
261 	return ret;
262 }
263 
pkru_flush_thread(void)264 static void pkru_flush_thread(void)
265 {
266 	/*
267 	 * If PKRU is enabled the default PKRU value has to be loaded into
268 	 * the hardware right here (similar to context switch).
269 	 */
270 	pkru_write_default();
271 }
272 
flush_thread(void)273 void flush_thread(void)
274 {
275 	struct task_struct *tsk = current;
276 
277 	flush_ptrace_hw_breakpoint(tsk);
278 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
279 
280 	fpu_flush_thread();
281 	pkru_flush_thread();
282 }
283 
disable_TSC(void)284 void disable_TSC(void)
285 {
286 	preempt_disable();
287 	if (!test_and_set_thread_flag(TIF_NOTSC))
288 		/*
289 		 * Must flip the CPU state synchronously with
290 		 * TIF_NOTSC in the current running context.
291 		 */
292 		cr4_set_bits(X86_CR4_TSD);
293 	preempt_enable();
294 }
295 
enable_TSC(void)296 static void enable_TSC(void)
297 {
298 	preempt_disable();
299 	if (test_and_clear_thread_flag(TIF_NOTSC))
300 		/*
301 		 * Must flip the CPU state synchronously with
302 		 * TIF_NOTSC in the current running context.
303 		 */
304 		cr4_clear_bits(X86_CR4_TSD);
305 	preempt_enable();
306 }
307 
get_tsc_mode(unsigned long adr)308 int get_tsc_mode(unsigned long adr)
309 {
310 	unsigned int val;
311 
312 	if (test_thread_flag(TIF_NOTSC))
313 		val = PR_TSC_SIGSEGV;
314 	else
315 		val = PR_TSC_ENABLE;
316 
317 	return put_user(val, (unsigned int __user *)adr);
318 }
319 
set_tsc_mode(unsigned int val)320 int set_tsc_mode(unsigned int val)
321 {
322 	if (val == PR_TSC_SIGSEGV)
323 		disable_TSC();
324 	else if (val == PR_TSC_ENABLE)
325 		enable_TSC();
326 	else
327 		return -EINVAL;
328 
329 	return 0;
330 }
331 
332 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
333 
set_cpuid_faulting(bool on)334 static void set_cpuid_faulting(bool on)
335 {
336 	u64 msrval;
337 
338 	msrval = this_cpu_read(msr_misc_features_shadow);
339 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
340 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
341 	this_cpu_write(msr_misc_features_shadow, msrval);
342 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
343 }
344 
disable_cpuid(void)345 static void disable_cpuid(void)
346 {
347 	preempt_disable();
348 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
349 		/*
350 		 * Must flip the CPU state synchronously with
351 		 * TIF_NOCPUID in the current running context.
352 		 */
353 		set_cpuid_faulting(true);
354 	}
355 	preempt_enable();
356 }
357 
enable_cpuid(void)358 static void enable_cpuid(void)
359 {
360 	preempt_disable();
361 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
362 		/*
363 		 * Must flip the CPU state synchronously with
364 		 * TIF_NOCPUID in the current running context.
365 		 */
366 		set_cpuid_faulting(false);
367 	}
368 	preempt_enable();
369 }
370 
get_cpuid_mode(void)371 static int get_cpuid_mode(void)
372 {
373 	return !test_thread_flag(TIF_NOCPUID);
374 }
375 
set_cpuid_mode(unsigned long cpuid_enabled)376 static int set_cpuid_mode(unsigned long cpuid_enabled)
377 {
378 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
379 		return -ENODEV;
380 
381 	if (cpuid_enabled)
382 		enable_cpuid();
383 	else
384 		disable_cpuid();
385 
386 	return 0;
387 }
388 
389 /*
390  * Called immediately after a successful exec.
391  */
arch_setup_new_exec(void)392 void arch_setup_new_exec(void)
393 {
394 	/* If cpuid was previously disabled for this task, re-enable it. */
395 	if (test_thread_flag(TIF_NOCPUID))
396 		enable_cpuid();
397 
398 	/*
399 	 * Don't inherit TIF_SSBD across exec boundary when
400 	 * PR_SPEC_DISABLE_NOEXEC is used.
401 	 */
402 	if (test_thread_flag(TIF_SSBD) &&
403 	    task_spec_ssb_noexec(current)) {
404 		clear_thread_flag(TIF_SSBD);
405 		task_clear_spec_ssb_disable(current);
406 		task_clear_spec_ssb_noexec(current);
407 		speculation_ctrl_update(read_thread_flags());
408 	}
409 
410 	mm_reset_untag_mask(current->mm);
411 }
412 
413 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)414 static inline void switch_to_bitmap(unsigned long tifp)
415 {
416 	/*
417 	 * Invalidate I/O bitmap if the previous task used it. This prevents
418 	 * any possible leakage of an active I/O bitmap.
419 	 *
420 	 * If the next task has an I/O bitmap it will handle it on exit to
421 	 * user mode.
422 	 */
423 	if (tifp & _TIF_IO_BITMAP)
424 		tss_invalidate_io_bitmap();
425 }
426 
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)427 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
428 {
429 	/*
430 	 * Copy at least the byte range of the incoming tasks bitmap which
431 	 * covers the permitted I/O ports.
432 	 *
433 	 * If the previous task which used an I/O bitmap had more bits
434 	 * permitted, then the copy needs to cover those as well so they
435 	 * get turned off.
436 	 */
437 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
438 	       max(tss->io_bitmap.prev_max, iobm->max));
439 
440 	/*
441 	 * Store the new max and the sequence number of this bitmap
442 	 * and a pointer to the bitmap itself.
443 	 */
444 	tss->io_bitmap.prev_max = iobm->max;
445 	tss->io_bitmap.prev_sequence = iobm->sequence;
446 }
447 
448 /**
449  * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
450  */
native_tss_update_io_bitmap(void)451 void native_tss_update_io_bitmap(void)
452 {
453 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
454 	struct thread_struct *t = &current->thread;
455 	u16 *base = &tss->x86_tss.io_bitmap_base;
456 
457 	if (!test_thread_flag(TIF_IO_BITMAP)) {
458 		native_tss_invalidate_io_bitmap();
459 		return;
460 	}
461 
462 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
463 		*base = IO_BITMAP_OFFSET_VALID_ALL;
464 	} else {
465 		struct io_bitmap *iobm = t->io_bitmap;
466 
467 		/*
468 		 * Only copy bitmap data when the sequence number differs. The
469 		 * update time is accounted to the incoming task.
470 		 */
471 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
472 			tss_copy_io_bitmap(tss, iobm);
473 
474 		/* Enable the bitmap */
475 		*base = IO_BITMAP_OFFSET_VALID_MAP;
476 	}
477 
478 	/*
479 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
480 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
481 	 * access from user space to trigger a #GP because tbe bitmap is outside
482 	 * the TSS limit.
483 	 */
484 	refresh_tss_limit();
485 }
486 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)487 static inline void switch_to_bitmap(unsigned long tifp) { }
488 #endif
489 
490 #ifdef CONFIG_SMP
491 
492 struct ssb_state {
493 	struct ssb_state	*shared_state;
494 	raw_spinlock_t		lock;
495 	unsigned int		disable_state;
496 	unsigned long		local_state;
497 };
498 
499 #define LSTATE_SSB	0
500 
501 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
502 
speculative_store_bypass_ht_init(void)503 void speculative_store_bypass_ht_init(void)
504 {
505 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
506 	unsigned int this_cpu = smp_processor_id();
507 	unsigned int cpu;
508 
509 	st->local_state = 0;
510 
511 	/*
512 	 * Shared state setup happens once on the first bringup
513 	 * of the CPU. It's not destroyed on CPU hotunplug.
514 	 */
515 	if (st->shared_state)
516 		return;
517 
518 	raw_spin_lock_init(&st->lock);
519 
520 	/*
521 	 * Go over HT siblings and check whether one of them has set up the
522 	 * shared state pointer already.
523 	 */
524 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
525 		if (cpu == this_cpu)
526 			continue;
527 
528 		if (!per_cpu(ssb_state, cpu).shared_state)
529 			continue;
530 
531 		/* Link it to the state of the sibling: */
532 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
533 		return;
534 	}
535 
536 	/*
537 	 * First HT sibling to come up on the core.  Link shared state of
538 	 * the first HT sibling to itself. The siblings on the same core
539 	 * which come up later will see the shared state pointer and link
540 	 * themselves to the state of this CPU.
541 	 */
542 	st->shared_state = st;
543 }
544 
545 /*
546  * Logic is: First HT sibling enables SSBD for both siblings in the core
547  * and last sibling to disable it, disables it for the whole core. This how
548  * MSR_SPEC_CTRL works in "hardware":
549  *
550  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
551  */
amd_set_core_ssb_state(unsigned long tifn)552 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
553 {
554 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
555 	u64 msr = x86_amd_ls_cfg_base;
556 
557 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
558 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
559 		wrmsrl(MSR_AMD64_LS_CFG, msr);
560 		return;
561 	}
562 
563 	if (tifn & _TIF_SSBD) {
564 		/*
565 		 * Since this can race with prctl(), block reentry on the
566 		 * same CPU.
567 		 */
568 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
569 			return;
570 
571 		msr |= x86_amd_ls_cfg_ssbd_mask;
572 
573 		raw_spin_lock(&st->shared_state->lock);
574 		/* First sibling enables SSBD: */
575 		if (!st->shared_state->disable_state)
576 			wrmsrl(MSR_AMD64_LS_CFG, msr);
577 		st->shared_state->disable_state++;
578 		raw_spin_unlock(&st->shared_state->lock);
579 	} else {
580 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
581 			return;
582 
583 		raw_spin_lock(&st->shared_state->lock);
584 		st->shared_state->disable_state--;
585 		if (!st->shared_state->disable_state)
586 			wrmsrl(MSR_AMD64_LS_CFG, msr);
587 		raw_spin_unlock(&st->shared_state->lock);
588 	}
589 }
590 #else
amd_set_core_ssb_state(unsigned long tifn)591 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
592 {
593 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
594 
595 	wrmsrl(MSR_AMD64_LS_CFG, msr);
596 }
597 #endif
598 
amd_set_ssb_virt_state(unsigned long tifn)599 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
600 {
601 	/*
602 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
603 	 * so ssbd_tif_to_spec_ctrl() just works.
604 	 */
605 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
606 }
607 
608 /*
609  * Update the MSRs managing speculation control, during context switch.
610  *
611  * tifp: Previous task's thread flags
612  * tifn: Next task's thread flags
613  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)614 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
615 						      unsigned long tifn)
616 {
617 	unsigned long tif_diff = tifp ^ tifn;
618 	u64 msr = x86_spec_ctrl_base;
619 	bool updmsr = false;
620 
621 	lockdep_assert_irqs_disabled();
622 
623 	/* Handle change of TIF_SSBD depending on the mitigation method. */
624 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
625 		if (tif_diff & _TIF_SSBD)
626 			amd_set_ssb_virt_state(tifn);
627 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
628 		if (tif_diff & _TIF_SSBD)
629 			amd_set_core_ssb_state(tifn);
630 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
631 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
632 		updmsr |= !!(tif_diff & _TIF_SSBD);
633 		msr |= ssbd_tif_to_spec_ctrl(tifn);
634 	}
635 
636 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
637 	if (IS_ENABLED(CONFIG_SMP) &&
638 	    static_branch_unlikely(&switch_to_cond_stibp)) {
639 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
640 		msr |= stibp_tif_to_spec_ctrl(tifn);
641 	}
642 
643 	if (updmsr)
644 		update_spec_ctrl_cond(msr);
645 }
646 
speculation_ctrl_update_tif(struct task_struct * tsk)647 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
648 {
649 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
650 		if (task_spec_ssb_disable(tsk))
651 			set_tsk_thread_flag(tsk, TIF_SSBD);
652 		else
653 			clear_tsk_thread_flag(tsk, TIF_SSBD);
654 
655 		if (task_spec_ib_disable(tsk))
656 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
657 		else
658 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
659 	}
660 	/* Return the updated threadinfo flags*/
661 	return read_task_thread_flags(tsk);
662 }
663 
speculation_ctrl_update(unsigned long tif)664 void speculation_ctrl_update(unsigned long tif)
665 {
666 	unsigned long flags;
667 
668 	/* Forced update. Make sure all relevant TIF flags are different */
669 	local_irq_save(flags);
670 	__speculation_ctrl_update(~tif, tif);
671 	local_irq_restore(flags);
672 }
673 
674 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)675 void speculation_ctrl_update_current(void)
676 {
677 	preempt_disable();
678 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
679 	preempt_enable();
680 }
681 
cr4_toggle_bits_irqsoff(unsigned long mask)682 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
683 {
684 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
685 
686 	newval = cr4 ^ mask;
687 	if (newval != cr4) {
688 		this_cpu_write(cpu_tlbstate.cr4, newval);
689 		__write_cr4(newval);
690 	}
691 }
692 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)693 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
694 {
695 	unsigned long tifp, tifn;
696 
697 	tifn = read_task_thread_flags(next_p);
698 	tifp = read_task_thread_flags(prev_p);
699 
700 	switch_to_bitmap(tifp);
701 
702 	propagate_user_return_notify(prev_p, next_p);
703 
704 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
705 	    arch_has_block_step()) {
706 		unsigned long debugctl, msk;
707 
708 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
709 		debugctl &= ~DEBUGCTLMSR_BTF;
710 		msk = tifn & _TIF_BLOCKSTEP;
711 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
712 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
713 	}
714 
715 	if ((tifp ^ tifn) & _TIF_NOTSC)
716 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
717 
718 	if ((tifp ^ tifn) & _TIF_NOCPUID)
719 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
720 
721 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
722 		__speculation_ctrl_update(tifp, tifn);
723 	} else {
724 		speculation_ctrl_update_tif(prev_p);
725 		tifn = speculation_ctrl_update_tif(next_p);
726 
727 		/* Enforce MSR update to ensure consistent state */
728 		__speculation_ctrl_update(~tifn, tifn);
729 	}
730 }
731 
732 /*
733  * Idle related variables and functions
734  */
735 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
736 EXPORT_SYMBOL(boot_option_idle_override);
737 
738 /*
739  * We use this if we don't have any better idle routine..
740  */
default_idle(void)741 void __cpuidle default_idle(void)
742 {
743 	raw_safe_halt();
744 	raw_local_irq_disable();
745 }
746 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
747 EXPORT_SYMBOL(default_idle);
748 #endif
749 
750 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
751 
x86_idle_set(void)752 static bool x86_idle_set(void)
753 {
754 	return !!static_call_query(x86_idle);
755 }
756 
757 #ifndef CONFIG_SMP
play_dead(void)758 static inline void __noreturn play_dead(void)
759 {
760 	BUG();
761 }
762 #endif
763 
arch_cpu_idle_enter(void)764 void arch_cpu_idle_enter(void)
765 {
766 	tsc_verify_tsc_adjust(false);
767 	local_touch_nmi();
768 }
769 
arch_cpu_idle_dead(void)770 void __noreturn arch_cpu_idle_dead(void)
771 {
772 	play_dead();
773 }
774 
775 /*
776  * Called from the generic idle code.
777  */
arch_cpu_idle(void)778 void __cpuidle arch_cpu_idle(void)
779 {
780 	static_call(x86_idle)();
781 }
782 EXPORT_SYMBOL_GPL(arch_cpu_idle);
783 
784 #ifdef CONFIG_XEN
xen_set_default_idle(void)785 bool xen_set_default_idle(void)
786 {
787 	bool ret = x86_idle_set();
788 
789 	static_call_update(x86_idle, default_idle);
790 
791 	return ret;
792 }
793 #endif
794 
795 struct cpumask cpus_stop_mask;
796 
stop_this_cpu(void * dummy)797 void __noreturn stop_this_cpu(void *dummy)
798 {
799 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
800 	unsigned int cpu = smp_processor_id();
801 
802 	local_irq_disable();
803 
804 	/*
805 	 * Remove this CPU from the online mask and disable it
806 	 * unconditionally. This might be redundant in case that the reboot
807 	 * vector was handled late and stop_other_cpus() sent an NMI.
808 	 *
809 	 * According to SDM and APM NMIs can be accepted even after soft
810 	 * disabling the local APIC.
811 	 */
812 	set_cpu_online(cpu, false);
813 	disable_local_APIC();
814 	mcheck_cpu_clear(c);
815 
816 	/*
817 	 * Use wbinvd on processors that support SME. This provides support
818 	 * for performing a successful kexec when going from SME inactive
819 	 * to SME active (or vice-versa). The cache must be cleared so that
820 	 * if there are entries with the same physical address, both with and
821 	 * without the encryption bit, they don't race each other when flushed
822 	 * and potentially end up with the wrong entry being committed to
823 	 * memory.
824 	 *
825 	 * Test the CPUID bit directly because the machine might've cleared
826 	 * X86_FEATURE_SME due to cmdline options.
827 	 */
828 	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
829 		native_wbinvd();
830 
831 	/*
832 	 * This brings a cache line back and dirties it, but
833 	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
834 	 * observed that all CPUs reported stop. This write will invalidate
835 	 * the related cache line on this CPU.
836 	 */
837 	cpumask_clear_cpu(cpu, &cpus_stop_mask);
838 
839 	for (;;) {
840 		/*
841 		 * Use native_halt() so that memory contents don't change
842 		 * (stack usage and variables) after possibly issuing the
843 		 * native_wbinvd() above.
844 		 */
845 		native_halt();
846 	}
847 }
848 
849 /*
850  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
851  * states (local apic timer and TSC stop).
852  *
853  * XXX this function is completely buggered vs RCU and tracing.
854  */
amd_e400_idle(void)855 static void amd_e400_idle(void)
856 {
857 	/*
858 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
859 	 * gets set after static_cpu_has() places have been converted via
860 	 * alternatives.
861 	 */
862 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
863 		default_idle();
864 		return;
865 	}
866 
867 	tick_broadcast_enter();
868 
869 	default_idle();
870 
871 	tick_broadcast_exit();
872 }
873 
874 /*
875  * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
876  * exists and whenever MONITOR/MWAIT extensions are present there is at
877  * least one C1 substate.
878  *
879  * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
880  * is passed to kernel commandline parameter.
881  */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)882 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
883 {
884 	u32 eax, ebx, ecx, edx;
885 
886 	/* User has disallowed the use of MWAIT. Fallback to HALT */
887 	if (boot_option_idle_override == IDLE_NOMWAIT)
888 		return 0;
889 
890 	/* MWAIT is not supported on this platform. Fallback to HALT */
891 	if (!cpu_has(c, X86_FEATURE_MWAIT))
892 		return 0;
893 
894 	/* Monitor has a bug. Fallback to HALT */
895 	if (boot_cpu_has_bug(X86_BUG_MONITOR))
896 		return 0;
897 
898 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
899 
900 	/*
901 	 * If MWAIT extensions are not available, it is safe to use MWAIT
902 	 * with EAX=0, ECX=0.
903 	 */
904 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
905 		return 1;
906 
907 	/*
908 	 * If MWAIT extensions are available, there should be at least one
909 	 * MWAIT C1 substate present.
910 	 */
911 	return (edx & MWAIT_C1_SUBSTATE_MASK);
912 }
913 
914 /*
915  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
916  * with interrupts enabled and no flags, which is backwards compatible with the
917  * original MWAIT implementation.
918  */
mwait_idle(void)919 static __cpuidle void mwait_idle(void)
920 {
921 	if (!current_set_polling_and_test()) {
922 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
923 			mb(); /* quirk */
924 			clflush((void *)&current_thread_info()->flags);
925 			mb(); /* quirk */
926 		}
927 
928 		__monitor((void *)&current_thread_info()->flags, 0, 0);
929 		if (!need_resched()) {
930 			__sti_mwait(0, 0);
931 			raw_local_irq_disable();
932 		}
933 	}
934 	__current_clr_polling();
935 }
936 
select_idle_routine(const struct cpuinfo_x86 * c)937 void select_idle_routine(const struct cpuinfo_x86 *c)
938 {
939 #ifdef CONFIG_SMP
940 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
941 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
942 #endif
943 	if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
944 		return;
945 
946 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
947 		pr_info("using AMD E400 aware idle routine\n");
948 		static_call_update(x86_idle, amd_e400_idle);
949 	} else if (prefer_mwait_c1_over_halt(c)) {
950 		pr_info("using mwait in idle threads\n");
951 		static_call_update(x86_idle, mwait_idle);
952 	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
953 		pr_info("using TDX aware idle routine\n");
954 		static_call_update(x86_idle, tdx_safe_halt);
955 	} else
956 		static_call_update(x86_idle, default_idle);
957 }
958 
amd_e400_c1e_apic_setup(void)959 void amd_e400_c1e_apic_setup(void)
960 {
961 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
962 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
963 		local_irq_disable();
964 		tick_broadcast_force();
965 		local_irq_enable();
966 	}
967 }
968 
arch_post_acpi_subsys_init(void)969 void __init arch_post_acpi_subsys_init(void)
970 {
971 	u32 lo, hi;
972 
973 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
974 		return;
975 
976 	/*
977 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
978 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
979 	 * MSR_K8_INT_PENDING_MSG.
980 	 */
981 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
982 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
983 		return;
984 
985 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
986 
987 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
988 		mark_tsc_unstable("TSC halt in AMD C1E");
989 	pr_info("System has AMD C1E enabled\n");
990 }
991 
idle_setup(char * str)992 static int __init idle_setup(char *str)
993 {
994 	if (!str)
995 		return -EINVAL;
996 
997 	if (!strcmp(str, "poll")) {
998 		pr_info("using polling idle threads\n");
999 		boot_option_idle_override = IDLE_POLL;
1000 		cpu_idle_poll_ctrl(true);
1001 	} else if (!strcmp(str, "halt")) {
1002 		/*
1003 		 * When the boot option of idle=halt is added, halt is
1004 		 * forced to be used for CPU idle. In such case CPU C2/C3
1005 		 * won't be used again.
1006 		 * To continue to load the CPU idle driver, don't touch
1007 		 * the boot_option_idle_override.
1008 		 */
1009 		static_call_update(x86_idle, default_idle);
1010 		boot_option_idle_override = IDLE_HALT;
1011 	} else if (!strcmp(str, "nomwait")) {
1012 		/*
1013 		 * If the boot option of "idle=nomwait" is added,
1014 		 * it means that mwait will be disabled for CPU C1/C2/C3
1015 		 * states.
1016 		 */
1017 		boot_option_idle_override = IDLE_NOMWAIT;
1018 	} else
1019 		return -1;
1020 
1021 	return 0;
1022 }
1023 early_param("idle", idle_setup);
1024 
arch_align_stack(unsigned long sp)1025 unsigned long arch_align_stack(unsigned long sp)
1026 {
1027 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1028 		sp -= get_random_u32_below(__PAGE_SIZE << 1);
1029 	return sp & ~0xf;
1030 }
1031 
arch_randomize_brk(struct mm_struct * mm)1032 unsigned long arch_randomize_brk(struct mm_struct *mm)
1033 {
1034 	if (mmap_is_ia32())
1035 		return randomize_page(mm->brk, SZ_32M);
1036 
1037 	return randomize_page(mm->brk, SZ_1G);
1038 }
1039 
1040 /*
1041  * Called from fs/proc with a reference on @p to find the function
1042  * which called into schedule(). This needs to be done carefully
1043  * because the task might wake up and we might look at a stack
1044  * changing under us.
1045  */
__get_wchan(struct task_struct * p)1046 unsigned long __get_wchan(struct task_struct *p)
1047 {
1048 	struct unwind_state state;
1049 	unsigned long addr = 0;
1050 
1051 	if (!try_get_task_stack(p))
1052 		return 0;
1053 
1054 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1055 	     unwind_next_frame(&state)) {
1056 		addr = unwind_get_return_address(&state);
1057 		if (!addr)
1058 			break;
1059 		if (in_sched_functions(addr))
1060 			continue;
1061 		break;
1062 	}
1063 
1064 	put_task_stack(p);
1065 
1066 	return addr;
1067 }
1068 
do_arch_prctl_common(int option,unsigned long arg2)1069 long do_arch_prctl_common(int option, unsigned long arg2)
1070 {
1071 	switch (option) {
1072 	case ARCH_GET_CPUID:
1073 		return get_cpuid_mode();
1074 	case ARCH_SET_CPUID:
1075 		return set_cpuid_mode(arg2);
1076 	case ARCH_GET_XCOMP_SUPP:
1077 	case ARCH_GET_XCOMP_PERM:
1078 	case ARCH_REQ_XCOMP_PERM:
1079 	case ARCH_GET_XCOMP_GUEST_PERM:
1080 	case ARCH_REQ_XCOMP_GUEST_PERM:
1081 		return fpu_xstate_prctl(option, arg2);
1082 	}
1083 
1084 	return -EINVAL;
1085 }
1086