1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 #include <trace/hooks/net.h>
283
284 /* Track pending CMSGs. */
285 enum {
286 TCP_CMSG_INQ = 1,
287 TCP_CMSG_TS = 2
288 };
289
290 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
291 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
292
293 long sysctl_tcp_mem[3] __read_mostly;
294 EXPORT_SYMBOL(sysctl_tcp_mem);
295
296 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
297 EXPORT_SYMBOL(tcp_memory_allocated);
298 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
299 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
300
301 #if IS_ENABLED(CONFIG_SMC)
302 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
303 EXPORT_SYMBOL(tcp_have_smc);
304 #endif
305
306 /*
307 * Current number of TCP sockets.
308 */
309 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
310 EXPORT_SYMBOL(tcp_sockets_allocated);
311
312 /*
313 * TCP splice context
314 */
315 struct tcp_splice_state {
316 struct pipe_inode_info *pipe;
317 size_t len;
318 unsigned int flags;
319 };
320
321 /*
322 * Pressure flag: try to collapse.
323 * Technical note: it is used by multiple contexts non atomically.
324 * All the __sk_mem_schedule() is of this nature: accounting
325 * is strict, actions are advisory and have some latency.
326 */
327 unsigned long tcp_memory_pressure __read_mostly;
328 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
329
tcp_enter_memory_pressure(struct sock * sk)330 void tcp_enter_memory_pressure(struct sock *sk)
331 {
332 unsigned long val;
333
334 if (READ_ONCE(tcp_memory_pressure))
335 return;
336 val = jiffies;
337
338 if (!val)
339 val--;
340 if (!cmpxchg(&tcp_memory_pressure, 0, val))
341 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
342 }
343 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
344
tcp_leave_memory_pressure(struct sock * sk)345 void tcp_leave_memory_pressure(struct sock *sk)
346 {
347 unsigned long val;
348
349 if (!READ_ONCE(tcp_memory_pressure))
350 return;
351 val = xchg(&tcp_memory_pressure, 0);
352 if (val)
353 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
354 jiffies_to_msecs(jiffies - val));
355 }
356 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
357
358 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)359 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
360 {
361 u8 res = 0;
362
363 if (seconds > 0) {
364 int period = timeout;
365
366 res = 1;
367 while (seconds > period && res < 255) {
368 res++;
369 timeout <<= 1;
370 if (timeout > rto_max)
371 timeout = rto_max;
372 period += timeout;
373 }
374 }
375 return res;
376 }
377
378 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)379 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
380 {
381 int period = 0;
382
383 if (retrans > 0) {
384 period = timeout;
385 while (--retrans) {
386 timeout <<= 1;
387 if (timeout > rto_max)
388 timeout = rto_max;
389 period += timeout;
390 }
391 }
392 return period;
393 }
394
tcp_compute_delivery_rate(const struct tcp_sock * tp)395 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
396 {
397 u32 rate = READ_ONCE(tp->rate_delivered);
398 u32 intv = READ_ONCE(tp->rate_interval_us);
399 u64 rate64 = 0;
400
401 if (rate && intv) {
402 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
403 do_div(rate64, intv);
404 }
405 return rate64;
406 }
407
408 /* Address-family independent initialization for a tcp_sock.
409 *
410 * NOTE: A lot of things set to zero explicitly by call to
411 * sk_alloc() so need not be done here.
412 */
tcp_init_sock(struct sock * sk)413 void tcp_init_sock(struct sock *sk)
414 {
415 struct inet_connection_sock *icsk = inet_csk(sk);
416 struct tcp_sock *tp = tcp_sk(sk);
417
418 tp->out_of_order_queue = RB_ROOT;
419 sk->tcp_rtx_queue = RB_ROOT;
420 tcp_init_xmit_timers(sk);
421 INIT_LIST_HEAD(&tp->tsq_node);
422 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
423
424 icsk->icsk_rto = TCP_TIMEOUT_INIT;
425 icsk->icsk_rto_min = TCP_RTO_MIN;
426 icsk->icsk_delack_max = TCP_DELACK_MAX;
427 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
428 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
429
430 /* So many TCP implementations out there (incorrectly) count the
431 * initial SYN frame in their delayed-ACK and congestion control
432 * algorithms that we must have the following bandaid to talk
433 * efficiently to them. -DaveM
434 */
435 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
436
437 /* There's a bubble in the pipe until at least the first ACK. */
438 tp->app_limited = ~0U;
439 tp->rate_app_limited = 1;
440
441 /* See draft-stevens-tcpca-spec-01 for discussion of the
442 * initialization of these values.
443 */
444 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
445 tp->snd_cwnd_clamp = ~0;
446 tp->mss_cache = TCP_MSS_DEFAULT;
447
448 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
449 tcp_assign_congestion_control(sk);
450
451 tp->tsoffset = 0;
452 tp->rack.reo_wnd_steps = 1;
453
454 sk->sk_write_space = sk_stream_write_space;
455 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
456
457 icsk->icsk_sync_mss = tcp_sync_mss;
458
459 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
460 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
461 tcp_scaling_ratio_init(sk);
462
463 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
464 sk_sockets_allocated_inc(sk);
465 }
466 EXPORT_SYMBOL(tcp_init_sock);
467
tcp_tx_timestamp(struct sock * sk,u16 tsflags)468 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
469 {
470 struct sk_buff *skb = tcp_write_queue_tail(sk);
471
472 if (tsflags && skb) {
473 struct skb_shared_info *shinfo = skb_shinfo(skb);
474 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
475
476 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
477 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
478 tcb->txstamp_ack = 1;
479 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
480 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
481 }
482 }
483
tcp_stream_is_readable(struct sock * sk,int target)484 static bool tcp_stream_is_readable(struct sock *sk, int target)
485 {
486 if (tcp_epollin_ready(sk, target))
487 return true;
488 return sk_is_readable(sk);
489 }
490
491 /*
492 * Wait for a TCP event.
493 *
494 * Note that we don't need to lock the socket, as the upper poll layers
495 * take care of normal races (between the test and the event) and we don't
496 * go look at any of the socket buffers directly.
497 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)498 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
499 {
500 __poll_t mask;
501 struct sock *sk = sock->sk;
502 const struct tcp_sock *tp = tcp_sk(sk);
503 u8 shutdown;
504 int state;
505
506 sock_poll_wait(file, sock, wait);
507
508 state = inet_sk_state_load(sk);
509 if (state == TCP_LISTEN)
510 return inet_csk_listen_poll(sk);
511
512 /* Socket is not locked. We are protected from async events
513 * by poll logic and correct handling of state changes
514 * made by other threads is impossible in any case.
515 */
516
517 mask = 0;
518
519 /*
520 * EPOLLHUP is certainly not done right. But poll() doesn't
521 * have a notion of HUP in just one direction, and for a
522 * socket the read side is more interesting.
523 *
524 * Some poll() documentation says that EPOLLHUP is incompatible
525 * with the EPOLLOUT/POLLWR flags, so somebody should check this
526 * all. But careful, it tends to be safer to return too many
527 * bits than too few, and you can easily break real applications
528 * if you don't tell them that something has hung up!
529 *
530 * Check-me.
531 *
532 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
533 * our fs/select.c). It means that after we received EOF,
534 * poll always returns immediately, making impossible poll() on write()
535 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
536 * if and only if shutdown has been made in both directions.
537 * Actually, it is interesting to look how Solaris and DUX
538 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
539 * then we could set it on SND_SHUTDOWN. BTW examples given
540 * in Stevens' books assume exactly this behaviour, it explains
541 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
542 *
543 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
544 * blocking on fresh not-connected or disconnected socket. --ANK
545 */
546 shutdown = READ_ONCE(sk->sk_shutdown);
547 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
548 mask |= EPOLLHUP;
549 if (shutdown & RCV_SHUTDOWN)
550 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
551
552 /* Connected or passive Fast Open socket? */
553 if (state != TCP_SYN_SENT &&
554 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
555 int target = sock_rcvlowat(sk, 0, INT_MAX);
556 u16 urg_data = READ_ONCE(tp->urg_data);
557
558 if (unlikely(urg_data) &&
559 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
560 !sock_flag(sk, SOCK_URGINLINE))
561 target++;
562
563 if (tcp_stream_is_readable(sk, target))
564 mask |= EPOLLIN | EPOLLRDNORM;
565
566 if (!(shutdown & SEND_SHUTDOWN)) {
567 if (__sk_stream_is_writeable(sk, 1)) {
568 mask |= EPOLLOUT | EPOLLWRNORM;
569 } else { /* send SIGIO later */
570 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
571 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
572
573 /* Race breaker. If space is freed after
574 * wspace test but before the flags are set,
575 * IO signal will be lost. Memory barrier
576 * pairs with the input side.
577 */
578 smp_mb__after_atomic();
579 if (__sk_stream_is_writeable(sk, 1))
580 mask |= EPOLLOUT | EPOLLWRNORM;
581 }
582 } else
583 mask |= EPOLLOUT | EPOLLWRNORM;
584
585 if (urg_data & TCP_URG_VALID)
586 mask |= EPOLLPRI;
587 } else if (state == TCP_SYN_SENT &&
588 inet_test_bit(DEFER_CONNECT, sk)) {
589 /* Active TCP fastopen socket with defer_connect
590 * Return EPOLLOUT so application can call write()
591 * in order for kernel to generate SYN+data
592 */
593 mask |= EPOLLOUT | EPOLLWRNORM;
594 }
595 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
596 smp_rmb();
597 if (READ_ONCE(sk->sk_err) ||
598 !skb_queue_empty_lockless(&sk->sk_error_queue))
599 mask |= EPOLLERR;
600
601 return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604
tcp_ioctl(struct sock * sk,int cmd,int * karg)605 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
606 {
607 struct tcp_sock *tp = tcp_sk(sk);
608 int answ;
609 bool slow;
610
611 switch (cmd) {
612 case SIOCINQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 slow = lock_sock_fast(sk);
617 answ = tcp_inq(sk);
618 unlock_sock_fast(sk, slow);
619 break;
620 case SIOCATMARK:
621 answ = READ_ONCE(tp->urg_data) &&
622 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
623 break;
624 case SIOCOUTQ:
625 if (sk->sk_state == TCP_LISTEN)
626 return -EINVAL;
627
628 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
629 answ = 0;
630 else
631 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
632 break;
633 case SIOCOUTQNSD:
634 if (sk->sk_state == TCP_LISTEN)
635 return -EINVAL;
636
637 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
638 answ = 0;
639 else
640 answ = READ_ONCE(tp->write_seq) -
641 READ_ONCE(tp->snd_nxt);
642 break;
643 default:
644 return -ENOIOCTLCMD;
645 }
646
647 *karg = answ;
648 return 0;
649 }
650 EXPORT_SYMBOL(tcp_ioctl);
651
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)652 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
653 {
654 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
655 tp->pushed_seq = tp->write_seq;
656 }
657
forced_push(const struct tcp_sock * tp)658 static inline bool forced_push(const struct tcp_sock *tp)
659 {
660 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
661 }
662
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)663 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
664 {
665 struct tcp_sock *tp = tcp_sk(sk);
666 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
667
668 tcb->seq = tcb->end_seq = tp->write_seq;
669 tcb->tcp_flags = TCPHDR_ACK;
670 __skb_header_release(skb);
671 tcp_add_write_queue_tail(sk, skb);
672 sk_wmem_queued_add(sk, skb->truesize);
673 sk_mem_charge(sk, skb->truesize);
674 if (tp->nonagle & TCP_NAGLE_PUSH)
675 tp->nonagle &= ~TCP_NAGLE_PUSH;
676
677 tcp_slow_start_after_idle_check(sk);
678 }
679
tcp_mark_urg(struct tcp_sock * tp,int flags)680 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
681 {
682 if (flags & MSG_OOB)
683 tp->snd_up = tp->write_seq;
684 }
685
686 /* If a not yet filled skb is pushed, do not send it if
687 * we have data packets in Qdisc or NIC queues :
688 * Because TX completion will happen shortly, it gives a chance
689 * to coalesce future sendmsg() payload into this skb, without
690 * need for a timer, and with no latency trade off.
691 * As packets containing data payload have a bigger truesize
692 * than pure acks (dataless) packets, the last checks prevent
693 * autocorking if we only have an ACK in Qdisc/NIC queues,
694 * or if TX completion was delayed after we processed ACK packet.
695 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)696 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
697 int size_goal)
698 {
699 return skb->len < size_goal &&
700 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
701 !tcp_rtx_queue_empty(sk) &&
702 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
703 tcp_skb_can_collapse_to(skb);
704 }
705
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)706 void tcp_push(struct sock *sk, int flags, int mss_now,
707 int nonagle, int size_goal)
708 {
709 struct tcp_sock *tp = tcp_sk(sk);
710 struct sk_buff *skb;
711
712 skb = tcp_write_queue_tail(sk);
713 if (!skb)
714 return;
715 if (!(flags & MSG_MORE) || forced_push(tp))
716 tcp_mark_push(tp, skb);
717
718 tcp_mark_urg(tp, flags);
719
720 if (tcp_should_autocork(sk, skb, size_goal)) {
721
722 /* avoid atomic op if TSQ_THROTTLED bit is already set */
723 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
724 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
725 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
726 smp_mb__after_atomic();
727 }
728 /* It is possible TX completion already happened
729 * before we set TSQ_THROTTLED.
730 */
731 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
732 return;
733 }
734
735 if (flags & MSG_MORE)
736 nonagle = TCP_NAGLE_CORK;
737
738 __tcp_push_pending_frames(sk, mss_now, nonagle);
739 }
740
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)741 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
742 unsigned int offset, size_t len)
743 {
744 struct tcp_splice_state *tss = rd_desc->arg.data;
745 int ret;
746
747 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
748 min(rd_desc->count, len), tss->flags);
749 if (ret > 0)
750 rd_desc->count -= ret;
751 return ret;
752 }
753
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)754 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
755 {
756 /* Store TCP splice context information in read_descriptor_t. */
757 read_descriptor_t rd_desc = {
758 .arg.data = tss,
759 .count = tss->len,
760 };
761
762 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
763 }
764
765 /**
766 * tcp_splice_read - splice data from TCP socket to a pipe
767 * @sock: socket to splice from
768 * @ppos: position (not valid)
769 * @pipe: pipe to splice to
770 * @len: number of bytes to splice
771 * @flags: splice modifier flags
772 *
773 * Description:
774 * Will read pages from given socket and fill them into a pipe.
775 *
776 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)777 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
778 struct pipe_inode_info *pipe, size_t len,
779 unsigned int flags)
780 {
781 struct sock *sk = sock->sk;
782 struct tcp_splice_state tss = {
783 .pipe = pipe,
784 .len = len,
785 .flags = flags,
786 };
787 long timeo;
788 ssize_t spliced;
789 int ret;
790
791 sock_rps_record_flow(sk);
792 /*
793 * We can't seek on a socket input
794 */
795 if (unlikely(*ppos))
796 return -ESPIPE;
797
798 ret = spliced = 0;
799
800 lock_sock(sk);
801
802 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
803 while (tss.len) {
804 ret = __tcp_splice_read(sk, &tss);
805 if (ret < 0)
806 break;
807 else if (!ret) {
808 if (spliced)
809 break;
810 if (sock_flag(sk, SOCK_DONE))
811 break;
812 if (sk->sk_err) {
813 ret = sock_error(sk);
814 break;
815 }
816 if (sk->sk_shutdown & RCV_SHUTDOWN)
817 break;
818 if (sk->sk_state == TCP_CLOSE) {
819 /*
820 * This occurs when user tries to read
821 * from never connected socket.
822 */
823 ret = -ENOTCONN;
824 break;
825 }
826 if (!timeo) {
827 ret = -EAGAIN;
828 break;
829 }
830 /* if __tcp_splice_read() got nothing while we have
831 * an skb in receive queue, we do not want to loop.
832 * This might happen with URG data.
833 */
834 if (!skb_queue_empty(&sk->sk_receive_queue))
835 break;
836 ret = sk_wait_data(sk, &timeo, NULL);
837 if (ret < 0)
838 break;
839 if (signal_pending(current)) {
840 ret = sock_intr_errno(timeo);
841 break;
842 }
843 continue;
844 }
845 tss.len -= ret;
846 spliced += ret;
847
848 if (!tss.len || !timeo)
849 break;
850 release_sock(sk);
851 lock_sock(sk);
852
853 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
854 (sk->sk_shutdown & RCV_SHUTDOWN) ||
855 signal_pending(current))
856 break;
857 }
858
859 release_sock(sk);
860
861 if (spliced)
862 return spliced;
863
864 return ret;
865 }
866 EXPORT_SYMBOL(tcp_splice_read);
867
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)868 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
869 bool force_schedule)
870 {
871 struct sk_buff *skb;
872
873 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
874 if (likely(skb)) {
875 bool mem_scheduled;
876
877 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
878 if (force_schedule) {
879 mem_scheduled = true;
880 sk_forced_mem_schedule(sk, skb->truesize);
881 } else {
882 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
883 }
884 if (likely(mem_scheduled)) {
885 skb_reserve(skb, MAX_TCP_HEADER);
886 skb->ip_summed = CHECKSUM_PARTIAL;
887 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 return skb;
889 }
890 __kfree_skb(skb);
891 } else {
892 sk->sk_prot->enter_memory_pressure(sk);
893 sk_stream_moderate_sndbuf(sk);
894 }
895 return NULL;
896 }
897
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)898 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
899 int large_allowed)
900 {
901 struct tcp_sock *tp = tcp_sk(sk);
902 u32 new_size_goal, size_goal;
903
904 if (!large_allowed)
905 return mss_now;
906
907 /* Note : tcp_tso_autosize() will eventually split this later */
908 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
909
910 /* We try hard to avoid divides here */
911 size_goal = tp->gso_segs * mss_now;
912 if (unlikely(new_size_goal < size_goal ||
913 new_size_goal >= size_goal + mss_now)) {
914 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
915 sk->sk_gso_max_segs);
916 size_goal = tp->gso_segs * mss_now;
917 }
918
919 return max(size_goal, mss_now);
920 }
921
tcp_send_mss(struct sock * sk,int * size_goal,int flags)922 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
923 {
924 int mss_now;
925
926 mss_now = tcp_current_mss(sk);
927 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
928
929 return mss_now;
930 }
931
932 /* In some cases, sendmsg() could have added an skb to the write queue,
933 * but failed adding payload on it. We need to remove it to consume less
934 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
935 * epoll() users. Another reason is that tcp_write_xmit() does not like
936 * finding an empty skb in the write queue.
937 */
tcp_remove_empty_skb(struct sock * sk)938 void tcp_remove_empty_skb(struct sock *sk)
939 {
940 struct sk_buff *skb = tcp_write_queue_tail(sk);
941
942 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
943 tcp_unlink_write_queue(skb, sk);
944 if (tcp_write_queue_empty(sk))
945 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
946 tcp_wmem_free_skb(sk, skb);
947 }
948 }
949
950 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)951 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
952 {
953 if (unlikely(skb_zcopy_pure(skb))) {
954 u32 extra = skb->truesize -
955 SKB_TRUESIZE(skb_end_offset(skb));
956
957 if (!sk_wmem_schedule(sk, extra))
958 return -ENOMEM;
959
960 sk_mem_charge(sk, extra);
961 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
962 }
963 return 0;
964 }
965
966
tcp_wmem_schedule(struct sock * sk,int copy)967 int tcp_wmem_schedule(struct sock *sk, int copy)
968 {
969 int left;
970
971 if (likely(sk_wmem_schedule(sk, copy)))
972 return copy;
973
974 /* We could be in trouble if we have nothing queued.
975 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
976 * to guarantee some progress.
977 */
978 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
979 if (left > 0)
980 sk_forced_mem_schedule(sk, min(left, copy));
981 return min(copy, sk->sk_forward_alloc);
982 }
983
tcp_free_fastopen_req(struct tcp_sock * tp)984 void tcp_free_fastopen_req(struct tcp_sock *tp)
985 {
986 if (tp->fastopen_req) {
987 kfree(tp->fastopen_req);
988 tp->fastopen_req = NULL;
989 }
990 }
991
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)992 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
993 size_t size, struct ubuf_info *uarg)
994 {
995 struct tcp_sock *tp = tcp_sk(sk);
996 struct inet_sock *inet = inet_sk(sk);
997 struct sockaddr *uaddr = msg->msg_name;
998 int err, flags;
999
1000 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1001 TFO_CLIENT_ENABLE) ||
1002 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1003 uaddr->sa_family == AF_UNSPEC))
1004 return -EOPNOTSUPP;
1005 if (tp->fastopen_req)
1006 return -EALREADY; /* Another Fast Open is in progress */
1007
1008 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1009 sk->sk_allocation);
1010 if (unlikely(!tp->fastopen_req))
1011 return -ENOBUFS;
1012 tp->fastopen_req->data = msg;
1013 tp->fastopen_req->size = size;
1014 tp->fastopen_req->uarg = uarg;
1015
1016 if (inet_test_bit(DEFER_CONNECT, sk)) {
1017 err = tcp_connect(sk);
1018 /* Same failure procedure as in tcp_v4/6_connect */
1019 if (err) {
1020 tcp_set_state(sk, TCP_CLOSE);
1021 inet->inet_dport = 0;
1022 sk->sk_route_caps = 0;
1023 }
1024 }
1025 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1026 err = __inet_stream_connect(sk->sk_socket, uaddr,
1027 msg->msg_namelen, flags, 1);
1028 /* fastopen_req could already be freed in __inet_stream_connect
1029 * if the connection times out or gets rst
1030 */
1031 if (tp->fastopen_req) {
1032 *copied = tp->fastopen_req->copied;
1033 tcp_free_fastopen_req(tp);
1034 inet_clear_bit(DEFER_CONNECT, sk);
1035 }
1036 return err;
1037 }
1038
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1039 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1040 {
1041 struct tcp_sock *tp = tcp_sk(sk);
1042 struct ubuf_info *uarg = NULL;
1043 struct sk_buff *skb;
1044 struct sockcm_cookie sockc;
1045 int flags, err, copied = 0;
1046 int mss_now = 0, size_goal, copied_syn = 0;
1047 int process_backlog = 0;
1048 int zc = 0;
1049 long timeo;
1050
1051 flags = msg->msg_flags;
1052
1053 if ((flags & MSG_ZEROCOPY) && size) {
1054 if (msg->msg_ubuf) {
1055 uarg = msg->msg_ubuf;
1056 if (sk->sk_route_caps & NETIF_F_SG)
1057 zc = MSG_ZEROCOPY;
1058 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1059 skb = tcp_write_queue_tail(sk);
1060 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1061 if (!uarg) {
1062 err = -ENOBUFS;
1063 goto out_err;
1064 }
1065 if (sk->sk_route_caps & NETIF_F_SG)
1066 zc = MSG_ZEROCOPY;
1067 else
1068 uarg_to_msgzc(uarg)->zerocopy = 0;
1069 }
1070 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1071 if (sk->sk_route_caps & NETIF_F_SG)
1072 zc = MSG_SPLICE_PAGES;
1073 }
1074
1075 if (unlikely(flags & MSG_FASTOPEN ||
1076 inet_test_bit(DEFER_CONNECT, sk)) &&
1077 !tp->repair) {
1078 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1079 if (err == -EINPROGRESS && copied_syn > 0)
1080 goto out;
1081 else if (err)
1082 goto out_err;
1083 }
1084
1085 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1086
1087 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1088
1089 /* Wait for a connection to finish. One exception is TCP Fast Open
1090 * (passive side) where data is allowed to be sent before a connection
1091 * is fully established.
1092 */
1093 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1094 !tcp_passive_fastopen(sk)) {
1095 err = sk_stream_wait_connect(sk, &timeo);
1096 if (err != 0)
1097 goto do_error;
1098 }
1099
1100 if (unlikely(tp->repair)) {
1101 if (tp->repair_queue == TCP_RECV_QUEUE) {
1102 copied = tcp_send_rcvq(sk, msg, size);
1103 goto out_nopush;
1104 }
1105
1106 err = -EINVAL;
1107 if (tp->repair_queue == TCP_NO_QUEUE)
1108 goto out_err;
1109
1110 /* 'common' sending to sendq */
1111 }
1112
1113 sockcm_init(&sockc, sk);
1114 if (msg->msg_controllen) {
1115 err = sock_cmsg_send(sk, msg, &sockc);
1116 if (unlikely(err)) {
1117 err = -EINVAL;
1118 goto out_err;
1119 }
1120 }
1121
1122 trace_android_vh_uplink_send_msg(sk);
1123
1124 /* This should be in poll */
1125 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1126
1127 /* Ok commence sending. */
1128 copied = 0;
1129
1130 restart:
1131 mss_now = tcp_send_mss(sk, &size_goal, flags);
1132
1133 err = -EPIPE;
1134 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1135 goto do_error;
1136
1137 while (msg_data_left(msg)) {
1138 ssize_t copy = 0;
1139
1140 skb = tcp_write_queue_tail(sk);
1141 if (skb)
1142 copy = size_goal - skb->len;
1143
1144 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1145 bool first_skb;
1146
1147 new_segment:
1148 if (!sk_stream_memory_free(sk))
1149 goto wait_for_space;
1150
1151 if (unlikely(process_backlog >= 16)) {
1152 process_backlog = 0;
1153 if (sk_flush_backlog(sk))
1154 goto restart;
1155 }
1156 first_skb = tcp_rtx_and_write_queues_empty(sk);
1157 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1158 first_skb);
1159 if (!skb)
1160 goto wait_for_space;
1161
1162 process_backlog++;
1163
1164 #ifdef CONFIG_SKB_DECRYPTED
1165 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1166 #endif
1167 tcp_skb_entail(sk, skb);
1168 copy = size_goal;
1169
1170 /* All packets are restored as if they have
1171 * already been sent. skb_mstamp_ns isn't set to
1172 * avoid wrong rtt estimation.
1173 */
1174 if (tp->repair)
1175 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1176 }
1177
1178 /* Try to append data to the end of skb. */
1179 if (copy > msg_data_left(msg))
1180 copy = msg_data_left(msg);
1181
1182 if (zc == 0) {
1183 bool merge = true;
1184 int i = skb_shinfo(skb)->nr_frags;
1185 struct page_frag *pfrag = sk_page_frag(sk);
1186
1187 if (!sk_page_frag_refill(sk, pfrag))
1188 goto wait_for_space;
1189
1190 if (!skb_can_coalesce(skb, i, pfrag->page,
1191 pfrag->offset)) {
1192 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1193 tcp_mark_push(tp, skb);
1194 goto new_segment;
1195 }
1196 merge = false;
1197 }
1198
1199 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1200
1201 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1202 if (tcp_downgrade_zcopy_pure(sk, skb))
1203 goto wait_for_space;
1204 skb_zcopy_downgrade_managed(skb);
1205 }
1206
1207 copy = tcp_wmem_schedule(sk, copy);
1208 if (!copy)
1209 goto wait_for_space;
1210
1211 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1212 pfrag->page,
1213 pfrag->offset,
1214 copy);
1215 if (err)
1216 goto do_error;
1217
1218 /* Update the skb. */
1219 if (merge) {
1220 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1221 } else {
1222 skb_fill_page_desc(skb, i, pfrag->page,
1223 pfrag->offset, copy);
1224 page_ref_inc(pfrag->page);
1225 }
1226 pfrag->offset += copy;
1227 } else if (zc == MSG_ZEROCOPY) {
1228 /* First append to a fragless skb builds initial
1229 * pure zerocopy skb
1230 */
1231 if (!skb->len)
1232 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1233
1234 if (!skb_zcopy_pure(skb)) {
1235 copy = tcp_wmem_schedule(sk, copy);
1236 if (!copy)
1237 goto wait_for_space;
1238 }
1239
1240 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1241 if (err == -EMSGSIZE || err == -EEXIST) {
1242 tcp_mark_push(tp, skb);
1243 goto new_segment;
1244 }
1245 if (err < 0)
1246 goto do_error;
1247 copy = err;
1248 } else if (zc == MSG_SPLICE_PAGES) {
1249 /* Splice in data if we can; copy if we can't. */
1250 if (tcp_downgrade_zcopy_pure(sk, skb))
1251 goto wait_for_space;
1252 copy = tcp_wmem_schedule(sk, copy);
1253 if (!copy)
1254 goto wait_for_space;
1255
1256 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1257 sk->sk_allocation);
1258 if (err < 0) {
1259 if (err == -EMSGSIZE) {
1260 tcp_mark_push(tp, skb);
1261 goto new_segment;
1262 }
1263 goto do_error;
1264 }
1265 copy = err;
1266
1267 if (!(flags & MSG_NO_SHARED_FRAGS))
1268 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1269
1270 sk_wmem_queued_add(sk, copy);
1271 sk_mem_charge(sk, copy);
1272 }
1273
1274 if (!copied)
1275 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1276
1277 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1278 TCP_SKB_CB(skb)->end_seq += copy;
1279 tcp_skb_pcount_set(skb, 0);
1280
1281 copied += copy;
1282 if (!msg_data_left(msg)) {
1283 if (unlikely(flags & MSG_EOR))
1284 TCP_SKB_CB(skb)->eor = 1;
1285 goto out;
1286 }
1287
1288 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1289 continue;
1290
1291 if (forced_push(tp)) {
1292 tcp_mark_push(tp, skb);
1293 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1294 } else if (skb == tcp_send_head(sk))
1295 tcp_push_one(sk, mss_now);
1296 continue;
1297
1298 wait_for_space:
1299 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1300 tcp_remove_empty_skb(sk);
1301 if (copied)
1302 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1303 TCP_NAGLE_PUSH, size_goal);
1304
1305 err = sk_stream_wait_memory(sk, &timeo);
1306 if (err != 0)
1307 goto do_error;
1308
1309 mss_now = tcp_send_mss(sk, &size_goal, flags);
1310 }
1311
1312 out:
1313 if (copied) {
1314 tcp_tx_timestamp(sk, sockc.tsflags);
1315 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1316 }
1317 out_nopush:
1318 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1319 if (uarg && !msg->msg_ubuf)
1320 net_zcopy_put(uarg);
1321 return copied + copied_syn;
1322
1323 do_error:
1324 tcp_remove_empty_skb(sk);
1325
1326 if (copied + copied_syn)
1327 goto out;
1328 out_err:
1329 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1330 if (uarg && !msg->msg_ubuf)
1331 net_zcopy_put_abort(uarg, true);
1332 err = sk_stream_error(sk, flags, err);
1333 /* make sure we wake any epoll edge trigger waiter */
1334 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1335 sk->sk_write_space(sk);
1336 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1337 }
1338 return err;
1339 }
1340 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1341
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1342 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1343 {
1344 int ret;
1345
1346 trace_android_rvh_tcp_sendmsg(sk, msg, size);
1347 lock_sock(sk);
1348 ret = tcp_sendmsg_locked(sk, msg, size);
1349 release_sock(sk);
1350
1351 return ret;
1352 }
1353 EXPORT_SYMBOL(tcp_sendmsg);
1354
tcp_splice_eof(struct socket * sock)1355 void tcp_splice_eof(struct socket *sock)
1356 {
1357 struct sock *sk = sock->sk;
1358 struct tcp_sock *tp = tcp_sk(sk);
1359 int mss_now, size_goal;
1360
1361 if (!tcp_write_queue_tail(sk))
1362 return;
1363
1364 lock_sock(sk);
1365 mss_now = tcp_send_mss(sk, &size_goal, 0);
1366 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1367 release_sock(sk);
1368 }
1369 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1370
1371 /*
1372 * Handle reading urgent data. BSD has very simple semantics for
1373 * this, no blocking and very strange errors 8)
1374 */
1375
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1376 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1377 {
1378 struct tcp_sock *tp = tcp_sk(sk);
1379
1380 /* No URG data to read. */
1381 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1382 tp->urg_data == TCP_URG_READ)
1383 return -EINVAL; /* Yes this is right ! */
1384
1385 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1386 return -ENOTCONN;
1387
1388 if (tp->urg_data & TCP_URG_VALID) {
1389 int err = 0;
1390 char c = tp->urg_data;
1391
1392 if (!(flags & MSG_PEEK))
1393 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1394
1395 /* Read urgent data. */
1396 msg->msg_flags |= MSG_OOB;
1397
1398 if (len > 0) {
1399 if (!(flags & MSG_TRUNC))
1400 err = memcpy_to_msg(msg, &c, 1);
1401 len = 1;
1402 } else
1403 msg->msg_flags |= MSG_TRUNC;
1404
1405 return err ? -EFAULT : len;
1406 }
1407
1408 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1409 return 0;
1410
1411 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1412 * the available implementations agree in this case:
1413 * this call should never block, independent of the
1414 * blocking state of the socket.
1415 * Mike <pall@rz.uni-karlsruhe.de>
1416 */
1417 return -EAGAIN;
1418 }
1419
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1420 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1421 {
1422 struct sk_buff *skb;
1423 int copied = 0, err = 0;
1424
1425 /* XXX -- need to support SO_PEEK_OFF */
1426
1427 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1428 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1429 if (err)
1430 return err;
1431 copied += skb->len;
1432 }
1433
1434 skb_queue_walk(&sk->sk_write_queue, skb) {
1435 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1436 if (err)
1437 break;
1438
1439 copied += skb->len;
1440 }
1441
1442 return err ?: copied;
1443 }
1444
1445 /* Clean up the receive buffer for full frames taken by the user,
1446 * then send an ACK if necessary. COPIED is the number of bytes
1447 * tcp_recvmsg has given to the user so far, it speeds up the
1448 * calculation of whether or not we must ACK for the sake of
1449 * a window update.
1450 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1451 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1452 {
1453 struct tcp_sock *tp = tcp_sk(sk);
1454 bool time_to_ack = false;
1455
1456 if (inet_csk_ack_scheduled(sk)) {
1457 const struct inet_connection_sock *icsk = inet_csk(sk);
1458
1459 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1460 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1461 /*
1462 * If this read emptied read buffer, we send ACK, if
1463 * connection is not bidirectional, user drained
1464 * receive buffer and there was a small segment
1465 * in queue.
1466 */
1467 (copied > 0 &&
1468 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1469 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1470 !inet_csk_in_pingpong_mode(sk))) &&
1471 !atomic_read(&sk->sk_rmem_alloc)))
1472 time_to_ack = true;
1473 }
1474
1475 /* We send an ACK if we can now advertise a non-zero window
1476 * which has been raised "significantly".
1477 *
1478 * Even if window raised up to infinity, do not send window open ACK
1479 * in states, where we will not receive more. It is useless.
1480 */
1481 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1482 __u32 rcv_window_now = tcp_receive_window(tp);
1483
1484 /* Optimize, __tcp_select_window() is not cheap. */
1485 if (2*rcv_window_now <= tp->window_clamp) {
1486 __u32 new_window = __tcp_select_window(sk);
1487
1488 /* Send ACK now, if this read freed lots of space
1489 * in our buffer. Certainly, new_window is new window.
1490 * We can advertise it now, if it is not less than current one.
1491 * "Lots" means "at least twice" here.
1492 */
1493 if (new_window && new_window >= 2 * rcv_window_now)
1494 time_to_ack = true;
1495 }
1496 }
1497 if (time_to_ack)
1498 tcp_send_ack(sk);
1499 }
1500
tcp_cleanup_rbuf(struct sock * sk,int copied)1501 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1502 {
1503 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1504 struct tcp_sock *tp = tcp_sk(sk);
1505
1506 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1507 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1508 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1509 __tcp_cleanup_rbuf(sk, copied);
1510 }
1511
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1512 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1513 {
1514 __skb_unlink(skb, &sk->sk_receive_queue);
1515 if (likely(skb->destructor == sock_rfree)) {
1516 sock_rfree(skb);
1517 skb->destructor = NULL;
1518 skb->sk = NULL;
1519 return skb_attempt_defer_free(skb);
1520 }
1521 __kfree_skb(skb);
1522 }
1523
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1524 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1525 {
1526 struct sk_buff *skb;
1527 u32 offset;
1528
1529 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1530 offset = seq - TCP_SKB_CB(skb)->seq;
1531 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1532 pr_err_once("%s: found a SYN, please report !\n", __func__);
1533 offset--;
1534 }
1535 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1536 *off = offset;
1537 return skb;
1538 }
1539 /* This looks weird, but this can happen if TCP collapsing
1540 * splitted a fat GRO packet, while we released socket lock
1541 * in skb_splice_bits()
1542 */
1543 tcp_eat_recv_skb(sk, skb);
1544 }
1545 return NULL;
1546 }
1547 EXPORT_SYMBOL(tcp_recv_skb);
1548
1549 /*
1550 * This routine provides an alternative to tcp_recvmsg() for routines
1551 * that would like to handle copying from skbuffs directly in 'sendfile'
1552 * fashion.
1553 * Note:
1554 * - It is assumed that the socket was locked by the caller.
1555 * - The routine does not block.
1556 * - At present, there is no support for reading OOB data
1557 * or for 'peeking' the socket using this routine
1558 * (although both would be easy to implement).
1559 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1560 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1561 sk_read_actor_t recv_actor)
1562 {
1563 struct sk_buff *skb;
1564 struct tcp_sock *tp = tcp_sk(sk);
1565 u32 seq = tp->copied_seq;
1566 u32 offset;
1567 int copied = 0;
1568
1569 if (sk->sk_state == TCP_LISTEN)
1570 return -ENOTCONN;
1571 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1572 if (offset < skb->len) {
1573 int used;
1574 size_t len;
1575
1576 len = skb->len - offset;
1577 /* Stop reading if we hit a patch of urgent data */
1578 if (unlikely(tp->urg_data)) {
1579 u32 urg_offset = tp->urg_seq - seq;
1580 if (urg_offset < len)
1581 len = urg_offset;
1582 if (!len)
1583 break;
1584 }
1585 used = recv_actor(desc, skb, offset, len);
1586 if (used <= 0) {
1587 if (!copied)
1588 copied = used;
1589 break;
1590 }
1591 if (WARN_ON_ONCE(used > len))
1592 used = len;
1593 seq += used;
1594 copied += used;
1595 offset += used;
1596
1597 /* If recv_actor drops the lock (e.g. TCP splice
1598 * receive) the skb pointer might be invalid when
1599 * getting here: tcp_collapse might have deleted it
1600 * while aggregating skbs from the socket queue.
1601 */
1602 skb = tcp_recv_skb(sk, seq - 1, &offset);
1603 if (!skb)
1604 break;
1605 /* TCP coalescing might have appended data to the skb.
1606 * Try to splice more frags
1607 */
1608 if (offset + 1 != skb->len)
1609 continue;
1610 }
1611 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1612 tcp_eat_recv_skb(sk, skb);
1613 ++seq;
1614 break;
1615 }
1616 tcp_eat_recv_skb(sk, skb);
1617 if (!desc->count)
1618 break;
1619 WRITE_ONCE(tp->copied_seq, seq);
1620 }
1621 WRITE_ONCE(tp->copied_seq, seq);
1622
1623 tcp_rcv_space_adjust(sk);
1624
1625 /* Clean up data we have read: This will do ACK frames. */
1626 if (copied > 0) {
1627 tcp_recv_skb(sk, seq, &offset);
1628 tcp_cleanup_rbuf(sk, copied);
1629 }
1630 return copied;
1631 }
1632 EXPORT_SYMBOL(tcp_read_sock);
1633
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1634 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1635 {
1636 struct sk_buff *skb;
1637 int copied = 0;
1638
1639 if (sk->sk_state == TCP_LISTEN)
1640 return -ENOTCONN;
1641
1642 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1643 u8 tcp_flags;
1644 int used;
1645
1646 __skb_unlink(skb, &sk->sk_receive_queue);
1647 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1648 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1649 used = recv_actor(sk, skb);
1650 if (used < 0) {
1651 if (!copied)
1652 copied = used;
1653 break;
1654 }
1655 copied += used;
1656
1657 if (tcp_flags & TCPHDR_FIN)
1658 break;
1659 }
1660 return copied;
1661 }
1662 EXPORT_SYMBOL(tcp_read_skb);
1663
tcp_read_done(struct sock * sk,size_t len)1664 void tcp_read_done(struct sock *sk, size_t len)
1665 {
1666 struct tcp_sock *tp = tcp_sk(sk);
1667 u32 seq = tp->copied_seq;
1668 struct sk_buff *skb;
1669 size_t left;
1670 u32 offset;
1671
1672 if (sk->sk_state == TCP_LISTEN)
1673 return;
1674
1675 left = len;
1676 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1677 int used;
1678
1679 used = min_t(size_t, skb->len - offset, left);
1680 seq += used;
1681 left -= used;
1682
1683 if (skb->len > offset + used)
1684 break;
1685
1686 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1687 tcp_eat_recv_skb(sk, skb);
1688 ++seq;
1689 break;
1690 }
1691 tcp_eat_recv_skb(sk, skb);
1692 }
1693 WRITE_ONCE(tp->copied_seq, seq);
1694
1695 tcp_rcv_space_adjust(sk);
1696
1697 /* Clean up data we have read: This will do ACK frames. */
1698 if (left != len)
1699 tcp_cleanup_rbuf(sk, len - left);
1700 }
1701 EXPORT_SYMBOL(tcp_read_done);
1702
tcp_peek_len(struct socket * sock)1703 int tcp_peek_len(struct socket *sock)
1704 {
1705 return tcp_inq(sock->sk);
1706 }
1707 EXPORT_SYMBOL(tcp_peek_len);
1708
1709 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1710 int tcp_set_rcvlowat(struct sock *sk, int val)
1711 {
1712 int space, cap;
1713
1714 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1715 cap = sk->sk_rcvbuf >> 1;
1716 else
1717 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1718 val = min(val, cap);
1719 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1720
1721 /* Check if we need to signal EPOLLIN right now */
1722 tcp_data_ready(sk);
1723
1724 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1725 return 0;
1726
1727 space = tcp_space_from_win(sk, val);
1728 if (space > sk->sk_rcvbuf) {
1729 WRITE_ONCE(sk->sk_rcvbuf, space);
1730 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1731 }
1732 return 0;
1733 }
1734 EXPORT_SYMBOL(tcp_set_rcvlowat);
1735
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1736 void tcp_update_recv_tstamps(struct sk_buff *skb,
1737 struct scm_timestamping_internal *tss)
1738 {
1739 if (skb->tstamp)
1740 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1741 else
1742 tss->ts[0] = (struct timespec64) {0};
1743
1744 if (skb_hwtstamps(skb)->hwtstamp)
1745 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1746 else
1747 tss->ts[2] = (struct timespec64) {0};
1748 }
1749
1750 #ifdef CONFIG_MMU
1751 static const struct vm_operations_struct tcp_vm_ops = {
1752 };
1753
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1754 int tcp_mmap(struct file *file, struct socket *sock,
1755 struct vm_area_struct *vma)
1756 {
1757 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1758 return -EPERM;
1759 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1760
1761 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1762 vm_flags_set(vma, VM_MIXEDMAP);
1763
1764 vma->vm_ops = &tcp_vm_ops;
1765 return 0;
1766 }
1767 EXPORT_SYMBOL(tcp_mmap);
1768
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1769 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1770 u32 *offset_frag)
1771 {
1772 skb_frag_t *frag;
1773
1774 if (unlikely(offset_skb >= skb->len))
1775 return NULL;
1776
1777 offset_skb -= skb_headlen(skb);
1778 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1779 return NULL;
1780
1781 frag = skb_shinfo(skb)->frags;
1782 while (offset_skb) {
1783 if (skb_frag_size(frag) > offset_skb) {
1784 *offset_frag = offset_skb;
1785 return frag;
1786 }
1787 offset_skb -= skb_frag_size(frag);
1788 ++frag;
1789 }
1790 *offset_frag = 0;
1791 return frag;
1792 }
1793
can_map_frag(const skb_frag_t * frag)1794 static bool can_map_frag(const skb_frag_t *frag)
1795 {
1796 struct page *page;
1797
1798 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1799 return false;
1800
1801 page = skb_frag_page(frag);
1802
1803 if (PageCompound(page) || page->mapping)
1804 return false;
1805
1806 return true;
1807 }
1808
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1809 static int find_next_mappable_frag(const skb_frag_t *frag,
1810 int remaining_in_skb)
1811 {
1812 int offset = 0;
1813
1814 if (likely(can_map_frag(frag)))
1815 return 0;
1816
1817 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1818 offset += skb_frag_size(frag);
1819 ++frag;
1820 }
1821 return offset;
1822 }
1823
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1824 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1825 struct tcp_zerocopy_receive *zc,
1826 struct sk_buff *skb, u32 offset)
1827 {
1828 u32 frag_offset, partial_frag_remainder = 0;
1829 int mappable_offset;
1830 skb_frag_t *frag;
1831
1832 /* worst case: skip to next skb. try to improve on this case below */
1833 zc->recv_skip_hint = skb->len - offset;
1834
1835 /* Find the frag containing this offset (and how far into that frag) */
1836 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1837 if (!frag)
1838 return;
1839
1840 if (frag_offset) {
1841 struct skb_shared_info *info = skb_shinfo(skb);
1842
1843 /* We read part of the last frag, must recvmsg() rest of skb. */
1844 if (frag == &info->frags[info->nr_frags - 1])
1845 return;
1846
1847 /* Else, we must at least read the remainder in this frag. */
1848 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1849 zc->recv_skip_hint -= partial_frag_remainder;
1850 ++frag;
1851 }
1852
1853 /* partial_frag_remainder: If part way through a frag, must read rest.
1854 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1855 * in partial_frag_remainder.
1856 */
1857 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1858 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1859 }
1860
1861 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1862 int flags, struct scm_timestamping_internal *tss,
1863 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1864 static int receive_fallback_to_copy(struct sock *sk,
1865 struct tcp_zerocopy_receive *zc, int inq,
1866 struct scm_timestamping_internal *tss)
1867 {
1868 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1869 struct msghdr msg = {};
1870 struct iovec iov;
1871 int err;
1872
1873 zc->length = 0;
1874 zc->recv_skip_hint = 0;
1875
1876 if (copy_address != zc->copybuf_address)
1877 return -EINVAL;
1878
1879 err = import_single_range(ITER_DEST, (void __user *)copy_address,
1880 inq, &iov, &msg.msg_iter);
1881 if (err)
1882 return err;
1883
1884 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1885 tss, &zc->msg_flags);
1886 if (err < 0)
1887 return err;
1888
1889 zc->copybuf_len = err;
1890 if (likely(zc->copybuf_len)) {
1891 struct sk_buff *skb;
1892 u32 offset;
1893
1894 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1895 if (skb)
1896 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1897 }
1898 return 0;
1899 }
1900
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1901 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1902 struct sk_buff *skb, u32 copylen,
1903 u32 *offset, u32 *seq)
1904 {
1905 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1906 struct msghdr msg = {};
1907 struct iovec iov;
1908 int err;
1909
1910 if (copy_address != zc->copybuf_address)
1911 return -EINVAL;
1912
1913 err = import_single_range(ITER_DEST, (void __user *)copy_address,
1914 copylen, &iov, &msg.msg_iter);
1915 if (err)
1916 return err;
1917 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1918 if (err)
1919 return err;
1920 zc->recv_skip_hint -= copylen;
1921 *offset += copylen;
1922 *seq += copylen;
1923 return (__s32)copylen;
1924 }
1925
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1926 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1927 struct sock *sk,
1928 struct sk_buff *skb,
1929 u32 *seq,
1930 s32 copybuf_len,
1931 struct scm_timestamping_internal *tss)
1932 {
1933 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1934
1935 if (!copylen)
1936 return 0;
1937 /* skb is null if inq < PAGE_SIZE. */
1938 if (skb) {
1939 offset = *seq - TCP_SKB_CB(skb)->seq;
1940 } else {
1941 skb = tcp_recv_skb(sk, *seq, &offset);
1942 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1943 tcp_update_recv_tstamps(skb, tss);
1944 zc->msg_flags |= TCP_CMSG_TS;
1945 }
1946 }
1947
1948 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1949 seq);
1950 return zc->copybuf_len < 0 ? 0 : copylen;
1951 }
1952
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1953 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1954 struct page **pending_pages,
1955 unsigned long pages_remaining,
1956 unsigned long *address,
1957 u32 *length,
1958 u32 *seq,
1959 struct tcp_zerocopy_receive *zc,
1960 u32 total_bytes_to_map,
1961 int err)
1962 {
1963 /* At least one page did not map. Try zapping if we skipped earlier. */
1964 if (err == -EBUSY &&
1965 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1966 u32 maybe_zap_len;
1967
1968 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1969 *length + /* Mapped or pending */
1970 (pages_remaining * PAGE_SIZE); /* Failed map. */
1971 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1972 err = 0;
1973 }
1974
1975 if (!err) {
1976 unsigned long leftover_pages = pages_remaining;
1977 int bytes_mapped;
1978
1979 /* We called zap_page_range_single, try to reinsert. */
1980 err = vm_insert_pages(vma, *address,
1981 pending_pages,
1982 &pages_remaining);
1983 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1984 *seq += bytes_mapped;
1985 *address += bytes_mapped;
1986 }
1987 if (err) {
1988 /* Either we were unable to zap, OR we zapped, retried an
1989 * insert, and still had an issue. Either ways, pages_remaining
1990 * is the number of pages we were unable to map, and we unroll
1991 * some state we speculatively touched before.
1992 */
1993 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1994
1995 *length -= bytes_not_mapped;
1996 zc->recv_skip_hint += bytes_not_mapped;
1997 }
1998 return err;
1999 }
2000
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2001 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2002 struct page **pages,
2003 unsigned int pages_to_map,
2004 unsigned long *address,
2005 u32 *length,
2006 u32 *seq,
2007 struct tcp_zerocopy_receive *zc,
2008 u32 total_bytes_to_map)
2009 {
2010 unsigned long pages_remaining = pages_to_map;
2011 unsigned int pages_mapped;
2012 unsigned int bytes_mapped;
2013 int err;
2014
2015 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2016 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2017 bytes_mapped = PAGE_SIZE * pages_mapped;
2018 /* Even if vm_insert_pages fails, it may have partially succeeded in
2019 * mapping (some but not all of the pages).
2020 */
2021 *seq += bytes_mapped;
2022 *address += bytes_mapped;
2023
2024 if (likely(!err))
2025 return 0;
2026
2027 /* Error: maybe zap and retry + rollback state for failed inserts. */
2028 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2029 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2030 err);
2031 }
2032
2033 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2034 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2035 struct tcp_zerocopy_receive *zc,
2036 struct scm_timestamping_internal *tss)
2037 {
2038 unsigned long msg_control_addr;
2039 struct msghdr cmsg_dummy;
2040
2041 msg_control_addr = (unsigned long)zc->msg_control;
2042 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2043 cmsg_dummy.msg_controllen =
2044 (__kernel_size_t)zc->msg_controllen;
2045 cmsg_dummy.msg_flags = in_compat_syscall()
2046 ? MSG_CMSG_COMPAT : 0;
2047 cmsg_dummy.msg_control_is_user = true;
2048 zc->msg_flags = 0;
2049 if (zc->msg_control == msg_control_addr &&
2050 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2051 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2052 zc->msg_control = (__u64)
2053 ((uintptr_t)cmsg_dummy.msg_control_user);
2054 zc->msg_controllen =
2055 (__u64)cmsg_dummy.msg_controllen;
2056 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2057 }
2058 }
2059
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2060 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2061 unsigned long address,
2062 bool *mmap_locked)
2063 {
2064 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2065
2066 if (vma) {
2067 if (vma->vm_ops != &tcp_vm_ops) {
2068 vma_end_read(vma);
2069 return NULL;
2070 }
2071 *mmap_locked = false;
2072 return vma;
2073 }
2074
2075 mmap_read_lock(mm);
2076 vma = vma_lookup(mm, address);
2077 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2078 mmap_read_unlock(mm);
2079 return NULL;
2080 }
2081 *mmap_locked = true;
2082 return vma;
2083 }
2084
2085 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2086 static int tcp_zerocopy_receive(struct sock *sk,
2087 struct tcp_zerocopy_receive *zc,
2088 struct scm_timestamping_internal *tss)
2089 {
2090 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2091 unsigned long address = (unsigned long)zc->address;
2092 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2093 s32 copybuf_len = zc->copybuf_len;
2094 struct tcp_sock *tp = tcp_sk(sk);
2095 const skb_frag_t *frags = NULL;
2096 unsigned int pages_to_map = 0;
2097 struct vm_area_struct *vma;
2098 struct sk_buff *skb = NULL;
2099 u32 seq = tp->copied_seq;
2100 u32 total_bytes_to_map;
2101 int inq = tcp_inq(sk);
2102 bool mmap_locked;
2103 int ret;
2104
2105 zc->copybuf_len = 0;
2106 zc->msg_flags = 0;
2107
2108 if (address & (PAGE_SIZE - 1) || address != zc->address)
2109 return -EINVAL;
2110
2111 if (sk->sk_state == TCP_LISTEN)
2112 return -ENOTCONN;
2113
2114 sock_rps_record_flow(sk);
2115
2116 if (inq && inq <= copybuf_len)
2117 return receive_fallback_to_copy(sk, zc, inq, tss);
2118
2119 if (inq < PAGE_SIZE) {
2120 zc->length = 0;
2121 zc->recv_skip_hint = inq;
2122 if (!inq && sock_flag(sk, SOCK_DONE))
2123 return -EIO;
2124 return 0;
2125 }
2126
2127 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2128 if (!vma)
2129 return -EINVAL;
2130
2131 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2132 avail_len = min_t(u32, vma_len, inq);
2133 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2134 if (total_bytes_to_map) {
2135 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2136 zap_page_range_single(vma, address, total_bytes_to_map,
2137 NULL);
2138 zc->length = total_bytes_to_map;
2139 zc->recv_skip_hint = 0;
2140 } else {
2141 zc->length = avail_len;
2142 zc->recv_skip_hint = avail_len;
2143 }
2144 ret = 0;
2145 while (length + PAGE_SIZE <= zc->length) {
2146 int mappable_offset;
2147 struct page *page;
2148
2149 if (zc->recv_skip_hint < PAGE_SIZE) {
2150 u32 offset_frag;
2151
2152 if (skb) {
2153 if (zc->recv_skip_hint > 0)
2154 break;
2155 skb = skb->next;
2156 offset = seq - TCP_SKB_CB(skb)->seq;
2157 } else {
2158 skb = tcp_recv_skb(sk, seq, &offset);
2159 }
2160
2161 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2162 tcp_update_recv_tstamps(skb, tss);
2163 zc->msg_flags |= TCP_CMSG_TS;
2164 }
2165 zc->recv_skip_hint = skb->len - offset;
2166 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2167 if (!frags || offset_frag)
2168 break;
2169 }
2170
2171 mappable_offset = find_next_mappable_frag(frags,
2172 zc->recv_skip_hint);
2173 if (mappable_offset) {
2174 zc->recv_skip_hint = mappable_offset;
2175 break;
2176 }
2177 page = skb_frag_page(frags);
2178 prefetchw(page);
2179 pages[pages_to_map++] = page;
2180 length += PAGE_SIZE;
2181 zc->recv_skip_hint -= PAGE_SIZE;
2182 frags++;
2183 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2184 zc->recv_skip_hint < PAGE_SIZE) {
2185 /* Either full batch, or we're about to go to next skb
2186 * (and we cannot unroll failed ops across skbs).
2187 */
2188 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2189 pages_to_map,
2190 &address, &length,
2191 &seq, zc,
2192 total_bytes_to_map);
2193 if (ret)
2194 goto out;
2195 pages_to_map = 0;
2196 }
2197 }
2198 if (pages_to_map) {
2199 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2200 &address, &length, &seq,
2201 zc, total_bytes_to_map);
2202 }
2203 out:
2204 if (mmap_locked)
2205 mmap_read_unlock(current->mm);
2206 else
2207 vma_end_read(vma);
2208 /* Try to copy straggler data. */
2209 if (!ret)
2210 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2211
2212 if (length + copylen) {
2213 WRITE_ONCE(tp->copied_seq, seq);
2214 tcp_rcv_space_adjust(sk);
2215
2216 /* Clean up data we have read: This will do ACK frames. */
2217 tcp_recv_skb(sk, seq, &offset);
2218 tcp_cleanup_rbuf(sk, length + copylen);
2219 ret = 0;
2220 if (length == zc->length)
2221 zc->recv_skip_hint = 0;
2222 } else {
2223 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2224 ret = -EIO;
2225 }
2226 zc->length = length;
2227 return ret;
2228 }
2229 #endif
2230
2231 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2232 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2233 struct scm_timestamping_internal *tss)
2234 {
2235 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2236 bool has_timestamping = false;
2237
2238 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2239 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2240 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2241 if (new_tstamp) {
2242 struct __kernel_timespec kts = {
2243 .tv_sec = tss->ts[0].tv_sec,
2244 .tv_nsec = tss->ts[0].tv_nsec,
2245 };
2246 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2247 sizeof(kts), &kts);
2248 } else {
2249 struct __kernel_old_timespec ts_old = {
2250 .tv_sec = tss->ts[0].tv_sec,
2251 .tv_nsec = tss->ts[0].tv_nsec,
2252 };
2253 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2254 sizeof(ts_old), &ts_old);
2255 }
2256 } else {
2257 if (new_tstamp) {
2258 struct __kernel_sock_timeval stv = {
2259 .tv_sec = tss->ts[0].tv_sec,
2260 .tv_usec = tss->ts[0].tv_nsec / 1000,
2261 };
2262 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2263 sizeof(stv), &stv);
2264 } else {
2265 struct __kernel_old_timeval tv = {
2266 .tv_sec = tss->ts[0].tv_sec,
2267 .tv_usec = tss->ts[0].tv_nsec / 1000,
2268 };
2269 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2270 sizeof(tv), &tv);
2271 }
2272 }
2273 }
2274
2275 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2276 has_timestamping = true;
2277 else
2278 tss->ts[0] = (struct timespec64) {0};
2279 }
2280
2281 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2282 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2283 has_timestamping = true;
2284 else
2285 tss->ts[2] = (struct timespec64) {0};
2286 }
2287
2288 if (has_timestamping) {
2289 tss->ts[1] = (struct timespec64) {0};
2290 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2291 put_cmsg_scm_timestamping64(msg, tss);
2292 else
2293 put_cmsg_scm_timestamping(msg, tss);
2294 }
2295 }
2296
tcp_inq_hint(struct sock * sk)2297 static int tcp_inq_hint(struct sock *sk)
2298 {
2299 const struct tcp_sock *tp = tcp_sk(sk);
2300 u32 copied_seq = READ_ONCE(tp->copied_seq);
2301 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2302 int inq;
2303
2304 inq = rcv_nxt - copied_seq;
2305 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2306 lock_sock(sk);
2307 inq = tp->rcv_nxt - tp->copied_seq;
2308 release_sock(sk);
2309 }
2310 /* After receiving a FIN, tell the user-space to continue reading
2311 * by returning a non-zero inq.
2312 */
2313 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2314 inq = 1;
2315 return inq;
2316 }
2317
2318 /*
2319 * This routine copies from a sock struct into the user buffer.
2320 *
2321 * Technical note: in 2.3 we work on _locked_ socket, so that
2322 * tricks with *seq access order and skb->users are not required.
2323 * Probably, code can be easily improved even more.
2324 */
2325
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2326 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2327 int flags, struct scm_timestamping_internal *tss,
2328 int *cmsg_flags)
2329 {
2330 struct tcp_sock *tp = tcp_sk(sk);
2331 int copied = 0;
2332 u32 peek_seq;
2333 u32 *seq;
2334 unsigned long used;
2335 int err;
2336 int target; /* Read at least this many bytes */
2337 long timeo;
2338 struct sk_buff *skb, *last;
2339 u32 urg_hole = 0;
2340
2341 err = -ENOTCONN;
2342 if (sk->sk_state == TCP_LISTEN)
2343 goto out;
2344
2345 if (tp->recvmsg_inq) {
2346 *cmsg_flags = TCP_CMSG_INQ;
2347 msg->msg_get_inq = 1;
2348 }
2349 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2350
2351 /* Urgent data needs to be handled specially. */
2352 if (flags & MSG_OOB)
2353 goto recv_urg;
2354
2355 if (unlikely(tp->repair)) {
2356 err = -EPERM;
2357 if (!(flags & MSG_PEEK))
2358 goto out;
2359
2360 if (tp->repair_queue == TCP_SEND_QUEUE)
2361 goto recv_sndq;
2362
2363 err = -EINVAL;
2364 if (tp->repair_queue == TCP_NO_QUEUE)
2365 goto out;
2366
2367 /* 'common' recv queue MSG_PEEK-ing */
2368 }
2369
2370 seq = &tp->copied_seq;
2371 if (flags & MSG_PEEK) {
2372 peek_seq = tp->copied_seq;
2373 seq = &peek_seq;
2374 }
2375
2376 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2377
2378 do {
2379 u32 offset;
2380
2381 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2382 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2383 if (copied)
2384 break;
2385 if (signal_pending(current)) {
2386 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2387 break;
2388 }
2389 }
2390
2391 /* Next get a buffer. */
2392
2393 last = skb_peek_tail(&sk->sk_receive_queue);
2394 skb_queue_walk(&sk->sk_receive_queue, skb) {
2395 last = skb;
2396 /* Now that we have two receive queues this
2397 * shouldn't happen.
2398 */
2399 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2400 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2401 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2402 flags))
2403 break;
2404
2405 offset = *seq - TCP_SKB_CB(skb)->seq;
2406 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2407 pr_err_once("%s: found a SYN, please report !\n", __func__);
2408 offset--;
2409 }
2410 if (offset < skb->len)
2411 goto found_ok_skb;
2412 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2413 goto found_fin_ok;
2414 WARN(!(flags & MSG_PEEK),
2415 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2416 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2417 }
2418
2419 /* Well, if we have backlog, try to process it now yet. */
2420
2421 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2422 break;
2423
2424 if (copied) {
2425 if (!timeo ||
2426 sk->sk_err ||
2427 sk->sk_state == TCP_CLOSE ||
2428 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2429 signal_pending(current))
2430 break;
2431 } else {
2432 if (sock_flag(sk, SOCK_DONE))
2433 break;
2434
2435 if (sk->sk_err) {
2436 copied = sock_error(sk);
2437 break;
2438 }
2439
2440 if (sk->sk_shutdown & RCV_SHUTDOWN)
2441 break;
2442
2443 if (sk->sk_state == TCP_CLOSE) {
2444 /* This occurs when user tries to read
2445 * from never connected socket.
2446 */
2447 copied = -ENOTCONN;
2448 break;
2449 }
2450
2451 if (!timeo) {
2452 copied = -EAGAIN;
2453 break;
2454 }
2455
2456 if (signal_pending(current)) {
2457 copied = sock_intr_errno(timeo);
2458 break;
2459 }
2460 }
2461
2462 if (copied >= target) {
2463 /* Do not sleep, just process backlog. */
2464 __sk_flush_backlog(sk);
2465 } else {
2466 tcp_cleanup_rbuf(sk, copied);
2467 err = sk_wait_data(sk, &timeo, last);
2468 if (err < 0) {
2469 err = copied ? : err;
2470 goto out;
2471 }
2472 }
2473
2474 if ((flags & MSG_PEEK) &&
2475 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2476 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2477 current->comm,
2478 task_pid_nr(current));
2479 peek_seq = tp->copied_seq;
2480 }
2481 continue;
2482
2483 found_ok_skb:
2484 /* Ok so how much can we use? */
2485 used = skb->len - offset;
2486 if (len < used)
2487 used = len;
2488
2489 /* Do we have urgent data here? */
2490 if (unlikely(tp->urg_data)) {
2491 u32 urg_offset = tp->urg_seq - *seq;
2492 if (urg_offset < used) {
2493 if (!urg_offset) {
2494 if (!sock_flag(sk, SOCK_URGINLINE)) {
2495 WRITE_ONCE(*seq, *seq + 1);
2496 urg_hole++;
2497 offset++;
2498 used--;
2499 if (!used)
2500 goto skip_copy;
2501 }
2502 } else
2503 used = urg_offset;
2504 }
2505 }
2506
2507 if (!(flags & MSG_TRUNC)) {
2508 err = skb_copy_datagram_msg(skb, offset, msg, used);
2509 if (err) {
2510 /* Exception. Bailout! */
2511 if (!copied)
2512 copied = -EFAULT;
2513 break;
2514 }
2515 }
2516
2517 WRITE_ONCE(*seq, *seq + used);
2518 copied += used;
2519 len -= used;
2520
2521 tcp_rcv_space_adjust(sk);
2522
2523 skip_copy:
2524 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2525 WRITE_ONCE(tp->urg_data, 0);
2526 tcp_fast_path_check(sk);
2527 }
2528
2529 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2530 tcp_update_recv_tstamps(skb, tss);
2531 *cmsg_flags |= TCP_CMSG_TS;
2532 }
2533
2534 if (used + offset < skb->len)
2535 continue;
2536
2537 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2538 goto found_fin_ok;
2539 if (!(flags & MSG_PEEK))
2540 tcp_eat_recv_skb(sk, skb);
2541 continue;
2542
2543 found_fin_ok:
2544 /* Process the FIN. */
2545 WRITE_ONCE(*seq, *seq + 1);
2546 if (!(flags & MSG_PEEK))
2547 tcp_eat_recv_skb(sk, skb);
2548 break;
2549 } while (len > 0);
2550
2551 /* According to UNIX98, msg_name/msg_namelen are ignored
2552 * on connected socket. I was just happy when found this 8) --ANK
2553 */
2554
2555 /* Clean up data we have read: This will do ACK frames. */
2556 tcp_cleanup_rbuf(sk, copied);
2557 return copied;
2558
2559 out:
2560 return err;
2561
2562 recv_urg:
2563 err = tcp_recv_urg(sk, msg, len, flags);
2564 goto out;
2565
2566 recv_sndq:
2567 err = tcp_peek_sndq(sk, msg, len);
2568 goto out;
2569 }
2570
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2571 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2572 int *addr_len)
2573 {
2574 int cmsg_flags = 0, ret;
2575 struct scm_timestamping_internal tss;
2576
2577 if (unlikely(flags & MSG_ERRQUEUE))
2578 return inet_recv_error(sk, msg, len, addr_len);
2579
2580 if (sk_can_busy_loop(sk) &&
2581 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2582 sk->sk_state == TCP_ESTABLISHED)
2583 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2584
2585 lock_sock(sk);
2586 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2587 release_sock(sk);
2588
2589 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2590 if (cmsg_flags & TCP_CMSG_TS)
2591 tcp_recv_timestamp(msg, sk, &tss);
2592 if (msg->msg_get_inq) {
2593 msg->msg_inq = tcp_inq_hint(sk);
2594 if (cmsg_flags & TCP_CMSG_INQ)
2595 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2596 sizeof(msg->msg_inq), &msg->msg_inq);
2597 }
2598 }
2599
2600 trace_android_rvh_tcp_recvmsg(sk, msg, len, flags, addr_len);
2601
2602 return ret;
2603 }
2604 EXPORT_SYMBOL(tcp_recvmsg);
2605
tcp_set_state(struct sock * sk,int state)2606 void tcp_set_state(struct sock *sk, int state)
2607 {
2608 int oldstate = sk->sk_state;
2609
2610 trace_android_vh_tcp_state_change(sk, TCP_STATE_CHANGE_REASON_NORMAL, state);
2611
2612 /* We defined a new enum for TCP states that are exported in BPF
2613 * so as not force the internal TCP states to be frozen. The
2614 * following checks will detect if an internal state value ever
2615 * differs from the BPF value. If this ever happens, then we will
2616 * need to remap the internal value to the BPF value before calling
2617 * tcp_call_bpf_2arg.
2618 */
2619 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2620 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2621 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2622 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2623 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2624 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2625 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2626 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2627 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2628 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2629 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2630 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2631 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2632
2633 /* bpf uapi header bpf.h defines an anonymous enum with values
2634 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2635 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2636 * But clang built vmlinux does not have this enum in DWARF
2637 * since clang removes the above code before generating IR/debuginfo.
2638 * Let us explicitly emit the type debuginfo to ensure the
2639 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2640 * regardless of which compiler is used.
2641 */
2642 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2643
2644 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2645 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2646
2647 switch (state) {
2648 case TCP_ESTABLISHED:
2649 if (oldstate != TCP_ESTABLISHED)
2650 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2651 break;
2652 case TCP_CLOSE_WAIT:
2653 if (oldstate == TCP_SYN_RECV)
2654 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2655 break;
2656
2657 case TCP_CLOSE:
2658 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2659 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2660
2661 sk->sk_prot->unhash(sk);
2662 if (inet_csk(sk)->icsk_bind_hash &&
2663 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2664 inet_put_port(sk);
2665 fallthrough;
2666 default:
2667 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2668 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2669 }
2670
2671 /* Change state AFTER socket is unhashed to avoid closed
2672 * socket sitting in hash tables.
2673 */
2674 inet_sk_state_store(sk, state);
2675 }
2676 EXPORT_SYMBOL_GPL(tcp_set_state);
2677
2678 /*
2679 * State processing on a close. This implements the state shift for
2680 * sending our FIN frame. Note that we only send a FIN for some
2681 * states. A shutdown() may have already sent the FIN, or we may be
2682 * closed.
2683 */
2684
2685 static const unsigned char new_state[16] = {
2686 /* current state: new state: action: */
2687 [0 /* (Invalid) */] = TCP_CLOSE,
2688 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2689 [TCP_SYN_SENT] = TCP_CLOSE,
2690 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2691 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2692 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2693 [TCP_TIME_WAIT] = TCP_CLOSE,
2694 [TCP_CLOSE] = TCP_CLOSE,
2695 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2696 [TCP_LAST_ACK] = TCP_LAST_ACK,
2697 [TCP_LISTEN] = TCP_CLOSE,
2698 [TCP_CLOSING] = TCP_CLOSING,
2699 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2700 };
2701
tcp_close_state(struct sock * sk)2702 static int tcp_close_state(struct sock *sk)
2703 {
2704 int next = (int)new_state[sk->sk_state];
2705 int ns = next & TCP_STATE_MASK;
2706
2707 tcp_set_state(sk, ns);
2708
2709 return next & TCP_ACTION_FIN;
2710 }
2711
2712 /*
2713 * Shutdown the sending side of a connection. Much like close except
2714 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2715 */
2716
tcp_shutdown(struct sock * sk,int how)2717 void tcp_shutdown(struct sock *sk, int how)
2718 {
2719 /* We need to grab some memory, and put together a FIN,
2720 * and then put it into the queue to be sent.
2721 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2722 */
2723 if (!(how & SEND_SHUTDOWN))
2724 return;
2725
2726 /* If we've already sent a FIN, or it's a closed state, skip this. */
2727 if ((1 << sk->sk_state) &
2728 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2729 TCPF_CLOSE_WAIT)) {
2730 /* Clear out any half completed packets. FIN if needed. */
2731 if (tcp_close_state(sk))
2732 tcp_send_fin(sk);
2733 }
2734 }
2735 EXPORT_SYMBOL(tcp_shutdown);
2736
tcp_orphan_count_sum(void)2737 int tcp_orphan_count_sum(void)
2738 {
2739 int i, total = 0;
2740
2741 for_each_possible_cpu(i)
2742 total += per_cpu(tcp_orphan_count, i);
2743
2744 return max(total, 0);
2745 }
2746
2747 static int tcp_orphan_cache;
2748 static struct timer_list tcp_orphan_timer;
2749 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2750
tcp_orphan_update(struct timer_list * unused)2751 static void tcp_orphan_update(struct timer_list *unused)
2752 {
2753 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2754 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2755 }
2756
tcp_too_many_orphans(int shift)2757 static bool tcp_too_many_orphans(int shift)
2758 {
2759 return READ_ONCE(tcp_orphan_cache) << shift >
2760 READ_ONCE(sysctl_tcp_max_orphans);
2761 }
2762
tcp_check_oom(struct sock * sk,int shift)2763 bool tcp_check_oom(struct sock *sk, int shift)
2764 {
2765 bool too_many_orphans, out_of_socket_memory;
2766
2767 too_many_orphans = tcp_too_many_orphans(shift);
2768 out_of_socket_memory = tcp_out_of_memory(sk);
2769
2770 if (too_many_orphans)
2771 net_info_ratelimited("too many orphaned sockets\n");
2772 if (out_of_socket_memory)
2773 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2774 return too_many_orphans || out_of_socket_memory;
2775 }
2776
__tcp_close(struct sock * sk,long timeout)2777 void __tcp_close(struct sock *sk, long timeout)
2778 {
2779 struct sk_buff *skb;
2780 int data_was_unread = 0;
2781 int state;
2782
2783 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2784
2785 if (sk->sk_state == TCP_LISTEN) {
2786 tcp_set_state(sk, TCP_CLOSE);
2787
2788 /* Special case. */
2789 inet_csk_listen_stop(sk);
2790
2791 goto adjudge_to_death;
2792 }
2793
2794 /* We need to flush the recv. buffs. We do this only on the
2795 * descriptor close, not protocol-sourced closes, because the
2796 * reader process may not have drained the data yet!
2797 */
2798 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2799 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2800
2801 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2802 len--;
2803 data_was_unread += len;
2804 __kfree_skb(skb);
2805 }
2806
2807 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2808 if (sk->sk_state == TCP_CLOSE)
2809 goto adjudge_to_death;
2810
2811 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2812 * data was lost. To witness the awful effects of the old behavior of
2813 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2814 * GET in an FTP client, suspend the process, wait for the client to
2815 * advertise a zero window, then kill -9 the FTP client, wheee...
2816 * Note: timeout is always zero in such a case.
2817 */
2818 if (unlikely(tcp_sk(sk)->repair)) {
2819 sk->sk_prot->disconnect(sk, 0);
2820 } else if (data_was_unread) {
2821 /* Unread data was tossed, zap the connection. */
2822 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2823 tcp_set_state(sk, TCP_CLOSE);
2824 tcp_send_active_reset(sk, sk->sk_allocation);
2825 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2826 /* Check zero linger _after_ checking for unread data. */
2827 sk->sk_prot->disconnect(sk, 0);
2828 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2829 } else if (tcp_close_state(sk)) {
2830 /* We FIN if the application ate all the data before
2831 * zapping the connection.
2832 */
2833
2834 /* RED-PEN. Formally speaking, we have broken TCP state
2835 * machine. State transitions:
2836 *
2837 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2838 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
2839 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2840 *
2841 * are legal only when FIN has been sent (i.e. in window),
2842 * rather than queued out of window. Purists blame.
2843 *
2844 * F.e. "RFC state" is ESTABLISHED,
2845 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2846 *
2847 * The visible declinations are that sometimes
2848 * we enter time-wait state, when it is not required really
2849 * (harmless), do not send active resets, when they are
2850 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2851 * they look as CLOSING or LAST_ACK for Linux)
2852 * Probably, I missed some more holelets.
2853 * --ANK
2854 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2855 * in a single packet! (May consider it later but will
2856 * probably need API support or TCP_CORK SYN-ACK until
2857 * data is written and socket is closed.)
2858 */
2859 tcp_send_fin(sk);
2860 }
2861
2862 sk_stream_wait_close(sk, timeout);
2863
2864 adjudge_to_death:
2865 state = sk->sk_state;
2866 sock_hold(sk);
2867 sock_orphan(sk);
2868
2869 local_bh_disable();
2870 bh_lock_sock(sk);
2871 /* remove backlog if any, without releasing ownership. */
2872 __release_sock(sk);
2873
2874 this_cpu_inc(tcp_orphan_count);
2875
2876 /* Have we already been destroyed by a softirq or backlog? */
2877 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2878 goto out;
2879
2880 /* This is a (useful) BSD violating of the RFC. There is a
2881 * problem with TCP as specified in that the other end could
2882 * keep a socket open forever with no application left this end.
2883 * We use a 1 minute timeout (about the same as BSD) then kill
2884 * our end. If they send after that then tough - BUT: long enough
2885 * that we won't make the old 4*rto = almost no time - whoops
2886 * reset mistake.
2887 *
2888 * Nope, it was not mistake. It is really desired behaviour
2889 * f.e. on http servers, when such sockets are useless, but
2890 * consume significant resources. Let's do it with special
2891 * linger2 option. --ANK
2892 */
2893
2894 if (sk->sk_state == TCP_FIN_WAIT2) {
2895 struct tcp_sock *tp = tcp_sk(sk);
2896 if (READ_ONCE(tp->linger2) < 0) {
2897 tcp_set_state(sk, TCP_CLOSE);
2898 tcp_send_active_reset(sk, GFP_ATOMIC);
2899 __NET_INC_STATS(sock_net(sk),
2900 LINUX_MIB_TCPABORTONLINGER);
2901 } else {
2902 const int tmo = tcp_fin_time(sk);
2903
2904 if (tmo > TCP_TIMEWAIT_LEN) {
2905 inet_csk_reset_keepalive_timer(sk,
2906 tmo - TCP_TIMEWAIT_LEN);
2907 } else {
2908 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2909 goto out;
2910 }
2911 }
2912 }
2913 if (sk->sk_state != TCP_CLOSE) {
2914 if (tcp_check_oom(sk, 0)) {
2915 tcp_set_state(sk, TCP_CLOSE);
2916 tcp_send_active_reset(sk, GFP_ATOMIC);
2917 __NET_INC_STATS(sock_net(sk),
2918 LINUX_MIB_TCPABORTONMEMORY);
2919 } else if (!check_net(sock_net(sk))) {
2920 /* Not possible to send reset; just close */
2921 tcp_set_state(sk, TCP_CLOSE);
2922 }
2923 }
2924
2925 if (sk->sk_state == TCP_CLOSE) {
2926 struct request_sock *req;
2927
2928 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2929 lockdep_sock_is_held(sk));
2930 /* We could get here with a non-NULL req if the socket is
2931 * aborted (e.g., closed with unread data) before 3WHS
2932 * finishes.
2933 */
2934 if (req)
2935 reqsk_fastopen_remove(sk, req, false);
2936 inet_csk_destroy_sock(sk);
2937 }
2938 /* Otherwise, socket is reprieved until protocol close. */
2939
2940 out:
2941 bh_unlock_sock(sk);
2942 local_bh_enable();
2943 }
2944
tcp_close(struct sock * sk,long timeout)2945 void tcp_close(struct sock *sk, long timeout)
2946 {
2947 lock_sock(sk);
2948 __tcp_close(sk, timeout);
2949 release_sock(sk);
2950 if (!sk->sk_net_refcnt)
2951 inet_csk_clear_xmit_timers_sync(sk);
2952 sock_put(sk);
2953 }
2954 EXPORT_SYMBOL(tcp_close);
2955
2956 /* These states need RST on ABORT according to RFC793 */
2957
tcp_need_reset(int state)2958 static inline bool tcp_need_reset(int state)
2959 {
2960 return (1 << state) &
2961 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2962 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2963 }
2964
tcp_rtx_queue_purge(struct sock * sk)2965 static void tcp_rtx_queue_purge(struct sock *sk)
2966 {
2967 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2968
2969 tcp_sk(sk)->highest_sack = NULL;
2970 while (p) {
2971 struct sk_buff *skb = rb_to_skb(p);
2972
2973 p = rb_next(p);
2974 /* Since we are deleting whole queue, no need to
2975 * list_del(&skb->tcp_tsorted_anchor)
2976 */
2977 tcp_rtx_queue_unlink(skb, sk);
2978 tcp_wmem_free_skb(sk, skb);
2979 }
2980 }
2981
tcp_write_queue_purge(struct sock * sk)2982 void tcp_write_queue_purge(struct sock *sk)
2983 {
2984 struct sk_buff *skb;
2985
2986 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2987 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2988 tcp_skb_tsorted_anchor_cleanup(skb);
2989 tcp_wmem_free_skb(sk, skb);
2990 }
2991 tcp_rtx_queue_purge(sk);
2992 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2993 tcp_clear_all_retrans_hints(tcp_sk(sk));
2994 tcp_sk(sk)->packets_out = 0;
2995 inet_csk(sk)->icsk_backoff = 0;
2996 }
2997
tcp_disconnect(struct sock * sk,int flags)2998 int tcp_disconnect(struct sock *sk, int flags)
2999 {
3000 struct inet_sock *inet = inet_sk(sk);
3001 struct inet_connection_sock *icsk = inet_csk(sk);
3002 struct tcp_sock *tp = tcp_sk(sk);
3003 int old_state = sk->sk_state;
3004 u32 seq;
3005
3006 if (old_state != TCP_CLOSE)
3007 tcp_set_state(sk, TCP_CLOSE);
3008
3009 /* ABORT function of RFC793 */
3010 if (old_state == TCP_LISTEN) {
3011 inet_csk_listen_stop(sk);
3012 } else if (unlikely(tp->repair)) {
3013 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3014 } else if (tcp_need_reset(old_state) ||
3015 (tp->snd_nxt != tp->write_seq &&
3016 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3017 /* The last check adjusts for discrepancy of Linux wrt. RFC
3018 * states
3019 */
3020 tcp_send_active_reset(sk, gfp_any());
3021 WRITE_ONCE(sk->sk_err, ECONNRESET);
3022 } else if (old_state == TCP_SYN_SENT)
3023 WRITE_ONCE(sk->sk_err, ECONNRESET);
3024
3025 tcp_clear_xmit_timers(sk);
3026 __skb_queue_purge(&sk->sk_receive_queue);
3027 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3028 WRITE_ONCE(tp->urg_data, 0);
3029 tcp_write_queue_purge(sk);
3030 tcp_fastopen_active_disable_ofo_check(sk);
3031 skb_rbtree_purge(&tp->out_of_order_queue);
3032
3033 inet->inet_dport = 0;
3034
3035 inet_bhash2_reset_saddr(sk);
3036
3037 WRITE_ONCE(sk->sk_shutdown, 0);
3038 sock_reset_flag(sk, SOCK_DONE);
3039 tp->srtt_us = 0;
3040 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3041 tp->rcv_rtt_last_tsecr = 0;
3042
3043 seq = tp->write_seq + tp->max_window + 2;
3044 if (!seq)
3045 seq = 1;
3046 WRITE_ONCE(tp->write_seq, seq);
3047
3048 icsk->icsk_backoff = 0;
3049 icsk->icsk_probes_out = 0;
3050 icsk->icsk_probes_tstamp = 0;
3051 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3052 icsk->icsk_rto_min = TCP_RTO_MIN;
3053 icsk->icsk_delack_max = TCP_DELACK_MAX;
3054 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3055 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3056 tp->snd_cwnd_cnt = 0;
3057 tp->is_cwnd_limited = 0;
3058 tp->max_packets_out = 0;
3059 tp->window_clamp = 0;
3060 tp->delivered = 0;
3061 tp->delivered_ce = 0;
3062 if (icsk->icsk_ca_ops->release)
3063 icsk->icsk_ca_ops->release(sk);
3064 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3065 icsk->icsk_ca_initialized = 0;
3066 tcp_set_ca_state(sk, TCP_CA_Open);
3067 tp->is_sack_reneg = 0;
3068 tcp_clear_retrans(tp);
3069 tp->total_retrans = 0;
3070 inet_csk_delack_init(sk);
3071 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3072 * issue in __tcp_select_window()
3073 */
3074 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3075 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3076 __sk_dst_reset(sk);
3077 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3078 tcp_saved_syn_free(tp);
3079 tp->compressed_ack = 0;
3080 tp->segs_in = 0;
3081 tp->segs_out = 0;
3082 tp->bytes_sent = 0;
3083 tp->bytes_acked = 0;
3084 tp->bytes_received = 0;
3085 tp->bytes_retrans = 0;
3086 tp->data_segs_in = 0;
3087 tp->data_segs_out = 0;
3088 tp->duplicate_sack[0].start_seq = 0;
3089 tp->duplicate_sack[0].end_seq = 0;
3090 tp->dsack_dups = 0;
3091 tp->reord_seen = 0;
3092 tp->retrans_out = 0;
3093 tp->sacked_out = 0;
3094 tp->tlp_high_seq = 0;
3095 tp->last_oow_ack_time = 0;
3096 tp->plb_rehash = 0;
3097 /* There's a bubble in the pipe until at least the first ACK. */
3098 tp->app_limited = ~0U;
3099 tp->rate_app_limited = 1;
3100 tp->rack.mstamp = 0;
3101 tp->rack.advanced = 0;
3102 tp->rack.reo_wnd_steps = 1;
3103 tp->rack.last_delivered = 0;
3104 tp->rack.reo_wnd_persist = 0;
3105 tp->rack.dsack_seen = 0;
3106 tp->syn_data_acked = 0;
3107 tp->rx_opt.saw_tstamp = 0;
3108 tp->rx_opt.dsack = 0;
3109 tp->rx_opt.num_sacks = 0;
3110 tp->rcv_ooopack = 0;
3111
3112
3113 /* Clean up fastopen related fields */
3114 tcp_free_fastopen_req(tp);
3115 inet_clear_bit(DEFER_CONNECT, sk);
3116 tp->fastopen_client_fail = 0;
3117
3118 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3119
3120 if (sk->sk_frag.page) {
3121 put_page(sk->sk_frag.page);
3122 sk->sk_frag.page = NULL;
3123 sk->sk_frag.offset = 0;
3124 }
3125 sk_error_report(sk);
3126 return 0;
3127 }
3128 EXPORT_SYMBOL(tcp_disconnect);
3129
tcp_can_repair_sock(const struct sock * sk)3130 static inline bool tcp_can_repair_sock(const struct sock *sk)
3131 {
3132 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3133 (sk->sk_state != TCP_LISTEN);
3134 }
3135
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3136 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3137 {
3138 struct tcp_repair_window opt;
3139
3140 if (!tp->repair)
3141 return -EPERM;
3142
3143 if (len != sizeof(opt))
3144 return -EINVAL;
3145
3146 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3147 return -EFAULT;
3148
3149 if (opt.max_window < opt.snd_wnd)
3150 return -EINVAL;
3151
3152 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3153 return -EINVAL;
3154
3155 if (after(opt.rcv_wup, tp->rcv_nxt))
3156 return -EINVAL;
3157
3158 tp->snd_wl1 = opt.snd_wl1;
3159 tp->snd_wnd = opt.snd_wnd;
3160 tp->max_window = opt.max_window;
3161
3162 tp->rcv_wnd = opt.rcv_wnd;
3163 tp->rcv_wup = opt.rcv_wup;
3164
3165 return 0;
3166 }
3167
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3168 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3169 unsigned int len)
3170 {
3171 struct tcp_sock *tp = tcp_sk(sk);
3172 struct tcp_repair_opt opt;
3173 size_t offset = 0;
3174
3175 while (len >= sizeof(opt)) {
3176 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3177 return -EFAULT;
3178
3179 offset += sizeof(opt);
3180 len -= sizeof(opt);
3181
3182 switch (opt.opt_code) {
3183 case TCPOPT_MSS:
3184 tp->rx_opt.mss_clamp = opt.opt_val;
3185 tcp_mtup_init(sk);
3186 break;
3187 case TCPOPT_WINDOW:
3188 {
3189 u16 snd_wscale = opt.opt_val & 0xFFFF;
3190 u16 rcv_wscale = opt.opt_val >> 16;
3191
3192 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3193 return -EFBIG;
3194
3195 tp->rx_opt.snd_wscale = snd_wscale;
3196 tp->rx_opt.rcv_wscale = rcv_wscale;
3197 tp->rx_opt.wscale_ok = 1;
3198 }
3199 break;
3200 case TCPOPT_SACK_PERM:
3201 if (opt.opt_val != 0)
3202 return -EINVAL;
3203
3204 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3205 break;
3206 case TCPOPT_TIMESTAMP:
3207 if (opt.opt_val != 0)
3208 return -EINVAL;
3209
3210 tp->rx_opt.tstamp_ok = 1;
3211 break;
3212 }
3213 }
3214
3215 return 0;
3216 }
3217
3218 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3219 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3220
tcp_enable_tx_delay(void)3221 static void tcp_enable_tx_delay(void)
3222 {
3223 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3224 static int __tcp_tx_delay_enabled = 0;
3225
3226 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3227 static_branch_enable(&tcp_tx_delay_enabled);
3228 pr_info("TCP_TX_DELAY enabled\n");
3229 }
3230 }
3231 }
3232
3233 /* When set indicates to always queue non-full frames. Later the user clears
3234 * this option and we transmit any pending partial frames in the queue. This is
3235 * meant to be used alongside sendfile() to get properly filled frames when the
3236 * user (for example) must write out headers with a write() call first and then
3237 * use sendfile to send out the data parts.
3238 *
3239 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3240 * TCP_NODELAY.
3241 */
__tcp_sock_set_cork(struct sock * sk,bool on)3242 void __tcp_sock_set_cork(struct sock *sk, bool on)
3243 {
3244 struct tcp_sock *tp = tcp_sk(sk);
3245
3246 if (on) {
3247 tp->nonagle |= TCP_NAGLE_CORK;
3248 } else {
3249 tp->nonagle &= ~TCP_NAGLE_CORK;
3250 if (tp->nonagle & TCP_NAGLE_OFF)
3251 tp->nonagle |= TCP_NAGLE_PUSH;
3252 tcp_push_pending_frames(sk);
3253 }
3254 }
3255
tcp_sock_set_cork(struct sock * sk,bool on)3256 void tcp_sock_set_cork(struct sock *sk, bool on)
3257 {
3258 lock_sock(sk);
3259 __tcp_sock_set_cork(sk, on);
3260 release_sock(sk);
3261 }
3262 EXPORT_SYMBOL(tcp_sock_set_cork);
3263
3264 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3265 * remembered, but it is not activated until cork is cleared.
3266 *
3267 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3268 * even TCP_CORK for currently queued segments.
3269 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3270 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3271 {
3272 if (on) {
3273 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3274 tcp_push_pending_frames(sk);
3275 } else {
3276 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3277 }
3278 }
3279
tcp_sock_set_nodelay(struct sock * sk)3280 void tcp_sock_set_nodelay(struct sock *sk)
3281 {
3282 lock_sock(sk);
3283 __tcp_sock_set_nodelay(sk, true);
3284 release_sock(sk);
3285 }
3286 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3287
__tcp_sock_set_quickack(struct sock * sk,int val)3288 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3289 {
3290 if (!val) {
3291 inet_csk_enter_pingpong_mode(sk);
3292 return;
3293 }
3294
3295 inet_csk_exit_pingpong_mode(sk);
3296 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3297 inet_csk_ack_scheduled(sk)) {
3298 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3299 tcp_cleanup_rbuf(sk, 1);
3300 if (!(val & 1))
3301 inet_csk_enter_pingpong_mode(sk);
3302 }
3303 }
3304
tcp_sock_set_quickack(struct sock * sk,int val)3305 void tcp_sock_set_quickack(struct sock *sk, int val)
3306 {
3307 lock_sock(sk);
3308 __tcp_sock_set_quickack(sk, val);
3309 release_sock(sk);
3310 }
3311 EXPORT_SYMBOL(tcp_sock_set_quickack);
3312
tcp_sock_set_syncnt(struct sock * sk,int val)3313 int tcp_sock_set_syncnt(struct sock *sk, int val)
3314 {
3315 if (val < 1 || val > MAX_TCP_SYNCNT)
3316 return -EINVAL;
3317
3318 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3319 return 0;
3320 }
3321 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3322
tcp_sock_set_user_timeout(struct sock * sk,int val)3323 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3324 {
3325 /* Cap the max time in ms TCP will retry or probe the window
3326 * before giving up and aborting (ETIMEDOUT) a connection.
3327 */
3328 if (val < 0)
3329 return -EINVAL;
3330
3331 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3332 return 0;
3333 }
3334 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3335
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3336 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3337 {
3338 struct tcp_sock *tp = tcp_sk(sk);
3339
3340 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3341 return -EINVAL;
3342
3343 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3344 WRITE_ONCE(tp->keepalive_time, val * HZ);
3345 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3346 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3347 u32 elapsed = keepalive_time_elapsed(tp);
3348
3349 if (tp->keepalive_time > elapsed)
3350 elapsed = tp->keepalive_time - elapsed;
3351 else
3352 elapsed = 0;
3353 inet_csk_reset_keepalive_timer(sk, elapsed);
3354 }
3355
3356 return 0;
3357 }
3358
tcp_sock_set_keepidle(struct sock * sk,int val)3359 int tcp_sock_set_keepidle(struct sock *sk, int val)
3360 {
3361 int err;
3362
3363 lock_sock(sk);
3364 err = tcp_sock_set_keepidle_locked(sk, val);
3365 release_sock(sk);
3366 return err;
3367 }
3368 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3369
tcp_sock_set_keepintvl(struct sock * sk,int val)3370 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3371 {
3372 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3373 return -EINVAL;
3374
3375 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3376 return 0;
3377 }
3378 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3379
tcp_sock_set_keepcnt(struct sock * sk,int val)3380 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3381 {
3382 if (val < 1 || val > MAX_TCP_KEEPCNT)
3383 return -EINVAL;
3384
3385 /* Paired with READ_ONCE() in keepalive_probes() */
3386 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3387 return 0;
3388 }
3389 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3390
tcp_set_window_clamp(struct sock * sk,int val)3391 int tcp_set_window_clamp(struct sock *sk, int val)
3392 {
3393 struct tcp_sock *tp = tcp_sk(sk);
3394
3395 if (!val) {
3396 if (sk->sk_state != TCP_CLOSE)
3397 return -EINVAL;
3398 WRITE_ONCE(tp->window_clamp, 0);
3399 } else {
3400 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3401 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3402 SOCK_MIN_RCVBUF / 2 : val;
3403
3404 if (new_window_clamp == old_window_clamp)
3405 return 0;
3406
3407 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3408 if (new_window_clamp < old_window_clamp) {
3409 /* need to apply the reserved mem provisioning only
3410 * when shrinking the window clamp
3411 */
3412 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3413
3414 } else {
3415 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3416 tp->rcv_ssthresh = max(new_rcv_ssthresh,
3417 tp->rcv_ssthresh);
3418 }
3419 }
3420 return 0;
3421 }
3422
3423 /*
3424 * Socket option code for TCP.
3425 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3426 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3427 sockptr_t optval, unsigned int optlen)
3428 {
3429 struct tcp_sock *tp = tcp_sk(sk);
3430 struct inet_connection_sock *icsk = inet_csk(sk);
3431 struct net *net = sock_net(sk);
3432 int val;
3433 int err = 0;
3434
3435 /* These are data/string values, all the others are ints */
3436 switch (optname) {
3437 case TCP_CONGESTION: {
3438 char name[TCP_CA_NAME_MAX];
3439
3440 if (optlen < 1)
3441 return -EINVAL;
3442
3443 val = strncpy_from_sockptr(name, optval,
3444 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3445 if (val < 0)
3446 return -EFAULT;
3447 name[val] = 0;
3448
3449 sockopt_lock_sock(sk);
3450 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3451 sockopt_ns_capable(sock_net(sk)->user_ns,
3452 CAP_NET_ADMIN));
3453 sockopt_release_sock(sk);
3454 return err;
3455 }
3456 case TCP_ULP: {
3457 char name[TCP_ULP_NAME_MAX];
3458
3459 if (optlen < 1)
3460 return -EINVAL;
3461
3462 val = strncpy_from_sockptr(name, optval,
3463 min_t(long, TCP_ULP_NAME_MAX - 1,
3464 optlen));
3465 if (val < 0)
3466 return -EFAULT;
3467 name[val] = 0;
3468
3469 sockopt_lock_sock(sk);
3470 err = tcp_set_ulp(sk, name);
3471 sockopt_release_sock(sk);
3472 return err;
3473 }
3474 case TCP_FASTOPEN_KEY: {
3475 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3476 __u8 *backup_key = NULL;
3477
3478 /* Allow a backup key as well to facilitate key rotation
3479 * First key is the active one.
3480 */
3481 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3482 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3483 return -EINVAL;
3484
3485 if (copy_from_sockptr(key, optval, optlen))
3486 return -EFAULT;
3487
3488 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3489 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3490
3491 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3492 }
3493 default:
3494 /* fallthru */
3495 break;
3496 }
3497
3498 if (optlen < sizeof(int))
3499 return -EINVAL;
3500
3501 if (copy_from_sockptr(&val, optval, sizeof(val)))
3502 return -EFAULT;
3503
3504 /* Handle options that can be set without locking the socket. */
3505 switch (optname) {
3506 case TCP_SYNCNT:
3507 return tcp_sock_set_syncnt(sk, val);
3508 case TCP_USER_TIMEOUT:
3509 return tcp_sock_set_user_timeout(sk, val);
3510 case TCP_KEEPINTVL:
3511 return tcp_sock_set_keepintvl(sk, val);
3512 case TCP_KEEPCNT:
3513 return tcp_sock_set_keepcnt(sk, val);
3514 case TCP_LINGER2:
3515 if (val < 0)
3516 WRITE_ONCE(tp->linger2, -1);
3517 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3518 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3519 else
3520 WRITE_ONCE(tp->linger2, val * HZ);
3521 return 0;
3522 case TCP_DEFER_ACCEPT:
3523 /* Translate value in seconds to number of retransmits */
3524 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3525 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3526 TCP_RTO_MAX / HZ));
3527 return 0;
3528 }
3529
3530 sockopt_lock_sock(sk);
3531
3532 switch (optname) {
3533 case TCP_MAXSEG:
3534 /* Values greater than interface MTU won't take effect. However
3535 * at the point when this call is done we typically don't yet
3536 * know which interface is going to be used
3537 */
3538 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3539 err = -EINVAL;
3540 break;
3541 }
3542 tp->rx_opt.user_mss = val;
3543 break;
3544
3545 case TCP_NODELAY:
3546 __tcp_sock_set_nodelay(sk, val);
3547 break;
3548
3549 case TCP_THIN_LINEAR_TIMEOUTS:
3550 if (val < 0 || val > 1)
3551 err = -EINVAL;
3552 else
3553 tp->thin_lto = val;
3554 break;
3555
3556 case TCP_THIN_DUPACK:
3557 if (val < 0 || val > 1)
3558 err = -EINVAL;
3559 break;
3560
3561 case TCP_REPAIR:
3562 if (!tcp_can_repair_sock(sk))
3563 err = -EPERM;
3564 else if (val == TCP_REPAIR_ON) {
3565 tp->repair = 1;
3566 sk->sk_reuse = SK_FORCE_REUSE;
3567 tp->repair_queue = TCP_NO_QUEUE;
3568 } else if (val == TCP_REPAIR_OFF) {
3569 tp->repair = 0;
3570 sk->sk_reuse = SK_NO_REUSE;
3571 tcp_send_window_probe(sk);
3572 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3573 tp->repair = 0;
3574 sk->sk_reuse = SK_NO_REUSE;
3575 } else
3576 err = -EINVAL;
3577
3578 break;
3579
3580 case TCP_REPAIR_QUEUE:
3581 if (!tp->repair)
3582 err = -EPERM;
3583 else if ((unsigned int)val < TCP_QUEUES_NR)
3584 tp->repair_queue = val;
3585 else
3586 err = -EINVAL;
3587 break;
3588
3589 case TCP_QUEUE_SEQ:
3590 if (sk->sk_state != TCP_CLOSE) {
3591 err = -EPERM;
3592 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3593 if (!tcp_rtx_queue_empty(sk))
3594 err = -EPERM;
3595 else
3596 WRITE_ONCE(tp->write_seq, val);
3597 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3598 if (tp->rcv_nxt != tp->copied_seq) {
3599 err = -EPERM;
3600 } else {
3601 WRITE_ONCE(tp->rcv_nxt, val);
3602 WRITE_ONCE(tp->copied_seq, val);
3603 }
3604 } else {
3605 err = -EINVAL;
3606 }
3607 break;
3608
3609 case TCP_REPAIR_OPTIONS:
3610 if (!tp->repair)
3611 err = -EINVAL;
3612 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3613 err = tcp_repair_options_est(sk, optval, optlen);
3614 else
3615 err = -EPERM;
3616 break;
3617
3618 case TCP_CORK:
3619 __tcp_sock_set_cork(sk, val);
3620 break;
3621
3622 case TCP_KEEPIDLE:
3623 err = tcp_sock_set_keepidle_locked(sk, val);
3624 break;
3625 case TCP_SAVE_SYN:
3626 /* 0: disable, 1: enable, 2: start from ether_header */
3627 if (val < 0 || val > 2)
3628 err = -EINVAL;
3629 else
3630 tp->save_syn = val;
3631 break;
3632
3633 case TCP_WINDOW_CLAMP:
3634 err = tcp_set_window_clamp(sk, val);
3635 break;
3636
3637 case TCP_QUICKACK:
3638 __tcp_sock_set_quickack(sk, val);
3639 break;
3640
3641 #ifdef CONFIG_TCP_MD5SIG
3642 case TCP_MD5SIG:
3643 case TCP_MD5SIG_EXT:
3644 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3645 break;
3646 #endif
3647 case TCP_FASTOPEN:
3648 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3649 TCPF_LISTEN))) {
3650 tcp_fastopen_init_key_once(net);
3651
3652 fastopen_queue_tune(sk, val);
3653 } else {
3654 err = -EINVAL;
3655 }
3656 break;
3657 case TCP_FASTOPEN_CONNECT:
3658 if (val > 1 || val < 0) {
3659 err = -EINVAL;
3660 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3661 TFO_CLIENT_ENABLE) {
3662 if (sk->sk_state == TCP_CLOSE)
3663 tp->fastopen_connect = val;
3664 else
3665 err = -EINVAL;
3666 } else {
3667 err = -EOPNOTSUPP;
3668 }
3669 break;
3670 case TCP_FASTOPEN_NO_COOKIE:
3671 if (val > 1 || val < 0)
3672 err = -EINVAL;
3673 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3674 err = -EINVAL;
3675 else
3676 tp->fastopen_no_cookie = val;
3677 break;
3678 case TCP_TIMESTAMP:
3679 if (!tp->repair)
3680 err = -EPERM;
3681 else
3682 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3683 break;
3684 case TCP_REPAIR_WINDOW:
3685 err = tcp_repair_set_window(tp, optval, optlen);
3686 break;
3687 case TCP_NOTSENT_LOWAT:
3688 WRITE_ONCE(tp->notsent_lowat, val);
3689 sk->sk_write_space(sk);
3690 break;
3691 case TCP_INQ:
3692 if (val > 1 || val < 0)
3693 err = -EINVAL;
3694 else
3695 tp->recvmsg_inq = val;
3696 break;
3697 case TCP_TX_DELAY:
3698 if (val)
3699 tcp_enable_tx_delay();
3700 WRITE_ONCE(tp->tcp_tx_delay, val);
3701 break;
3702 default:
3703 err = -ENOPROTOOPT;
3704 break;
3705 }
3706
3707 sockopt_release_sock(sk);
3708 return err;
3709 }
3710
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3711 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3712 unsigned int optlen)
3713 {
3714 const struct inet_connection_sock *icsk = inet_csk(sk);
3715
3716 if (level != SOL_TCP)
3717 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3718 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3719 optval, optlen);
3720 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3721 }
3722 EXPORT_SYMBOL(tcp_setsockopt);
3723
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3724 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3725 struct tcp_info *info)
3726 {
3727 u64 stats[__TCP_CHRONO_MAX], total = 0;
3728 enum tcp_chrono i;
3729
3730 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3731 stats[i] = tp->chrono_stat[i - 1];
3732 if (i == tp->chrono_type)
3733 stats[i] += tcp_jiffies32 - tp->chrono_start;
3734 stats[i] *= USEC_PER_SEC / HZ;
3735 total += stats[i];
3736 }
3737
3738 info->tcpi_busy_time = total;
3739 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3740 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3741 }
3742
3743 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3744 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3745 {
3746 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3747 const struct inet_connection_sock *icsk = inet_csk(sk);
3748 unsigned long rate;
3749 u32 now;
3750 u64 rate64;
3751 bool slow;
3752
3753 memset(info, 0, sizeof(*info));
3754 if (sk->sk_type != SOCK_STREAM)
3755 return;
3756
3757 info->tcpi_state = inet_sk_state_load(sk);
3758
3759 /* Report meaningful fields for all TCP states, including listeners */
3760 rate = READ_ONCE(sk->sk_pacing_rate);
3761 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3762 info->tcpi_pacing_rate = rate64;
3763
3764 rate = READ_ONCE(sk->sk_max_pacing_rate);
3765 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3766 info->tcpi_max_pacing_rate = rate64;
3767
3768 info->tcpi_reordering = tp->reordering;
3769 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3770
3771 if (info->tcpi_state == TCP_LISTEN) {
3772 /* listeners aliased fields :
3773 * tcpi_unacked -> Number of children ready for accept()
3774 * tcpi_sacked -> max backlog
3775 */
3776 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3777 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3778 return;
3779 }
3780
3781 slow = lock_sock_fast(sk);
3782
3783 info->tcpi_ca_state = icsk->icsk_ca_state;
3784 info->tcpi_retransmits = icsk->icsk_retransmits;
3785 info->tcpi_probes = icsk->icsk_probes_out;
3786 info->tcpi_backoff = icsk->icsk_backoff;
3787
3788 if (tp->rx_opt.tstamp_ok)
3789 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3790 if (tcp_is_sack(tp))
3791 info->tcpi_options |= TCPI_OPT_SACK;
3792 if (tp->rx_opt.wscale_ok) {
3793 info->tcpi_options |= TCPI_OPT_WSCALE;
3794 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3795 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3796 }
3797
3798 if (tp->ecn_flags & TCP_ECN_OK)
3799 info->tcpi_options |= TCPI_OPT_ECN;
3800 if (tp->ecn_flags & TCP_ECN_SEEN)
3801 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3802 if (tp->syn_data_acked)
3803 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3804
3805 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3806 info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato,
3807 tcp_delack_max(sk)));
3808 info->tcpi_snd_mss = tp->mss_cache;
3809 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3810
3811 info->tcpi_unacked = tp->packets_out;
3812 info->tcpi_sacked = tp->sacked_out;
3813
3814 info->tcpi_lost = tp->lost_out;
3815 info->tcpi_retrans = tp->retrans_out;
3816
3817 now = tcp_jiffies32;
3818 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3819 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3820 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3821
3822 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3823 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3824 info->tcpi_rtt = tp->srtt_us >> 3;
3825 info->tcpi_rttvar = tp->mdev_us >> 2;
3826 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3827 info->tcpi_advmss = tp->advmss;
3828
3829 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3830 info->tcpi_rcv_space = tp->rcvq_space.space;
3831
3832 info->tcpi_total_retrans = tp->total_retrans;
3833
3834 info->tcpi_bytes_acked = tp->bytes_acked;
3835 info->tcpi_bytes_received = tp->bytes_received;
3836 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3837 tcp_get_info_chrono_stats(tp, info);
3838
3839 info->tcpi_segs_out = tp->segs_out;
3840
3841 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3842 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3843 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3844
3845 info->tcpi_min_rtt = tcp_min_rtt(tp);
3846 info->tcpi_data_segs_out = tp->data_segs_out;
3847
3848 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3849 rate64 = tcp_compute_delivery_rate(tp);
3850 if (rate64)
3851 info->tcpi_delivery_rate = rate64;
3852 info->tcpi_delivered = tp->delivered;
3853 info->tcpi_delivered_ce = tp->delivered_ce;
3854 info->tcpi_bytes_sent = tp->bytes_sent;
3855 info->tcpi_bytes_retrans = tp->bytes_retrans;
3856 info->tcpi_dsack_dups = tp->dsack_dups;
3857 info->tcpi_reord_seen = tp->reord_seen;
3858 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3859 info->tcpi_snd_wnd = tp->snd_wnd;
3860 info->tcpi_rcv_wnd = tp->rcv_wnd;
3861 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3862 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3863 unlock_sock_fast(sk, slow);
3864 }
3865 EXPORT_SYMBOL_GPL(tcp_get_info);
3866
tcp_opt_stats_get_size(void)3867 static size_t tcp_opt_stats_get_size(void)
3868 {
3869 return
3870 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3871 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3872 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3873 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3874 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3875 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3876 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3877 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3878 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3879 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3880 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3881 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3882 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3883 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3884 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3885 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3886 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3887 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3888 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3889 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3890 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3891 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3892 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3893 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3894 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3895 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3896 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3897 0;
3898 }
3899
3900 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3901 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3902 {
3903 if (skb->protocol == htons(ETH_P_IP))
3904 return ip_hdr(skb)->ttl;
3905 else if (skb->protocol == htons(ETH_P_IPV6))
3906 return ipv6_hdr(skb)->hop_limit;
3907 else
3908 return 0;
3909 }
3910
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3911 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3912 const struct sk_buff *orig_skb,
3913 const struct sk_buff *ack_skb)
3914 {
3915 const struct tcp_sock *tp = tcp_sk(sk);
3916 struct sk_buff *stats;
3917 struct tcp_info info;
3918 unsigned long rate;
3919 u64 rate64;
3920
3921 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3922 if (!stats)
3923 return NULL;
3924
3925 tcp_get_info_chrono_stats(tp, &info);
3926 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3927 info.tcpi_busy_time, TCP_NLA_PAD);
3928 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3929 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3930 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3931 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3932 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3933 tp->data_segs_out, TCP_NLA_PAD);
3934 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3935 tp->total_retrans, TCP_NLA_PAD);
3936
3937 rate = READ_ONCE(sk->sk_pacing_rate);
3938 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3939 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3940
3941 rate64 = tcp_compute_delivery_rate(tp);
3942 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3943
3944 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3945 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3946 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3947
3948 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3949 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3950 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3951 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3952 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3953
3954 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3955 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3956
3957 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3958 TCP_NLA_PAD);
3959 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3960 TCP_NLA_PAD);
3961 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3962 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3963 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3964 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3965 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3966 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3967 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3968 TCP_NLA_PAD);
3969 if (ack_skb)
3970 nla_put_u8(stats, TCP_NLA_TTL,
3971 tcp_skb_ttl_or_hop_limit(ack_skb));
3972
3973 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3974 return stats;
3975 }
3976
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)3977 int do_tcp_getsockopt(struct sock *sk, int level,
3978 int optname, sockptr_t optval, sockptr_t optlen)
3979 {
3980 struct inet_connection_sock *icsk = inet_csk(sk);
3981 struct tcp_sock *tp = tcp_sk(sk);
3982 struct net *net = sock_net(sk);
3983 int val, len;
3984
3985 if (copy_from_sockptr(&len, optlen, sizeof(int)))
3986 return -EFAULT;
3987
3988 if (len < 0)
3989 return -EINVAL;
3990
3991 len = min_t(unsigned int, len, sizeof(int));
3992
3993 switch (optname) {
3994 case TCP_MAXSEG:
3995 val = tp->mss_cache;
3996 if (tp->rx_opt.user_mss &&
3997 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3998 val = tp->rx_opt.user_mss;
3999 if (tp->repair)
4000 val = tp->rx_opt.mss_clamp;
4001 break;
4002 case TCP_NODELAY:
4003 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4004 break;
4005 case TCP_CORK:
4006 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4007 break;
4008 case TCP_KEEPIDLE:
4009 val = keepalive_time_when(tp) / HZ;
4010 break;
4011 case TCP_KEEPINTVL:
4012 val = keepalive_intvl_when(tp) / HZ;
4013 break;
4014 case TCP_KEEPCNT:
4015 val = keepalive_probes(tp);
4016 break;
4017 case TCP_SYNCNT:
4018 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4019 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4020 break;
4021 case TCP_LINGER2:
4022 val = READ_ONCE(tp->linger2);
4023 if (val >= 0)
4024 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4025 break;
4026 case TCP_DEFER_ACCEPT:
4027 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4028 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4029 TCP_RTO_MAX / HZ);
4030 break;
4031 case TCP_WINDOW_CLAMP:
4032 val = READ_ONCE(tp->window_clamp);
4033 break;
4034 case TCP_INFO: {
4035 struct tcp_info info;
4036
4037 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4038 return -EFAULT;
4039
4040 tcp_get_info(sk, &info);
4041
4042 len = min_t(unsigned int, len, sizeof(info));
4043 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4044 return -EFAULT;
4045 if (copy_to_sockptr(optval, &info, len))
4046 return -EFAULT;
4047 return 0;
4048 }
4049 case TCP_CC_INFO: {
4050 const struct tcp_congestion_ops *ca_ops;
4051 union tcp_cc_info info;
4052 size_t sz = 0;
4053 int attr;
4054
4055 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4056 return -EFAULT;
4057
4058 ca_ops = icsk->icsk_ca_ops;
4059 if (ca_ops && ca_ops->get_info)
4060 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4061
4062 len = min_t(unsigned int, len, sz);
4063 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4064 return -EFAULT;
4065 if (copy_to_sockptr(optval, &info, len))
4066 return -EFAULT;
4067 return 0;
4068 }
4069 case TCP_QUICKACK:
4070 val = !inet_csk_in_pingpong_mode(sk);
4071 break;
4072
4073 case TCP_CONGESTION:
4074 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4075 return -EFAULT;
4076 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4077 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4078 return -EFAULT;
4079 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4080 return -EFAULT;
4081 return 0;
4082
4083 case TCP_ULP:
4084 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4085 return -EFAULT;
4086 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4087 if (!icsk->icsk_ulp_ops) {
4088 len = 0;
4089 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4090 return -EFAULT;
4091 return 0;
4092 }
4093 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4094 return -EFAULT;
4095 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4096 return -EFAULT;
4097 return 0;
4098
4099 case TCP_FASTOPEN_KEY: {
4100 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4101 unsigned int key_len;
4102
4103 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4104 return -EFAULT;
4105
4106 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4107 TCP_FASTOPEN_KEY_LENGTH;
4108 len = min_t(unsigned int, len, key_len);
4109 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4110 return -EFAULT;
4111 if (copy_to_sockptr(optval, key, len))
4112 return -EFAULT;
4113 return 0;
4114 }
4115 case TCP_THIN_LINEAR_TIMEOUTS:
4116 val = tp->thin_lto;
4117 break;
4118
4119 case TCP_THIN_DUPACK:
4120 val = 0;
4121 break;
4122
4123 case TCP_REPAIR:
4124 val = tp->repair;
4125 break;
4126
4127 case TCP_REPAIR_QUEUE:
4128 if (tp->repair)
4129 val = tp->repair_queue;
4130 else
4131 return -EINVAL;
4132 break;
4133
4134 case TCP_REPAIR_WINDOW: {
4135 struct tcp_repair_window opt;
4136
4137 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4138 return -EFAULT;
4139
4140 if (len != sizeof(opt))
4141 return -EINVAL;
4142
4143 if (!tp->repair)
4144 return -EPERM;
4145
4146 opt.snd_wl1 = tp->snd_wl1;
4147 opt.snd_wnd = tp->snd_wnd;
4148 opt.max_window = tp->max_window;
4149 opt.rcv_wnd = tp->rcv_wnd;
4150 opt.rcv_wup = tp->rcv_wup;
4151
4152 if (copy_to_sockptr(optval, &opt, len))
4153 return -EFAULT;
4154 return 0;
4155 }
4156 case TCP_QUEUE_SEQ:
4157 if (tp->repair_queue == TCP_SEND_QUEUE)
4158 val = tp->write_seq;
4159 else if (tp->repair_queue == TCP_RECV_QUEUE)
4160 val = tp->rcv_nxt;
4161 else
4162 return -EINVAL;
4163 break;
4164
4165 case TCP_USER_TIMEOUT:
4166 val = READ_ONCE(icsk->icsk_user_timeout);
4167 break;
4168
4169 case TCP_FASTOPEN:
4170 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4171 break;
4172
4173 case TCP_FASTOPEN_CONNECT:
4174 val = tp->fastopen_connect;
4175 break;
4176
4177 case TCP_FASTOPEN_NO_COOKIE:
4178 val = tp->fastopen_no_cookie;
4179 break;
4180
4181 case TCP_TX_DELAY:
4182 val = READ_ONCE(tp->tcp_tx_delay);
4183 break;
4184
4185 case TCP_TIMESTAMP:
4186 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4187 break;
4188 case TCP_NOTSENT_LOWAT:
4189 val = READ_ONCE(tp->notsent_lowat);
4190 break;
4191 case TCP_INQ:
4192 val = tp->recvmsg_inq;
4193 break;
4194 case TCP_SAVE_SYN:
4195 val = tp->save_syn;
4196 break;
4197 case TCP_SAVED_SYN: {
4198 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4199 return -EFAULT;
4200
4201 sockopt_lock_sock(sk);
4202 if (tp->saved_syn) {
4203 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4204 len = tcp_saved_syn_len(tp->saved_syn);
4205 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4206 sockopt_release_sock(sk);
4207 return -EFAULT;
4208 }
4209 sockopt_release_sock(sk);
4210 return -EINVAL;
4211 }
4212 len = tcp_saved_syn_len(tp->saved_syn);
4213 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4214 sockopt_release_sock(sk);
4215 return -EFAULT;
4216 }
4217 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4218 sockopt_release_sock(sk);
4219 return -EFAULT;
4220 }
4221 tcp_saved_syn_free(tp);
4222 sockopt_release_sock(sk);
4223 } else {
4224 sockopt_release_sock(sk);
4225 len = 0;
4226 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4227 return -EFAULT;
4228 }
4229 return 0;
4230 }
4231 #ifdef CONFIG_MMU
4232 case TCP_ZEROCOPY_RECEIVE: {
4233 struct scm_timestamping_internal tss;
4234 struct tcp_zerocopy_receive zc = {};
4235 int err;
4236
4237 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4238 return -EFAULT;
4239 if (len < 0 ||
4240 len < offsetofend(struct tcp_zerocopy_receive, length))
4241 return -EINVAL;
4242 if (unlikely(len > sizeof(zc))) {
4243 err = check_zeroed_sockptr(optval, sizeof(zc),
4244 len - sizeof(zc));
4245 if (err < 1)
4246 return err == 0 ? -EINVAL : err;
4247 len = sizeof(zc);
4248 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4249 return -EFAULT;
4250 }
4251 if (copy_from_sockptr(&zc, optval, len))
4252 return -EFAULT;
4253 if (zc.reserved)
4254 return -EINVAL;
4255 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4256 return -EINVAL;
4257 sockopt_lock_sock(sk);
4258 err = tcp_zerocopy_receive(sk, &zc, &tss);
4259 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4260 &zc, &len, err);
4261 sockopt_release_sock(sk);
4262 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4263 goto zerocopy_rcv_cmsg;
4264 switch (len) {
4265 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4266 goto zerocopy_rcv_cmsg;
4267 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4268 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4269 case offsetofend(struct tcp_zerocopy_receive, flags):
4270 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4271 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4272 case offsetofend(struct tcp_zerocopy_receive, err):
4273 goto zerocopy_rcv_sk_err;
4274 case offsetofend(struct tcp_zerocopy_receive, inq):
4275 goto zerocopy_rcv_inq;
4276 case offsetofend(struct tcp_zerocopy_receive, length):
4277 default:
4278 goto zerocopy_rcv_out;
4279 }
4280 zerocopy_rcv_cmsg:
4281 if (zc.msg_flags & TCP_CMSG_TS)
4282 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4283 else
4284 zc.msg_flags = 0;
4285 zerocopy_rcv_sk_err:
4286 if (!err)
4287 zc.err = sock_error(sk);
4288 zerocopy_rcv_inq:
4289 zc.inq = tcp_inq_hint(sk);
4290 zerocopy_rcv_out:
4291 if (!err && copy_to_sockptr(optval, &zc, len))
4292 err = -EFAULT;
4293 return err;
4294 }
4295 #endif
4296 default:
4297 return -ENOPROTOOPT;
4298 }
4299
4300 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4301 return -EFAULT;
4302 if (copy_to_sockptr(optval, &val, len))
4303 return -EFAULT;
4304 return 0;
4305 }
4306
tcp_bpf_bypass_getsockopt(int level,int optname)4307 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4308 {
4309 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4310 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4311 */
4312 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4313 return true;
4314
4315 return false;
4316 }
4317 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4318
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4319 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4320 int __user *optlen)
4321 {
4322 struct inet_connection_sock *icsk = inet_csk(sk);
4323
4324 if (level != SOL_TCP)
4325 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4326 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4327 optval, optlen);
4328 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4329 USER_SOCKPTR(optlen));
4330 }
4331 EXPORT_SYMBOL(tcp_getsockopt);
4332
4333 #ifdef CONFIG_TCP_MD5SIG
4334 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4335 static DEFINE_MUTEX(tcp_md5sig_mutex);
4336 static bool tcp_md5sig_pool_populated = false;
4337
__tcp_alloc_md5sig_pool(void)4338 static void __tcp_alloc_md5sig_pool(void)
4339 {
4340 struct crypto_ahash *hash;
4341 int cpu;
4342
4343 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4344 if (IS_ERR(hash))
4345 return;
4346
4347 for_each_possible_cpu(cpu) {
4348 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4349 struct ahash_request *req;
4350
4351 if (!scratch) {
4352 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4353 sizeof(struct tcphdr),
4354 GFP_KERNEL,
4355 cpu_to_node(cpu));
4356 if (!scratch)
4357 return;
4358 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4359 }
4360 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4361 continue;
4362
4363 req = ahash_request_alloc(hash, GFP_KERNEL);
4364 if (!req)
4365 return;
4366
4367 ahash_request_set_callback(req, 0, NULL, NULL);
4368
4369 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4370 }
4371 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4372 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4373 */
4374 smp_wmb();
4375 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4376 * and tcp_get_md5sig_pool().
4377 */
4378 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4379 }
4380
tcp_alloc_md5sig_pool(void)4381 bool tcp_alloc_md5sig_pool(void)
4382 {
4383 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4384 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4385 mutex_lock(&tcp_md5sig_mutex);
4386
4387 if (!tcp_md5sig_pool_populated)
4388 __tcp_alloc_md5sig_pool();
4389
4390 mutex_unlock(&tcp_md5sig_mutex);
4391 }
4392 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4393 return READ_ONCE(tcp_md5sig_pool_populated);
4394 }
4395 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4396
4397
4398 /**
4399 * tcp_get_md5sig_pool - get md5sig_pool for this user
4400 *
4401 * We use percpu structure, so if we succeed, we exit with preemption
4402 * and BH disabled, to make sure another thread or softirq handling
4403 * wont try to get same context.
4404 */
tcp_get_md5sig_pool(void)4405 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4406 {
4407 local_bh_disable();
4408
4409 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4410 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4411 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4412 smp_rmb();
4413 return this_cpu_ptr(&tcp_md5sig_pool);
4414 }
4415 local_bh_enable();
4416 return NULL;
4417 }
4418 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4419
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4420 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4421 const struct sk_buff *skb, unsigned int header_len)
4422 {
4423 struct scatterlist sg;
4424 const struct tcphdr *tp = tcp_hdr(skb);
4425 struct ahash_request *req = hp->md5_req;
4426 unsigned int i;
4427 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4428 skb_headlen(skb) - header_len : 0;
4429 const struct skb_shared_info *shi = skb_shinfo(skb);
4430 struct sk_buff *frag_iter;
4431
4432 sg_init_table(&sg, 1);
4433
4434 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4435 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4436 if (crypto_ahash_update(req))
4437 return 1;
4438
4439 for (i = 0; i < shi->nr_frags; ++i) {
4440 const skb_frag_t *f = &shi->frags[i];
4441 unsigned int offset = skb_frag_off(f);
4442 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4443
4444 sg_set_page(&sg, page, skb_frag_size(f),
4445 offset_in_page(offset));
4446 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4447 if (crypto_ahash_update(req))
4448 return 1;
4449 }
4450
4451 skb_walk_frags(skb, frag_iter)
4452 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4453 return 1;
4454
4455 return 0;
4456 }
4457 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4458
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4459 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4460 {
4461 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4462 struct scatterlist sg;
4463
4464 sg_init_one(&sg, key->key, keylen);
4465 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4466
4467 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4468 return data_race(crypto_ahash_update(hp->md5_req));
4469 }
4470 EXPORT_SYMBOL(tcp_md5_hash_key);
4471
4472 /* Called with rcu_read_lock() */
4473 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4474 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4475 const void *saddr, const void *daddr,
4476 int family, int dif, int sdif)
4477 {
4478 /*
4479 * This gets called for each TCP segment that arrives
4480 * so we want to be efficient.
4481 * We have 3 drop cases:
4482 * o No MD5 hash and one expected.
4483 * o MD5 hash and we're not expecting one.
4484 * o MD5 hash and its wrong.
4485 */
4486 const __u8 *hash_location = NULL;
4487 struct tcp_md5sig_key *hash_expected;
4488 const struct tcphdr *th = tcp_hdr(skb);
4489 const struct tcp_sock *tp = tcp_sk(sk);
4490 int genhash, l3index;
4491 u8 newhash[16];
4492
4493 /* sdif set, means packet ingressed via a device
4494 * in an L3 domain and dif is set to the l3mdev
4495 */
4496 l3index = sdif ? dif : 0;
4497
4498 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4499 hash_location = tcp_parse_md5sig_option(th);
4500
4501 /* We've parsed the options - do we have a hash? */
4502 if (!hash_expected && !hash_location)
4503 return SKB_NOT_DROPPED_YET;
4504
4505 if (hash_expected && !hash_location) {
4506 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4507 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4508 }
4509
4510 if (!hash_expected && hash_location) {
4511 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4512 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4513 }
4514
4515 /* Check the signature.
4516 * To support dual stack listeners, we need to handle
4517 * IPv4-mapped case.
4518 */
4519 if (family == AF_INET)
4520 genhash = tcp_v4_md5_hash_skb(newhash,
4521 hash_expected,
4522 NULL, skb);
4523 else
4524 genhash = tp->af_specific->calc_md5_hash(newhash,
4525 hash_expected,
4526 NULL, skb);
4527
4528 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4530 if (family == AF_INET) {
4531 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4532 saddr, ntohs(th->source),
4533 daddr, ntohs(th->dest),
4534 genhash ? " tcp_v4_calc_md5_hash failed"
4535 : "", l3index);
4536 } else {
4537 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4538 genhash ? "failed" : "mismatch",
4539 saddr, ntohs(th->source),
4540 daddr, ntohs(th->dest), l3index);
4541 }
4542 return SKB_DROP_REASON_TCP_MD5FAILURE;
4543 }
4544 return SKB_NOT_DROPPED_YET;
4545 }
4546 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4547
4548 #endif
4549
tcp_done(struct sock * sk)4550 void tcp_done(struct sock *sk)
4551 {
4552 struct request_sock *req;
4553
4554 /* We might be called with a new socket, after
4555 * inet_csk_prepare_forced_close() has been called
4556 * so we can not use lockdep_sock_is_held(sk)
4557 */
4558 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4559
4560 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4561 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4562
4563 tcp_set_state(sk, TCP_CLOSE);
4564 tcp_clear_xmit_timers(sk);
4565 if (req)
4566 reqsk_fastopen_remove(sk, req, false);
4567
4568 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4569
4570 if (!sock_flag(sk, SOCK_DEAD))
4571 sk->sk_state_change(sk);
4572 else
4573 inet_csk_destroy_sock(sk);
4574 }
4575 EXPORT_SYMBOL_GPL(tcp_done);
4576
tcp_abort(struct sock * sk,int err)4577 int tcp_abort(struct sock *sk, int err)
4578 {
4579 int state = inet_sk_state_load(sk);
4580
4581 if (state == TCP_NEW_SYN_RECV) {
4582 struct request_sock *req = inet_reqsk(sk);
4583
4584 local_bh_disable();
4585 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4586 local_bh_enable();
4587 return 0;
4588 }
4589 if (state == TCP_TIME_WAIT) {
4590 struct inet_timewait_sock *tw = inet_twsk(sk);
4591
4592 refcount_inc(&tw->tw_refcnt);
4593 local_bh_disable();
4594 inet_twsk_deschedule_put(tw);
4595 local_bh_enable();
4596 return 0;
4597 }
4598
4599 /* BPF context ensures sock locking. */
4600 if (!has_current_bpf_ctx())
4601 /* Don't race with userspace socket closes such as tcp_close. */
4602 lock_sock(sk);
4603
4604 if (sk->sk_state == TCP_LISTEN) {
4605 tcp_set_state(sk, TCP_CLOSE);
4606 inet_csk_listen_stop(sk);
4607 }
4608
4609 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4610 local_bh_disable();
4611 bh_lock_sock(sk);
4612
4613 if (!sock_flag(sk, SOCK_DEAD)) {
4614 WRITE_ONCE(sk->sk_err, err);
4615 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4616 smp_wmb();
4617 sk_error_report(sk);
4618 if (tcp_need_reset(sk->sk_state))
4619 tcp_send_active_reset(sk, GFP_ATOMIC);
4620 tcp_done(sk);
4621 }
4622
4623 bh_unlock_sock(sk);
4624 local_bh_enable();
4625 tcp_write_queue_purge(sk);
4626 if (!has_current_bpf_ctx())
4627 release_sock(sk);
4628 return 0;
4629 }
4630 EXPORT_SYMBOL_GPL(tcp_abort);
4631
4632 extern struct tcp_congestion_ops tcp_reno;
4633
4634 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4635 static int __init set_thash_entries(char *str)
4636 {
4637 ssize_t ret;
4638
4639 if (!str)
4640 return 0;
4641
4642 ret = kstrtoul(str, 0, &thash_entries);
4643 if (ret)
4644 return 0;
4645
4646 return 1;
4647 }
4648 __setup("thash_entries=", set_thash_entries);
4649
tcp_init_mem(void)4650 static void __init tcp_init_mem(void)
4651 {
4652 unsigned long limit = nr_free_buffer_pages() / 16;
4653
4654 limit = max(limit, 128UL);
4655 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4656 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4657 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4658 }
4659
tcp_init(void)4660 void __init tcp_init(void)
4661 {
4662 int max_rshare, max_wshare, cnt;
4663 unsigned long limit;
4664 unsigned int i;
4665
4666 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4667 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4668 sizeof_field(struct sk_buff, cb));
4669
4670 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4671
4672 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4673 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4674
4675 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4676 thash_entries, 21, /* one slot per 2 MB*/
4677 0, 64 * 1024);
4678 tcp_hashinfo.bind_bucket_cachep =
4679 kmem_cache_create("tcp_bind_bucket",
4680 sizeof(struct inet_bind_bucket), 0,
4681 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4682 SLAB_ACCOUNT,
4683 NULL);
4684 tcp_hashinfo.bind2_bucket_cachep =
4685 kmem_cache_create("tcp_bind2_bucket",
4686 sizeof(struct inet_bind2_bucket), 0,
4687 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4688 SLAB_ACCOUNT,
4689 NULL);
4690
4691 /* Size and allocate the main established and bind bucket
4692 * hash tables.
4693 *
4694 * The methodology is similar to that of the buffer cache.
4695 */
4696 tcp_hashinfo.ehash =
4697 alloc_large_system_hash("TCP established",
4698 sizeof(struct inet_ehash_bucket),
4699 thash_entries,
4700 17, /* one slot per 128 KB of memory */
4701 0,
4702 NULL,
4703 &tcp_hashinfo.ehash_mask,
4704 0,
4705 thash_entries ? 0 : 512 * 1024);
4706 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4707 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4708
4709 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4710 panic("TCP: failed to alloc ehash_locks");
4711 tcp_hashinfo.bhash =
4712 alloc_large_system_hash("TCP bind",
4713 2 * sizeof(struct inet_bind_hashbucket),
4714 tcp_hashinfo.ehash_mask + 1,
4715 17, /* one slot per 128 KB of memory */
4716 0,
4717 &tcp_hashinfo.bhash_size,
4718 NULL,
4719 0,
4720 64 * 1024);
4721 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4722 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4723 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4724 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4725 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4726 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4727 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4728 }
4729
4730 tcp_hashinfo.pernet = false;
4731
4732 cnt = tcp_hashinfo.ehash_mask + 1;
4733 sysctl_tcp_max_orphans = cnt / 2;
4734
4735 tcp_init_mem();
4736 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4737 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4738 max_wshare = min(4UL*1024*1024, limit);
4739 max_rshare = min(6UL*1024*1024, limit);
4740
4741 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4742 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4743 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4744
4745 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4746 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4747 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4748
4749 pr_info("Hash tables configured (established %u bind %u)\n",
4750 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4751
4752 tcp_v4_init();
4753 tcp_metrics_init();
4754 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4755 tcp_tasklet_init();
4756 mptcp_init();
4757 }
4758