• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 #include <trace/hooks/net.h>
283 
284 /* Track pending CMSGs. */
285 enum {
286 	TCP_CMSG_INQ = 1,
287 	TCP_CMSG_TS = 2
288 };
289 
290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 EXPORT_SYMBOL(sysctl_tcp_mem);
295 
296 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
297 EXPORT_SYMBOL(tcp_memory_allocated);
298 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
299 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
300 
301 #if IS_ENABLED(CONFIG_SMC)
302 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
303 EXPORT_SYMBOL(tcp_have_smc);
304 #endif
305 
306 /*
307  * Current number of TCP sockets.
308  */
309 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
310 EXPORT_SYMBOL(tcp_sockets_allocated);
311 
312 /*
313  * TCP splice context
314  */
315 struct tcp_splice_state {
316 	struct pipe_inode_info *pipe;
317 	size_t len;
318 	unsigned int flags;
319 };
320 
321 /*
322  * Pressure flag: try to collapse.
323  * Technical note: it is used by multiple contexts non atomically.
324  * All the __sk_mem_schedule() is of this nature: accounting
325  * is strict, actions are advisory and have some latency.
326  */
327 unsigned long tcp_memory_pressure __read_mostly;
328 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
329 
tcp_enter_memory_pressure(struct sock * sk)330 void tcp_enter_memory_pressure(struct sock *sk)
331 {
332 	unsigned long val;
333 
334 	if (READ_ONCE(tcp_memory_pressure))
335 		return;
336 	val = jiffies;
337 
338 	if (!val)
339 		val--;
340 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
341 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
342 }
343 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
344 
tcp_leave_memory_pressure(struct sock * sk)345 void tcp_leave_memory_pressure(struct sock *sk)
346 {
347 	unsigned long val;
348 
349 	if (!READ_ONCE(tcp_memory_pressure))
350 		return;
351 	val = xchg(&tcp_memory_pressure, 0);
352 	if (val)
353 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
354 			      jiffies_to_msecs(jiffies - val));
355 }
356 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
357 
358 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)359 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
360 {
361 	u8 res = 0;
362 
363 	if (seconds > 0) {
364 		int period = timeout;
365 
366 		res = 1;
367 		while (seconds > period && res < 255) {
368 			res++;
369 			timeout <<= 1;
370 			if (timeout > rto_max)
371 				timeout = rto_max;
372 			period += timeout;
373 		}
374 	}
375 	return res;
376 }
377 
378 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)379 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
380 {
381 	int period = 0;
382 
383 	if (retrans > 0) {
384 		period = timeout;
385 		while (--retrans) {
386 			timeout <<= 1;
387 			if (timeout > rto_max)
388 				timeout = rto_max;
389 			period += timeout;
390 		}
391 	}
392 	return period;
393 }
394 
tcp_compute_delivery_rate(const struct tcp_sock * tp)395 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
396 {
397 	u32 rate = READ_ONCE(tp->rate_delivered);
398 	u32 intv = READ_ONCE(tp->rate_interval_us);
399 	u64 rate64 = 0;
400 
401 	if (rate && intv) {
402 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
403 		do_div(rate64, intv);
404 	}
405 	return rate64;
406 }
407 
408 /* Address-family independent initialization for a tcp_sock.
409  *
410  * NOTE: A lot of things set to zero explicitly by call to
411  *       sk_alloc() so need not be done here.
412  */
tcp_init_sock(struct sock * sk)413 void tcp_init_sock(struct sock *sk)
414 {
415 	struct inet_connection_sock *icsk = inet_csk(sk);
416 	struct tcp_sock *tp = tcp_sk(sk);
417 
418 	tp->out_of_order_queue = RB_ROOT;
419 	sk->tcp_rtx_queue = RB_ROOT;
420 	tcp_init_xmit_timers(sk);
421 	INIT_LIST_HEAD(&tp->tsq_node);
422 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
423 
424 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
425 	icsk->icsk_rto_min = TCP_RTO_MIN;
426 	icsk->icsk_delack_max = TCP_DELACK_MAX;
427 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
428 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
429 
430 	/* So many TCP implementations out there (incorrectly) count the
431 	 * initial SYN frame in their delayed-ACK and congestion control
432 	 * algorithms that we must have the following bandaid to talk
433 	 * efficiently to them.  -DaveM
434 	 */
435 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
436 
437 	/* There's a bubble in the pipe until at least the first ACK. */
438 	tp->app_limited = ~0U;
439 	tp->rate_app_limited = 1;
440 
441 	/* See draft-stevens-tcpca-spec-01 for discussion of the
442 	 * initialization of these values.
443 	 */
444 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
445 	tp->snd_cwnd_clamp = ~0;
446 	tp->mss_cache = TCP_MSS_DEFAULT;
447 
448 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
449 	tcp_assign_congestion_control(sk);
450 
451 	tp->tsoffset = 0;
452 	tp->rack.reo_wnd_steps = 1;
453 
454 	sk->sk_write_space = sk_stream_write_space;
455 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
456 
457 	icsk->icsk_sync_mss = tcp_sync_mss;
458 
459 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
460 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
461 	tcp_scaling_ratio_init(sk);
462 
463 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
464 	sk_sockets_allocated_inc(sk);
465 }
466 EXPORT_SYMBOL(tcp_init_sock);
467 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)468 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
469 {
470 	struct sk_buff *skb = tcp_write_queue_tail(sk);
471 
472 	if (tsflags && skb) {
473 		struct skb_shared_info *shinfo = skb_shinfo(skb);
474 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
475 
476 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
477 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
478 			tcb->txstamp_ack = 1;
479 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
480 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
481 	}
482 }
483 
tcp_stream_is_readable(struct sock * sk,int target)484 static bool tcp_stream_is_readable(struct sock *sk, int target)
485 {
486 	if (tcp_epollin_ready(sk, target))
487 		return true;
488 	return sk_is_readable(sk);
489 }
490 
491 /*
492  *	Wait for a TCP event.
493  *
494  *	Note that we don't need to lock the socket, as the upper poll layers
495  *	take care of normal races (between the test and the event) and we don't
496  *	go look at any of the socket buffers directly.
497  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)498 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
499 {
500 	__poll_t mask;
501 	struct sock *sk = sock->sk;
502 	const struct tcp_sock *tp = tcp_sk(sk);
503 	u8 shutdown;
504 	int state;
505 
506 	sock_poll_wait(file, sock, wait);
507 
508 	state = inet_sk_state_load(sk);
509 	if (state == TCP_LISTEN)
510 		return inet_csk_listen_poll(sk);
511 
512 	/* Socket is not locked. We are protected from async events
513 	 * by poll logic and correct handling of state changes
514 	 * made by other threads is impossible in any case.
515 	 */
516 
517 	mask = 0;
518 
519 	/*
520 	 * EPOLLHUP is certainly not done right. But poll() doesn't
521 	 * have a notion of HUP in just one direction, and for a
522 	 * socket the read side is more interesting.
523 	 *
524 	 * Some poll() documentation says that EPOLLHUP is incompatible
525 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
526 	 * all. But careful, it tends to be safer to return too many
527 	 * bits than too few, and you can easily break real applications
528 	 * if you don't tell them that something has hung up!
529 	 *
530 	 * Check-me.
531 	 *
532 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
533 	 * our fs/select.c). It means that after we received EOF,
534 	 * poll always returns immediately, making impossible poll() on write()
535 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
536 	 * if and only if shutdown has been made in both directions.
537 	 * Actually, it is interesting to look how Solaris and DUX
538 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
539 	 * then we could set it on SND_SHUTDOWN. BTW examples given
540 	 * in Stevens' books assume exactly this behaviour, it explains
541 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
542 	 *
543 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
544 	 * blocking on fresh not-connected or disconnected socket. --ANK
545 	 */
546 	shutdown = READ_ONCE(sk->sk_shutdown);
547 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
548 		mask |= EPOLLHUP;
549 	if (shutdown & RCV_SHUTDOWN)
550 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
551 
552 	/* Connected or passive Fast Open socket? */
553 	if (state != TCP_SYN_SENT &&
554 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
555 		int target = sock_rcvlowat(sk, 0, INT_MAX);
556 		u16 urg_data = READ_ONCE(tp->urg_data);
557 
558 		if (unlikely(urg_data) &&
559 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
560 		    !sock_flag(sk, SOCK_URGINLINE))
561 			target++;
562 
563 		if (tcp_stream_is_readable(sk, target))
564 			mask |= EPOLLIN | EPOLLRDNORM;
565 
566 		if (!(shutdown & SEND_SHUTDOWN)) {
567 			if (__sk_stream_is_writeable(sk, 1)) {
568 				mask |= EPOLLOUT | EPOLLWRNORM;
569 			} else {  /* send SIGIO later */
570 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
571 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
572 
573 				/* Race breaker. If space is freed after
574 				 * wspace test but before the flags are set,
575 				 * IO signal will be lost. Memory barrier
576 				 * pairs with the input side.
577 				 */
578 				smp_mb__after_atomic();
579 				if (__sk_stream_is_writeable(sk, 1))
580 					mask |= EPOLLOUT | EPOLLWRNORM;
581 			}
582 		} else
583 			mask |= EPOLLOUT | EPOLLWRNORM;
584 
585 		if (urg_data & TCP_URG_VALID)
586 			mask |= EPOLLPRI;
587 	} else if (state == TCP_SYN_SENT &&
588 		   inet_test_bit(DEFER_CONNECT, sk)) {
589 		/* Active TCP fastopen socket with defer_connect
590 		 * Return EPOLLOUT so application can call write()
591 		 * in order for kernel to generate SYN+data
592 		 */
593 		mask |= EPOLLOUT | EPOLLWRNORM;
594 	}
595 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
596 	smp_rmb();
597 	if (READ_ONCE(sk->sk_err) ||
598 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
599 		mask |= EPOLLERR;
600 
601 	return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604 
tcp_ioctl(struct sock * sk,int cmd,int * karg)605 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	int answ;
609 	bool slow;
610 
611 	switch (cmd) {
612 	case SIOCINQ:
613 		if (sk->sk_state == TCP_LISTEN)
614 			return -EINVAL;
615 
616 		slow = lock_sock_fast(sk);
617 		answ = tcp_inq(sk);
618 		unlock_sock_fast(sk, slow);
619 		break;
620 	case SIOCATMARK:
621 		answ = READ_ONCE(tp->urg_data) &&
622 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
623 		break;
624 	case SIOCOUTQ:
625 		if (sk->sk_state == TCP_LISTEN)
626 			return -EINVAL;
627 
628 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
629 			answ = 0;
630 		else
631 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
632 		break;
633 	case SIOCOUTQNSD:
634 		if (sk->sk_state == TCP_LISTEN)
635 			return -EINVAL;
636 
637 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
638 			answ = 0;
639 		else
640 			answ = READ_ONCE(tp->write_seq) -
641 			       READ_ONCE(tp->snd_nxt);
642 		break;
643 	default:
644 		return -ENOIOCTLCMD;
645 	}
646 
647 	*karg = answ;
648 	return 0;
649 }
650 EXPORT_SYMBOL(tcp_ioctl);
651 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)652 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
653 {
654 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
655 	tp->pushed_seq = tp->write_seq;
656 }
657 
forced_push(const struct tcp_sock * tp)658 static inline bool forced_push(const struct tcp_sock *tp)
659 {
660 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
661 }
662 
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)663 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
664 {
665 	struct tcp_sock *tp = tcp_sk(sk);
666 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
667 
668 	tcb->seq     = tcb->end_seq = tp->write_seq;
669 	tcb->tcp_flags = TCPHDR_ACK;
670 	__skb_header_release(skb);
671 	tcp_add_write_queue_tail(sk, skb);
672 	sk_wmem_queued_add(sk, skb->truesize);
673 	sk_mem_charge(sk, skb->truesize);
674 	if (tp->nonagle & TCP_NAGLE_PUSH)
675 		tp->nonagle &= ~TCP_NAGLE_PUSH;
676 
677 	tcp_slow_start_after_idle_check(sk);
678 }
679 
tcp_mark_urg(struct tcp_sock * tp,int flags)680 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
681 {
682 	if (flags & MSG_OOB)
683 		tp->snd_up = tp->write_seq;
684 }
685 
686 /* If a not yet filled skb is pushed, do not send it if
687  * we have data packets in Qdisc or NIC queues :
688  * Because TX completion will happen shortly, it gives a chance
689  * to coalesce future sendmsg() payload into this skb, without
690  * need for a timer, and with no latency trade off.
691  * As packets containing data payload have a bigger truesize
692  * than pure acks (dataless) packets, the last checks prevent
693  * autocorking if we only have an ACK in Qdisc/NIC queues,
694  * or if TX completion was delayed after we processed ACK packet.
695  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)696 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
697 				int size_goal)
698 {
699 	return skb->len < size_goal &&
700 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
701 	       !tcp_rtx_queue_empty(sk) &&
702 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
703 	       tcp_skb_can_collapse_to(skb);
704 }
705 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)706 void tcp_push(struct sock *sk, int flags, int mss_now,
707 	      int nonagle, int size_goal)
708 {
709 	struct tcp_sock *tp = tcp_sk(sk);
710 	struct sk_buff *skb;
711 
712 	skb = tcp_write_queue_tail(sk);
713 	if (!skb)
714 		return;
715 	if (!(flags & MSG_MORE) || forced_push(tp))
716 		tcp_mark_push(tp, skb);
717 
718 	tcp_mark_urg(tp, flags);
719 
720 	if (tcp_should_autocork(sk, skb, size_goal)) {
721 
722 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
723 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
724 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
725 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
726 			smp_mb__after_atomic();
727 		}
728 		/* It is possible TX completion already happened
729 		 * before we set TSQ_THROTTLED.
730 		 */
731 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
732 			return;
733 	}
734 
735 	if (flags & MSG_MORE)
736 		nonagle = TCP_NAGLE_CORK;
737 
738 	__tcp_push_pending_frames(sk, mss_now, nonagle);
739 }
740 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)741 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
742 				unsigned int offset, size_t len)
743 {
744 	struct tcp_splice_state *tss = rd_desc->arg.data;
745 	int ret;
746 
747 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
748 			      min(rd_desc->count, len), tss->flags);
749 	if (ret > 0)
750 		rd_desc->count -= ret;
751 	return ret;
752 }
753 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)754 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
755 {
756 	/* Store TCP splice context information in read_descriptor_t. */
757 	read_descriptor_t rd_desc = {
758 		.arg.data = tss,
759 		.count	  = tss->len,
760 	};
761 
762 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
763 }
764 
765 /**
766  *  tcp_splice_read - splice data from TCP socket to a pipe
767  * @sock:	socket to splice from
768  * @ppos:	position (not valid)
769  * @pipe:	pipe to splice to
770  * @len:	number of bytes to splice
771  * @flags:	splice modifier flags
772  *
773  * Description:
774  *    Will read pages from given socket and fill them into a pipe.
775  *
776  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)777 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
778 			struct pipe_inode_info *pipe, size_t len,
779 			unsigned int flags)
780 {
781 	struct sock *sk = sock->sk;
782 	struct tcp_splice_state tss = {
783 		.pipe = pipe,
784 		.len = len,
785 		.flags = flags,
786 	};
787 	long timeo;
788 	ssize_t spliced;
789 	int ret;
790 
791 	sock_rps_record_flow(sk);
792 	/*
793 	 * We can't seek on a socket input
794 	 */
795 	if (unlikely(*ppos))
796 		return -ESPIPE;
797 
798 	ret = spliced = 0;
799 
800 	lock_sock(sk);
801 
802 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
803 	while (tss.len) {
804 		ret = __tcp_splice_read(sk, &tss);
805 		if (ret < 0)
806 			break;
807 		else if (!ret) {
808 			if (spliced)
809 				break;
810 			if (sock_flag(sk, SOCK_DONE))
811 				break;
812 			if (sk->sk_err) {
813 				ret = sock_error(sk);
814 				break;
815 			}
816 			if (sk->sk_shutdown & RCV_SHUTDOWN)
817 				break;
818 			if (sk->sk_state == TCP_CLOSE) {
819 				/*
820 				 * This occurs when user tries to read
821 				 * from never connected socket.
822 				 */
823 				ret = -ENOTCONN;
824 				break;
825 			}
826 			if (!timeo) {
827 				ret = -EAGAIN;
828 				break;
829 			}
830 			/* if __tcp_splice_read() got nothing while we have
831 			 * an skb in receive queue, we do not want to loop.
832 			 * This might happen with URG data.
833 			 */
834 			if (!skb_queue_empty(&sk->sk_receive_queue))
835 				break;
836 			ret = sk_wait_data(sk, &timeo, NULL);
837 			if (ret < 0)
838 				break;
839 			if (signal_pending(current)) {
840 				ret = sock_intr_errno(timeo);
841 				break;
842 			}
843 			continue;
844 		}
845 		tss.len -= ret;
846 		spliced += ret;
847 
848 		if (!tss.len || !timeo)
849 			break;
850 		release_sock(sk);
851 		lock_sock(sk);
852 
853 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
854 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
855 		    signal_pending(current))
856 			break;
857 	}
858 
859 	release_sock(sk);
860 
861 	if (spliced)
862 		return spliced;
863 
864 	return ret;
865 }
866 EXPORT_SYMBOL(tcp_splice_read);
867 
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)868 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
869 				     bool force_schedule)
870 {
871 	struct sk_buff *skb;
872 
873 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
874 	if (likely(skb)) {
875 		bool mem_scheduled;
876 
877 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
878 		if (force_schedule) {
879 			mem_scheduled = true;
880 			sk_forced_mem_schedule(sk, skb->truesize);
881 		} else {
882 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
883 		}
884 		if (likely(mem_scheduled)) {
885 			skb_reserve(skb, MAX_TCP_HEADER);
886 			skb->ip_summed = CHECKSUM_PARTIAL;
887 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 			return skb;
889 		}
890 		__kfree_skb(skb);
891 	} else {
892 		sk->sk_prot->enter_memory_pressure(sk);
893 		sk_stream_moderate_sndbuf(sk);
894 	}
895 	return NULL;
896 }
897 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
899 				       int large_allowed)
900 {
901 	struct tcp_sock *tp = tcp_sk(sk);
902 	u32 new_size_goal, size_goal;
903 
904 	if (!large_allowed)
905 		return mss_now;
906 
907 	/* Note : tcp_tso_autosize() will eventually split this later */
908 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
909 
910 	/* We try hard to avoid divides here */
911 	size_goal = tp->gso_segs * mss_now;
912 	if (unlikely(new_size_goal < size_goal ||
913 		     new_size_goal >= size_goal + mss_now)) {
914 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
915 				     sk->sk_gso_max_segs);
916 		size_goal = tp->gso_segs * mss_now;
917 	}
918 
919 	return max(size_goal, mss_now);
920 }
921 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)922 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
923 {
924 	int mss_now;
925 
926 	mss_now = tcp_current_mss(sk);
927 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
928 
929 	return mss_now;
930 }
931 
932 /* In some cases, sendmsg() could have added an skb to the write queue,
933  * but failed adding payload on it. We need to remove it to consume less
934  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
935  * epoll() users. Another reason is that tcp_write_xmit() does not like
936  * finding an empty skb in the write queue.
937  */
tcp_remove_empty_skb(struct sock * sk)938 void tcp_remove_empty_skb(struct sock *sk)
939 {
940 	struct sk_buff *skb = tcp_write_queue_tail(sk);
941 
942 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
943 		tcp_unlink_write_queue(skb, sk);
944 		if (tcp_write_queue_empty(sk))
945 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
946 		tcp_wmem_free_skb(sk, skb);
947 	}
948 }
949 
950 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)951 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
952 {
953 	if (unlikely(skb_zcopy_pure(skb))) {
954 		u32 extra = skb->truesize -
955 			    SKB_TRUESIZE(skb_end_offset(skb));
956 
957 		if (!sk_wmem_schedule(sk, extra))
958 			return -ENOMEM;
959 
960 		sk_mem_charge(sk, extra);
961 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
962 	}
963 	return 0;
964 }
965 
966 
tcp_wmem_schedule(struct sock * sk,int copy)967 int tcp_wmem_schedule(struct sock *sk, int copy)
968 {
969 	int left;
970 
971 	if (likely(sk_wmem_schedule(sk, copy)))
972 		return copy;
973 
974 	/* We could be in trouble if we have nothing queued.
975 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
976 	 * to guarantee some progress.
977 	 */
978 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
979 	if (left > 0)
980 		sk_forced_mem_schedule(sk, min(left, copy));
981 	return min(copy, sk->sk_forward_alloc);
982 }
983 
tcp_free_fastopen_req(struct tcp_sock * tp)984 void tcp_free_fastopen_req(struct tcp_sock *tp)
985 {
986 	if (tp->fastopen_req) {
987 		kfree(tp->fastopen_req);
988 		tp->fastopen_req = NULL;
989 	}
990 }
991 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)992 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
993 			 size_t size, struct ubuf_info *uarg)
994 {
995 	struct tcp_sock *tp = tcp_sk(sk);
996 	struct inet_sock *inet = inet_sk(sk);
997 	struct sockaddr *uaddr = msg->msg_name;
998 	int err, flags;
999 
1000 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1001 	      TFO_CLIENT_ENABLE) ||
1002 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1003 	     uaddr->sa_family == AF_UNSPEC))
1004 		return -EOPNOTSUPP;
1005 	if (tp->fastopen_req)
1006 		return -EALREADY; /* Another Fast Open is in progress */
1007 
1008 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1009 				   sk->sk_allocation);
1010 	if (unlikely(!tp->fastopen_req))
1011 		return -ENOBUFS;
1012 	tp->fastopen_req->data = msg;
1013 	tp->fastopen_req->size = size;
1014 	tp->fastopen_req->uarg = uarg;
1015 
1016 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1017 		err = tcp_connect(sk);
1018 		/* Same failure procedure as in tcp_v4/6_connect */
1019 		if (err) {
1020 			tcp_set_state(sk, TCP_CLOSE);
1021 			inet->inet_dport = 0;
1022 			sk->sk_route_caps = 0;
1023 		}
1024 	}
1025 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1026 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1027 				    msg->msg_namelen, flags, 1);
1028 	/* fastopen_req could already be freed in __inet_stream_connect
1029 	 * if the connection times out or gets rst
1030 	 */
1031 	if (tp->fastopen_req) {
1032 		*copied = tp->fastopen_req->copied;
1033 		tcp_free_fastopen_req(tp);
1034 		inet_clear_bit(DEFER_CONNECT, sk);
1035 	}
1036 	return err;
1037 }
1038 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1039 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1040 {
1041 	struct tcp_sock *tp = tcp_sk(sk);
1042 	struct ubuf_info *uarg = NULL;
1043 	struct sk_buff *skb;
1044 	struct sockcm_cookie sockc;
1045 	int flags, err, copied = 0;
1046 	int mss_now = 0, size_goal, copied_syn = 0;
1047 	int process_backlog = 0;
1048 	int zc = 0;
1049 	long timeo;
1050 
1051 	flags = msg->msg_flags;
1052 
1053 	if ((flags & MSG_ZEROCOPY) && size) {
1054 		if (msg->msg_ubuf) {
1055 			uarg = msg->msg_ubuf;
1056 			if (sk->sk_route_caps & NETIF_F_SG)
1057 				zc = MSG_ZEROCOPY;
1058 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1059 			skb = tcp_write_queue_tail(sk);
1060 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1061 			if (!uarg) {
1062 				err = -ENOBUFS;
1063 				goto out_err;
1064 			}
1065 			if (sk->sk_route_caps & NETIF_F_SG)
1066 				zc = MSG_ZEROCOPY;
1067 			else
1068 				uarg_to_msgzc(uarg)->zerocopy = 0;
1069 		}
1070 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1071 		if (sk->sk_route_caps & NETIF_F_SG)
1072 			zc = MSG_SPLICE_PAGES;
1073 	}
1074 
1075 	if (unlikely(flags & MSG_FASTOPEN ||
1076 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1077 	    !tp->repair) {
1078 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1079 		if (err == -EINPROGRESS && copied_syn > 0)
1080 			goto out;
1081 		else if (err)
1082 			goto out_err;
1083 	}
1084 
1085 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1086 
1087 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1088 
1089 	/* Wait for a connection to finish. One exception is TCP Fast Open
1090 	 * (passive side) where data is allowed to be sent before a connection
1091 	 * is fully established.
1092 	 */
1093 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1094 	    !tcp_passive_fastopen(sk)) {
1095 		err = sk_stream_wait_connect(sk, &timeo);
1096 		if (err != 0)
1097 			goto do_error;
1098 	}
1099 
1100 	if (unlikely(tp->repair)) {
1101 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1102 			copied = tcp_send_rcvq(sk, msg, size);
1103 			goto out_nopush;
1104 		}
1105 
1106 		err = -EINVAL;
1107 		if (tp->repair_queue == TCP_NO_QUEUE)
1108 			goto out_err;
1109 
1110 		/* 'common' sending to sendq */
1111 	}
1112 
1113 	sockcm_init(&sockc, sk);
1114 	if (msg->msg_controllen) {
1115 		err = sock_cmsg_send(sk, msg, &sockc);
1116 		if (unlikely(err)) {
1117 			err = -EINVAL;
1118 			goto out_err;
1119 		}
1120 	}
1121 
1122 	trace_android_vh_uplink_send_msg(sk);
1123 
1124 	/* This should be in poll */
1125 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1126 
1127 	/* Ok commence sending. */
1128 	copied = 0;
1129 
1130 restart:
1131 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1132 
1133 	err = -EPIPE;
1134 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1135 		goto do_error;
1136 
1137 	while (msg_data_left(msg)) {
1138 		ssize_t copy = 0;
1139 
1140 		skb = tcp_write_queue_tail(sk);
1141 		if (skb)
1142 			copy = size_goal - skb->len;
1143 
1144 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1145 			bool first_skb;
1146 
1147 new_segment:
1148 			if (!sk_stream_memory_free(sk))
1149 				goto wait_for_space;
1150 
1151 			if (unlikely(process_backlog >= 16)) {
1152 				process_backlog = 0;
1153 				if (sk_flush_backlog(sk))
1154 					goto restart;
1155 			}
1156 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1157 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1158 						   first_skb);
1159 			if (!skb)
1160 				goto wait_for_space;
1161 
1162 			process_backlog++;
1163 
1164 #ifdef CONFIG_SKB_DECRYPTED
1165 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1166 #endif
1167 			tcp_skb_entail(sk, skb);
1168 			copy = size_goal;
1169 
1170 			/* All packets are restored as if they have
1171 			 * already been sent. skb_mstamp_ns isn't set to
1172 			 * avoid wrong rtt estimation.
1173 			 */
1174 			if (tp->repair)
1175 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1176 		}
1177 
1178 		/* Try to append data to the end of skb. */
1179 		if (copy > msg_data_left(msg))
1180 			copy = msg_data_left(msg);
1181 
1182 		if (zc == 0) {
1183 			bool merge = true;
1184 			int i = skb_shinfo(skb)->nr_frags;
1185 			struct page_frag *pfrag = sk_page_frag(sk);
1186 
1187 			if (!sk_page_frag_refill(sk, pfrag))
1188 				goto wait_for_space;
1189 
1190 			if (!skb_can_coalesce(skb, i, pfrag->page,
1191 					      pfrag->offset)) {
1192 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1193 					tcp_mark_push(tp, skb);
1194 					goto new_segment;
1195 				}
1196 				merge = false;
1197 			}
1198 
1199 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1200 
1201 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1202 				if (tcp_downgrade_zcopy_pure(sk, skb))
1203 					goto wait_for_space;
1204 				skb_zcopy_downgrade_managed(skb);
1205 			}
1206 
1207 			copy = tcp_wmem_schedule(sk, copy);
1208 			if (!copy)
1209 				goto wait_for_space;
1210 
1211 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1212 						       pfrag->page,
1213 						       pfrag->offset,
1214 						       copy);
1215 			if (err)
1216 				goto do_error;
1217 
1218 			/* Update the skb. */
1219 			if (merge) {
1220 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1221 			} else {
1222 				skb_fill_page_desc(skb, i, pfrag->page,
1223 						   pfrag->offset, copy);
1224 				page_ref_inc(pfrag->page);
1225 			}
1226 			pfrag->offset += copy;
1227 		} else if (zc == MSG_ZEROCOPY)  {
1228 			/* First append to a fragless skb builds initial
1229 			 * pure zerocopy skb
1230 			 */
1231 			if (!skb->len)
1232 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1233 
1234 			if (!skb_zcopy_pure(skb)) {
1235 				copy = tcp_wmem_schedule(sk, copy);
1236 				if (!copy)
1237 					goto wait_for_space;
1238 			}
1239 
1240 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1241 			if (err == -EMSGSIZE || err == -EEXIST) {
1242 				tcp_mark_push(tp, skb);
1243 				goto new_segment;
1244 			}
1245 			if (err < 0)
1246 				goto do_error;
1247 			copy = err;
1248 		} else if (zc == MSG_SPLICE_PAGES) {
1249 			/* Splice in data if we can; copy if we can't. */
1250 			if (tcp_downgrade_zcopy_pure(sk, skb))
1251 				goto wait_for_space;
1252 			copy = tcp_wmem_schedule(sk, copy);
1253 			if (!copy)
1254 				goto wait_for_space;
1255 
1256 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1257 						   sk->sk_allocation);
1258 			if (err < 0) {
1259 				if (err == -EMSGSIZE) {
1260 					tcp_mark_push(tp, skb);
1261 					goto new_segment;
1262 				}
1263 				goto do_error;
1264 			}
1265 			copy = err;
1266 
1267 			if (!(flags & MSG_NO_SHARED_FRAGS))
1268 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1269 
1270 			sk_wmem_queued_add(sk, copy);
1271 			sk_mem_charge(sk, copy);
1272 		}
1273 
1274 		if (!copied)
1275 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1276 
1277 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1278 		TCP_SKB_CB(skb)->end_seq += copy;
1279 		tcp_skb_pcount_set(skb, 0);
1280 
1281 		copied += copy;
1282 		if (!msg_data_left(msg)) {
1283 			if (unlikely(flags & MSG_EOR))
1284 				TCP_SKB_CB(skb)->eor = 1;
1285 			goto out;
1286 		}
1287 
1288 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1289 			continue;
1290 
1291 		if (forced_push(tp)) {
1292 			tcp_mark_push(tp, skb);
1293 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1294 		} else if (skb == tcp_send_head(sk))
1295 			tcp_push_one(sk, mss_now);
1296 		continue;
1297 
1298 wait_for_space:
1299 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1300 		tcp_remove_empty_skb(sk);
1301 		if (copied)
1302 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1303 				 TCP_NAGLE_PUSH, size_goal);
1304 
1305 		err = sk_stream_wait_memory(sk, &timeo);
1306 		if (err != 0)
1307 			goto do_error;
1308 
1309 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1310 	}
1311 
1312 out:
1313 	if (copied) {
1314 		tcp_tx_timestamp(sk, sockc.tsflags);
1315 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1316 	}
1317 out_nopush:
1318 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1319 	if (uarg && !msg->msg_ubuf)
1320 		net_zcopy_put(uarg);
1321 	return copied + copied_syn;
1322 
1323 do_error:
1324 	tcp_remove_empty_skb(sk);
1325 
1326 	if (copied + copied_syn)
1327 		goto out;
1328 out_err:
1329 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1330 	if (uarg && !msg->msg_ubuf)
1331 		net_zcopy_put_abort(uarg, true);
1332 	err = sk_stream_error(sk, flags, err);
1333 	/* make sure we wake any epoll edge trigger waiter */
1334 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1335 		sk->sk_write_space(sk);
1336 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1337 	}
1338 	return err;
1339 }
1340 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1341 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1342 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1343 {
1344 	int ret;
1345 
1346 	trace_android_rvh_tcp_sendmsg(sk, msg, size);
1347 	lock_sock(sk);
1348 	ret = tcp_sendmsg_locked(sk, msg, size);
1349 	release_sock(sk);
1350 
1351 	return ret;
1352 }
1353 EXPORT_SYMBOL(tcp_sendmsg);
1354 
tcp_splice_eof(struct socket * sock)1355 void tcp_splice_eof(struct socket *sock)
1356 {
1357 	struct sock *sk = sock->sk;
1358 	struct tcp_sock *tp = tcp_sk(sk);
1359 	int mss_now, size_goal;
1360 
1361 	if (!tcp_write_queue_tail(sk))
1362 		return;
1363 
1364 	lock_sock(sk);
1365 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1366 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1367 	release_sock(sk);
1368 }
1369 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1370 
1371 /*
1372  *	Handle reading urgent data. BSD has very simple semantics for
1373  *	this, no blocking and very strange errors 8)
1374  */
1375 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1376 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1377 {
1378 	struct tcp_sock *tp = tcp_sk(sk);
1379 
1380 	/* No URG data to read. */
1381 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1382 	    tp->urg_data == TCP_URG_READ)
1383 		return -EINVAL;	/* Yes this is right ! */
1384 
1385 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1386 		return -ENOTCONN;
1387 
1388 	if (tp->urg_data & TCP_URG_VALID) {
1389 		int err = 0;
1390 		char c = tp->urg_data;
1391 
1392 		if (!(flags & MSG_PEEK))
1393 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1394 
1395 		/* Read urgent data. */
1396 		msg->msg_flags |= MSG_OOB;
1397 
1398 		if (len > 0) {
1399 			if (!(flags & MSG_TRUNC))
1400 				err = memcpy_to_msg(msg, &c, 1);
1401 			len = 1;
1402 		} else
1403 			msg->msg_flags |= MSG_TRUNC;
1404 
1405 		return err ? -EFAULT : len;
1406 	}
1407 
1408 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1409 		return 0;
1410 
1411 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1412 	 * the available implementations agree in this case:
1413 	 * this call should never block, independent of the
1414 	 * blocking state of the socket.
1415 	 * Mike <pall@rz.uni-karlsruhe.de>
1416 	 */
1417 	return -EAGAIN;
1418 }
1419 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1420 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1421 {
1422 	struct sk_buff *skb;
1423 	int copied = 0, err = 0;
1424 
1425 	/* XXX -- need to support SO_PEEK_OFF */
1426 
1427 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1428 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1429 		if (err)
1430 			return err;
1431 		copied += skb->len;
1432 	}
1433 
1434 	skb_queue_walk(&sk->sk_write_queue, skb) {
1435 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1436 		if (err)
1437 			break;
1438 
1439 		copied += skb->len;
1440 	}
1441 
1442 	return err ?: copied;
1443 }
1444 
1445 /* Clean up the receive buffer for full frames taken by the user,
1446  * then send an ACK if necessary.  COPIED is the number of bytes
1447  * tcp_recvmsg has given to the user so far, it speeds up the
1448  * calculation of whether or not we must ACK for the sake of
1449  * a window update.
1450  */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1451 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1452 {
1453 	struct tcp_sock *tp = tcp_sk(sk);
1454 	bool time_to_ack = false;
1455 
1456 	if (inet_csk_ack_scheduled(sk)) {
1457 		const struct inet_connection_sock *icsk = inet_csk(sk);
1458 
1459 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1460 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1461 		    /*
1462 		     * If this read emptied read buffer, we send ACK, if
1463 		     * connection is not bidirectional, user drained
1464 		     * receive buffer and there was a small segment
1465 		     * in queue.
1466 		     */
1467 		    (copied > 0 &&
1468 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1469 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1470 		       !inet_csk_in_pingpong_mode(sk))) &&
1471 		      !atomic_read(&sk->sk_rmem_alloc)))
1472 			time_to_ack = true;
1473 	}
1474 
1475 	/* We send an ACK if we can now advertise a non-zero window
1476 	 * which has been raised "significantly".
1477 	 *
1478 	 * Even if window raised up to infinity, do not send window open ACK
1479 	 * in states, where we will not receive more. It is useless.
1480 	 */
1481 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1482 		__u32 rcv_window_now = tcp_receive_window(tp);
1483 
1484 		/* Optimize, __tcp_select_window() is not cheap. */
1485 		if (2*rcv_window_now <= tp->window_clamp) {
1486 			__u32 new_window = __tcp_select_window(sk);
1487 
1488 			/* Send ACK now, if this read freed lots of space
1489 			 * in our buffer. Certainly, new_window is new window.
1490 			 * We can advertise it now, if it is not less than current one.
1491 			 * "Lots" means "at least twice" here.
1492 			 */
1493 			if (new_window && new_window >= 2 * rcv_window_now)
1494 				time_to_ack = true;
1495 		}
1496 	}
1497 	if (time_to_ack)
1498 		tcp_send_ack(sk);
1499 }
1500 
tcp_cleanup_rbuf(struct sock * sk,int copied)1501 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1502 {
1503 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1504 	struct tcp_sock *tp = tcp_sk(sk);
1505 
1506 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1507 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1508 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1509 	__tcp_cleanup_rbuf(sk, copied);
1510 }
1511 
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1512 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1513 {
1514 	__skb_unlink(skb, &sk->sk_receive_queue);
1515 	if (likely(skb->destructor == sock_rfree)) {
1516 		sock_rfree(skb);
1517 		skb->destructor = NULL;
1518 		skb->sk = NULL;
1519 		return skb_attempt_defer_free(skb);
1520 	}
1521 	__kfree_skb(skb);
1522 }
1523 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1524 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1525 {
1526 	struct sk_buff *skb;
1527 	u32 offset;
1528 
1529 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1530 		offset = seq - TCP_SKB_CB(skb)->seq;
1531 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1532 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1533 			offset--;
1534 		}
1535 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1536 			*off = offset;
1537 			return skb;
1538 		}
1539 		/* This looks weird, but this can happen if TCP collapsing
1540 		 * splitted a fat GRO packet, while we released socket lock
1541 		 * in skb_splice_bits()
1542 		 */
1543 		tcp_eat_recv_skb(sk, skb);
1544 	}
1545 	return NULL;
1546 }
1547 EXPORT_SYMBOL(tcp_recv_skb);
1548 
1549 /*
1550  * This routine provides an alternative to tcp_recvmsg() for routines
1551  * that would like to handle copying from skbuffs directly in 'sendfile'
1552  * fashion.
1553  * Note:
1554  *	- It is assumed that the socket was locked by the caller.
1555  *	- The routine does not block.
1556  *	- At present, there is no support for reading OOB data
1557  *	  or for 'peeking' the socket using this routine
1558  *	  (although both would be easy to implement).
1559  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1560 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1561 		  sk_read_actor_t recv_actor)
1562 {
1563 	struct sk_buff *skb;
1564 	struct tcp_sock *tp = tcp_sk(sk);
1565 	u32 seq = tp->copied_seq;
1566 	u32 offset;
1567 	int copied = 0;
1568 
1569 	if (sk->sk_state == TCP_LISTEN)
1570 		return -ENOTCONN;
1571 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1572 		if (offset < skb->len) {
1573 			int used;
1574 			size_t len;
1575 
1576 			len = skb->len - offset;
1577 			/* Stop reading if we hit a patch of urgent data */
1578 			if (unlikely(tp->urg_data)) {
1579 				u32 urg_offset = tp->urg_seq - seq;
1580 				if (urg_offset < len)
1581 					len = urg_offset;
1582 				if (!len)
1583 					break;
1584 			}
1585 			used = recv_actor(desc, skb, offset, len);
1586 			if (used <= 0) {
1587 				if (!copied)
1588 					copied = used;
1589 				break;
1590 			}
1591 			if (WARN_ON_ONCE(used > len))
1592 				used = len;
1593 			seq += used;
1594 			copied += used;
1595 			offset += used;
1596 
1597 			/* If recv_actor drops the lock (e.g. TCP splice
1598 			 * receive) the skb pointer might be invalid when
1599 			 * getting here: tcp_collapse might have deleted it
1600 			 * while aggregating skbs from the socket queue.
1601 			 */
1602 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1603 			if (!skb)
1604 				break;
1605 			/* TCP coalescing might have appended data to the skb.
1606 			 * Try to splice more frags
1607 			 */
1608 			if (offset + 1 != skb->len)
1609 				continue;
1610 		}
1611 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1612 			tcp_eat_recv_skb(sk, skb);
1613 			++seq;
1614 			break;
1615 		}
1616 		tcp_eat_recv_skb(sk, skb);
1617 		if (!desc->count)
1618 			break;
1619 		WRITE_ONCE(tp->copied_seq, seq);
1620 	}
1621 	WRITE_ONCE(tp->copied_seq, seq);
1622 
1623 	tcp_rcv_space_adjust(sk);
1624 
1625 	/* Clean up data we have read: This will do ACK frames. */
1626 	if (copied > 0) {
1627 		tcp_recv_skb(sk, seq, &offset);
1628 		tcp_cleanup_rbuf(sk, copied);
1629 	}
1630 	return copied;
1631 }
1632 EXPORT_SYMBOL(tcp_read_sock);
1633 
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1634 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1635 {
1636 	struct sk_buff *skb;
1637 	int copied = 0;
1638 
1639 	if (sk->sk_state == TCP_LISTEN)
1640 		return -ENOTCONN;
1641 
1642 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1643 		u8 tcp_flags;
1644 		int used;
1645 
1646 		__skb_unlink(skb, &sk->sk_receive_queue);
1647 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1648 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1649 		used = recv_actor(sk, skb);
1650 		if (used < 0) {
1651 			if (!copied)
1652 				copied = used;
1653 			break;
1654 		}
1655 		copied += used;
1656 
1657 		if (tcp_flags & TCPHDR_FIN)
1658 			break;
1659 	}
1660 	return copied;
1661 }
1662 EXPORT_SYMBOL(tcp_read_skb);
1663 
tcp_read_done(struct sock * sk,size_t len)1664 void tcp_read_done(struct sock *sk, size_t len)
1665 {
1666 	struct tcp_sock *tp = tcp_sk(sk);
1667 	u32 seq = tp->copied_seq;
1668 	struct sk_buff *skb;
1669 	size_t left;
1670 	u32 offset;
1671 
1672 	if (sk->sk_state == TCP_LISTEN)
1673 		return;
1674 
1675 	left = len;
1676 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1677 		int used;
1678 
1679 		used = min_t(size_t, skb->len - offset, left);
1680 		seq += used;
1681 		left -= used;
1682 
1683 		if (skb->len > offset + used)
1684 			break;
1685 
1686 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1687 			tcp_eat_recv_skb(sk, skb);
1688 			++seq;
1689 			break;
1690 		}
1691 		tcp_eat_recv_skb(sk, skb);
1692 	}
1693 	WRITE_ONCE(tp->copied_seq, seq);
1694 
1695 	tcp_rcv_space_adjust(sk);
1696 
1697 	/* Clean up data we have read: This will do ACK frames. */
1698 	if (left != len)
1699 		tcp_cleanup_rbuf(sk, len - left);
1700 }
1701 EXPORT_SYMBOL(tcp_read_done);
1702 
tcp_peek_len(struct socket * sock)1703 int tcp_peek_len(struct socket *sock)
1704 {
1705 	return tcp_inq(sock->sk);
1706 }
1707 EXPORT_SYMBOL(tcp_peek_len);
1708 
1709 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1710 int tcp_set_rcvlowat(struct sock *sk, int val)
1711 {
1712 	int space, cap;
1713 
1714 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1715 		cap = sk->sk_rcvbuf >> 1;
1716 	else
1717 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1718 	val = min(val, cap);
1719 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1720 
1721 	/* Check if we need to signal EPOLLIN right now */
1722 	tcp_data_ready(sk);
1723 
1724 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1725 		return 0;
1726 
1727 	space = tcp_space_from_win(sk, val);
1728 	if (space > sk->sk_rcvbuf) {
1729 		WRITE_ONCE(sk->sk_rcvbuf, space);
1730 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1731 	}
1732 	return 0;
1733 }
1734 EXPORT_SYMBOL(tcp_set_rcvlowat);
1735 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1736 void tcp_update_recv_tstamps(struct sk_buff *skb,
1737 			     struct scm_timestamping_internal *tss)
1738 {
1739 	if (skb->tstamp)
1740 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1741 	else
1742 		tss->ts[0] = (struct timespec64) {0};
1743 
1744 	if (skb_hwtstamps(skb)->hwtstamp)
1745 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1746 	else
1747 		tss->ts[2] = (struct timespec64) {0};
1748 }
1749 
1750 #ifdef CONFIG_MMU
1751 static const struct vm_operations_struct tcp_vm_ops = {
1752 };
1753 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1754 int tcp_mmap(struct file *file, struct socket *sock,
1755 	     struct vm_area_struct *vma)
1756 {
1757 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1758 		return -EPERM;
1759 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1760 
1761 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1762 	vm_flags_set(vma, VM_MIXEDMAP);
1763 
1764 	vma->vm_ops = &tcp_vm_ops;
1765 	return 0;
1766 }
1767 EXPORT_SYMBOL(tcp_mmap);
1768 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1769 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1770 				       u32 *offset_frag)
1771 {
1772 	skb_frag_t *frag;
1773 
1774 	if (unlikely(offset_skb >= skb->len))
1775 		return NULL;
1776 
1777 	offset_skb -= skb_headlen(skb);
1778 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1779 		return NULL;
1780 
1781 	frag = skb_shinfo(skb)->frags;
1782 	while (offset_skb) {
1783 		if (skb_frag_size(frag) > offset_skb) {
1784 			*offset_frag = offset_skb;
1785 			return frag;
1786 		}
1787 		offset_skb -= skb_frag_size(frag);
1788 		++frag;
1789 	}
1790 	*offset_frag = 0;
1791 	return frag;
1792 }
1793 
can_map_frag(const skb_frag_t * frag)1794 static bool can_map_frag(const skb_frag_t *frag)
1795 {
1796 	struct page *page;
1797 
1798 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1799 		return false;
1800 
1801 	page = skb_frag_page(frag);
1802 
1803 	if (PageCompound(page) || page->mapping)
1804 		return false;
1805 
1806 	return true;
1807 }
1808 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1809 static int find_next_mappable_frag(const skb_frag_t *frag,
1810 				   int remaining_in_skb)
1811 {
1812 	int offset = 0;
1813 
1814 	if (likely(can_map_frag(frag)))
1815 		return 0;
1816 
1817 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1818 		offset += skb_frag_size(frag);
1819 		++frag;
1820 	}
1821 	return offset;
1822 }
1823 
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1824 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1825 					  struct tcp_zerocopy_receive *zc,
1826 					  struct sk_buff *skb, u32 offset)
1827 {
1828 	u32 frag_offset, partial_frag_remainder = 0;
1829 	int mappable_offset;
1830 	skb_frag_t *frag;
1831 
1832 	/* worst case: skip to next skb. try to improve on this case below */
1833 	zc->recv_skip_hint = skb->len - offset;
1834 
1835 	/* Find the frag containing this offset (and how far into that frag) */
1836 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1837 	if (!frag)
1838 		return;
1839 
1840 	if (frag_offset) {
1841 		struct skb_shared_info *info = skb_shinfo(skb);
1842 
1843 		/* We read part of the last frag, must recvmsg() rest of skb. */
1844 		if (frag == &info->frags[info->nr_frags - 1])
1845 			return;
1846 
1847 		/* Else, we must at least read the remainder in this frag. */
1848 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1849 		zc->recv_skip_hint -= partial_frag_remainder;
1850 		++frag;
1851 	}
1852 
1853 	/* partial_frag_remainder: If part way through a frag, must read rest.
1854 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1855 	 * in partial_frag_remainder.
1856 	 */
1857 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1858 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1859 }
1860 
1861 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1862 			      int flags, struct scm_timestamping_internal *tss,
1863 			      int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1864 static int receive_fallback_to_copy(struct sock *sk,
1865 				    struct tcp_zerocopy_receive *zc, int inq,
1866 				    struct scm_timestamping_internal *tss)
1867 {
1868 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1869 	struct msghdr msg = {};
1870 	struct iovec iov;
1871 	int err;
1872 
1873 	zc->length = 0;
1874 	zc->recv_skip_hint = 0;
1875 
1876 	if (copy_address != zc->copybuf_address)
1877 		return -EINVAL;
1878 
1879 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1880 				  inq, &iov, &msg.msg_iter);
1881 	if (err)
1882 		return err;
1883 
1884 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1885 				 tss, &zc->msg_flags);
1886 	if (err < 0)
1887 		return err;
1888 
1889 	zc->copybuf_len = err;
1890 	if (likely(zc->copybuf_len)) {
1891 		struct sk_buff *skb;
1892 		u32 offset;
1893 
1894 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1895 		if (skb)
1896 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1897 	}
1898 	return 0;
1899 }
1900 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1901 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1902 				   struct sk_buff *skb, u32 copylen,
1903 				   u32 *offset, u32 *seq)
1904 {
1905 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1906 	struct msghdr msg = {};
1907 	struct iovec iov;
1908 	int err;
1909 
1910 	if (copy_address != zc->copybuf_address)
1911 		return -EINVAL;
1912 
1913 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1914 				  copylen, &iov, &msg.msg_iter);
1915 	if (err)
1916 		return err;
1917 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1918 	if (err)
1919 		return err;
1920 	zc->recv_skip_hint -= copylen;
1921 	*offset += copylen;
1922 	*seq += copylen;
1923 	return (__s32)copylen;
1924 }
1925 
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1926 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1927 				  struct sock *sk,
1928 				  struct sk_buff *skb,
1929 				  u32 *seq,
1930 				  s32 copybuf_len,
1931 				  struct scm_timestamping_internal *tss)
1932 {
1933 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1934 
1935 	if (!copylen)
1936 		return 0;
1937 	/* skb is null if inq < PAGE_SIZE. */
1938 	if (skb) {
1939 		offset = *seq - TCP_SKB_CB(skb)->seq;
1940 	} else {
1941 		skb = tcp_recv_skb(sk, *seq, &offset);
1942 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1943 			tcp_update_recv_tstamps(skb, tss);
1944 			zc->msg_flags |= TCP_CMSG_TS;
1945 		}
1946 	}
1947 
1948 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1949 						  seq);
1950 	return zc->copybuf_len < 0 ? 0 : copylen;
1951 }
1952 
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1953 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1954 					      struct page **pending_pages,
1955 					      unsigned long pages_remaining,
1956 					      unsigned long *address,
1957 					      u32 *length,
1958 					      u32 *seq,
1959 					      struct tcp_zerocopy_receive *zc,
1960 					      u32 total_bytes_to_map,
1961 					      int err)
1962 {
1963 	/* At least one page did not map. Try zapping if we skipped earlier. */
1964 	if (err == -EBUSY &&
1965 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1966 		u32 maybe_zap_len;
1967 
1968 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1969 				*length + /* Mapped or pending */
1970 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1971 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1972 		err = 0;
1973 	}
1974 
1975 	if (!err) {
1976 		unsigned long leftover_pages = pages_remaining;
1977 		int bytes_mapped;
1978 
1979 		/* We called zap_page_range_single, try to reinsert. */
1980 		err = vm_insert_pages(vma, *address,
1981 				      pending_pages,
1982 				      &pages_remaining);
1983 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1984 		*seq += bytes_mapped;
1985 		*address += bytes_mapped;
1986 	}
1987 	if (err) {
1988 		/* Either we were unable to zap, OR we zapped, retried an
1989 		 * insert, and still had an issue. Either ways, pages_remaining
1990 		 * is the number of pages we were unable to map, and we unroll
1991 		 * some state we speculatively touched before.
1992 		 */
1993 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1994 
1995 		*length -= bytes_not_mapped;
1996 		zc->recv_skip_hint += bytes_not_mapped;
1997 	}
1998 	return err;
1999 }
2000 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2001 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2002 					struct page **pages,
2003 					unsigned int pages_to_map,
2004 					unsigned long *address,
2005 					u32 *length,
2006 					u32 *seq,
2007 					struct tcp_zerocopy_receive *zc,
2008 					u32 total_bytes_to_map)
2009 {
2010 	unsigned long pages_remaining = pages_to_map;
2011 	unsigned int pages_mapped;
2012 	unsigned int bytes_mapped;
2013 	int err;
2014 
2015 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2016 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2017 	bytes_mapped = PAGE_SIZE * pages_mapped;
2018 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2019 	 * mapping (some but not all of the pages).
2020 	 */
2021 	*seq += bytes_mapped;
2022 	*address += bytes_mapped;
2023 
2024 	if (likely(!err))
2025 		return 0;
2026 
2027 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2028 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2029 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2030 		err);
2031 }
2032 
2033 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2034 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2035 				      struct tcp_zerocopy_receive *zc,
2036 				      struct scm_timestamping_internal *tss)
2037 {
2038 	unsigned long msg_control_addr;
2039 	struct msghdr cmsg_dummy;
2040 
2041 	msg_control_addr = (unsigned long)zc->msg_control;
2042 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2043 	cmsg_dummy.msg_controllen =
2044 		(__kernel_size_t)zc->msg_controllen;
2045 	cmsg_dummy.msg_flags = in_compat_syscall()
2046 		? MSG_CMSG_COMPAT : 0;
2047 	cmsg_dummy.msg_control_is_user = true;
2048 	zc->msg_flags = 0;
2049 	if (zc->msg_control == msg_control_addr &&
2050 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2051 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2052 		zc->msg_control = (__u64)
2053 			((uintptr_t)cmsg_dummy.msg_control_user);
2054 		zc->msg_controllen =
2055 			(__u64)cmsg_dummy.msg_controllen;
2056 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2057 	}
2058 }
2059 
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2060 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2061 					   unsigned long address,
2062 					   bool *mmap_locked)
2063 {
2064 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2065 
2066 	if (vma) {
2067 		if (vma->vm_ops != &tcp_vm_ops) {
2068 			vma_end_read(vma);
2069 			return NULL;
2070 		}
2071 		*mmap_locked = false;
2072 		return vma;
2073 	}
2074 
2075 	mmap_read_lock(mm);
2076 	vma = vma_lookup(mm, address);
2077 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2078 		mmap_read_unlock(mm);
2079 		return NULL;
2080 	}
2081 	*mmap_locked = true;
2082 	return vma;
2083 }
2084 
2085 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2086 static int tcp_zerocopy_receive(struct sock *sk,
2087 				struct tcp_zerocopy_receive *zc,
2088 				struct scm_timestamping_internal *tss)
2089 {
2090 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2091 	unsigned long address = (unsigned long)zc->address;
2092 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2093 	s32 copybuf_len = zc->copybuf_len;
2094 	struct tcp_sock *tp = tcp_sk(sk);
2095 	const skb_frag_t *frags = NULL;
2096 	unsigned int pages_to_map = 0;
2097 	struct vm_area_struct *vma;
2098 	struct sk_buff *skb = NULL;
2099 	u32 seq = tp->copied_seq;
2100 	u32 total_bytes_to_map;
2101 	int inq = tcp_inq(sk);
2102 	bool mmap_locked;
2103 	int ret;
2104 
2105 	zc->copybuf_len = 0;
2106 	zc->msg_flags = 0;
2107 
2108 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2109 		return -EINVAL;
2110 
2111 	if (sk->sk_state == TCP_LISTEN)
2112 		return -ENOTCONN;
2113 
2114 	sock_rps_record_flow(sk);
2115 
2116 	if (inq && inq <= copybuf_len)
2117 		return receive_fallback_to_copy(sk, zc, inq, tss);
2118 
2119 	if (inq < PAGE_SIZE) {
2120 		zc->length = 0;
2121 		zc->recv_skip_hint = inq;
2122 		if (!inq && sock_flag(sk, SOCK_DONE))
2123 			return -EIO;
2124 		return 0;
2125 	}
2126 
2127 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2128 	if (!vma)
2129 		return -EINVAL;
2130 
2131 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2132 	avail_len = min_t(u32, vma_len, inq);
2133 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2134 	if (total_bytes_to_map) {
2135 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2136 			zap_page_range_single(vma, address, total_bytes_to_map,
2137 					      NULL);
2138 		zc->length = total_bytes_to_map;
2139 		zc->recv_skip_hint = 0;
2140 	} else {
2141 		zc->length = avail_len;
2142 		zc->recv_skip_hint = avail_len;
2143 	}
2144 	ret = 0;
2145 	while (length + PAGE_SIZE <= zc->length) {
2146 		int mappable_offset;
2147 		struct page *page;
2148 
2149 		if (zc->recv_skip_hint < PAGE_SIZE) {
2150 			u32 offset_frag;
2151 
2152 			if (skb) {
2153 				if (zc->recv_skip_hint > 0)
2154 					break;
2155 				skb = skb->next;
2156 				offset = seq - TCP_SKB_CB(skb)->seq;
2157 			} else {
2158 				skb = tcp_recv_skb(sk, seq, &offset);
2159 			}
2160 
2161 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2162 				tcp_update_recv_tstamps(skb, tss);
2163 				zc->msg_flags |= TCP_CMSG_TS;
2164 			}
2165 			zc->recv_skip_hint = skb->len - offset;
2166 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2167 			if (!frags || offset_frag)
2168 				break;
2169 		}
2170 
2171 		mappable_offset = find_next_mappable_frag(frags,
2172 							  zc->recv_skip_hint);
2173 		if (mappable_offset) {
2174 			zc->recv_skip_hint = mappable_offset;
2175 			break;
2176 		}
2177 		page = skb_frag_page(frags);
2178 		prefetchw(page);
2179 		pages[pages_to_map++] = page;
2180 		length += PAGE_SIZE;
2181 		zc->recv_skip_hint -= PAGE_SIZE;
2182 		frags++;
2183 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2184 		    zc->recv_skip_hint < PAGE_SIZE) {
2185 			/* Either full batch, or we're about to go to next skb
2186 			 * (and we cannot unroll failed ops across skbs).
2187 			 */
2188 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2189 							   pages_to_map,
2190 							   &address, &length,
2191 							   &seq, zc,
2192 							   total_bytes_to_map);
2193 			if (ret)
2194 				goto out;
2195 			pages_to_map = 0;
2196 		}
2197 	}
2198 	if (pages_to_map) {
2199 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2200 						   &address, &length, &seq,
2201 						   zc, total_bytes_to_map);
2202 	}
2203 out:
2204 	if (mmap_locked)
2205 		mmap_read_unlock(current->mm);
2206 	else
2207 		vma_end_read(vma);
2208 	/* Try to copy straggler data. */
2209 	if (!ret)
2210 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2211 
2212 	if (length + copylen) {
2213 		WRITE_ONCE(tp->copied_seq, seq);
2214 		tcp_rcv_space_adjust(sk);
2215 
2216 		/* Clean up data we have read: This will do ACK frames. */
2217 		tcp_recv_skb(sk, seq, &offset);
2218 		tcp_cleanup_rbuf(sk, length + copylen);
2219 		ret = 0;
2220 		if (length == zc->length)
2221 			zc->recv_skip_hint = 0;
2222 	} else {
2223 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2224 			ret = -EIO;
2225 	}
2226 	zc->length = length;
2227 	return ret;
2228 }
2229 #endif
2230 
2231 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2232 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2233 			struct scm_timestamping_internal *tss)
2234 {
2235 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2236 	bool has_timestamping = false;
2237 
2238 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2239 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2240 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2241 				if (new_tstamp) {
2242 					struct __kernel_timespec kts = {
2243 						.tv_sec = tss->ts[0].tv_sec,
2244 						.tv_nsec = tss->ts[0].tv_nsec,
2245 					};
2246 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2247 						 sizeof(kts), &kts);
2248 				} else {
2249 					struct __kernel_old_timespec ts_old = {
2250 						.tv_sec = tss->ts[0].tv_sec,
2251 						.tv_nsec = tss->ts[0].tv_nsec,
2252 					};
2253 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2254 						 sizeof(ts_old), &ts_old);
2255 				}
2256 			} else {
2257 				if (new_tstamp) {
2258 					struct __kernel_sock_timeval stv = {
2259 						.tv_sec = tss->ts[0].tv_sec,
2260 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2261 					};
2262 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2263 						 sizeof(stv), &stv);
2264 				} else {
2265 					struct __kernel_old_timeval tv = {
2266 						.tv_sec = tss->ts[0].tv_sec,
2267 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2268 					};
2269 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2270 						 sizeof(tv), &tv);
2271 				}
2272 			}
2273 		}
2274 
2275 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2276 			has_timestamping = true;
2277 		else
2278 			tss->ts[0] = (struct timespec64) {0};
2279 	}
2280 
2281 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2282 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2283 			has_timestamping = true;
2284 		else
2285 			tss->ts[2] = (struct timespec64) {0};
2286 	}
2287 
2288 	if (has_timestamping) {
2289 		tss->ts[1] = (struct timespec64) {0};
2290 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2291 			put_cmsg_scm_timestamping64(msg, tss);
2292 		else
2293 			put_cmsg_scm_timestamping(msg, tss);
2294 	}
2295 }
2296 
tcp_inq_hint(struct sock * sk)2297 static int tcp_inq_hint(struct sock *sk)
2298 {
2299 	const struct tcp_sock *tp = tcp_sk(sk);
2300 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2301 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2302 	int inq;
2303 
2304 	inq = rcv_nxt - copied_seq;
2305 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2306 		lock_sock(sk);
2307 		inq = tp->rcv_nxt - tp->copied_seq;
2308 		release_sock(sk);
2309 	}
2310 	/* After receiving a FIN, tell the user-space to continue reading
2311 	 * by returning a non-zero inq.
2312 	 */
2313 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2314 		inq = 1;
2315 	return inq;
2316 }
2317 
2318 /*
2319  *	This routine copies from a sock struct into the user buffer.
2320  *
2321  *	Technical note: in 2.3 we work on _locked_ socket, so that
2322  *	tricks with *seq access order and skb->users are not required.
2323  *	Probably, code can be easily improved even more.
2324  */
2325 
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2326 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2327 			      int flags, struct scm_timestamping_internal *tss,
2328 			      int *cmsg_flags)
2329 {
2330 	struct tcp_sock *tp = tcp_sk(sk);
2331 	int copied = 0;
2332 	u32 peek_seq;
2333 	u32 *seq;
2334 	unsigned long used;
2335 	int err;
2336 	int target;		/* Read at least this many bytes */
2337 	long timeo;
2338 	struct sk_buff *skb, *last;
2339 	u32 urg_hole = 0;
2340 
2341 	err = -ENOTCONN;
2342 	if (sk->sk_state == TCP_LISTEN)
2343 		goto out;
2344 
2345 	if (tp->recvmsg_inq) {
2346 		*cmsg_flags = TCP_CMSG_INQ;
2347 		msg->msg_get_inq = 1;
2348 	}
2349 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2350 
2351 	/* Urgent data needs to be handled specially. */
2352 	if (flags & MSG_OOB)
2353 		goto recv_urg;
2354 
2355 	if (unlikely(tp->repair)) {
2356 		err = -EPERM;
2357 		if (!(flags & MSG_PEEK))
2358 			goto out;
2359 
2360 		if (tp->repair_queue == TCP_SEND_QUEUE)
2361 			goto recv_sndq;
2362 
2363 		err = -EINVAL;
2364 		if (tp->repair_queue == TCP_NO_QUEUE)
2365 			goto out;
2366 
2367 		/* 'common' recv queue MSG_PEEK-ing */
2368 	}
2369 
2370 	seq = &tp->copied_seq;
2371 	if (flags & MSG_PEEK) {
2372 		peek_seq = tp->copied_seq;
2373 		seq = &peek_seq;
2374 	}
2375 
2376 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2377 
2378 	do {
2379 		u32 offset;
2380 
2381 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2382 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2383 			if (copied)
2384 				break;
2385 			if (signal_pending(current)) {
2386 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2387 				break;
2388 			}
2389 		}
2390 
2391 		/* Next get a buffer. */
2392 
2393 		last = skb_peek_tail(&sk->sk_receive_queue);
2394 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2395 			last = skb;
2396 			/* Now that we have two receive queues this
2397 			 * shouldn't happen.
2398 			 */
2399 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2400 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2401 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2402 				 flags))
2403 				break;
2404 
2405 			offset = *seq - TCP_SKB_CB(skb)->seq;
2406 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2407 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2408 				offset--;
2409 			}
2410 			if (offset < skb->len)
2411 				goto found_ok_skb;
2412 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2413 				goto found_fin_ok;
2414 			WARN(!(flags & MSG_PEEK),
2415 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2416 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2417 		}
2418 
2419 		/* Well, if we have backlog, try to process it now yet. */
2420 
2421 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2422 			break;
2423 
2424 		if (copied) {
2425 			if (!timeo ||
2426 			    sk->sk_err ||
2427 			    sk->sk_state == TCP_CLOSE ||
2428 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2429 			    signal_pending(current))
2430 				break;
2431 		} else {
2432 			if (sock_flag(sk, SOCK_DONE))
2433 				break;
2434 
2435 			if (sk->sk_err) {
2436 				copied = sock_error(sk);
2437 				break;
2438 			}
2439 
2440 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2441 				break;
2442 
2443 			if (sk->sk_state == TCP_CLOSE) {
2444 				/* This occurs when user tries to read
2445 				 * from never connected socket.
2446 				 */
2447 				copied = -ENOTCONN;
2448 				break;
2449 			}
2450 
2451 			if (!timeo) {
2452 				copied = -EAGAIN;
2453 				break;
2454 			}
2455 
2456 			if (signal_pending(current)) {
2457 				copied = sock_intr_errno(timeo);
2458 				break;
2459 			}
2460 		}
2461 
2462 		if (copied >= target) {
2463 			/* Do not sleep, just process backlog. */
2464 			__sk_flush_backlog(sk);
2465 		} else {
2466 			tcp_cleanup_rbuf(sk, copied);
2467 			err = sk_wait_data(sk, &timeo, last);
2468 			if (err < 0) {
2469 				err = copied ? : err;
2470 				goto out;
2471 			}
2472 		}
2473 
2474 		if ((flags & MSG_PEEK) &&
2475 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2476 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2477 					    current->comm,
2478 					    task_pid_nr(current));
2479 			peek_seq = tp->copied_seq;
2480 		}
2481 		continue;
2482 
2483 found_ok_skb:
2484 		/* Ok so how much can we use? */
2485 		used = skb->len - offset;
2486 		if (len < used)
2487 			used = len;
2488 
2489 		/* Do we have urgent data here? */
2490 		if (unlikely(tp->urg_data)) {
2491 			u32 urg_offset = tp->urg_seq - *seq;
2492 			if (urg_offset < used) {
2493 				if (!urg_offset) {
2494 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2495 						WRITE_ONCE(*seq, *seq + 1);
2496 						urg_hole++;
2497 						offset++;
2498 						used--;
2499 						if (!used)
2500 							goto skip_copy;
2501 					}
2502 				} else
2503 					used = urg_offset;
2504 			}
2505 		}
2506 
2507 		if (!(flags & MSG_TRUNC)) {
2508 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2509 			if (err) {
2510 				/* Exception. Bailout! */
2511 				if (!copied)
2512 					copied = -EFAULT;
2513 				break;
2514 			}
2515 		}
2516 
2517 		WRITE_ONCE(*seq, *seq + used);
2518 		copied += used;
2519 		len -= used;
2520 
2521 		tcp_rcv_space_adjust(sk);
2522 
2523 skip_copy:
2524 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2525 			WRITE_ONCE(tp->urg_data, 0);
2526 			tcp_fast_path_check(sk);
2527 		}
2528 
2529 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2530 			tcp_update_recv_tstamps(skb, tss);
2531 			*cmsg_flags |= TCP_CMSG_TS;
2532 		}
2533 
2534 		if (used + offset < skb->len)
2535 			continue;
2536 
2537 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2538 			goto found_fin_ok;
2539 		if (!(flags & MSG_PEEK))
2540 			tcp_eat_recv_skb(sk, skb);
2541 		continue;
2542 
2543 found_fin_ok:
2544 		/* Process the FIN. */
2545 		WRITE_ONCE(*seq, *seq + 1);
2546 		if (!(flags & MSG_PEEK))
2547 			tcp_eat_recv_skb(sk, skb);
2548 		break;
2549 	} while (len > 0);
2550 
2551 	/* According to UNIX98, msg_name/msg_namelen are ignored
2552 	 * on connected socket. I was just happy when found this 8) --ANK
2553 	 */
2554 
2555 	/* Clean up data we have read: This will do ACK frames. */
2556 	tcp_cleanup_rbuf(sk, copied);
2557 	return copied;
2558 
2559 out:
2560 	return err;
2561 
2562 recv_urg:
2563 	err = tcp_recv_urg(sk, msg, len, flags);
2564 	goto out;
2565 
2566 recv_sndq:
2567 	err = tcp_peek_sndq(sk, msg, len);
2568 	goto out;
2569 }
2570 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2571 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2572 		int *addr_len)
2573 {
2574 	int cmsg_flags = 0, ret;
2575 	struct scm_timestamping_internal tss;
2576 
2577 	if (unlikely(flags & MSG_ERRQUEUE))
2578 		return inet_recv_error(sk, msg, len, addr_len);
2579 
2580 	if (sk_can_busy_loop(sk) &&
2581 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2582 	    sk->sk_state == TCP_ESTABLISHED)
2583 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2584 
2585 	lock_sock(sk);
2586 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2587 	release_sock(sk);
2588 
2589 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2590 		if (cmsg_flags & TCP_CMSG_TS)
2591 			tcp_recv_timestamp(msg, sk, &tss);
2592 		if (msg->msg_get_inq) {
2593 			msg->msg_inq = tcp_inq_hint(sk);
2594 			if (cmsg_flags & TCP_CMSG_INQ)
2595 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2596 					 sizeof(msg->msg_inq), &msg->msg_inq);
2597 		}
2598 	}
2599 
2600 	trace_android_rvh_tcp_recvmsg(sk, msg, len, flags, addr_len);
2601 
2602 	return ret;
2603 }
2604 EXPORT_SYMBOL(tcp_recvmsg);
2605 
tcp_set_state(struct sock * sk,int state)2606 void tcp_set_state(struct sock *sk, int state)
2607 {
2608 	int oldstate = sk->sk_state;
2609 
2610 	trace_android_vh_tcp_state_change(sk, TCP_STATE_CHANGE_REASON_NORMAL, state);
2611 
2612 	/* We defined a new enum for TCP states that are exported in BPF
2613 	 * so as not force the internal TCP states to be frozen. The
2614 	 * following checks will detect if an internal state value ever
2615 	 * differs from the BPF value. If this ever happens, then we will
2616 	 * need to remap the internal value to the BPF value before calling
2617 	 * tcp_call_bpf_2arg.
2618 	 */
2619 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2620 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2621 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2622 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2623 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2624 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2625 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2626 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2627 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2628 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2629 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2630 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2631 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2632 
2633 	/* bpf uapi header bpf.h defines an anonymous enum with values
2634 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2635 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2636 	 * But clang built vmlinux does not have this enum in DWARF
2637 	 * since clang removes the above code before generating IR/debuginfo.
2638 	 * Let us explicitly emit the type debuginfo to ensure the
2639 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2640 	 * regardless of which compiler is used.
2641 	 */
2642 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2643 
2644 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2645 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2646 
2647 	switch (state) {
2648 	case TCP_ESTABLISHED:
2649 		if (oldstate != TCP_ESTABLISHED)
2650 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2651 		break;
2652 	case TCP_CLOSE_WAIT:
2653 		if (oldstate == TCP_SYN_RECV)
2654 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2655 		break;
2656 
2657 	case TCP_CLOSE:
2658 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2659 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2660 
2661 		sk->sk_prot->unhash(sk);
2662 		if (inet_csk(sk)->icsk_bind_hash &&
2663 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2664 			inet_put_port(sk);
2665 		fallthrough;
2666 	default:
2667 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2668 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2669 	}
2670 
2671 	/* Change state AFTER socket is unhashed to avoid closed
2672 	 * socket sitting in hash tables.
2673 	 */
2674 	inet_sk_state_store(sk, state);
2675 }
2676 EXPORT_SYMBOL_GPL(tcp_set_state);
2677 
2678 /*
2679  *	State processing on a close. This implements the state shift for
2680  *	sending our FIN frame. Note that we only send a FIN for some
2681  *	states. A shutdown() may have already sent the FIN, or we may be
2682  *	closed.
2683  */
2684 
2685 static const unsigned char new_state[16] = {
2686   /* current state:        new state:      action:	*/
2687   [0 /* (Invalid) */]	= TCP_CLOSE,
2688   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2689   [TCP_SYN_SENT]	= TCP_CLOSE,
2690   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2691   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2692   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2693   [TCP_TIME_WAIT]	= TCP_CLOSE,
2694   [TCP_CLOSE]		= TCP_CLOSE,
2695   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2696   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2697   [TCP_LISTEN]		= TCP_CLOSE,
2698   [TCP_CLOSING]		= TCP_CLOSING,
2699   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2700 };
2701 
tcp_close_state(struct sock * sk)2702 static int tcp_close_state(struct sock *sk)
2703 {
2704 	int next = (int)new_state[sk->sk_state];
2705 	int ns = next & TCP_STATE_MASK;
2706 
2707 	tcp_set_state(sk, ns);
2708 
2709 	return next & TCP_ACTION_FIN;
2710 }
2711 
2712 /*
2713  *	Shutdown the sending side of a connection. Much like close except
2714  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2715  */
2716 
tcp_shutdown(struct sock * sk,int how)2717 void tcp_shutdown(struct sock *sk, int how)
2718 {
2719 	/*	We need to grab some memory, and put together a FIN,
2720 	 *	and then put it into the queue to be sent.
2721 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2722 	 */
2723 	if (!(how & SEND_SHUTDOWN))
2724 		return;
2725 
2726 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2727 	if ((1 << sk->sk_state) &
2728 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2729 	     TCPF_CLOSE_WAIT)) {
2730 		/* Clear out any half completed packets.  FIN if needed. */
2731 		if (tcp_close_state(sk))
2732 			tcp_send_fin(sk);
2733 	}
2734 }
2735 EXPORT_SYMBOL(tcp_shutdown);
2736 
tcp_orphan_count_sum(void)2737 int tcp_orphan_count_sum(void)
2738 {
2739 	int i, total = 0;
2740 
2741 	for_each_possible_cpu(i)
2742 		total += per_cpu(tcp_orphan_count, i);
2743 
2744 	return max(total, 0);
2745 }
2746 
2747 static int tcp_orphan_cache;
2748 static struct timer_list tcp_orphan_timer;
2749 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2750 
tcp_orphan_update(struct timer_list * unused)2751 static void tcp_orphan_update(struct timer_list *unused)
2752 {
2753 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2754 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2755 }
2756 
tcp_too_many_orphans(int shift)2757 static bool tcp_too_many_orphans(int shift)
2758 {
2759 	return READ_ONCE(tcp_orphan_cache) << shift >
2760 		READ_ONCE(sysctl_tcp_max_orphans);
2761 }
2762 
tcp_check_oom(struct sock * sk,int shift)2763 bool tcp_check_oom(struct sock *sk, int shift)
2764 {
2765 	bool too_many_orphans, out_of_socket_memory;
2766 
2767 	too_many_orphans = tcp_too_many_orphans(shift);
2768 	out_of_socket_memory = tcp_out_of_memory(sk);
2769 
2770 	if (too_many_orphans)
2771 		net_info_ratelimited("too many orphaned sockets\n");
2772 	if (out_of_socket_memory)
2773 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2774 	return too_many_orphans || out_of_socket_memory;
2775 }
2776 
__tcp_close(struct sock * sk,long timeout)2777 void __tcp_close(struct sock *sk, long timeout)
2778 {
2779 	struct sk_buff *skb;
2780 	int data_was_unread = 0;
2781 	int state;
2782 
2783 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2784 
2785 	if (sk->sk_state == TCP_LISTEN) {
2786 		tcp_set_state(sk, TCP_CLOSE);
2787 
2788 		/* Special case. */
2789 		inet_csk_listen_stop(sk);
2790 
2791 		goto adjudge_to_death;
2792 	}
2793 
2794 	/*  We need to flush the recv. buffs.  We do this only on the
2795 	 *  descriptor close, not protocol-sourced closes, because the
2796 	 *  reader process may not have drained the data yet!
2797 	 */
2798 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2799 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2800 
2801 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2802 			len--;
2803 		data_was_unread += len;
2804 		__kfree_skb(skb);
2805 	}
2806 
2807 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2808 	if (sk->sk_state == TCP_CLOSE)
2809 		goto adjudge_to_death;
2810 
2811 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2812 	 * data was lost. To witness the awful effects of the old behavior of
2813 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2814 	 * GET in an FTP client, suspend the process, wait for the client to
2815 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2816 	 * Note: timeout is always zero in such a case.
2817 	 */
2818 	if (unlikely(tcp_sk(sk)->repair)) {
2819 		sk->sk_prot->disconnect(sk, 0);
2820 	} else if (data_was_unread) {
2821 		/* Unread data was tossed, zap the connection. */
2822 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2823 		tcp_set_state(sk, TCP_CLOSE);
2824 		tcp_send_active_reset(sk, sk->sk_allocation);
2825 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2826 		/* Check zero linger _after_ checking for unread data. */
2827 		sk->sk_prot->disconnect(sk, 0);
2828 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2829 	} else if (tcp_close_state(sk)) {
2830 		/* We FIN if the application ate all the data before
2831 		 * zapping the connection.
2832 		 */
2833 
2834 		/* RED-PEN. Formally speaking, we have broken TCP state
2835 		 * machine. State transitions:
2836 		 *
2837 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2838 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2839 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2840 		 *
2841 		 * are legal only when FIN has been sent (i.e. in window),
2842 		 * rather than queued out of window. Purists blame.
2843 		 *
2844 		 * F.e. "RFC state" is ESTABLISHED,
2845 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2846 		 *
2847 		 * The visible declinations are that sometimes
2848 		 * we enter time-wait state, when it is not required really
2849 		 * (harmless), do not send active resets, when they are
2850 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2851 		 * they look as CLOSING or LAST_ACK for Linux)
2852 		 * Probably, I missed some more holelets.
2853 		 * 						--ANK
2854 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2855 		 * in a single packet! (May consider it later but will
2856 		 * probably need API support or TCP_CORK SYN-ACK until
2857 		 * data is written and socket is closed.)
2858 		 */
2859 		tcp_send_fin(sk);
2860 	}
2861 
2862 	sk_stream_wait_close(sk, timeout);
2863 
2864 adjudge_to_death:
2865 	state = sk->sk_state;
2866 	sock_hold(sk);
2867 	sock_orphan(sk);
2868 
2869 	local_bh_disable();
2870 	bh_lock_sock(sk);
2871 	/* remove backlog if any, without releasing ownership. */
2872 	__release_sock(sk);
2873 
2874 	this_cpu_inc(tcp_orphan_count);
2875 
2876 	/* Have we already been destroyed by a softirq or backlog? */
2877 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2878 		goto out;
2879 
2880 	/*	This is a (useful) BSD violating of the RFC. There is a
2881 	 *	problem with TCP as specified in that the other end could
2882 	 *	keep a socket open forever with no application left this end.
2883 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2884 	 *	our end. If they send after that then tough - BUT: long enough
2885 	 *	that we won't make the old 4*rto = almost no time - whoops
2886 	 *	reset mistake.
2887 	 *
2888 	 *	Nope, it was not mistake. It is really desired behaviour
2889 	 *	f.e. on http servers, when such sockets are useless, but
2890 	 *	consume significant resources. Let's do it with special
2891 	 *	linger2	option.					--ANK
2892 	 */
2893 
2894 	if (sk->sk_state == TCP_FIN_WAIT2) {
2895 		struct tcp_sock *tp = tcp_sk(sk);
2896 		if (READ_ONCE(tp->linger2) < 0) {
2897 			tcp_set_state(sk, TCP_CLOSE);
2898 			tcp_send_active_reset(sk, GFP_ATOMIC);
2899 			__NET_INC_STATS(sock_net(sk),
2900 					LINUX_MIB_TCPABORTONLINGER);
2901 		} else {
2902 			const int tmo = tcp_fin_time(sk);
2903 
2904 			if (tmo > TCP_TIMEWAIT_LEN) {
2905 				inet_csk_reset_keepalive_timer(sk,
2906 						tmo - TCP_TIMEWAIT_LEN);
2907 			} else {
2908 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2909 				goto out;
2910 			}
2911 		}
2912 	}
2913 	if (sk->sk_state != TCP_CLOSE) {
2914 		if (tcp_check_oom(sk, 0)) {
2915 			tcp_set_state(sk, TCP_CLOSE);
2916 			tcp_send_active_reset(sk, GFP_ATOMIC);
2917 			__NET_INC_STATS(sock_net(sk),
2918 					LINUX_MIB_TCPABORTONMEMORY);
2919 		} else if (!check_net(sock_net(sk))) {
2920 			/* Not possible to send reset; just close */
2921 			tcp_set_state(sk, TCP_CLOSE);
2922 		}
2923 	}
2924 
2925 	if (sk->sk_state == TCP_CLOSE) {
2926 		struct request_sock *req;
2927 
2928 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2929 						lockdep_sock_is_held(sk));
2930 		/* We could get here with a non-NULL req if the socket is
2931 		 * aborted (e.g., closed with unread data) before 3WHS
2932 		 * finishes.
2933 		 */
2934 		if (req)
2935 			reqsk_fastopen_remove(sk, req, false);
2936 		inet_csk_destroy_sock(sk);
2937 	}
2938 	/* Otherwise, socket is reprieved until protocol close. */
2939 
2940 out:
2941 	bh_unlock_sock(sk);
2942 	local_bh_enable();
2943 }
2944 
tcp_close(struct sock * sk,long timeout)2945 void tcp_close(struct sock *sk, long timeout)
2946 {
2947 	lock_sock(sk);
2948 	__tcp_close(sk, timeout);
2949 	release_sock(sk);
2950 	if (!sk->sk_net_refcnt)
2951 		inet_csk_clear_xmit_timers_sync(sk);
2952 	sock_put(sk);
2953 }
2954 EXPORT_SYMBOL(tcp_close);
2955 
2956 /* These states need RST on ABORT according to RFC793 */
2957 
tcp_need_reset(int state)2958 static inline bool tcp_need_reset(int state)
2959 {
2960 	return (1 << state) &
2961 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2962 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2963 }
2964 
tcp_rtx_queue_purge(struct sock * sk)2965 static void tcp_rtx_queue_purge(struct sock *sk)
2966 {
2967 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2968 
2969 	tcp_sk(sk)->highest_sack = NULL;
2970 	while (p) {
2971 		struct sk_buff *skb = rb_to_skb(p);
2972 
2973 		p = rb_next(p);
2974 		/* Since we are deleting whole queue, no need to
2975 		 * list_del(&skb->tcp_tsorted_anchor)
2976 		 */
2977 		tcp_rtx_queue_unlink(skb, sk);
2978 		tcp_wmem_free_skb(sk, skb);
2979 	}
2980 }
2981 
tcp_write_queue_purge(struct sock * sk)2982 void tcp_write_queue_purge(struct sock *sk)
2983 {
2984 	struct sk_buff *skb;
2985 
2986 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2987 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2988 		tcp_skb_tsorted_anchor_cleanup(skb);
2989 		tcp_wmem_free_skb(sk, skb);
2990 	}
2991 	tcp_rtx_queue_purge(sk);
2992 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2993 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2994 	tcp_sk(sk)->packets_out = 0;
2995 	inet_csk(sk)->icsk_backoff = 0;
2996 }
2997 
tcp_disconnect(struct sock * sk,int flags)2998 int tcp_disconnect(struct sock *sk, int flags)
2999 {
3000 	struct inet_sock *inet = inet_sk(sk);
3001 	struct inet_connection_sock *icsk = inet_csk(sk);
3002 	struct tcp_sock *tp = tcp_sk(sk);
3003 	int old_state = sk->sk_state;
3004 	u32 seq;
3005 
3006 	if (old_state != TCP_CLOSE)
3007 		tcp_set_state(sk, TCP_CLOSE);
3008 
3009 	/* ABORT function of RFC793 */
3010 	if (old_state == TCP_LISTEN) {
3011 		inet_csk_listen_stop(sk);
3012 	} else if (unlikely(tp->repair)) {
3013 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3014 	} else if (tcp_need_reset(old_state) ||
3015 		   (tp->snd_nxt != tp->write_seq &&
3016 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3017 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3018 		 * states
3019 		 */
3020 		tcp_send_active_reset(sk, gfp_any());
3021 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3022 	} else if (old_state == TCP_SYN_SENT)
3023 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3024 
3025 	tcp_clear_xmit_timers(sk);
3026 	__skb_queue_purge(&sk->sk_receive_queue);
3027 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3028 	WRITE_ONCE(tp->urg_data, 0);
3029 	tcp_write_queue_purge(sk);
3030 	tcp_fastopen_active_disable_ofo_check(sk);
3031 	skb_rbtree_purge(&tp->out_of_order_queue);
3032 
3033 	inet->inet_dport = 0;
3034 
3035 	inet_bhash2_reset_saddr(sk);
3036 
3037 	WRITE_ONCE(sk->sk_shutdown, 0);
3038 	sock_reset_flag(sk, SOCK_DONE);
3039 	tp->srtt_us = 0;
3040 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3041 	tp->rcv_rtt_last_tsecr = 0;
3042 
3043 	seq = tp->write_seq + tp->max_window + 2;
3044 	if (!seq)
3045 		seq = 1;
3046 	WRITE_ONCE(tp->write_seq, seq);
3047 
3048 	icsk->icsk_backoff = 0;
3049 	icsk->icsk_probes_out = 0;
3050 	icsk->icsk_probes_tstamp = 0;
3051 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3052 	icsk->icsk_rto_min = TCP_RTO_MIN;
3053 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3054 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3055 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3056 	tp->snd_cwnd_cnt = 0;
3057 	tp->is_cwnd_limited = 0;
3058 	tp->max_packets_out = 0;
3059 	tp->window_clamp = 0;
3060 	tp->delivered = 0;
3061 	tp->delivered_ce = 0;
3062 	if (icsk->icsk_ca_ops->release)
3063 		icsk->icsk_ca_ops->release(sk);
3064 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3065 	icsk->icsk_ca_initialized = 0;
3066 	tcp_set_ca_state(sk, TCP_CA_Open);
3067 	tp->is_sack_reneg = 0;
3068 	tcp_clear_retrans(tp);
3069 	tp->total_retrans = 0;
3070 	inet_csk_delack_init(sk);
3071 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3072 	 * issue in __tcp_select_window()
3073 	 */
3074 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3075 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3076 	__sk_dst_reset(sk);
3077 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3078 	tcp_saved_syn_free(tp);
3079 	tp->compressed_ack = 0;
3080 	tp->segs_in = 0;
3081 	tp->segs_out = 0;
3082 	tp->bytes_sent = 0;
3083 	tp->bytes_acked = 0;
3084 	tp->bytes_received = 0;
3085 	tp->bytes_retrans = 0;
3086 	tp->data_segs_in = 0;
3087 	tp->data_segs_out = 0;
3088 	tp->duplicate_sack[0].start_seq = 0;
3089 	tp->duplicate_sack[0].end_seq = 0;
3090 	tp->dsack_dups = 0;
3091 	tp->reord_seen = 0;
3092 	tp->retrans_out = 0;
3093 	tp->sacked_out = 0;
3094 	tp->tlp_high_seq = 0;
3095 	tp->last_oow_ack_time = 0;
3096 	tp->plb_rehash = 0;
3097 	/* There's a bubble in the pipe until at least the first ACK. */
3098 	tp->app_limited = ~0U;
3099 	tp->rate_app_limited = 1;
3100 	tp->rack.mstamp = 0;
3101 	tp->rack.advanced = 0;
3102 	tp->rack.reo_wnd_steps = 1;
3103 	tp->rack.last_delivered = 0;
3104 	tp->rack.reo_wnd_persist = 0;
3105 	tp->rack.dsack_seen = 0;
3106 	tp->syn_data_acked = 0;
3107 	tp->rx_opt.saw_tstamp = 0;
3108 	tp->rx_opt.dsack = 0;
3109 	tp->rx_opt.num_sacks = 0;
3110 	tp->rcv_ooopack = 0;
3111 
3112 
3113 	/* Clean up fastopen related fields */
3114 	tcp_free_fastopen_req(tp);
3115 	inet_clear_bit(DEFER_CONNECT, sk);
3116 	tp->fastopen_client_fail = 0;
3117 
3118 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3119 
3120 	if (sk->sk_frag.page) {
3121 		put_page(sk->sk_frag.page);
3122 		sk->sk_frag.page = NULL;
3123 		sk->sk_frag.offset = 0;
3124 	}
3125 	sk_error_report(sk);
3126 	return 0;
3127 }
3128 EXPORT_SYMBOL(tcp_disconnect);
3129 
tcp_can_repair_sock(const struct sock * sk)3130 static inline bool tcp_can_repair_sock(const struct sock *sk)
3131 {
3132 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3133 		(sk->sk_state != TCP_LISTEN);
3134 }
3135 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3136 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3137 {
3138 	struct tcp_repair_window opt;
3139 
3140 	if (!tp->repair)
3141 		return -EPERM;
3142 
3143 	if (len != sizeof(opt))
3144 		return -EINVAL;
3145 
3146 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3147 		return -EFAULT;
3148 
3149 	if (opt.max_window < opt.snd_wnd)
3150 		return -EINVAL;
3151 
3152 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3153 		return -EINVAL;
3154 
3155 	if (after(opt.rcv_wup, tp->rcv_nxt))
3156 		return -EINVAL;
3157 
3158 	tp->snd_wl1	= opt.snd_wl1;
3159 	tp->snd_wnd	= opt.snd_wnd;
3160 	tp->max_window	= opt.max_window;
3161 
3162 	tp->rcv_wnd	= opt.rcv_wnd;
3163 	tp->rcv_wup	= opt.rcv_wup;
3164 
3165 	return 0;
3166 }
3167 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3168 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3169 		unsigned int len)
3170 {
3171 	struct tcp_sock *tp = tcp_sk(sk);
3172 	struct tcp_repair_opt opt;
3173 	size_t offset = 0;
3174 
3175 	while (len >= sizeof(opt)) {
3176 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3177 			return -EFAULT;
3178 
3179 		offset += sizeof(opt);
3180 		len -= sizeof(opt);
3181 
3182 		switch (opt.opt_code) {
3183 		case TCPOPT_MSS:
3184 			tp->rx_opt.mss_clamp = opt.opt_val;
3185 			tcp_mtup_init(sk);
3186 			break;
3187 		case TCPOPT_WINDOW:
3188 			{
3189 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3190 				u16 rcv_wscale = opt.opt_val >> 16;
3191 
3192 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3193 					return -EFBIG;
3194 
3195 				tp->rx_opt.snd_wscale = snd_wscale;
3196 				tp->rx_opt.rcv_wscale = rcv_wscale;
3197 				tp->rx_opt.wscale_ok = 1;
3198 			}
3199 			break;
3200 		case TCPOPT_SACK_PERM:
3201 			if (opt.opt_val != 0)
3202 				return -EINVAL;
3203 
3204 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3205 			break;
3206 		case TCPOPT_TIMESTAMP:
3207 			if (opt.opt_val != 0)
3208 				return -EINVAL;
3209 
3210 			tp->rx_opt.tstamp_ok = 1;
3211 			break;
3212 		}
3213 	}
3214 
3215 	return 0;
3216 }
3217 
3218 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3219 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3220 
tcp_enable_tx_delay(void)3221 static void tcp_enable_tx_delay(void)
3222 {
3223 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3224 		static int __tcp_tx_delay_enabled = 0;
3225 
3226 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3227 			static_branch_enable(&tcp_tx_delay_enabled);
3228 			pr_info("TCP_TX_DELAY enabled\n");
3229 		}
3230 	}
3231 }
3232 
3233 /* When set indicates to always queue non-full frames.  Later the user clears
3234  * this option and we transmit any pending partial frames in the queue.  This is
3235  * meant to be used alongside sendfile() to get properly filled frames when the
3236  * user (for example) must write out headers with a write() call first and then
3237  * use sendfile to send out the data parts.
3238  *
3239  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3240  * TCP_NODELAY.
3241  */
__tcp_sock_set_cork(struct sock * sk,bool on)3242 void __tcp_sock_set_cork(struct sock *sk, bool on)
3243 {
3244 	struct tcp_sock *tp = tcp_sk(sk);
3245 
3246 	if (on) {
3247 		tp->nonagle |= TCP_NAGLE_CORK;
3248 	} else {
3249 		tp->nonagle &= ~TCP_NAGLE_CORK;
3250 		if (tp->nonagle & TCP_NAGLE_OFF)
3251 			tp->nonagle |= TCP_NAGLE_PUSH;
3252 		tcp_push_pending_frames(sk);
3253 	}
3254 }
3255 
tcp_sock_set_cork(struct sock * sk,bool on)3256 void tcp_sock_set_cork(struct sock *sk, bool on)
3257 {
3258 	lock_sock(sk);
3259 	__tcp_sock_set_cork(sk, on);
3260 	release_sock(sk);
3261 }
3262 EXPORT_SYMBOL(tcp_sock_set_cork);
3263 
3264 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3265  * remembered, but it is not activated until cork is cleared.
3266  *
3267  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3268  * even TCP_CORK for currently queued segments.
3269  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3270 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3271 {
3272 	if (on) {
3273 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3274 		tcp_push_pending_frames(sk);
3275 	} else {
3276 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3277 	}
3278 }
3279 
tcp_sock_set_nodelay(struct sock * sk)3280 void tcp_sock_set_nodelay(struct sock *sk)
3281 {
3282 	lock_sock(sk);
3283 	__tcp_sock_set_nodelay(sk, true);
3284 	release_sock(sk);
3285 }
3286 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3287 
__tcp_sock_set_quickack(struct sock * sk,int val)3288 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3289 {
3290 	if (!val) {
3291 		inet_csk_enter_pingpong_mode(sk);
3292 		return;
3293 	}
3294 
3295 	inet_csk_exit_pingpong_mode(sk);
3296 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3297 	    inet_csk_ack_scheduled(sk)) {
3298 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3299 		tcp_cleanup_rbuf(sk, 1);
3300 		if (!(val & 1))
3301 			inet_csk_enter_pingpong_mode(sk);
3302 	}
3303 }
3304 
tcp_sock_set_quickack(struct sock * sk,int val)3305 void tcp_sock_set_quickack(struct sock *sk, int val)
3306 {
3307 	lock_sock(sk);
3308 	__tcp_sock_set_quickack(sk, val);
3309 	release_sock(sk);
3310 }
3311 EXPORT_SYMBOL(tcp_sock_set_quickack);
3312 
tcp_sock_set_syncnt(struct sock * sk,int val)3313 int tcp_sock_set_syncnt(struct sock *sk, int val)
3314 {
3315 	if (val < 1 || val > MAX_TCP_SYNCNT)
3316 		return -EINVAL;
3317 
3318 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3319 	return 0;
3320 }
3321 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3322 
tcp_sock_set_user_timeout(struct sock * sk,int val)3323 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3324 {
3325 	/* Cap the max time in ms TCP will retry or probe the window
3326 	 * before giving up and aborting (ETIMEDOUT) a connection.
3327 	 */
3328 	if (val < 0)
3329 		return -EINVAL;
3330 
3331 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3332 	return 0;
3333 }
3334 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3335 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3336 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3337 {
3338 	struct tcp_sock *tp = tcp_sk(sk);
3339 
3340 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3341 		return -EINVAL;
3342 
3343 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3344 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3345 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3346 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3347 		u32 elapsed = keepalive_time_elapsed(tp);
3348 
3349 		if (tp->keepalive_time > elapsed)
3350 			elapsed = tp->keepalive_time - elapsed;
3351 		else
3352 			elapsed = 0;
3353 		inet_csk_reset_keepalive_timer(sk, elapsed);
3354 	}
3355 
3356 	return 0;
3357 }
3358 
tcp_sock_set_keepidle(struct sock * sk,int val)3359 int tcp_sock_set_keepidle(struct sock *sk, int val)
3360 {
3361 	int err;
3362 
3363 	lock_sock(sk);
3364 	err = tcp_sock_set_keepidle_locked(sk, val);
3365 	release_sock(sk);
3366 	return err;
3367 }
3368 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3369 
tcp_sock_set_keepintvl(struct sock * sk,int val)3370 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3371 {
3372 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3373 		return -EINVAL;
3374 
3375 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3376 	return 0;
3377 }
3378 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3379 
tcp_sock_set_keepcnt(struct sock * sk,int val)3380 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3381 {
3382 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3383 		return -EINVAL;
3384 
3385 	/* Paired with READ_ONCE() in keepalive_probes() */
3386 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3387 	return 0;
3388 }
3389 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3390 
tcp_set_window_clamp(struct sock * sk,int val)3391 int tcp_set_window_clamp(struct sock *sk, int val)
3392 {
3393 	struct tcp_sock *tp = tcp_sk(sk);
3394 
3395 	if (!val) {
3396 		if (sk->sk_state != TCP_CLOSE)
3397 			return -EINVAL;
3398 		WRITE_ONCE(tp->window_clamp, 0);
3399 	} else {
3400 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3401 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3402 						SOCK_MIN_RCVBUF / 2 : val;
3403 
3404 		if (new_window_clamp == old_window_clamp)
3405 			return 0;
3406 
3407 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3408 		if (new_window_clamp < old_window_clamp) {
3409 			/* need to apply the reserved mem provisioning only
3410 			 * when shrinking the window clamp
3411 			 */
3412 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3413 
3414 		} else {
3415 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3416 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3417 					       tp->rcv_ssthresh);
3418 		}
3419 	}
3420 	return 0;
3421 }
3422 
3423 /*
3424  *	Socket option code for TCP.
3425  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3426 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3427 		      sockptr_t optval, unsigned int optlen)
3428 {
3429 	struct tcp_sock *tp = tcp_sk(sk);
3430 	struct inet_connection_sock *icsk = inet_csk(sk);
3431 	struct net *net = sock_net(sk);
3432 	int val;
3433 	int err = 0;
3434 
3435 	/* These are data/string values, all the others are ints */
3436 	switch (optname) {
3437 	case TCP_CONGESTION: {
3438 		char name[TCP_CA_NAME_MAX];
3439 
3440 		if (optlen < 1)
3441 			return -EINVAL;
3442 
3443 		val = strncpy_from_sockptr(name, optval,
3444 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3445 		if (val < 0)
3446 			return -EFAULT;
3447 		name[val] = 0;
3448 
3449 		sockopt_lock_sock(sk);
3450 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3451 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3452 								    CAP_NET_ADMIN));
3453 		sockopt_release_sock(sk);
3454 		return err;
3455 	}
3456 	case TCP_ULP: {
3457 		char name[TCP_ULP_NAME_MAX];
3458 
3459 		if (optlen < 1)
3460 			return -EINVAL;
3461 
3462 		val = strncpy_from_sockptr(name, optval,
3463 					min_t(long, TCP_ULP_NAME_MAX - 1,
3464 					      optlen));
3465 		if (val < 0)
3466 			return -EFAULT;
3467 		name[val] = 0;
3468 
3469 		sockopt_lock_sock(sk);
3470 		err = tcp_set_ulp(sk, name);
3471 		sockopt_release_sock(sk);
3472 		return err;
3473 	}
3474 	case TCP_FASTOPEN_KEY: {
3475 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3476 		__u8 *backup_key = NULL;
3477 
3478 		/* Allow a backup key as well to facilitate key rotation
3479 		 * First key is the active one.
3480 		 */
3481 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3482 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3483 			return -EINVAL;
3484 
3485 		if (copy_from_sockptr(key, optval, optlen))
3486 			return -EFAULT;
3487 
3488 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3489 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3490 
3491 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3492 	}
3493 	default:
3494 		/* fallthru */
3495 		break;
3496 	}
3497 
3498 	if (optlen < sizeof(int))
3499 		return -EINVAL;
3500 
3501 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3502 		return -EFAULT;
3503 
3504 	/* Handle options that can be set without locking the socket. */
3505 	switch (optname) {
3506 	case TCP_SYNCNT:
3507 		return tcp_sock_set_syncnt(sk, val);
3508 	case TCP_USER_TIMEOUT:
3509 		return tcp_sock_set_user_timeout(sk, val);
3510 	case TCP_KEEPINTVL:
3511 		return tcp_sock_set_keepintvl(sk, val);
3512 	case TCP_KEEPCNT:
3513 		return tcp_sock_set_keepcnt(sk, val);
3514 	case TCP_LINGER2:
3515 		if (val < 0)
3516 			WRITE_ONCE(tp->linger2, -1);
3517 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3518 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3519 		else
3520 			WRITE_ONCE(tp->linger2, val * HZ);
3521 		return 0;
3522 	case TCP_DEFER_ACCEPT:
3523 		/* Translate value in seconds to number of retransmits */
3524 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3525 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3526 					   TCP_RTO_MAX / HZ));
3527 		return 0;
3528 	}
3529 
3530 	sockopt_lock_sock(sk);
3531 
3532 	switch (optname) {
3533 	case TCP_MAXSEG:
3534 		/* Values greater than interface MTU won't take effect. However
3535 		 * at the point when this call is done we typically don't yet
3536 		 * know which interface is going to be used
3537 		 */
3538 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3539 			err = -EINVAL;
3540 			break;
3541 		}
3542 		tp->rx_opt.user_mss = val;
3543 		break;
3544 
3545 	case TCP_NODELAY:
3546 		__tcp_sock_set_nodelay(sk, val);
3547 		break;
3548 
3549 	case TCP_THIN_LINEAR_TIMEOUTS:
3550 		if (val < 0 || val > 1)
3551 			err = -EINVAL;
3552 		else
3553 			tp->thin_lto = val;
3554 		break;
3555 
3556 	case TCP_THIN_DUPACK:
3557 		if (val < 0 || val > 1)
3558 			err = -EINVAL;
3559 		break;
3560 
3561 	case TCP_REPAIR:
3562 		if (!tcp_can_repair_sock(sk))
3563 			err = -EPERM;
3564 		else if (val == TCP_REPAIR_ON) {
3565 			tp->repair = 1;
3566 			sk->sk_reuse = SK_FORCE_REUSE;
3567 			tp->repair_queue = TCP_NO_QUEUE;
3568 		} else if (val == TCP_REPAIR_OFF) {
3569 			tp->repair = 0;
3570 			sk->sk_reuse = SK_NO_REUSE;
3571 			tcp_send_window_probe(sk);
3572 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3573 			tp->repair = 0;
3574 			sk->sk_reuse = SK_NO_REUSE;
3575 		} else
3576 			err = -EINVAL;
3577 
3578 		break;
3579 
3580 	case TCP_REPAIR_QUEUE:
3581 		if (!tp->repair)
3582 			err = -EPERM;
3583 		else if ((unsigned int)val < TCP_QUEUES_NR)
3584 			tp->repair_queue = val;
3585 		else
3586 			err = -EINVAL;
3587 		break;
3588 
3589 	case TCP_QUEUE_SEQ:
3590 		if (sk->sk_state != TCP_CLOSE) {
3591 			err = -EPERM;
3592 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3593 			if (!tcp_rtx_queue_empty(sk))
3594 				err = -EPERM;
3595 			else
3596 				WRITE_ONCE(tp->write_seq, val);
3597 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3598 			if (tp->rcv_nxt != tp->copied_seq) {
3599 				err = -EPERM;
3600 			} else {
3601 				WRITE_ONCE(tp->rcv_nxt, val);
3602 				WRITE_ONCE(tp->copied_seq, val);
3603 			}
3604 		} else {
3605 			err = -EINVAL;
3606 		}
3607 		break;
3608 
3609 	case TCP_REPAIR_OPTIONS:
3610 		if (!tp->repair)
3611 			err = -EINVAL;
3612 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3613 			err = tcp_repair_options_est(sk, optval, optlen);
3614 		else
3615 			err = -EPERM;
3616 		break;
3617 
3618 	case TCP_CORK:
3619 		__tcp_sock_set_cork(sk, val);
3620 		break;
3621 
3622 	case TCP_KEEPIDLE:
3623 		err = tcp_sock_set_keepidle_locked(sk, val);
3624 		break;
3625 	case TCP_SAVE_SYN:
3626 		/* 0: disable, 1: enable, 2: start from ether_header */
3627 		if (val < 0 || val > 2)
3628 			err = -EINVAL;
3629 		else
3630 			tp->save_syn = val;
3631 		break;
3632 
3633 	case TCP_WINDOW_CLAMP:
3634 		err = tcp_set_window_clamp(sk, val);
3635 		break;
3636 
3637 	case TCP_QUICKACK:
3638 		__tcp_sock_set_quickack(sk, val);
3639 		break;
3640 
3641 #ifdef CONFIG_TCP_MD5SIG
3642 	case TCP_MD5SIG:
3643 	case TCP_MD5SIG_EXT:
3644 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3645 		break;
3646 #endif
3647 	case TCP_FASTOPEN:
3648 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3649 		    TCPF_LISTEN))) {
3650 			tcp_fastopen_init_key_once(net);
3651 
3652 			fastopen_queue_tune(sk, val);
3653 		} else {
3654 			err = -EINVAL;
3655 		}
3656 		break;
3657 	case TCP_FASTOPEN_CONNECT:
3658 		if (val > 1 || val < 0) {
3659 			err = -EINVAL;
3660 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3661 			   TFO_CLIENT_ENABLE) {
3662 			if (sk->sk_state == TCP_CLOSE)
3663 				tp->fastopen_connect = val;
3664 			else
3665 				err = -EINVAL;
3666 		} else {
3667 			err = -EOPNOTSUPP;
3668 		}
3669 		break;
3670 	case TCP_FASTOPEN_NO_COOKIE:
3671 		if (val > 1 || val < 0)
3672 			err = -EINVAL;
3673 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3674 			err = -EINVAL;
3675 		else
3676 			tp->fastopen_no_cookie = val;
3677 		break;
3678 	case TCP_TIMESTAMP:
3679 		if (!tp->repair)
3680 			err = -EPERM;
3681 		else
3682 			WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3683 		break;
3684 	case TCP_REPAIR_WINDOW:
3685 		err = tcp_repair_set_window(tp, optval, optlen);
3686 		break;
3687 	case TCP_NOTSENT_LOWAT:
3688 		WRITE_ONCE(tp->notsent_lowat, val);
3689 		sk->sk_write_space(sk);
3690 		break;
3691 	case TCP_INQ:
3692 		if (val > 1 || val < 0)
3693 			err = -EINVAL;
3694 		else
3695 			tp->recvmsg_inq = val;
3696 		break;
3697 	case TCP_TX_DELAY:
3698 		if (val)
3699 			tcp_enable_tx_delay();
3700 		WRITE_ONCE(tp->tcp_tx_delay, val);
3701 		break;
3702 	default:
3703 		err = -ENOPROTOOPT;
3704 		break;
3705 	}
3706 
3707 	sockopt_release_sock(sk);
3708 	return err;
3709 }
3710 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3711 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3712 		   unsigned int optlen)
3713 {
3714 	const struct inet_connection_sock *icsk = inet_csk(sk);
3715 
3716 	if (level != SOL_TCP)
3717 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3718 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3719 								optval, optlen);
3720 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3721 }
3722 EXPORT_SYMBOL(tcp_setsockopt);
3723 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3724 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3725 				      struct tcp_info *info)
3726 {
3727 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3728 	enum tcp_chrono i;
3729 
3730 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3731 		stats[i] = tp->chrono_stat[i - 1];
3732 		if (i == tp->chrono_type)
3733 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3734 		stats[i] *= USEC_PER_SEC / HZ;
3735 		total += stats[i];
3736 	}
3737 
3738 	info->tcpi_busy_time = total;
3739 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3740 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3741 }
3742 
3743 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3744 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3745 {
3746 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3747 	const struct inet_connection_sock *icsk = inet_csk(sk);
3748 	unsigned long rate;
3749 	u32 now;
3750 	u64 rate64;
3751 	bool slow;
3752 
3753 	memset(info, 0, sizeof(*info));
3754 	if (sk->sk_type != SOCK_STREAM)
3755 		return;
3756 
3757 	info->tcpi_state = inet_sk_state_load(sk);
3758 
3759 	/* Report meaningful fields for all TCP states, including listeners */
3760 	rate = READ_ONCE(sk->sk_pacing_rate);
3761 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3762 	info->tcpi_pacing_rate = rate64;
3763 
3764 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3765 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3766 	info->tcpi_max_pacing_rate = rate64;
3767 
3768 	info->tcpi_reordering = tp->reordering;
3769 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3770 
3771 	if (info->tcpi_state == TCP_LISTEN) {
3772 		/* listeners aliased fields :
3773 		 * tcpi_unacked -> Number of children ready for accept()
3774 		 * tcpi_sacked  -> max backlog
3775 		 */
3776 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3777 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3778 		return;
3779 	}
3780 
3781 	slow = lock_sock_fast(sk);
3782 
3783 	info->tcpi_ca_state = icsk->icsk_ca_state;
3784 	info->tcpi_retransmits = icsk->icsk_retransmits;
3785 	info->tcpi_probes = icsk->icsk_probes_out;
3786 	info->tcpi_backoff = icsk->icsk_backoff;
3787 
3788 	if (tp->rx_opt.tstamp_ok)
3789 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3790 	if (tcp_is_sack(tp))
3791 		info->tcpi_options |= TCPI_OPT_SACK;
3792 	if (tp->rx_opt.wscale_ok) {
3793 		info->tcpi_options |= TCPI_OPT_WSCALE;
3794 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3795 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3796 	}
3797 
3798 	if (tp->ecn_flags & TCP_ECN_OK)
3799 		info->tcpi_options |= TCPI_OPT_ECN;
3800 	if (tp->ecn_flags & TCP_ECN_SEEN)
3801 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3802 	if (tp->syn_data_acked)
3803 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3804 
3805 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3806 	info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato,
3807 					      tcp_delack_max(sk)));
3808 	info->tcpi_snd_mss = tp->mss_cache;
3809 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3810 
3811 	info->tcpi_unacked = tp->packets_out;
3812 	info->tcpi_sacked = tp->sacked_out;
3813 
3814 	info->tcpi_lost = tp->lost_out;
3815 	info->tcpi_retrans = tp->retrans_out;
3816 
3817 	now = tcp_jiffies32;
3818 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3819 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3820 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3821 
3822 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3823 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3824 	info->tcpi_rtt = tp->srtt_us >> 3;
3825 	info->tcpi_rttvar = tp->mdev_us >> 2;
3826 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3827 	info->tcpi_advmss = tp->advmss;
3828 
3829 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3830 	info->tcpi_rcv_space = tp->rcvq_space.space;
3831 
3832 	info->tcpi_total_retrans = tp->total_retrans;
3833 
3834 	info->tcpi_bytes_acked = tp->bytes_acked;
3835 	info->tcpi_bytes_received = tp->bytes_received;
3836 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3837 	tcp_get_info_chrono_stats(tp, info);
3838 
3839 	info->tcpi_segs_out = tp->segs_out;
3840 
3841 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3842 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3843 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3844 
3845 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3846 	info->tcpi_data_segs_out = tp->data_segs_out;
3847 
3848 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3849 	rate64 = tcp_compute_delivery_rate(tp);
3850 	if (rate64)
3851 		info->tcpi_delivery_rate = rate64;
3852 	info->tcpi_delivered = tp->delivered;
3853 	info->tcpi_delivered_ce = tp->delivered_ce;
3854 	info->tcpi_bytes_sent = tp->bytes_sent;
3855 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3856 	info->tcpi_dsack_dups = tp->dsack_dups;
3857 	info->tcpi_reord_seen = tp->reord_seen;
3858 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3859 	info->tcpi_snd_wnd = tp->snd_wnd;
3860 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3861 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3862 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3863 	unlock_sock_fast(sk, slow);
3864 }
3865 EXPORT_SYMBOL_GPL(tcp_get_info);
3866 
tcp_opt_stats_get_size(void)3867 static size_t tcp_opt_stats_get_size(void)
3868 {
3869 	return
3870 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3871 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3872 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3873 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3874 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3875 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3876 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3877 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3878 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3879 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3880 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3881 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3882 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3883 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3884 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3885 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3886 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3887 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3888 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3889 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3890 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3891 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3892 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3893 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3894 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3895 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3896 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3897 		0;
3898 }
3899 
3900 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3901 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3902 {
3903 	if (skb->protocol == htons(ETH_P_IP))
3904 		return ip_hdr(skb)->ttl;
3905 	else if (skb->protocol == htons(ETH_P_IPV6))
3906 		return ipv6_hdr(skb)->hop_limit;
3907 	else
3908 		return 0;
3909 }
3910 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3911 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3912 					       const struct sk_buff *orig_skb,
3913 					       const struct sk_buff *ack_skb)
3914 {
3915 	const struct tcp_sock *tp = tcp_sk(sk);
3916 	struct sk_buff *stats;
3917 	struct tcp_info info;
3918 	unsigned long rate;
3919 	u64 rate64;
3920 
3921 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3922 	if (!stats)
3923 		return NULL;
3924 
3925 	tcp_get_info_chrono_stats(tp, &info);
3926 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3927 			  info.tcpi_busy_time, TCP_NLA_PAD);
3928 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3929 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3930 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3931 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3932 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3933 			  tp->data_segs_out, TCP_NLA_PAD);
3934 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3935 			  tp->total_retrans, TCP_NLA_PAD);
3936 
3937 	rate = READ_ONCE(sk->sk_pacing_rate);
3938 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3939 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3940 
3941 	rate64 = tcp_compute_delivery_rate(tp);
3942 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3943 
3944 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3945 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3946 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3947 
3948 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3949 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3950 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3951 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3952 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3953 
3954 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3955 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3956 
3957 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3958 			  TCP_NLA_PAD);
3959 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3960 			  TCP_NLA_PAD);
3961 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3962 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3963 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3964 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3965 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3966 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3967 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3968 			  TCP_NLA_PAD);
3969 	if (ack_skb)
3970 		nla_put_u8(stats, TCP_NLA_TTL,
3971 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3972 
3973 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3974 	return stats;
3975 }
3976 
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)3977 int do_tcp_getsockopt(struct sock *sk, int level,
3978 		      int optname, sockptr_t optval, sockptr_t optlen)
3979 {
3980 	struct inet_connection_sock *icsk = inet_csk(sk);
3981 	struct tcp_sock *tp = tcp_sk(sk);
3982 	struct net *net = sock_net(sk);
3983 	int val, len;
3984 
3985 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3986 		return -EFAULT;
3987 
3988 	if (len < 0)
3989 		return -EINVAL;
3990 
3991 	len = min_t(unsigned int, len, sizeof(int));
3992 
3993 	switch (optname) {
3994 	case TCP_MAXSEG:
3995 		val = tp->mss_cache;
3996 		if (tp->rx_opt.user_mss &&
3997 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3998 			val = tp->rx_opt.user_mss;
3999 		if (tp->repair)
4000 			val = tp->rx_opt.mss_clamp;
4001 		break;
4002 	case TCP_NODELAY:
4003 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4004 		break;
4005 	case TCP_CORK:
4006 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4007 		break;
4008 	case TCP_KEEPIDLE:
4009 		val = keepalive_time_when(tp) / HZ;
4010 		break;
4011 	case TCP_KEEPINTVL:
4012 		val = keepalive_intvl_when(tp) / HZ;
4013 		break;
4014 	case TCP_KEEPCNT:
4015 		val = keepalive_probes(tp);
4016 		break;
4017 	case TCP_SYNCNT:
4018 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4019 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4020 		break;
4021 	case TCP_LINGER2:
4022 		val = READ_ONCE(tp->linger2);
4023 		if (val >= 0)
4024 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4025 		break;
4026 	case TCP_DEFER_ACCEPT:
4027 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4028 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4029 				      TCP_RTO_MAX / HZ);
4030 		break;
4031 	case TCP_WINDOW_CLAMP:
4032 		val = READ_ONCE(tp->window_clamp);
4033 		break;
4034 	case TCP_INFO: {
4035 		struct tcp_info info;
4036 
4037 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4038 			return -EFAULT;
4039 
4040 		tcp_get_info(sk, &info);
4041 
4042 		len = min_t(unsigned int, len, sizeof(info));
4043 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4044 			return -EFAULT;
4045 		if (copy_to_sockptr(optval, &info, len))
4046 			return -EFAULT;
4047 		return 0;
4048 	}
4049 	case TCP_CC_INFO: {
4050 		const struct tcp_congestion_ops *ca_ops;
4051 		union tcp_cc_info info;
4052 		size_t sz = 0;
4053 		int attr;
4054 
4055 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4056 			return -EFAULT;
4057 
4058 		ca_ops = icsk->icsk_ca_ops;
4059 		if (ca_ops && ca_ops->get_info)
4060 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4061 
4062 		len = min_t(unsigned int, len, sz);
4063 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4064 			return -EFAULT;
4065 		if (copy_to_sockptr(optval, &info, len))
4066 			return -EFAULT;
4067 		return 0;
4068 	}
4069 	case TCP_QUICKACK:
4070 		val = !inet_csk_in_pingpong_mode(sk);
4071 		break;
4072 
4073 	case TCP_CONGESTION:
4074 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4075 			return -EFAULT;
4076 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4077 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4078 			return -EFAULT;
4079 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4080 			return -EFAULT;
4081 		return 0;
4082 
4083 	case TCP_ULP:
4084 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4085 			return -EFAULT;
4086 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4087 		if (!icsk->icsk_ulp_ops) {
4088 			len = 0;
4089 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4090 				return -EFAULT;
4091 			return 0;
4092 		}
4093 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4094 			return -EFAULT;
4095 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4096 			return -EFAULT;
4097 		return 0;
4098 
4099 	case TCP_FASTOPEN_KEY: {
4100 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4101 		unsigned int key_len;
4102 
4103 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4104 			return -EFAULT;
4105 
4106 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4107 				TCP_FASTOPEN_KEY_LENGTH;
4108 		len = min_t(unsigned int, len, key_len);
4109 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4110 			return -EFAULT;
4111 		if (copy_to_sockptr(optval, key, len))
4112 			return -EFAULT;
4113 		return 0;
4114 	}
4115 	case TCP_THIN_LINEAR_TIMEOUTS:
4116 		val = tp->thin_lto;
4117 		break;
4118 
4119 	case TCP_THIN_DUPACK:
4120 		val = 0;
4121 		break;
4122 
4123 	case TCP_REPAIR:
4124 		val = tp->repair;
4125 		break;
4126 
4127 	case TCP_REPAIR_QUEUE:
4128 		if (tp->repair)
4129 			val = tp->repair_queue;
4130 		else
4131 			return -EINVAL;
4132 		break;
4133 
4134 	case TCP_REPAIR_WINDOW: {
4135 		struct tcp_repair_window opt;
4136 
4137 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4138 			return -EFAULT;
4139 
4140 		if (len != sizeof(opt))
4141 			return -EINVAL;
4142 
4143 		if (!tp->repair)
4144 			return -EPERM;
4145 
4146 		opt.snd_wl1	= tp->snd_wl1;
4147 		opt.snd_wnd	= tp->snd_wnd;
4148 		opt.max_window	= tp->max_window;
4149 		opt.rcv_wnd	= tp->rcv_wnd;
4150 		opt.rcv_wup	= tp->rcv_wup;
4151 
4152 		if (copy_to_sockptr(optval, &opt, len))
4153 			return -EFAULT;
4154 		return 0;
4155 	}
4156 	case TCP_QUEUE_SEQ:
4157 		if (tp->repair_queue == TCP_SEND_QUEUE)
4158 			val = tp->write_seq;
4159 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4160 			val = tp->rcv_nxt;
4161 		else
4162 			return -EINVAL;
4163 		break;
4164 
4165 	case TCP_USER_TIMEOUT:
4166 		val = READ_ONCE(icsk->icsk_user_timeout);
4167 		break;
4168 
4169 	case TCP_FASTOPEN:
4170 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4171 		break;
4172 
4173 	case TCP_FASTOPEN_CONNECT:
4174 		val = tp->fastopen_connect;
4175 		break;
4176 
4177 	case TCP_FASTOPEN_NO_COOKIE:
4178 		val = tp->fastopen_no_cookie;
4179 		break;
4180 
4181 	case TCP_TX_DELAY:
4182 		val = READ_ONCE(tp->tcp_tx_delay);
4183 		break;
4184 
4185 	case TCP_TIMESTAMP:
4186 		val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4187 		break;
4188 	case TCP_NOTSENT_LOWAT:
4189 		val = READ_ONCE(tp->notsent_lowat);
4190 		break;
4191 	case TCP_INQ:
4192 		val = tp->recvmsg_inq;
4193 		break;
4194 	case TCP_SAVE_SYN:
4195 		val = tp->save_syn;
4196 		break;
4197 	case TCP_SAVED_SYN: {
4198 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4199 			return -EFAULT;
4200 
4201 		sockopt_lock_sock(sk);
4202 		if (tp->saved_syn) {
4203 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4204 				len = tcp_saved_syn_len(tp->saved_syn);
4205 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4206 					sockopt_release_sock(sk);
4207 					return -EFAULT;
4208 				}
4209 				sockopt_release_sock(sk);
4210 				return -EINVAL;
4211 			}
4212 			len = tcp_saved_syn_len(tp->saved_syn);
4213 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4214 				sockopt_release_sock(sk);
4215 				return -EFAULT;
4216 			}
4217 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4218 				sockopt_release_sock(sk);
4219 				return -EFAULT;
4220 			}
4221 			tcp_saved_syn_free(tp);
4222 			sockopt_release_sock(sk);
4223 		} else {
4224 			sockopt_release_sock(sk);
4225 			len = 0;
4226 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4227 				return -EFAULT;
4228 		}
4229 		return 0;
4230 	}
4231 #ifdef CONFIG_MMU
4232 	case TCP_ZEROCOPY_RECEIVE: {
4233 		struct scm_timestamping_internal tss;
4234 		struct tcp_zerocopy_receive zc = {};
4235 		int err;
4236 
4237 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4238 			return -EFAULT;
4239 		if (len < 0 ||
4240 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4241 			return -EINVAL;
4242 		if (unlikely(len > sizeof(zc))) {
4243 			err = check_zeroed_sockptr(optval, sizeof(zc),
4244 						   len - sizeof(zc));
4245 			if (err < 1)
4246 				return err == 0 ? -EINVAL : err;
4247 			len = sizeof(zc);
4248 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4249 				return -EFAULT;
4250 		}
4251 		if (copy_from_sockptr(&zc, optval, len))
4252 			return -EFAULT;
4253 		if (zc.reserved)
4254 			return -EINVAL;
4255 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4256 			return -EINVAL;
4257 		sockopt_lock_sock(sk);
4258 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4259 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4260 							  &zc, &len, err);
4261 		sockopt_release_sock(sk);
4262 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4263 			goto zerocopy_rcv_cmsg;
4264 		switch (len) {
4265 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4266 			goto zerocopy_rcv_cmsg;
4267 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4268 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4269 		case offsetofend(struct tcp_zerocopy_receive, flags):
4270 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4271 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4272 		case offsetofend(struct tcp_zerocopy_receive, err):
4273 			goto zerocopy_rcv_sk_err;
4274 		case offsetofend(struct tcp_zerocopy_receive, inq):
4275 			goto zerocopy_rcv_inq;
4276 		case offsetofend(struct tcp_zerocopy_receive, length):
4277 		default:
4278 			goto zerocopy_rcv_out;
4279 		}
4280 zerocopy_rcv_cmsg:
4281 		if (zc.msg_flags & TCP_CMSG_TS)
4282 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4283 		else
4284 			zc.msg_flags = 0;
4285 zerocopy_rcv_sk_err:
4286 		if (!err)
4287 			zc.err = sock_error(sk);
4288 zerocopy_rcv_inq:
4289 		zc.inq = tcp_inq_hint(sk);
4290 zerocopy_rcv_out:
4291 		if (!err && copy_to_sockptr(optval, &zc, len))
4292 			err = -EFAULT;
4293 		return err;
4294 	}
4295 #endif
4296 	default:
4297 		return -ENOPROTOOPT;
4298 	}
4299 
4300 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4301 		return -EFAULT;
4302 	if (copy_to_sockptr(optval, &val, len))
4303 		return -EFAULT;
4304 	return 0;
4305 }
4306 
tcp_bpf_bypass_getsockopt(int level,int optname)4307 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4308 {
4309 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4310 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4311 	 */
4312 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4313 		return true;
4314 
4315 	return false;
4316 }
4317 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4318 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4319 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4320 		   int __user *optlen)
4321 {
4322 	struct inet_connection_sock *icsk = inet_csk(sk);
4323 
4324 	if (level != SOL_TCP)
4325 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4326 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4327 								optval, optlen);
4328 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4329 				 USER_SOCKPTR(optlen));
4330 }
4331 EXPORT_SYMBOL(tcp_getsockopt);
4332 
4333 #ifdef CONFIG_TCP_MD5SIG
4334 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4335 static DEFINE_MUTEX(tcp_md5sig_mutex);
4336 static bool tcp_md5sig_pool_populated = false;
4337 
__tcp_alloc_md5sig_pool(void)4338 static void __tcp_alloc_md5sig_pool(void)
4339 {
4340 	struct crypto_ahash *hash;
4341 	int cpu;
4342 
4343 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4344 	if (IS_ERR(hash))
4345 		return;
4346 
4347 	for_each_possible_cpu(cpu) {
4348 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4349 		struct ahash_request *req;
4350 
4351 		if (!scratch) {
4352 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4353 					       sizeof(struct tcphdr),
4354 					       GFP_KERNEL,
4355 					       cpu_to_node(cpu));
4356 			if (!scratch)
4357 				return;
4358 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4359 		}
4360 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4361 			continue;
4362 
4363 		req = ahash_request_alloc(hash, GFP_KERNEL);
4364 		if (!req)
4365 			return;
4366 
4367 		ahash_request_set_callback(req, 0, NULL, NULL);
4368 
4369 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4370 	}
4371 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4372 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4373 	 */
4374 	smp_wmb();
4375 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4376 	 * and tcp_get_md5sig_pool().
4377 	*/
4378 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4379 }
4380 
tcp_alloc_md5sig_pool(void)4381 bool tcp_alloc_md5sig_pool(void)
4382 {
4383 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4384 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4385 		mutex_lock(&tcp_md5sig_mutex);
4386 
4387 		if (!tcp_md5sig_pool_populated)
4388 			__tcp_alloc_md5sig_pool();
4389 
4390 		mutex_unlock(&tcp_md5sig_mutex);
4391 	}
4392 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4393 	return READ_ONCE(tcp_md5sig_pool_populated);
4394 }
4395 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4396 
4397 
4398 /**
4399  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4400  *
4401  *	We use percpu structure, so if we succeed, we exit with preemption
4402  *	and BH disabled, to make sure another thread or softirq handling
4403  *	wont try to get same context.
4404  */
tcp_get_md5sig_pool(void)4405 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4406 {
4407 	local_bh_disable();
4408 
4409 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4410 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4411 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4412 		smp_rmb();
4413 		return this_cpu_ptr(&tcp_md5sig_pool);
4414 	}
4415 	local_bh_enable();
4416 	return NULL;
4417 }
4418 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4419 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4420 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4421 			  const struct sk_buff *skb, unsigned int header_len)
4422 {
4423 	struct scatterlist sg;
4424 	const struct tcphdr *tp = tcp_hdr(skb);
4425 	struct ahash_request *req = hp->md5_req;
4426 	unsigned int i;
4427 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4428 					   skb_headlen(skb) - header_len : 0;
4429 	const struct skb_shared_info *shi = skb_shinfo(skb);
4430 	struct sk_buff *frag_iter;
4431 
4432 	sg_init_table(&sg, 1);
4433 
4434 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4435 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4436 	if (crypto_ahash_update(req))
4437 		return 1;
4438 
4439 	for (i = 0; i < shi->nr_frags; ++i) {
4440 		const skb_frag_t *f = &shi->frags[i];
4441 		unsigned int offset = skb_frag_off(f);
4442 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4443 
4444 		sg_set_page(&sg, page, skb_frag_size(f),
4445 			    offset_in_page(offset));
4446 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4447 		if (crypto_ahash_update(req))
4448 			return 1;
4449 	}
4450 
4451 	skb_walk_frags(skb, frag_iter)
4452 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4453 			return 1;
4454 
4455 	return 0;
4456 }
4457 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4458 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4459 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4460 {
4461 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4462 	struct scatterlist sg;
4463 
4464 	sg_init_one(&sg, key->key, keylen);
4465 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4466 
4467 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4468 	return data_race(crypto_ahash_update(hp->md5_req));
4469 }
4470 EXPORT_SYMBOL(tcp_md5_hash_key);
4471 
4472 /* Called with rcu_read_lock() */
4473 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4474 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4475 		     const void *saddr, const void *daddr,
4476 		     int family, int dif, int sdif)
4477 {
4478 	/*
4479 	 * This gets called for each TCP segment that arrives
4480 	 * so we want to be efficient.
4481 	 * We have 3 drop cases:
4482 	 * o No MD5 hash and one expected.
4483 	 * o MD5 hash and we're not expecting one.
4484 	 * o MD5 hash and its wrong.
4485 	 */
4486 	const __u8 *hash_location = NULL;
4487 	struct tcp_md5sig_key *hash_expected;
4488 	const struct tcphdr *th = tcp_hdr(skb);
4489 	const struct tcp_sock *tp = tcp_sk(sk);
4490 	int genhash, l3index;
4491 	u8 newhash[16];
4492 
4493 	/* sdif set, means packet ingressed via a device
4494 	 * in an L3 domain and dif is set to the l3mdev
4495 	 */
4496 	l3index = sdif ? dif : 0;
4497 
4498 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4499 	hash_location = tcp_parse_md5sig_option(th);
4500 
4501 	/* We've parsed the options - do we have a hash? */
4502 	if (!hash_expected && !hash_location)
4503 		return SKB_NOT_DROPPED_YET;
4504 
4505 	if (hash_expected && !hash_location) {
4506 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4507 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4508 	}
4509 
4510 	if (!hash_expected && hash_location) {
4511 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4512 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4513 	}
4514 
4515 	/* Check the signature.
4516 	 * To support dual stack listeners, we need to handle
4517 	 * IPv4-mapped case.
4518 	 */
4519 	if (family == AF_INET)
4520 		genhash = tcp_v4_md5_hash_skb(newhash,
4521 					      hash_expected,
4522 					      NULL, skb);
4523 	else
4524 		genhash = tp->af_specific->calc_md5_hash(newhash,
4525 							 hash_expected,
4526 							 NULL, skb);
4527 
4528 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4529 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4530 		if (family == AF_INET) {
4531 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4532 					saddr, ntohs(th->source),
4533 					daddr, ntohs(th->dest),
4534 					genhash ? " tcp_v4_calc_md5_hash failed"
4535 					: "", l3index);
4536 		} else {
4537 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4538 					genhash ? "failed" : "mismatch",
4539 					saddr, ntohs(th->source),
4540 					daddr, ntohs(th->dest), l3index);
4541 		}
4542 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4543 	}
4544 	return SKB_NOT_DROPPED_YET;
4545 }
4546 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4547 
4548 #endif
4549 
tcp_done(struct sock * sk)4550 void tcp_done(struct sock *sk)
4551 {
4552 	struct request_sock *req;
4553 
4554 	/* We might be called with a new socket, after
4555 	 * inet_csk_prepare_forced_close() has been called
4556 	 * so we can not use lockdep_sock_is_held(sk)
4557 	 */
4558 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4559 
4560 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4561 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4562 
4563 	tcp_set_state(sk, TCP_CLOSE);
4564 	tcp_clear_xmit_timers(sk);
4565 	if (req)
4566 		reqsk_fastopen_remove(sk, req, false);
4567 
4568 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4569 
4570 	if (!sock_flag(sk, SOCK_DEAD))
4571 		sk->sk_state_change(sk);
4572 	else
4573 		inet_csk_destroy_sock(sk);
4574 }
4575 EXPORT_SYMBOL_GPL(tcp_done);
4576 
tcp_abort(struct sock * sk,int err)4577 int tcp_abort(struct sock *sk, int err)
4578 {
4579 	int state = inet_sk_state_load(sk);
4580 
4581 	if (state == TCP_NEW_SYN_RECV) {
4582 		struct request_sock *req = inet_reqsk(sk);
4583 
4584 		local_bh_disable();
4585 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4586 		local_bh_enable();
4587 		return 0;
4588 	}
4589 	if (state == TCP_TIME_WAIT) {
4590 		struct inet_timewait_sock *tw = inet_twsk(sk);
4591 
4592 		refcount_inc(&tw->tw_refcnt);
4593 		local_bh_disable();
4594 		inet_twsk_deschedule_put(tw);
4595 		local_bh_enable();
4596 		return 0;
4597 	}
4598 
4599 	/* BPF context ensures sock locking. */
4600 	if (!has_current_bpf_ctx())
4601 		/* Don't race with userspace socket closes such as tcp_close. */
4602 		lock_sock(sk);
4603 
4604 	if (sk->sk_state == TCP_LISTEN) {
4605 		tcp_set_state(sk, TCP_CLOSE);
4606 		inet_csk_listen_stop(sk);
4607 	}
4608 
4609 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4610 	local_bh_disable();
4611 	bh_lock_sock(sk);
4612 
4613 	if (!sock_flag(sk, SOCK_DEAD)) {
4614 		WRITE_ONCE(sk->sk_err, err);
4615 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4616 		smp_wmb();
4617 		sk_error_report(sk);
4618 		if (tcp_need_reset(sk->sk_state))
4619 			tcp_send_active_reset(sk, GFP_ATOMIC);
4620 		tcp_done(sk);
4621 	}
4622 
4623 	bh_unlock_sock(sk);
4624 	local_bh_enable();
4625 	tcp_write_queue_purge(sk);
4626 	if (!has_current_bpf_ctx())
4627 		release_sock(sk);
4628 	return 0;
4629 }
4630 EXPORT_SYMBOL_GPL(tcp_abort);
4631 
4632 extern struct tcp_congestion_ops tcp_reno;
4633 
4634 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4635 static int __init set_thash_entries(char *str)
4636 {
4637 	ssize_t ret;
4638 
4639 	if (!str)
4640 		return 0;
4641 
4642 	ret = kstrtoul(str, 0, &thash_entries);
4643 	if (ret)
4644 		return 0;
4645 
4646 	return 1;
4647 }
4648 __setup("thash_entries=", set_thash_entries);
4649 
tcp_init_mem(void)4650 static void __init tcp_init_mem(void)
4651 {
4652 	unsigned long limit = nr_free_buffer_pages() / 16;
4653 
4654 	limit = max(limit, 128UL);
4655 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4656 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4657 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4658 }
4659 
tcp_init(void)4660 void __init tcp_init(void)
4661 {
4662 	int max_rshare, max_wshare, cnt;
4663 	unsigned long limit;
4664 	unsigned int i;
4665 
4666 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4667 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4668 		     sizeof_field(struct sk_buff, cb));
4669 
4670 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4671 
4672 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4673 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4674 
4675 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4676 			    thash_entries, 21,  /* one slot per 2 MB*/
4677 			    0, 64 * 1024);
4678 	tcp_hashinfo.bind_bucket_cachep =
4679 		kmem_cache_create("tcp_bind_bucket",
4680 				  sizeof(struct inet_bind_bucket), 0,
4681 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4682 				  SLAB_ACCOUNT,
4683 				  NULL);
4684 	tcp_hashinfo.bind2_bucket_cachep =
4685 		kmem_cache_create("tcp_bind2_bucket",
4686 				  sizeof(struct inet_bind2_bucket), 0,
4687 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4688 				  SLAB_ACCOUNT,
4689 				  NULL);
4690 
4691 	/* Size and allocate the main established and bind bucket
4692 	 * hash tables.
4693 	 *
4694 	 * The methodology is similar to that of the buffer cache.
4695 	 */
4696 	tcp_hashinfo.ehash =
4697 		alloc_large_system_hash("TCP established",
4698 					sizeof(struct inet_ehash_bucket),
4699 					thash_entries,
4700 					17, /* one slot per 128 KB of memory */
4701 					0,
4702 					NULL,
4703 					&tcp_hashinfo.ehash_mask,
4704 					0,
4705 					thash_entries ? 0 : 512 * 1024);
4706 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4707 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4708 
4709 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4710 		panic("TCP: failed to alloc ehash_locks");
4711 	tcp_hashinfo.bhash =
4712 		alloc_large_system_hash("TCP bind",
4713 					2 * sizeof(struct inet_bind_hashbucket),
4714 					tcp_hashinfo.ehash_mask + 1,
4715 					17, /* one slot per 128 KB of memory */
4716 					0,
4717 					&tcp_hashinfo.bhash_size,
4718 					NULL,
4719 					0,
4720 					64 * 1024);
4721 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4722 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4723 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4724 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4725 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4726 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4727 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4728 	}
4729 
4730 	tcp_hashinfo.pernet = false;
4731 
4732 	cnt = tcp_hashinfo.ehash_mask + 1;
4733 	sysctl_tcp_max_orphans = cnt / 2;
4734 
4735 	tcp_init_mem();
4736 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4737 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4738 	max_wshare = min(4UL*1024*1024, limit);
4739 	max_rshare = min(6UL*1024*1024, limit);
4740 
4741 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4742 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4743 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4744 
4745 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4746 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4747 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4748 
4749 	pr_info("Hash tables configured (established %u bind %u)\n",
4750 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4751 
4752 	tcp_v4_init();
4753 	tcp_metrics_init();
4754 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4755 	tcp_tasklet_init();
4756 	mptcp_init();
4757 }
4758