• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 #include <trace/hooks/net.h>
50 
51 /* Refresh clocks of a TCP socket,
52  * ensuring monotically increasing values.
53  */
tcp_mstamp_refresh(struct tcp_sock * tp)54 void tcp_mstamp_refresh(struct tcp_sock *tp)
55 {
56 	u64 val = tcp_clock_ns();
57 
58 	tp->tcp_clock_cache = val;
59 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
60 }
61 
62 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
63 			   int push_one, gfp_t gfp);
64 
65 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)66 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
67 {
68 	struct inet_connection_sock *icsk = inet_csk(sk);
69 	struct tcp_sock *tp = tcp_sk(sk);
70 	unsigned int prior_packets = tp->packets_out;
71 
72 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
73 
74 	__skb_unlink(skb, &sk->sk_write_queue);
75 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
76 
77 	if (tp->highest_sack == NULL)
78 		tp->highest_sack = skb;
79 
80 	tp->packets_out += tcp_skb_pcount(skb);
81 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
82 		tcp_rearm_rto(sk);
83 
84 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 		      tcp_skb_pcount(skb));
86 	tcp_check_space(sk);
87 }
88 
89 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
90  * window scaling factor due to loss of precision.
91  * If window has been shrunk, what should we make? It is not clear at all.
92  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
93  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
94  * invalid. OK, let's make this for now:
95  */
tcp_acceptable_seq(const struct sock * sk)96 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
97 {
98 	const struct tcp_sock *tp = tcp_sk(sk);
99 
100 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
101 	    (tp->rx_opt.wscale_ok &&
102 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
103 		return tp->snd_nxt;
104 	else
105 		return tcp_wnd_end(tp);
106 }
107 
108 /* Calculate mss to advertise in SYN segment.
109  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110  *
111  * 1. It is independent of path mtu.
112  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
113  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
114  *    attached devices, because some buggy hosts are confused by
115  *    large MSS.
116  * 4. We do not make 3, we advertise MSS, calculated from first
117  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
118  *    This may be overridden via information stored in routing table.
119  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
120  *    probably even Jumbo".
121  */
tcp_advertise_mss(struct sock * sk)122 static __u16 tcp_advertise_mss(struct sock *sk)
123 {
124 	struct tcp_sock *tp = tcp_sk(sk);
125 	const struct dst_entry *dst = __sk_dst_get(sk);
126 	int mss = tp->advmss;
127 
128 	if (dst) {
129 		unsigned int metric = dst_metric_advmss(dst);
130 
131 		if (metric < mss) {
132 			mss = metric;
133 			tp->advmss = mss;
134 		}
135 	}
136 
137 	return (__u16)mss;
138 }
139 
140 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
141  * This is the first part of cwnd validation mechanism.
142  */
tcp_cwnd_restart(struct sock * sk,s32 delta)143 void tcp_cwnd_restart(struct sock *sk, s32 delta)
144 {
145 	struct tcp_sock *tp = tcp_sk(sk);
146 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
147 	u32 cwnd = tcp_snd_cwnd(tp);
148 
149 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
150 
151 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
152 	restart_cwnd = min(restart_cwnd, cwnd);
153 
154 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
155 		cwnd >>= 1;
156 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
157 	tp->snd_cwnd_stamp = tcp_jiffies32;
158 	tp->snd_cwnd_used = 0;
159 }
160 
161 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)162 static void tcp_event_data_sent(struct tcp_sock *tp,
163 				struct sock *sk)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const u32 now = tcp_jiffies32;
167 
168 	if (tcp_packets_in_flight(tp) == 0)
169 		tcp_ca_event(sk, CA_EVENT_TX_START);
170 
171 	tp->lsndtime = now;
172 
173 	/* If it is a reply for ato after last received
174 	 * packet, enter pingpong mode.
175 	 */
176 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
177 		inet_csk_enter_pingpong_mode(sk);
178 }
179 
180 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)181 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
182 {
183 	struct tcp_sock *tp = tcp_sk(sk);
184 
185 	if (unlikely(tp->compressed_ack)) {
186 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
187 			      tp->compressed_ack);
188 		tp->compressed_ack = 0;
189 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
190 			__sock_put(sk);
191 	}
192 
193 	if (unlikely(rcv_nxt != tp->rcv_nxt))
194 		return;  /* Special ACK sent by DCTCP to reflect ECN */
195 	tcp_dec_quickack_mode(sk);
196 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 }
198 
199 /* Determine a window scaling and initial window to offer.
200  * Based on the assumption that the given amount of space
201  * will be offered. Store the results in the tp structure.
202  * NOTE: for smooth operation initial space offering should
203  * be a multiple of mss if possible. We assume here that mss >= 1.
204  * This MUST be enforced by all callers.
205  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * __window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)206 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
207 			       __u32 *rcv_wnd, __u32 *__window_clamp,
208 			       int wscale_ok, __u8 *rcv_wscale,
209 			       __u32 init_rcv_wnd)
210 {
211 	unsigned int space = (__space < 0 ? 0 : __space);
212 	u32 window_clamp = READ_ONCE(*__window_clamp);
213 
214 	/* If no clamp set the clamp to the max possible scaled window */
215 	if (window_clamp == 0)
216 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
217 	space = min(window_clamp, space);
218 
219 	/* Quantize space offering to a multiple of mss if possible. */
220 	if (space > mss)
221 		space = rounddown(space, mss);
222 
223 	/* NOTE: offering an initial window larger than 32767
224 	 * will break some buggy TCP stacks. If the admin tells us
225 	 * it is likely we could be speaking with such a buggy stack
226 	 * we will truncate our initial window offering to 32K-1
227 	 * unless the remote has sent us a window scaling option,
228 	 * which we interpret as a sign the remote TCP is not
229 	 * misinterpreting the window field as a signed quantity.
230 	 */
231 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
232 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
233 	else
234 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
235 
236 	if (init_rcv_wnd)
237 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238 
239 	*rcv_wscale = 0;
240 	if (wscale_ok) {
241 		/* Set window scaling on max possible window */
242 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
243 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
244 		space = min_t(u32, space, window_clamp);
245 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
246 				      0, TCP_MAX_WSCALE);
247 	}
248 	/* Set the clamp no higher than max representable value */
249 	WRITE_ONCE(*__window_clamp,
250 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253 
254 /* Chose a new window to advertise, update state in tcp_sock for the
255  * socket, and return result with RFC1323 scaling applied.  The return
256  * value can be stuffed directly into th->window for an outgoing
257  * frame.
258  */
tcp_select_window(struct sock * sk)259 static u16 tcp_select_window(struct sock *sk)
260 {
261 	struct tcp_sock *tp = tcp_sk(sk);
262 	struct net *net = sock_net(sk);
263 	u32 old_win = tp->rcv_wnd;
264 	u32 cur_win, new_win;
265 
266 	/* Make the window 0 if we failed to queue the data because we
267 	 * are out of memory. The window is temporary, so we don't store
268 	 * it on the socket.
269 	 */
270 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
271 		return 0;
272 
273 	cur_win = tcp_receive_window(tp);
274 	new_win = __tcp_select_window(sk);
275 
276 	trace_android_vh_tcp_select_window(sk, &new_win);
277 
278 	if (new_win < cur_win) {
279 		/* Danger Will Robinson!
280 		 * Don't update rcv_wup/rcv_wnd here or else
281 		 * we will not be able to advertise a zero
282 		 * window in time.  --DaveM
283 		 *
284 		 * Relax Will Robinson.
285 		 */
286 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
287 			/* Never shrink the offered window */
288 			if (new_win == 0)
289 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
290 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
291 		}
292 	}
293 
294 	tp->rcv_wnd = new_win;
295 	tp->rcv_wup = tp->rcv_nxt;
296 
297 	trace_android_rvh_tcp_select_window(sk, &new_win);
298 
299 	/* Make sure we do not exceed the maximum possible
300 	 * scaled window.
301 	 */
302 	if (!tp->rx_opt.rcv_wscale &&
303 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
304 		new_win = min(new_win, MAX_TCP_WINDOW);
305 	else
306 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
307 
308 	/* RFC1323 scaling applied */
309 	new_win >>= tp->rx_opt.rcv_wscale;
310 
311 	/* If we advertise zero window, disable fast path. */
312 	if (new_win == 0) {
313 		tp->pred_flags = 0;
314 		if (old_win)
315 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
316 	} else if (old_win == 0) {
317 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
318 	}
319 
320 	return new_win;
321 }
322 
323 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)324 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
325 {
326 	const struct tcp_sock *tp = tcp_sk(sk);
327 
328 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
329 	if (!(tp->ecn_flags & TCP_ECN_OK))
330 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
331 	else if (tcp_ca_needs_ecn(sk) ||
332 		 tcp_bpf_ca_needs_ecn(sk))
333 		INET_ECN_xmit(sk);
334 }
335 
336 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)337 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
341 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
342 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
343 
344 	if (!use_ecn) {
345 		const struct dst_entry *dst = __sk_dst_get(sk);
346 
347 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
348 			use_ecn = true;
349 	}
350 
351 	tp->ecn_flags = 0;
352 
353 	if (use_ecn) {
354 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
355 		tp->ecn_flags = TCP_ECN_OK;
356 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
357 			INET_ECN_xmit(sk);
358 	}
359 }
360 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)361 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
362 {
363 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
364 		/* tp->ecn_flags are cleared at a later point in time when
365 		 * SYN ACK is ultimatively being received.
366 		 */
367 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
368 }
369 
370 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)371 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
372 {
373 	if (inet_rsk(req)->ecn_ok)
374 		th->ece = 1;
375 }
376 
377 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
378  * be sent.
379  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)380 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
381 			 struct tcphdr *th, int tcp_header_len)
382 {
383 	struct tcp_sock *tp = tcp_sk(sk);
384 
385 	if (tp->ecn_flags & TCP_ECN_OK) {
386 		/* Not-retransmitted data segment: set ECT and inject CWR. */
387 		if (skb->len != tcp_header_len &&
388 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
389 			INET_ECN_xmit(sk);
390 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
391 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
392 				th->cwr = 1;
393 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
394 			}
395 		} else if (!tcp_ca_needs_ecn(sk)) {
396 			/* ACK or retransmitted segment: clear ECT|CE */
397 			INET_ECN_dontxmit(sk);
398 		}
399 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
400 			th->ece = 1;
401 	}
402 }
403 
404 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
405  * auto increment end seqno.
406  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)407 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
408 {
409 	skb->ip_summed = CHECKSUM_PARTIAL;
410 
411 	TCP_SKB_CB(skb)->tcp_flags = flags;
412 
413 	tcp_skb_pcount_set(skb, 1);
414 
415 	TCP_SKB_CB(skb)->seq = seq;
416 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
417 		seq++;
418 	TCP_SKB_CB(skb)->end_seq = seq;
419 }
420 
tcp_urg_mode(const struct tcp_sock * tp)421 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
422 {
423 	return tp->snd_una != tp->snd_up;
424 }
425 
426 #define OPTION_SACK_ADVERTISE	BIT(0)
427 #define OPTION_TS		BIT(1)
428 #define OPTION_MD5		BIT(2)
429 #define OPTION_WSCALE		BIT(3)
430 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
431 #define OPTION_SMC		BIT(9)
432 #define OPTION_MPTCP		BIT(10)
433 
smc_options_write(__be32 * ptr,u16 * options)434 static void smc_options_write(__be32 *ptr, u16 *options)
435 {
436 #if IS_ENABLED(CONFIG_SMC)
437 	if (static_branch_unlikely(&tcp_have_smc)) {
438 		if (unlikely(OPTION_SMC & *options)) {
439 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
440 				       (TCPOPT_NOP  << 16) |
441 				       (TCPOPT_EXP <<  8) |
442 				       (TCPOLEN_EXP_SMC_BASE));
443 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
444 		}
445 	}
446 #endif
447 }
448 
449 struct tcp_out_options {
450 	u16 options;		/* bit field of OPTION_* */
451 	u16 mss;		/* 0 to disable */
452 	u8 ws;			/* window scale, 0 to disable */
453 	u8 num_sack_blocks;	/* number of SACK blocks to include */
454 	u8 hash_size;		/* bytes in hash_location */
455 	u8 bpf_opt_len;		/* length of BPF hdr option */
456 	__u8 *hash_location;	/* temporary pointer, overloaded */
457 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
458 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
459 	struct mptcp_out_options mptcp;
460 };
461 
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)462 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
463 				struct tcp_sock *tp,
464 				struct tcp_out_options *opts)
465 {
466 #if IS_ENABLED(CONFIG_MPTCP)
467 	if (unlikely(OPTION_MPTCP & opts->options))
468 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
469 #endif
470 }
471 
472 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)473 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
474 					enum tcp_synack_type synack_type)
475 {
476 	if (unlikely(!skb))
477 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
478 
479 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
480 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
481 
482 	return 0;
483 }
484 
485 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)486 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
487 				  struct request_sock *req,
488 				  struct sk_buff *syn_skb,
489 				  enum tcp_synack_type synack_type,
490 				  struct tcp_out_options *opts,
491 				  unsigned int *remaining)
492 {
493 	struct bpf_sock_ops_kern sock_ops;
494 	int err;
495 
496 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
497 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
498 	    !*remaining)
499 		return;
500 
501 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
502 
503 	/* init sock_ops */
504 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
505 
506 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
507 
508 	if (req) {
509 		/* The listen "sk" cannot be passed here because
510 		 * it is not locked.  It would not make too much
511 		 * sense to do bpf_setsockopt(listen_sk) based
512 		 * on individual connection request also.
513 		 *
514 		 * Thus, "req" is passed here and the cgroup-bpf-progs
515 		 * of the listen "sk" will be run.
516 		 *
517 		 * "req" is also used here for fastopen even the "sk" here is
518 		 * a fullsock "child" sk.  It is to keep the behavior
519 		 * consistent between fastopen and non-fastopen on
520 		 * the bpf programming side.
521 		 */
522 		sock_ops.sk = (struct sock *)req;
523 		sock_ops.syn_skb = syn_skb;
524 	} else {
525 		sock_owned_by_me(sk);
526 
527 		sock_ops.is_fullsock = 1;
528 		sock_ops.sk = sk;
529 	}
530 
531 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
532 	sock_ops.remaining_opt_len = *remaining;
533 	/* tcp_current_mss() does not pass a skb */
534 	if (skb)
535 		bpf_skops_init_skb(&sock_ops, skb, 0);
536 
537 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
538 
539 	if (err || sock_ops.remaining_opt_len == *remaining)
540 		return;
541 
542 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
543 	/* round up to 4 bytes */
544 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
545 
546 	*remaining -= opts->bpf_opt_len;
547 }
548 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)549 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
550 				    struct request_sock *req,
551 				    struct sk_buff *syn_skb,
552 				    enum tcp_synack_type synack_type,
553 				    struct tcp_out_options *opts)
554 {
555 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
556 	struct bpf_sock_ops_kern sock_ops;
557 	int err;
558 
559 	if (likely(!max_opt_len))
560 		return;
561 
562 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
563 
564 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
565 
566 	if (req) {
567 		sock_ops.sk = (struct sock *)req;
568 		sock_ops.syn_skb = syn_skb;
569 	} else {
570 		sock_owned_by_me(sk);
571 
572 		sock_ops.is_fullsock = 1;
573 		sock_ops.sk = sk;
574 	}
575 
576 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
577 	sock_ops.remaining_opt_len = max_opt_len;
578 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
579 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
580 
581 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
582 
583 	if (err)
584 		nr_written = 0;
585 	else
586 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
587 
588 	if (nr_written < max_opt_len)
589 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
590 		       max_opt_len - nr_written);
591 }
592 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)593 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
594 				  struct request_sock *req,
595 				  struct sk_buff *syn_skb,
596 				  enum tcp_synack_type synack_type,
597 				  struct tcp_out_options *opts,
598 				  unsigned int *remaining)
599 {
600 }
601 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)602 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
603 				    struct request_sock *req,
604 				    struct sk_buff *syn_skb,
605 				    enum tcp_synack_type synack_type,
606 				    struct tcp_out_options *opts)
607 {
608 }
609 #endif
610 
611 /* Write previously computed TCP options to the packet.
612  *
613  * Beware: Something in the Internet is very sensitive to the ordering of
614  * TCP options, we learned this through the hard way, so be careful here.
615  * Luckily we can at least blame others for their non-compliance but from
616  * inter-operability perspective it seems that we're somewhat stuck with
617  * the ordering which we have been using if we want to keep working with
618  * those broken things (not that it currently hurts anybody as there isn't
619  * particular reason why the ordering would need to be changed).
620  *
621  * At least SACK_PERM as the first option is known to lead to a disaster
622  * (but it may well be that other scenarios fail similarly).
623  */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,struct tcp_out_options * opts)624 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
625 			      struct tcp_out_options *opts)
626 {
627 	__be32 *ptr = (__be32 *)(th + 1);
628 	u16 options = opts->options;	/* mungable copy */
629 
630 	if (unlikely(OPTION_MD5 & options)) {
631 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
632 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
633 		/* overload cookie hash location */
634 		opts->hash_location = (__u8 *)ptr;
635 		ptr += 4;
636 	}
637 
638 	if (unlikely(opts->mss)) {
639 		*ptr++ = htonl((TCPOPT_MSS << 24) |
640 			       (TCPOLEN_MSS << 16) |
641 			       opts->mss);
642 	}
643 
644 	if (likely(OPTION_TS & options)) {
645 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
646 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
647 				       (TCPOLEN_SACK_PERM << 16) |
648 				       (TCPOPT_TIMESTAMP << 8) |
649 				       TCPOLEN_TIMESTAMP);
650 			options &= ~OPTION_SACK_ADVERTISE;
651 		} else {
652 			*ptr++ = htonl((TCPOPT_NOP << 24) |
653 				       (TCPOPT_NOP << 16) |
654 				       (TCPOPT_TIMESTAMP << 8) |
655 				       TCPOLEN_TIMESTAMP);
656 		}
657 		*ptr++ = htonl(opts->tsval);
658 		*ptr++ = htonl(opts->tsecr);
659 	}
660 
661 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
662 		*ptr++ = htonl((TCPOPT_NOP << 24) |
663 			       (TCPOPT_NOP << 16) |
664 			       (TCPOPT_SACK_PERM << 8) |
665 			       TCPOLEN_SACK_PERM);
666 	}
667 
668 	if (unlikely(OPTION_WSCALE & options)) {
669 		*ptr++ = htonl((TCPOPT_NOP << 24) |
670 			       (TCPOPT_WINDOW << 16) |
671 			       (TCPOLEN_WINDOW << 8) |
672 			       opts->ws);
673 	}
674 
675 	if (unlikely(opts->num_sack_blocks)) {
676 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
677 			tp->duplicate_sack : tp->selective_acks;
678 		int this_sack;
679 
680 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
681 			       (TCPOPT_NOP  << 16) |
682 			       (TCPOPT_SACK <<  8) |
683 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
684 						     TCPOLEN_SACK_PERBLOCK)));
685 
686 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
687 		     ++this_sack) {
688 			*ptr++ = htonl(sp[this_sack].start_seq);
689 			*ptr++ = htonl(sp[this_sack].end_seq);
690 		}
691 
692 		tp->rx_opt.dsack = 0;
693 	}
694 
695 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
696 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
697 		u8 *p = (u8 *)ptr;
698 		u32 len; /* Fast Open option length */
699 
700 		if (foc->exp) {
701 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
702 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
703 				     TCPOPT_FASTOPEN_MAGIC);
704 			p += TCPOLEN_EXP_FASTOPEN_BASE;
705 		} else {
706 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
707 			*p++ = TCPOPT_FASTOPEN;
708 			*p++ = len;
709 		}
710 
711 		memcpy(p, foc->val, foc->len);
712 		if ((len & 3) == 2) {
713 			p[foc->len] = TCPOPT_NOP;
714 			p[foc->len + 1] = TCPOPT_NOP;
715 		}
716 		ptr += (len + 3) >> 2;
717 	}
718 
719 	smc_options_write(ptr, &options);
720 
721 	mptcp_options_write(th, ptr, tp, opts);
722 }
723 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)724 static void smc_set_option(const struct tcp_sock *tp,
725 			   struct tcp_out_options *opts,
726 			   unsigned int *remaining)
727 {
728 #if IS_ENABLED(CONFIG_SMC)
729 	if (static_branch_unlikely(&tcp_have_smc)) {
730 		if (tp->syn_smc) {
731 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 				opts->options |= OPTION_SMC;
733 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
734 			}
735 		}
736 	}
737 #endif
738 }
739 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)740 static void smc_set_option_cond(const struct tcp_sock *tp,
741 				const struct inet_request_sock *ireq,
742 				struct tcp_out_options *opts,
743 				unsigned int *remaining)
744 {
745 #if IS_ENABLED(CONFIG_SMC)
746 	if (static_branch_unlikely(&tcp_have_smc)) {
747 		if (tp->syn_smc && ireq->smc_ok) {
748 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
749 				opts->options |= OPTION_SMC;
750 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
751 			}
752 		}
753 	}
754 #endif
755 }
756 
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)757 static void mptcp_set_option_cond(const struct request_sock *req,
758 				  struct tcp_out_options *opts,
759 				  unsigned int *remaining)
760 {
761 	if (rsk_is_mptcp(req)) {
762 		unsigned int size;
763 
764 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
765 			if (*remaining >= size) {
766 				opts->options |= OPTION_MPTCP;
767 				*remaining -= size;
768 			}
769 		}
770 	}
771 }
772 
773 /* Compute TCP options for SYN packets. This is not the final
774  * network wire format yet.
775  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)776 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
777 				struct tcp_out_options *opts,
778 				struct tcp_md5sig_key **md5)
779 {
780 	struct tcp_sock *tp = tcp_sk(sk);
781 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
782 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
783 
784 	*md5 = NULL;
785 #ifdef CONFIG_TCP_MD5SIG
786 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
787 	    rcu_access_pointer(tp->md5sig_info)) {
788 		*md5 = tp->af_specific->md5_lookup(sk, sk);
789 		if (*md5) {
790 			opts->options |= OPTION_MD5;
791 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
792 		}
793 	}
794 #endif
795 
796 	/* We always get an MSS option.  The option bytes which will be seen in
797 	 * normal data packets should timestamps be used, must be in the MSS
798 	 * advertised.  But we subtract them from tp->mss_cache so that
799 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
800 	 * fact here if necessary.  If we don't do this correctly, as a
801 	 * receiver we won't recognize data packets as being full sized when we
802 	 * should, and thus we won't abide by the delayed ACK rules correctly.
803 	 * SACKs don't matter, we never delay an ACK when we have any of those
804 	 * going out.  */
805 	opts->mss = tcp_advertise_mss(sk);
806 	remaining -= TCPOLEN_MSS_ALIGNED;
807 
808 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
809 		opts->options |= OPTION_TS;
810 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
811 		opts->tsecr = tp->rx_opt.ts_recent;
812 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
813 	}
814 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
815 		opts->ws = tp->rx_opt.rcv_wscale;
816 		opts->options |= OPTION_WSCALE;
817 		remaining -= TCPOLEN_WSCALE_ALIGNED;
818 	}
819 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
820 		opts->options |= OPTION_SACK_ADVERTISE;
821 		if (unlikely(!(OPTION_TS & opts->options)))
822 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
823 	}
824 
825 	if (fastopen && fastopen->cookie.len >= 0) {
826 		u32 need = fastopen->cookie.len;
827 
828 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
829 					       TCPOLEN_FASTOPEN_BASE;
830 		need = (need + 3) & ~3U;  /* Align to 32 bits */
831 		if (remaining >= need) {
832 			opts->options |= OPTION_FAST_OPEN_COOKIE;
833 			opts->fastopen_cookie = &fastopen->cookie;
834 			remaining -= need;
835 			tp->syn_fastopen = 1;
836 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
837 		}
838 	}
839 
840 	smc_set_option(tp, opts, &remaining);
841 
842 	if (sk_is_mptcp(sk)) {
843 		unsigned int size;
844 
845 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
846 			opts->options |= OPTION_MPTCP;
847 			remaining -= size;
848 		}
849 	}
850 
851 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
852 
853 	return MAX_TCP_OPTION_SPACE - remaining;
854 }
855 
856 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)857 static unsigned int tcp_synack_options(const struct sock *sk,
858 				       struct request_sock *req,
859 				       unsigned int mss, struct sk_buff *skb,
860 				       struct tcp_out_options *opts,
861 				       const struct tcp_md5sig_key *md5,
862 				       struct tcp_fastopen_cookie *foc,
863 				       enum tcp_synack_type synack_type,
864 				       struct sk_buff *syn_skb)
865 {
866 	struct inet_request_sock *ireq = inet_rsk(req);
867 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
868 
869 #ifdef CONFIG_TCP_MD5SIG
870 	if (md5) {
871 		opts->options |= OPTION_MD5;
872 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
873 
874 		/* We can't fit any SACK blocks in a packet with MD5 + TS
875 		 * options. There was discussion about disabling SACK
876 		 * rather than TS in order to fit in better with old,
877 		 * buggy kernels, but that was deemed to be unnecessary.
878 		 */
879 		if (synack_type != TCP_SYNACK_COOKIE)
880 			ireq->tstamp_ok &= !ireq->sack_ok;
881 	}
882 #endif
883 
884 	/* We always send an MSS option. */
885 	opts->mss = mss;
886 	remaining -= TCPOLEN_MSS_ALIGNED;
887 
888 	if (likely(ireq->wscale_ok)) {
889 		opts->ws = ireq->rcv_wscale;
890 		opts->options |= OPTION_WSCALE;
891 		remaining -= TCPOLEN_WSCALE_ALIGNED;
892 	}
893 	if (likely(ireq->tstamp_ok)) {
894 		opts->options |= OPTION_TS;
895 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
896 		opts->tsecr = READ_ONCE(req->ts_recent);
897 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
898 	}
899 	if (likely(ireq->sack_ok)) {
900 		opts->options |= OPTION_SACK_ADVERTISE;
901 		if (unlikely(!ireq->tstamp_ok))
902 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
903 	}
904 	if (foc != NULL && foc->len >= 0) {
905 		u32 need = foc->len;
906 
907 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
908 				   TCPOLEN_FASTOPEN_BASE;
909 		need = (need + 3) & ~3U;  /* Align to 32 bits */
910 		if (remaining >= need) {
911 			opts->options |= OPTION_FAST_OPEN_COOKIE;
912 			opts->fastopen_cookie = foc;
913 			remaining -= need;
914 		}
915 	}
916 
917 	mptcp_set_option_cond(req, opts, &remaining);
918 
919 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
920 
921 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
922 			      synack_type, opts, &remaining);
923 
924 	return MAX_TCP_OPTION_SPACE - remaining;
925 }
926 
927 /* Compute TCP options for ESTABLISHED sockets. This is not the
928  * final wire format yet.
929  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)930 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
931 					struct tcp_out_options *opts,
932 					struct tcp_md5sig_key **md5)
933 {
934 	struct tcp_sock *tp = tcp_sk(sk);
935 	unsigned int size = 0;
936 	unsigned int eff_sacks;
937 
938 	opts->options = 0;
939 
940 	*md5 = NULL;
941 #ifdef CONFIG_TCP_MD5SIG
942 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
943 	    rcu_access_pointer(tp->md5sig_info)) {
944 		*md5 = tp->af_specific->md5_lookup(sk, sk);
945 		if (*md5) {
946 			opts->options |= OPTION_MD5;
947 			size += TCPOLEN_MD5SIG_ALIGNED;
948 		}
949 	}
950 #endif
951 
952 	if (likely(tp->rx_opt.tstamp_ok)) {
953 		opts->options |= OPTION_TS;
954 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
955 		opts->tsecr = tp->rx_opt.ts_recent;
956 		size += TCPOLEN_TSTAMP_ALIGNED;
957 	}
958 
959 	/* MPTCP options have precedence over SACK for the limited TCP
960 	 * option space because a MPTCP connection would be forced to
961 	 * fall back to regular TCP if a required multipath option is
962 	 * missing. SACK still gets a chance to use whatever space is
963 	 * left.
964 	 */
965 	if (sk_is_mptcp(sk)) {
966 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
967 		unsigned int opt_size = 0;
968 
969 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
970 					      &opts->mptcp)) {
971 			opts->options |= OPTION_MPTCP;
972 			size += opt_size;
973 		}
974 	}
975 
976 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
977 	if (unlikely(eff_sacks)) {
978 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
979 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
980 					 TCPOLEN_SACK_PERBLOCK))
981 			return size;
982 
983 		opts->num_sack_blocks =
984 			min_t(unsigned int, eff_sacks,
985 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
986 			      TCPOLEN_SACK_PERBLOCK);
987 
988 		size += TCPOLEN_SACK_BASE_ALIGNED +
989 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
990 	}
991 
992 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
993 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
994 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
995 
996 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
997 
998 		size = MAX_TCP_OPTION_SPACE - remaining;
999 	}
1000 
1001 	return size;
1002 }
1003 
1004 
1005 /* TCP SMALL QUEUES (TSQ)
1006  *
1007  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1008  * to reduce RTT and bufferbloat.
1009  * We do this using a special skb destructor (tcp_wfree).
1010  *
1011  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1012  * needs to be reallocated in a driver.
1013  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1014  *
1015  * Since transmit from skb destructor is forbidden, we use a tasklet
1016  * to process all sockets that eventually need to send more skbs.
1017  * We use one tasklet per cpu, with its own queue of sockets.
1018  */
1019 struct tsq_tasklet {
1020 	struct tasklet_struct	tasklet;
1021 	struct list_head	head; /* queue of tcp sockets */
1022 };
1023 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1024 
tcp_tsq_write(struct sock * sk)1025 static void tcp_tsq_write(struct sock *sk)
1026 {
1027 	if ((1 << sk->sk_state) &
1028 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1029 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1030 		struct tcp_sock *tp = tcp_sk(sk);
1031 
1032 		if (tp->lost_out > tp->retrans_out &&
1033 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1034 			tcp_mstamp_refresh(tp);
1035 			tcp_xmit_retransmit_queue(sk);
1036 		}
1037 
1038 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1039 			       0, GFP_ATOMIC);
1040 	}
1041 }
1042 
tcp_tsq_handler(struct sock * sk)1043 static void tcp_tsq_handler(struct sock *sk)
1044 {
1045 	bh_lock_sock(sk);
1046 	if (!sock_owned_by_user(sk))
1047 		tcp_tsq_write(sk);
1048 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1049 		sock_hold(sk);
1050 	bh_unlock_sock(sk);
1051 }
1052 /*
1053  * One tasklet per cpu tries to send more skbs.
1054  * We run in tasklet context but need to disable irqs when
1055  * transferring tsq->head because tcp_wfree() might
1056  * interrupt us (non NAPI drivers)
1057  */
tcp_tasklet_func(struct tasklet_struct * t)1058 static void tcp_tasklet_func(struct tasklet_struct *t)
1059 {
1060 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1061 	LIST_HEAD(list);
1062 	unsigned long flags;
1063 	struct list_head *q, *n;
1064 	struct tcp_sock *tp;
1065 	struct sock *sk;
1066 
1067 	local_irq_save(flags);
1068 	list_splice_init(&tsq->head, &list);
1069 	local_irq_restore(flags);
1070 
1071 	list_for_each_safe(q, n, &list) {
1072 		tp = list_entry(q, struct tcp_sock, tsq_node);
1073 		list_del(&tp->tsq_node);
1074 
1075 		sk = (struct sock *)tp;
1076 		smp_mb__before_atomic();
1077 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1078 
1079 		tcp_tsq_handler(sk);
1080 		sk_free(sk);
1081 	}
1082 }
1083 
1084 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1085 			  TCPF_WRITE_TIMER_DEFERRED |	\
1086 			  TCPF_DELACK_TIMER_DEFERRED |	\
1087 			  TCPF_MTU_REDUCED_DEFERRED)
1088 /**
1089  * tcp_release_cb - tcp release_sock() callback
1090  * @sk: socket
1091  *
1092  * called from release_sock() to perform protocol dependent
1093  * actions before socket release.
1094  */
tcp_release_cb(struct sock * sk)1095 void tcp_release_cb(struct sock *sk)
1096 {
1097 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1098 	unsigned long nflags;
1099 
1100 	/* perform an atomic operation only if at least one flag is set */
1101 	do {
1102 		if (!(flags & TCP_DEFERRED_ALL))
1103 			return;
1104 		nflags = flags & ~TCP_DEFERRED_ALL;
1105 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1106 
1107 	if (flags & TCPF_TSQ_DEFERRED) {
1108 		tcp_tsq_write(sk);
1109 		__sock_put(sk);
1110 	}
1111 	/* Here begins the tricky part :
1112 	 * We are called from release_sock() with :
1113 	 * 1) BH disabled
1114 	 * 2) sk_lock.slock spinlock held
1115 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1116 	 *
1117 	 * But following code is meant to be called from BH handlers,
1118 	 * so we should keep BH disabled, but early release socket ownership
1119 	 */
1120 	sock_release_ownership(sk);
1121 
1122 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1123 		tcp_write_timer_handler(sk);
1124 		__sock_put(sk);
1125 	}
1126 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1127 		tcp_delack_timer_handler(sk);
1128 		__sock_put(sk);
1129 	}
1130 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1131 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1132 		__sock_put(sk);
1133 	}
1134 }
1135 EXPORT_SYMBOL(tcp_release_cb);
1136 
tcp_tasklet_init(void)1137 void __init tcp_tasklet_init(void)
1138 {
1139 	int i;
1140 
1141 	for_each_possible_cpu(i) {
1142 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1143 
1144 		INIT_LIST_HEAD(&tsq->head);
1145 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1146 	}
1147 }
1148 
1149 /*
1150  * Write buffer destructor automatically called from kfree_skb.
1151  * We can't xmit new skbs from this context, as we might already
1152  * hold qdisc lock.
1153  */
tcp_wfree(struct sk_buff * skb)1154 void tcp_wfree(struct sk_buff *skb)
1155 {
1156 	struct sock *sk = skb->sk;
1157 	struct tcp_sock *tp = tcp_sk(sk);
1158 	unsigned long flags, nval, oval;
1159 	struct tsq_tasklet *tsq;
1160 	bool empty;
1161 
1162 	/* Keep one reference on sk_wmem_alloc.
1163 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1164 	 */
1165 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1166 
1167 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1168 	 * Wait until our queues (qdisc + devices) are drained.
1169 	 * This gives :
1170 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1171 	 * - chance for incoming ACK (processed by another cpu maybe)
1172 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1173 	 */
1174 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1175 		goto out;
1176 
1177 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1178 	do {
1179 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1180 			goto out;
1181 
1182 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1183 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1184 
1185 	/* queue this socket to tasklet queue */
1186 	local_irq_save(flags);
1187 	tsq = this_cpu_ptr(&tsq_tasklet);
1188 	empty = list_empty(&tsq->head);
1189 	list_add(&tp->tsq_node, &tsq->head);
1190 	if (empty)
1191 		tasklet_schedule(&tsq->tasklet);
1192 	local_irq_restore(flags);
1193 	return;
1194 out:
1195 	sk_free(sk);
1196 }
1197 
1198 /* Note: Called under soft irq.
1199  * We can call TCP stack right away, unless socket is owned by user.
1200  */
tcp_pace_kick(struct hrtimer * timer)1201 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1202 {
1203 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1204 	struct sock *sk = (struct sock *)tp;
1205 
1206 	tcp_tsq_handler(sk);
1207 	sock_put(sk);
1208 
1209 	return HRTIMER_NORESTART;
1210 }
1211 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1212 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1213 				      u64 prior_wstamp)
1214 {
1215 	struct tcp_sock *tp = tcp_sk(sk);
1216 
1217 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1218 		unsigned long rate = sk->sk_pacing_rate;
1219 
1220 		/* Original sch_fq does not pace first 10 MSS
1221 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1222 		 * this is a minor annoyance.
1223 		 */
1224 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1225 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1226 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1227 
1228 			/* take into account OS jitter */
1229 			len_ns -= min_t(u64, len_ns / 2, credit);
1230 			tp->tcp_wstamp_ns += len_ns;
1231 		}
1232 	}
1233 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1234 }
1235 
1236 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1237 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1238 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1239 
1240 /* This routine actually transmits TCP packets queued in by
1241  * tcp_do_sendmsg().  This is used by both the initial
1242  * transmission and possible later retransmissions.
1243  * All SKB's seen here are completely headerless.  It is our
1244  * job to build the TCP header, and pass the packet down to
1245  * IP so it can do the same plus pass the packet off to the
1246  * device.
1247  *
1248  * We are working here with either a clone of the original
1249  * SKB, or a fresh unique copy made by the retransmit engine.
1250  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1251 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1252 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1253 {
1254 	const struct inet_connection_sock *icsk = inet_csk(sk);
1255 	struct inet_sock *inet;
1256 	struct tcp_sock *tp;
1257 	struct tcp_skb_cb *tcb;
1258 	struct tcp_out_options opts;
1259 	unsigned int tcp_options_size, tcp_header_size;
1260 	struct sk_buff *oskb = NULL;
1261 	struct tcp_md5sig_key *md5;
1262 	struct tcphdr *th;
1263 	u64 prior_wstamp;
1264 	int err;
1265 
1266 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1267 	tp = tcp_sk(sk);
1268 	prior_wstamp = tp->tcp_wstamp_ns;
1269 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1270 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1271 	if (clone_it) {
1272 		oskb = skb;
1273 
1274 		tcp_skb_tsorted_save(oskb) {
1275 			if (unlikely(skb_cloned(oskb)))
1276 				skb = pskb_copy(oskb, gfp_mask);
1277 			else
1278 				skb = skb_clone(oskb, gfp_mask);
1279 		} tcp_skb_tsorted_restore(oskb);
1280 
1281 		if (unlikely(!skb))
1282 			return -ENOBUFS;
1283 		/* retransmit skbs might have a non zero value in skb->dev
1284 		 * because skb->dev is aliased with skb->rbnode.rb_left
1285 		 */
1286 		skb->dev = NULL;
1287 	}
1288 
1289 	inet = inet_sk(sk);
1290 	tcb = TCP_SKB_CB(skb);
1291 	memset(&opts, 0, sizeof(opts));
1292 
1293 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1294 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1295 	} else {
1296 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1297 							   &md5);
1298 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1299 		 * at receiver : This slightly improve GRO performance.
1300 		 * Note that we do not force the PSH flag for non GSO packets,
1301 		 * because they might be sent under high congestion events,
1302 		 * and in this case it is better to delay the delivery of 1-MSS
1303 		 * packets and thus the corresponding ACK packet that would
1304 		 * release the following packet.
1305 		 */
1306 		if (tcp_skb_pcount(skb) > 1)
1307 			tcb->tcp_flags |= TCPHDR_PSH;
1308 	}
1309 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1310 
1311 	/* We set skb->ooo_okay to one if this packet can select
1312 	 * a different TX queue than prior packets of this flow,
1313 	 * to avoid self inflicted reorders.
1314 	 * The 'other' queue decision is based on current cpu number
1315 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1316 	 * We can switch to another (and better) queue if:
1317 	 * 1) No packet with payload is in qdisc/device queues.
1318 	 *    Delays in TX completion can defeat the test
1319 	 *    even if packets were already sent.
1320 	 * 2) Or rtx queue is empty.
1321 	 *    This mitigates above case if ACK packets for
1322 	 *    all prior packets were already processed.
1323 	 */
1324 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1325 			tcp_rtx_queue_empty(sk);
1326 
1327 	/* If we had to use memory reserve to allocate this skb,
1328 	 * this might cause drops if packet is looped back :
1329 	 * Other socket might not have SOCK_MEMALLOC.
1330 	 * Packets not looped back do not care about pfmemalloc.
1331 	 */
1332 	skb->pfmemalloc = 0;
1333 
1334 	skb_push(skb, tcp_header_size);
1335 	skb_reset_transport_header(skb);
1336 
1337 	skb_orphan(skb);
1338 	skb->sk = sk;
1339 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1340 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1341 
1342 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1343 
1344 	/* Build TCP header and checksum it. */
1345 	th = (struct tcphdr *)skb->data;
1346 	th->source		= inet->inet_sport;
1347 	th->dest		= inet->inet_dport;
1348 	th->seq			= htonl(tcb->seq);
1349 	th->ack_seq		= htonl(rcv_nxt);
1350 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1351 					tcb->tcp_flags);
1352 
1353 	th->check		= 0;
1354 	th->urg_ptr		= 0;
1355 
1356 	/* The urg_mode check is necessary during a below snd_una win probe */
1357 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1358 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1359 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1360 			th->urg = 1;
1361 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1362 			th->urg_ptr = htons(0xFFFF);
1363 			th->urg = 1;
1364 		}
1365 	}
1366 
1367 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1368 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1369 		th->window      = htons(tcp_select_window(sk));
1370 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1371 	} else {
1372 		/* RFC1323: The window in SYN & SYN/ACK segments
1373 		 * is never scaled.
1374 		 */
1375 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1376 	}
1377 
1378 	tcp_options_write(th, tp, &opts);
1379 
1380 #ifdef CONFIG_TCP_MD5SIG
1381 	/* Calculate the MD5 hash, as we have all we need now */
1382 	if (md5) {
1383 		sk_gso_disable(sk);
1384 		tp->af_specific->calc_md5_hash(opts.hash_location,
1385 					       md5, sk, skb);
1386 	}
1387 #endif
1388 
1389 	/* BPF prog is the last one writing header option */
1390 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1391 
1392 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1393 			   tcp_v6_send_check, tcp_v4_send_check,
1394 			   sk, skb);
1395 
1396 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1397 		tcp_event_ack_sent(sk, rcv_nxt);
1398 
1399 	if (skb->len != tcp_header_size) {
1400 		tcp_event_data_sent(tp, sk);
1401 		tp->data_segs_out += tcp_skb_pcount(skb);
1402 		tp->bytes_sent += skb->len - tcp_header_size;
1403 	}
1404 
1405 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1406 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1407 			      tcp_skb_pcount(skb));
1408 
1409 	tp->segs_out += tcp_skb_pcount(skb);
1410 	skb_set_hash_from_sk(skb, sk);
1411 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1412 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1413 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1414 
1415 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1416 
1417 	/* Cleanup our debris for IP stacks */
1418 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1419 			       sizeof(struct inet6_skb_parm)));
1420 
1421 	tcp_add_tx_delay(skb, tp);
1422 
1423 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1424 				 inet6_csk_xmit, ip_queue_xmit,
1425 				 sk, skb, &inet->cork.fl);
1426 
1427 	if (unlikely(err > 0)) {
1428 		tcp_enter_cwr(sk);
1429 		err = net_xmit_eval(err);
1430 	}
1431 	if (!err && oskb) {
1432 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1433 		tcp_rate_skb_sent(sk, oskb);
1434 	}
1435 	return err;
1436 }
1437 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1438 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1439 			    gfp_t gfp_mask)
1440 {
1441 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1442 				  tcp_sk(sk)->rcv_nxt);
1443 }
1444 
1445 /* This routine just queues the buffer for sending.
1446  *
1447  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1448  * otherwise socket can stall.
1449  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1450 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1451 {
1452 	struct tcp_sock *tp = tcp_sk(sk);
1453 
1454 	/* Advance write_seq and place onto the write_queue. */
1455 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1456 	__skb_header_release(skb);
1457 	tcp_add_write_queue_tail(sk, skb);
1458 	sk_wmem_queued_add(sk, skb->truesize);
1459 	sk_mem_charge(sk, skb->truesize);
1460 }
1461 
1462 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1463 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1464 {
1465 	if (skb->len <= mss_now) {
1466 		/* Avoid the costly divide in the normal
1467 		 * non-TSO case.
1468 		 */
1469 		tcp_skb_pcount_set(skb, 1);
1470 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1471 	} else {
1472 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1473 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1474 	}
1475 }
1476 
1477 /* Pcount in the middle of the write queue got changed, we need to do various
1478  * tweaks to fix counters
1479  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1480 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1481 {
1482 	struct tcp_sock *tp = tcp_sk(sk);
1483 
1484 	tp->packets_out -= decr;
1485 
1486 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1487 		tp->sacked_out -= decr;
1488 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1489 		tp->retrans_out -= decr;
1490 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1491 		tp->lost_out -= decr;
1492 
1493 	/* Reno case is special. Sigh... */
1494 	if (tcp_is_reno(tp) && decr > 0)
1495 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1496 
1497 	if (tp->lost_skb_hint &&
1498 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1499 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1500 		tp->lost_cnt_hint -= decr;
1501 
1502 	tcp_verify_left_out(tp);
1503 }
1504 
tcp_has_tx_tstamp(const struct sk_buff * skb)1505 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1506 {
1507 	return TCP_SKB_CB(skb)->txstamp_ack ||
1508 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1509 }
1510 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1511 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1512 {
1513 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1514 
1515 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1516 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1517 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1518 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1519 
1520 		shinfo->tx_flags &= ~tsflags;
1521 		shinfo2->tx_flags |= tsflags;
1522 		swap(shinfo->tskey, shinfo2->tskey);
1523 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1524 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1525 	}
1526 }
1527 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1528 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1529 {
1530 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1531 	TCP_SKB_CB(skb)->eor = 0;
1532 }
1533 
1534 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1535 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1536 					 struct sk_buff *buff,
1537 					 struct sock *sk,
1538 					 enum tcp_queue tcp_queue)
1539 {
1540 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1541 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1542 	else
1543 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1544 }
1545 
1546 /* Function to create two new TCP segments.  Shrinks the given segment
1547  * to the specified size and appends a new segment with the rest of the
1548  * packet to the list.  This won't be called frequently, I hope.
1549  * Remember, these are still headerless SKBs at this point.
1550  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1551 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1552 		 struct sk_buff *skb, u32 len,
1553 		 unsigned int mss_now, gfp_t gfp)
1554 {
1555 	struct tcp_sock *tp = tcp_sk(sk);
1556 	struct sk_buff *buff;
1557 	int old_factor;
1558 	long limit;
1559 	int nlen;
1560 	u8 flags;
1561 
1562 	if (WARN_ON(len > skb->len))
1563 		return -EINVAL;
1564 
1565 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1566 
1567 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1568 	 * We need some allowance to not penalize applications setting small
1569 	 * SO_SNDBUF values.
1570 	 * Also allow first and last skb in retransmit queue to be split.
1571 	 */
1572 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1573 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1574 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1575 		     skb != tcp_rtx_queue_head(sk) &&
1576 		     skb != tcp_rtx_queue_tail(sk))) {
1577 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1578 		return -ENOMEM;
1579 	}
1580 
1581 	if (skb_unclone_keeptruesize(skb, gfp))
1582 		return -ENOMEM;
1583 
1584 	/* Get a new skb... force flag on. */
1585 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1586 	if (!buff)
1587 		return -ENOMEM; /* We'll just try again later. */
1588 	skb_copy_decrypted(buff, skb);
1589 	mptcp_skb_ext_copy(buff, skb);
1590 
1591 	sk_wmem_queued_add(sk, buff->truesize);
1592 	sk_mem_charge(sk, buff->truesize);
1593 	nlen = skb->len - len;
1594 	buff->truesize += nlen;
1595 	skb->truesize -= nlen;
1596 
1597 	/* Correct the sequence numbers. */
1598 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1599 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1600 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1601 
1602 	/* PSH and FIN should only be set in the second packet. */
1603 	flags = TCP_SKB_CB(skb)->tcp_flags;
1604 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1605 	TCP_SKB_CB(buff)->tcp_flags = flags;
1606 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1607 	tcp_skb_fragment_eor(skb, buff);
1608 
1609 	skb_split(skb, buff, len);
1610 
1611 	skb_set_delivery_time(buff, skb->tstamp, true);
1612 	tcp_fragment_tstamp(skb, buff);
1613 
1614 	old_factor = tcp_skb_pcount(skb);
1615 
1616 	/* Fix up tso_factor for both original and new SKB.  */
1617 	tcp_set_skb_tso_segs(skb, mss_now);
1618 	tcp_set_skb_tso_segs(buff, mss_now);
1619 
1620 	/* Update delivered info for the new segment */
1621 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1622 
1623 	/* If this packet has been sent out already, we must
1624 	 * adjust the various packet counters.
1625 	 */
1626 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1627 		int diff = old_factor - tcp_skb_pcount(skb) -
1628 			tcp_skb_pcount(buff);
1629 
1630 		if (diff)
1631 			tcp_adjust_pcount(sk, skb, diff);
1632 	}
1633 
1634 	/* Link BUFF into the send queue. */
1635 	__skb_header_release(buff);
1636 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1637 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1638 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1639 
1640 	return 0;
1641 }
1642 
1643 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1644  * data is not copied, but immediately discarded.
1645  */
__pskb_trim_head(struct sk_buff * skb,int len)1646 static int __pskb_trim_head(struct sk_buff *skb, int len)
1647 {
1648 	struct skb_shared_info *shinfo;
1649 	int i, k, eat;
1650 
1651 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1652 	eat = len;
1653 	k = 0;
1654 	shinfo = skb_shinfo(skb);
1655 	for (i = 0; i < shinfo->nr_frags; i++) {
1656 		int size = skb_frag_size(&shinfo->frags[i]);
1657 
1658 		if (size <= eat) {
1659 			skb_frag_unref(skb, i);
1660 			eat -= size;
1661 		} else {
1662 			shinfo->frags[k] = shinfo->frags[i];
1663 			if (eat) {
1664 				skb_frag_off_add(&shinfo->frags[k], eat);
1665 				skb_frag_size_sub(&shinfo->frags[k], eat);
1666 				eat = 0;
1667 			}
1668 			k++;
1669 		}
1670 	}
1671 	shinfo->nr_frags = k;
1672 
1673 	skb->data_len -= len;
1674 	skb->len = skb->data_len;
1675 	return len;
1676 }
1677 
1678 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1679 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1680 {
1681 	u32 delta_truesize;
1682 
1683 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1684 		return -ENOMEM;
1685 
1686 	delta_truesize = __pskb_trim_head(skb, len);
1687 
1688 	TCP_SKB_CB(skb)->seq += len;
1689 
1690 	skb->truesize	   -= delta_truesize;
1691 	sk_wmem_queued_add(sk, -delta_truesize);
1692 	if (!skb_zcopy_pure(skb))
1693 		sk_mem_uncharge(sk, delta_truesize);
1694 
1695 	/* Any change of skb->len requires recalculation of tso factor. */
1696 	if (tcp_skb_pcount(skb) > 1)
1697 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1698 
1699 	return 0;
1700 }
1701 
1702 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1703 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1704 {
1705 	const struct tcp_sock *tp = tcp_sk(sk);
1706 	const struct inet_connection_sock *icsk = inet_csk(sk);
1707 	int mss_now;
1708 
1709 	/* Calculate base mss without TCP options:
1710 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1711 	 */
1712 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1713 
1714 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1715 	if (icsk->icsk_af_ops->net_frag_header_len) {
1716 		const struct dst_entry *dst = __sk_dst_get(sk);
1717 
1718 		if (dst && dst_allfrag(dst))
1719 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1720 	}
1721 
1722 	/* Clamp it (mss_clamp does not include tcp options) */
1723 	if (mss_now > tp->rx_opt.mss_clamp)
1724 		mss_now = tp->rx_opt.mss_clamp;
1725 
1726 	/* Now subtract optional transport overhead */
1727 	mss_now -= icsk->icsk_ext_hdr_len;
1728 
1729 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1730 	mss_now = max(mss_now,
1731 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1732 	return mss_now;
1733 }
1734 
1735 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1736 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1737 {
1738 	/* Subtract TCP options size, not including SACKs */
1739 	return __tcp_mtu_to_mss(sk, pmtu) -
1740 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1741 }
1742 EXPORT_SYMBOL(tcp_mtu_to_mss);
1743 
1744 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1745 int tcp_mss_to_mtu(struct sock *sk, int mss)
1746 {
1747 	const struct tcp_sock *tp = tcp_sk(sk);
1748 	const struct inet_connection_sock *icsk = inet_csk(sk);
1749 	int mtu;
1750 
1751 	mtu = mss +
1752 	      tp->tcp_header_len +
1753 	      icsk->icsk_ext_hdr_len +
1754 	      icsk->icsk_af_ops->net_header_len;
1755 
1756 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1757 	if (icsk->icsk_af_ops->net_frag_header_len) {
1758 		const struct dst_entry *dst = __sk_dst_get(sk);
1759 
1760 		if (dst && dst_allfrag(dst))
1761 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1762 	}
1763 	return mtu;
1764 }
1765 EXPORT_SYMBOL(tcp_mss_to_mtu);
1766 
1767 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1768 void tcp_mtup_init(struct sock *sk)
1769 {
1770 	struct tcp_sock *tp = tcp_sk(sk);
1771 	struct inet_connection_sock *icsk = inet_csk(sk);
1772 	struct net *net = sock_net(sk);
1773 
1774 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1775 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1776 			       icsk->icsk_af_ops->net_header_len;
1777 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1778 	icsk->icsk_mtup.probe_size = 0;
1779 	if (icsk->icsk_mtup.enabled)
1780 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1781 }
1782 EXPORT_SYMBOL(tcp_mtup_init);
1783 
1784 /* This function synchronize snd mss to current pmtu/exthdr set.
1785 
1786    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1787    for TCP options, but includes only bare TCP header.
1788 
1789    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1790    It is minimum of user_mss and mss received with SYN.
1791    It also does not include TCP options.
1792 
1793    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1794 
1795    tp->mss_cache is current effective sending mss, including
1796    all tcp options except for SACKs. It is evaluated,
1797    taking into account current pmtu, but never exceeds
1798    tp->rx_opt.mss_clamp.
1799 
1800    NOTE1. rfc1122 clearly states that advertised MSS
1801    DOES NOT include either tcp or ip options.
1802 
1803    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1804    are READ ONLY outside this function.		--ANK (980731)
1805  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1806 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1807 {
1808 	struct tcp_sock *tp = tcp_sk(sk);
1809 	struct inet_connection_sock *icsk = inet_csk(sk);
1810 	int mss_now;
1811 
1812 	if (icsk->icsk_mtup.search_high > pmtu)
1813 		icsk->icsk_mtup.search_high = pmtu;
1814 
1815 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1816 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1817 
1818 	/* And store cached results */
1819 	icsk->icsk_pmtu_cookie = pmtu;
1820 	if (icsk->icsk_mtup.enabled)
1821 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1822 	tp->mss_cache = mss_now;
1823 
1824 	return mss_now;
1825 }
1826 EXPORT_SYMBOL(tcp_sync_mss);
1827 
1828 /* Compute the current effective MSS, taking SACKs and IP options,
1829  * and even PMTU discovery events into account.
1830  */
tcp_current_mss(struct sock * sk)1831 unsigned int tcp_current_mss(struct sock *sk)
1832 {
1833 	const struct tcp_sock *tp = tcp_sk(sk);
1834 	const struct dst_entry *dst = __sk_dst_get(sk);
1835 	u32 mss_now;
1836 	unsigned int header_len;
1837 	struct tcp_out_options opts;
1838 	struct tcp_md5sig_key *md5;
1839 
1840 	mss_now = tp->mss_cache;
1841 
1842 	if (dst) {
1843 		u32 mtu = dst_mtu(dst);
1844 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1845 			mss_now = tcp_sync_mss(sk, mtu);
1846 	}
1847 
1848 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1849 		     sizeof(struct tcphdr);
1850 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1851 	 * some common options. If this is an odd packet (because we have SACK
1852 	 * blocks etc) then our calculated header_len will be different, and
1853 	 * we have to adjust mss_now correspondingly */
1854 	if (header_len != tp->tcp_header_len) {
1855 		int delta = (int) header_len - tp->tcp_header_len;
1856 		mss_now -= delta;
1857 	}
1858 
1859 	return mss_now;
1860 }
1861 
1862 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1863  * As additional protections, we do not touch cwnd in retransmission phases,
1864  * and if application hit its sndbuf limit recently.
1865  */
tcp_cwnd_application_limited(struct sock * sk)1866 static void tcp_cwnd_application_limited(struct sock *sk)
1867 {
1868 	struct tcp_sock *tp = tcp_sk(sk);
1869 
1870 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1871 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1872 		/* Limited by application or receiver window. */
1873 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1874 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1875 		if (win_used < tcp_snd_cwnd(tp)) {
1876 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1877 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1878 		}
1879 		tp->snd_cwnd_used = 0;
1880 	}
1881 	tp->snd_cwnd_stamp = tcp_jiffies32;
1882 }
1883 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1884 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1885 {
1886 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1887 	struct tcp_sock *tp = tcp_sk(sk);
1888 
1889 	/* Track the strongest available signal of the degree to which the cwnd
1890 	 * is fully utilized. If cwnd-limited then remember that fact for the
1891 	 * current window. If not cwnd-limited then track the maximum number of
1892 	 * outstanding packets in the current window. (If cwnd-limited then we
1893 	 * chose to not update tp->max_packets_out to avoid an extra else
1894 	 * clause with no functional impact.)
1895 	 */
1896 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1897 	    is_cwnd_limited ||
1898 	    (!tp->is_cwnd_limited &&
1899 	     tp->packets_out > tp->max_packets_out)) {
1900 		tp->is_cwnd_limited = is_cwnd_limited;
1901 		tp->max_packets_out = tp->packets_out;
1902 		tp->cwnd_usage_seq = tp->snd_nxt;
1903 	}
1904 
1905 	if (tcp_is_cwnd_limited(sk)) {
1906 		/* Network is feed fully. */
1907 		tp->snd_cwnd_used = 0;
1908 		tp->snd_cwnd_stamp = tcp_jiffies32;
1909 	} else {
1910 		/* Network starves. */
1911 		if (tp->packets_out > tp->snd_cwnd_used)
1912 			tp->snd_cwnd_used = tp->packets_out;
1913 
1914 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1915 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1916 		    !ca_ops->cong_control)
1917 			tcp_cwnd_application_limited(sk);
1918 
1919 		/* The following conditions together indicate the starvation
1920 		 * is caused by insufficient sender buffer:
1921 		 * 1) just sent some data (see tcp_write_xmit)
1922 		 * 2) not cwnd limited (this else condition)
1923 		 * 3) no more data to send (tcp_write_queue_empty())
1924 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1925 		 */
1926 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1927 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1928 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1929 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1930 	}
1931 }
1932 
1933 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1934 static bool tcp_minshall_check(const struct tcp_sock *tp)
1935 {
1936 	return after(tp->snd_sml, tp->snd_una) &&
1937 		!after(tp->snd_sml, tp->snd_nxt);
1938 }
1939 
1940 /* Update snd_sml if this skb is under mss
1941  * Note that a TSO packet might end with a sub-mss segment
1942  * The test is really :
1943  * if ((skb->len % mss) != 0)
1944  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1945  * But we can avoid doing the divide again given we already have
1946  *  skb_pcount = skb->len / mss_now
1947  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1948 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1949 				const struct sk_buff *skb)
1950 {
1951 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1952 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1953 }
1954 
1955 /* Return false, if packet can be sent now without violation Nagle's rules:
1956  * 1. It is full sized. (provided by caller in %partial bool)
1957  * 2. Or it contains FIN. (already checked by caller)
1958  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1959  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1960  *    With Minshall's modification: all sent small packets are ACKed.
1961  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1962 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1963 			    int nonagle)
1964 {
1965 	return partial &&
1966 		((nonagle & TCP_NAGLE_CORK) ||
1967 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1968 }
1969 
1970 /* Return how many segs we'd like on a TSO packet,
1971  * depending on current pacing rate, and how close the peer is.
1972  *
1973  * Rationale is:
1974  * - For close peers, we rather send bigger packets to reduce
1975  *   cpu costs, because occasional losses will be repaired fast.
1976  * - For long distance/rtt flows, we would like to get ACK clocking
1977  *   with 1 ACK per ms.
1978  *
1979  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1980  * in bigger TSO bursts. We we cut the RTT-based allowance in half
1981  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1982  * is below 1500 bytes after 6 * ~500 usec = 3ms.
1983  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1984 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1985 			    int min_tso_segs)
1986 {
1987 	unsigned long bytes;
1988 	u32 r;
1989 
1990 	bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1991 
1992 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1993 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1994 		bytes += sk->sk_gso_max_size >> r;
1995 
1996 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1997 
1998 	return max_t(u32, bytes / mss_now, min_tso_segs);
1999 }
2000 
2001 /* Return the number of segments we want in the skb we are transmitting.
2002  * See if congestion control module wants to decide; otherwise, autosize.
2003  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)2004 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2005 {
2006 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2007 	u32 min_tso, tso_segs;
2008 
2009 	min_tso = ca_ops->min_tso_segs ?
2010 			ca_ops->min_tso_segs(sk) :
2011 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2012 
2013 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2014 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2015 }
2016 
2017 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2018 static unsigned int tcp_mss_split_point(const struct sock *sk,
2019 					const struct sk_buff *skb,
2020 					unsigned int mss_now,
2021 					unsigned int max_segs,
2022 					int nonagle)
2023 {
2024 	const struct tcp_sock *tp = tcp_sk(sk);
2025 	u32 partial, needed, window, max_len;
2026 
2027 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2028 	max_len = mss_now * max_segs;
2029 
2030 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2031 		return max_len;
2032 
2033 	needed = min(skb->len, window);
2034 
2035 	if (max_len <= needed)
2036 		return max_len;
2037 
2038 	partial = needed % mss_now;
2039 	/* If last segment is not a full MSS, check if Nagle rules allow us
2040 	 * to include this last segment in this skb.
2041 	 * Otherwise, we'll split the skb at last MSS boundary
2042 	 */
2043 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2044 		return needed - partial;
2045 
2046 	return needed;
2047 }
2048 
2049 /* Can at least one segment of SKB be sent right now, according to the
2050  * congestion window rules?  If so, return how many segments are allowed.
2051  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2052 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2053 					 const struct sk_buff *skb)
2054 {
2055 	u32 in_flight, cwnd, halfcwnd;
2056 
2057 	/* Don't be strict about the congestion window for the final FIN.  */
2058 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2059 	    tcp_skb_pcount(skb) == 1)
2060 		return 1;
2061 
2062 	in_flight = tcp_packets_in_flight(tp);
2063 	cwnd = tcp_snd_cwnd(tp);
2064 	if (in_flight >= cwnd)
2065 		return 0;
2066 
2067 	/* For better scheduling, ensure we have at least
2068 	 * 2 GSO packets in flight.
2069 	 */
2070 	halfcwnd = max(cwnd >> 1, 1U);
2071 	return min(halfcwnd, cwnd - in_flight);
2072 }
2073 
2074 /* Initialize TSO state of a skb.
2075  * This must be invoked the first time we consider transmitting
2076  * SKB onto the wire.
2077  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2078 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2079 {
2080 	int tso_segs = tcp_skb_pcount(skb);
2081 
2082 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2083 		tcp_set_skb_tso_segs(skb, mss_now);
2084 		tso_segs = tcp_skb_pcount(skb);
2085 	}
2086 	return tso_segs;
2087 }
2088 
2089 
2090 /* Return true if the Nagle test allows this packet to be
2091  * sent now.
2092  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2093 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2094 				  unsigned int cur_mss, int nonagle)
2095 {
2096 	/* Nagle rule does not apply to frames, which sit in the middle of the
2097 	 * write_queue (they have no chances to get new data).
2098 	 *
2099 	 * This is implemented in the callers, where they modify the 'nonagle'
2100 	 * argument based upon the location of SKB in the send queue.
2101 	 */
2102 	if (nonagle & TCP_NAGLE_PUSH)
2103 		return true;
2104 
2105 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2106 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2107 		return true;
2108 
2109 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2110 		return true;
2111 
2112 	return false;
2113 }
2114 
2115 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2116 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2117 			     const struct sk_buff *skb,
2118 			     unsigned int cur_mss)
2119 {
2120 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2121 
2122 	if (skb->len > cur_mss)
2123 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2124 
2125 	return !after(end_seq, tcp_wnd_end(tp));
2126 }
2127 
2128 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2129  * which is put after SKB on the list.  It is very much like
2130  * tcp_fragment() except that it may make several kinds of assumptions
2131  * in order to speed up the splitting operation.  In particular, we
2132  * know that all the data is in scatter-gather pages, and that the
2133  * packet has never been sent out before (and thus is not cloned).
2134  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2135 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2136 			unsigned int mss_now, gfp_t gfp)
2137 {
2138 	int nlen = skb->len - len;
2139 	struct sk_buff *buff;
2140 	u8 flags;
2141 
2142 	/* All of a TSO frame must be composed of paged data.  */
2143 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2144 
2145 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2146 	if (unlikely(!buff))
2147 		return -ENOMEM;
2148 	skb_copy_decrypted(buff, skb);
2149 	mptcp_skb_ext_copy(buff, skb);
2150 
2151 	sk_wmem_queued_add(sk, buff->truesize);
2152 	sk_mem_charge(sk, buff->truesize);
2153 	buff->truesize += nlen;
2154 	skb->truesize -= nlen;
2155 
2156 	/* Correct the sequence numbers. */
2157 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2158 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2159 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2160 
2161 	/* PSH and FIN should only be set in the second packet. */
2162 	flags = TCP_SKB_CB(skb)->tcp_flags;
2163 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2164 	TCP_SKB_CB(buff)->tcp_flags = flags;
2165 
2166 	tcp_skb_fragment_eor(skb, buff);
2167 
2168 	skb_split(skb, buff, len);
2169 	tcp_fragment_tstamp(skb, buff);
2170 
2171 	/* Fix up tso_factor for both original and new SKB.  */
2172 	tcp_set_skb_tso_segs(skb, mss_now);
2173 	tcp_set_skb_tso_segs(buff, mss_now);
2174 
2175 	/* Link BUFF into the send queue. */
2176 	__skb_header_release(buff);
2177 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2178 
2179 	return 0;
2180 }
2181 
2182 /* Try to defer sending, if possible, in order to minimize the amount
2183  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2184  *
2185  * This algorithm is from John Heffner.
2186  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2187 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2188 				 bool *is_cwnd_limited,
2189 				 bool *is_rwnd_limited,
2190 				 u32 max_segs)
2191 {
2192 	const struct inet_connection_sock *icsk = inet_csk(sk);
2193 	u32 send_win, cong_win, limit, in_flight;
2194 	struct tcp_sock *tp = tcp_sk(sk);
2195 	struct sk_buff *head;
2196 	int win_divisor;
2197 	s64 delta;
2198 
2199 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2200 		goto send_now;
2201 
2202 	/* Avoid bursty behavior by allowing defer
2203 	 * only if the last write was recent (1 ms).
2204 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2205 	 * packets waiting in a qdisc or device for EDT delivery.
2206 	 */
2207 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2208 	if (delta > 0)
2209 		goto send_now;
2210 
2211 	in_flight = tcp_packets_in_flight(tp);
2212 
2213 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2214 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2215 
2216 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2217 
2218 	/* From in_flight test above, we know that cwnd > in_flight.  */
2219 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2220 
2221 	limit = min(send_win, cong_win);
2222 
2223 	/* If a full-sized TSO skb can be sent, do it. */
2224 	if (limit >= max_segs * tp->mss_cache)
2225 		goto send_now;
2226 
2227 	/* Middle in queue won't get any more data, full sendable already? */
2228 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2229 		goto send_now;
2230 
2231 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2232 	if (win_divisor) {
2233 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2234 
2235 		/* If at least some fraction of a window is available,
2236 		 * just use it.
2237 		 */
2238 		chunk /= win_divisor;
2239 		if (limit >= chunk)
2240 			goto send_now;
2241 	} else {
2242 		/* Different approach, try not to defer past a single
2243 		 * ACK.  Receiver should ACK every other full sized
2244 		 * frame, so if we have space for more than 3 frames
2245 		 * then send now.
2246 		 */
2247 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2248 			goto send_now;
2249 	}
2250 
2251 	/* TODO : use tsorted_sent_queue ? */
2252 	head = tcp_rtx_queue_head(sk);
2253 	if (!head)
2254 		goto send_now;
2255 	delta = tp->tcp_clock_cache - head->tstamp;
2256 	/* If next ACK is likely to come too late (half srtt), do not defer */
2257 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2258 		goto send_now;
2259 
2260 	/* Ok, it looks like it is advisable to defer.
2261 	 * Three cases are tracked :
2262 	 * 1) We are cwnd-limited
2263 	 * 2) We are rwnd-limited
2264 	 * 3) We are application limited.
2265 	 */
2266 	if (cong_win < send_win) {
2267 		if (cong_win <= skb->len) {
2268 			*is_cwnd_limited = true;
2269 			return true;
2270 		}
2271 	} else {
2272 		if (send_win <= skb->len) {
2273 			*is_rwnd_limited = true;
2274 			return true;
2275 		}
2276 	}
2277 
2278 	/* If this packet won't get more data, do not wait. */
2279 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2280 	    TCP_SKB_CB(skb)->eor)
2281 		goto send_now;
2282 
2283 	return true;
2284 
2285 send_now:
2286 	return false;
2287 }
2288 
tcp_mtu_check_reprobe(struct sock * sk)2289 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2290 {
2291 	struct inet_connection_sock *icsk = inet_csk(sk);
2292 	struct tcp_sock *tp = tcp_sk(sk);
2293 	struct net *net = sock_net(sk);
2294 	u32 interval;
2295 	s32 delta;
2296 
2297 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2298 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2299 	if (unlikely(delta >= interval * HZ)) {
2300 		int mss = tcp_current_mss(sk);
2301 
2302 		/* Update current search range */
2303 		icsk->icsk_mtup.probe_size = 0;
2304 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2305 			sizeof(struct tcphdr) +
2306 			icsk->icsk_af_ops->net_header_len;
2307 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2308 
2309 		/* Update probe time stamp */
2310 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2311 	}
2312 }
2313 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2314 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2315 {
2316 	struct sk_buff *skb, *next;
2317 
2318 	skb = tcp_send_head(sk);
2319 	tcp_for_write_queue_from_safe(skb, next, sk) {
2320 		if (len <= skb->len)
2321 			break;
2322 
2323 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2324 		    tcp_has_tx_tstamp(skb) ||
2325 		    !skb_pure_zcopy_same(skb, next))
2326 			return false;
2327 
2328 		len -= skb->len;
2329 	}
2330 
2331 	return true;
2332 }
2333 
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2334 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2335 			     int probe_size)
2336 {
2337 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2338 	int i, todo, len = 0, nr_frags = 0;
2339 	const struct sk_buff *skb;
2340 
2341 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2342 		return -ENOMEM;
2343 
2344 	skb_queue_walk(&sk->sk_write_queue, skb) {
2345 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2346 
2347 		if (skb_headlen(skb))
2348 			return -EINVAL;
2349 
2350 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2351 			if (len >= probe_size)
2352 				goto commit;
2353 			todo = min_t(int, skb_frag_size(fragfrom),
2354 				     probe_size - len);
2355 			len += todo;
2356 			if (lastfrag &&
2357 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2358 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2359 						      skb_frag_size(lastfrag)) {
2360 				skb_frag_size_add(lastfrag, todo);
2361 				continue;
2362 			}
2363 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2364 				return -E2BIG;
2365 			skb_frag_page_copy(fragto, fragfrom);
2366 			skb_frag_off_copy(fragto, fragfrom);
2367 			skb_frag_size_set(fragto, todo);
2368 			nr_frags++;
2369 			lastfrag = fragto++;
2370 		}
2371 	}
2372 commit:
2373 	WARN_ON_ONCE(len != probe_size);
2374 	for (i = 0; i < nr_frags; i++)
2375 		skb_frag_ref(to, i);
2376 
2377 	skb_shinfo(to)->nr_frags = nr_frags;
2378 	to->truesize += probe_size;
2379 	to->len += probe_size;
2380 	to->data_len += probe_size;
2381 	__skb_header_release(to);
2382 	return 0;
2383 }
2384 
2385 /* Create a new MTU probe if we are ready.
2386  * MTU probe is regularly attempting to increase the path MTU by
2387  * deliberately sending larger packets.  This discovers routing
2388  * changes resulting in larger path MTUs.
2389  *
2390  * Returns 0 if we should wait to probe (no cwnd available),
2391  *         1 if a probe was sent,
2392  *         -1 otherwise
2393  */
tcp_mtu_probe(struct sock * sk)2394 static int tcp_mtu_probe(struct sock *sk)
2395 {
2396 	struct inet_connection_sock *icsk = inet_csk(sk);
2397 	struct tcp_sock *tp = tcp_sk(sk);
2398 	struct sk_buff *skb, *nskb, *next;
2399 	struct net *net = sock_net(sk);
2400 	int probe_size;
2401 	int size_needed;
2402 	int copy, len;
2403 	int mss_now;
2404 	int interval;
2405 
2406 	/* Not currently probing/verifying,
2407 	 * not in recovery,
2408 	 * have enough cwnd, and
2409 	 * not SACKing (the variable headers throw things off)
2410 	 */
2411 	if (likely(!icsk->icsk_mtup.enabled ||
2412 		   icsk->icsk_mtup.probe_size ||
2413 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2414 		   tcp_snd_cwnd(tp) < 11 ||
2415 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2416 		return -1;
2417 
2418 	/* Use binary search for probe_size between tcp_mss_base,
2419 	 * and current mss_clamp. if (search_high - search_low)
2420 	 * smaller than a threshold, backoff from probing.
2421 	 */
2422 	mss_now = tcp_current_mss(sk);
2423 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2424 				    icsk->icsk_mtup.search_low) >> 1);
2425 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2426 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2427 	/* When misfortune happens, we are reprobing actively,
2428 	 * and then reprobe timer has expired. We stick with current
2429 	 * probing process by not resetting search range to its orignal.
2430 	 */
2431 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2432 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2433 		/* Check whether enough time has elaplased for
2434 		 * another round of probing.
2435 		 */
2436 		tcp_mtu_check_reprobe(sk);
2437 		return -1;
2438 	}
2439 
2440 	/* Have enough data in the send queue to probe? */
2441 	if (tp->write_seq - tp->snd_nxt < size_needed)
2442 		return -1;
2443 
2444 	if (tp->snd_wnd < size_needed)
2445 		return -1;
2446 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2447 		return 0;
2448 
2449 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2450 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2451 		if (!tcp_packets_in_flight(tp))
2452 			return -1;
2453 		else
2454 			return 0;
2455 	}
2456 
2457 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2458 		return -1;
2459 
2460 	/* We're allowed to probe.  Build it now. */
2461 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2462 	if (!nskb)
2463 		return -1;
2464 
2465 	/* build the payload, and be prepared to abort if this fails. */
2466 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2467 		tcp_skb_tsorted_anchor_cleanup(nskb);
2468 		consume_skb(nskb);
2469 		return -1;
2470 	}
2471 	sk_wmem_queued_add(sk, nskb->truesize);
2472 	sk_mem_charge(sk, nskb->truesize);
2473 
2474 	skb = tcp_send_head(sk);
2475 	skb_copy_decrypted(nskb, skb);
2476 	mptcp_skb_ext_copy(nskb, skb);
2477 
2478 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2479 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2480 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2481 
2482 	tcp_insert_write_queue_before(nskb, skb, sk);
2483 	tcp_highest_sack_replace(sk, skb, nskb);
2484 
2485 	len = 0;
2486 	tcp_for_write_queue_from_safe(skb, next, sk) {
2487 		copy = min_t(int, skb->len, probe_size - len);
2488 
2489 		if (skb->len <= copy) {
2490 			/* We've eaten all the data from this skb.
2491 			 * Throw it away. */
2492 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2493 			/* If this is the last SKB we copy and eor is set
2494 			 * we need to propagate it to the new skb.
2495 			 */
2496 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2497 			tcp_skb_collapse_tstamp(nskb, skb);
2498 			tcp_unlink_write_queue(skb, sk);
2499 			tcp_wmem_free_skb(sk, skb);
2500 		} else {
2501 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2502 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2503 			__pskb_trim_head(skb, copy);
2504 			tcp_set_skb_tso_segs(skb, mss_now);
2505 			TCP_SKB_CB(skb)->seq += copy;
2506 		}
2507 
2508 		len += copy;
2509 
2510 		if (len >= probe_size)
2511 			break;
2512 	}
2513 	tcp_init_tso_segs(nskb, nskb->len);
2514 
2515 	/* We're ready to send.  If this fails, the probe will
2516 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2517 	 */
2518 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2519 		/* Decrement cwnd here because we are sending
2520 		 * effectively two packets. */
2521 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2522 		tcp_event_new_data_sent(sk, nskb);
2523 
2524 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2525 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2526 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2527 
2528 		return 1;
2529 	}
2530 
2531 	return -1;
2532 }
2533 
tcp_pacing_check(struct sock * sk)2534 static bool tcp_pacing_check(struct sock *sk)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 
2538 	if (!tcp_needs_internal_pacing(sk))
2539 		return false;
2540 
2541 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2542 		return false;
2543 
2544 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2545 		hrtimer_start(&tp->pacing_timer,
2546 			      ns_to_ktime(tp->tcp_wstamp_ns),
2547 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2548 		sock_hold(sk);
2549 	}
2550 	return true;
2551 }
2552 
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2553 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2554 {
2555 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2556 
2557 	/* No skb in the rtx queue. */
2558 	if (!node)
2559 		return true;
2560 
2561 	/* Only one skb in rtx queue. */
2562 	return !node->rb_left && !node->rb_right;
2563 }
2564 
2565 /* TCP Small Queues :
2566  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2567  * (These limits are doubled for retransmits)
2568  * This allows for :
2569  *  - better RTT estimation and ACK scheduling
2570  *  - faster recovery
2571  *  - high rates
2572  * Alas, some drivers / subsystems require a fair amount
2573  * of queued bytes to ensure line rate.
2574  * One example is wifi aggregation (802.11 AMPDU)
2575  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2576 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2577 				  unsigned int factor)
2578 {
2579 	unsigned long limit;
2580 
2581 	limit = max_t(unsigned long,
2582 		      2 * skb->truesize,
2583 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2584 	if (sk->sk_pacing_status == SK_PACING_NONE)
2585 		limit = min_t(unsigned long, limit,
2586 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2587 	limit <<= factor;
2588 
2589 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2590 	    tcp_sk(sk)->tcp_tx_delay) {
2591 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2592 
2593 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2594 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2595 		 * USEC_PER_SEC is approximated by 2^20.
2596 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2597 		 */
2598 		extra_bytes >>= (20 - 1);
2599 		limit += extra_bytes;
2600 	}
2601 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2602 		/* Always send skb if rtx queue is empty or has one skb.
2603 		 * No need to wait for TX completion to call us back,
2604 		 * after softirq/tasklet schedule.
2605 		 * This helps when TX completions are delayed too much.
2606 		 */
2607 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2608 			return false;
2609 
2610 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2611 		/* It is possible TX completion already happened
2612 		 * before we set TSQ_THROTTLED, so we must
2613 		 * test again the condition.
2614 		 */
2615 		smp_mb__after_atomic();
2616 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2617 			return true;
2618 	}
2619 	return false;
2620 }
2621 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2622 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2623 {
2624 	const u32 now = tcp_jiffies32;
2625 	enum tcp_chrono old = tp->chrono_type;
2626 
2627 	if (old > TCP_CHRONO_UNSPEC)
2628 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2629 	tp->chrono_start = now;
2630 	tp->chrono_type = new;
2631 }
2632 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2633 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2634 {
2635 	struct tcp_sock *tp = tcp_sk(sk);
2636 
2637 	/* If there are multiple conditions worthy of tracking in a
2638 	 * chronograph then the highest priority enum takes precedence
2639 	 * over the other conditions. So that if something "more interesting"
2640 	 * starts happening, stop the previous chrono and start a new one.
2641 	 */
2642 	if (type > tp->chrono_type)
2643 		tcp_chrono_set(tp, type);
2644 }
2645 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2646 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2647 {
2648 	struct tcp_sock *tp = tcp_sk(sk);
2649 
2650 
2651 	/* There are multiple conditions worthy of tracking in a
2652 	 * chronograph, so that the highest priority enum takes
2653 	 * precedence over the other conditions (see tcp_chrono_start).
2654 	 * If a condition stops, we only stop chrono tracking if
2655 	 * it's the "most interesting" or current chrono we are
2656 	 * tracking and starts busy chrono if we have pending data.
2657 	 */
2658 	if (tcp_rtx_and_write_queues_empty(sk))
2659 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2660 	else if (type == tp->chrono_type)
2661 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2662 }
2663 
2664 /* This routine writes packets to the network.  It advances the
2665  * send_head.  This happens as incoming acks open up the remote
2666  * window for us.
2667  *
2668  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2669  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2670  * account rare use of URG, this is not a big flaw.
2671  *
2672  * Send at most one packet when push_one > 0. Temporarily ignore
2673  * cwnd limit to force at most one packet out when push_one == 2.
2674 
2675  * Returns true, if no segments are in flight and we have queued segments,
2676  * but cannot send anything now because of SWS or another problem.
2677  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2678 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2679 			   int push_one, gfp_t gfp)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 	struct sk_buff *skb;
2683 	unsigned int tso_segs, sent_pkts;
2684 	int cwnd_quota;
2685 	int result;
2686 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2687 	u32 max_segs;
2688 
2689 	sent_pkts = 0;
2690 
2691 	tcp_mstamp_refresh(tp);
2692 	if (!push_one) {
2693 		/* Do MTU probing. */
2694 		result = tcp_mtu_probe(sk);
2695 		if (!result) {
2696 			return false;
2697 		} else if (result > 0) {
2698 			sent_pkts = 1;
2699 		}
2700 	}
2701 
2702 	max_segs = tcp_tso_segs(sk, mss_now);
2703 	while ((skb = tcp_send_head(sk))) {
2704 		unsigned int limit;
2705 
2706 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2707 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2708 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2709 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2710 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2711 			tcp_init_tso_segs(skb, mss_now);
2712 			goto repair; /* Skip network transmission */
2713 		}
2714 
2715 		if (tcp_pacing_check(sk))
2716 			break;
2717 
2718 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2719 		BUG_ON(!tso_segs);
2720 
2721 		cwnd_quota = tcp_cwnd_test(tp, skb);
2722 		if (!cwnd_quota) {
2723 			if (push_one == 2)
2724 				/* Force out a loss probe pkt. */
2725 				cwnd_quota = 1;
2726 			else
2727 				break;
2728 		}
2729 
2730 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2731 			is_rwnd_limited = true;
2732 			break;
2733 		}
2734 
2735 		if (tso_segs == 1) {
2736 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2737 						     (tcp_skb_is_last(sk, skb) ?
2738 						      nonagle : TCP_NAGLE_PUSH))))
2739 				break;
2740 		} else {
2741 			if (!push_one &&
2742 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2743 						 &is_rwnd_limited, max_segs))
2744 				break;
2745 		}
2746 
2747 		limit = mss_now;
2748 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2749 			limit = tcp_mss_split_point(sk, skb, mss_now,
2750 						    min_t(unsigned int,
2751 							  cwnd_quota,
2752 							  max_segs),
2753 						    nonagle);
2754 
2755 		if (skb->len > limit &&
2756 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2757 			break;
2758 
2759 		if (tcp_small_queue_check(sk, skb, 0))
2760 			break;
2761 
2762 		/* Argh, we hit an empty skb(), presumably a thread
2763 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2764 		 * We do not want to send a pure-ack packet and have
2765 		 * a strange looking rtx queue with empty packet(s).
2766 		 */
2767 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2768 			break;
2769 
2770 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2771 			break;
2772 
2773 repair:
2774 		/* Advance the send_head.  This one is sent out.
2775 		 * This call will increment packets_out.
2776 		 */
2777 		tcp_event_new_data_sent(sk, skb);
2778 
2779 		tcp_minshall_update(tp, mss_now, skb);
2780 		sent_pkts += tcp_skb_pcount(skb);
2781 
2782 		if (push_one)
2783 			break;
2784 	}
2785 
2786 	if (is_rwnd_limited)
2787 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2788 	else
2789 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2790 
2791 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2792 	if (likely(sent_pkts || is_cwnd_limited))
2793 		tcp_cwnd_validate(sk, is_cwnd_limited);
2794 
2795 	if (likely(sent_pkts)) {
2796 		if (tcp_in_cwnd_reduction(sk))
2797 			tp->prr_out += sent_pkts;
2798 
2799 		/* Send one loss probe per tail loss episode. */
2800 		if (push_one != 2)
2801 			tcp_schedule_loss_probe(sk, false);
2802 		return false;
2803 	}
2804 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2805 }
2806 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2807 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2808 {
2809 	struct inet_connection_sock *icsk = inet_csk(sk);
2810 	struct tcp_sock *tp = tcp_sk(sk);
2811 	u32 timeout, timeout_us, rto_delta_us;
2812 	int early_retrans;
2813 
2814 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2815 	 * finishes.
2816 	 */
2817 	if (rcu_access_pointer(tp->fastopen_rsk))
2818 		return false;
2819 
2820 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2821 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2822 	 * not in loss recovery, that are either limited by cwnd or application.
2823 	 */
2824 	if ((early_retrans != 3 && early_retrans != 4) ||
2825 	    !tp->packets_out || !tcp_is_sack(tp) ||
2826 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2827 	     icsk->icsk_ca_state != TCP_CA_CWR))
2828 		return false;
2829 
2830 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2831 	 * for delayed ack when there's one outstanding packet. If no RTT
2832 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2833 	 */
2834 	if (tp->srtt_us) {
2835 		timeout_us = tp->srtt_us >> 2;
2836 		if (tp->packets_out == 1)
2837 			timeout_us += tcp_rto_min_us(sk);
2838 		else
2839 			timeout_us += TCP_TIMEOUT_MIN_US;
2840 		timeout = usecs_to_jiffies(timeout_us);
2841 	} else {
2842 		timeout = TCP_TIMEOUT_INIT;
2843 	}
2844 
2845 	/* If the RTO formula yields an earlier time, then use that time. */
2846 	rto_delta_us = advancing_rto ?
2847 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2848 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2849 	if (rto_delta_us > 0)
2850 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2851 
2852 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2853 	return true;
2854 }
2855 
2856 /* Thanks to skb fast clones, we can detect if a prior transmit of
2857  * a packet is still in a qdisc or driver queue.
2858  * In this case, there is very little point doing a retransmit !
2859  */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2860 static bool skb_still_in_host_queue(struct sock *sk,
2861 				    const struct sk_buff *skb)
2862 {
2863 	if (unlikely(skb_fclone_busy(sk, skb))) {
2864 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2865 		smp_mb__after_atomic();
2866 		if (skb_fclone_busy(sk, skb)) {
2867 			NET_INC_STATS(sock_net(sk),
2868 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2869 			return true;
2870 		}
2871 	}
2872 	return false;
2873 }
2874 
2875 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2876  * retransmit the last segment.
2877  */
tcp_send_loss_probe(struct sock * sk)2878 void tcp_send_loss_probe(struct sock *sk)
2879 {
2880 	struct tcp_sock *tp = tcp_sk(sk);
2881 	struct sk_buff *skb;
2882 	int pcount;
2883 	int mss = tcp_current_mss(sk);
2884 
2885 	/* At most one outstanding TLP */
2886 	if (tp->tlp_high_seq)
2887 		goto rearm_timer;
2888 
2889 	tp->tlp_retrans = 0;
2890 	skb = tcp_send_head(sk);
2891 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2892 		pcount = tp->packets_out;
2893 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2894 		if (tp->packets_out > pcount)
2895 			goto probe_sent;
2896 		goto rearm_timer;
2897 	}
2898 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2899 	if (unlikely(!skb)) {
2900 		WARN_ONCE(tp->packets_out,
2901 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2902 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2903 		inet_csk(sk)->icsk_pending = 0;
2904 		return;
2905 	}
2906 
2907 	if (skb_still_in_host_queue(sk, skb))
2908 		goto rearm_timer;
2909 
2910 	pcount = tcp_skb_pcount(skb);
2911 	if (WARN_ON(!pcount))
2912 		goto rearm_timer;
2913 
2914 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2915 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2916 					  (pcount - 1) * mss, mss,
2917 					  GFP_ATOMIC)))
2918 			goto rearm_timer;
2919 		skb = skb_rb_next(skb);
2920 	}
2921 
2922 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2923 		goto rearm_timer;
2924 
2925 	if (__tcp_retransmit_skb(sk, skb, 1))
2926 		goto rearm_timer;
2927 
2928 	tp->tlp_retrans = 1;
2929 
2930 probe_sent:
2931 	/* Record snd_nxt for loss detection. */
2932 	tp->tlp_high_seq = tp->snd_nxt;
2933 
2934 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2935 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2936 	inet_csk(sk)->icsk_pending = 0;
2937 rearm_timer:
2938 	tcp_rearm_rto(sk);
2939 }
2940 
2941 /* Push out any pending frames which were held back due to
2942  * TCP_CORK or attempt at coalescing tiny packets.
2943  * The socket must be locked by the caller.
2944  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2945 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2946 			       int nonagle)
2947 {
2948 	/* If we are closed, the bytes will have to remain here.
2949 	 * In time closedown will finish, we empty the write queue and
2950 	 * all will be happy.
2951 	 */
2952 	if (unlikely(sk->sk_state == TCP_CLOSE))
2953 		return;
2954 
2955 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2956 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2957 		tcp_check_probe_timer(sk);
2958 }
2959 
2960 /* Send _single_ skb sitting at the send head. This function requires
2961  * true push pending frames to setup probe timer etc.
2962  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2963 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2964 {
2965 	struct sk_buff *skb = tcp_send_head(sk);
2966 
2967 	BUG_ON(!skb || skb->len < mss_now);
2968 
2969 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2970 }
2971 
2972 /* This function returns the amount that we can raise the
2973  * usable window based on the following constraints
2974  *
2975  * 1. The window can never be shrunk once it is offered (RFC 793)
2976  * 2. We limit memory per socket
2977  *
2978  * RFC 1122:
2979  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2980  *  RECV.NEXT + RCV.WIN fixed until:
2981  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2982  *
2983  * i.e. don't raise the right edge of the window until you can raise
2984  * it at least MSS bytes.
2985  *
2986  * Unfortunately, the recommended algorithm breaks header prediction,
2987  * since header prediction assumes th->window stays fixed.
2988  *
2989  * Strictly speaking, keeping th->window fixed violates the receiver
2990  * side SWS prevention criteria. The problem is that under this rule
2991  * a stream of single byte packets will cause the right side of the
2992  * window to always advance by a single byte.
2993  *
2994  * Of course, if the sender implements sender side SWS prevention
2995  * then this will not be a problem.
2996  *
2997  * BSD seems to make the following compromise:
2998  *
2999  *	If the free space is less than the 1/4 of the maximum
3000  *	space available and the free space is less than 1/2 mss,
3001  *	then set the window to 0.
3002  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3003  *	Otherwise, just prevent the window from shrinking
3004  *	and from being larger than the largest representable value.
3005  *
3006  * This prevents incremental opening of the window in the regime
3007  * where TCP is limited by the speed of the reader side taking
3008  * data out of the TCP receive queue. It does nothing about
3009  * those cases where the window is constrained on the sender side
3010  * because the pipeline is full.
3011  *
3012  * BSD also seems to "accidentally" limit itself to windows that are a
3013  * multiple of MSS, at least until the free space gets quite small.
3014  * This would appear to be a side effect of the mbuf implementation.
3015  * Combining these two algorithms results in the observed behavior
3016  * of having a fixed window size at almost all times.
3017  *
3018  * Below we obtain similar behavior by forcing the offered window to
3019  * a multiple of the mss when it is feasible to do so.
3020  *
3021  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3022  * Regular options like TIMESTAMP are taken into account.
3023  */
__tcp_select_window(struct sock * sk)3024 u32 __tcp_select_window(struct sock *sk)
3025 {
3026 	struct inet_connection_sock *icsk = inet_csk(sk);
3027 	struct tcp_sock *tp = tcp_sk(sk);
3028 	struct net *net = sock_net(sk);
3029 	/* MSS for the peer's data.  Previous versions used mss_clamp
3030 	 * here.  I don't know if the value based on our guesses
3031 	 * of peer's MSS is better for the performance.  It's more correct
3032 	 * but may be worse for the performance because of rcv_mss
3033 	 * fluctuations.  --SAW  1998/11/1
3034 	 */
3035 	int mss = icsk->icsk_ack.rcv_mss;
3036 	int free_space = tcp_space(sk);
3037 	int allowed_space = tcp_full_space(sk);
3038 	int full_space, window;
3039 
3040 	if (sk_is_mptcp(sk))
3041 		mptcp_space(sk, &free_space, &allowed_space);
3042 
3043 	full_space = min_t(int, tp->window_clamp, allowed_space);
3044 
3045 	if (unlikely(mss > full_space)) {
3046 		mss = full_space;
3047 		if (mss <= 0)
3048 			return 0;
3049 	}
3050 
3051 	/* Only allow window shrink if the sysctl is enabled and we have
3052 	 * a non-zero scaling factor in effect.
3053 	 */
3054 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3055 		goto shrink_window_allowed;
3056 
3057 	/* do not allow window to shrink */
3058 
3059 	if (free_space < (full_space >> 1)) {
3060 		icsk->icsk_ack.quick = 0;
3061 
3062 		if (tcp_under_memory_pressure(sk))
3063 			tcp_adjust_rcv_ssthresh(sk);
3064 
3065 		/* free_space might become our new window, make sure we don't
3066 		 * increase it due to wscale.
3067 		 */
3068 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3069 
3070 		/* if free space is less than mss estimate, or is below 1/16th
3071 		 * of the maximum allowed, try to move to zero-window, else
3072 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3073 		 * new incoming data is dropped due to memory limits.
3074 		 * With large window, mss test triggers way too late in order
3075 		 * to announce zero window in time before rmem limit kicks in.
3076 		 */
3077 		if (free_space < (allowed_space >> 4) || free_space < mss)
3078 			return 0;
3079 	}
3080 
3081 	if (free_space > tp->rcv_ssthresh)
3082 		free_space = tp->rcv_ssthresh;
3083 
3084 	/* Don't do rounding if we are using window scaling, since the
3085 	 * scaled window will not line up with the MSS boundary anyway.
3086 	 */
3087 	if (tp->rx_opt.rcv_wscale) {
3088 		window = free_space;
3089 
3090 		/* Advertise enough space so that it won't get scaled away.
3091 		 * Import case: prevent zero window announcement if
3092 		 * 1<<rcv_wscale > mss.
3093 		 */
3094 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3095 	} else {
3096 		window = tp->rcv_wnd;
3097 		/* Get the largest window that is a nice multiple of mss.
3098 		 * Window clamp already applied above.
3099 		 * If our current window offering is within 1 mss of the
3100 		 * free space we just keep it. This prevents the divide
3101 		 * and multiply from happening most of the time.
3102 		 * We also don't do any window rounding when the free space
3103 		 * is too small.
3104 		 */
3105 		if (window <= free_space - mss || window > free_space)
3106 			window = rounddown(free_space, mss);
3107 		else if (mss == full_space &&
3108 			 free_space > window + (full_space >> 1))
3109 			window = free_space;
3110 	}
3111 
3112 	return window;
3113 
3114 shrink_window_allowed:
3115 	/* new window should always be an exact multiple of scaling factor */
3116 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3117 
3118 	if (free_space < (full_space >> 1)) {
3119 		icsk->icsk_ack.quick = 0;
3120 
3121 		if (tcp_under_memory_pressure(sk))
3122 			tcp_adjust_rcv_ssthresh(sk);
3123 
3124 		/* if free space is too low, return a zero window */
3125 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3126 			free_space < (1 << tp->rx_opt.rcv_wscale))
3127 			return 0;
3128 	}
3129 
3130 	if (free_space > tp->rcv_ssthresh) {
3131 		free_space = tp->rcv_ssthresh;
3132 		/* new window should always be an exact multiple of scaling factor
3133 		 *
3134 		 * For this case, we ALIGN "up" (increase free_space) because
3135 		 * we know free_space is not zero here, it has been reduced from
3136 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3137 		 * (unlike sk_rcvbuf).
3138 		 */
3139 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3140 	}
3141 
3142 	return free_space;
3143 }
3144 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3145 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3146 			     const struct sk_buff *next_skb)
3147 {
3148 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3149 		const struct skb_shared_info *next_shinfo =
3150 			skb_shinfo(next_skb);
3151 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3152 
3153 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3154 		shinfo->tskey = next_shinfo->tskey;
3155 		TCP_SKB_CB(skb)->txstamp_ack |=
3156 			TCP_SKB_CB(next_skb)->txstamp_ack;
3157 	}
3158 }
3159 
3160 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3161 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3162 {
3163 	struct tcp_sock *tp = tcp_sk(sk);
3164 	struct sk_buff *next_skb = skb_rb_next(skb);
3165 	int next_skb_size;
3166 
3167 	next_skb_size = next_skb->len;
3168 
3169 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3170 
3171 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3172 		return false;
3173 
3174 	tcp_highest_sack_replace(sk, next_skb, skb);
3175 
3176 	/* Update sequence range on original skb. */
3177 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3178 
3179 	/* Merge over control information. This moves PSH/FIN etc. over */
3180 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3181 
3182 	/* All done, get rid of second SKB and account for it so
3183 	 * packet counting does not break.
3184 	 */
3185 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3186 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3187 
3188 	/* changed transmit queue under us so clear hints */
3189 	tcp_clear_retrans_hints_partial(tp);
3190 	if (next_skb == tp->retransmit_skb_hint)
3191 		tp->retransmit_skb_hint = skb;
3192 
3193 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3194 
3195 	tcp_skb_collapse_tstamp(skb, next_skb);
3196 
3197 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3198 	return true;
3199 }
3200 
3201 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3202 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3203 {
3204 	if (tcp_skb_pcount(skb) > 1)
3205 		return false;
3206 	if (skb_cloned(skb))
3207 		return false;
3208 	/* Some heuristics for collapsing over SACK'd could be invented */
3209 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3210 		return false;
3211 
3212 	return true;
3213 }
3214 
3215 /* Collapse packets in the retransmit queue to make to create
3216  * less packets on the wire. This is only done on retransmission.
3217  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3218 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3219 				     int space)
3220 {
3221 	struct tcp_sock *tp = tcp_sk(sk);
3222 	struct sk_buff *skb = to, *tmp;
3223 	bool first = true;
3224 
3225 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3226 		return;
3227 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3228 		return;
3229 
3230 	skb_rbtree_walk_from_safe(skb, tmp) {
3231 		if (!tcp_can_collapse(sk, skb))
3232 			break;
3233 
3234 		if (!tcp_skb_can_collapse(to, skb))
3235 			break;
3236 
3237 		space -= skb->len;
3238 
3239 		if (first) {
3240 			first = false;
3241 			continue;
3242 		}
3243 
3244 		if (space < 0)
3245 			break;
3246 
3247 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3248 			break;
3249 
3250 		if (!tcp_collapse_retrans(sk, to))
3251 			break;
3252 	}
3253 }
3254 
3255 /* This retransmits one SKB.  Policy decisions and retransmit queue
3256  * state updates are done by the caller.  Returns non-zero if an
3257  * error occurred which prevented the send.
3258  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3259 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3260 {
3261 	struct inet_connection_sock *icsk = inet_csk(sk);
3262 	struct tcp_sock *tp = tcp_sk(sk);
3263 	unsigned int cur_mss;
3264 	int diff, len, err;
3265 	int avail_wnd;
3266 
3267 	/* Inconclusive MTU probe */
3268 	if (icsk->icsk_mtup.probe_size)
3269 		icsk->icsk_mtup.probe_size = 0;
3270 
3271 	if (skb_still_in_host_queue(sk, skb))
3272 		return -EBUSY;
3273 
3274 start:
3275 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3276 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3277 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3278 			TCP_SKB_CB(skb)->seq++;
3279 			goto start;
3280 		}
3281 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3282 			WARN_ON_ONCE(1);
3283 			return -EINVAL;
3284 		}
3285 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3286 			return -ENOMEM;
3287 	}
3288 
3289 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3290 		return -EHOSTUNREACH; /* Routing failure or similar. */
3291 
3292 	cur_mss = tcp_current_mss(sk);
3293 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3294 
3295 	/* If receiver has shrunk his window, and skb is out of
3296 	 * new window, do not retransmit it. The exception is the
3297 	 * case, when window is shrunk to zero. In this case
3298 	 * our retransmit of one segment serves as a zero window probe.
3299 	 */
3300 	if (avail_wnd <= 0) {
3301 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3302 			return -EAGAIN;
3303 		avail_wnd = cur_mss;
3304 	}
3305 
3306 	len = cur_mss * segs;
3307 	if (len > avail_wnd) {
3308 		len = rounddown(avail_wnd, cur_mss);
3309 		if (!len)
3310 			len = avail_wnd;
3311 	}
3312 	if (skb->len > len) {
3313 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3314 				 cur_mss, GFP_ATOMIC))
3315 			return -ENOMEM; /* We'll try again later. */
3316 	} else {
3317 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3318 			return -ENOMEM;
3319 
3320 		diff = tcp_skb_pcount(skb);
3321 		tcp_set_skb_tso_segs(skb, cur_mss);
3322 		diff -= tcp_skb_pcount(skb);
3323 		if (diff)
3324 			tcp_adjust_pcount(sk, skb, diff);
3325 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3326 		if (skb->len < avail_wnd)
3327 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3328 	}
3329 
3330 	/* RFC3168, section 6.1.1.1. ECN fallback */
3331 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3332 		tcp_ecn_clear_syn(sk, skb);
3333 
3334 	/* Update global and local TCP statistics. */
3335 	segs = tcp_skb_pcount(skb);
3336 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3337 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3338 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3339 	tp->total_retrans += segs;
3340 	tp->bytes_retrans += skb->len;
3341 
3342 	/* make sure skb->data is aligned on arches that require it
3343 	 * and check if ack-trimming & collapsing extended the headroom
3344 	 * beyond what csum_start can cover.
3345 	 */
3346 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3347 		     skb_headroom(skb) >= 0xFFFF)) {
3348 		struct sk_buff *nskb;
3349 
3350 		tcp_skb_tsorted_save(skb) {
3351 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3352 			if (nskb) {
3353 				nskb->dev = NULL;
3354 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3355 			} else {
3356 				err = -ENOBUFS;
3357 			}
3358 		} tcp_skb_tsorted_restore(skb);
3359 
3360 		if (!err) {
3361 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3362 			tcp_rate_skb_sent(sk, skb);
3363 		}
3364 	} else {
3365 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3366 	}
3367 
3368 	/* To avoid taking spuriously low RTT samples based on a timestamp
3369 	 * for a transmit that never happened, always mark EVER_RETRANS
3370 	 */
3371 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3372 
3373 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3374 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3375 				  TCP_SKB_CB(skb)->seq, segs, err);
3376 
3377 	if (likely(!err)) {
3378 		trace_tcp_retransmit_skb(sk, skb);
3379 	} else if (err != -EBUSY) {
3380 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3381 	}
3382 	return err;
3383 }
3384 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3385 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3386 {
3387 	struct tcp_sock *tp = tcp_sk(sk);
3388 	int err = __tcp_retransmit_skb(sk, skb, segs);
3389 
3390 	if (err == 0) {
3391 #if FASTRETRANS_DEBUG > 0
3392 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3393 			net_dbg_ratelimited("retrans_out leaked\n");
3394 		}
3395 #endif
3396 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3397 		tp->retrans_out += tcp_skb_pcount(skb);
3398 	}
3399 
3400 	/* Save stamp of the first (attempted) retransmit. */
3401 	if (!tp->retrans_stamp)
3402 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3403 
3404 	if (tp->undo_retrans < 0)
3405 		tp->undo_retrans = 0;
3406 	tp->undo_retrans += tcp_skb_pcount(skb);
3407 	return err;
3408 }
3409 
3410 /* This gets called after a retransmit timeout, and the initially
3411  * retransmitted data is acknowledged.  It tries to continue
3412  * resending the rest of the retransmit queue, until either
3413  * we've sent it all or the congestion window limit is reached.
3414  */
tcp_xmit_retransmit_queue(struct sock * sk)3415 void tcp_xmit_retransmit_queue(struct sock *sk)
3416 {
3417 	const struct inet_connection_sock *icsk = inet_csk(sk);
3418 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3419 	struct tcp_sock *tp = tcp_sk(sk);
3420 	bool rearm_timer = false;
3421 	u32 max_segs;
3422 	int mib_idx;
3423 
3424 	if (!tp->packets_out)
3425 		return;
3426 
3427 	rtx_head = tcp_rtx_queue_head(sk);
3428 	skb = tp->retransmit_skb_hint ?: rtx_head;
3429 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3430 	skb_rbtree_walk_from(skb) {
3431 		__u8 sacked;
3432 		int segs;
3433 
3434 		if (tcp_pacing_check(sk))
3435 			break;
3436 
3437 		/* we could do better than to assign each time */
3438 		if (!hole)
3439 			tp->retransmit_skb_hint = skb;
3440 
3441 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3442 		if (segs <= 0)
3443 			break;
3444 		sacked = TCP_SKB_CB(skb)->sacked;
3445 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3446 		 * we need to make sure not sending too bigs TSO packets
3447 		 */
3448 		segs = min_t(int, segs, max_segs);
3449 
3450 		if (tp->retrans_out >= tp->lost_out) {
3451 			break;
3452 		} else if (!(sacked & TCPCB_LOST)) {
3453 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3454 				hole = skb;
3455 			continue;
3456 
3457 		} else {
3458 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3459 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3460 			else
3461 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3462 		}
3463 
3464 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3465 			continue;
3466 
3467 		if (tcp_small_queue_check(sk, skb, 1))
3468 			break;
3469 
3470 		if (tcp_retransmit_skb(sk, skb, segs))
3471 			break;
3472 
3473 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3474 
3475 		if (tcp_in_cwnd_reduction(sk))
3476 			tp->prr_out += tcp_skb_pcount(skb);
3477 
3478 		if (skb == rtx_head &&
3479 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3480 			rearm_timer = true;
3481 
3482 	}
3483 	if (rearm_timer)
3484 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3485 				     inet_csk(sk)->icsk_rto,
3486 				     TCP_RTO_MAX);
3487 }
3488 
3489 /* We allow to exceed memory limits for FIN packets to expedite
3490  * connection tear down and (memory) recovery.
3491  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3492  * or even be forced to close flow without any FIN.
3493  * In general, we want to allow one skb per socket to avoid hangs
3494  * with edge trigger epoll()
3495  */
sk_forced_mem_schedule(struct sock * sk,int size)3496 void sk_forced_mem_schedule(struct sock *sk, int size)
3497 {
3498 	int delta, amt;
3499 
3500 	delta = size - sk->sk_forward_alloc;
3501 	if (delta <= 0)
3502 		return;
3503 	amt = sk_mem_pages(delta);
3504 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3505 	sk_memory_allocated_add(sk, amt);
3506 
3507 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3508 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3509 					gfp_memcg_charge() | __GFP_NOFAIL);
3510 }
3511 
3512 /* Send a FIN. The caller locks the socket for us.
3513  * We should try to send a FIN packet really hard, but eventually give up.
3514  */
tcp_send_fin(struct sock * sk)3515 void tcp_send_fin(struct sock *sk)
3516 {
3517 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3518 	struct tcp_sock *tp = tcp_sk(sk);
3519 
3520 	/* Optimization, tack on the FIN if we have one skb in write queue and
3521 	 * this skb was not yet sent, or we are under memory pressure.
3522 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3523 	 * as TCP stack thinks it has already been transmitted.
3524 	 */
3525 	tskb = tail;
3526 	if (!tskb && tcp_under_memory_pressure(sk))
3527 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3528 
3529 	if (tskb) {
3530 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3531 		TCP_SKB_CB(tskb)->end_seq++;
3532 		tp->write_seq++;
3533 		if (!tail) {
3534 			/* This means tskb was already sent.
3535 			 * Pretend we included the FIN on previous transmit.
3536 			 * We need to set tp->snd_nxt to the value it would have
3537 			 * if FIN had been sent. This is because retransmit path
3538 			 * does not change tp->snd_nxt.
3539 			 */
3540 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3541 			return;
3542 		}
3543 	} else {
3544 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3545 				       sk_gfp_mask(sk, GFP_ATOMIC |
3546 						       __GFP_NOWARN));
3547 		if (unlikely(!skb))
3548 			return;
3549 
3550 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3551 		skb_reserve(skb, MAX_TCP_HEADER);
3552 		sk_forced_mem_schedule(sk, skb->truesize);
3553 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3554 		tcp_init_nondata_skb(skb, tp->write_seq,
3555 				     TCPHDR_ACK | TCPHDR_FIN);
3556 		tcp_queue_skb(sk, skb);
3557 	}
3558 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3559 }
3560 
3561 /* We get here when a process closes a file descriptor (either due to
3562  * an explicit close() or as a byproduct of exit()'ing) and there
3563  * was unread data in the receive queue.  This behavior is recommended
3564  * by RFC 2525, section 2.17.  -DaveM
3565  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3566 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3567 {
3568 	struct sk_buff *skb;
3569 
3570 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3571 
3572 	/* NOTE: No TCP options attached and we never retransmit this. */
3573 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3574 	if (!skb) {
3575 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3576 		return;
3577 	}
3578 
3579 	/* Reserve space for headers and prepare control bits. */
3580 	skb_reserve(skb, MAX_TCP_HEADER);
3581 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3582 			     TCPHDR_ACK | TCPHDR_RST);
3583 	tcp_mstamp_refresh(tcp_sk(sk));
3584 	/* Send it off. */
3585 	if (tcp_transmit_skb(sk, skb, 0, priority))
3586 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3587 
3588 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3589 	 * skb here is different to the troublesome skb, so use NULL
3590 	 */
3591 	trace_tcp_send_reset(sk, NULL);
3592 }
3593 EXPORT_SYMBOL_GPL(tcp_send_active_reset);
3594 
3595 /* Send a crossed SYN-ACK during socket establishment.
3596  * WARNING: This routine must only be called when we have already sent
3597  * a SYN packet that crossed the incoming SYN that caused this routine
3598  * to get called. If this assumption fails then the initial rcv_wnd
3599  * and rcv_wscale values will not be correct.
3600  */
tcp_send_synack(struct sock * sk)3601 int tcp_send_synack(struct sock *sk)
3602 {
3603 	struct sk_buff *skb;
3604 
3605 	skb = tcp_rtx_queue_head(sk);
3606 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3607 		pr_err("%s: wrong queue state\n", __func__);
3608 		return -EFAULT;
3609 	}
3610 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3611 		if (skb_cloned(skb)) {
3612 			struct sk_buff *nskb;
3613 
3614 			tcp_skb_tsorted_save(skb) {
3615 				nskb = skb_copy(skb, GFP_ATOMIC);
3616 			} tcp_skb_tsorted_restore(skb);
3617 			if (!nskb)
3618 				return -ENOMEM;
3619 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3620 			tcp_highest_sack_replace(sk, skb, nskb);
3621 			tcp_rtx_queue_unlink_and_free(skb, sk);
3622 			__skb_header_release(nskb);
3623 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3624 			sk_wmem_queued_add(sk, nskb->truesize);
3625 			sk_mem_charge(sk, nskb->truesize);
3626 			skb = nskb;
3627 		}
3628 
3629 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3630 		tcp_ecn_send_synack(sk, skb);
3631 	}
3632 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3633 }
3634 
3635 /**
3636  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3637  * @sk: listener socket
3638  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3639  *       should not use it again.
3640  * @req: request_sock pointer
3641  * @foc: cookie for tcp fast open
3642  * @synack_type: Type of synack to prepare
3643  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3644  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3645 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3646 				struct request_sock *req,
3647 				struct tcp_fastopen_cookie *foc,
3648 				enum tcp_synack_type synack_type,
3649 				struct sk_buff *syn_skb)
3650 {
3651 	struct inet_request_sock *ireq = inet_rsk(req);
3652 	const struct tcp_sock *tp = tcp_sk(sk);
3653 	struct tcp_md5sig_key *md5 = NULL;
3654 	struct tcp_out_options opts;
3655 	struct sk_buff *skb;
3656 	int tcp_header_size;
3657 	struct tcphdr *th;
3658 	int mss;
3659 	u64 now;
3660 
3661 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3662 	if (unlikely(!skb)) {
3663 		dst_release(dst);
3664 		return NULL;
3665 	}
3666 	/* Reserve space for headers. */
3667 	skb_reserve(skb, MAX_TCP_HEADER);
3668 
3669 	switch (synack_type) {
3670 	case TCP_SYNACK_NORMAL:
3671 		skb_set_owner_w(skb, req_to_sk(req));
3672 		break;
3673 	case TCP_SYNACK_COOKIE:
3674 		/* Under synflood, we do not attach skb to a socket,
3675 		 * to avoid false sharing.
3676 		 */
3677 		break;
3678 	case TCP_SYNACK_FASTOPEN:
3679 		/* sk is a const pointer, because we want to express multiple
3680 		 * cpu might call us concurrently.
3681 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3682 		 */
3683 		skb_set_owner_w(skb, (struct sock *)sk);
3684 		break;
3685 	}
3686 	skb_dst_set(skb, dst);
3687 
3688 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3689 
3690 	memset(&opts, 0, sizeof(opts));
3691 	now = tcp_clock_ns();
3692 #ifdef CONFIG_SYN_COOKIES
3693 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3694 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3695 				      true);
3696 	else
3697 #endif
3698 	{
3699 		skb_set_delivery_time(skb, now, true);
3700 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3701 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3702 	}
3703 
3704 #ifdef CONFIG_TCP_MD5SIG
3705 	rcu_read_lock();
3706 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3707 #endif
3708 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3709 	/* bpf program will be interested in the tcp_flags */
3710 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3711 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3712 					     foc, synack_type,
3713 					     syn_skb) + sizeof(*th);
3714 
3715 	skb_push(skb, tcp_header_size);
3716 	skb_reset_transport_header(skb);
3717 
3718 	th = (struct tcphdr *)skb->data;
3719 	memset(th, 0, sizeof(struct tcphdr));
3720 	th->syn = 1;
3721 	th->ack = 1;
3722 	tcp_ecn_make_synack(req, th);
3723 	th->source = htons(ireq->ir_num);
3724 	th->dest = ireq->ir_rmt_port;
3725 	skb->mark = ireq->ir_mark;
3726 	skb->ip_summed = CHECKSUM_PARTIAL;
3727 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3728 	/* XXX data is queued and acked as is. No buffer/window check */
3729 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3730 
3731 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3732 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3733 	tcp_options_write(th, NULL, &opts);
3734 	th->doff = (tcp_header_size >> 2);
3735 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3736 
3737 #ifdef CONFIG_TCP_MD5SIG
3738 	/* Okay, we have all we need - do the md5 hash if needed */
3739 	if (md5)
3740 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3741 					       md5, req_to_sk(req), skb);
3742 	rcu_read_unlock();
3743 #endif
3744 
3745 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3746 				synack_type, &opts);
3747 
3748 	skb_set_delivery_time(skb, now, true);
3749 	tcp_add_tx_delay(skb, tp);
3750 
3751 	return skb;
3752 }
3753 EXPORT_SYMBOL(tcp_make_synack);
3754 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3755 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3756 {
3757 	struct inet_connection_sock *icsk = inet_csk(sk);
3758 	const struct tcp_congestion_ops *ca;
3759 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3760 
3761 	if (ca_key == TCP_CA_UNSPEC)
3762 		return;
3763 
3764 	rcu_read_lock();
3765 	ca = tcp_ca_find_key(ca_key);
3766 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3767 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3768 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3769 		icsk->icsk_ca_ops = ca;
3770 	}
3771 	rcu_read_unlock();
3772 }
3773 
3774 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3775 static void tcp_connect_init(struct sock *sk)
3776 {
3777 	const struct dst_entry *dst = __sk_dst_get(sk);
3778 	struct tcp_sock *tp = tcp_sk(sk);
3779 	__u8 rcv_wscale;
3780 	u32 rcv_wnd;
3781 
3782 	/* We'll fix this up when we get a response from the other end.
3783 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3784 	 */
3785 	tp->tcp_header_len = sizeof(struct tcphdr);
3786 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3787 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3788 
3789 	/* If user gave his TCP_MAXSEG, record it to clamp */
3790 	if (tp->rx_opt.user_mss)
3791 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3792 	tp->max_window = 0;
3793 	tcp_mtup_init(sk);
3794 	tcp_sync_mss(sk, dst_mtu(dst));
3795 
3796 	tcp_ca_dst_init(sk, dst);
3797 
3798 	if (!tp->window_clamp)
3799 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3800 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3801 
3802 	tcp_initialize_rcv_mss(sk);
3803 
3804 	/* limit the window selection if the user enforce a smaller rx buffer */
3805 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3806 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3807 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3808 
3809 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3810 	if (rcv_wnd == 0)
3811 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3812 
3813 	tcp_select_initial_window(sk, tcp_full_space(sk),
3814 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3815 				  &tp->rcv_wnd,
3816 				  &tp->window_clamp,
3817 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3818 				  &rcv_wscale,
3819 				  rcv_wnd);
3820 
3821 	tp->rx_opt.rcv_wscale = rcv_wscale;
3822 	tp->rcv_ssthresh = tp->rcv_wnd;
3823 
3824 	WRITE_ONCE(sk->sk_err, 0);
3825 	sock_reset_flag(sk, SOCK_DONE);
3826 	tp->snd_wnd = 0;
3827 	tcp_init_wl(tp, 0);
3828 	tcp_write_queue_purge(sk);
3829 	tp->snd_una = tp->write_seq;
3830 	tp->snd_sml = tp->write_seq;
3831 	tp->snd_up = tp->write_seq;
3832 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3833 
3834 	if (likely(!tp->repair))
3835 		tp->rcv_nxt = 0;
3836 	else
3837 		tp->rcv_tstamp = tcp_jiffies32;
3838 	tp->rcv_wup = tp->rcv_nxt;
3839 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3840 
3841 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3842 	inet_csk(sk)->icsk_retransmits = 0;
3843 	tcp_clear_retrans(tp);
3844 }
3845 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3846 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3847 {
3848 	struct tcp_sock *tp = tcp_sk(sk);
3849 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3850 
3851 	tcb->end_seq += skb->len;
3852 	__skb_header_release(skb);
3853 	sk_wmem_queued_add(sk, skb->truesize);
3854 	sk_mem_charge(sk, skb->truesize);
3855 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3856 	tp->packets_out += tcp_skb_pcount(skb);
3857 }
3858 
3859 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3860  * queue a data-only packet after the regular SYN, such that regular SYNs
3861  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3862  * only the SYN sequence, the data are retransmitted in the first ACK.
3863  * If cookie is not cached or other error occurs, falls back to send a
3864  * regular SYN with Fast Open cookie request option.
3865  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3866 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3867 {
3868 	struct inet_connection_sock *icsk = inet_csk(sk);
3869 	struct tcp_sock *tp = tcp_sk(sk);
3870 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3871 	struct page_frag *pfrag = sk_page_frag(sk);
3872 	struct sk_buff *syn_data;
3873 	int space, err = 0;
3874 
3875 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3876 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3877 		goto fallback;
3878 
3879 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3880 	 * user-MSS. Reserve maximum option space for middleboxes that add
3881 	 * private TCP options. The cost is reduced data space in SYN :(
3882 	 */
3883 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3884 	/* Sync mss_cache after updating the mss_clamp */
3885 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3886 
3887 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3888 		MAX_TCP_OPTION_SPACE;
3889 
3890 	space = min_t(size_t, space, fo->size);
3891 
3892 	if (space &&
3893 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3894 				  pfrag, sk->sk_allocation))
3895 		goto fallback;
3896 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3897 	if (!syn_data)
3898 		goto fallback;
3899 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3900 	if (space) {
3901 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3902 		space = tcp_wmem_schedule(sk, space);
3903 	}
3904 	if (space) {
3905 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3906 					    space, &fo->data->msg_iter);
3907 		if (unlikely(!space)) {
3908 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3909 			kfree_skb(syn_data);
3910 			goto fallback;
3911 		}
3912 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3913 				   pfrag->offset, space);
3914 		page_ref_inc(pfrag->page);
3915 		pfrag->offset += space;
3916 		skb_len_add(syn_data, space);
3917 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3918 	}
3919 	/* No more data pending in inet_wait_for_connect() */
3920 	if (space == fo->size)
3921 		fo->data = NULL;
3922 	fo->copied = space;
3923 
3924 	tcp_connect_queue_skb(sk, syn_data);
3925 	if (syn_data->len)
3926 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3927 
3928 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3929 
3930 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3931 
3932 	/* Now full SYN+DATA was cloned and sent (or not),
3933 	 * remove the SYN from the original skb (syn_data)
3934 	 * we keep in write queue in case of a retransmit, as we
3935 	 * also have the SYN packet (with no data) in the same queue.
3936 	 */
3937 	TCP_SKB_CB(syn_data)->seq++;
3938 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3939 	if (!err) {
3940 		tp->syn_data = (fo->copied > 0);
3941 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3942 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3943 		goto done;
3944 	}
3945 
3946 	/* data was not sent, put it in write_queue */
3947 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3948 	tp->packets_out -= tcp_skb_pcount(syn_data);
3949 
3950 fallback:
3951 	/* Send a regular SYN with Fast Open cookie request option */
3952 	if (fo->cookie.len > 0)
3953 		fo->cookie.len = 0;
3954 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3955 	if (err)
3956 		tp->syn_fastopen = 0;
3957 done:
3958 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3959 	return err;
3960 }
3961 
3962 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3963 int tcp_connect(struct sock *sk)
3964 {
3965 	struct tcp_sock *tp = tcp_sk(sk);
3966 	struct sk_buff *buff;
3967 	int err;
3968 
3969 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3970 
3971 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3972 		return -EHOSTUNREACH; /* Routing failure or similar. */
3973 
3974 	tcp_connect_init(sk);
3975 
3976 	if (unlikely(tp->repair)) {
3977 		tcp_finish_connect(sk, NULL);
3978 		return 0;
3979 	}
3980 
3981 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
3982 	if (unlikely(!buff))
3983 		return -ENOBUFS;
3984 
3985 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3986 	tcp_mstamp_refresh(tp);
3987 	tp->retrans_stamp = tcp_time_stamp(tp);
3988 	tcp_connect_queue_skb(sk, buff);
3989 	tcp_ecn_send_syn(sk, buff);
3990 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3991 
3992 	/* Send off SYN; include data in Fast Open. */
3993 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3994 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3995 	if (err == -ECONNREFUSED)
3996 		return err;
3997 
3998 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3999 	 * in order to make this packet get counted in tcpOutSegs.
4000 	 */
4001 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4002 	tp->pushed_seq = tp->write_seq;
4003 
4004 	trace_android_vh_tcp_connect(buff);
4005 
4006 	buff = tcp_send_head(sk);
4007 	if (unlikely(buff)) {
4008 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4009 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4010 	}
4011 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4012 
4013 	/* Timer for repeating the SYN until an answer. */
4014 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4015 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4016 	return 0;
4017 }
4018 EXPORT_SYMBOL(tcp_connect);
4019 
tcp_delack_max(const struct sock * sk)4020 u32 tcp_delack_max(const struct sock *sk)
4021 {
4022 	const struct dst_entry *dst = __sk_dst_get(sk);
4023 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4024 
4025 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4026 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4027 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4028 
4029 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4030 	}
4031 	return delack_max;
4032 }
4033 
4034 /* Send out a delayed ack, the caller does the policy checking
4035  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4036  * for details.
4037  */
tcp_send_delayed_ack(struct sock * sk)4038 void tcp_send_delayed_ack(struct sock *sk)
4039 {
4040 	struct inet_connection_sock *icsk = inet_csk(sk);
4041 	int ato = icsk->icsk_ack.ato;
4042 	unsigned long timeout;
4043 
4044 	if (ato > TCP_DELACK_MIN) {
4045 		const struct tcp_sock *tp = tcp_sk(sk);
4046 		int max_ato = HZ / 2;
4047 
4048 		if (inet_csk_in_pingpong_mode(sk) ||
4049 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4050 			max_ato = TCP_DELACK_MAX;
4051 
4052 		/* Slow path, intersegment interval is "high". */
4053 
4054 		/* If some rtt estimate is known, use it to bound delayed ack.
4055 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4056 		 * directly.
4057 		 */
4058 		if (tp->srtt_us) {
4059 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4060 					TCP_DELACK_MIN);
4061 
4062 			if (rtt < max_ato)
4063 				max_ato = rtt;
4064 		}
4065 
4066 		ato = min(ato, max_ato);
4067 	}
4068 
4069 	ato = min_t(u32, ato, tcp_delack_max(sk));
4070 
4071 	/* Stay within the limit we were given */
4072 	timeout = jiffies + ato;
4073 
4074 	/* Use new timeout only if there wasn't a older one earlier. */
4075 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4076 		/* If delack timer is about to expire, send ACK now. */
4077 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4078 			tcp_send_ack(sk);
4079 			return;
4080 		}
4081 
4082 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4083 			timeout = icsk->icsk_ack.timeout;
4084 	}
4085 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4086 	icsk->icsk_ack.timeout = timeout;
4087 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4088 }
4089 
4090 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)4091 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4092 {
4093 	struct sk_buff *buff;
4094 
4095 	/* If we have been reset, we may not send again. */
4096 	if (sk->sk_state == TCP_CLOSE)
4097 		return;
4098 
4099 	/* We are not putting this on the write queue, so
4100 	 * tcp_transmit_skb() will set the ownership to this
4101 	 * sock.
4102 	 */
4103 	buff = alloc_skb(MAX_TCP_HEADER,
4104 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4105 	if (unlikely(!buff)) {
4106 		struct inet_connection_sock *icsk = inet_csk(sk);
4107 		unsigned long delay;
4108 
4109 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4110 		if (delay < TCP_RTO_MAX)
4111 			icsk->icsk_ack.retry++;
4112 		inet_csk_schedule_ack(sk);
4113 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4114 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4115 		return;
4116 	}
4117 
4118 	/* Reserve space for headers and prepare control bits. */
4119 	skb_reserve(buff, MAX_TCP_HEADER);
4120 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4121 
4122 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4123 	 * too much.
4124 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4125 	 */
4126 	skb_set_tcp_pure_ack(buff);
4127 
4128 	/* Send it off, this clears delayed acks for us. */
4129 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4130 }
4131 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4132 
tcp_send_ack(struct sock * sk)4133 void tcp_send_ack(struct sock *sk)
4134 {
4135 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4136 }
4137 
4138 /* This routine sends a packet with an out of date sequence
4139  * number. It assumes the other end will try to ack it.
4140  *
4141  * Question: what should we make while urgent mode?
4142  * 4.4BSD forces sending single byte of data. We cannot send
4143  * out of window data, because we have SND.NXT==SND.MAX...
4144  *
4145  * Current solution: to send TWO zero-length segments in urgent mode:
4146  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4147  * out-of-date with SND.UNA-1 to probe window.
4148  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4149 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4150 {
4151 	struct tcp_sock *tp = tcp_sk(sk);
4152 	struct sk_buff *skb;
4153 
4154 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4155 	skb = alloc_skb(MAX_TCP_HEADER,
4156 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4157 	if (!skb)
4158 		return -1;
4159 
4160 	/* Reserve space for headers and set control bits. */
4161 	skb_reserve(skb, MAX_TCP_HEADER);
4162 	/* Use a previous sequence.  This should cause the other
4163 	 * end to send an ack.  Don't queue or clone SKB, just
4164 	 * send it.
4165 	 */
4166 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4167 	NET_INC_STATS(sock_net(sk), mib);
4168 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4169 }
4170 
4171 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4172 void tcp_send_window_probe(struct sock *sk)
4173 {
4174 	if (sk->sk_state == TCP_ESTABLISHED) {
4175 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4176 		tcp_mstamp_refresh(tcp_sk(sk));
4177 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4178 	}
4179 }
4180 
4181 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4182 int tcp_write_wakeup(struct sock *sk, int mib)
4183 {
4184 	struct tcp_sock *tp = tcp_sk(sk);
4185 	struct sk_buff *skb;
4186 
4187 	if (sk->sk_state == TCP_CLOSE)
4188 		return -1;
4189 
4190 	skb = tcp_send_head(sk);
4191 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4192 		int err;
4193 		unsigned int mss = tcp_current_mss(sk);
4194 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4195 
4196 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4197 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4198 
4199 		/* We are probing the opening of a window
4200 		 * but the window size is != 0
4201 		 * must have been a result SWS avoidance ( sender )
4202 		 */
4203 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4204 		    skb->len > mss) {
4205 			seg_size = min(seg_size, mss);
4206 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4207 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4208 					 skb, seg_size, mss, GFP_ATOMIC))
4209 				return -1;
4210 		} else if (!tcp_skb_pcount(skb))
4211 			tcp_set_skb_tso_segs(skb, mss);
4212 
4213 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4214 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4215 		if (!err)
4216 			tcp_event_new_data_sent(sk, skb);
4217 		return err;
4218 	} else {
4219 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4220 			tcp_xmit_probe_skb(sk, 1, mib);
4221 		return tcp_xmit_probe_skb(sk, 0, mib);
4222 	}
4223 }
4224 
4225 /* A window probe timeout has occurred.  If window is not closed send
4226  * a partial packet else a zero probe.
4227  */
tcp_send_probe0(struct sock * sk)4228 void tcp_send_probe0(struct sock *sk)
4229 {
4230 	struct inet_connection_sock *icsk = inet_csk(sk);
4231 	struct tcp_sock *tp = tcp_sk(sk);
4232 	struct net *net = sock_net(sk);
4233 	unsigned long timeout;
4234 	int err;
4235 
4236 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4237 
4238 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4239 		/* Cancel probe timer, if it is not required. */
4240 		icsk->icsk_probes_out = 0;
4241 		icsk->icsk_backoff = 0;
4242 		icsk->icsk_probes_tstamp = 0;
4243 		return;
4244 	}
4245 
4246 	icsk->icsk_probes_out++;
4247 	if (err <= 0) {
4248 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4249 			icsk->icsk_backoff++;
4250 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4251 	} else {
4252 		/* If packet was not sent due to local congestion,
4253 		 * Let senders fight for local resources conservatively.
4254 		 */
4255 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4256 	}
4257 
4258 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4259 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4260 }
4261 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4262 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4263 {
4264 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4265 	struct flowi fl;
4266 	int res;
4267 
4268 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4269 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4270 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4271 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4272 				  NULL);
4273 	if (!res) {
4274 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4275 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4276 		if (unlikely(tcp_passive_fastopen(sk))) {
4277 			/* sk has const attribute because listeners are lockless.
4278 			 * However in this case, we are dealing with a passive fastopen
4279 			 * socket thus we can change total_retrans value.
4280 			 */
4281 			tcp_sk_rw(sk)->total_retrans++;
4282 		}
4283 		trace_tcp_retransmit_synack(sk, req);
4284 	}
4285 	return res;
4286 }
4287 EXPORT_SYMBOL(tcp_rtx_synack);
4288