1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/page_size_compat.h>
8 #include <linux/smp.h>
9 #include <linux/cpu.h>
10 #include <linux/prctl.h>
11 #include <linux/slab.h>
12 #include <linux/sched.h>
13 #include <linux/sched/idle.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/pm.h>
20 #include <linux/tick.h>
21 #include <linux/random.h>
22 #include <linux/user-return-notifier.h>
23 #include <linux/dmi.h>
24 #include <linux/utsname.h>
25 #include <linux/stackprotector.h>
26 #include <linux/cpuidle.h>
27 #include <linux/acpi.h>
28 #include <linux/elf-randomize.h>
29 #include <linux/static_call.h>
30 #include <trace/events/power.h>
31 #include <linux/hw_breakpoint.h>
32 #include <linux/entry-common.h>
33 #include <asm/cpu.h>
34 #include <asm/apic.h>
35 #include <linux/uaccess.h>
36 #include <asm/mwait.h>
37 #include <asm/fpu/api.h>
38 #include <asm/fpu/sched.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/debugreg.h>
41 #include <asm/nmi.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mce.h>
44 #include <asm/vm86.h>
45 #include <asm/switch_to.h>
46 #include <asm/desc.h>
47 #include <asm/prctl.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/io_bitmap.h>
50 #include <asm/proto.h>
51 #include <asm/frame.h>
52 #include <asm/unwind.h>
53 #include <asm/tdx.h>
54 #include <asm/mmu_context.h>
55 #include <asm/shstk.h>
56
57 #include "process.h"
58
59 /*
60 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
61 * no more per-task TSS's. The TSS size is kept cacheline-aligned
62 * so they are allowed to end up in the .data..cacheline_aligned
63 * section. Since TSS's are completely CPU-local, we want them
64 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
65 */
66 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
67 .x86_tss = {
68 /*
69 * .sp0 is only used when entering ring 0 from a lower
70 * privilege level. Since the init task never runs anything
71 * but ring 0 code, there is no need for a valid value here.
72 * Poison it.
73 */
74 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
75
76 #ifdef CONFIG_X86_32
77 .sp1 = TOP_OF_INIT_STACK,
78
79 .ss0 = __KERNEL_DS,
80 .ss1 = __KERNEL_CS,
81 #endif
82 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
83 },
84 };
85 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86
87 DEFINE_PER_CPU(bool, __tss_limit_invalid);
88 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89
90 /*
91 * this gets called so that we can store lazy state into memory and copy the
92 * current task into the new thread.
93 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)94 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95 {
96 memcpy(dst, src, arch_task_struct_size);
97 #ifdef CONFIG_VM86
98 dst->thread.vm86 = NULL;
99 #endif
100 /* Drop the copied pointer to current's fpstate */
101 dst->thread.fpu.fpstate = NULL;
102
103 return 0;
104 }
105
106 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)107 void arch_release_task_struct(struct task_struct *tsk)
108 {
109 if (fpu_state_size_dynamic())
110 fpstate_free(&tsk->thread.fpu);
111 }
112 #endif
113
114 /*
115 * Free thread data structures etc..
116 */
exit_thread(struct task_struct * tsk)117 void exit_thread(struct task_struct *tsk)
118 {
119 struct thread_struct *t = &tsk->thread;
120 struct fpu *fpu = &t->fpu;
121
122 if (test_thread_flag(TIF_IO_BITMAP))
123 io_bitmap_exit(tsk);
124
125 free_vm86(t);
126
127 shstk_free(tsk);
128 fpu__drop(fpu);
129 }
130
set_new_tls(struct task_struct * p,unsigned long tls)131 static int set_new_tls(struct task_struct *p, unsigned long tls)
132 {
133 struct user_desc __user *utls = (struct user_desc __user *)tls;
134
135 if (in_ia32_syscall())
136 return do_set_thread_area(p, -1, utls, 0);
137 else
138 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
139 }
140
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)141 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
142 int (*fn)(void *), void *fn_arg)
143 {
144 schedule_tail(prev);
145
146 /* Is this a kernel thread? */
147 if (unlikely(fn)) {
148 fn(fn_arg);
149 /*
150 * A kernel thread is allowed to return here after successfully
151 * calling kernel_execve(). Exit to userspace to complete the
152 * execve() syscall.
153 */
154 regs->ax = 0;
155 }
156
157 syscall_exit_to_user_mode(regs);
158 }
159
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)160 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
161 {
162 unsigned long clone_flags = args->flags;
163 unsigned long sp = args->stack;
164 unsigned long tls = args->tls;
165 struct inactive_task_frame *frame;
166 struct fork_frame *fork_frame;
167 struct pt_regs *childregs;
168 unsigned long new_ssp;
169 int ret = 0;
170
171 childregs = task_pt_regs(p);
172 fork_frame = container_of(childregs, struct fork_frame, regs);
173 frame = &fork_frame->frame;
174
175 frame->bp = encode_frame_pointer(childregs);
176 frame->ret_addr = (unsigned long) ret_from_fork_asm;
177 p->thread.sp = (unsigned long) fork_frame;
178 p->thread.io_bitmap = NULL;
179 p->thread.iopl_warn = 0;
180 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
181
182 #ifdef CONFIG_X86_64
183 current_save_fsgs();
184 p->thread.fsindex = current->thread.fsindex;
185 p->thread.fsbase = current->thread.fsbase;
186 p->thread.gsindex = current->thread.gsindex;
187 p->thread.gsbase = current->thread.gsbase;
188
189 savesegment(es, p->thread.es);
190 savesegment(ds, p->thread.ds);
191
192 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
193 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
194 #else
195 p->thread.sp0 = (unsigned long) (childregs + 1);
196 savesegment(gs, p->thread.gs);
197 /*
198 * Clear all status flags including IF and set fixed bit. 64bit
199 * does not have this initialization as the frame does not contain
200 * flags. The flags consistency (especially vs. AC) is there
201 * ensured via objtool, which lacks 32bit support.
202 */
203 frame->flags = X86_EFLAGS_FIXED;
204 #endif
205
206 /*
207 * Allocate a new shadow stack for thread if needed. If shadow stack,
208 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
209 * update it.
210 */
211 new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
212 if (IS_ERR_VALUE(new_ssp))
213 return PTR_ERR((void *)new_ssp);
214
215 fpu_clone(p, clone_flags, args->fn, new_ssp);
216
217 /* Kernel thread ? */
218 if (unlikely(p->flags & PF_KTHREAD)) {
219 p->thread.pkru = pkru_get_init_value();
220 memset(childregs, 0, sizeof(struct pt_regs));
221 kthread_frame_init(frame, args->fn, args->fn_arg);
222 return 0;
223 }
224
225 /*
226 * Clone current's PKRU value from hardware. tsk->thread.pkru
227 * is only valid when scheduled out.
228 */
229 p->thread.pkru = read_pkru();
230
231 frame->bx = 0;
232 *childregs = *current_pt_regs();
233 childregs->ax = 0;
234 if (sp)
235 childregs->sp = sp;
236
237 if (unlikely(args->fn)) {
238 /*
239 * A user space thread, but it doesn't return to
240 * ret_after_fork().
241 *
242 * In order to indicate that to tools like gdb,
243 * we reset the stack and instruction pointers.
244 *
245 * It does the same kernel frame setup to return to a kernel
246 * function that a kernel thread does.
247 */
248 childregs->sp = 0;
249 childregs->ip = 0;
250 kthread_frame_init(frame, args->fn, args->fn_arg);
251 return 0;
252 }
253
254 /* Set a new TLS for the child thread? */
255 if (clone_flags & CLONE_SETTLS)
256 ret = set_new_tls(p, tls);
257
258 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
259 io_bitmap_share(p);
260
261 return ret;
262 }
263
pkru_flush_thread(void)264 static void pkru_flush_thread(void)
265 {
266 /*
267 * If PKRU is enabled the default PKRU value has to be loaded into
268 * the hardware right here (similar to context switch).
269 */
270 pkru_write_default();
271 }
272
flush_thread(void)273 void flush_thread(void)
274 {
275 struct task_struct *tsk = current;
276
277 flush_ptrace_hw_breakpoint(tsk);
278 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
279
280 fpu_flush_thread();
281 pkru_flush_thread();
282 }
283
disable_TSC(void)284 void disable_TSC(void)
285 {
286 preempt_disable();
287 if (!test_and_set_thread_flag(TIF_NOTSC))
288 /*
289 * Must flip the CPU state synchronously with
290 * TIF_NOTSC in the current running context.
291 */
292 cr4_set_bits(X86_CR4_TSD);
293 preempt_enable();
294 }
295
enable_TSC(void)296 static void enable_TSC(void)
297 {
298 preempt_disable();
299 if (test_and_clear_thread_flag(TIF_NOTSC))
300 /*
301 * Must flip the CPU state synchronously with
302 * TIF_NOTSC in the current running context.
303 */
304 cr4_clear_bits(X86_CR4_TSD);
305 preempt_enable();
306 }
307
get_tsc_mode(unsigned long adr)308 int get_tsc_mode(unsigned long adr)
309 {
310 unsigned int val;
311
312 if (test_thread_flag(TIF_NOTSC))
313 val = PR_TSC_SIGSEGV;
314 else
315 val = PR_TSC_ENABLE;
316
317 return put_user(val, (unsigned int __user *)adr);
318 }
319
set_tsc_mode(unsigned int val)320 int set_tsc_mode(unsigned int val)
321 {
322 if (val == PR_TSC_SIGSEGV)
323 disable_TSC();
324 else if (val == PR_TSC_ENABLE)
325 enable_TSC();
326 else
327 return -EINVAL;
328
329 return 0;
330 }
331
332 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
333
set_cpuid_faulting(bool on)334 static void set_cpuid_faulting(bool on)
335 {
336 u64 msrval;
337
338 msrval = this_cpu_read(msr_misc_features_shadow);
339 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
340 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
341 this_cpu_write(msr_misc_features_shadow, msrval);
342 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
343 }
344
disable_cpuid(void)345 static void disable_cpuid(void)
346 {
347 preempt_disable();
348 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
349 /*
350 * Must flip the CPU state synchronously with
351 * TIF_NOCPUID in the current running context.
352 */
353 set_cpuid_faulting(true);
354 }
355 preempt_enable();
356 }
357
enable_cpuid(void)358 static void enable_cpuid(void)
359 {
360 preempt_disable();
361 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
362 /*
363 * Must flip the CPU state synchronously with
364 * TIF_NOCPUID in the current running context.
365 */
366 set_cpuid_faulting(false);
367 }
368 preempt_enable();
369 }
370
get_cpuid_mode(void)371 static int get_cpuid_mode(void)
372 {
373 return !test_thread_flag(TIF_NOCPUID);
374 }
375
set_cpuid_mode(unsigned long cpuid_enabled)376 static int set_cpuid_mode(unsigned long cpuid_enabled)
377 {
378 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
379 return -ENODEV;
380
381 if (cpuid_enabled)
382 enable_cpuid();
383 else
384 disable_cpuid();
385
386 return 0;
387 }
388
389 /*
390 * Called immediately after a successful exec.
391 */
arch_setup_new_exec(void)392 void arch_setup_new_exec(void)
393 {
394 /* If cpuid was previously disabled for this task, re-enable it. */
395 if (test_thread_flag(TIF_NOCPUID))
396 enable_cpuid();
397
398 /*
399 * Don't inherit TIF_SSBD across exec boundary when
400 * PR_SPEC_DISABLE_NOEXEC is used.
401 */
402 if (test_thread_flag(TIF_SSBD) &&
403 task_spec_ssb_noexec(current)) {
404 clear_thread_flag(TIF_SSBD);
405 task_clear_spec_ssb_disable(current);
406 task_clear_spec_ssb_noexec(current);
407 speculation_ctrl_update(read_thread_flags());
408 }
409
410 mm_reset_untag_mask(current->mm);
411 }
412
413 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)414 static inline void switch_to_bitmap(unsigned long tifp)
415 {
416 /*
417 * Invalidate I/O bitmap if the previous task used it. This prevents
418 * any possible leakage of an active I/O bitmap.
419 *
420 * If the next task has an I/O bitmap it will handle it on exit to
421 * user mode.
422 */
423 if (tifp & _TIF_IO_BITMAP)
424 tss_invalidate_io_bitmap();
425 }
426
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)427 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
428 {
429 /*
430 * Copy at least the byte range of the incoming tasks bitmap which
431 * covers the permitted I/O ports.
432 *
433 * If the previous task which used an I/O bitmap had more bits
434 * permitted, then the copy needs to cover those as well so they
435 * get turned off.
436 */
437 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
438 max(tss->io_bitmap.prev_max, iobm->max));
439
440 /*
441 * Store the new max and the sequence number of this bitmap
442 * and a pointer to the bitmap itself.
443 */
444 tss->io_bitmap.prev_max = iobm->max;
445 tss->io_bitmap.prev_sequence = iobm->sequence;
446 }
447
448 /**
449 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
450 */
native_tss_update_io_bitmap(void)451 void native_tss_update_io_bitmap(void)
452 {
453 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
454 struct thread_struct *t = ¤t->thread;
455 u16 *base = &tss->x86_tss.io_bitmap_base;
456
457 if (!test_thread_flag(TIF_IO_BITMAP)) {
458 native_tss_invalidate_io_bitmap();
459 return;
460 }
461
462 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
463 *base = IO_BITMAP_OFFSET_VALID_ALL;
464 } else {
465 struct io_bitmap *iobm = t->io_bitmap;
466
467 /*
468 * Only copy bitmap data when the sequence number differs. The
469 * update time is accounted to the incoming task.
470 */
471 if (tss->io_bitmap.prev_sequence != iobm->sequence)
472 tss_copy_io_bitmap(tss, iobm);
473
474 /* Enable the bitmap */
475 *base = IO_BITMAP_OFFSET_VALID_MAP;
476 }
477
478 /*
479 * Make sure that the TSS limit is covering the IO bitmap. It might have
480 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
481 * access from user space to trigger a #GP because tbe bitmap is outside
482 * the TSS limit.
483 */
484 refresh_tss_limit();
485 }
486 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)487 static inline void switch_to_bitmap(unsigned long tifp) { }
488 #endif
489
490 #ifdef CONFIG_SMP
491
492 struct ssb_state {
493 struct ssb_state *shared_state;
494 raw_spinlock_t lock;
495 unsigned int disable_state;
496 unsigned long local_state;
497 };
498
499 #define LSTATE_SSB 0
500
501 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
502
speculative_store_bypass_ht_init(void)503 void speculative_store_bypass_ht_init(void)
504 {
505 struct ssb_state *st = this_cpu_ptr(&ssb_state);
506 unsigned int this_cpu = smp_processor_id();
507 unsigned int cpu;
508
509 st->local_state = 0;
510
511 /*
512 * Shared state setup happens once on the first bringup
513 * of the CPU. It's not destroyed on CPU hotunplug.
514 */
515 if (st->shared_state)
516 return;
517
518 raw_spin_lock_init(&st->lock);
519
520 /*
521 * Go over HT siblings and check whether one of them has set up the
522 * shared state pointer already.
523 */
524 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
525 if (cpu == this_cpu)
526 continue;
527
528 if (!per_cpu(ssb_state, cpu).shared_state)
529 continue;
530
531 /* Link it to the state of the sibling: */
532 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
533 return;
534 }
535
536 /*
537 * First HT sibling to come up on the core. Link shared state of
538 * the first HT sibling to itself. The siblings on the same core
539 * which come up later will see the shared state pointer and link
540 * themselves to the state of this CPU.
541 */
542 st->shared_state = st;
543 }
544
545 /*
546 * Logic is: First HT sibling enables SSBD for both siblings in the core
547 * and last sibling to disable it, disables it for the whole core. This how
548 * MSR_SPEC_CTRL works in "hardware":
549 *
550 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
551 */
amd_set_core_ssb_state(unsigned long tifn)552 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
553 {
554 struct ssb_state *st = this_cpu_ptr(&ssb_state);
555 u64 msr = x86_amd_ls_cfg_base;
556
557 if (!static_cpu_has(X86_FEATURE_ZEN)) {
558 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
559 wrmsrl(MSR_AMD64_LS_CFG, msr);
560 return;
561 }
562
563 if (tifn & _TIF_SSBD) {
564 /*
565 * Since this can race with prctl(), block reentry on the
566 * same CPU.
567 */
568 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
569 return;
570
571 msr |= x86_amd_ls_cfg_ssbd_mask;
572
573 raw_spin_lock(&st->shared_state->lock);
574 /* First sibling enables SSBD: */
575 if (!st->shared_state->disable_state)
576 wrmsrl(MSR_AMD64_LS_CFG, msr);
577 st->shared_state->disable_state++;
578 raw_spin_unlock(&st->shared_state->lock);
579 } else {
580 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
581 return;
582
583 raw_spin_lock(&st->shared_state->lock);
584 st->shared_state->disable_state--;
585 if (!st->shared_state->disable_state)
586 wrmsrl(MSR_AMD64_LS_CFG, msr);
587 raw_spin_unlock(&st->shared_state->lock);
588 }
589 }
590 #else
amd_set_core_ssb_state(unsigned long tifn)591 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
592 {
593 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
594
595 wrmsrl(MSR_AMD64_LS_CFG, msr);
596 }
597 #endif
598
amd_set_ssb_virt_state(unsigned long tifn)599 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
600 {
601 /*
602 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
603 * so ssbd_tif_to_spec_ctrl() just works.
604 */
605 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
606 }
607
608 /*
609 * Update the MSRs managing speculation control, during context switch.
610 *
611 * tifp: Previous task's thread flags
612 * tifn: Next task's thread flags
613 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)614 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
615 unsigned long tifn)
616 {
617 unsigned long tif_diff = tifp ^ tifn;
618 u64 msr = x86_spec_ctrl_base;
619 bool updmsr = false;
620
621 lockdep_assert_irqs_disabled();
622
623 /* Handle change of TIF_SSBD depending on the mitigation method. */
624 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
625 if (tif_diff & _TIF_SSBD)
626 amd_set_ssb_virt_state(tifn);
627 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
628 if (tif_diff & _TIF_SSBD)
629 amd_set_core_ssb_state(tifn);
630 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
631 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
632 updmsr |= !!(tif_diff & _TIF_SSBD);
633 msr |= ssbd_tif_to_spec_ctrl(tifn);
634 }
635
636 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
637 if (IS_ENABLED(CONFIG_SMP) &&
638 static_branch_unlikely(&switch_to_cond_stibp)) {
639 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
640 msr |= stibp_tif_to_spec_ctrl(tifn);
641 }
642
643 if (updmsr)
644 update_spec_ctrl_cond(msr);
645 }
646
speculation_ctrl_update_tif(struct task_struct * tsk)647 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
648 {
649 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
650 if (task_spec_ssb_disable(tsk))
651 set_tsk_thread_flag(tsk, TIF_SSBD);
652 else
653 clear_tsk_thread_flag(tsk, TIF_SSBD);
654
655 if (task_spec_ib_disable(tsk))
656 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
657 else
658 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
659 }
660 /* Return the updated threadinfo flags*/
661 return read_task_thread_flags(tsk);
662 }
663
speculation_ctrl_update(unsigned long tif)664 void speculation_ctrl_update(unsigned long tif)
665 {
666 unsigned long flags;
667
668 /* Forced update. Make sure all relevant TIF flags are different */
669 local_irq_save(flags);
670 __speculation_ctrl_update(~tif, tif);
671 local_irq_restore(flags);
672 }
673
674 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)675 void speculation_ctrl_update_current(void)
676 {
677 preempt_disable();
678 speculation_ctrl_update(speculation_ctrl_update_tif(current));
679 preempt_enable();
680 }
681
cr4_toggle_bits_irqsoff(unsigned long mask)682 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
683 {
684 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
685
686 newval = cr4 ^ mask;
687 if (newval != cr4) {
688 this_cpu_write(cpu_tlbstate.cr4, newval);
689 __write_cr4(newval);
690 }
691 }
692
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)693 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
694 {
695 unsigned long tifp, tifn;
696
697 tifn = read_task_thread_flags(next_p);
698 tifp = read_task_thread_flags(prev_p);
699
700 switch_to_bitmap(tifp);
701
702 propagate_user_return_notify(prev_p, next_p);
703
704 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
705 arch_has_block_step()) {
706 unsigned long debugctl, msk;
707
708 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
709 debugctl &= ~DEBUGCTLMSR_BTF;
710 msk = tifn & _TIF_BLOCKSTEP;
711 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
712 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
713 }
714
715 if ((tifp ^ tifn) & _TIF_NOTSC)
716 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
717
718 if ((tifp ^ tifn) & _TIF_NOCPUID)
719 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
720
721 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
722 __speculation_ctrl_update(tifp, tifn);
723 } else {
724 speculation_ctrl_update_tif(prev_p);
725 tifn = speculation_ctrl_update_tif(next_p);
726
727 /* Enforce MSR update to ensure consistent state */
728 __speculation_ctrl_update(~tifn, tifn);
729 }
730 }
731
732 /*
733 * Idle related variables and functions
734 */
735 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
736 EXPORT_SYMBOL(boot_option_idle_override);
737
738 /*
739 * We use this if we don't have any better idle routine..
740 */
default_idle(void)741 void __cpuidle default_idle(void)
742 {
743 raw_safe_halt();
744 raw_local_irq_disable();
745 }
746 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
747 EXPORT_SYMBOL(default_idle);
748 #endif
749
750 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
751
x86_idle_set(void)752 static bool x86_idle_set(void)
753 {
754 return !!static_call_query(x86_idle);
755 }
756
757 #ifndef CONFIG_SMP
play_dead(void)758 static inline void __noreturn play_dead(void)
759 {
760 BUG();
761 }
762 #endif
763
arch_cpu_idle_enter(void)764 void arch_cpu_idle_enter(void)
765 {
766 tsc_verify_tsc_adjust(false);
767 local_touch_nmi();
768 }
769
arch_cpu_idle_dead(void)770 void __noreturn arch_cpu_idle_dead(void)
771 {
772 play_dead();
773 }
774
775 /*
776 * Called from the generic idle code.
777 */
arch_cpu_idle(void)778 void __cpuidle arch_cpu_idle(void)
779 {
780 static_call(x86_idle)();
781 }
782 EXPORT_SYMBOL_GPL(arch_cpu_idle);
783
784 #ifdef CONFIG_XEN
xen_set_default_idle(void)785 bool xen_set_default_idle(void)
786 {
787 bool ret = x86_idle_set();
788
789 static_call_update(x86_idle, default_idle);
790
791 return ret;
792 }
793 #endif
794
795 struct cpumask cpus_stop_mask;
796
stop_this_cpu(void * dummy)797 void __noreturn stop_this_cpu(void *dummy)
798 {
799 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
800 unsigned int cpu = smp_processor_id();
801
802 local_irq_disable();
803
804 /*
805 * Remove this CPU from the online mask and disable it
806 * unconditionally. This might be redundant in case that the reboot
807 * vector was handled late and stop_other_cpus() sent an NMI.
808 *
809 * According to SDM and APM NMIs can be accepted even after soft
810 * disabling the local APIC.
811 */
812 set_cpu_online(cpu, false);
813 disable_local_APIC();
814 mcheck_cpu_clear(c);
815
816 /*
817 * Use wbinvd on processors that support SME. This provides support
818 * for performing a successful kexec when going from SME inactive
819 * to SME active (or vice-versa). The cache must be cleared so that
820 * if there are entries with the same physical address, both with and
821 * without the encryption bit, they don't race each other when flushed
822 * and potentially end up with the wrong entry being committed to
823 * memory.
824 *
825 * Test the CPUID bit directly because the machine might've cleared
826 * X86_FEATURE_SME due to cmdline options.
827 */
828 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
829 native_wbinvd();
830
831 /*
832 * This brings a cache line back and dirties it, but
833 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
834 * observed that all CPUs reported stop. This write will invalidate
835 * the related cache line on this CPU.
836 */
837 cpumask_clear_cpu(cpu, &cpus_stop_mask);
838
839 for (;;) {
840 /*
841 * Use native_halt() so that memory contents don't change
842 * (stack usage and variables) after possibly issuing the
843 * native_wbinvd() above.
844 */
845 native_halt();
846 }
847 }
848
849 /*
850 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
851 * states (local apic timer and TSC stop).
852 *
853 * XXX this function is completely buggered vs RCU and tracing.
854 */
amd_e400_idle(void)855 static void amd_e400_idle(void)
856 {
857 /*
858 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
859 * gets set after static_cpu_has() places have been converted via
860 * alternatives.
861 */
862 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
863 default_idle();
864 return;
865 }
866
867 tick_broadcast_enter();
868
869 default_idle();
870
871 tick_broadcast_exit();
872 }
873
874 /*
875 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
876 * exists and whenever MONITOR/MWAIT extensions are present there is at
877 * least one C1 substate.
878 *
879 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
880 * is passed to kernel commandline parameter.
881 */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)882 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
883 {
884 u32 eax, ebx, ecx, edx;
885
886 /* User has disallowed the use of MWAIT. Fallback to HALT */
887 if (boot_option_idle_override == IDLE_NOMWAIT)
888 return 0;
889
890 /* MWAIT is not supported on this platform. Fallback to HALT */
891 if (!cpu_has(c, X86_FEATURE_MWAIT))
892 return 0;
893
894 /* Monitor has a bug. Fallback to HALT */
895 if (boot_cpu_has_bug(X86_BUG_MONITOR))
896 return 0;
897
898 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
899
900 /*
901 * If MWAIT extensions are not available, it is safe to use MWAIT
902 * with EAX=0, ECX=0.
903 */
904 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
905 return 1;
906
907 /*
908 * If MWAIT extensions are available, there should be at least one
909 * MWAIT C1 substate present.
910 */
911 return (edx & MWAIT_C1_SUBSTATE_MASK);
912 }
913
914 /*
915 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
916 * with interrupts enabled and no flags, which is backwards compatible with the
917 * original MWAIT implementation.
918 */
mwait_idle(void)919 static __cpuidle void mwait_idle(void)
920 {
921 if (!current_set_polling_and_test()) {
922 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
923 mb(); /* quirk */
924 clflush((void *)¤t_thread_info()->flags);
925 mb(); /* quirk */
926 }
927
928 __monitor((void *)¤t_thread_info()->flags, 0, 0);
929 if (!need_resched()) {
930 __sti_mwait(0, 0);
931 raw_local_irq_disable();
932 }
933 }
934 __current_clr_polling();
935 }
936
select_idle_routine(const struct cpuinfo_x86 * c)937 void select_idle_routine(const struct cpuinfo_x86 *c)
938 {
939 #ifdef CONFIG_SMP
940 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
941 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
942 #endif
943 if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
944 return;
945
946 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
947 pr_info("using AMD E400 aware idle routine\n");
948 static_call_update(x86_idle, amd_e400_idle);
949 } else if (prefer_mwait_c1_over_halt(c)) {
950 pr_info("using mwait in idle threads\n");
951 static_call_update(x86_idle, mwait_idle);
952 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
953 pr_info("using TDX aware idle routine\n");
954 static_call_update(x86_idle, tdx_safe_halt);
955 } else
956 static_call_update(x86_idle, default_idle);
957 }
958
amd_e400_c1e_apic_setup(void)959 void amd_e400_c1e_apic_setup(void)
960 {
961 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
962 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
963 local_irq_disable();
964 tick_broadcast_force();
965 local_irq_enable();
966 }
967 }
968
arch_post_acpi_subsys_init(void)969 void __init arch_post_acpi_subsys_init(void)
970 {
971 u32 lo, hi;
972
973 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
974 return;
975
976 /*
977 * AMD E400 detection needs to happen after ACPI has been enabled. If
978 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
979 * MSR_K8_INT_PENDING_MSG.
980 */
981 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
982 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
983 return;
984
985 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
986
987 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
988 mark_tsc_unstable("TSC halt in AMD C1E");
989 pr_info("System has AMD C1E enabled\n");
990 }
991
idle_setup(char * str)992 static int __init idle_setup(char *str)
993 {
994 if (!str)
995 return -EINVAL;
996
997 if (!strcmp(str, "poll")) {
998 pr_info("using polling idle threads\n");
999 boot_option_idle_override = IDLE_POLL;
1000 cpu_idle_poll_ctrl(true);
1001 } else if (!strcmp(str, "halt")) {
1002 /*
1003 * When the boot option of idle=halt is added, halt is
1004 * forced to be used for CPU idle. In such case CPU C2/C3
1005 * won't be used again.
1006 * To continue to load the CPU idle driver, don't touch
1007 * the boot_option_idle_override.
1008 */
1009 static_call_update(x86_idle, default_idle);
1010 boot_option_idle_override = IDLE_HALT;
1011 } else if (!strcmp(str, "nomwait")) {
1012 /*
1013 * If the boot option of "idle=nomwait" is added,
1014 * it means that mwait will be disabled for CPU C1/C2/C3
1015 * states.
1016 */
1017 boot_option_idle_override = IDLE_NOMWAIT;
1018 } else
1019 return -1;
1020
1021 return 0;
1022 }
1023 early_param("idle", idle_setup);
1024
arch_align_stack(unsigned long sp)1025 unsigned long arch_align_stack(unsigned long sp)
1026 {
1027 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1028 sp -= get_random_u32_below(__PAGE_SIZE << 1);
1029 return sp & ~0xf;
1030 }
1031
arch_randomize_brk(struct mm_struct * mm)1032 unsigned long arch_randomize_brk(struct mm_struct *mm)
1033 {
1034 if (mmap_is_ia32())
1035 return randomize_page(mm->brk, SZ_32M);
1036
1037 return randomize_page(mm->brk, SZ_1G);
1038 }
1039
1040 /*
1041 * Called from fs/proc with a reference on @p to find the function
1042 * which called into schedule(). This needs to be done carefully
1043 * because the task might wake up and we might look at a stack
1044 * changing under us.
1045 */
__get_wchan(struct task_struct * p)1046 unsigned long __get_wchan(struct task_struct *p)
1047 {
1048 struct unwind_state state;
1049 unsigned long addr = 0;
1050
1051 if (!try_get_task_stack(p))
1052 return 0;
1053
1054 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1055 unwind_next_frame(&state)) {
1056 addr = unwind_get_return_address(&state);
1057 if (!addr)
1058 break;
1059 if (in_sched_functions(addr))
1060 continue;
1061 break;
1062 }
1063
1064 put_task_stack(p);
1065
1066 return addr;
1067 }
1068
do_arch_prctl_common(int option,unsigned long arg2)1069 long do_arch_prctl_common(int option, unsigned long arg2)
1070 {
1071 switch (option) {
1072 case ARCH_GET_CPUID:
1073 return get_cpuid_mode();
1074 case ARCH_SET_CPUID:
1075 return set_cpuid_mode(arg2);
1076 case ARCH_GET_XCOMP_SUPP:
1077 case ARCH_GET_XCOMP_PERM:
1078 case ARCH_REQ_XCOMP_PERM:
1079 case ARCH_GET_XCOMP_GUEST_PERM:
1080 case ARCH_REQ_XCOMP_GUEST_PERM:
1081 return fpu_xstate_prctl(option, arg2);
1082 }
1083
1084 return -EINVAL;
1085 }
1086