• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 #include <linux/android_kabi.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_name_node;
67 struct sd_flow_limit;
68 struct sfp_bus;
69 /* 802.11 specific */
70 struct wireless_dev;
71 /* 802.15.4 specific */
72 struct wpan_dev;
73 struct mpls_dev;
74 /* UDP Tunnel offloads */
75 struct udp_tunnel_info;
76 struct udp_tunnel_nic_info;
77 struct udp_tunnel_nic;
78 struct bpf_prog;
79 struct xdp_buff;
80 struct xdp_frame;
81 struct xdp_metadata_ops;
82 struct xdp_md;
83 
84 typedef u32 xdp_features_t;
85 
86 void synchronize_net(void);
87 void netdev_set_default_ethtool_ops(struct net_device *dev,
88 				    const struct ethtool_ops *ops);
89 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
90 
91 /* Backlog congestion levels */
92 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
93 #define NET_RX_DROP		1	/* packet dropped */
94 
95 #define MAX_NEST_DEV 8
96 
97 /*
98  * Transmit return codes: transmit return codes originate from three different
99  * namespaces:
100  *
101  * - qdisc return codes
102  * - driver transmit return codes
103  * - errno values
104  *
105  * Drivers are allowed to return any one of those in their hard_start_xmit()
106  * function. Real network devices commonly used with qdiscs should only return
107  * the driver transmit return codes though - when qdiscs are used, the actual
108  * transmission happens asynchronously, so the value is not propagated to
109  * higher layers. Virtual network devices transmit synchronously; in this case
110  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
111  * others are propagated to higher layers.
112  */
113 
114 /* qdisc ->enqueue() return codes. */
115 #define NET_XMIT_SUCCESS	0x00
116 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
117 #define NET_XMIT_CN		0x02	/* congestion notification	*/
118 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
119 
120 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
121  * indicates that the device will soon be dropping packets, or already drops
122  * some packets of the same priority; prompting us to send less aggressively. */
123 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
124 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
125 
126 /* Driver transmit return codes */
127 #define NETDEV_TX_MASK		0xf0
128 
129 enum netdev_tx {
130 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
131 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
132 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
133 };
134 typedef enum netdev_tx netdev_tx_t;
135 
136 /*
137  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
138  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
139  */
dev_xmit_complete(int rc)140 static inline bool dev_xmit_complete(int rc)
141 {
142 	/*
143 	 * Positive cases with an skb consumed by a driver:
144 	 * - successful transmission (rc == NETDEV_TX_OK)
145 	 * - error while transmitting (rc < 0)
146 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
147 	 */
148 	if (likely(rc < NET_XMIT_MASK))
149 		return true;
150 
151 	return false;
152 }
153 
154 /*
155  *	Compute the worst-case header length according to the protocols
156  *	used.
157  */
158 
159 #if defined(CONFIG_HYPERV_NET)
160 # define LL_MAX_HEADER 128
161 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
162 # if defined(CONFIG_MAC80211_MESH)
163 #  define LL_MAX_HEADER 128
164 # else
165 #  define LL_MAX_HEADER 96
166 # endif
167 #else
168 # define LL_MAX_HEADER 32
169 #endif
170 
171 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
172     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
173 #define MAX_HEADER LL_MAX_HEADER
174 #else
175 #define MAX_HEADER (LL_MAX_HEADER + 48)
176 #endif
177 
178 /*
179  *	Old network device statistics. Fields are native words
180  *	(unsigned long) so they can be read and written atomically.
181  */
182 
183 #define NET_DEV_STAT(FIELD)			\
184 	union {					\
185 		unsigned long FIELD;		\
186 		atomic_long_t __##FIELD;	\
187 	}
188 
189 struct net_device_stats {
190 	NET_DEV_STAT(rx_packets);
191 	NET_DEV_STAT(tx_packets);
192 	NET_DEV_STAT(rx_bytes);
193 	NET_DEV_STAT(tx_bytes);
194 	NET_DEV_STAT(rx_errors);
195 	NET_DEV_STAT(tx_errors);
196 	NET_DEV_STAT(rx_dropped);
197 	NET_DEV_STAT(tx_dropped);
198 	NET_DEV_STAT(multicast);
199 	NET_DEV_STAT(collisions);
200 	NET_DEV_STAT(rx_length_errors);
201 	NET_DEV_STAT(rx_over_errors);
202 	NET_DEV_STAT(rx_crc_errors);
203 	NET_DEV_STAT(rx_frame_errors);
204 	NET_DEV_STAT(rx_fifo_errors);
205 	NET_DEV_STAT(rx_missed_errors);
206 	NET_DEV_STAT(tx_aborted_errors);
207 	NET_DEV_STAT(tx_carrier_errors);
208 	NET_DEV_STAT(tx_fifo_errors);
209 	NET_DEV_STAT(tx_heartbeat_errors);
210 	NET_DEV_STAT(tx_window_errors);
211 	NET_DEV_STAT(rx_compressed);
212 	NET_DEV_STAT(tx_compressed);
213 };
214 #undef NET_DEV_STAT
215 
216 /* per-cpu stats, allocated on demand.
217  * Try to fit them in a single cache line, for dev_get_stats() sake.
218  */
219 struct net_device_core_stats {
220 	unsigned long	rx_dropped;
221 	unsigned long	tx_dropped;
222 	unsigned long	rx_nohandler;
223 	unsigned long	rx_otherhost_dropped;
224 } __aligned(4 * sizeof(unsigned long));
225 
226 #include <linux/cache.h>
227 #include <linux/skbuff.h>
228 
229 #ifdef CONFIG_RPS
230 #include <linux/static_key.h>
231 extern struct static_key_false rps_needed;
232 extern struct static_key_false rfs_needed;
233 #endif
234 
235 struct neighbour;
236 struct neigh_parms;
237 struct sk_buff;
238 
239 struct netdev_hw_addr {
240 	struct list_head	list;
241 	struct rb_node		node;
242 	unsigned char		addr[MAX_ADDR_LEN];
243 	unsigned char		type;
244 #define NETDEV_HW_ADDR_T_LAN		1
245 #define NETDEV_HW_ADDR_T_SAN		2
246 #define NETDEV_HW_ADDR_T_UNICAST	3
247 #define NETDEV_HW_ADDR_T_MULTICAST	4
248 	bool			global_use;
249 	int			sync_cnt;
250 	int			refcount;
251 	int			synced;
252 	struct rcu_head		rcu_head;
253 };
254 
255 struct netdev_hw_addr_list {
256 	struct list_head	list;
257 	int			count;
258 
259 	/* Auxiliary tree for faster lookup on addition and deletion */
260 	struct rb_root		tree;
261 };
262 
263 #define netdev_hw_addr_list_count(l) ((l)->count)
264 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
265 #define netdev_hw_addr_list_for_each(ha, l) \
266 	list_for_each_entry(ha, &(l)->list, list)
267 
268 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
269 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
270 #define netdev_for_each_uc_addr(ha, dev) \
271 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
272 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
273 	netdev_for_each_uc_addr((_ha), (_dev)) \
274 		if ((_ha)->sync_cnt)
275 
276 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
277 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
278 #define netdev_for_each_mc_addr(ha, dev) \
279 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
280 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
281 	netdev_for_each_mc_addr((_ha), (_dev)) \
282 		if ((_ha)->sync_cnt)
283 
284 struct hh_cache {
285 	unsigned int	hh_len;
286 	seqlock_t	hh_lock;
287 
288 	/* cached hardware header; allow for machine alignment needs.        */
289 #define HH_DATA_MOD	16
290 #define HH_DATA_OFF(__len) \
291 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
292 #define HH_DATA_ALIGN(__len) \
293 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
294 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
295 };
296 
297 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
298  * Alternative is:
299  *   dev->hard_header_len ? (dev->hard_header_len +
300  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
301  *
302  * We could use other alignment values, but we must maintain the
303  * relationship HH alignment <= LL alignment.
304  */
305 #define LL_RESERVED_SPACE(dev) \
306 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
307 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
308 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
309 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
310 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
311 
312 struct header_ops {
313 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
314 			   unsigned short type, const void *daddr,
315 			   const void *saddr, unsigned int len);
316 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
317 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
318 	void	(*cache_update)(struct hh_cache *hh,
319 				const struct net_device *dev,
320 				const unsigned char *haddr);
321 	bool	(*validate)(const char *ll_header, unsigned int len);
322 	__be16	(*parse_protocol)(const struct sk_buff *skb);
323 
324 	ANDROID_KABI_RESERVE(1);
325 	ANDROID_KABI_RESERVE(2);
326 };
327 
328 /* These flag bits are private to the generic network queueing
329  * layer; they may not be explicitly referenced by any other
330  * code.
331  */
332 
333 enum netdev_state_t {
334 	__LINK_STATE_START,
335 	__LINK_STATE_PRESENT,
336 	__LINK_STATE_NOCARRIER,
337 	__LINK_STATE_LINKWATCH_PENDING,
338 	__LINK_STATE_DORMANT,
339 	__LINK_STATE_TESTING,
340 };
341 
342 struct gro_list {
343 	struct list_head	list;
344 	int			count;
345 };
346 
347 /*
348  * size of gro hash buckets, must less than bit number of
349  * napi_struct::gro_bitmask
350  */
351 #define GRO_HASH_BUCKETS	8
352 
353 /*
354  * Structure for NAPI scheduling similar to tasklet but with weighting
355  */
356 struct napi_struct {
357 	/* The poll_list must only be managed by the entity which
358 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
359 	 * whoever atomically sets that bit can add this napi_struct
360 	 * to the per-CPU poll_list, and whoever clears that bit
361 	 * can remove from the list right before clearing the bit.
362 	 */
363 	struct list_head	poll_list;
364 
365 	unsigned long		state;
366 	int			weight;
367 	int			defer_hard_irqs_count;
368 	unsigned long		gro_bitmask;
369 	int			(*poll)(struct napi_struct *, int);
370 #ifdef CONFIG_NETPOLL
371 	/* CPU actively polling if netpoll is configured */
372 	int			poll_owner;
373 #endif
374 	/* CPU on which NAPI has been scheduled for processing */
375 	int			list_owner;
376 	struct net_device	*dev;
377 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
378 	struct sk_buff		*skb;
379 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
380 	int			rx_count; /* length of rx_list */
381 	unsigned int		napi_id;
382 	struct hrtimer		timer;
383 	struct task_struct	*thread;
384 	/* control-path-only fields follow */
385 	struct list_head	dev_list;
386 	struct hlist_node	napi_hash_node;
387 
388 	ANDROID_KABI_RESERVE(1);
389 	ANDROID_KABI_RESERVE(2);
390 	ANDROID_KABI_RESERVE(3);
391 	ANDROID_KABI_RESERVE(4);
392 };
393 
394 enum {
395 	NAPI_STATE_SCHED,		/* Poll is scheduled */
396 	NAPI_STATE_MISSED,		/* reschedule a napi */
397 	NAPI_STATE_DISABLE,		/* Disable pending */
398 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
399 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
400 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
401 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
402 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
403 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
404 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
405 };
406 
407 enum {
408 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
409 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
410 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
411 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
412 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
413 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
414 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
415 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
416 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
417 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
418 };
419 
420 enum gro_result {
421 	GRO_MERGED,
422 	GRO_MERGED_FREE,
423 	GRO_HELD,
424 	GRO_NORMAL,
425 	GRO_CONSUMED,
426 };
427 typedef enum gro_result gro_result_t;
428 
429 /*
430  * enum rx_handler_result - Possible return values for rx_handlers.
431  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
432  * further.
433  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
434  * case skb->dev was changed by rx_handler.
435  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
436  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
437  *
438  * rx_handlers are functions called from inside __netif_receive_skb(), to do
439  * special processing of the skb, prior to delivery to protocol handlers.
440  *
441  * Currently, a net_device can only have a single rx_handler registered. Trying
442  * to register a second rx_handler will return -EBUSY.
443  *
444  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
445  * To unregister a rx_handler on a net_device, use
446  * netdev_rx_handler_unregister().
447  *
448  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
449  * do with the skb.
450  *
451  * If the rx_handler consumed the skb in some way, it should return
452  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
453  * the skb to be delivered in some other way.
454  *
455  * If the rx_handler changed skb->dev, to divert the skb to another
456  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
457  * new device will be called if it exists.
458  *
459  * If the rx_handler decides the skb should be ignored, it should return
460  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
461  * are registered on exact device (ptype->dev == skb->dev).
462  *
463  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
464  * delivered, it should return RX_HANDLER_PASS.
465  *
466  * A device without a registered rx_handler will behave as if rx_handler
467  * returned RX_HANDLER_PASS.
468  */
469 
470 enum rx_handler_result {
471 	RX_HANDLER_CONSUMED,
472 	RX_HANDLER_ANOTHER,
473 	RX_HANDLER_EXACT,
474 	RX_HANDLER_PASS,
475 };
476 typedef enum rx_handler_result rx_handler_result_t;
477 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
478 
479 void __napi_schedule(struct napi_struct *n);
480 void __napi_schedule_irqoff(struct napi_struct *n);
481 
napi_disable_pending(struct napi_struct * n)482 static inline bool napi_disable_pending(struct napi_struct *n)
483 {
484 	return test_bit(NAPI_STATE_DISABLE, &n->state);
485 }
486 
napi_prefer_busy_poll(struct napi_struct * n)487 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
488 {
489 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
490 }
491 
492 bool napi_schedule_prep(struct napi_struct *n);
493 
494 /**
495  *	napi_schedule - schedule NAPI poll
496  *	@n: NAPI context
497  *
498  * Schedule NAPI poll routine to be called if it is not already
499  * running.
500  */
napi_schedule(struct napi_struct * n)501 static inline void napi_schedule(struct napi_struct *n)
502 {
503 	if (napi_schedule_prep(n))
504 		__napi_schedule(n);
505 }
506 
507 /**
508  *	napi_schedule_irqoff - schedule NAPI poll
509  *	@n: NAPI context
510  *
511  * Variant of napi_schedule(), assuming hard irqs are masked.
512  */
napi_schedule_irqoff(struct napi_struct * n)513 static inline void napi_schedule_irqoff(struct napi_struct *n)
514 {
515 	if (napi_schedule_prep(n))
516 		__napi_schedule_irqoff(n);
517 }
518 
519 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)520 static inline bool napi_reschedule(struct napi_struct *napi)
521 {
522 	if (napi_schedule_prep(napi)) {
523 		__napi_schedule(napi);
524 		return true;
525 	}
526 	return false;
527 }
528 
529 /**
530  * napi_complete_done - NAPI processing complete
531  * @n: NAPI context
532  * @work_done: number of packets processed
533  *
534  * Mark NAPI processing as complete. Should only be called if poll budget
535  * has not been completely consumed.
536  * Prefer over napi_complete().
537  * Return false if device should avoid rearming interrupts.
538  */
539 bool napi_complete_done(struct napi_struct *n, int work_done);
540 
napi_complete(struct napi_struct * n)541 static inline bool napi_complete(struct napi_struct *n)
542 {
543 	return napi_complete_done(n, 0);
544 }
545 
546 int dev_set_threaded(struct net_device *dev, bool threaded);
547 
548 /**
549  *	napi_disable - prevent NAPI from scheduling
550  *	@n: NAPI context
551  *
552  * Stop NAPI from being scheduled on this context.
553  * Waits till any outstanding processing completes.
554  */
555 void napi_disable(struct napi_struct *n);
556 
557 void napi_enable(struct napi_struct *n);
558 
559 /**
560  *	napi_synchronize - wait until NAPI is not running
561  *	@n: NAPI context
562  *
563  * Wait until NAPI is done being scheduled on this context.
564  * Waits till any outstanding processing completes but
565  * does not disable future activations.
566  */
napi_synchronize(const struct napi_struct * n)567 static inline void napi_synchronize(const struct napi_struct *n)
568 {
569 	if (IS_ENABLED(CONFIG_SMP))
570 		while (test_bit(NAPI_STATE_SCHED, &n->state))
571 			msleep(1);
572 	else
573 		barrier();
574 }
575 
576 /**
577  *	napi_if_scheduled_mark_missed - if napi is running, set the
578  *	NAPIF_STATE_MISSED
579  *	@n: NAPI context
580  *
581  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
582  * NAPI is scheduled.
583  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)584 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
585 {
586 	unsigned long val, new;
587 
588 	val = READ_ONCE(n->state);
589 	do {
590 		if (val & NAPIF_STATE_DISABLE)
591 			return true;
592 
593 		if (!(val & NAPIF_STATE_SCHED))
594 			return false;
595 
596 		new = val | NAPIF_STATE_MISSED;
597 	} while (!try_cmpxchg(&n->state, &val, new));
598 
599 	return true;
600 }
601 
602 enum netdev_queue_state_t {
603 	__QUEUE_STATE_DRV_XOFF,
604 	__QUEUE_STATE_STACK_XOFF,
605 	__QUEUE_STATE_FROZEN,
606 };
607 
608 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
609 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
610 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
611 
612 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
613 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
614 					QUEUE_STATE_FROZEN)
615 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
616 					QUEUE_STATE_FROZEN)
617 
618 /*
619  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
620  * netif_tx_* functions below are used to manipulate this flag.  The
621  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
622  * queue independently.  The netif_xmit_*stopped functions below are called
623  * to check if the queue has been stopped by the driver or stack (either
624  * of the XOFF bits are set in the state).  Drivers should not need to call
625  * netif_xmit*stopped functions, they should only be using netif_tx_*.
626  */
627 
628 struct netdev_queue {
629 /*
630  * read-mostly part
631  */
632 	struct net_device	*dev;
633 	netdevice_tracker	dev_tracker;
634 
635 	struct Qdisc __rcu	*qdisc;
636 	struct Qdisc __rcu	*qdisc_sleeping;
637 #ifdef CONFIG_SYSFS
638 	struct kobject		kobj;
639 #endif
640 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
641 	int			numa_node;
642 #endif
643 	unsigned long		tx_maxrate;
644 	/*
645 	 * Number of TX timeouts for this queue
646 	 * (/sys/class/net/DEV/Q/trans_timeout)
647 	 */
648 	atomic_long_t		trans_timeout;
649 
650 	/* Subordinate device that the queue has been assigned to */
651 	struct net_device	*sb_dev;
652 #ifdef CONFIG_XDP_SOCKETS
653 	struct xsk_buff_pool    *pool;
654 #endif
655 /*
656  * write-mostly part
657  */
658 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
659 	int			xmit_lock_owner;
660 	/*
661 	 * Time (in jiffies) of last Tx
662 	 */
663 	unsigned long		trans_start;
664 
665 	unsigned long		state;
666 
667 #ifdef CONFIG_BQL
668 	struct dql		dql;
669 #endif
670 
671 	ANDROID_KABI_RESERVE(1);
672 	ANDROID_KABI_RESERVE(2);
673 	ANDROID_KABI_RESERVE(3);
674 	ANDROID_KABI_RESERVE(4);
675 } ____cacheline_aligned_in_smp;
676 
677 extern int sysctl_fb_tunnels_only_for_init_net;
678 extern int sysctl_devconf_inherit_init_net;
679 
680 /*
681  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
682  *                                     == 1 : For initns only
683  *                                     == 2 : For none.
684  */
net_has_fallback_tunnels(const struct net * net)685 static inline bool net_has_fallback_tunnels(const struct net *net)
686 {
687 #if IS_ENABLED(CONFIG_SYSCTL)
688 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
689 
690 	return !fb_tunnels_only_for_init_net ||
691 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
692 #else
693 	return true;
694 #endif
695 }
696 
net_inherit_devconf(void)697 static inline int net_inherit_devconf(void)
698 {
699 #if IS_ENABLED(CONFIG_SYSCTL)
700 	return READ_ONCE(sysctl_devconf_inherit_init_net);
701 #else
702 	return 0;
703 #endif
704 }
705 
netdev_queue_numa_node_read(const struct netdev_queue * q)706 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
707 {
708 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
709 	return q->numa_node;
710 #else
711 	return NUMA_NO_NODE;
712 #endif
713 }
714 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)715 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
716 {
717 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
718 	q->numa_node = node;
719 #endif
720 }
721 
722 #ifdef CONFIG_RPS
723 /*
724  * This structure holds an RPS map which can be of variable length.  The
725  * map is an array of CPUs.
726  */
727 struct rps_map {
728 	unsigned int len;
729 	struct rcu_head rcu;
730 	u16 cpus[];
731 };
732 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
733 
734 /*
735  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
736  * tail pointer for that CPU's input queue at the time of last enqueue, and
737  * a hardware filter index.
738  */
739 struct rps_dev_flow {
740 	u16 cpu;
741 	u16 filter;
742 	unsigned int last_qtail;
743 };
744 #define RPS_NO_FILTER 0xffff
745 
746 /*
747  * The rps_dev_flow_table structure contains a table of flow mappings.
748  */
749 struct rps_dev_flow_table {
750 	unsigned int mask;
751 	struct rcu_head rcu;
752 	struct rps_dev_flow flows[];
753 };
754 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
755     ((_num) * sizeof(struct rps_dev_flow)))
756 
757 /*
758  * The rps_sock_flow_table contains mappings of flows to the last CPU
759  * on which they were processed by the application (set in recvmsg).
760  * Each entry is a 32bit value. Upper part is the high-order bits
761  * of flow hash, lower part is CPU number.
762  * rps_cpu_mask is used to partition the space, depending on number of
763  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
764  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
765  * meaning we use 32-6=26 bits for the hash.
766  */
767 struct rps_sock_flow_table {
768 	u32	mask;
769 
770 	u32	ents[] ____cacheline_aligned_in_smp;
771 };
772 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
773 
774 #define RPS_NO_CPU 0xffff
775 
776 extern u32 rps_cpu_mask;
777 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
778 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)779 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
780 					u32 hash)
781 {
782 	if (table && hash) {
783 		unsigned int index = hash & table->mask;
784 		u32 val = hash & ~rps_cpu_mask;
785 
786 		/* We only give a hint, preemption can change CPU under us */
787 		val |= raw_smp_processor_id();
788 
789 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
790 		 * here, and another one in get_rps_cpu().
791 		 */
792 		if (READ_ONCE(table->ents[index]) != val)
793 			WRITE_ONCE(table->ents[index], val);
794 	}
795 }
796 
797 #ifdef CONFIG_RFS_ACCEL
798 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
799 			 u16 filter_id);
800 #endif
801 #endif /* CONFIG_RPS */
802 
803 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
804 enum xps_map_type {
805 	XPS_CPUS = 0,
806 	XPS_RXQS,
807 	XPS_MAPS_MAX,
808 };
809 
810 #ifdef CONFIG_XPS
811 /*
812  * This structure holds an XPS map which can be of variable length.  The
813  * map is an array of queues.
814  */
815 struct xps_map {
816 	unsigned int len;
817 	unsigned int alloc_len;
818 	struct rcu_head rcu;
819 	u16 queues[];
820 };
821 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
822 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
823        - sizeof(struct xps_map)) / sizeof(u16))
824 
825 /*
826  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
827  *
828  * We keep track of the number of cpus/rxqs used when the struct is allocated,
829  * in nr_ids. This will help not accessing out-of-bound memory.
830  *
831  * We keep track of the number of traffic classes used when the struct is
832  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
833  * not crossing its upper bound, as the original dev->num_tc can be updated in
834  * the meantime.
835  */
836 struct xps_dev_maps {
837 	struct rcu_head rcu;
838 	unsigned int nr_ids;
839 	s16 num_tc;
840 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
841 };
842 
843 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
844 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
845 
846 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
847 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
848 
849 #endif /* CONFIG_XPS */
850 
851 #define TC_MAX_QUEUE	16
852 #define TC_BITMASK	15
853 /* HW offloaded queuing disciplines txq count and offset maps */
854 struct netdev_tc_txq {
855 	u16 count;
856 	u16 offset;
857 };
858 
859 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
860 /*
861  * This structure is to hold information about the device
862  * configured to run FCoE protocol stack.
863  */
864 struct netdev_fcoe_hbainfo {
865 	char	manufacturer[64];
866 	char	serial_number[64];
867 	char	hardware_version[64];
868 	char	driver_version[64];
869 	char	optionrom_version[64];
870 	char	firmware_version[64];
871 	char	model[256];
872 	char	model_description[256];
873 };
874 #endif
875 
876 #define MAX_PHYS_ITEM_ID_LEN 32
877 
878 /* This structure holds a unique identifier to identify some
879  * physical item (port for example) used by a netdevice.
880  */
881 struct netdev_phys_item_id {
882 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
883 	unsigned char id_len;
884 };
885 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)886 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
887 					    struct netdev_phys_item_id *b)
888 {
889 	return a->id_len == b->id_len &&
890 	       memcmp(a->id, b->id, a->id_len) == 0;
891 }
892 
893 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
894 				       struct sk_buff *skb,
895 				       struct net_device *sb_dev);
896 
897 enum net_device_path_type {
898 	DEV_PATH_ETHERNET = 0,
899 	DEV_PATH_VLAN,
900 	DEV_PATH_BRIDGE,
901 	DEV_PATH_PPPOE,
902 	DEV_PATH_DSA,
903 	DEV_PATH_MTK_WDMA,
904 };
905 
906 struct net_device_path {
907 	enum net_device_path_type	type;
908 	const struct net_device		*dev;
909 	union {
910 		struct {
911 			u16		id;
912 			__be16		proto;
913 			u8		h_dest[ETH_ALEN];
914 		} encap;
915 		struct {
916 			enum {
917 				DEV_PATH_BR_VLAN_KEEP,
918 				DEV_PATH_BR_VLAN_TAG,
919 				DEV_PATH_BR_VLAN_UNTAG,
920 				DEV_PATH_BR_VLAN_UNTAG_HW,
921 			}		vlan_mode;
922 			u16		vlan_id;
923 			__be16		vlan_proto;
924 		} bridge;
925 		struct {
926 			int port;
927 			u16 proto;
928 		} dsa;
929 		struct {
930 			u8 wdma_idx;
931 			u8 queue;
932 			u16 wcid;
933 			u8 bss;
934 		} mtk_wdma;
935 	};
936 };
937 
938 #define NET_DEVICE_PATH_STACK_MAX	5
939 #define NET_DEVICE_PATH_VLAN_MAX	2
940 
941 struct net_device_path_stack {
942 	int			num_paths;
943 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
944 };
945 
946 struct net_device_path_ctx {
947 	const struct net_device *dev;
948 	u8			daddr[ETH_ALEN];
949 
950 	int			num_vlans;
951 	struct {
952 		u16		id;
953 		__be16		proto;
954 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
955 };
956 
957 enum tc_setup_type {
958 	TC_QUERY_CAPS,
959 	TC_SETUP_QDISC_MQPRIO,
960 	TC_SETUP_CLSU32,
961 	TC_SETUP_CLSFLOWER,
962 	TC_SETUP_CLSMATCHALL,
963 	TC_SETUP_CLSBPF,
964 	TC_SETUP_BLOCK,
965 	TC_SETUP_QDISC_CBS,
966 	TC_SETUP_QDISC_RED,
967 	TC_SETUP_QDISC_PRIO,
968 	TC_SETUP_QDISC_MQ,
969 	TC_SETUP_QDISC_ETF,
970 	TC_SETUP_ROOT_QDISC,
971 	TC_SETUP_QDISC_GRED,
972 	TC_SETUP_QDISC_TAPRIO,
973 	TC_SETUP_FT,
974 	TC_SETUP_QDISC_ETS,
975 	TC_SETUP_QDISC_TBF,
976 	TC_SETUP_QDISC_FIFO,
977 	TC_SETUP_QDISC_HTB,
978 	TC_SETUP_ACT,
979 };
980 
981 /* These structures hold the attributes of bpf state that are being passed
982  * to the netdevice through the bpf op.
983  */
984 enum bpf_netdev_command {
985 	/* Set or clear a bpf program used in the earliest stages of packet
986 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
987 	 * is responsible for calling bpf_prog_put on any old progs that are
988 	 * stored. In case of error, the callee need not release the new prog
989 	 * reference, but on success it takes ownership and must bpf_prog_put
990 	 * when it is no longer used.
991 	 */
992 	XDP_SETUP_PROG,
993 	XDP_SETUP_PROG_HW,
994 	/* BPF program for offload callbacks, invoked at program load time. */
995 	BPF_OFFLOAD_MAP_ALLOC,
996 	BPF_OFFLOAD_MAP_FREE,
997 	XDP_SETUP_XSK_POOL,
998 };
999 
1000 struct bpf_prog_offload_ops;
1001 struct netlink_ext_ack;
1002 struct xdp_umem;
1003 struct xdp_dev_bulk_queue;
1004 struct bpf_xdp_link;
1005 
1006 enum bpf_xdp_mode {
1007 	XDP_MODE_SKB = 0,
1008 	XDP_MODE_DRV = 1,
1009 	XDP_MODE_HW = 2,
1010 	__MAX_XDP_MODE
1011 };
1012 
1013 struct bpf_xdp_entity {
1014 	struct bpf_prog *prog;
1015 	struct bpf_xdp_link *link;
1016 };
1017 
1018 struct netdev_bpf {
1019 	enum bpf_netdev_command command;
1020 	union {
1021 		/* XDP_SETUP_PROG */
1022 		struct {
1023 			u32 flags;
1024 			struct bpf_prog *prog;
1025 			struct netlink_ext_ack *extack;
1026 		};
1027 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1028 		struct {
1029 			struct bpf_offloaded_map *offmap;
1030 		};
1031 		/* XDP_SETUP_XSK_POOL */
1032 		struct {
1033 			struct xsk_buff_pool *pool;
1034 			u16 queue_id;
1035 		} xsk;
1036 	};
1037 };
1038 
1039 /* Flags for ndo_xsk_wakeup. */
1040 #define XDP_WAKEUP_RX (1 << 0)
1041 #define XDP_WAKEUP_TX (1 << 1)
1042 
1043 #ifdef CONFIG_XFRM_OFFLOAD
1044 struct xfrmdev_ops {
1045 	int	(*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack);
1046 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1047 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1048 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1049 				       struct xfrm_state *x);
1050 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1051 	void	(*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1052 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1053 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1054 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1055 
1056 	ANDROID_KABI_RESERVE(1);
1057 	ANDROID_KABI_RESERVE(2);
1058 	ANDROID_KABI_RESERVE(3);
1059 	ANDROID_KABI_RESERVE(4);
1060 };
1061 #endif
1062 
1063 struct dev_ifalias {
1064 	struct rcu_head rcuhead;
1065 	char ifalias[];
1066 };
1067 
1068 struct devlink;
1069 struct tlsdev_ops;
1070 
1071 struct netdev_net_notifier {
1072 	struct list_head list;
1073 	struct notifier_block *nb;
1074 };
1075 
1076 /*
1077  * This structure defines the management hooks for network devices.
1078  * The following hooks can be defined; unless noted otherwise, they are
1079  * optional and can be filled with a null pointer.
1080  *
1081  * int (*ndo_init)(struct net_device *dev);
1082  *     This function is called once when a network device is registered.
1083  *     The network device can use this for any late stage initialization
1084  *     or semantic validation. It can fail with an error code which will
1085  *     be propagated back to register_netdev.
1086  *
1087  * void (*ndo_uninit)(struct net_device *dev);
1088  *     This function is called when device is unregistered or when registration
1089  *     fails. It is not called if init fails.
1090  *
1091  * int (*ndo_open)(struct net_device *dev);
1092  *     This function is called when a network device transitions to the up
1093  *     state.
1094  *
1095  * int (*ndo_stop)(struct net_device *dev);
1096  *     This function is called when a network device transitions to the down
1097  *     state.
1098  *
1099  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1100  *                               struct net_device *dev);
1101  *	Called when a packet needs to be transmitted.
1102  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1103  *	the queue before that can happen; it's for obsolete devices and weird
1104  *	corner cases, but the stack really does a non-trivial amount
1105  *	of useless work if you return NETDEV_TX_BUSY.
1106  *	Required; cannot be NULL.
1107  *
1108  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1109  *					   struct net_device *dev
1110  *					   netdev_features_t features);
1111  *	Called by core transmit path to determine if device is capable of
1112  *	performing offload operations on a given packet. This is to give
1113  *	the device an opportunity to implement any restrictions that cannot
1114  *	be otherwise expressed by feature flags. The check is called with
1115  *	the set of features that the stack has calculated and it returns
1116  *	those the driver believes to be appropriate.
1117  *
1118  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1119  *                         struct net_device *sb_dev);
1120  *	Called to decide which queue to use when device supports multiple
1121  *	transmit queues.
1122  *
1123  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1124  *	This function is called to allow device receiver to make
1125  *	changes to configuration when multicast or promiscuous is enabled.
1126  *
1127  * void (*ndo_set_rx_mode)(struct net_device *dev);
1128  *	This function is called device changes address list filtering.
1129  *	If driver handles unicast address filtering, it should set
1130  *	IFF_UNICAST_FLT in its priv_flags.
1131  *
1132  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1133  *	This function  is called when the Media Access Control address
1134  *	needs to be changed. If this interface is not defined, the
1135  *	MAC address can not be changed.
1136  *
1137  * int (*ndo_validate_addr)(struct net_device *dev);
1138  *	Test if Media Access Control address is valid for the device.
1139  *
1140  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1141  *	Old-style ioctl entry point. This is used internally by the
1142  *	appletalk and ieee802154 subsystems but is no longer called by
1143  *	the device ioctl handler.
1144  *
1145  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1146  *	Used by the bonding driver for its device specific ioctls:
1147  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1148  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1149  *
1150  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1151  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1152  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1153  *
1154  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1155  *	Used to set network devices bus interface parameters. This interface
1156  *	is retained for legacy reasons; new devices should use the bus
1157  *	interface (PCI) for low level management.
1158  *
1159  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1160  *	Called when a user wants to change the Maximum Transfer Unit
1161  *	of a device.
1162  *
1163  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1164  *	Callback used when the transmitter has not made any progress
1165  *	for dev->watchdog ticks.
1166  *
1167  * void (*ndo_get_stats64)(struct net_device *dev,
1168  *                         struct rtnl_link_stats64 *storage);
1169  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1170  *	Called when a user wants to get the network device usage
1171  *	statistics. Drivers must do one of the following:
1172  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1173  *	   rtnl_link_stats64 structure passed by the caller.
1174  *	2. Define @ndo_get_stats to update a net_device_stats structure
1175  *	   (which should normally be dev->stats) and return a pointer to
1176  *	   it. The structure may be changed asynchronously only if each
1177  *	   field is written atomically.
1178  *	3. Update dev->stats asynchronously and atomically, and define
1179  *	   neither operation.
1180  *
1181  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1182  *	Return true if this device supports offload stats of this attr_id.
1183  *
1184  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1185  *	void *attr_data)
1186  *	Get statistics for offload operations by attr_id. Write it into the
1187  *	attr_data pointer.
1188  *
1189  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1190  *	If device supports VLAN filtering this function is called when a
1191  *	VLAN id is registered.
1192  *
1193  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1194  *	If device supports VLAN filtering this function is called when a
1195  *	VLAN id is unregistered.
1196  *
1197  * void (*ndo_poll_controller)(struct net_device *dev);
1198  *
1199  *	SR-IOV management functions.
1200  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1201  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1202  *			  u8 qos, __be16 proto);
1203  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1204  *			  int max_tx_rate);
1205  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1206  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1207  * int (*ndo_get_vf_config)(struct net_device *dev,
1208  *			    int vf, struct ifla_vf_info *ivf);
1209  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1210  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1211  *			  struct nlattr *port[]);
1212  *
1213  *      Enable or disable the VF ability to query its RSS Redirection Table and
1214  *      Hash Key. This is needed since on some devices VF share this information
1215  *      with PF and querying it may introduce a theoretical security risk.
1216  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1217  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1218  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1219  *		       void *type_data);
1220  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1221  *	This is always called from the stack with the rtnl lock held and netif
1222  *	tx queues stopped. This allows the netdevice to perform queue
1223  *	management safely.
1224  *
1225  *	Fiber Channel over Ethernet (FCoE) offload functions.
1226  * int (*ndo_fcoe_enable)(struct net_device *dev);
1227  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1228  *	so the underlying device can perform whatever needed configuration or
1229  *	initialization to support acceleration of FCoE traffic.
1230  *
1231  * int (*ndo_fcoe_disable)(struct net_device *dev);
1232  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1233  *	so the underlying device can perform whatever needed clean-ups to
1234  *	stop supporting acceleration of FCoE traffic.
1235  *
1236  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1237  *			     struct scatterlist *sgl, unsigned int sgc);
1238  *	Called when the FCoE Initiator wants to initialize an I/O that
1239  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1240  *	perform necessary setup and returns 1 to indicate the device is set up
1241  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1242  *
1243  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1244  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1245  *	indicated by the FC exchange id 'xid', so the underlying device can
1246  *	clean up and reuse resources for later DDP requests.
1247  *
1248  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1249  *			      struct scatterlist *sgl, unsigned int sgc);
1250  *	Called when the FCoE Target wants to initialize an I/O that
1251  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1252  *	perform necessary setup and returns 1 to indicate the device is set up
1253  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1254  *
1255  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1256  *			       struct netdev_fcoe_hbainfo *hbainfo);
1257  *	Called when the FCoE Protocol stack wants information on the underlying
1258  *	device. This information is utilized by the FCoE protocol stack to
1259  *	register attributes with Fiber Channel management service as per the
1260  *	FC-GS Fabric Device Management Information(FDMI) specification.
1261  *
1262  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1263  *	Called when the underlying device wants to override default World Wide
1264  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1265  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1266  *	protocol stack to use.
1267  *
1268  *	RFS acceleration.
1269  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1270  *			    u16 rxq_index, u32 flow_id);
1271  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1272  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1273  *	Return the filter ID on success, or a negative error code.
1274  *
1275  *	Slave management functions (for bridge, bonding, etc).
1276  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1277  *	Called to make another netdev an underling.
1278  *
1279  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1280  *	Called to release previously enslaved netdev.
1281  *
1282  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1283  *					    struct sk_buff *skb,
1284  *					    bool all_slaves);
1285  *	Get the xmit slave of master device. If all_slaves is true, function
1286  *	assume all the slaves can transmit.
1287  *
1288  *      Feature/offload setting functions.
1289  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1290  *		netdev_features_t features);
1291  *	Adjusts the requested feature flags according to device-specific
1292  *	constraints, and returns the resulting flags. Must not modify
1293  *	the device state.
1294  *
1295  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1296  *	Called to update device configuration to new features. Passed
1297  *	feature set might be less than what was returned by ndo_fix_features()).
1298  *	Must return >0 or -errno if it changed dev->features itself.
1299  *
1300  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1301  *		      struct net_device *dev,
1302  *		      const unsigned char *addr, u16 vid, u16 flags,
1303  *		      struct netlink_ext_ack *extack);
1304  *	Adds an FDB entry to dev for addr.
1305  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1306  *		      struct net_device *dev,
1307  *		      const unsigned char *addr, u16 vid)
1308  *	Deletes the FDB entry from dev coresponding to addr.
1309  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1310  *			   struct net_device *dev,
1311  *			   u16 vid,
1312  *			   struct netlink_ext_ack *extack);
1313  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1314  *		       struct net_device *dev, struct net_device *filter_dev,
1315  *		       int *idx)
1316  *	Used to add FDB entries to dump requests. Implementers should add
1317  *	entries to skb and update idx with the number of entries.
1318  *
1319  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1320  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1321  *	Adds an MDB entry to dev.
1322  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1323  *		      struct netlink_ext_ack *extack);
1324  *	Deletes the MDB entry from dev.
1325  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1326  *		       struct netlink_callback *cb);
1327  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1328  *	callback is used by core rtnetlink code.
1329  *
1330  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1331  *			     u16 flags, struct netlink_ext_ack *extack)
1332  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1333  *			     struct net_device *dev, u32 filter_mask,
1334  *			     int nlflags)
1335  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1336  *			     u16 flags);
1337  *
1338  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1339  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1340  *	which do not represent real hardware may define this to allow their
1341  *	userspace components to manage their virtual carrier state. Devices
1342  *	that determine carrier state from physical hardware properties (eg
1343  *	network cables) or protocol-dependent mechanisms (eg
1344  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1345  *
1346  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1347  *			       struct netdev_phys_item_id *ppid);
1348  *	Called to get ID of physical port of this device. If driver does
1349  *	not implement this, it is assumed that the hw is not able to have
1350  *	multiple net devices on single physical port.
1351  *
1352  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1353  *				 struct netdev_phys_item_id *ppid)
1354  *	Called to get the parent ID of the physical port of this device.
1355  *
1356  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1357  *				 struct net_device *dev)
1358  *	Called by upper layer devices to accelerate switching or other
1359  *	station functionality into hardware. 'pdev is the lowerdev
1360  *	to use for the offload and 'dev' is the net device that will
1361  *	back the offload. Returns a pointer to the private structure
1362  *	the upper layer will maintain.
1363  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1364  *	Called by upper layer device to delete the station created
1365  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1366  *	the station and priv is the structure returned by the add
1367  *	operation.
1368  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1369  *			     int queue_index, u32 maxrate);
1370  *	Called when a user wants to set a max-rate limitation of specific
1371  *	TX queue.
1372  * int (*ndo_get_iflink)(const struct net_device *dev);
1373  *	Called to get the iflink value of this device.
1374  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1375  *	This function is used to get egress tunnel information for given skb.
1376  *	This is useful for retrieving outer tunnel header parameters while
1377  *	sampling packet.
1378  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1379  *	This function is used to specify the headroom that the skb must
1380  *	consider when allocation skb during packet reception. Setting
1381  *	appropriate rx headroom value allows avoiding skb head copy on
1382  *	forward. Setting a negative value resets the rx headroom to the
1383  *	default value.
1384  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1385  *	This function is used to set or query state related to XDP on the
1386  *	netdevice and manage BPF offload. See definition of
1387  *	enum bpf_netdev_command for details.
1388  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1389  *			u32 flags);
1390  *	This function is used to submit @n XDP packets for transmit on a
1391  *	netdevice. Returns number of frames successfully transmitted, frames
1392  *	that got dropped are freed/returned via xdp_return_frame().
1393  *	Returns negative number, means general error invoking ndo, meaning
1394  *	no frames were xmit'ed and core-caller will free all frames.
1395  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1396  *					        struct xdp_buff *xdp);
1397  *      Get the xmit slave of master device based on the xdp_buff.
1398  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1399  *      This function is used to wake up the softirq, ksoftirqd or kthread
1400  *	responsible for sending and/or receiving packets on a specific
1401  *	queue id bound to an AF_XDP socket. The flags field specifies if
1402  *	only RX, only Tx, or both should be woken up using the flags
1403  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1404  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1405  *			 int cmd);
1406  *	Add, change, delete or get information on an IPv4 tunnel.
1407  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1408  *	If a device is paired with a peer device, return the peer instance.
1409  *	The caller must be under RCU read context.
1410  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1411  *     Get the forwarding path to reach the real device from the HW destination address
1412  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1413  *			     const struct skb_shared_hwtstamps *hwtstamps,
1414  *			     bool cycles);
1415  *	Get hardware timestamp based on normal/adjustable time or free running
1416  *	cycle counter. This function is required if physical clock supports a
1417  *	free running cycle counter.
1418  *
1419  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1420  *			   struct kernel_hwtstamp_config *kernel_config);
1421  *	Get the currently configured hardware timestamping parameters for the
1422  *	NIC device.
1423  *
1424  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1425  *			   struct kernel_hwtstamp_config *kernel_config,
1426  *			   struct netlink_ext_ack *extack);
1427  *	Change the hardware timestamping parameters for NIC device.
1428  */
1429 struct net_device_ops {
1430 	int			(*ndo_init)(struct net_device *dev);
1431 	void			(*ndo_uninit)(struct net_device *dev);
1432 	int			(*ndo_open)(struct net_device *dev);
1433 	int			(*ndo_stop)(struct net_device *dev);
1434 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1435 						  struct net_device *dev);
1436 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1437 						      struct net_device *dev,
1438 						      netdev_features_t features);
1439 	u16			(*ndo_select_queue)(struct net_device *dev,
1440 						    struct sk_buff *skb,
1441 						    struct net_device *sb_dev);
1442 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1443 						       int flags);
1444 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1445 	int			(*ndo_set_mac_address)(struct net_device *dev,
1446 						       void *addr);
1447 	int			(*ndo_validate_addr)(struct net_device *dev);
1448 	int			(*ndo_do_ioctl)(struct net_device *dev,
1449 					        struct ifreq *ifr, int cmd);
1450 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1451 						 struct ifreq *ifr, int cmd);
1452 	int			(*ndo_siocbond)(struct net_device *dev,
1453 						struct ifreq *ifr, int cmd);
1454 	int			(*ndo_siocwandev)(struct net_device *dev,
1455 						  struct if_settings *ifs);
1456 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1457 						      struct ifreq *ifr,
1458 						      void __user *data, int cmd);
1459 	int			(*ndo_set_config)(struct net_device *dev,
1460 					          struct ifmap *map);
1461 	int			(*ndo_change_mtu)(struct net_device *dev,
1462 						  int new_mtu);
1463 	int			(*ndo_neigh_setup)(struct net_device *dev,
1464 						   struct neigh_parms *);
1465 	void			(*ndo_tx_timeout) (struct net_device *dev,
1466 						   unsigned int txqueue);
1467 
1468 	void			(*ndo_get_stats64)(struct net_device *dev,
1469 						   struct rtnl_link_stats64 *storage);
1470 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1471 	int			(*ndo_get_offload_stats)(int attr_id,
1472 							 const struct net_device *dev,
1473 							 void *attr_data);
1474 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1475 
1476 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1477 						       __be16 proto, u16 vid);
1478 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1479 						        __be16 proto, u16 vid);
1480 #ifdef CONFIG_NET_POLL_CONTROLLER
1481 	void                    (*ndo_poll_controller)(struct net_device *dev);
1482 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1483 						     struct netpoll_info *info);
1484 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1485 #endif
1486 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1487 						  int queue, u8 *mac);
1488 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1489 						   int queue, u16 vlan,
1490 						   u8 qos, __be16 proto);
1491 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1492 						   int vf, int min_tx_rate,
1493 						   int max_tx_rate);
1494 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1495 						       int vf, bool setting);
1496 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1497 						    int vf, bool setting);
1498 	int			(*ndo_get_vf_config)(struct net_device *dev,
1499 						     int vf,
1500 						     struct ifla_vf_info *ivf);
1501 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1502 							 int vf, int link_state);
1503 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1504 						    int vf,
1505 						    struct ifla_vf_stats
1506 						    *vf_stats);
1507 	int			(*ndo_set_vf_port)(struct net_device *dev,
1508 						   int vf,
1509 						   struct nlattr *port[]);
1510 	int			(*ndo_get_vf_port)(struct net_device *dev,
1511 						   int vf, struct sk_buff *skb);
1512 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1513 						   int vf,
1514 						   struct ifla_vf_guid *node_guid,
1515 						   struct ifla_vf_guid *port_guid);
1516 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1517 						   int vf, u64 guid,
1518 						   int guid_type);
1519 	int			(*ndo_set_vf_rss_query_en)(
1520 						   struct net_device *dev,
1521 						   int vf, bool setting);
1522 	int			(*ndo_setup_tc)(struct net_device *dev,
1523 						enum tc_setup_type type,
1524 						void *type_data);
1525 #if IS_ENABLED(CONFIG_FCOE)
1526 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1527 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1528 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1529 						      u16 xid,
1530 						      struct scatterlist *sgl,
1531 						      unsigned int sgc);
1532 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1533 						     u16 xid);
1534 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1535 						       u16 xid,
1536 						       struct scatterlist *sgl,
1537 						       unsigned int sgc);
1538 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1539 							struct netdev_fcoe_hbainfo *hbainfo);
1540 #endif
1541 
1542 #if IS_ENABLED(CONFIG_LIBFCOE)
1543 #define NETDEV_FCOE_WWNN 0
1544 #define NETDEV_FCOE_WWPN 1
1545 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1546 						    u64 *wwn, int type);
1547 #endif
1548 
1549 #ifdef CONFIG_RFS_ACCEL
1550 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1551 						     const struct sk_buff *skb,
1552 						     u16 rxq_index,
1553 						     u32 flow_id);
1554 #endif
1555 	int			(*ndo_add_slave)(struct net_device *dev,
1556 						 struct net_device *slave_dev,
1557 						 struct netlink_ext_ack *extack);
1558 	int			(*ndo_del_slave)(struct net_device *dev,
1559 						 struct net_device *slave_dev);
1560 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1561 						      struct sk_buff *skb,
1562 						      bool all_slaves);
1563 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1564 							struct sock *sk);
1565 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1566 						    netdev_features_t features);
1567 	int			(*ndo_set_features)(struct net_device *dev,
1568 						    netdev_features_t features);
1569 	int			(*ndo_neigh_construct)(struct net_device *dev,
1570 						       struct neighbour *n);
1571 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1572 						     struct neighbour *n);
1573 
1574 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1575 					       struct nlattr *tb[],
1576 					       struct net_device *dev,
1577 					       const unsigned char *addr,
1578 					       u16 vid,
1579 					       u16 flags,
1580 					       struct netlink_ext_ack *extack);
1581 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1582 					       struct nlattr *tb[],
1583 					       struct net_device *dev,
1584 					       const unsigned char *addr,
1585 					       u16 vid, struct netlink_ext_ack *extack);
1586 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1587 						    struct nlattr *tb[],
1588 						    struct net_device *dev,
1589 						    u16 vid,
1590 						    struct netlink_ext_ack *extack);
1591 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1592 						struct netlink_callback *cb,
1593 						struct net_device *dev,
1594 						struct net_device *filter_dev,
1595 						int *idx);
1596 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1597 					       struct nlattr *tb[],
1598 					       struct net_device *dev,
1599 					       const unsigned char *addr,
1600 					       u16 vid, u32 portid, u32 seq,
1601 					       struct netlink_ext_ack *extack);
1602 	int			(*ndo_mdb_add)(struct net_device *dev,
1603 					       struct nlattr *tb[],
1604 					       u16 nlmsg_flags,
1605 					       struct netlink_ext_ack *extack);
1606 	int			(*ndo_mdb_del)(struct net_device *dev,
1607 					       struct nlattr *tb[],
1608 					       struct netlink_ext_ack *extack);
1609 	int			(*ndo_mdb_dump)(struct net_device *dev,
1610 						struct sk_buff *skb,
1611 						struct netlink_callback *cb);
1612 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1613 						      struct nlmsghdr *nlh,
1614 						      u16 flags,
1615 						      struct netlink_ext_ack *extack);
1616 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1617 						      u32 pid, u32 seq,
1618 						      struct net_device *dev,
1619 						      u32 filter_mask,
1620 						      int nlflags);
1621 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1622 						      struct nlmsghdr *nlh,
1623 						      u16 flags);
1624 	int			(*ndo_change_carrier)(struct net_device *dev,
1625 						      bool new_carrier);
1626 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1627 							struct netdev_phys_item_id *ppid);
1628 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1629 							  struct netdev_phys_item_id *ppid);
1630 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1631 							  char *name, size_t len);
1632 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1633 							struct net_device *dev);
1634 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1635 							void *priv);
1636 
1637 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1638 						      int queue_index,
1639 						      u32 maxrate);
1640 	int			(*ndo_get_iflink)(const struct net_device *dev);
1641 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1642 						       struct sk_buff *skb);
1643 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1644 						       int needed_headroom);
1645 	int			(*ndo_bpf)(struct net_device *dev,
1646 					   struct netdev_bpf *bpf);
1647 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1648 						struct xdp_frame **xdp,
1649 						u32 flags);
1650 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1651 							  struct xdp_buff *xdp);
1652 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1653 						  u32 queue_id, u32 flags);
1654 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1655 						  struct ip_tunnel_parm *p, int cmd);
1656 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1657 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1658                                                          struct net_device_path *path);
1659 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1660 						  const struct skb_shared_hwtstamps *hwtstamps,
1661 						  bool cycles);
1662 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1663 						    struct kernel_hwtstamp_config *kernel_config);
1664 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1665 						    struct kernel_hwtstamp_config *kernel_config,
1666 						    struct netlink_ext_ack *extack);
1667 	ANDROID_KABI_RESERVE(1);
1668 	ANDROID_KABI_RESERVE(2);
1669 	ANDROID_KABI_RESERVE(3);
1670 	ANDROID_KABI_RESERVE(4);
1671 	ANDROID_KABI_RESERVE(5);
1672 	ANDROID_KABI_RESERVE(6);
1673 	ANDROID_KABI_RESERVE(7);
1674 	ANDROID_KABI_RESERVE(8);
1675 };
1676 
1677 /**
1678  * enum netdev_priv_flags - &struct net_device priv_flags
1679  *
1680  * These are the &struct net_device, they are only set internally
1681  * by drivers and used in the kernel. These flags are invisible to
1682  * userspace; this means that the order of these flags can change
1683  * during any kernel release.
1684  *
1685  * You should have a pretty good reason to be extending these flags.
1686  *
1687  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1688  * @IFF_EBRIDGE: Ethernet bridging device
1689  * @IFF_BONDING: bonding master or slave
1690  * @IFF_ISATAP: ISATAP interface (RFC4214)
1691  * @IFF_WAN_HDLC: WAN HDLC device
1692  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1693  *	release skb->dst
1694  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1695  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1696  * @IFF_MACVLAN_PORT: device used as macvlan port
1697  * @IFF_BRIDGE_PORT: device used as bridge port
1698  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1699  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1700  * @IFF_UNICAST_FLT: Supports unicast filtering
1701  * @IFF_TEAM_PORT: device used as team port
1702  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1703  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1704  *	change when it's running
1705  * @IFF_MACVLAN: Macvlan device
1706  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1707  *	underlying stacked devices
1708  * @IFF_L3MDEV_MASTER: device is an L3 master device
1709  * @IFF_NO_QUEUE: device can run without qdisc attached
1710  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1711  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1712  * @IFF_TEAM: device is a team device
1713  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1714  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1715  *	entity (i.e. the master device for bridged veth)
1716  * @IFF_MACSEC: device is a MACsec device
1717  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1718  * @IFF_FAILOVER: device is a failover master device
1719  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1720  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1721  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1722  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1723  *	skb_headlen(skb) == 0 (data starts from frag0)
1724  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1725  * @IFF_SEE_ALL_HWTSTAMP_REQUESTS: device wants to see calls to
1726  *	ndo_hwtstamp_set() for all timestamp requests regardless of source,
1727  *	even if those aren't HWTSTAMP_SOURCE_NETDEV.
1728  */
1729 enum netdev_priv_flags {
1730 	IFF_802_1Q_VLAN			= 1<<0,
1731 	IFF_EBRIDGE			= 1<<1,
1732 	IFF_BONDING			= 1<<2,
1733 	IFF_ISATAP			= 1<<3,
1734 	IFF_WAN_HDLC			= 1<<4,
1735 	IFF_XMIT_DST_RELEASE		= 1<<5,
1736 	IFF_DONT_BRIDGE			= 1<<6,
1737 	IFF_DISABLE_NETPOLL		= 1<<7,
1738 	IFF_MACVLAN_PORT		= 1<<8,
1739 	IFF_BRIDGE_PORT			= 1<<9,
1740 	IFF_OVS_DATAPATH		= 1<<10,
1741 	IFF_TX_SKB_SHARING		= 1<<11,
1742 	IFF_UNICAST_FLT			= 1<<12,
1743 	IFF_TEAM_PORT			= 1<<13,
1744 	IFF_SUPP_NOFCS			= 1<<14,
1745 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1746 	IFF_MACVLAN			= 1<<16,
1747 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1748 	IFF_L3MDEV_MASTER		= 1<<18,
1749 	IFF_NO_QUEUE			= 1<<19,
1750 	IFF_OPENVSWITCH			= 1<<20,
1751 	IFF_L3MDEV_SLAVE		= 1<<21,
1752 	IFF_TEAM			= 1<<22,
1753 	IFF_RXFH_CONFIGURED		= 1<<23,
1754 	IFF_PHONY_HEADROOM		= 1<<24,
1755 	IFF_MACSEC			= 1<<25,
1756 	IFF_NO_RX_HANDLER		= 1<<26,
1757 	IFF_FAILOVER			= 1<<27,
1758 	IFF_FAILOVER_SLAVE		= 1<<28,
1759 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1760 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1761 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1762 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1763 	IFF_SEE_ALL_HWTSTAMP_REQUESTS	= BIT_ULL(33),
1764 };
1765 
1766 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1767 #define IFF_EBRIDGE			IFF_EBRIDGE
1768 #define IFF_BONDING			IFF_BONDING
1769 #define IFF_ISATAP			IFF_ISATAP
1770 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1771 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1772 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1773 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1774 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1775 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1776 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1777 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1778 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1779 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1780 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1781 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1782 #define IFF_MACVLAN			IFF_MACVLAN
1783 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1784 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1785 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1786 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1787 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1788 #define IFF_TEAM			IFF_TEAM
1789 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1790 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1791 #define IFF_MACSEC			IFF_MACSEC
1792 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1793 #define IFF_FAILOVER			IFF_FAILOVER
1794 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1795 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1796 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1797 
1798 /* Specifies the type of the struct net_device::ml_priv pointer */
1799 enum netdev_ml_priv_type {
1800 	ML_PRIV_NONE,
1801 	ML_PRIV_CAN,
1802 };
1803 
1804 enum netdev_stat_type {
1805 	NETDEV_PCPU_STAT_NONE,
1806 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1807 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1808 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1809 };
1810 
1811 /**
1812  *	struct net_device - The DEVICE structure.
1813  *
1814  *	Actually, this whole structure is a big mistake.  It mixes I/O
1815  *	data with strictly "high-level" data, and it has to know about
1816  *	almost every data structure used in the INET module.
1817  *
1818  *	@name:	This is the first field of the "visible" part of this structure
1819  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1820  *		of the interface.
1821  *
1822  *	@name_node:	Name hashlist node
1823  *	@ifalias:	SNMP alias
1824  *	@mem_end:	Shared memory end
1825  *	@mem_start:	Shared memory start
1826  *	@base_addr:	Device I/O address
1827  *	@irq:		Device IRQ number
1828  *
1829  *	@state:		Generic network queuing layer state, see netdev_state_t
1830  *	@dev_list:	The global list of network devices
1831  *	@napi_list:	List entry used for polling NAPI devices
1832  *	@unreg_list:	List entry  when we are unregistering the
1833  *			device; see the function unregister_netdev
1834  *	@close_list:	List entry used when we are closing the device
1835  *	@ptype_all:     Device-specific packet handlers for all protocols
1836  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1837  *
1838  *	@adj_list:	Directly linked devices, like slaves for bonding
1839  *	@features:	Currently active device features
1840  *	@hw_features:	User-changeable features
1841  *
1842  *	@wanted_features:	User-requested features
1843  *	@vlan_features:		Mask of features inheritable by VLAN devices
1844  *
1845  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1846  *				This field indicates what encapsulation
1847  *				offloads the hardware is capable of doing,
1848  *				and drivers will need to set them appropriately.
1849  *
1850  *	@mpls_features:	Mask of features inheritable by MPLS
1851  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1852  *
1853  *	@ifindex:	interface index
1854  *	@group:		The group the device belongs to
1855  *
1856  *	@stats:		Statistics struct, which was left as a legacy, use
1857  *			rtnl_link_stats64 instead
1858  *
1859  *	@core_stats:	core networking counters,
1860  *			do not use this in drivers
1861  *	@carrier_up_count:	Number of times the carrier has been up
1862  *	@carrier_down_count:	Number of times the carrier has been down
1863  *
1864  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1865  *				instead of ioctl,
1866  *				see <net/iw_handler.h> for details.
1867  *	@wireless_data:	Instance data managed by the core of wireless extensions
1868  *
1869  *	@netdev_ops:	Includes several pointers to callbacks,
1870  *			if one wants to override the ndo_*() functions
1871  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1872  *	@ethtool_ops:	Management operations
1873  *	@l3mdev_ops:	Layer 3 master device operations
1874  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1875  *			discovery handling. Necessary for e.g. 6LoWPAN.
1876  *	@xfrmdev_ops:	Transformation offload operations
1877  *	@tlsdev_ops:	Transport Layer Security offload operations
1878  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1879  *			of Layer 2 headers.
1880  *
1881  *	@flags:		Interface flags (a la BSD)
1882  *	@xdp_features:	XDP capability supported by the device
1883  *	@priv_flags:	Like 'flags' but invisible to userspace,
1884  *			see if.h for the definitions
1885  *	@gflags:	Global flags ( kept as legacy )
1886  *	@padded:	How much padding added by alloc_netdev()
1887  *	@operstate:	RFC2863 operstate
1888  *	@link_mode:	Mapping policy to operstate
1889  *	@if_port:	Selectable AUI, TP, ...
1890  *	@dma:		DMA channel
1891  *	@mtu:		Interface MTU value
1892  *	@min_mtu:	Interface Minimum MTU value
1893  *	@max_mtu:	Interface Maximum MTU value
1894  *	@type:		Interface hardware type
1895  *	@hard_header_len: Maximum hardware header length.
1896  *	@min_header_len:  Minimum hardware header length
1897  *
1898  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1899  *			  cases can this be guaranteed
1900  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1901  *			  cases can this be guaranteed. Some cases also use
1902  *			  LL_MAX_HEADER instead to allocate the skb
1903  *
1904  *	interface address info:
1905  *
1906  * 	@perm_addr:		Permanent hw address
1907  * 	@addr_assign_type:	Hw address assignment type
1908  * 	@addr_len:		Hardware address length
1909  *	@upper_level:		Maximum depth level of upper devices.
1910  *	@lower_level:		Maximum depth level of lower devices.
1911  *	@neigh_priv_len:	Used in neigh_alloc()
1912  * 	@dev_id:		Used to differentiate devices that share
1913  * 				the same link layer address
1914  * 	@dev_port:		Used to differentiate devices that share
1915  * 				the same function
1916  *	@addr_list_lock:	XXX: need comments on this one
1917  *	@name_assign_type:	network interface name assignment type
1918  *	@uc_promisc:		Counter that indicates promiscuous mode
1919  *				has been enabled due to the need to listen to
1920  *				additional unicast addresses in a device that
1921  *				does not implement ndo_set_rx_mode()
1922  *	@uc:			unicast mac addresses
1923  *	@mc:			multicast mac addresses
1924  *	@dev_addrs:		list of device hw addresses
1925  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1926  *	@promiscuity:		Number of times the NIC is told to work in
1927  *				promiscuous mode; if it becomes 0 the NIC will
1928  *				exit promiscuous mode
1929  *	@allmulti:		Counter, enables or disables allmulticast mode
1930  *
1931  *	@vlan_info:	VLAN info
1932  *	@dsa_ptr:	dsa specific data
1933  *	@tipc_ptr:	TIPC specific data
1934  *	@atalk_ptr:	AppleTalk link
1935  *	@ip_ptr:	IPv4 specific data
1936  *	@ip6_ptr:	IPv6 specific data
1937  *	@ax25_ptr:	AX.25 specific data
1938  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1939  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1940  *			 device struct
1941  *	@mpls_ptr:	mpls_dev struct pointer
1942  *	@mctp_ptr:	MCTP specific data
1943  *
1944  *	@dev_addr:	Hw address (before bcast,
1945  *			because most packets are unicast)
1946  *
1947  *	@_rx:			Array of RX queues
1948  *	@num_rx_queues:		Number of RX queues
1949  *				allocated at register_netdev() time
1950  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1951  *	@xdp_prog:		XDP sockets filter program pointer
1952  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1953  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1954  *				allow to avoid NIC hard IRQ, on busy queues.
1955  *
1956  *	@rx_handler:		handler for received packets
1957  *	@rx_handler_data: 	XXX: need comments on this one
1958  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1959  *	@ingress_queue:		XXX: need comments on this one
1960  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1961  *	@broadcast:		hw bcast address
1962  *
1963  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1964  *			indexed by RX queue number. Assigned by driver.
1965  *			This must only be set if the ndo_rx_flow_steer
1966  *			operation is defined
1967  *	@index_hlist:		Device index hash chain
1968  *
1969  *	@_tx:			Array of TX queues
1970  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1971  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1972  *	@qdisc:			Root qdisc from userspace point of view
1973  *	@tx_queue_len:		Max frames per queue allowed
1974  *	@tx_global_lock: 	XXX: need comments on this one
1975  *	@xdp_bulkq:		XDP device bulk queue
1976  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1977  *
1978  *	@xps_maps:	XXX: need comments on this one
1979  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1980  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1981  *	@qdisc_hash:		qdisc hash table
1982  *	@watchdog_timeo:	Represents the timeout that is used by
1983  *				the watchdog (see dev_watchdog())
1984  *	@watchdog_timer:	List of timers
1985  *
1986  *	@proto_down_reason:	reason a netdev interface is held down
1987  *	@pcpu_refcnt:		Number of references to this device
1988  *	@dev_refcnt:		Number of references to this device
1989  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1990  *	@todo_list:		Delayed register/unregister
1991  *	@link_watch_list:	XXX: need comments on this one
1992  *
1993  *	@reg_state:		Register/unregister state machine
1994  *	@dismantle:		Device is going to be freed
1995  *	@rtnl_link_state:	This enum represents the phases of creating
1996  *				a new link
1997  *
1998  *	@needs_free_netdev:	Should unregister perform free_netdev?
1999  *	@priv_destructor:	Called from unregister
2000  *	@npinfo:		XXX: need comments on this one
2001  * 	@nd_net:		Network namespace this network device is inside
2002  *
2003  * 	@ml_priv:	Mid-layer private
2004  *	@ml_priv_type:  Mid-layer private type
2005  *
2006  *	@pcpu_stat_type:	Type of device statistics which the core should
2007  *				allocate/free: none, lstats, tstats, dstats. none
2008  *				means the driver is handling statistics allocation/
2009  *				freeing internally.
2010  *	@lstats:		Loopback statistics: packets, bytes
2011  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
2012  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
2013  *
2014  *	@garp_port:	GARP
2015  *	@mrp_port:	MRP
2016  *
2017  *	@dm_private:	Drop monitor private
2018  *
2019  *	@dev:		Class/net/name entry
2020  *	@sysfs_groups:	Space for optional device, statistics and wireless
2021  *			sysfs groups
2022  *
2023  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
2024  *	@rtnl_link_ops:	Rtnl_link_ops
2025  *
2026  *	@gso_max_size:	Maximum size of generic segmentation offload
2027  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
2028  *	@gso_max_segs:	Maximum number of segments that can be passed to the
2029  *			NIC for GSO
2030  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
2031  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
2032  * 				for IPv4.
2033  *
2034  *	@dcbnl_ops:	Data Center Bridging netlink ops
2035  *	@num_tc:	Number of traffic classes in the net device
2036  *	@tc_to_txq:	XXX: need comments on this one
2037  *	@prio_tc_map:	XXX: need comments on this one
2038  *
2039  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
2040  *
2041  *	@priomap:	XXX: need comments on this one
2042  *	@phydev:	Physical device may attach itself
2043  *			for hardware timestamping
2044  *	@sfp_bus:	attached &struct sfp_bus structure.
2045  *
2046  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2047  *
2048  *	@proto_down:	protocol port state information can be sent to the
2049  *			switch driver and used to set the phys state of the
2050  *			switch port.
2051  *
2052  *	@wol_enabled:	Wake-on-LAN is enabled
2053  *
2054  *	@threaded:	napi threaded mode is enabled
2055  *
2056  *	@net_notifier_list:	List of per-net netdev notifier block
2057  *				that follow this device when it is moved
2058  *				to another network namespace.
2059  *
2060  *	@macsec_ops:    MACsec offloading ops
2061  *
2062  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2063  *				offload capabilities of the device
2064  *	@udp_tunnel_nic:	UDP tunnel offload state
2065  *	@xdp_state:		stores info on attached XDP BPF programs
2066  *
2067  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2068  *			dev->addr_list_lock.
2069  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2070  *			keep a list of interfaces to be deleted.
2071  *	@gro_max_size:	Maximum size of aggregated packet in generic
2072  *			receive offload (GRO)
2073  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2074  * 				receive offload (GRO), for IPv4.
2075  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2076  *				zero copy driver
2077  *
2078  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2079  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2080  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2081  *	@dev_registered_tracker:	tracker for reference held while
2082  *					registered
2083  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2084  *
2085  *	@devlink_port:	Pointer to related devlink port structure.
2086  *			Assigned by a driver before netdev registration using
2087  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2088  *			during the time netdevice is registered.
2089  *
2090  *	FIXME: cleanup struct net_device such that network protocol info
2091  *	moves out.
2092  */
2093 
2094 struct net_device {
2095 	char			name[IFNAMSIZ];
2096 	struct netdev_name_node	*name_node;
2097 	struct dev_ifalias	__rcu *ifalias;
2098 	/*
2099 	 *	I/O specific fields
2100 	 *	FIXME: Merge these and struct ifmap into one
2101 	 */
2102 	unsigned long		mem_end;
2103 	unsigned long		mem_start;
2104 	unsigned long		base_addr;
2105 
2106 	/*
2107 	 *	Some hardware also needs these fields (state,dev_list,
2108 	 *	napi_list,unreg_list,close_list) but they are not
2109 	 *	part of the usual set specified in Space.c.
2110 	 */
2111 
2112 	unsigned long		state;
2113 
2114 	struct list_head	dev_list;
2115 	struct list_head	napi_list;
2116 	struct list_head	unreg_list;
2117 	struct list_head	close_list;
2118 	struct list_head	ptype_all;
2119 	struct list_head	ptype_specific;
2120 
2121 	struct {
2122 		struct list_head upper;
2123 		struct list_head lower;
2124 	} adj_list;
2125 
2126 	/* Read-mostly cache-line for fast-path access */
2127 	unsigned int		flags;
2128 	xdp_features_t		xdp_features;
2129 	unsigned long long	priv_flags;
2130 	const struct net_device_ops *netdev_ops;
2131 	const struct xdp_metadata_ops *xdp_metadata_ops;
2132 	int			ifindex;
2133 	unsigned short		gflags;
2134 	unsigned short		hard_header_len;
2135 
2136 	/* Note : dev->mtu is often read without holding a lock.
2137 	 * Writers usually hold RTNL.
2138 	 * It is recommended to use READ_ONCE() to annotate the reads,
2139 	 * and to use WRITE_ONCE() to annotate the writes.
2140 	 */
2141 	unsigned int		mtu;
2142 	unsigned short		needed_headroom;
2143 	unsigned short		needed_tailroom;
2144 
2145 	netdev_features_t	features;
2146 	netdev_features_t	hw_features;
2147 	netdev_features_t	wanted_features;
2148 	netdev_features_t	vlan_features;
2149 	netdev_features_t	hw_enc_features;
2150 	netdev_features_t	mpls_features;
2151 	netdev_features_t	gso_partial_features;
2152 
2153 	unsigned int		min_mtu;
2154 	unsigned int		max_mtu;
2155 	unsigned short		type;
2156 	unsigned char		min_header_len;
2157 	unsigned char		name_assign_type;
2158 
2159 	int			group;
2160 
2161 	struct net_device_stats	stats; /* not used by modern drivers */
2162 
2163 	struct net_device_core_stats __percpu *core_stats;
2164 
2165 	/* Stats to monitor link on/off, flapping */
2166 	atomic_t		carrier_up_count;
2167 	atomic_t		carrier_down_count;
2168 
2169 	/* Android KMI hack to allow vendors to have their own wifi changes in modules */
2170 	const struct iw_handler_def *wireless_handlers;
2171 	struct iw_public_data	*wireless_data;
2172 	const struct ethtool_ops *ethtool_ops;
2173 #ifdef CONFIG_NET_L3_MASTER_DEV
2174 	const struct l3mdev_ops	*l3mdev_ops;
2175 #endif
2176 #if IS_ENABLED(CONFIG_IPV6)
2177 	const struct ndisc_ops *ndisc_ops;
2178 #endif
2179 
2180 #ifdef CONFIG_XFRM_OFFLOAD
2181 	const struct xfrmdev_ops *xfrmdev_ops;
2182 #endif
2183 
2184 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2185 	const struct tlsdev_ops *tlsdev_ops;
2186 #endif
2187 
2188 	const struct header_ops *header_ops;
2189 
2190 	unsigned char		operstate;
2191 	unsigned char		link_mode;
2192 
2193 	unsigned char		if_port;
2194 	unsigned char		dma;
2195 
2196 	/* Interface address info. */
2197 	unsigned char		perm_addr[MAX_ADDR_LEN];
2198 	unsigned char		addr_assign_type;
2199 	unsigned char		addr_len;
2200 	unsigned char		upper_level;
2201 	unsigned char		lower_level;
2202 
2203 	unsigned short		neigh_priv_len;
2204 	unsigned short          dev_id;
2205 	unsigned short          dev_port;
2206 	unsigned short		padded;
2207 
2208 	spinlock_t		addr_list_lock;
2209 	int			irq;
2210 
2211 	struct netdev_hw_addr_list	uc;
2212 	struct netdev_hw_addr_list	mc;
2213 	struct netdev_hw_addr_list	dev_addrs;
2214 
2215 #ifdef CONFIG_SYSFS
2216 	struct kset		*queues_kset;
2217 #endif
2218 #ifdef CONFIG_LOCKDEP
2219 	struct list_head	unlink_list;
2220 #endif
2221 	unsigned int		promiscuity;
2222 	unsigned int		allmulti;
2223 	bool			uc_promisc;
2224 #ifdef CONFIG_LOCKDEP
2225 	unsigned char		nested_level;
2226 #endif
2227 
2228 
2229 	/* Protocol-specific pointers */
2230 
2231 	struct in_device __rcu	*ip_ptr;
2232 	struct inet6_dev __rcu	*ip6_ptr;
2233 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2234 	struct vlan_info __rcu	*vlan_info;
2235 #endif
2236 #if IS_ENABLED(CONFIG_NET_DSA)
2237 	struct dsa_port		*dsa_ptr;
2238 #endif
2239 #if IS_ENABLED(CONFIG_TIPC)
2240 	struct tipc_bearer __rcu *tipc_ptr;
2241 #endif
2242 #if IS_ENABLED(CONFIG_ATALK)
2243 	void 			*atalk_ptr;
2244 #endif
2245 #if IS_ENABLED(CONFIG_AX25)
2246 	void			*ax25_ptr;
2247 #endif
2248 	/* Android KMI hack to allow vendors to have their own wifi changes in modules */
2249 	struct wireless_dev	*ieee80211_ptr;
2250 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2251 	struct wpan_dev		*ieee802154_ptr;
2252 #endif
2253 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2254 	struct mpls_dev __rcu	*mpls_ptr;
2255 #endif
2256 #if IS_ENABLED(CONFIG_MCTP)
2257 	struct mctp_dev __rcu	*mctp_ptr;
2258 #endif
2259 
2260 /*
2261  * Cache lines mostly used on receive path (including eth_type_trans())
2262  */
2263 	/* Interface address info used in eth_type_trans() */
2264 	const unsigned char	*dev_addr;
2265 
2266 	struct netdev_rx_queue	*_rx;
2267 	unsigned int		num_rx_queues;
2268 	unsigned int		real_num_rx_queues;
2269 
2270 	struct bpf_prog __rcu	*xdp_prog;
2271 	unsigned long		gro_flush_timeout;
2272 	int			napi_defer_hard_irqs;
2273 #define GRO_LEGACY_MAX_SIZE	65536u
2274 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2275  * and shinfo->gso_segs is a 16bit field.
2276  */
2277 #define GRO_MAX_SIZE		(8 * 65535u)
2278 	unsigned int		gro_max_size;
2279 	unsigned int		gro_ipv4_max_size;
2280 	unsigned int		xdp_zc_max_segs;
2281 	rx_handler_func_t __rcu	*rx_handler;
2282 	void __rcu		*rx_handler_data;
2283 #ifdef CONFIG_NET_XGRESS
2284 	struct bpf_mprog_entry __rcu *tcx_ingress;
2285 #endif
2286 	struct netdev_queue __rcu *ingress_queue;
2287 #ifdef CONFIG_NETFILTER_INGRESS
2288 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2289 #endif
2290 
2291 	unsigned char		broadcast[MAX_ADDR_LEN];
2292 #ifdef CONFIG_RFS_ACCEL
2293 	struct cpu_rmap		*rx_cpu_rmap;
2294 #endif
2295 	struct hlist_node	index_hlist;
2296 
2297 /*
2298  * Cache lines mostly used on transmit path
2299  */
2300 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2301 	unsigned int		num_tx_queues;
2302 	unsigned int		real_num_tx_queues;
2303 	struct Qdisc __rcu	*qdisc;
2304 	unsigned int		tx_queue_len;
2305 	spinlock_t		tx_global_lock;
2306 
2307 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2308 
2309 #ifdef CONFIG_XPS
2310 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2311 #endif
2312 #ifdef CONFIG_NET_XGRESS
2313 	struct bpf_mprog_entry __rcu *tcx_egress;
2314 #endif
2315 #ifdef CONFIG_NETFILTER_EGRESS
2316 	struct nf_hook_entries __rcu *nf_hooks_egress;
2317 #endif
2318 
2319 #ifdef CONFIG_NET_SCHED
2320 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2321 #endif
2322 	/* These may be needed for future network-power-down code. */
2323 	struct timer_list	watchdog_timer;
2324 	int			watchdog_timeo;
2325 
2326 	u32                     proto_down_reason;
2327 
2328 	struct list_head	todo_list;
2329 
2330 #ifdef CONFIG_PCPU_DEV_REFCNT
2331 	int __percpu		*pcpu_refcnt;
2332 #else
2333 	refcount_t		dev_refcnt;
2334 #endif
2335 	struct ref_tracker_dir	refcnt_tracker;
2336 
2337 	struct list_head	link_watch_list;
2338 
2339 	enum { NETREG_UNINITIALIZED=0,
2340 	       NETREG_REGISTERED,	/* completed register_netdevice */
2341 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2342 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2343 	       NETREG_RELEASED,		/* called free_netdev */
2344 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2345 	} reg_state:8;
2346 
2347 	bool dismantle;
2348 
2349 	enum {
2350 		RTNL_LINK_INITIALIZED,
2351 		RTNL_LINK_INITIALIZING,
2352 	} rtnl_link_state:16;
2353 
2354 	bool needs_free_netdev;
2355 	void (*priv_destructor)(struct net_device *dev);
2356 
2357 #ifdef CONFIG_NETPOLL
2358 	struct netpoll_info __rcu	*npinfo;
2359 #endif
2360 
2361 	possible_net_t			nd_net;
2362 
2363 	/* mid-layer private */
2364 	void				*ml_priv;
2365 	enum netdev_ml_priv_type	ml_priv_type;
2366 
2367 	enum netdev_stat_type		pcpu_stat_type:8;
2368 	union {
2369 		struct pcpu_lstats __percpu		*lstats;
2370 		struct pcpu_sw_netstats __percpu	*tstats;
2371 		struct pcpu_dstats __percpu		*dstats;
2372 	};
2373 
2374 #if IS_ENABLED(CONFIG_GARP)
2375 	struct garp_port __rcu	*garp_port;
2376 #endif
2377 #if IS_ENABLED(CONFIG_MRP)
2378 	struct mrp_port __rcu	*mrp_port;
2379 #endif
2380 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2381 	struct dm_hw_stat_delta __rcu *dm_private;
2382 #endif
2383 	struct device		dev;
2384 	const struct attribute_group *sysfs_groups[4];
2385 	const struct attribute_group *sysfs_rx_queue_group;
2386 
2387 	const struct rtnl_link_ops *rtnl_link_ops;
2388 
2389 	/* for setting kernel sock attribute on TCP connection setup */
2390 #define GSO_MAX_SEGS		65535u
2391 #define GSO_LEGACY_MAX_SIZE	65536u
2392 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2393  * and shinfo->gso_segs is a 16bit field.
2394  */
2395 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2396 
2397 	unsigned int		gso_max_size;
2398 #define TSO_LEGACY_MAX_SIZE	65536
2399 #define TSO_MAX_SIZE		UINT_MAX
2400 	unsigned int		tso_max_size;
2401 	u16			gso_max_segs;
2402 #define TSO_MAX_SEGS		U16_MAX
2403 	u16			tso_max_segs;
2404 	unsigned int		gso_ipv4_max_size;
2405 
2406 #ifdef CONFIG_DCB
2407 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2408 #endif
2409 	s16			num_tc;
2410 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2411 	u8			prio_tc_map[TC_BITMASK + 1];
2412 
2413 #if IS_ENABLED(CONFIG_FCOE)
2414 	unsigned int		fcoe_ddp_xid;
2415 #endif
2416 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2417 	struct netprio_map __rcu *priomap;
2418 #endif
2419 	struct phy_device	*phydev;
2420 	struct sfp_bus		*sfp_bus;
2421 	struct lock_class_key	*qdisc_tx_busylock;
2422 	bool			proto_down;
2423 	unsigned		wol_enabled:1;
2424 	unsigned		threaded:1;
2425 
2426 	struct list_head	net_notifier_list;
2427 
2428 #if IS_ENABLED(CONFIG_MACSEC)
2429 	/* MACsec management functions */
2430 	const struct macsec_ops *macsec_ops;
2431 #endif
2432 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2433 	struct udp_tunnel_nic	*udp_tunnel_nic;
2434 
2435 	/* protected by rtnl_lock */
2436 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2437 
2438 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2439 	netdevice_tracker	linkwatch_dev_tracker;
2440 	netdevice_tracker	watchdog_dev_tracker;
2441 	netdevice_tracker	dev_registered_tracker;
2442 	struct rtnl_hw_stats64	*offload_xstats_l3;
2443 
2444 	struct devlink_port	*devlink_port;
2445 
2446 	ANDROID_KABI_RESERVE(1);
2447 	ANDROID_KABI_RESERVE(2);
2448 	ANDROID_KABI_RESERVE(3);
2449 	ANDROID_KABI_RESERVE(4);
2450 	ANDROID_KABI_RESERVE(5);
2451 	ANDROID_KABI_RESERVE(6);
2452 	ANDROID_KABI_RESERVE(7);
2453 	ANDROID_KABI_RESERVE(8);
2454 };
2455 #define to_net_dev(d) container_of(d, struct net_device, dev)
2456 
2457 /*
2458  * Driver should use this to assign devlink port instance to a netdevice
2459  * before it registers the netdevice. Therefore devlink_port is static
2460  * during the netdev lifetime after it is registered.
2461  */
2462 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2463 ({								\
2464 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2465 	((dev)->devlink_port = (port));				\
2466 })
2467 
netif_elide_gro(const struct net_device * dev)2468 static inline bool netif_elide_gro(const struct net_device *dev)
2469 {
2470 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2471 		return true;
2472 	return false;
2473 }
2474 
2475 #define	NETDEV_ALIGN		32
2476 
2477 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2478 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2479 {
2480 	return dev->prio_tc_map[prio & TC_BITMASK];
2481 }
2482 
2483 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2484 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2485 {
2486 	if (tc >= dev->num_tc)
2487 		return -EINVAL;
2488 
2489 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2490 	return 0;
2491 }
2492 
2493 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2494 void netdev_reset_tc(struct net_device *dev);
2495 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2496 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2497 
2498 static inline
netdev_get_num_tc(struct net_device * dev)2499 int netdev_get_num_tc(struct net_device *dev)
2500 {
2501 	return dev->num_tc;
2502 }
2503 
net_prefetch(void * p)2504 static inline void net_prefetch(void *p)
2505 {
2506 	prefetch(p);
2507 #if L1_CACHE_BYTES < 128
2508 	prefetch((u8 *)p + L1_CACHE_BYTES);
2509 #endif
2510 }
2511 
net_prefetchw(void * p)2512 static inline void net_prefetchw(void *p)
2513 {
2514 	prefetchw(p);
2515 #if L1_CACHE_BYTES < 128
2516 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2517 #endif
2518 }
2519 
2520 void netdev_unbind_sb_channel(struct net_device *dev,
2521 			      struct net_device *sb_dev);
2522 int netdev_bind_sb_channel_queue(struct net_device *dev,
2523 				 struct net_device *sb_dev,
2524 				 u8 tc, u16 count, u16 offset);
2525 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2526 static inline int netdev_get_sb_channel(struct net_device *dev)
2527 {
2528 	return max_t(int, -dev->num_tc, 0);
2529 }
2530 
2531 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2532 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2533 					 unsigned int index)
2534 {
2535 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2536 	return &dev->_tx[index];
2537 }
2538 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2539 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2540 						    const struct sk_buff *skb)
2541 {
2542 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2543 }
2544 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2545 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2546 					    void (*f)(struct net_device *,
2547 						      struct netdev_queue *,
2548 						      void *),
2549 					    void *arg)
2550 {
2551 	unsigned int i;
2552 
2553 	for (i = 0; i < dev->num_tx_queues; i++)
2554 		f(dev, &dev->_tx[i], arg);
2555 }
2556 
2557 #define netdev_lockdep_set_classes(dev)				\
2558 {								\
2559 	static struct lock_class_key qdisc_tx_busylock_key;	\
2560 	static struct lock_class_key qdisc_xmit_lock_key;	\
2561 	static struct lock_class_key dev_addr_list_lock_key;	\
2562 	unsigned int i;						\
2563 								\
2564 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2565 	lockdep_set_class(&(dev)->addr_list_lock,		\
2566 			  &dev_addr_list_lock_key);		\
2567 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2568 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2569 				  &qdisc_xmit_lock_key);	\
2570 }
2571 
2572 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2573 		     struct net_device *sb_dev);
2574 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2575 					 struct sk_buff *skb,
2576 					 struct net_device *sb_dev);
2577 
2578 /* returns the headroom that the master device needs to take in account
2579  * when forwarding to this dev
2580  */
netdev_get_fwd_headroom(struct net_device * dev)2581 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2582 {
2583 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2584 }
2585 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2586 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2587 {
2588 	if (dev->netdev_ops->ndo_set_rx_headroom)
2589 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2590 }
2591 
2592 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2593 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2594 {
2595 	netdev_set_rx_headroom(dev, -1);
2596 }
2597 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2598 static inline void *netdev_get_ml_priv(struct net_device *dev,
2599 				       enum netdev_ml_priv_type type)
2600 {
2601 	if (dev->ml_priv_type != type)
2602 		return NULL;
2603 
2604 	return dev->ml_priv;
2605 }
2606 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2607 static inline void netdev_set_ml_priv(struct net_device *dev,
2608 				      void *ml_priv,
2609 				      enum netdev_ml_priv_type type)
2610 {
2611 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2612 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2613 	     dev->ml_priv_type, type);
2614 	WARN(!dev->ml_priv_type && dev->ml_priv,
2615 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2616 
2617 	dev->ml_priv = ml_priv;
2618 	dev->ml_priv_type = type;
2619 }
2620 
2621 /*
2622  * Net namespace inlines
2623  */
2624 static inline
dev_net(const struct net_device * dev)2625 struct net *dev_net(const struct net_device *dev)
2626 {
2627 	return read_pnet(&dev->nd_net);
2628 }
2629 
2630 static inline
dev_net_set(struct net_device * dev,struct net * net)2631 void dev_net_set(struct net_device *dev, struct net *net)
2632 {
2633 	write_pnet(&dev->nd_net, net);
2634 }
2635 
2636 /**
2637  *	netdev_priv - access network device private data
2638  *	@dev: network device
2639  *
2640  * Get network device private data
2641  */
netdev_priv(const struct net_device * dev)2642 static inline void *netdev_priv(const struct net_device *dev)
2643 {
2644 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2645 }
2646 
2647 /* Set the sysfs physical device reference for the network logical device
2648  * if set prior to registration will cause a symlink during initialization.
2649  */
2650 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2651 
2652 /* Set the sysfs device type for the network logical device to allow
2653  * fine-grained identification of different network device types. For
2654  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2655  */
2656 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2657 
2658 /* Default NAPI poll() weight
2659  * Device drivers are strongly advised to not use bigger value
2660  */
2661 #define NAPI_POLL_WEIGHT 64
2662 
2663 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2664 			   int (*poll)(struct napi_struct *, int), int weight);
2665 
2666 /**
2667  * netif_napi_add() - initialize a NAPI context
2668  * @dev:  network device
2669  * @napi: NAPI context
2670  * @poll: polling function
2671  *
2672  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2673  * *any* of the other NAPI-related functions.
2674  */
2675 static inline void
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2676 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2677 	       int (*poll)(struct napi_struct *, int))
2678 {
2679 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2680 }
2681 
2682 static inline void
netif_napi_add_tx_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2683 netif_napi_add_tx_weight(struct net_device *dev,
2684 			 struct napi_struct *napi,
2685 			 int (*poll)(struct napi_struct *, int),
2686 			 int weight)
2687 {
2688 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2689 	netif_napi_add_weight(dev, napi, poll, weight);
2690 }
2691 
2692 /**
2693  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2694  * @dev:  network device
2695  * @napi: NAPI context
2696  * @poll: polling function
2697  *
2698  * This variant of netif_napi_add() should be used from drivers using NAPI
2699  * to exclusively poll a TX queue.
2700  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2701  */
netif_napi_add_tx(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2702 static inline void netif_napi_add_tx(struct net_device *dev,
2703 				     struct napi_struct *napi,
2704 				     int (*poll)(struct napi_struct *, int))
2705 {
2706 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2707 }
2708 
2709 /**
2710  *  __netif_napi_del - remove a NAPI context
2711  *  @napi: NAPI context
2712  *
2713  * Warning: caller must observe RCU grace period before freeing memory
2714  * containing @napi. Drivers might want to call this helper to combine
2715  * all the needed RCU grace periods into a single one.
2716  */
2717 void __netif_napi_del(struct napi_struct *napi);
2718 
2719 /**
2720  *  netif_napi_del - remove a NAPI context
2721  *  @napi: NAPI context
2722  *
2723  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2724  */
netif_napi_del(struct napi_struct * napi)2725 static inline void netif_napi_del(struct napi_struct *napi)
2726 {
2727 	__netif_napi_del(napi);
2728 	synchronize_net();
2729 }
2730 
2731 struct packet_type {
2732 	__be16			type;	/* This is really htons(ether_type). */
2733 	bool			ignore_outgoing;
2734 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2735 	netdevice_tracker	dev_tracker;
2736 	int			(*func) (struct sk_buff *,
2737 					 struct net_device *,
2738 					 struct packet_type *,
2739 					 struct net_device *);
2740 	void			(*list_func) (struct list_head *,
2741 					      struct packet_type *,
2742 					      struct net_device *);
2743 	bool			(*id_match)(struct packet_type *ptype,
2744 					    struct sock *sk);
2745 	struct net		*af_packet_net;
2746 	void			*af_packet_priv;
2747 	struct list_head	list;
2748 
2749 	ANDROID_KABI_RESERVE(1);
2750 	ANDROID_KABI_RESERVE(2);
2751 	ANDROID_KABI_RESERVE(3);
2752 	ANDROID_KABI_RESERVE(4);
2753 };
2754 
2755 struct offload_callbacks {
2756 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2757 						netdev_features_t features);
2758 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2759 						struct sk_buff *skb);
2760 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2761 };
2762 
2763 struct packet_offload {
2764 	__be16			 type;	/* This is really htons(ether_type). */
2765 	u16			 priority;
2766 	struct offload_callbacks callbacks;
2767 	struct list_head	 list;
2768 };
2769 
2770 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2771 struct pcpu_sw_netstats {
2772 	u64_stats_t		rx_packets;
2773 	u64_stats_t		rx_bytes;
2774 	u64_stats_t		tx_packets;
2775 	u64_stats_t		tx_bytes;
2776 	struct u64_stats_sync   syncp;
2777 } __aligned(4 * sizeof(u64));
2778 
2779 struct pcpu_dstats {
2780 	u64			rx_packets;
2781 	u64			rx_bytes;
2782 	u64			rx_drops;
2783 	u64			tx_packets;
2784 	u64			tx_bytes;
2785 	u64			tx_drops;
2786 	struct u64_stats_sync	syncp;
2787 } __aligned(8 * sizeof(u64));
2788 
2789 struct pcpu_lstats {
2790 	u64_stats_t packets;
2791 	u64_stats_t bytes;
2792 	struct u64_stats_sync syncp;
2793 } __aligned(2 * sizeof(u64));
2794 
2795 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2796 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2797 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2798 {
2799 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2800 
2801 	u64_stats_update_begin(&tstats->syncp);
2802 	u64_stats_add(&tstats->rx_bytes, len);
2803 	u64_stats_inc(&tstats->rx_packets);
2804 	u64_stats_update_end(&tstats->syncp);
2805 }
2806 
dev_sw_netstats_tx_add(struct net_device * dev,unsigned int packets,unsigned int len)2807 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2808 					  unsigned int packets,
2809 					  unsigned int len)
2810 {
2811 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2812 
2813 	u64_stats_update_begin(&tstats->syncp);
2814 	u64_stats_add(&tstats->tx_bytes, len);
2815 	u64_stats_add(&tstats->tx_packets, packets);
2816 	u64_stats_update_end(&tstats->syncp);
2817 }
2818 
dev_lstats_add(struct net_device * dev,unsigned int len)2819 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2820 {
2821 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2822 
2823 	u64_stats_update_begin(&lstats->syncp);
2824 	u64_stats_add(&lstats->bytes, len);
2825 	u64_stats_inc(&lstats->packets);
2826 	u64_stats_update_end(&lstats->syncp);
2827 }
2828 
2829 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2830 ({									\
2831 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2832 	if (pcpu_stats)	{						\
2833 		int __cpu;						\
2834 		for_each_possible_cpu(__cpu) {				\
2835 			typeof(type) *stat;				\
2836 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2837 			u64_stats_init(&stat->syncp);			\
2838 		}							\
2839 	}								\
2840 	pcpu_stats;							\
2841 })
2842 
2843 #define netdev_alloc_pcpu_stats(type)					\
2844 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2845 
2846 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2847 ({									\
2848 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2849 	if (pcpu_stats) {						\
2850 		int __cpu;						\
2851 		for_each_possible_cpu(__cpu) {				\
2852 			typeof(type) *stat;				\
2853 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2854 			u64_stats_init(&stat->syncp);			\
2855 		}							\
2856 	}								\
2857 	pcpu_stats;							\
2858 })
2859 
2860 enum netdev_lag_tx_type {
2861 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2862 	NETDEV_LAG_TX_TYPE_RANDOM,
2863 	NETDEV_LAG_TX_TYPE_BROADCAST,
2864 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2865 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2866 	NETDEV_LAG_TX_TYPE_HASH,
2867 };
2868 
2869 enum netdev_lag_hash {
2870 	NETDEV_LAG_HASH_NONE,
2871 	NETDEV_LAG_HASH_L2,
2872 	NETDEV_LAG_HASH_L34,
2873 	NETDEV_LAG_HASH_L23,
2874 	NETDEV_LAG_HASH_E23,
2875 	NETDEV_LAG_HASH_E34,
2876 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2877 	NETDEV_LAG_HASH_UNKNOWN,
2878 };
2879 
2880 struct netdev_lag_upper_info {
2881 	enum netdev_lag_tx_type tx_type;
2882 	enum netdev_lag_hash hash_type;
2883 };
2884 
2885 struct netdev_lag_lower_state_info {
2886 	u8 link_up : 1,
2887 	   tx_enabled : 1;
2888 };
2889 
2890 #include <linux/notifier.h>
2891 
2892 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2893  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2894  * adding new types.
2895  */
2896 enum netdev_cmd {
2897 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2898 	NETDEV_DOWN,
2899 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2900 				   detected a hardware crash and restarted
2901 				   - we can use this eg to kick tcp sessions
2902 				   once done */
2903 	NETDEV_CHANGE,		/* Notify device state change */
2904 	NETDEV_REGISTER,
2905 	NETDEV_UNREGISTER,
2906 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2907 	NETDEV_CHANGEADDR,	/* notify after the address change */
2908 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2909 	NETDEV_GOING_DOWN,
2910 	NETDEV_CHANGENAME,
2911 	NETDEV_FEAT_CHANGE,
2912 	NETDEV_BONDING_FAILOVER,
2913 	NETDEV_PRE_UP,
2914 	NETDEV_PRE_TYPE_CHANGE,
2915 	NETDEV_POST_TYPE_CHANGE,
2916 	NETDEV_POST_INIT,
2917 	NETDEV_PRE_UNINIT,
2918 	NETDEV_RELEASE,
2919 	NETDEV_NOTIFY_PEERS,
2920 	NETDEV_JOIN,
2921 	NETDEV_CHANGEUPPER,
2922 	NETDEV_RESEND_IGMP,
2923 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2924 	NETDEV_CHANGEINFODATA,
2925 	NETDEV_BONDING_INFO,
2926 	NETDEV_PRECHANGEUPPER,
2927 	NETDEV_CHANGELOWERSTATE,
2928 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2929 	NETDEV_UDP_TUNNEL_DROP_INFO,
2930 	NETDEV_CHANGE_TX_QUEUE_LEN,
2931 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2932 	NETDEV_CVLAN_FILTER_DROP_INFO,
2933 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2934 	NETDEV_SVLAN_FILTER_DROP_INFO,
2935 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2936 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2937 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2938 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2939 	NETDEV_XDP_FEAT_CHANGE,
2940 };
2941 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2942 
2943 int register_netdevice_notifier(struct notifier_block *nb);
2944 int unregister_netdevice_notifier(struct notifier_block *nb);
2945 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2946 int unregister_netdevice_notifier_net(struct net *net,
2947 				      struct notifier_block *nb);
2948 int register_netdevice_notifier_dev_net(struct net_device *dev,
2949 					struct notifier_block *nb,
2950 					struct netdev_net_notifier *nn);
2951 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2952 					  struct notifier_block *nb,
2953 					  struct netdev_net_notifier *nn);
2954 
2955 struct netdev_notifier_info {
2956 	struct net_device	*dev;
2957 	struct netlink_ext_ack	*extack;
2958 };
2959 
2960 struct netdev_notifier_info_ext {
2961 	struct netdev_notifier_info info; /* must be first */
2962 	union {
2963 		u32 mtu;
2964 	} ext;
2965 };
2966 
2967 struct netdev_notifier_change_info {
2968 	struct netdev_notifier_info info; /* must be first */
2969 	unsigned int flags_changed;
2970 };
2971 
2972 struct netdev_notifier_changeupper_info {
2973 	struct netdev_notifier_info info; /* must be first */
2974 	struct net_device *upper_dev; /* new upper dev */
2975 	bool master; /* is upper dev master */
2976 	bool linking; /* is the notification for link or unlink */
2977 	void *upper_info; /* upper dev info */
2978 };
2979 
2980 struct netdev_notifier_changelowerstate_info {
2981 	struct netdev_notifier_info info; /* must be first */
2982 	void *lower_state_info; /* is lower dev state */
2983 };
2984 
2985 struct netdev_notifier_pre_changeaddr_info {
2986 	struct netdev_notifier_info info; /* must be first */
2987 	const unsigned char *dev_addr;
2988 };
2989 
2990 enum netdev_offload_xstats_type {
2991 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2992 };
2993 
2994 struct netdev_notifier_offload_xstats_info {
2995 	struct netdev_notifier_info info; /* must be first */
2996 	enum netdev_offload_xstats_type type;
2997 
2998 	union {
2999 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3000 		struct netdev_notifier_offload_xstats_rd *report_delta;
3001 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3002 		struct netdev_notifier_offload_xstats_ru *report_used;
3003 	};
3004 };
3005 
3006 int netdev_offload_xstats_enable(struct net_device *dev,
3007 				 enum netdev_offload_xstats_type type,
3008 				 struct netlink_ext_ack *extack);
3009 int netdev_offload_xstats_disable(struct net_device *dev,
3010 				  enum netdev_offload_xstats_type type);
3011 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3012 				   enum netdev_offload_xstats_type type);
3013 int netdev_offload_xstats_get(struct net_device *dev,
3014 			      enum netdev_offload_xstats_type type,
3015 			      struct rtnl_hw_stats64 *stats, bool *used,
3016 			      struct netlink_ext_ack *extack);
3017 void
3018 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3019 				   const struct rtnl_hw_stats64 *stats);
3020 void
3021 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3022 void netdev_offload_xstats_push_delta(struct net_device *dev,
3023 				      enum netdev_offload_xstats_type type,
3024 				      const struct rtnl_hw_stats64 *stats);
3025 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)3026 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3027 					     struct net_device *dev)
3028 {
3029 	info->dev = dev;
3030 	info->extack = NULL;
3031 }
3032 
3033 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)3034 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3035 {
3036 	return info->dev;
3037 }
3038 
3039 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)3040 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3041 {
3042 	return info->extack;
3043 }
3044 
3045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3046 int call_netdevice_notifiers_info(unsigned long val,
3047 				  struct netdev_notifier_info *info);
3048 
3049 extern rwlock_t				dev_base_lock;		/* Device list lock */
3050 
3051 #define for_each_netdev(net, d)		\
3052 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3053 #define for_each_netdev_reverse(net, d)	\
3054 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3055 #define for_each_netdev_rcu(net, d)		\
3056 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3057 #define for_each_netdev_safe(net, d, n)	\
3058 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3059 #define for_each_netdev_continue(net, d)		\
3060 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3061 #define for_each_netdev_continue_reverse(net, d)		\
3062 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3063 						     dev_list)
3064 #define for_each_netdev_continue_rcu(net, d)		\
3065 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3066 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3067 		for_each_netdev_rcu(&init_net, slave)	\
3068 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3069 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3070 
3071 #define for_each_netdev_dump(net, d, ifindex)				\
3072 	xa_for_each_start(&(net)->dev_by_index, (ifindex), (d), (ifindex))
3073 
next_net_device(struct net_device * dev)3074 static inline struct net_device *next_net_device(struct net_device *dev)
3075 {
3076 	struct list_head *lh;
3077 	struct net *net;
3078 
3079 	net = dev_net(dev);
3080 	lh = dev->dev_list.next;
3081 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3082 }
3083 
next_net_device_rcu(struct net_device * dev)3084 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3085 {
3086 	struct list_head *lh;
3087 	struct net *net;
3088 
3089 	net = dev_net(dev);
3090 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3091 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3092 }
3093 
first_net_device(struct net * net)3094 static inline struct net_device *first_net_device(struct net *net)
3095 {
3096 	return list_empty(&net->dev_base_head) ? NULL :
3097 		net_device_entry(net->dev_base_head.next);
3098 }
3099 
first_net_device_rcu(struct net * net)3100 static inline struct net_device *first_net_device_rcu(struct net *net)
3101 {
3102 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3103 
3104 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3105 }
3106 
3107 int netdev_boot_setup_check(struct net_device *dev);
3108 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3109 				       const char *hwaddr);
3110 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3111 void dev_add_pack(struct packet_type *pt);
3112 void dev_remove_pack(struct packet_type *pt);
3113 void __dev_remove_pack(struct packet_type *pt);
3114 void dev_add_offload(struct packet_offload *po);
3115 void dev_remove_offload(struct packet_offload *po);
3116 
3117 int dev_get_iflink(const struct net_device *dev);
3118 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3119 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3120 			  struct net_device_path_stack *stack);
3121 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3122 				      unsigned short mask);
3123 struct net_device *dev_get_by_name(struct net *net, const char *name);
3124 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3125 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3126 bool netdev_name_in_use(struct net *net, const char *name);
3127 int dev_alloc_name(struct net_device *dev, const char *name);
3128 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3129 void dev_close(struct net_device *dev);
3130 void dev_close_many(struct list_head *head, bool unlink);
3131 void dev_disable_lro(struct net_device *dev);
3132 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3133 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3134 		     struct net_device *sb_dev);
3135 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3136 		       struct net_device *sb_dev);
3137 
3138 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3139 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3140 
dev_queue_xmit(struct sk_buff * skb)3141 static inline int dev_queue_xmit(struct sk_buff *skb)
3142 {
3143 	return __dev_queue_xmit(skb, NULL);
3144 }
3145 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3146 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3147 				       struct net_device *sb_dev)
3148 {
3149 	return __dev_queue_xmit(skb, sb_dev);
3150 }
3151 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3152 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3153 {
3154 	int ret;
3155 
3156 	ret = __dev_direct_xmit(skb, queue_id);
3157 	if (!dev_xmit_complete(ret))
3158 		kfree_skb(skb);
3159 	return ret;
3160 }
3161 
3162 int register_netdevice(struct net_device *dev);
3163 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3164 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)3165 static inline void unregister_netdevice(struct net_device *dev)
3166 {
3167 	unregister_netdevice_queue(dev, NULL);
3168 }
3169 
3170 int netdev_refcnt_read(const struct net_device *dev);
3171 void free_netdev(struct net_device *dev);
3172 void netdev_freemem(struct net_device *dev);
3173 int init_dummy_netdev(struct net_device *dev);
3174 
3175 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3176 					 struct sk_buff *skb,
3177 					 bool all_slaves);
3178 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3179 					    struct sock *sk);
3180 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3181 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3182 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3183 				       netdevice_tracker *tracker, gfp_t gfp);
3184 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3185 				      netdevice_tracker *tracker, gfp_t gfp);
3186 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3187 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3188 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3189 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3190 				  unsigned short type,
3191 				  const void *daddr, const void *saddr,
3192 				  unsigned int len)
3193 {
3194 	if (!dev->header_ops || !dev->header_ops->create)
3195 		return 0;
3196 
3197 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3198 }
3199 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3200 static inline int dev_parse_header(const struct sk_buff *skb,
3201 				   unsigned char *haddr)
3202 {
3203 	const struct net_device *dev = skb->dev;
3204 
3205 	if (!dev->header_ops || !dev->header_ops->parse)
3206 		return 0;
3207 	return dev->header_ops->parse(skb, haddr);
3208 }
3209 
dev_parse_header_protocol(const struct sk_buff * skb)3210 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3211 {
3212 	const struct net_device *dev = skb->dev;
3213 
3214 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3215 		return 0;
3216 	return dev->header_ops->parse_protocol(skb);
3217 }
3218 
3219 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3220 static inline bool dev_validate_header(const struct net_device *dev,
3221 				       char *ll_header, int len)
3222 {
3223 	if (likely(len >= dev->hard_header_len))
3224 		return true;
3225 	if (len < dev->min_header_len)
3226 		return false;
3227 
3228 	if (capable(CAP_SYS_RAWIO)) {
3229 		memset(ll_header + len, 0, dev->hard_header_len - len);
3230 		return true;
3231 	}
3232 
3233 	if (dev->header_ops && dev->header_ops->validate)
3234 		return dev->header_ops->validate(ll_header, len);
3235 
3236 	return false;
3237 }
3238 
dev_has_header(const struct net_device * dev)3239 static inline bool dev_has_header(const struct net_device *dev)
3240 {
3241 	return dev->header_ops && dev->header_ops->create;
3242 }
3243 
3244 /*
3245  * Incoming packets are placed on per-CPU queues
3246  */
3247 struct softnet_data {
3248 	struct list_head	poll_list;
3249 	struct sk_buff_head	process_queue;
3250 
3251 	/* stats */
3252 	unsigned int		processed;
3253 	unsigned int		time_squeeze;
3254 #ifdef CONFIG_RPS
3255 	struct softnet_data	*rps_ipi_list;
3256 #endif
3257 
3258 	bool			in_net_rx_action;
3259 	bool			in_napi_threaded_poll;
3260 
3261 #ifdef CONFIG_NET_FLOW_LIMIT
3262 	struct sd_flow_limit __rcu *flow_limit;
3263 #endif
3264 	struct Qdisc		*output_queue;
3265 	struct Qdisc		**output_queue_tailp;
3266 	struct sk_buff		*completion_queue;
3267 #ifdef CONFIG_XFRM_OFFLOAD
3268 	struct sk_buff_head	xfrm_backlog;
3269 #endif
3270 	/* written and read only by owning cpu: */
3271 	struct {
3272 		u16 recursion;
3273 		u8  more;
3274 #ifdef CONFIG_NET_EGRESS
3275 		u8  skip_txqueue;
3276 #endif
3277 	} xmit;
3278 #ifdef CONFIG_RPS
3279 	/* input_queue_head should be written by cpu owning this struct,
3280 	 * and only read by other cpus. Worth using a cache line.
3281 	 */
3282 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3283 
3284 	/* Elements below can be accessed between CPUs for RPS/RFS */
3285 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3286 	struct softnet_data	*rps_ipi_next;
3287 	unsigned int		cpu;
3288 	unsigned int		input_queue_tail;
3289 #endif
3290 	unsigned int		received_rps;
3291 	unsigned int		dropped;
3292 	struct sk_buff_head	input_pkt_queue;
3293 	struct napi_struct	backlog;
3294 
3295 	/* Another possibly contended cache line */
3296 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3297 	int			defer_count;
3298 	int			defer_ipi_scheduled;
3299 	struct sk_buff		*defer_list;
3300 	call_single_data_t	defer_csd;
3301 };
3302 
input_queue_head_incr(struct softnet_data * sd)3303 static inline void input_queue_head_incr(struct softnet_data *sd)
3304 {
3305 #ifdef CONFIG_RPS
3306 	sd->input_queue_head++;
3307 #endif
3308 }
3309 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3310 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3311 					      unsigned int *qtail)
3312 {
3313 #ifdef CONFIG_RPS
3314 	*qtail = ++sd->input_queue_tail;
3315 #endif
3316 }
3317 
3318 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3319 
dev_recursion_level(void)3320 static inline int dev_recursion_level(void)
3321 {
3322 	return this_cpu_read(softnet_data.xmit.recursion);
3323 }
3324 
3325 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3326 static inline bool dev_xmit_recursion(void)
3327 {
3328 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3329 			XMIT_RECURSION_LIMIT);
3330 }
3331 
dev_xmit_recursion_inc(void)3332 static inline void dev_xmit_recursion_inc(void)
3333 {
3334 	__this_cpu_inc(softnet_data.xmit.recursion);
3335 }
3336 
dev_xmit_recursion_dec(void)3337 static inline void dev_xmit_recursion_dec(void)
3338 {
3339 	__this_cpu_dec(softnet_data.xmit.recursion);
3340 }
3341 
3342 void __netif_schedule(struct Qdisc *q);
3343 void netif_schedule_queue(struct netdev_queue *txq);
3344 
netif_tx_schedule_all(struct net_device * dev)3345 static inline void netif_tx_schedule_all(struct net_device *dev)
3346 {
3347 	unsigned int i;
3348 
3349 	for (i = 0; i < dev->num_tx_queues; i++)
3350 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3351 }
3352 
netif_tx_start_queue(struct netdev_queue * dev_queue)3353 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3354 {
3355 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3356 }
3357 
3358 /**
3359  *	netif_start_queue - allow transmit
3360  *	@dev: network device
3361  *
3362  *	Allow upper layers to call the device hard_start_xmit routine.
3363  */
netif_start_queue(struct net_device * dev)3364 static inline void netif_start_queue(struct net_device *dev)
3365 {
3366 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3367 }
3368 
netif_tx_start_all_queues(struct net_device * dev)3369 static inline void netif_tx_start_all_queues(struct net_device *dev)
3370 {
3371 	unsigned int i;
3372 
3373 	for (i = 0; i < dev->num_tx_queues; i++) {
3374 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3375 		netif_tx_start_queue(txq);
3376 	}
3377 }
3378 
3379 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3380 
3381 /**
3382  *	netif_wake_queue - restart transmit
3383  *	@dev: network device
3384  *
3385  *	Allow upper layers to call the device hard_start_xmit routine.
3386  *	Used for flow control when transmit resources are available.
3387  */
netif_wake_queue(struct net_device * dev)3388 static inline void netif_wake_queue(struct net_device *dev)
3389 {
3390 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3391 }
3392 
netif_tx_wake_all_queues(struct net_device * dev)3393 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3394 {
3395 	unsigned int i;
3396 
3397 	for (i = 0; i < dev->num_tx_queues; i++) {
3398 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3399 		netif_tx_wake_queue(txq);
3400 	}
3401 }
3402 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3403 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3404 {
3405 	/* Must be an atomic op see netif_txq_try_stop() */
3406 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3407 }
3408 
3409 /**
3410  *	netif_stop_queue - stop transmitted packets
3411  *	@dev: network device
3412  *
3413  *	Stop upper layers calling the device hard_start_xmit routine.
3414  *	Used for flow control when transmit resources are unavailable.
3415  */
netif_stop_queue(struct net_device * dev)3416 static inline void netif_stop_queue(struct net_device *dev)
3417 {
3418 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3419 }
3420 
3421 void netif_tx_stop_all_queues(struct net_device *dev);
3422 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3423 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3424 {
3425 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3426 }
3427 
3428 /**
3429  *	netif_queue_stopped - test if transmit queue is flowblocked
3430  *	@dev: network device
3431  *
3432  *	Test if transmit queue on device is currently unable to send.
3433  */
netif_queue_stopped(const struct net_device * dev)3434 static inline bool netif_queue_stopped(const struct net_device *dev)
3435 {
3436 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3437 }
3438 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3439 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3440 {
3441 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3442 }
3443 
3444 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3445 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3446 {
3447 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3448 }
3449 
3450 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3451 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3452 {
3453 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3454 }
3455 
3456 /**
3457  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3458  *	@dev_queue: pointer to transmit queue
3459  *	@min_limit: dql minimum limit
3460  *
3461  * Forces xmit_more() to return true until the minimum threshold
3462  * defined by @min_limit is reached (or until the tx queue is
3463  * empty). Warning: to be use with care, misuse will impact the
3464  * latency.
3465  */
netdev_queue_set_dql_min_limit(struct netdev_queue * dev_queue,unsigned int min_limit)3466 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3467 						  unsigned int min_limit)
3468 {
3469 #ifdef CONFIG_BQL
3470 	dev_queue->dql.min_limit = min_limit;
3471 #endif
3472 }
3473 
3474 /**
3475  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3476  *	@dev_queue: pointer to transmit queue
3477  *
3478  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3479  * to give appropriate hint to the CPU.
3480  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3481 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3482 {
3483 #ifdef CONFIG_BQL
3484 	prefetchw(&dev_queue->dql.num_queued);
3485 #endif
3486 }
3487 
3488 /**
3489  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3490  *	@dev_queue: pointer to transmit queue
3491  *
3492  * BQL enabled drivers might use this helper in their TX completion path,
3493  * to give appropriate hint to the CPU.
3494  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3495 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3496 {
3497 #ifdef CONFIG_BQL
3498 	prefetchw(&dev_queue->dql.limit);
3499 #endif
3500 }
3501 
3502 /**
3503  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3504  *	@dev_queue: network device queue
3505  *	@bytes: number of bytes queued to the device queue
3506  *
3507  *	Report the number of bytes queued for sending/completion to the network
3508  *	device hardware queue. @bytes should be a good approximation and should
3509  *	exactly match netdev_completed_queue() @bytes.
3510  *	This is typically called once per packet, from ndo_start_xmit().
3511  */
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3512 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3513 					unsigned int bytes)
3514 {
3515 #ifdef CONFIG_BQL
3516 	dql_queued(&dev_queue->dql, bytes);
3517 
3518 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3519 		return;
3520 
3521 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3522 
3523 	/*
3524 	 * The XOFF flag must be set before checking the dql_avail below,
3525 	 * because in netdev_tx_completed_queue we update the dql_completed
3526 	 * before checking the XOFF flag.
3527 	 */
3528 	smp_mb();
3529 
3530 	/* check again in case another CPU has just made room avail */
3531 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3532 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3533 #endif
3534 }
3535 
3536 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3537  * that they should not test BQL status themselves.
3538  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3539  * skb of a batch.
3540  * Returns true if the doorbell must be used to kick the NIC.
3541  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3542 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3543 					  unsigned int bytes,
3544 					  bool xmit_more)
3545 {
3546 	if (xmit_more) {
3547 #ifdef CONFIG_BQL
3548 		dql_queued(&dev_queue->dql, bytes);
3549 #endif
3550 		return netif_tx_queue_stopped(dev_queue);
3551 	}
3552 	netdev_tx_sent_queue(dev_queue, bytes);
3553 	return true;
3554 }
3555 
3556 /**
3557  *	netdev_sent_queue - report the number of bytes queued to hardware
3558  *	@dev: network device
3559  *	@bytes: number of bytes queued to the hardware device queue
3560  *
3561  *	Report the number of bytes queued for sending/completion to the network
3562  *	device hardware queue#0. @bytes should be a good approximation and should
3563  *	exactly match netdev_completed_queue() @bytes.
3564  *	This is typically called once per packet, from ndo_start_xmit().
3565  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3566 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3567 {
3568 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3569 }
3570 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3571 static inline bool __netdev_sent_queue(struct net_device *dev,
3572 				       unsigned int bytes,
3573 				       bool xmit_more)
3574 {
3575 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3576 				      xmit_more);
3577 }
3578 
3579 /**
3580  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3581  *	@dev_queue: network device queue
3582  *	@pkts: number of packets (currently ignored)
3583  *	@bytes: number of bytes dequeued from the device queue
3584  *
3585  *	Must be called at most once per TX completion round (and not per
3586  *	individual packet), so that BQL can adjust its limits appropriately.
3587  */
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3588 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3589 					     unsigned int pkts, unsigned int bytes)
3590 {
3591 #ifdef CONFIG_BQL
3592 	if (unlikely(!bytes))
3593 		return;
3594 
3595 	dql_completed(&dev_queue->dql, bytes);
3596 
3597 	/*
3598 	 * Without the memory barrier there is a small possiblity that
3599 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3600 	 * be stopped forever
3601 	 */
3602 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3603 
3604 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3605 		return;
3606 
3607 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3608 		netif_schedule_queue(dev_queue);
3609 #endif
3610 }
3611 
3612 /**
3613  * 	netdev_completed_queue - report bytes and packets completed by device
3614  * 	@dev: network device
3615  * 	@pkts: actual number of packets sent over the medium
3616  * 	@bytes: actual number of bytes sent over the medium
3617  *
3618  * 	Report the number of bytes and packets transmitted by the network device
3619  * 	hardware queue over the physical medium, @bytes must exactly match the
3620  * 	@bytes amount passed to netdev_sent_queue()
3621  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3622 static inline void netdev_completed_queue(struct net_device *dev,
3623 					  unsigned int pkts, unsigned int bytes)
3624 {
3625 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3626 }
3627 
netdev_tx_reset_queue(struct netdev_queue * q)3628 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3629 {
3630 #ifdef CONFIG_BQL
3631 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3632 	dql_reset(&q->dql);
3633 #endif
3634 }
3635 
3636 /**
3637  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3638  * 	@dev_queue: network device
3639  *
3640  * 	Reset the bytes and packet count of a network device and clear the
3641  * 	software flow control OFF bit for this network device
3642  */
netdev_reset_queue(struct net_device * dev_queue)3643 static inline void netdev_reset_queue(struct net_device *dev_queue)
3644 {
3645 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3646 }
3647 
3648 /**
3649  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3650  * 	@dev: network device
3651  * 	@queue_index: given tx queue index
3652  *
3653  * 	Returns 0 if given tx queue index >= number of device tx queues,
3654  * 	otherwise returns the originally passed tx queue index.
3655  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3656 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3657 {
3658 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3659 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3660 				     dev->name, queue_index,
3661 				     dev->real_num_tx_queues);
3662 		return 0;
3663 	}
3664 
3665 	return queue_index;
3666 }
3667 
3668 /**
3669  *	netif_running - test if up
3670  *	@dev: network device
3671  *
3672  *	Test if the device has been brought up.
3673  */
netif_running(const struct net_device * dev)3674 static inline bool netif_running(const struct net_device *dev)
3675 {
3676 	return test_bit(__LINK_STATE_START, &dev->state);
3677 }
3678 
3679 /*
3680  * Routines to manage the subqueues on a device.  We only need start,
3681  * stop, and a check if it's stopped.  All other device management is
3682  * done at the overall netdevice level.
3683  * Also test the device if we're multiqueue.
3684  */
3685 
3686 /**
3687  *	netif_start_subqueue - allow sending packets on subqueue
3688  *	@dev: network device
3689  *	@queue_index: sub queue index
3690  *
3691  * Start individual transmit queue of a device with multiple transmit queues.
3692  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3693 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3694 {
3695 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3696 
3697 	netif_tx_start_queue(txq);
3698 }
3699 
3700 /**
3701  *	netif_stop_subqueue - stop sending packets on subqueue
3702  *	@dev: network device
3703  *	@queue_index: sub queue index
3704  *
3705  * Stop individual transmit queue of a device with multiple transmit queues.
3706  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3707 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3708 {
3709 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3710 	netif_tx_stop_queue(txq);
3711 }
3712 
3713 /**
3714  *	__netif_subqueue_stopped - test status of subqueue
3715  *	@dev: network device
3716  *	@queue_index: sub queue index
3717  *
3718  * Check individual transmit queue of a device with multiple transmit queues.
3719  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3720 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3721 					    u16 queue_index)
3722 {
3723 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3724 
3725 	return netif_tx_queue_stopped(txq);
3726 }
3727 
3728 /**
3729  *	netif_subqueue_stopped - test status of subqueue
3730  *	@dev: network device
3731  *	@skb: sub queue buffer pointer
3732  *
3733  * Check individual transmit queue of a device with multiple transmit queues.
3734  */
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3735 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3736 					  struct sk_buff *skb)
3737 {
3738 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3739 }
3740 
3741 /**
3742  *	netif_wake_subqueue - allow sending packets on subqueue
3743  *	@dev: network device
3744  *	@queue_index: sub queue index
3745  *
3746  * Resume individual transmit queue of a device with multiple transmit queues.
3747  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3748 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3749 {
3750 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3751 
3752 	netif_tx_wake_queue(txq);
3753 }
3754 
3755 #ifdef CONFIG_XPS
3756 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3757 			u16 index);
3758 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3759 			  u16 index, enum xps_map_type type);
3760 
3761 /**
3762  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3763  *	@j: CPU/Rx queue index
3764  *	@mask: bitmask of all cpus/rx queues
3765  *	@nr_bits: number of bits in the bitmask
3766  *
3767  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3768  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3769 static inline bool netif_attr_test_mask(unsigned long j,
3770 					const unsigned long *mask,
3771 					unsigned int nr_bits)
3772 {
3773 	cpu_max_bits_warn(j, nr_bits);
3774 	return test_bit(j, mask);
3775 }
3776 
3777 /**
3778  *	netif_attr_test_online - Test for online CPU/Rx queue
3779  *	@j: CPU/Rx queue index
3780  *	@online_mask: bitmask for CPUs/Rx queues that are online
3781  *	@nr_bits: number of bits in the bitmask
3782  *
3783  * Returns true if a CPU/Rx queue is online.
3784  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3785 static inline bool netif_attr_test_online(unsigned long j,
3786 					  const unsigned long *online_mask,
3787 					  unsigned int nr_bits)
3788 {
3789 	cpu_max_bits_warn(j, nr_bits);
3790 
3791 	if (online_mask)
3792 		return test_bit(j, online_mask);
3793 
3794 	return (j < nr_bits);
3795 }
3796 
3797 /**
3798  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3799  *	@n: CPU/Rx queue index
3800  *	@srcp: the cpumask/Rx queue mask pointer
3801  *	@nr_bits: number of bits in the bitmask
3802  *
3803  * Returns >= nr_bits if no further CPUs/Rx queues set.
3804  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3805 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3806 					       unsigned int nr_bits)
3807 {
3808 	/* -1 is a legal arg here. */
3809 	if (n != -1)
3810 		cpu_max_bits_warn(n, nr_bits);
3811 
3812 	if (srcp)
3813 		return find_next_bit(srcp, nr_bits, n + 1);
3814 
3815 	return n + 1;
3816 }
3817 
3818 /**
3819  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3820  *	@n: CPU/Rx queue index
3821  *	@src1p: the first CPUs/Rx queues mask pointer
3822  *	@src2p: the second CPUs/Rx queues mask pointer
3823  *	@nr_bits: number of bits in the bitmask
3824  *
3825  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3826  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3827 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3828 					  const unsigned long *src2p,
3829 					  unsigned int nr_bits)
3830 {
3831 	/* -1 is a legal arg here. */
3832 	if (n != -1)
3833 		cpu_max_bits_warn(n, nr_bits);
3834 
3835 	if (src1p && src2p)
3836 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3837 	else if (src1p)
3838 		return find_next_bit(src1p, nr_bits, n + 1);
3839 	else if (src2p)
3840 		return find_next_bit(src2p, nr_bits, n + 1);
3841 
3842 	return n + 1;
3843 }
3844 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3845 static inline int netif_set_xps_queue(struct net_device *dev,
3846 				      const struct cpumask *mask,
3847 				      u16 index)
3848 {
3849 	return 0;
3850 }
3851 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)3852 static inline int __netif_set_xps_queue(struct net_device *dev,
3853 					const unsigned long *mask,
3854 					u16 index, enum xps_map_type type)
3855 {
3856 	return 0;
3857 }
3858 #endif
3859 
3860 /**
3861  *	netif_is_multiqueue - test if device has multiple transmit queues
3862  *	@dev: network device
3863  *
3864  * Check if device has multiple transmit queues
3865  */
netif_is_multiqueue(const struct net_device * dev)3866 static inline bool netif_is_multiqueue(const struct net_device *dev)
3867 {
3868 	return dev->num_tx_queues > 1;
3869 }
3870 
3871 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3872 
3873 #ifdef CONFIG_SYSFS
3874 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3875 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3876 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3877 						unsigned int rxqs)
3878 {
3879 	dev->real_num_rx_queues = rxqs;
3880 	return 0;
3881 }
3882 #endif
3883 int netif_set_real_num_queues(struct net_device *dev,
3884 			      unsigned int txq, unsigned int rxq);
3885 
3886 int netif_get_num_default_rss_queues(void);
3887 
3888 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3889 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
3890 
3891 /*
3892  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3893  * interrupt context or with hardware interrupts being disabled.
3894  * (in_hardirq() || irqs_disabled())
3895  *
3896  * We provide four helpers that can be used in following contexts :
3897  *
3898  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3899  *  replacing kfree_skb(skb)
3900  *
3901  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3902  *  Typically used in place of consume_skb(skb) in TX completion path
3903  *
3904  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3905  *  replacing kfree_skb(skb)
3906  *
3907  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3908  *  and consumed a packet. Used in place of consume_skb(skb)
3909  */
dev_kfree_skb_irq(struct sk_buff * skb)3910 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3911 {
3912 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3913 }
3914 
dev_consume_skb_irq(struct sk_buff * skb)3915 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3916 {
3917 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
3918 }
3919 
dev_kfree_skb_any(struct sk_buff * skb)3920 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3921 {
3922 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
3923 }
3924 
dev_consume_skb_any(struct sk_buff * skb)3925 static inline void dev_consume_skb_any(struct sk_buff *skb)
3926 {
3927 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
3928 }
3929 
3930 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3931 			     struct bpf_prog *xdp_prog);
3932 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3933 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3934 int netif_rx(struct sk_buff *skb);
3935 int __netif_rx(struct sk_buff *skb);
3936 
3937 int netif_receive_skb(struct sk_buff *skb);
3938 int netif_receive_skb_core(struct sk_buff *skb);
3939 void netif_receive_skb_list_internal(struct list_head *head);
3940 void netif_receive_skb_list(struct list_head *head);
3941 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3942 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3943 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3944 void napi_get_frags_check(struct napi_struct *napi);
3945 gro_result_t napi_gro_frags(struct napi_struct *napi);
3946 struct packet_offload *gro_find_receive_by_type(__be16 type);
3947 struct packet_offload *gro_find_complete_by_type(__be16 type);
3948 
napi_free_frags(struct napi_struct * napi)3949 static inline void napi_free_frags(struct napi_struct *napi)
3950 {
3951 	kfree_skb(napi->skb);
3952 	napi->skb = NULL;
3953 }
3954 
3955 bool netdev_is_rx_handler_busy(struct net_device *dev);
3956 int netdev_rx_handler_register(struct net_device *dev,
3957 			       rx_handler_func_t *rx_handler,
3958 			       void *rx_handler_data);
3959 void netdev_rx_handler_unregister(struct net_device *dev);
3960 
3961 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3962 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3963 {
3964 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3965 }
3966 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3967 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3968 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3969 		void __user *data, bool *need_copyout);
3970 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3971 int generic_hwtstamp_get_lower(struct net_device *dev,
3972 			       struct kernel_hwtstamp_config *kernel_cfg);
3973 int generic_hwtstamp_set_lower(struct net_device *dev,
3974 			       struct kernel_hwtstamp_config *kernel_cfg,
3975 			       struct netlink_ext_ack *extack);
3976 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3977 unsigned int dev_get_flags(const struct net_device *);
3978 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3979 		       struct netlink_ext_ack *extack);
3980 int dev_change_flags(struct net_device *dev, unsigned int flags,
3981 		     struct netlink_ext_ack *extack);
3982 int dev_set_alias(struct net_device *, const char *, size_t);
3983 int dev_get_alias(const struct net_device *, char *, size_t);
3984 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3985 			       const char *pat, int new_ifindex);
3986 static inline
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)3987 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3988 			     const char *pat)
3989 {
3990 	return __dev_change_net_namespace(dev, net, pat, 0);
3991 }
3992 int __dev_set_mtu(struct net_device *, int);
3993 int dev_set_mtu(struct net_device *, int);
3994 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3995 			      struct netlink_ext_ack *extack);
3996 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3997 			struct netlink_ext_ack *extack);
3998 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3999 			     struct netlink_ext_ack *extack);
4000 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4001 int dev_get_port_parent_id(struct net_device *dev,
4002 			   struct netdev_phys_item_id *ppid, bool recurse);
4003 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4004 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4005 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4006 				    struct netdev_queue *txq, int *ret);
4007 
4008 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4009 u8 dev_xdp_prog_count(struct net_device *dev);
4010 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4011 
4012 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4013 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4014 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4015 bool is_skb_forwardable(const struct net_device *dev,
4016 			const struct sk_buff *skb);
4017 
__is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb,const bool check_mtu)4018 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4019 						 const struct sk_buff *skb,
4020 						 const bool check_mtu)
4021 {
4022 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4023 	unsigned int len;
4024 
4025 	if (!(dev->flags & IFF_UP))
4026 		return false;
4027 
4028 	if (!check_mtu)
4029 		return true;
4030 
4031 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4032 	if (skb->len <= len)
4033 		return true;
4034 
4035 	/* if TSO is enabled, we don't care about the length as the packet
4036 	 * could be forwarded without being segmented before
4037 	 */
4038 	if (skb_is_gso(skb))
4039 		return true;
4040 
4041 	return false;
4042 }
4043 
4044 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
4045 
dev_core_stats(struct net_device * dev)4046 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
4047 {
4048 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
4049 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
4050 
4051 	if (likely(p))
4052 		return p;
4053 
4054 	return netdev_core_stats_alloc(dev);
4055 }
4056 
4057 #define DEV_CORE_STATS_INC(FIELD)						\
4058 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4059 {										\
4060 	struct net_device_core_stats __percpu *p;				\
4061 										\
4062 	p = dev_core_stats(dev);						\
4063 	if (p)									\
4064 		this_cpu_inc(p->FIELD);						\
4065 }
4066 DEV_CORE_STATS_INC(rx_dropped)
DEV_CORE_STATS_INC(tx_dropped)4067 DEV_CORE_STATS_INC(tx_dropped)
4068 DEV_CORE_STATS_INC(rx_nohandler)
4069 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4070 
4071 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4072 					       struct sk_buff *skb,
4073 					       const bool check_mtu)
4074 {
4075 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4076 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4077 		dev_core_stats_rx_dropped_inc(dev);
4078 		kfree_skb(skb);
4079 		return NET_RX_DROP;
4080 	}
4081 
4082 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4083 	skb->priority = 0;
4084 	return 0;
4085 }
4086 
4087 bool dev_nit_active(struct net_device *dev);
4088 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4089 
__dev_put(struct net_device * dev)4090 static inline void __dev_put(struct net_device *dev)
4091 {
4092 	if (dev) {
4093 #ifdef CONFIG_PCPU_DEV_REFCNT
4094 		this_cpu_dec(*dev->pcpu_refcnt);
4095 #else
4096 		refcount_dec(&dev->dev_refcnt);
4097 #endif
4098 	}
4099 }
4100 
__dev_hold(struct net_device * dev)4101 static inline void __dev_hold(struct net_device *dev)
4102 {
4103 	if (dev) {
4104 #ifdef CONFIG_PCPU_DEV_REFCNT
4105 		this_cpu_inc(*dev->pcpu_refcnt);
4106 #else
4107 		refcount_inc(&dev->dev_refcnt);
4108 #endif
4109 	}
4110 }
4111 
__netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4112 static inline void __netdev_tracker_alloc(struct net_device *dev,
4113 					  netdevice_tracker *tracker,
4114 					  gfp_t gfp)
4115 {
4116 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4117 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4118 #endif
4119 }
4120 
4121 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4122  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4123  */
netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4124 static inline void netdev_tracker_alloc(struct net_device *dev,
4125 					netdevice_tracker *tracker, gfp_t gfp)
4126 {
4127 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4128 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4129 	__netdev_tracker_alloc(dev, tracker, gfp);
4130 #endif
4131 }
4132 
netdev_tracker_free(struct net_device * dev,netdevice_tracker * tracker)4133 static inline void netdev_tracker_free(struct net_device *dev,
4134 				       netdevice_tracker *tracker)
4135 {
4136 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4137 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4138 #endif
4139 }
4140 
netdev_hold(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4141 static inline void netdev_hold(struct net_device *dev,
4142 			       netdevice_tracker *tracker, gfp_t gfp)
4143 {
4144 	if (dev) {
4145 		__dev_hold(dev);
4146 		__netdev_tracker_alloc(dev, tracker, gfp);
4147 	}
4148 }
4149 
netdev_put(struct net_device * dev,netdevice_tracker * tracker)4150 static inline void netdev_put(struct net_device *dev,
4151 			      netdevice_tracker *tracker)
4152 {
4153 	if (dev) {
4154 		netdev_tracker_free(dev, tracker);
4155 		__dev_put(dev);
4156 	}
4157 }
4158 
4159 /**
4160  *	dev_hold - get reference to device
4161  *	@dev: network device
4162  *
4163  * Hold reference to device to keep it from being freed.
4164  * Try using netdev_hold() instead.
4165  */
dev_hold(struct net_device * dev)4166 static inline void dev_hold(struct net_device *dev)
4167 {
4168 	netdev_hold(dev, NULL, GFP_ATOMIC);
4169 }
4170 
4171 /**
4172  *	dev_put - release reference to device
4173  *	@dev: network device
4174  *
4175  * Release reference to device to allow it to be freed.
4176  * Try using netdev_put() instead.
4177  */
dev_put(struct net_device * dev)4178 static inline void dev_put(struct net_device *dev)
4179 {
4180 	netdev_put(dev, NULL);
4181 }
4182 
netdev_ref_replace(struct net_device * odev,struct net_device * ndev,netdevice_tracker * tracker,gfp_t gfp)4183 static inline void netdev_ref_replace(struct net_device *odev,
4184 				      struct net_device *ndev,
4185 				      netdevice_tracker *tracker,
4186 				      gfp_t gfp)
4187 {
4188 	if (odev)
4189 		netdev_tracker_free(odev, tracker);
4190 
4191 	__dev_hold(ndev);
4192 	__dev_put(odev);
4193 
4194 	if (ndev)
4195 		__netdev_tracker_alloc(ndev, tracker, gfp);
4196 }
4197 
4198 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4199  * and _off may be called from IRQ context, but it is caller
4200  * who is responsible for serialization of these calls.
4201  *
4202  * The name carrier is inappropriate, these functions should really be
4203  * called netif_lowerlayer_*() because they represent the state of any
4204  * kind of lower layer not just hardware media.
4205  */
4206 void linkwatch_fire_event(struct net_device *dev);
4207 
4208 /**
4209  *	netif_carrier_ok - test if carrier present
4210  *	@dev: network device
4211  *
4212  * Check if carrier is present on device
4213  */
netif_carrier_ok(const struct net_device * dev)4214 static inline bool netif_carrier_ok(const struct net_device *dev)
4215 {
4216 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4217 }
4218 
4219 unsigned long dev_trans_start(struct net_device *dev);
4220 
4221 void __netdev_watchdog_up(struct net_device *dev);
4222 
4223 void netif_carrier_on(struct net_device *dev);
4224 void netif_carrier_off(struct net_device *dev);
4225 void netif_carrier_event(struct net_device *dev);
4226 
4227 /**
4228  *	netif_dormant_on - mark device as dormant.
4229  *	@dev: network device
4230  *
4231  * Mark device as dormant (as per RFC2863).
4232  *
4233  * The dormant state indicates that the relevant interface is not
4234  * actually in a condition to pass packets (i.e., it is not 'up') but is
4235  * in a "pending" state, waiting for some external event.  For "on-
4236  * demand" interfaces, this new state identifies the situation where the
4237  * interface is waiting for events to place it in the up state.
4238  */
netif_dormant_on(struct net_device * dev)4239 static inline void netif_dormant_on(struct net_device *dev)
4240 {
4241 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4242 		linkwatch_fire_event(dev);
4243 }
4244 
4245 /**
4246  *	netif_dormant_off - set device as not dormant.
4247  *	@dev: network device
4248  *
4249  * Device is not in dormant state.
4250  */
netif_dormant_off(struct net_device * dev)4251 static inline void netif_dormant_off(struct net_device *dev)
4252 {
4253 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4254 		linkwatch_fire_event(dev);
4255 }
4256 
4257 /**
4258  *	netif_dormant - test if device is dormant
4259  *	@dev: network device
4260  *
4261  * Check if device is dormant.
4262  */
netif_dormant(const struct net_device * dev)4263 static inline bool netif_dormant(const struct net_device *dev)
4264 {
4265 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4266 }
4267 
4268 
4269 /**
4270  *	netif_testing_on - mark device as under test.
4271  *	@dev: network device
4272  *
4273  * Mark device as under test (as per RFC2863).
4274  *
4275  * The testing state indicates that some test(s) must be performed on
4276  * the interface. After completion, of the test, the interface state
4277  * will change to up, dormant, or down, as appropriate.
4278  */
netif_testing_on(struct net_device * dev)4279 static inline void netif_testing_on(struct net_device *dev)
4280 {
4281 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4282 		linkwatch_fire_event(dev);
4283 }
4284 
4285 /**
4286  *	netif_testing_off - set device as not under test.
4287  *	@dev: network device
4288  *
4289  * Device is not in testing state.
4290  */
netif_testing_off(struct net_device * dev)4291 static inline void netif_testing_off(struct net_device *dev)
4292 {
4293 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4294 		linkwatch_fire_event(dev);
4295 }
4296 
4297 /**
4298  *	netif_testing - test if device is under test
4299  *	@dev: network device
4300  *
4301  * Check if device is under test
4302  */
netif_testing(const struct net_device * dev)4303 static inline bool netif_testing(const struct net_device *dev)
4304 {
4305 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4306 }
4307 
4308 
4309 /**
4310  *	netif_oper_up - test if device is operational
4311  *	@dev: network device
4312  *
4313  * Check if carrier is operational
4314  */
netif_oper_up(const struct net_device * dev)4315 static inline bool netif_oper_up(const struct net_device *dev)
4316 {
4317 	return (dev->operstate == IF_OPER_UP ||
4318 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4319 }
4320 
4321 /**
4322  *	netif_device_present - is device available or removed
4323  *	@dev: network device
4324  *
4325  * Check if device has not been removed from system.
4326  */
netif_device_present(const struct net_device * dev)4327 static inline bool netif_device_present(const struct net_device *dev)
4328 {
4329 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4330 }
4331 
4332 void netif_device_detach(struct net_device *dev);
4333 
4334 void netif_device_attach(struct net_device *dev);
4335 
4336 /*
4337  * Network interface message level settings
4338  */
4339 
4340 enum {
4341 	NETIF_MSG_DRV_BIT,
4342 	NETIF_MSG_PROBE_BIT,
4343 	NETIF_MSG_LINK_BIT,
4344 	NETIF_MSG_TIMER_BIT,
4345 	NETIF_MSG_IFDOWN_BIT,
4346 	NETIF_MSG_IFUP_BIT,
4347 	NETIF_MSG_RX_ERR_BIT,
4348 	NETIF_MSG_TX_ERR_BIT,
4349 	NETIF_MSG_TX_QUEUED_BIT,
4350 	NETIF_MSG_INTR_BIT,
4351 	NETIF_MSG_TX_DONE_BIT,
4352 	NETIF_MSG_RX_STATUS_BIT,
4353 	NETIF_MSG_PKTDATA_BIT,
4354 	NETIF_MSG_HW_BIT,
4355 	NETIF_MSG_WOL_BIT,
4356 
4357 	/* When you add a new bit above, update netif_msg_class_names array
4358 	 * in net/ethtool/common.c
4359 	 */
4360 	NETIF_MSG_CLASS_COUNT,
4361 };
4362 /* Both ethtool_ops interface and internal driver implementation use u32 */
4363 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4364 
4365 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4366 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4367 
4368 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4369 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4370 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4371 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4372 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4373 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4374 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4375 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4376 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4377 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4378 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4379 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4380 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4381 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4382 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4383 
4384 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4385 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4386 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4387 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4388 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4389 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4390 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4391 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4392 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4393 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4394 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4395 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4396 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4397 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4398 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4399 
netif_msg_init(int debug_value,int default_msg_enable_bits)4400 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4401 {
4402 	/* use default */
4403 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4404 		return default_msg_enable_bits;
4405 	if (debug_value == 0)	/* no output */
4406 		return 0;
4407 	/* set low N bits */
4408 	return (1U << debug_value) - 1;
4409 }
4410 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4411 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4412 {
4413 	spin_lock(&txq->_xmit_lock);
4414 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4415 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4416 }
4417 
__netif_tx_acquire(struct netdev_queue * txq)4418 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4419 {
4420 	__acquire(&txq->_xmit_lock);
4421 	return true;
4422 }
4423 
__netif_tx_release(struct netdev_queue * txq)4424 static inline void __netif_tx_release(struct netdev_queue *txq)
4425 {
4426 	__release(&txq->_xmit_lock);
4427 }
4428 
__netif_tx_lock_bh(struct netdev_queue * txq)4429 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4430 {
4431 	spin_lock_bh(&txq->_xmit_lock);
4432 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4433 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4434 }
4435 
__netif_tx_trylock(struct netdev_queue * txq)4436 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4437 {
4438 	bool ok = spin_trylock(&txq->_xmit_lock);
4439 
4440 	if (likely(ok)) {
4441 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4442 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4443 	}
4444 	return ok;
4445 }
4446 
__netif_tx_unlock(struct netdev_queue * txq)4447 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4448 {
4449 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4450 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4451 	spin_unlock(&txq->_xmit_lock);
4452 }
4453 
__netif_tx_unlock_bh(struct netdev_queue * txq)4454 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4455 {
4456 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4457 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4458 	spin_unlock_bh(&txq->_xmit_lock);
4459 }
4460 
4461 /*
4462  * txq->trans_start can be read locklessly from dev_watchdog()
4463  */
txq_trans_update(struct netdev_queue * txq)4464 static inline void txq_trans_update(struct netdev_queue *txq)
4465 {
4466 	if (txq->xmit_lock_owner != -1)
4467 		WRITE_ONCE(txq->trans_start, jiffies);
4468 }
4469 
txq_trans_cond_update(struct netdev_queue * txq)4470 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4471 {
4472 	unsigned long now = jiffies;
4473 
4474 	if (READ_ONCE(txq->trans_start) != now)
4475 		WRITE_ONCE(txq->trans_start, now);
4476 }
4477 
4478 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4479 static inline void netif_trans_update(struct net_device *dev)
4480 {
4481 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4482 
4483 	txq_trans_cond_update(txq);
4484 }
4485 
4486 /**
4487  *	netif_tx_lock - grab network device transmit lock
4488  *	@dev: network device
4489  *
4490  * Get network device transmit lock
4491  */
4492 void netif_tx_lock(struct net_device *dev);
4493 
netif_tx_lock_bh(struct net_device * dev)4494 static inline void netif_tx_lock_bh(struct net_device *dev)
4495 {
4496 	local_bh_disable();
4497 	netif_tx_lock(dev);
4498 }
4499 
4500 void netif_tx_unlock(struct net_device *dev);
4501 
netif_tx_unlock_bh(struct net_device * dev)4502 static inline void netif_tx_unlock_bh(struct net_device *dev)
4503 {
4504 	netif_tx_unlock(dev);
4505 	local_bh_enable();
4506 }
4507 
4508 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4509 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4510 		__netif_tx_lock(txq, cpu);		\
4511 	} else {					\
4512 		__netif_tx_acquire(txq);		\
4513 	}						\
4514 }
4515 
4516 #define HARD_TX_TRYLOCK(dev, txq)			\
4517 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4518 		__netif_tx_trylock(txq) :		\
4519 		__netif_tx_acquire(txq))
4520 
4521 #define HARD_TX_UNLOCK(dev, txq) {			\
4522 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4523 		__netif_tx_unlock(txq);			\
4524 	} else {					\
4525 		__netif_tx_release(txq);		\
4526 	}						\
4527 }
4528 
netif_tx_disable(struct net_device * dev)4529 static inline void netif_tx_disable(struct net_device *dev)
4530 {
4531 	unsigned int i;
4532 	int cpu;
4533 
4534 	local_bh_disable();
4535 	cpu = smp_processor_id();
4536 	spin_lock(&dev->tx_global_lock);
4537 	for (i = 0; i < dev->num_tx_queues; i++) {
4538 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4539 
4540 		__netif_tx_lock(txq, cpu);
4541 		netif_tx_stop_queue(txq);
4542 		__netif_tx_unlock(txq);
4543 	}
4544 	spin_unlock(&dev->tx_global_lock);
4545 	local_bh_enable();
4546 }
4547 
netif_addr_lock(struct net_device * dev)4548 static inline void netif_addr_lock(struct net_device *dev)
4549 {
4550 	unsigned char nest_level = 0;
4551 
4552 #ifdef CONFIG_LOCKDEP
4553 	nest_level = dev->nested_level;
4554 #endif
4555 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4556 }
4557 
netif_addr_lock_bh(struct net_device * dev)4558 static inline void netif_addr_lock_bh(struct net_device *dev)
4559 {
4560 	unsigned char nest_level = 0;
4561 
4562 #ifdef CONFIG_LOCKDEP
4563 	nest_level = dev->nested_level;
4564 #endif
4565 	local_bh_disable();
4566 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4567 }
4568 
netif_addr_unlock(struct net_device * dev)4569 static inline void netif_addr_unlock(struct net_device *dev)
4570 {
4571 	spin_unlock(&dev->addr_list_lock);
4572 }
4573 
netif_addr_unlock_bh(struct net_device * dev)4574 static inline void netif_addr_unlock_bh(struct net_device *dev)
4575 {
4576 	spin_unlock_bh(&dev->addr_list_lock);
4577 }
4578 
4579 /*
4580  * dev_addrs walker. Should be used only for read access. Call with
4581  * rcu_read_lock held.
4582  */
4583 #define for_each_dev_addr(dev, ha) \
4584 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4585 
4586 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4587 
4588 void ether_setup(struct net_device *dev);
4589 
4590 /* Support for loadable net-drivers */
4591 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4592 				    unsigned char name_assign_type,
4593 				    void (*setup)(struct net_device *),
4594 				    unsigned int txqs, unsigned int rxqs);
4595 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4596 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4597 
4598 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4599 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4600 			 count)
4601 
4602 int register_netdev(struct net_device *dev);
4603 void unregister_netdev(struct net_device *dev);
4604 
4605 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4606 
4607 /* General hardware address lists handling functions */
4608 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4609 		   struct netdev_hw_addr_list *from_list, int addr_len);
4610 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4611 		      struct netdev_hw_addr_list *from_list, int addr_len);
4612 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4613 		       struct net_device *dev,
4614 		       int (*sync)(struct net_device *, const unsigned char *),
4615 		       int (*unsync)(struct net_device *,
4616 				     const unsigned char *));
4617 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4618 			   struct net_device *dev,
4619 			   int (*sync)(struct net_device *,
4620 				       const unsigned char *, int),
4621 			   int (*unsync)(struct net_device *,
4622 					 const unsigned char *, int));
4623 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4624 			      struct net_device *dev,
4625 			      int (*unsync)(struct net_device *,
4626 					    const unsigned char *, int));
4627 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4628 			  struct net_device *dev,
4629 			  int (*unsync)(struct net_device *,
4630 					const unsigned char *));
4631 void __hw_addr_init(struct netdev_hw_addr_list *list);
4632 
4633 /* Functions used for device addresses handling */
4634 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4635 		  const void *addr, size_t len);
4636 
4637 static inline void
__dev_addr_set(struct net_device * dev,const void * addr,size_t len)4638 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4639 {
4640 	dev_addr_mod(dev, 0, addr, len);
4641 }
4642 
dev_addr_set(struct net_device * dev,const u8 * addr)4643 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4644 {
4645 	__dev_addr_set(dev, addr, dev->addr_len);
4646 }
4647 
4648 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4649 		 unsigned char addr_type);
4650 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4651 		 unsigned char addr_type);
4652 
4653 /* Functions used for unicast addresses handling */
4654 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4655 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4656 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4657 int dev_uc_sync(struct net_device *to, struct net_device *from);
4658 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4659 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4660 void dev_uc_flush(struct net_device *dev);
4661 void dev_uc_init(struct net_device *dev);
4662 
4663 /**
4664  *  __dev_uc_sync - Synchonize device's unicast list
4665  *  @dev:  device to sync
4666  *  @sync: function to call if address should be added
4667  *  @unsync: function to call if address should be removed
4668  *
4669  *  Add newly added addresses to the interface, and release
4670  *  addresses that have been deleted.
4671  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4672 static inline int __dev_uc_sync(struct net_device *dev,
4673 				int (*sync)(struct net_device *,
4674 					    const unsigned char *),
4675 				int (*unsync)(struct net_device *,
4676 					      const unsigned char *))
4677 {
4678 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4679 }
4680 
4681 /**
4682  *  __dev_uc_unsync - Remove synchronized addresses from device
4683  *  @dev:  device to sync
4684  *  @unsync: function to call if address should be removed
4685  *
4686  *  Remove all addresses that were added to the device by dev_uc_sync().
4687  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4688 static inline void __dev_uc_unsync(struct net_device *dev,
4689 				   int (*unsync)(struct net_device *,
4690 						 const unsigned char *))
4691 {
4692 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4693 }
4694 
4695 /* Functions used for multicast addresses handling */
4696 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4697 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4698 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4699 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4700 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4701 int dev_mc_sync(struct net_device *to, struct net_device *from);
4702 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4703 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4704 void dev_mc_flush(struct net_device *dev);
4705 void dev_mc_init(struct net_device *dev);
4706 
4707 /**
4708  *  __dev_mc_sync - Synchonize device's multicast list
4709  *  @dev:  device to sync
4710  *  @sync: function to call if address should be added
4711  *  @unsync: function to call if address should be removed
4712  *
4713  *  Add newly added addresses to the interface, and release
4714  *  addresses that have been deleted.
4715  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4716 static inline int __dev_mc_sync(struct net_device *dev,
4717 				int (*sync)(struct net_device *,
4718 					    const unsigned char *),
4719 				int (*unsync)(struct net_device *,
4720 					      const unsigned char *))
4721 {
4722 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4723 }
4724 
4725 /**
4726  *  __dev_mc_unsync - Remove synchronized addresses from device
4727  *  @dev:  device to sync
4728  *  @unsync: function to call if address should be removed
4729  *
4730  *  Remove all addresses that were added to the device by dev_mc_sync().
4731  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4732 static inline void __dev_mc_unsync(struct net_device *dev,
4733 				   int (*unsync)(struct net_device *,
4734 						 const unsigned char *))
4735 {
4736 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4737 }
4738 
4739 /* Functions used for secondary unicast and multicast support */
4740 void dev_set_rx_mode(struct net_device *dev);
4741 int dev_set_promiscuity(struct net_device *dev, int inc);
4742 int dev_set_allmulti(struct net_device *dev, int inc);
4743 void netdev_state_change(struct net_device *dev);
4744 void __netdev_notify_peers(struct net_device *dev);
4745 void netdev_notify_peers(struct net_device *dev);
4746 void netdev_features_change(struct net_device *dev);
4747 /* Load a device via the kmod */
4748 void dev_load(struct net *net, const char *name);
4749 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4750 					struct rtnl_link_stats64 *storage);
4751 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4752 			     const struct net_device_stats *netdev_stats);
4753 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4754 			   const struct pcpu_sw_netstats __percpu *netstats);
4755 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4756 
4757 extern int		netdev_max_backlog;
4758 extern int		dev_rx_weight;
4759 extern int		dev_tx_weight;
4760 extern int		gro_normal_batch;
4761 
4762 enum {
4763 	NESTED_SYNC_IMM_BIT,
4764 	NESTED_SYNC_TODO_BIT,
4765 };
4766 
4767 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4768 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4769 
4770 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4771 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4772 
4773 struct netdev_nested_priv {
4774 	unsigned char flags;
4775 	void *data;
4776 };
4777 
4778 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4779 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4780 						     struct list_head **iter);
4781 
4782 /* iterate through upper list, must be called under RCU read lock */
4783 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4784 	for (iter = &(dev)->adj_list.upper, \
4785 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4786 	     updev; \
4787 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4788 
4789 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4790 				  int (*fn)(struct net_device *upper_dev,
4791 					    struct netdev_nested_priv *priv),
4792 				  struct netdev_nested_priv *priv);
4793 
4794 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4795 				  struct net_device *upper_dev);
4796 
4797 bool netdev_has_any_upper_dev(struct net_device *dev);
4798 
4799 void *netdev_lower_get_next_private(struct net_device *dev,
4800 				    struct list_head **iter);
4801 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4802 					struct list_head **iter);
4803 
4804 #define netdev_for_each_lower_private(dev, priv, iter) \
4805 	for (iter = (dev)->adj_list.lower.next, \
4806 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4807 	     priv; \
4808 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4809 
4810 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4811 	for (iter = &(dev)->adj_list.lower, \
4812 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4813 	     priv; \
4814 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4815 
4816 void *netdev_lower_get_next(struct net_device *dev,
4817 				struct list_head **iter);
4818 
4819 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4820 	for (iter = (dev)->adj_list.lower.next, \
4821 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4822 	     ldev; \
4823 	     ldev = netdev_lower_get_next(dev, &(iter)))
4824 
4825 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4826 					     struct list_head **iter);
4827 int netdev_walk_all_lower_dev(struct net_device *dev,
4828 			      int (*fn)(struct net_device *lower_dev,
4829 					struct netdev_nested_priv *priv),
4830 			      struct netdev_nested_priv *priv);
4831 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4832 				  int (*fn)(struct net_device *lower_dev,
4833 					    struct netdev_nested_priv *priv),
4834 				  struct netdev_nested_priv *priv);
4835 
4836 void *netdev_adjacent_get_private(struct list_head *adj_list);
4837 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4838 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4839 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4840 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4841 			  struct netlink_ext_ack *extack);
4842 int netdev_master_upper_dev_link(struct net_device *dev,
4843 				 struct net_device *upper_dev,
4844 				 void *upper_priv, void *upper_info,
4845 				 struct netlink_ext_ack *extack);
4846 void netdev_upper_dev_unlink(struct net_device *dev,
4847 			     struct net_device *upper_dev);
4848 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4849 				   struct net_device *new_dev,
4850 				   struct net_device *dev,
4851 				   struct netlink_ext_ack *extack);
4852 void netdev_adjacent_change_commit(struct net_device *old_dev,
4853 				   struct net_device *new_dev,
4854 				   struct net_device *dev);
4855 void netdev_adjacent_change_abort(struct net_device *old_dev,
4856 				  struct net_device *new_dev,
4857 				  struct net_device *dev);
4858 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4859 void *netdev_lower_dev_get_private(struct net_device *dev,
4860 				   struct net_device *lower_dev);
4861 void netdev_lower_state_changed(struct net_device *lower_dev,
4862 				void *lower_state_info);
4863 
4864 /* RSS keys are 40 or 52 bytes long */
4865 #define NETDEV_RSS_KEY_LEN 52
4866 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4867 void netdev_rss_key_fill(void *buffer, size_t len);
4868 
4869 int skb_checksum_help(struct sk_buff *skb);
4870 int skb_crc32c_csum_help(struct sk_buff *skb);
4871 int skb_csum_hwoffload_help(struct sk_buff *skb,
4872 			    const netdev_features_t features);
4873 
4874 struct netdev_bonding_info {
4875 	ifslave	slave;
4876 	ifbond	master;
4877 };
4878 
4879 struct netdev_notifier_bonding_info {
4880 	struct netdev_notifier_info info; /* must be first */
4881 	struct netdev_bonding_info  bonding_info;
4882 };
4883 
4884 void netdev_bonding_info_change(struct net_device *dev,
4885 				struct netdev_bonding_info *bonding_info);
4886 
4887 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4888 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4889 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4890 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4891 				  const void *data)
4892 {
4893 }
4894 #endif
4895 
4896 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4897 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4898 static inline bool can_checksum_protocol(netdev_features_t features,
4899 					 __be16 protocol)
4900 {
4901 	if (protocol == htons(ETH_P_FCOE))
4902 		return !!(features & NETIF_F_FCOE_CRC);
4903 
4904 	/* Assume this is an IP checksum (not SCTP CRC) */
4905 
4906 	if (features & NETIF_F_HW_CSUM) {
4907 		/* Can checksum everything */
4908 		return true;
4909 	}
4910 
4911 	switch (protocol) {
4912 	case htons(ETH_P_IP):
4913 		return !!(features & NETIF_F_IP_CSUM);
4914 	case htons(ETH_P_IPV6):
4915 		return !!(features & NETIF_F_IPV6_CSUM);
4916 	default:
4917 		return false;
4918 	}
4919 }
4920 
4921 #ifdef CONFIG_BUG
4922 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4923 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4924 static inline void netdev_rx_csum_fault(struct net_device *dev,
4925 					struct sk_buff *skb)
4926 {
4927 }
4928 #endif
4929 /* rx skb timestamps */
4930 void net_enable_timestamp(void);
4931 void net_disable_timestamp(void);
4932 
netdev_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)4933 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4934 					const struct skb_shared_hwtstamps *hwtstamps,
4935 					bool cycles)
4936 {
4937 	const struct net_device_ops *ops = dev->netdev_ops;
4938 
4939 	if (ops->ndo_get_tstamp)
4940 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4941 
4942 	return hwtstamps->hwtstamp;
4943 }
4944 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4945 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4946 					      struct sk_buff *skb, struct net_device *dev,
4947 					      bool more)
4948 {
4949 	__this_cpu_write(softnet_data.xmit.more, more);
4950 	return ops->ndo_start_xmit(skb, dev);
4951 }
4952 
netdev_xmit_more(void)4953 static inline bool netdev_xmit_more(void)
4954 {
4955 	return __this_cpu_read(softnet_data.xmit.more);
4956 }
4957 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4958 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4959 					    struct netdev_queue *txq, bool more)
4960 {
4961 	const struct net_device_ops *ops = dev->netdev_ops;
4962 	netdev_tx_t rc;
4963 
4964 	rc = __netdev_start_xmit(ops, skb, dev, more);
4965 	if (rc == NETDEV_TX_OK)
4966 		txq_trans_update(txq);
4967 
4968 	return rc;
4969 }
4970 
4971 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4972 				const void *ns);
4973 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4974 				 const void *ns);
4975 
4976 extern const struct kobj_ns_type_operations net_ns_type_operations;
4977 
4978 const char *netdev_drivername(const struct net_device *dev);
4979 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4980 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4981 							  netdev_features_t f2)
4982 {
4983 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4984 		if (f1 & NETIF_F_HW_CSUM)
4985 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4986 		else
4987 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4988 	}
4989 
4990 	return f1 & f2;
4991 }
4992 
netdev_get_wanted_features(struct net_device * dev)4993 static inline netdev_features_t netdev_get_wanted_features(
4994 	struct net_device *dev)
4995 {
4996 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4997 }
4998 netdev_features_t netdev_increment_features(netdev_features_t all,
4999 	netdev_features_t one, netdev_features_t mask);
5000 
5001 /* Allow TSO being used on stacked device :
5002  * Performing the GSO segmentation before last device
5003  * is a performance improvement.
5004  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)5005 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5006 							netdev_features_t mask)
5007 {
5008 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5009 }
5010 
5011 int __netdev_update_features(struct net_device *dev);
5012 void netdev_update_features(struct net_device *dev);
5013 void netdev_change_features(struct net_device *dev);
5014 
5015 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5016 					struct net_device *dev);
5017 
5018 netdev_features_t passthru_features_check(struct sk_buff *skb,
5019 					  struct net_device *dev,
5020 					  netdev_features_t features);
5021 netdev_features_t netif_skb_features(struct sk_buff *skb);
5022 void skb_warn_bad_offload(const struct sk_buff *skb);
5023 
net_gso_ok(netdev_features_t features,int gso_type)5024 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5025 {
5026 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5027 
5028 	/* check flags correspondence */
5029 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5030 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5031 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5032 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5033 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5034 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5035 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5036 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5037 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5038 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5039 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5040 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5041 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5042 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5043 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5044 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5045 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5046 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5047 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5048 
5049 	return (features & feature) == feature;
5050 }
5051 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)5052 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5053 {
5054 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5055 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5056 }
5057 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)5058 static inline bool netif_needs_gso(struct sk_buff *skb,
5059 				   netdev_features_t features)
5060 {
5061 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5062 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5063 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5064 }
5065 
5066 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5067 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5068 void netif_inherit_tso_max(struct net_device *to,
5069 			   const struct net_device *from);
5070 
netif_is_macsec(const struct net_device * dev)5071 static inline bool netif_is_macsec(const struct net_device *dev)
5072 {
5073 	return dev->priv_flags & IFF_MACSEC;
5074 }
5075 
netif_is_macvlan(const struct net_device * dev)5076 static inline bool netif_is_macvlan(const struct net_device *dev)
5077 {
5078 	return dev->priv_flags & IFF_MACVLAN;
5079 }
5080 
netif_is_macvlan_port(const struct net_device * dev)5081 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5082 {
5083 	return dev->priv_flags & IFF_MACVLAN_PORT;
5084 }
5085 
netif_is_bond_master(const struct net_device * dev)5086 static inline bool netif_is_bond_master(const struct net_device *dev)
5087 {
5088 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5089 }
5090 
netif_is_bond_slave(const struct net_device * dev)5091 static inline bool netif_is_bond_slave(const struct net_device *dev)
5092 {
5093 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5094 }
5095 
netif_supports_nofcs(struct net_device * dev)5096 static inline bool netif_supports_nofcs(struct net_device *dev)
5097 {
5098 	return dev->priv_flags & IFF_SUPP_NOFCS;
5099 }
5100 
netif_has_l3_rx_handler(const struct net_device * dev)5101 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5102 {
5103 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5104 }
5105 
netif_is_l3_master(const struct net_device * dev)5106 static inline bool netif_is_l3_master(const struct net_device *dev)
5107 {
5108 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5109 }
5110 
netif_is_l3_slave(const struct net_device * dev)5111 static inline bool netif_is_l3_slave(const struct net_device *dev)
5112 {
5113 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5114 }
5115 
dev_sdif(const struct net_device * dev)5116 static inline int dev_sdif(const struct net_device *dev)
5117 {
5118 #ifdef CONFIG_NET_L3_MASTER_DEV
5119 	if (netif_is_l3_slave(dev))
5120 		return dev->ifindex;
5121 #endif
5122 	return 0;
5123 }
5124 
netif_is_bridge_master(const struct net_device * dev)5125 static inline bool netif_is_bridge_master(const struct net_device *dev)
5126 {
5127 	return dev->priv_flags & IFF_EBRIDGE;
5128 }
5129 
netif_is_bridge_port(const struct net_device * dev)5130 static inline bool netif_is_bridge_port(const struct net_device *dev)
5131 {
5132 	return dev->priv_flags & IFF_BRIDGE_PORT;
5133 }
5134 
netif_is_ovs_master(const struct net_device * dev)5135 static inline bool netif_is_ovs_master(const struct net_device *dev)
5136 {
5137 	return dev->priv_flags & IFF_OPENVSWITCH;
5138 }
5139 
netif_is_ovs_port(const struct net_device * dev)5140 static inline bool netif_is_ovs_port(const struct net_device *dev)
5141 {
5142 	return dev->priv_flags & IFF_OVS_DATAPATH;
5143 }
5144 
netif_is_any_bridge_master(const struct net_device * dev)5145 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5146 {
5147 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5148 }
5149 
netif_is_any_bridge_port(const struct net_device * dev)5150 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5151 {
5152 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5153 }
5154 
netif_is_team_master(const struct net_device * dev)5155 static inline bool netif_is_team_master(const struct net_device *dev)
5156 {
5157 	return dev->priv_flags & IFF_TEAM;
5158 }
5159 
netif_is_team_port(const struct net_device * dev)5160 static inline bool netif_is_team_port(const struct net_device *dev)
5161 {
5162 	return dev->priv_flags & IFF_TEAM_PORT;
5163 }
5164 
netif_is_lag_master(const struct net_device * dev)5165 static inline bool netif_is_lag_master(const struct net_device *dev)
5166 {
5167 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5168 }
5169 
netif_is_lag_port(const struct net_device * dev)5170 static inline bool netif_is_lag_port(const struct net_device *dev)
5171 {
5172 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5173 }
5174 
netif_is_rxfh_configured(const struct net_device * dev)5175 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5176 {
5177 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5178 }
5179 
netif_is_failover(const struct net_device * dev)5180 static inline bool netif_is_failover(const struct net_device *dev)
5181 {
5182 	return dev->priv_flags & IFF_FAILOVER;
5183 }
5184 
netif_is_failover_slave(const struct net_device * dev)5185 static inline bool netif_is_failover_slave(const struct net_device *dev)
5186 {
5187 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5188 }
5189 
5190 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5191 static inline void netif_keep_dst(struct net_device *dev)
5192 {
5193 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5194 }
5195 
5196 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5197 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5198 {
5199 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5200 	return netif_is_macsec(dev);
5201 }
5202 
5203 extern struct pernet_operations __net_initdata loopback_net_ops;
5204 
5205 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5206 
5207 /* netdev_printk helpers, similar to dev_printk */
5208 
netdev_name(const struct net_device * dev)5209 static inline const char *netdev_name(const struct net_device *dev)
5210 {
5211 	if (!dev->name[0] || strchr(dev->name, '%'))
5212 		return "(unnamed net_device)";
5213 	return dev->name;
5214 }
5215 
netdev_reg_state(const struct net_device * dev)5216 static inline const char *netdev_reg_state(const struct net_device *dev)
5217 {
5218 	switch (dev->reg_state) {
5219 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5220 	case NETREG_REGISTERED: return "";
5221 	case NETREG_UNREGISTERING: return " (unregistering)";
5222 	case NETREG_UNREGISTERED: return " (unregistered)";
5223 	case NETREG_RELEASED: return " (released)";
5224 	case NETREG_DUMMY: return " (dummy)";
5225 	}
5226 
5227 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5228 	return " (unknown)";
5229 }
5230 
5231 #define MODULE_ALIAS_NETDEV(device) \
5232 	MODULE_ALIAS("netdev-" device)
5233 
5234 /*
5235  * netdev_WARN() acts like dev_printk(), but with the key difference
5236  * of using a WARN/WARN_ON to get the message out, including the
5237  * file/line information and a backtrace.
5238  */
5239 #define netdev_WARN(dev, format, args...)			\
5240 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5241 	     netdev_reg_state(dev), ##args)
5242 
5243 #define netdev_WARN_ONCE(dev, format, args...)				\
5244 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5245 		  netdev_reg_state(dev), ##args)
5246 
5247 /*
5248  *	The list of packet types we will receive (as opposed to discard)
5249  *	and the routines to invoke.
5250  *
5251  *	Why 16. Because with 16 the only overlap we get on a hash of the
5252  *	low nibble of the protocol value is RARP/SNAP/X.25.
5253  *
5254  *		0800	IP
5255  *		0001	802.3
5256  *		0002	AX.25
5257  *		0004	802.2
5258  *		8035	RARP
5259  *		0005	SNAP
5260  *		0805	X.25
5261  *		0806	ARP
5262  *		8137	IPX
5263  *		0009	Localtalk
5264  *		86DD	IPv6
5265  */
5266 #define PTYPE_HASH_SIZE	(16)
5267 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5268 
5269 extern struct list_head ptype_all __read_mostly;
5270 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5271 
5272 extern struct net_device *blackhole_netdev;
5273 
5274 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5275 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5276 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5277 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5278 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5279 
5280 #endif	/* _LINUX_NETDEVICE_H */
5281