• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/super.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  super.c contains code to handle: - mount structures
8  *                                   - super-block tables
9  *                                   - filesystem drivers list
10  *                                   - mount system call
11  *                                   - umount system call
12  *                                   - ustat system call
13  *
14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
15  *
16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18  *  Added options to /proc/mounts:
19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22  */
23 
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h>		/* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42 
43 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
44 
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47 
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 	"sb_writers",
50 	"sb_pagefaults",
51 	"sb_internal",
52 };
53 
__super_lock(struct super_block * sb,bool excl)54 static inline void __super_lock(struct super_block *sb, bool excl)
55 {
56 	if (excl)
57 		down_write(&sb->s_umount);
58 	else
59 		down_read(&sb->s_umount);
60 }
61 
super_unlock(struct super_block * sb,bool excl)62 static inline void super_unlock(struct super_block *sb, bool excl)
63 {
64 	if (excl)
65 		up_write(&sb->s_umount);
66 	else
67 		up_read(&sb->s_umount);
68 }
69 
__super_lock_excl(struct super_block * sb)70 static inline void __super_lock_excl(struct super_block *sb)
71 {
72 	__super_lock(sb, true);
73 }
74 
super_unlock_excl(struct super_block * sb)75 static inline void super_unlock_excl(struct super_block *sb)
76 {
77 	super_unlock(sb, true);
78 }
79 
super_unlock_shared(struct super_block * sb)80 static inline void super_unlock_shared(struct super_block *sb)
81 {
82 	super_unlock(sb, false);
83 }
84 
wait_born(struct super_block * sb)85 static inline bool wait_born(struct super_block *sb)
86 {
87 	unsigned int flags;
88 
89 	/*
90 	 * Pairs with smp_store_release() in super_wake() and ensures
91 	 * that we see SB_BORN or SB_DYING after we're woken.
92 	 */
93 	flags = smp_load_acquire(&sb->s_flags);
94 	return flags & (SB_BORN | SB_DYING);
95 }
96 
97 /**
98  * super_lock - wait for superblock to become ready and lock it
99  * @sb: superblock to wait for
100  * @excl: whether exclusive access is required
101  *
102  * If the superblock has neither passed through vfs_get_tree() or
103  * generic_shutdown_super() yet wait for it to happen. Either superblock
104  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
105  * woken and we'll see SB_DYING.
106  *
107  * The caller must have acquired a temporary reference on @sb->s_count.
108  *
109  * Return: This returns true if SB_BORN was set, false if SB_DYING was
110  *         set. The function acquires s_umount and returns with it held.
111  */
super_lock(struct super_block * sb,bool excl)112 static __must_check bool super_lock(struct super_block *sb, bool excl)
113 {
114 
115 	lockdep_assert_not_held(&sb->s_umount);
116 
117 relock:
118 	__super_lock(sb, excl);
119 
120 	/*
121 	 * Has gone through generic_shutdown_super() in the meantime.
122 	 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
123 	 * grab a reference to this. Tell them so.
124 	 */
125 	if (sb->s_flags & SB_DYING)
126 		return false;
127 
128 	/* Has called ->get_tree() successfully. */
129 	if (sb->s_flags & SB_BORN)
130 		return true;
131 
132 	super_unlock(sb, excl);
133 
134 	/* wait until the superblock is ready or dying */
135 	wait_var_event(&sb->s_flags, wait_born(sb));
136 
137 	/*
138 	 * Neither SB_BORN nor SB_DYING are ever unset so we never loop.
139 	 * Just reacquire @sb->s_umount for the caller.
140 	 */
141 	goto relock;
142 }
143 
144 /* wait and acquire read-side of @sb->s_umount */
super_lock_shared(struct super_block * sb)145 static inline bool super_lock_shared(struct super_block *sb)
146 {
147 	return super_lock(sb, false);
148 }
149 
150 /* wait and acquire write-side of @sb->s_umount */
super_lock_excl(struct super_block * sb)151 static inline bool super_lock_excl(struct super_block *sb)
152 {
153 	return super_lock(sb, true);
154 }
155 
156 /* wake waiters */
157 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
super_wake(struct super_block * sb,unsigned int flag)158 static void super_wake(struct super_block *sb, unsigned int flag)
159 {
160 	WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
161 	WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
162 
163 	/*
164 	 * Pairs with smp_load_acquire() in super_lock() to make sure
165 	 * all initializations in the superblock are seen by the user
166 	 * seeing SB_BORN sent.
167 	 */
168 	smp_store_release(&sb->s_flags, sb->s_flags | flag);
169 	/*
170 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
171 	 * ___wait_var_event() either sees SB_BORN set or
172 	 * waitqueue_active() check in wake_up_var() sees the waiter.
173 	 */
174 	smp_mb();
175 	wake_up_var(&sb->s_flags);
176 }
177 
178 /*
179  * One thing we have to be careful of with a per-sb shrinker is that we don't
180  * drop the last active reference to the superblock from within the shrinker.
181  * If that happens we could trigger unregistering the shrinker from within the
182  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
183  * take a passive reference to the superblock to avoid this from occurring.
184  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)185 static unsigned long super_cache_scan(struct shrinker *shrink,
186 				      struct shrink_control *sc)
187 {
188 	struct super_block *sb;
189 	long	fs_objects = 0;
190 	long	total_objects;
191 	long	freed = 0;
192 	long	dentries;
193 	long	inodes;
194 
195 	sb = container_of(shrink, struct super_block, s_shrink);
196 
197 	/*
198 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
199 	 * to recurse into the FS that called us in clear_inode() and friends..
200 	 */
201 	if (!(sc->gfp_mask & __GFP_FS))
202 		return SHRINK_STOP;
203 
204 	if (!super_trylock_shared(sb))
205 		return SHRINK_STOP;
206 
207 	if (sb->s_op->nr_cached_objects)
208 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
209 
210 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
211 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
212 	total_objects = dentries + inodes + fs_objects + 1;
213 	if (!total_objects)
214 		total_objects = 1;
215 
216 	/* proportion the scan between the caches */
217 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
218 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
219 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
220 
221 	/*
222 	 * prune the dcache first as the icache is pinned by it, then
223 	 * prune the icache, followed by the filesystem specific caches
224 	 *
225 	 * Ensure that we always scan at least one object - memcg kmem
226 	 * accounting uses this to fully empty the caches.
227 	 */
228 	sc->nr_to_scan = dentries + 1;
229 	freed = prune_dcache_sb(sb, sc);
230 	sc->nr_to_scan = inodes + 1;
231 	freed += prune_icache_sb(sb, sc);
232 
233 	if (fs_objects) {
234 		sc->nr_to_scan = fs_objects + 1;
235 		freed += sb->s_op->free_cached_objects(sb, sc);
236 	}
237 
238 	super_unlock_shared(sb);
239 	return freed;
240 }
241 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)242 static unsigned long super_cache_count(struct shrinker *shrink,
243 				       struct shrink_control *sc)
244 {
245 	struct super_block *sb;
246 	long	total_objects = 0;
247 
248 	sb = container_of(shrink, struct super_block, s_shrink);
249 
250 	/*
251 	 * We don't call super_trylock_shared() here as it is a scalability
252 	 * bottleneck, so we're exposed to partial setup state. The shrinker
253 	 * rwsem does not protect filesystem operations backing
254 	 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
255 	 * change between super_cache_count and super_cache_scan, so we really
256 	 * don't need locks here.
257 	 *
258 	 * However, if we are currently mounting the superblock, the underlying
259 	 * filesystem might be in a state of partial construction and hence it
260 	 * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
261 	 * to avoid this situation, so do the same here. The memory barrier is
262 	 * matched with the one in mount_fs() as we don't hold locks here.
263 	 */
264 	if (!(sb->s_flags & SB_BORN))
265 		return 0;
266 	smp_rmb();
267 
268 	if (sb->s_op && sb->s_op->nr_cached_objects)
269 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
270 
271 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
272 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
273 
274 	if (!total_objects)
275 		return SHRINK_EMPTY;
276 
277 	total_objects = vfs_pressure_ratio(total_objects);
278 	return total_objects;
279 }
280 
destroy_super_work(struct work_struct * work)281 static void destroy_super_work(struct work_struct *work)
282 {
283 	struct super_block *s = container_of(work, struct super_block,
284 							destroy_work);
285 	int i;
286 
287 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
288 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
289 	kfree(s);
290 }
291 
destroy_super_rcu(struct rcu_head * head)292 static void destroy_super_rcu(struct rcu_head *head)
293 {
294 	struct super_block *s = container_of(head, struct super_block, rcu);
295 	INIT_WORK(&s->destroy_work, destroy_super_work);
296 	schedule_work(&s->destroy_work);
297 }
298 
299 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)300 static void destroy_unused_super(struct super_block *s)
301 {
302 	if (!s)
303 		return;
304 	super_unlock_excl(s);
305 	list_lru_destroy(&s->s_dentry_lru);
306 	list_lru_destroy(&s->s_inode_lru);
307 	security_sb_free(s);
308 	put_user_ns(s->s_user_ns);
309 	kfree(s->s_subtype);
310 	free_prealloced_shrinker(&s->s_shrink);
311 	/* no delays needed */
312 	destroy_super_work(&s->destroy_work);
313 }
314 
315 /**
316  *	alloc_super	-	create new superblock
317  *	@type:	filesystem type superblock should belong to
318  *	@flags: the mount flags
319  *	@user_ns: User namespace for the super_block
320  *
321  *	Allocates and initializes a new &struct super_block.  alloc_super()
322  *	returns a pointer new superblock or %NULL if allocation had failed.
323  */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)324 static struct super_block *alloc_super(struct file_system_type *type, int flags,
325 				       struct user_namespace *user_ns)
326 {
327 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
328 	static const struct super_operations default_op;
329 	int i;
330 
331 	if (!s)
332 		return NULL;
333 
334 	INIT_LIST_HEAD(&s->s_mounts);
335 	s->s_user_ns = get_user_ns(user_ns);
336 	init_rwsem(&s->s_umount);
337 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
338 	/*
339 	 * sget() can have s_umount recursion.
340 	 *
341 	 * When it cannot find a suitable sb, it allocates a new
342 	 * one (this one), and tries again to find a suitable old
343 	 * one.
344 	 *
345 	 * In case that succeeds, it will acquire the s_umount
346 	 * lock of the old one. Since these are clearly distrinct
347 	 * locks, and this object isn't exposed yet, there's no
348 	 * risk of deadlocks.
349 	 *
350 	 * Annotate this by putting this lock in a different
351 	 * subclass.
352 	 */
353 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
354 
355 	if (security_sb_alloc(s))
356 		goto fail;
357 
358 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
359 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
360 					sb_writers_name[i],
361 					&type->s_writers_key[i]))
362 			goto fail;
363 	}
364 	s->s_bdi = &noop_backing_dev_info;
365 	s->s_flags = flags;
366 	if (s->s_user_ns != &init_user_ns)
367 		s->s_iflags |= SB_I_NODEV;
368 	INIT_HLIST_NODE(&s->s_instances);
369 	INIT_HLIST_BL_HEAD(&s->s_roots);
370 	mutex_init(&s->s_sync_lock);
371 	INIT_LIST_HEAD(&s->s_inodes);
372 	spin_lock_init(&s->s_inode_list_lock);
373 	INIT_LIST_HEAD(&s->s_inodes_wb);
374 	spin_lock_init(&s->s_inode_wblist_lock);
375 
376 	s->s_count = 1;
377 	atomic_set(&s->s_active, 1);
378 	mutex_init(&s->s_vfs_rename_mutex);
379 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
380 	init_rwsem(&s->s_dquot.dqio_sem);
381 	s->s_maxbytes = MAX_NON_LFS;
382 	s->s_op = &default_op;
383 	s->s_time_gran = 1000000000;
384 	s->s_time_min = TIME64_MIN;
385 	s->s_time_max = TIME64_MAX;
386 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
387 
388 	s->s_shrink.seeks = DEFAULT_SEEKS;
389 	s->s_shrink.scan_objects = super_cache_scan;
390 	s->s_shrink.count_objects = super_cache_count;
391 	s->s_shrink.batch = 1024;
392 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
393 	if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
394 		goto fail;
395 	if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
396 		goto fail;
397 	if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
398 		goto fail;
399 	return s;
400 
401 fail:
402 	destroy_unused_super(s);
403 	return NULL;
404 }
405 
406 /* Superblock refcounting  */
407 
408 /*
409  * Drop a superblock's refcount.  The caller must hold sb_lock.
410  */
__put_super(struct super_block * s)411 static void __put_super(struct super_block *s)
412 {
413 	if (!--s->s_count) {
414 		list_del_init(&s->s_list);
415 		WARN_ON(s->s_dentry_lru.node);
416 		WARN_ON(s->s_inode_lru.node);
417 		WARN_ON(!list_empty(&s->s_mounts));
418 		security_sb_free(s);
419 		put_user_ns(s->s_user_ns);
420 		kfree(s->s_subtype);
421 		call_rcu(&s->rcu, destroy_super_rcu);
422 	}
423 }
424 
425 /**
426  *	put_super	-	drop a temporary reference to superblock
427  *	@sb: superblock in question
428  *
429  *	Drops a temporary reference, frees superblock if there's no
430  *	references left.
431  */
put_super(struct super_block * sb)432 void put_super(struct super_block *sb)
433 {
434 	spin_lock(&sb_lock);
435 	__put_super(sb);
436 	spin_unlock(&sb_lock);
437 }
438 
kill_super_notify(struct super_block * sb)439 static void kill_super_notify(struct super_block *sb)
440 {
441 	lockdep_assert_not_held(&sb->s_umount);
442 
443 	/* already notified earlier */
444 	if (sb->s_flags & SB_DEAD)
445 		return;
446 
447 	/*
448 	 * Remove it from @fs_supers so it isn't found by new
449 	 * sget{_fc}() walkers anymore. Any concurrent mounter still
450 	 * managing to grab a temporary reference is guaranteed to
451 	 * already see SB_DYING and will wait until we notify them about
452 	 * SB_DEAD.
453 	 */
454 	spin_lock(&sb_lock);
455 	hlist_del_init(&sb->s_instances);
456 	spin_unlock(&sb_lock);
457 
458 	/*
459 	 * Let concurrent mounts know that this thing is really dead.
460 	 * We don't need @sb->s_umount here as every concurrent caller
461 	 * will see SB_DYING and either discard the superblock or wait
462 	 * for SB_DEAD.
463 	 */
464 	super_wake(sb, SB_DEAD);
465 }
466 
467 /**
468  *	deactivate_locked_super	-	drop an active reference to superblock
469  *	@s: superblock to deactivate
470  *
471  *	Drops an active reference to superblock, converting it into a temporary
472  *	one if there is no other active references left.  In that case we
473  *	tell fs driver to shut it down and drop the temporary reference we
474  *	had just acquired.
475  *
476  *	Caller holds exclusive lock on superblock; that lock is released.
477  */
deactivate_locked_super(struct super_block * s)478 void deactivate_locked_super(struct super_block *s)
479 {
480 	struct file_system_type *fs = s->s_type;
481 	if (atomic_dec_and_test(&s->s_active)) {
482 		cleancache_invalidate_fs(s);
483 		unregister_shrinker(&s->s_shrink);
484 		fs->kill_sb(s);
485 
486 		kill_super_notify(s);
487 
488 		/*
489 		 * Since list_lru_destroy() may sleep, we cannot call it from
490 		 * put_super(), where we hold the sb_lock. Therefore we destroy
491 		 * the lru lists right now.
492 		 */
493 		list_lru_destroy(&s->s_dentry_lru);
494 		list_lru_destroy(&s->s_inode_lru);
495 
496 		put_filesystem(fs);
497 		put_super(s);
498 	} else {
499 		super_unlock_excl(s);
500 	}
501 }
502 
503 EXPORT_SYMBOL(deactivate_locked_super);
504 
505 /**
506  *	deactivate_super	-	drop an active reference to superblock
507  *	@s: superblock to deactivate
508  *
509  *	Variant of deactivate_locked_super(), except that superblock is *not*
510  *	locked by caller.  If we are going to drop the final active reference,
511  *	lock will be acquired prior to that.
512  */
deactivate_super(struct super_block * s)513 void deactivate_super(struct super_block *s)
514 {
515 	if (!atomic_add_unless(&s->s_active, -1, 1)) {
516 		__super_lock_excl(s);
517 		deactivate_locked_super(s);
518 	}
519 }
520 
521 EXPORT_SYMBOL(deactivate_super);
522 
523 /**
524  *	grab_super - acquire an active reference
525  *	@s: reference we are trying to make active
526  *
527  *	Tries to acquire an active reference.  grab_super() is used when we
528  * 	had just found a superblock in super_blocks or fs_type->fs_supers
529  *	and want to turn it into a full-blown active reference.  grab_super()
530  *	is called with sb_lock held and drops it.  Returns 1 in case of
531  *	success, 0 if we had failed (superblock contents was already dead or
532  *	dying when grab_super() had been called).  Note that this is only
533  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
534  *	of their type), so increment of ->s_count is OK here.
535  */
grab_super(struct super_block * s)536 static int grab_super(struct super_block *s) __releases(sb_lock)
537 {
538 	bool born;
539 
540 	s->s_count++;
541 	spin_unlock(&sb_lock);
542 	born = super_lock_excl(s);
543 	if (born && atomic_inc_not_zero(&s->s_active)) {
544 		put_super(s);
545 		return 1;
546 	}
547 	super_unlock_excl(s);
548 	put_super(s);
549 	return 0;
550 }
551 
wait_dead(struct super_block * sb)552 static inline bool wait_dead(struct super_block *sb)
553 {
554 	unsigned int flags;
555 
556 	/*
557 	 * Pairs with memory barrier in super_wake() and ensures
558 	 * that we see SB_DEAD after we're woken.
559 	 */
560 	flags = smp_load_acquire(&sb->s_flags);
561 	return flags & SB_DEAD;
562 }
563 
564 /**
565  * grab_super_dead - acquire an active reference to a superblock
566  * @sb: superblock to acquire
567  *
568  * Acquire a temporary reference on a superblock and try to trade it for
569  * an active reference. This is used in sget{_fc}() to wait for a
570  * superblock to either become SB_BORN or for it to pass through
571  * sb->kill() and be marked as SB_DEAD.
572  *
573  * Return: This returns true if an active reference could be acquired,
574  *         false if not.
575  */
grab_super_dead(struct super_block * sb)576 static bool grab_super_dead(struct super_block *sb)
577 {
578 
579 	sb->s_count++;
580 	if (grab_super(sb)) {
581 		put_super(sb);
582 		lockdep_assert_held(&sb->s_umount);
583 		return true;
584 	}
585 	wait_var_event(&sb->s_flags, wait_dead(sb));
586 	lockdep_assert_not_held(&sb->s_umount);
587 	put_super(sb);
588 	return false;
589 }
590 
591 /*
592  *	super_trylock_shared - try to grab ->s_umount shared
593  *	@sb: reference we are trying to grab
594  *
595  *	Try to prevent fs shutdown.  This is used in places where we
596  *	cannot take an active reference but we need to ensure that the
597  *	filesystem is not shut down while we are working on it. It returns
598  *	false if we cannot acquire s_umount or if we lose the race and
599  *	filesystem already got into shutdown, and returns true with the s_umount
600  *	lock held in read mode in case of success. On successful return,
601  *	the caller must drop the s_umount lock when done.
602  *
603  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
604  *	The reason why it's safe is that we are OK with doing trylock instead
605  *	of down_read().  There's a couple of places that are OK with that, but
606  *	it's very much not a general-purpose interface.
607  */
super_trylock_shared(struct super_block * sb)608 bool super_trylock_shared(struct super_block *sb)
609 {
610 	if (down_read_trylock(&sb->s_umount)) {
611 		if (!(sb->s_flags & SB_DYING) && sb->s_root &&
612 		    (sb->s_flags & SB_BORN))
613 			return true;
614 		super_unlock_shared(sb);
615 	}
616 
617 	return false;
618 }
619 
620 /**
621  *	retire_super	-	prevents superblock from being reused
622  *	@sb: superblock to retire
623  *
624  *	The function marks superblock to be ignored in superblock test, which
625  *	prevents it from being reused for any new mounts.  If the superblock has
626  *	a private bdi, it also unregisters it, but doesn't reduce the refcount
627  *	of the superblock to prevent potential races.  The refcount is reduced
628  *	by generic_shutdown_super().  The function can not be called
629  *	concurrently with generic_shutdown_super().  It is safe to call the
630  *	function multiple times, subsequent calls have no effect.
631  *
632  *	The marker will affect the re-use only for block-device-based
633  *	superblocks.  Other superblocks will still get marked if this function
634  *	is used, but that will not affect their reusability.
635  */
retire_super(struct super_block * sb)636 void retire_super(struct super_block *sb)
637 {
638 	WARN_ON(!sb->s_bdev);
639 	__super_lock_excl(sb);
640 	if (sb->s_iflags & SB_I_PERSB_BDI) {
641 		bdi_unregister(sb->s_bdi);
642 		sb->s_iflags &= ~SB_I_PERSB_BDI;
643 	}
644 	sb->s_iflags |= SB_I_RETIRED;
645 	super_unlock_excl(sb);
646 }
647 EXPORT_SYMBOL(retire_super);
648 
649 /**
650  *	generic_shutdown_super	-	common helper for ->kill_sb()
651  *	@sb: superblock to kill
652  *
653  *	generic_shutdown_super() does all fs-independent work on superblock
654  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
655  *	that need destruction out of superblock, call generic_shutdown_super()
656  *	and release aforementioned objects.  Note: dentries and inodes _are_
657  *	taken care of and do not need specific handling.
658  *
659  *	Upon calling this function, the filesystem may no longer alter or
660  *	rearrange the set of dentries belonging to this super_block, nor may it
661  *	change the attachments of dentries to inodes.
662  */
generic_shutdown_super(struct super_block * sb)663 void generic_shutdown_super(struct super_block *sb)
664 {
665 	const struct super_operations *sop = sb->s_op;
666 
667 	if (sb->s_root) {
668 		shrink_dcache_for_umount(sb);
669 		sync_filesystem(sb);
670 		sb->s_flags &= ~SB_ACTIVE;
671 
672 		cgroup_writeback_umount();
673 
674 		/* Evict all inodes with zero refcount. */
675 		evict_inodes(sb);
676 
677 		/*
678 		 * Clean up and evict any inodes that still have references due
679 		 * to fsnotify or the security policy.
680 		 */
681 		fsnotify_sb_delete(sb);
682 		security_sb_delete(sb);
683 
684 		/*
685 		 * Now that all potentially-encrypted inodes have been evicted,
686 		 * the fscrypt keyring can be destroyed.
687 		 */
688 		fscrypt_destroy_keyring(sb);
689 
690 		if (sb->s_dio_done_wq) {
691 			destroy_workqueue(sb->s_dio_done_wq);
692 			sb->s_dio_done_wq = NULL;
693 		}
694 
695 		if (sop->put_super)
696 			sop->put_super(sb);
697 
698 		if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
699 				"VFS: Busy inodes after unmount of %s (%s)",
700 				sb->s_id, sb->s_type->name)) {
701 			/*
702 			 * Adding a proper bailout path here would be hard, but
703 			 * we can at least make it more likely that a later
704 			 * iput_final() or such crashes cleanly.
705 			 */
706 			struct inode *inode;
707 
708 			spin_lock(&sb->s_inode_list_lock);
709 			list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
710 				inode->i_op = VFS_PTR_POISON;
711 				inode->i_sb = VFS_PTR_POISON;
712 				inode->i_mapping = VFS_PTR_POISON;
713 			}
714 			spin_unlock(&sb->s_inode_list_lock);
715 		}
716 	}
717 	/*
718 	 * Broadcast to everyone that grabbed a temporary reference to this
719 	 * superblock before we removed it from @fs_supers that the superblock
720 	 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
721 	 * discard this superblock and treat it as dead.
722 	 *
723 	 * We leave the superblock on @fs_supers so it can be found by
724 	 * sget{_fc}() until we passed sb->kill_sb().
725 	 */
726 	super_wake(sb, SB_DYING);
727 	super_unlock_excl(sb);
728 	if (sb->s_bdi != &noop_backing_dev_info) {
729 		if (sb->s_iflags & SB_I_PERSB_BDI)
730 			bdi_unregister(sb->s_bdi);
731 		bdi_put(sb->s_bdi);
732 		sb->s_bdi = &noop_backing_dev_info;
733 	}
734 }
735 
736 EXPORT_SYMBOL(generic_shutdown_super);
737 
mount_capable(struct fs_context * fc)738 bool mount_capable(struct fs_context *fc)
739 {
740 	if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
741 		return capable(CAP_SYS_ADMIN);
742 	else
743 		return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
744 }
745 
746 /**
747  * sget_fc - Find or create a superblock
748  * @fc:	Filesystem context.
749  * @test: Comparison callback
750  * @set: Setup callback
751  *
752  * Create a new superblock or find an existing one.
753  *
754  * The @test callback is used to find a matching existing superblock.
755  * Whether or not the requested parameters in @fc are taken into account
756  * is specific to the @test callback that is used. They may even be
757  * completely ignored.
758  *
759  * If an extant superblock is matched, it will be returned unless:
760  *
761  * (1) the namespace the filesystem context @fc and the extant
762  *     superblock's namespace differ
763  *
764  * (2) the filesystem context @fc has requested that reusing an extant
765  *     superblock is not allowed
766  *
767  * In both cases EBUSY will be returned.
768  *
769  * If no match is made, a new superblock will be allocated and basic
770  * initialisation will be performed (s_type, s_fs_info and s_id will be
771  * set and the @set callback will be invoked), the superblock will be
772  * published and it will be returned in a partially constructed state
773  * with SB_BORN and SB_ACTIVE as yet unset.
774  *
775  * Return: On success, an extant or newly created superblock is
776  *         returned. On failure an error pointer is returned.
777  */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))778 struct super_block *sget_fc(struct fs_context *fc,
779 			    int (*test)(struct super_block *, struct fs_context *),
780 			    int (*set)(struct super_block *, struct fs_context *))
781 {
782 	struct super_block *s = NULL;
783 	struct super_block *old;
784 	struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
785 	int err;
786 
787 	/*
788 	 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
789 	 * not set, as the filesystem is likely unprepared to handle it.
790 	 * This can happen when fsconfig() is called from init_user_ns with
791 	 * an fs_fd opened in another user namespace.
792 	 */
793 	if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
794 		errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed");
795 		return ERR_PTR(-EPERM);
796 	}
797 
798 retry:
799 	spin_lock(&sb_lock);
800 	if (test) {
801 		hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
802 			if (test(old, fc))
803 				goto share_extant_sb;
804 		}
805 	}
806 	if (!s) {
807 		spin_unlock(&sb_lock);
808 		s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
809 		if (!s)
810 			return ERR_PTR(-ENOMEM);
811 		goto retry;
812 	}
813 
814 	s->s_fs_info = fc->s_fs_info;
815 	err = set(s, fc);
816 	if (err) {
817 		s->s_fs_info = NULL;
818 		spin_unlock(&sb_lock);
819 		destroy_unused_super(s);
820 		return ERR_PTR(err);
821 	}
822 	fc->s_fs_info = NULL;
823 	s->s_type = fc->fs_type;
824 	s->s_iflags |= fc->s_iflags;
825 	strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
826 	/*
827 	 * Make the superblock visible on @super_blocks and @fs_supers.
828 	 * It's in a nascent state and users should wait on SB_BORN or
829 	 * SB_DYING to be set.
830 	 */
831 	list_add_tail(&s->s_list, &super_blocks);
832 	hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
833 	spin_unlock(&sb_lock);
834 	get_filesystem(s->s_type);
835 	register_shrinker_prepared(&s->s_shrink);
836 	return s;
837 
838 share_extant_sb:
839 	if (user_ns != old->s_user_ns || fc->exclusive) {
840 		spin_unlock(&sb_lock);
841 		destroy_unused_super(s);
842 		if (fc->exclusive)
843 			warnfc(fc, "reusing existing filesystem not allowed");
844 		else
845 			warnfc(fc, "reusing existing filesystem in another namespace not allowed");
846 		return ERR_PTR(-EBUSY);
847 	}
848 	if (!grab_super_dead(old))
849 		goto retry;
850 	destroy_unused_super(s);
851 	return old;
852 }
853 EXPORT_SYMBOL(sget_fc);
854 
855 /**
856  *	sget	-	find or create a superblock
857  *	@type:	  filesystem type superblock should belong to
858  *	@test:	  comparison callback
859  *	@set:	  setup callback
860  *	@flags:	  mount flags
861  *	@data:	  argument to each of them
862  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)863 struct super_block *sget(struct file_system_type *type,
864 			int (*test)(struct super_block *,void *),
865 			int (*set)(struct super_block *,void *),
866 			int flags,
867 			void *data)
868 {
869 	struct user_namespace *user_ns = current_user_ns();
870 	struct super_block *s = NULL;
871 	struct super_block *old;
872 	int err;
873 
874 	/* We don't yet pass the user namespace of the parent
875 	 * mount through to here so always use &init_user_ns
876 	 * until that changes.
877 	 */
878 	if (flags & SB_SUBMOUNT)
879 		user_ns = &init_user_ns;
880 
881 retry:
882 	spin_lock(&sb_lock);
883 	if (test) {
884 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
885 			if (!test(old, data))
886 				continue;
887 			if (user_ns != old->s_user_ns) {
888 				spin_unlock(&sb_lock);
889 				destroy_unused_super(s);
890 				return ERR_PTR(-EBUSY);
891 			}
892 			if (!grab_super_dead(old))
893 				goto retry;
894 			destroy_unused_super(s);
895 			return old;
896 		}
897 	}
898 	if (!s) {
899 		spin_unlock(&sb_lock);
900 		s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
901 		if (!s)
902 			return ERR_PTR(-ENOMEM);
903 		goto retry;
904 	}
905 
906 	err = set(s, data);
907 	if (err) {
908 		spin_unlock(&sb_lock);
909 		destroy_unused_super(s);
910 		return ERR_PTR(err);
911 	}
912 	s->s_type = type;
913 	strscpy(s->s_id, type->name, sizeof(s->s_id));
914 	list_add_tail(&s->s_list, &super_blocks);
915 	hlist_add_head(&s->s_instances, &type->fs_supers);
916 	spin_unlock(&sb_lock);
917 	get_filesystem(type);
918 	register_shrinker_prepared(&s->s_shrink);
919 	return s;
920 }
921 EXPORT_SYMBOL(sget);
922 
drop_super(struct super_block * sb)923 void drop_super(struct super_block *sb)
924 {
925 	super_unlock_shared(sb);
926 	put_super(sb);
927 }
928 
929 EXPORT_SYMBOL(drop_super);
930 
drop_super_exclusive(struct super_block * sb)931 void drop_super_exclusive(struct super_block *sb)
932 {
933 	super_unlock_excl(sb);
934 	put_super(sb);
935 }
936 EXPORT_SYMBOL(drop_super_exclusive);
937 
__iterate_supers(void (* f)(struct super_block *))938 static void __iterate_supers(void (*f)(struct super_block *))
939 {
940 	struct super_block *sb, *p = NULL;
941 
942 	spin_lock(&sb_lock);
943 	list_for_each_entry(sb, &super_blocks, s_list) {
944 		/* Pairs with memory marrier in super_wake(). */
945 		if (smp_load_acquire(&sb->s_flags) & SB_DYING)
946 			continue;
947 		sb->s_count++;
948 		spin_unlock(&sb_lock);
949 
950 		f(sb);
951 
952 		spin_lock(&sb_lock);
953 		if (p)
954 			__put_super(p);
955 		p = sb;
956 	}
957 	if (p)
958 		__put_super(p);
959 	spin_unlock(&sb_lock);
960 }
961 /**
962  *	iterate_supers - call function for all active superblocks
963  *	@f: function to call
964  *	@arg: argument to pass to it
965  *
966  *	Scans the superblock list and calls given function, passing it
967  *	locked superblock and given argument.
968  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)969 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
970 {
971 	struct super_block *sb, *p = NULL;
972 
973 	spin_lock(&sb_lock);
974 	list_for_each_entry(sb, &super_blocks, s_list) {
975 		bool born;
976 
977 		sb->s_count++;
978 		spin_unlock(&sb_lock);
979 
980 		born = super_lock_shared(sb);
981 		if (born && sb->s_root)
982 			f(sb, arg);
983 		super_unlock_shared(sb);
984 
985 		spin_lock(&sb_lock);
986 		if (p)
987 			__put_super(p);
988 		p = sb;
989 	}
990 	if (p)
991 		__put_super(p);
992 	spin_unlock(&sb_lock);
993 }
994 
995 /**
996  *	iterate_supers_type - call function for superblocks of given type
997  *	@type: fs type
998  *	@f: function to call
999  *	@arg: argument to pass to it
1000  *
1001  *	Scans the superblock list and calls given function, passing it
1002  *	locked superblock and given argument.
1003  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)1004 void iterate_supers_type(struct file_system_type *type,
1005 	void (*f)(struct super_block *, void *), void *arg)
1006 {
1007 	struct super_block *sb, *p = NULL;
1008 
1009 	spin_lock(&sb_lock);
1010 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
1011 		bool born;
1012 
1013 		sb->s_count++;
1014 		spin_unlock(&sb_lock);
1015 
1016 		born = super_lock_shared(sb);
1017 		if (born && sb->s_root)
1018 			f(sb, arg);
1019 		super_unlock_shared(sb);
1020 
1021 		spin_lock(&sb_lock);
1022 		if (p)
1023 			__put_super(p);
1024 		p = sb;
1025 	}
1026 	if (p)
1027 		__put_super(p);
1028 	spin_unlock(&sb_lock);
1029 }
1030 
1031 EXPORT_SYMBOL(iterate_supers_type);
1032 
1033 /**
1034  * get_active_super - get an active reference to the superblock of a device
1035  * @bdev: device to get the superblock for
1036  *
1037  * Scans the superblock list and finds the superblock of the file system
1038  * mounted on the device given.  Returns the superblock with an active
1039  * reference or %NULL if none was found.
1040  */
get_active_super(struct block_device * bdev)1041 struct super_block *get_active_super(struct block_device *bdev)
1042 {
1043 	struct super_block *sb;
1044 
1045 	if (!bdev)
1046 		return NULL;
1047 
1048 	spin_lock(&sb_lock);
1049 	list_for_each_entry(sb, &super_blocks, s_list) {
1050 		if (sb->s_bdev == bdev) {
1051 			if (!grab_super(sb))
1052 				return NULL;
1053 			super_unlock_excl(sb);
1054 			return sb;
1055 		}
1056 	}
1057 	spin_unlock(&sb_lock);
1058 	return NULL;
1059 }
1060 
user_get_super(dev_t dev,bool excl)1061 struct super_block *user_get_super(dev_t dev, bool excl)
1062 {
1063 	struct super_block *sb;
1064 
1065 	spin_lock(&sb_lock);
1066 	list_for_each_entry(sb, &super_blocks, s_list) {
1067 		if (sb->s_dev ==  dev) {
1068 			bool born;
1069 
1070 			sb->s_count++;
1071 			spin_unlock(&sb_lock);
1072 			/* still alive? */
1073 			born = super_lock(sb, excl);
1074 			if (born && sb->s_root)
1075 				return sb;
1076 			super_unlock(sb, excl);
1077 			/* nope, got unmounted */
1078 			spin_lock(&sb_lock);
1079 			__put_super(sb);
1080 			break;
1081 		}
1082 	}
1083 	spin_unlock(&sb_lock);
1084 	return NULL;
1085 }
1086 
1087 /**
1088  * reconfigure_super - asks filesystem to change superblock parameters
1089  * @fc: The superblock and configuration
1090  *
1091  * Alters the configuration parameters of a live superblock.
1092  */
reconfigure_super(struct fs_context * fc)1093 int reconfigure_super(struct fs_context *fc)
1094 {
1095 	struct super_block *sb = fc->root->d_sb;
1096 	int retval;
1097 	bool remount_ro = false;
1098 	bool remount_rw = false;
1099 	bool force = fc->sb_flags & SB_FORCE;
1100 
1101 	if (fc->sb_flags_mask & ~MS_RMT_MASK)
1102 		return -EINVAL;
1103 	if (sb->s_writers.frozen != SB_UNFROZEN)
1104 		return -EBUSY;
1105 
1106 	retval = security_sb_remount(sb, fc->security);
1107 	if (retval)
1108 		return retval;
1109 
1110 	if (fc->sb_flags_mask & SB_RDONLY) {
1111 #ifdef CONFIG_BLOCK
1112 		if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1113 		    bdev_read_only(sb->s_bdev))
1114 			return -EACCES;
1115 #endif
1116 		remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1117 		remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1118 	}
1119 
1120 	if (remount_ro) {
1121 		if (!hlist_empty(&sb->s_pins)) {
1122 			super_unlock_excl(sb);
1123 			group_pin_kill(&sb->s_pins);
1124 			__super_lock_excl(sb);
1125 			if (!sb->s_root)
1126 				return 0;
1127 			if (sb->s_writers.frozen != SB_UNFROZEN)
1128 				return -EBUSY;
1129 			remount_ro = !sb_rdonly(sb);
1130 		}
1131 	}
1132 	shrink_dcache_sb(sb);
1133 
1134 	/* If we are reconfiguring to RDONLY and current sb is read/write,
1135 	 * make sure there are no files open for writing.
1136 	 */
1137 	if (remount_ro) {
1138 		if (force) {
1139 			sb_start_ro_state_change(sb);
1140 		} else {
1141 			retval = sb_prepare_remount_readonly(sb);
1142 			if (retval)
1143 				return retval;
1144 		}
1145 	} else if (remount_rw) {
1146 		/*
1147 		 * Protect filesystem's reconfigure code from writes from
1148 		 * userspace until reconfigure finishes.
1149 		 */
1150 		sb_start_ro_state_change(sb);
1151 	}
1152 
1153 	if (fc->ops->reconfigure) {
1154 		retval = fc->ops->reconfigure(fc);
1155 		if (retval) {
1156 			if (!force)
1157 				goto cancel_readonly;
1158 			/* If forced remount, go ahead despite any errors */
1159 			WARN(1, "forced remount of a %s fs returned %i\n",
1160 			     sb->s_type->name, retval);
1161 		}
1162 	}
1163 
1164 	WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1165 				 (fc->sb_flags & fc->sb_flags_mask)));
1166 	sb_end_ro_state_change(sb);
1167 
1168 	/*
1169 	 * Some filesystems modify their metadata via some other path than the
1170 	 * bdev buffer cache (eg. use a private mapping, or directories in
1171 	 * pagecache, etc). Also file data modifications go via their own
1172 	 * mappings. So If we try to mount readonly then copy the filesystem
1173 	 * from bdev, we could get stale data, so invalidate it to give a best
1174 	 * effort at coherency.
1175 	 */
1176 	if (remount_ro && sb->s_bdev)
1177 		invalidate_bdev(sb->s_bdev);
1178 	return 0;
1179 
1180 cancel_readonly:
1181 	sb_end_ro_state_change(sb);
1182 	return retval;
1183 }
1184 
do_emergency_remount_callback(struct super_block * sb)1185 static void do_emergency_remount_callback(struct super_block *sb)
1186 {
1187 	bool born = super_lock_excl(sb);
1188 
1189 	if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1190 		struct fs_context *fc;
1191 
1192 		fc = fs_context_for_reconfigure(sb->s_root,
1193 					SB_RDONLY | SB_FORCE, SB_RDONLY);
1194 		if (!IS_ERR(fc)) {
1195 			if (parse_monolithic_mount_data(fc, NULL) == 0)
1196 				(void)reconfigure_super(fc);
1197 			put_fs_context(fc);
1198 		}
1199 	}
1200 	super_unlock_excl(sb);
1201 }
1202 
do_emergency_remount(struct work_struct * work)1203 static void do_emergency_remount(struct work_struct *work)
1204 {
1205 	__iterate_supers(do_emergency_remount_callback);
1206 	kfree(work);
1207 	printk("Emergency Remount complete\n");
1208 }
1209 
emergency_remount(void)1210 void emergency_remount(void)
1211 {
1212 	struct work_struct *work;
1213 
1214 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1215 	if (work) {
1216 		INIT_WORK(work, do_emergency_remount);
1217 		schedule_work(work);
1218 	}
1219 }
1220 
do_thaw_all_callback(struct super_block * sb)1221 static void do_thaw_all_callback(struct super_block *sb)
1222 {
1223 	bool born = super_lock_excl(sb);
1224 
1225 	if (born && sb->s_root) {
1226 		if (IS_ENABLED(CONFIG_BLOCK))
1227 			while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
1228 				pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1229 		thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1230 	} else {
1231 		super_unlock_excl(sb);
1232 	}
1233 }
1234 
do_thaw_all(struct work_struct * work)1235 static void do_thaw_all(struct work_struct *work)
1236 {
1237 	__iterate_supers(do_thaw_all_callback);
1238 	kfree(work);
1239 	printk(KERN_WARNING "Emergency Thaw complete\n");
1240 }
1241 
1242 /**
1243  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1244  *
1245  * Used for emergency unfreeze of all filesystems via SysRq
1246  */
emergency_thaw_all(void)1247 void emergency_thaw_all(void)
1248 {
1249 	struct work_struct *work;
1250 
1251 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
1252 	if (work) {
1253 		INIT_WORK(work, do_thaw_all);
1254 		schedule_work(work);
1255 	}
1256 }
1257 
1258 static DEFINE_IDA(unnamed_dev_ida);
1259 
1260 /**
1261  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1262  * @p: Pointer to a dev_t.
1263  *
1264  * Filesystems which don't use real block devices can call this function
1265  * to allocate a virtual block device.
1266  *
1267  * Context: Any context.  Frequently called while holding sb_lock.
1268  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1269  * or -ENOMEM if memory allocation failed.
1270  */
get_anon_bdev(dev_t * p)1271 int get_anon_bdev(dev_t *p)
1272 {
1273 	int dev;
1274 
1275 	/*
1276 	 * Many userspace utilities consider an FSID of 0 invalid.
1277 	 * Always return at least 1 from get_anon_bdev.
1278 	 */
1279 	dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1280 			GFP_ATOMIC);
1281 	if (dev == -ENOSPC)
1282 		dev = -EMFILE;
1283 	if (dev < 0)
1284 		return dev;
1285 
1286 	*p = MKDEV(0, dev);
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL(get_anon_bdev);
1290 
free_anon_bdev(dev_t dev)1291 void free_anon_bdev(dev_t dev)
1292 {
1293 	ida_free(&unnamed_dev_ida, MINOR(dev));
1294 }
1295 EXPORT_SYMBOL(free_anon_bdev);
1296 
set_anon_super(struct super_block * s,void * data)1297 int set_anon_super(struct super_block *s, void *data)
1298 {
1299 	return get_anon_bdev(&s->s_dev);
1300 }
1301 EXPORT_SYMBOL(set_anon_super);
1302 
kill_anon_super(struct super_block * sb)1303 void kill_anon_super(struct super_block *sb)
1304 {
1305 	dev_t dev = sb->s_dev;
1306 	generic_shutdown_super(sb);
1307 	kill_super_notify(sb);
1308 	free_anon_bdev(dev);
1309 }
1310 EXPORT_SYMBOL(kill_anon_super);
1311 
kill_litter_super(struct super_block * sb)1312 void kill_litter_super(struct super_block *sb)
1313 {
1314 	if (sb->s_root)
1315 		d_genocide(sb->s_root);
1316 	kill_anon_super(sb);
1317 }
1318 EXPORT_SYMBOL(kill_litter_super);
1319 
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1320 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1321 {
1322 	return set_anon_super(sb, NULL);
1323 }
1324 EXPORT_SYMBOL(set_anon_super_fc);
1325 
test_keyed_super(struct super_block * sb,struct fs_context * fc)1326 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1327 {
1328 	return sb->s_fs_info == fc->s_fs_info;
1329 }
1330 
test_single_super(struct super_block * s,struct fs_context * fc)1331 static int test_single_super(struct super_block *s, struct fs_context *fc)
1332 {
1333 	return 1;
1334 }
1335 
vfs_get_super(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* fill_super)(struct super_block * sb,struct fs_context * fc))1336 static int vfs_get_super(struct fs_context *fc,
1337 		int (*test)(struct super_block *, struct fs_context *),
1338 		int (*fill_super)(struct super_block *sb,
1339 				  struct fs_context *fc))
1340 {
1341 	struct super_block *sb;
1342 	int err;
1343 
1344 	sb = sget_fc(fc, test, set_anon_super_fc);
1345 	if (IS_ERR(sb))
1346 		return PTR_ERR(sb);
1347 
1348 	if (!sb->s_root) {
1349 		err = fill_super(sb, fc);
1350 		if (err)
1351 			goto error;
1352 
1353 		sb->s_flags |= SB_ACTIVE;
1354 	}
1355 
1356 	fc->root = dget(sb->s_root);
1357 	return 0;
1358 
1359 error:
1360 	deactivate_locked_super(sb);
1361 	return err;
1362 }
1363 
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1364 int get_tree_nodev(struct fs_context *fc,
1365 		  int (*fill_super)(struct super_block *sb,
1366 				    struct fs_context *fc))
1367 {
1368 	return vfs_get_super(fc, NULL, fill_super);
1369 }
1370 EXPORT_SYMBOL(get_tree_nodev);
1371 
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1372 int get_tree_single(struct fs_context *fc,
1373 		  int (*fill_super)(struct super_block *sb,
1374 				    struct fs_context *fc))
1375 {
1376 	return vfs_get_super(fc, test_single_super, fill_super);
1377 }
1378 EXPORT_SYMBOL(get_tree_single);
1379 
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1380 int get_tree_keyed(struct fs_context *fc,
1381 		  int (*fill_super)(struct super_block *sb,
1382 				    struct fs_context *fc),
1383 		void *key)
1384 {
1385 	fc->s_fs_info = key;
1386 	return vfs_get_super(fc, test_keyed_super, fill_super);
1387 }
1388 EXPORT_SYMBOL(get_tree_keyed);
1389 
set_bdev_super(struct super_block * s,void * data)1390 static int set_bdev_super(struct super_block *s, void *data)
1391 {
1392 	s->s_dev = *(dev_t *)data;
1393 	return 0;
1394 }
1395 
super_s_dev_set(struct super_block * s,struct fs_context * fc)1396 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1397 {
1398 	return set_bdev_super(s, fc->sget_key);
1399 }
1400 
super_s_dev_test(struct super_block * s,struct fs_context * fc)1401 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1402 {
1403 	return !(s->s_iflags & SB_I_RETIRED) &&
1404 		s->s_dev == *(dev_t *)fc->sget_key;
1405 }
1406 
1407 /**
1408  * sget_dev - Find or create a superblock by device number
1409  * @fc: Filesystem context.
1410  * @dev: device number
1411  *
1412  * Find or create a superblock using the provided device number that
1413  * will be stored in fc->sget_key.
1414  *
1415  * If an extant superblock is matched, then that will be returned with
1416  * an elevated reference count that the caller must transfer or discard.
1417  *
1418  * If no match is made, a new superblock will be allocated and basic
1419  * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1420  * be set). The superblock will be published and it will be returned in
1421  * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1422  * unset.
1423  *
1424  * Return: an existing or newly created superblock on success, an error
1425  *         pointer on failure.
1426  */
sget_dev(struct fs_context * fc,dev_t dev)1427 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1428 {
1429 	fc->sget_key = &dev;
1430 	return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1431 }
1432 EXPORT_SYMBOL(sget_dev);
1433 
1434 #ifdef CONFIG_BLOCK
1435 /*
1436  * Lock a super block that the callers holds a reference to.
1437  *
1438  * The caller needs to ensure that the super_block isn't being freed while
1439  * calling this function, e.g. by holding a lock over the call to this function
1440  * and the place that clears the pointer to the superblock used by this function
1441  * before freeing the superblock.
1442  */
super_lock_shared_active(struct super_block * sb)1443 static bool super_lock_shared_active(struct super_block *sb)
1444 {
1445 	bool born = super_lock_shared(sb);
1446 
1447 	if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1448 		super_unlock_shared(sb);
1449 		return false;
1450 	}
1451 	return true;
1452 }
1453 
fs_bdev_mark_dead(struct block_device * bdev,bool surprise)1454 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1455 {
1456 	struct super_block *sb = bdev->bd_holder;
1457 
1458 	/* bd_holder_lock ensures that the sb isn't freed */
1459 	lockdep_assert_held(&bdev->bd_holder_lock);
1460 
1461 	if (!super_lock_shared_active(sb))
1462 		return;
1463 
1464 	if (!surprise)
1465 		sync_filesystem(sb);
1466 	shrink_dcache_sb(sb);
1467 	invalidate_inodes(sb);
1468 	if (sb->s_op->shutdown)
1469 		sb->s_op->shutdown(sb);
1470 
1471 	super_unlock_shared(sb);
1472 }
1473 
fs_bdev_sync(struct block_device * bdev)1474 static void fs_bdev_sync(struct block_device *bdev)
1475 {
1476 	struct super_block *sb = bdev->bd_holder;
1477 
1478 	lockdep_assert_held(&bdev->bd_holder_lock);
1479 
1480 	if (!super_lock_shared_active(sb))
1481 		return;
1482 	sync_filesystem(sb);
1483 	super_unlock_shared(sb);
1484 }
1485 
1486 const struct blk_holder_ops fs_holder_ops = {
1487 	.mark_dead		= fs_bdev_mark_dead,
1488 	.sync			= fs_bdev_sync,
1489 };
1490 EXPORT_SYMBOL_GPL(fs_holder_ops);
1491 
setup_bdev_super(struct super_block * sb,int sb_flags,struct fs_context * fc)1492 int setup_bdev_super(struct super_block *sb, int sb_flags,
1493 		struct fs_context *fc)
1494 {
1495 	blk_mode_t mode = sb_open_mode(sb_flags);
1496 	struct block_device *bdev;
1497 
1498 	bdev = blkdev_get_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1499 	if (IS_ERR(bdev)) {
1500 		if (fc)
1501 			errorf(fc, "%s: Can't open blockdev", fc->source);
1502 		return PTR_ERR(bdev);
1503 	}
1504 
1505 	/*
1506 	 * This really should be in blkdev_get_by_dev, but right now can't due
1507 	 * to legacy issues that require us to allow opening a block device node
1508 	 * writable from userspace even for a read-only block device.
1509 	 */
1510 	if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1511 		blkdev_put(bdev, sb);
1512 		return -EACCES;
1513 	}
1514 
1515 	/*
1516 	 * Until SB_BORN flag is set, there can be no active superblock
1517 	 * references and thus no filesystem freezing. get_active_super() will
1518 	 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed.
1519 	 *
1520 	 * It is enough to check bdev was not frozen before we set s_bdev.
1521 	 */
1522 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1523 	if (bdev->bd_fsfreeze_count > 0) {
1524 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1525 		if (fc)
1526 			warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1527 		blkdev_put(bdev, sb);
1528 		return -EBUSY;
1529 	}
1530 	spin_lock(&sb_lock);
1531 	sb->s_bdev = bdev;
1532 	sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1533 	if (bdev_stable_writes(bdev))
1534 		sb->s_iflags |= SB_I_STABLE_WRITES;
1535 	spin_unlock(&sb_lock);
1536 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1537 
1538 	snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1539 	shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1540 				sb->s_id);
1541 	sb_set_blocksize(sb, block_size(bdev));
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(setup_bdev_super);
1545 
1546 /**
1547  * get_tree_bdev - Get a superblock based on a single block device
1548  * @fc: The filesystem context holding the parameters
1549  * @fill_super: Helper to initialise a new superblock
1550  */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1551 int get_tree_bdev(struct fs_context *fc,
1552 		int (*fill_super)(struct super_block *,
1553 				  struct fs_context *))
1554 {
1555 	struct super_block *s;
1556 	int error = 0;
1557 	dev_t dev;
1558 
1559 	if (!fc->source)
1560 		return invalf(fc, "No source specified");
1561 
1562 	error = lookup_bdev(fc->source, &dev);
1563 	if (error) {
1564 		errorf(fc, "%s: Can't lookup blockdev", fc->source);
1565 		return error;
1566 	}
1567 
1568 	fc->sb_flags |= SB_NOSEC;
1569 	s = sget_dev(fc, dev);
1570 	if (IS_ERR(s))
1571 		return PTR_ERR(s);
1572 
1573 	if (s->s_root) {
1574 		/* Don't summarily change the RO/RW state. */
1575 		if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1576 			warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1577 			deactivate_locked_super(s);
1578 			return -EBUSY;
1579 		}
1580 	} else {
1581 		/*
1582 		 * We drop s_umount here because we need to open the bdev and
1583 		 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1584 		 * bdev_mark_dead()). It is safe because we have active sb
1585 		 * reference and SB_BORN is not set yet.
1586 		 */
1587 		super_unlock_excl(s);
1588 		error = setup_bdev_super(s, fc->sb_flags, fc);
1589 		__super_lock_excl(s);
1590 		if (!error)
1591 			error = fill_super(s, fc);
1592 		if (error) {
1593 			deactivate_locked_super(s);
1594 			return error;
1595 		}
1596 		s->s_flags |= SB_ACTIVE;
1597 	}
1598 
1599 	BUG_ON(fc->root);
1600 	fc->root = dget(s->s_root);
1601 	return 0;
1602 }
1603 EXPORT_SYMBOL(get_tree_bdev);
1604 
test_bdev_super(struct super_block * s,void * data)1605 static int test_bdev_super(struct super_block *s, void *data)
1606 {
1607 	return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1608 }
1609 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1610 struct dentry *mount_bdev(struct file_system_type *fs_type,
1611 	int flags, const char *dev_name, void *data,
1612 	int (*fill_super)(struct super_block *, void *, int))
1613 {
1614 	struct super_block *s;
1615 	int error;
1616 	dev_t dev;
1617 
1618 	error = lookup_bdev(dev_name, &dev);
1619 	if (error)
1620 		return ERR_PTR(error);
1621 
1622 	flags |= SB_NOSEC;
1623 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1624 	if (IS_ERR(s))
1625 		return ERR_CAST(s);
1626 
1627 	if (s->s_root) {
1628 		if ((flags ^ s->s_flags) & SB_RDONLY) {
1629 			deactivate_locked_super(s);
1630 			return ERR_PTR(-EBUSY);
1631 		}
1632 	} else {
1633 		/*
1634 		 * We drop s_umount here because we need to open the bdev and
1635 		 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1636 		 * bdev_mark_dead()). It is safe because we have active sb
1637 		 * reference and SB_BORN is not set yet.
1638 		 */
1639 		super_unlock_excl(s);
1640 		error = setup_bdev_super(s, flags, NULL);
1641 		__super_lock_excl(s);
1642 		if (!error)
1643 			error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1644 		if (error) {
1645 			deactivate_locked_super(s);
1646 			return ERR_PTR(error);
1647 		}
1648 
1649 		s->s_flags |= SB_ACTIVE;
1650 	}
1651 
1652 	return dget(s->s_root);
1653 }
1654 EXPORT_SYMBOL_NS(mount_bdev, ANDROID_GKI_VFS_EXPORT_ONLY);
1655 
kill_block_super(struct super_block * sb)1656 void kill_block_super(struct super_block *sb)
1657 {
1658 	struct block_device *bdev = sb->s_bdev;
1659 
1660 	generic_shutdown_super(sb);
1661 	if (bdev) {
1662 		sync_blockdev(bdev);
1663 		blkdev_put(bdev, sb);
1664 	}
1665 }
1666 
1667 EXPORT_SYMBOL_NS(kill_block_super, ANDROID_GKI_VFS_EXPORT_ONLY);
1668 #endif
1669 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1670 struct dentry *mount_nodev(struct file_system_type *fs_type,
1671 	int flags, void *data,
1672 	int (*fill_super)(struct super_block *, void *, int))
1673 {
1674 	int error;
1675 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1676 
1677 	if (IS_ERR(s))
1678 		return ERR_CAST(s);
1679 
1680 	error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1681 	if (error) {
1682 		deactivate_locked_super(s);
1683 		return ERR_PTR(error);
1684 	}
1685 	s->s_flags |= SB_ACTIVE;
1686 	return dget(s->s_root);
1687 }
1688 EXPORT_SYMBOL_NS(mount_nodev, ANDROID_GKI_VFS_EXPORT_ONLY);
1689 
reconfigure_single(struct super_block * s,int flags,void * data)1690 int reconfigure_single(struct super_block *s,
1691 		       int flags, void *data)
1692 {
1693 	struct fs_context *fc;
1694 	int ret;
1695 
1696 	/* The caller really need to be passing fc down into mount_single(),
1697 	 * then a chunk of this can be removed.  [Bollocks -- AV]
1698 	 * Better yet, reconfiguration shouldn't happen, but rather the second
1699 	 * mount should be rejected if the parameters are not compatible.
1700 	 */
1701 	fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1702 	if (IS_ERR(fc))
1703 		return PTR_ERR(fc);
1704 
1705 	ret = parse_monolithic_mount_data(fc, data);
1706 	if (ret < 0)
1707 		goto out;
1708 
1709 	ret = reconfigure_super(fc);
1710 out:
1711 	put_fs_context(fc);
1712 	return ret;
1713 }
1714 
compare_single(struct super_block * s,void * p)1715 static int compare_single(struct super_block *s, void *p)
1716 {
1717 	return 1;
1718 }
1719 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1720 struct dentry *mount_single(struct file_system_type *fs_type,
1721 	int flags, void *data,
1722 	int (*fill_super)(struct super_block *, void *, int))
1723 {
1724 	struct super_block *s;
1725 	int error;
1726 
1727 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1728 	if (IS_ERR(s))
1729 		return ERR_CAST(s);
1730 	if (!s->s_root) {
1731 		error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1732 		if (!error)
1733 			s->s_flags |= SB_ACTIVE;
1734 	} else {
1735 		error = reconfigure_single(s, flags, data);
1736 	}
1737 	if (unlikely(error)) {
1738 		deactivate_locked_super(s);
1739 		return ERR_PTR(error);
1740 	}
1741 	return dget(s->s_root);
1742 }
1743 EXPORT_SYMBOL(mount_single);
1744 
1745 /**
1746  * vfs_get_tree - Get the mountable root
1747  * @fc: The superblock configuration context.
1748  *
1749  * The filesystem is invoked to get or create a superblock which can then later
1750  * be used for mounting.  The filesystem places a pointer to the root to be
1751  * used for mounting in @fc->root.
1752  */
vfs_get_tree(struct fs_context * fc)1753 int vfs_get_tree(struct fs_context *fc)
1754 {
1755 	struct super_block *sb;
1756 	int error;
1757 
1758 	if (fc->root)
1759 		return -EBUSY;
1760 
1761 	/* Get the mountable root in fc->root, with a ref on the root and a ref
1762 	 * on the superblock.
1763 	 */
1764 	error = fc->ops->get_tree(fc);
1765 	if (error < 0)
1766 		return error;
1767 
1768 	if (!fc->root) {
1769 		pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1770 		       fc->fs_type->name);
1771 		/* We don't know what the locking state of the superblock is -
1772 		 * if there is a superblock.
1773 		 */
1774 		BUG();
1775 	}
1776 
1777 	sb = fc->root->d_sb;
1778 	WARN_ON(!sb->s_bdi);
1779 
1780 	/*
1781 	 * super_wake() contains a memory barrier which also care of
1782 	 * ordering for super_cache_count(). We place it before setting
1783 	 * SB_BORN as the data dependency between the two functions is
1784 	 * the superblock structure contents that we just set up, not
1785 	 * the SB_BORN flag.
1786 	 */
1787 	super_wake(sb, SB_BORN);
1788 
1789 	error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1790 	if (unlikely(error)) {
1791 		fc_drop_locked(fc);
1792 		return error;
1793 	}
1794 
1795 	/*
1796 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1797 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1798 	 * this warning for a little while to try and catch filesystems that
1799 	 * violate this rule.
1800 	 */
1801 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1802 		"negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1803 
1804 	return 0;
1805 }
1806 EXPORT_SYMBOL(vfs_get_tree);
1807 
1808 /*
1809  * Setup private BDI for given superblock. It gets automatically cleaned up
1810  * in generic_shutdown_super().
1811  */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1812 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1813 {
1814 	struct backing_dev_info *bdi;
1815 	int err;
1816 	va_list args;
1817 
1818 	bdi = bdi_alloc(NUMA_NO_NODE);
1819 	if (!bdi)
1820 		return -ENOMEM;
1821 
1822 	va_start(args, fmt);
1823 	err = bdi_register_va(bdi, fmt, args);
1824 	va_end(args);
1825 	if (err) {
1826 		bdi_put(bdi);
1827 		return err;
1828 	}
1829 	WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1830 	sb->s_bdi = bdi;
1831 	sb->s_iflags |= SB_I_PERSB_BDI;
1832 
1833 	return 0;
1834 }
1835 EXPORT_SYMBOL(super_setup_bdi_name);
1836 
1837 /*
1838  * Setup private BDI for given superblock. I gets automatically cleaned up
1839  * in generic_shutdown_super().
1840  */
super_setup_bdi(struct super_block * sb)1841 int super_setup_bdi(struct super_block *sb)
1842 {
1843 	static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1844 
1845 	return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1846 				    atomic_long_inc_return(&bdi_seq));
1847 }
1848 EXPORT_SYMBOL(super_setup_bdi);
1849 
1850 /**
1851  * sb_wait_write - wait until all writers to given file system finish
1852  * @sb: the super for which we wait
1853  * @level: type of writers we wait for (normal vs page fault)
1854  *
1855  * This function waits until there are no writers of given type to given file
1856  * system.
1857  */
sb_wait_write(struct super_block * sb,int level)1858 static void sb_wait_write(struct super_block *sb, int level)
1859 {
1860 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1861 }
1862 
1863 /*
1864  * We are going to return to userspace and forget about these locks, the
1865  * ownership goes to the caller of thaw_super() which does unlock().
1866  */
lockdep_sb_freeze_release(struct super_block * sb)1867 static void lockdep_sb_freeze_release(struct super_block *sb)
1868 {
1869 	int level;
1870 
1871 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1872 		percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1873 }
1874 
1875 /*
1876  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1877  */
lockdep_sb_freeze_acquire(struct super_block * sb)1878 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1879 {
1880 	int level;
1881 
1882 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1883 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1884 }
1885 
sb_freeze_unlock(struct super_block * sb,int level)1886 static void sb_freeze_unlock(struct super_block *sb, int level)
1887 {
1888 	for (level--; level >= 0; level--)
1889 		percpu_up_write(sb->s_writers.rw_sem + level);
1890 }
1891 
wait_for_partially_frozen(struct super_block * sb)1892 static int wait_for_partially_frozen(struct super_block *sb)
1893 {
1894 	int ret = 0;
1895 
1896 	do {
1897 		unsigned short old = sb->s_writers.frozen;
1898 
1899 		up_write(&sb->s_umount);
1900 		ret = wait_var_event_killable(&sb->s_writers.frozen,
1901 					       sb->s_writers.frozen != old);
1902 		down_write(&sb->s_umount);
1903 	} while (ret == 0 &&
1904 		 sb->s_writers.frozen != SB_UNFROZEN &&
1905 		 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1906 
1907 	return ret;
1908 }
1909 
1910 /**
1911  * freeze_super - lock the filesystem and force it into a consistent state
1912  * @sb: the super to lock
1913  * @who: context that wants to freeze
1914  *
1915  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1916  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
1917  * -EBUSY.
1918  *
1919  * @who should be:
1920  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
1921  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
1922  *
1923  * The @who argument distinguishes between the kernel and userspace trying to
1924  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
1925  * multiple userspace freezes in effect at any given time, the kernel and
1926  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
1927  * until there are no kernel or userspace freezes in effect.
1928  *
1929  * During this function, sb->s_writers.frozen goes through these values:
1930  *
1931  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1932  *
1933  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1934  * writes should be blocked, though page faults are still allowed. We wait for
1935  * all writes to complete and then proceed to the next stage.
1936  *
1937  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1938  * but internal fs threads can still modify the filesystem (although they
1939  * should not dirty new pages or inodes), writeback can run etc. After waiting
1940  * for all running page faults we sync the filesystem which will clean all
1941  * dirty pages and inodes (no new dirty pages or inodes can be created when
1942  * sync is running).
1943  *
1944  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1945  * modification are blocked (e.g. XFS preallocation truncation on inode
1946  * reclaim). This is usually implemented by blocking new transactions for
1947  * filesystems that have them and need this additional guard. After all
1948  * internal writers are finished we call ->freeze_fs() to finish filesystem
1949  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1950  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1951  *
1952  * sb->s_writers.frozen is protected by sb->s_umount.
1953  */
freeze_super(struct super_block * sb,enum freeze_holder who)1954 int freeze_super(struct super_block *sb, enum freeze_holder who)
1955 {
1956 	int ret;
1957 
1958 	atomic_inc(&sb->s_active);
1959 	if (!super_lock_excl(sb))
1960 		WARN(1, "Dying superblock while freezing!");
1961 
1962 retry:
1963 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
1964 		if (sb->s_writers.freeze_holders & who) {
1965 			deactivate_locked_super(sb);
1966 			return -EBUSY;
1967 		}
1968 
1969 		WARN_ON(sb->s_writers.freeze_holders == 0);
1970 
1971 		/*
1972 		 * Someone else already holds this type of freeze; share the
1973 		 * freeze and assign the active ref to the freeze.
1974 		 */
1975 		sb->s_writers.freeze_holders |= who;
1976 		super_unlock_excl(sb);
1977 		return 0;
1978 	}
1979 
1980 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1981 		ret = wait_for_partially_frozen(sb);
1982 		if (ret) {
1983 			deactivate_locked_super(sb);
1984 			return ret;
1985 		}
1986 
1987 		goto retry;
1988 	}
1989 
1990 	if (!(sb->s_flags & SB_BORN)) {
1991 		super_unlock_excl(sb);
1992 		return 0;	/* sic - it's "nothing to do" */
1993 	}
1994 
1995 	if (sb_rdonly(sb)) {
1996 		/* Nothing to do really... */
1997 		sb->s_writers.freeze_holders |= who;
1998 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1999 		wake_up_var(&sb->s_writers.frozen);
2000 		super_unlock_excl(sb);
2001 		return 0;
2002 	}
2003 
2004 	sb->s_writers.frozen = SB_FREEZE_WRITE;
2005 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
2006 	super_unlock_excl(sb);
2007 	sb_wait_write(sb, SB_FREEZE_WRITE);
2008 	if (!super_lock_excl(sb))
2009 		WARN(1, "Dying superblock while freezing!");
2010 
2011 	/* Now we go and block page faults... */
2012 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2013 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2014 
2015 	/* All writers are done so after syncing there won't be dirty data */
2016 	ret = sync_filesystem(sb);
2017 	if (ret) {
2018 		sb->s_writers.frozen = SB_UNFROZEN;
2019 		sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2020 		wake_up_var(&sb->s_writers.frozen);
2021 		deactivate_locked_super(sb);
2022 		return ret;
2023 	}
2024 
2025 	/* Now wait for internal filesystem counter */
2026 	sb->s_writers.frozen = SB_FREEZE_FS;
2027 	sb_wait_write(sb, SB_FREEZE_FS);
2028 
2029 	if (sb->s_op->freeze_fs) {
2030 		ret = sb->s_op->freeze_fs(sb);
2031 		if (ret) {
2032 			printk(KERN_ERR
2033 				"VFS:Filesystem freeze failed\n");
2034 			sb->s_writers.frozen = SB_UNFROZEN;
2035 			sb_freeze_unlock(sb, SB_FREEZE_FS);
2036 			wake_up_var(&sb->s_writers.frozen);
2037 			deactivate_locked_super(sb);
2038 			return ret;
2039 		}
2040 	}
2041 	/*
2042 	 * For debugging purposes so that fs can warn if it sees write activity
2043 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2044 	 */
2045 	sb->s_writers.freeze_holders |= who;
2046 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2047 	wake_up_var(&sb->s_writers.frozen);
2048 	lockdep_sb_freeze_release(sb);
2049 	super_unlock_excl(sb);
2050 	return 0;
2051 }
2052 EXPORT_SYMBOL(freeze_super);
2053 
2054 /*
2055  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2056  * frozen both by userspace and the kernel, a thaw call from either source
2057  * removes that state without releasing the other state or unlocking the
2058  * filesystem.
2059  */
thaw_super_locked(struct super_block * sb,enum freeze_holder who)2060 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2061 {
2062 	int error;
2063 
2064 	if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2065 		if (!(sb->s_writers.freeze_holders & who)) {
2066 			super_unlock_excl(sb);
2067 			return -EINVAL;
2068 		}
2069 
2070 		/*
2071 		 * Freeze is shared with someone else.  Release our hold and
2072 		 * drop the active ref that freeze_super assigned to the
2073 		 * freezer.
2074 		 */
2075 		if (sb->s_writers.freeze_holders & ~who) {
2076 			sb->s_writers.freeze_holders &= ~who;
2077 			deactivate_locked_super(sb);
2078 			return 0;
2079 		}
2080 	} else {
2081 		super_unlock_excl(sb);
2082 		return -EINVAL;
2083 	}
2084 
2085 	if (sb_rdonly(sb)) {
2086 		sb->s_writers.freeze_holders &= ~who;
2087 		sb->s_writers.frozen = SB_UNFROZEN;
2088 		wake_up_var(&sb->s_writers.frozen);
2089 		goto out;
2090 	}
2091 
2092 	lockdep_sb_freeze_acquire(sb);
2093 
2094 	if (sb->s_op->unfreeze_fs) {
2095 		error = sb->s_op->unfreeze_fs(sb);
2096 		if (error) {
2097 			printk(KERN_ERR "VFS:Filesystem thaw failed\n");
2098 			lockdep_sb_freeze_release(sb);
2099 			super_unlock_excl(sb);
2100 			return error;
2101 		}
2102 	}
2103 
2104 	sb->s_writers.freeze_holders &= ~who;
2105 	sb->s_writers.frozen = SB_UNFROZEN;
2106 	wake_up_var(&sb->s_writers.frozen);
2107 	sb_freeze_unlock(sb, SB_FREEZE_FS);
2108 out:
2109 	deactivate_locked_super(sb);
2110 	return 0;
2111 }
2112 
2113 /**
2114  * thaw_super -- unlock filesystem
2115  * @sb: the super to thaw
2116  * @who: context that wants to freeze
2117  *
2118  * Unlocks the filesystem and marks it writeable again after freeze_super()
2119  * if there are no remaining freezes on the filesystem.
2120  *
2121  * @who should be:
2122  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2123  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2124  */
thaw_super(struct super_block * sb,enum freeze_holder who)2125 int thaw_super(struct super_block *sb, enum freeze_holder who)
2126 {
2127 	if (!super_lock_excl(sb))
2128 		WARN(1, "Dying superblock while thawing!");
2129 	return thaw_super_locked(sb, who);
2130 }
2131 EXPORT_SYMBOL(thaw_super);
2132 
2133 /*
2134  * Create workqueue for deferred direct IO completions. We allocate the
2135  * workqueue when it's first needed. This avoids creating workqueue for
2136  * filesystems that don't need it and also allows us to create the workqueue
2137  * late enough so the we can include s_id in the name of the workqueue.
2138  */
sb_init_dio_done_wq(struct super_block * sb)2139 int sb_init_dio_done_wq(struct super_block *sb)
2140 {
2141 	struct workqueue_struct *old;
2142 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2143 						      WQ_MEM_RECLAIM, 0,
2144 						      sb->s_id);
2145 	if (!wq)
2146 		return -ENOMEM;
2147 	/*
2148 	 * This has to be atomic as more DIOs can race to create the workqueue
2149 	 */
2150 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2151 	/* Someone created workqueue before us? Free ours... */
2152 	if (old)
2153 		destroy_workqueue(wq);
2154 	return 0;
2155 }
2156