1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42
43 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
44
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 "sb_writers",
50 "sb_pagefaults",
51 "sb_internal",
52 };
53
__super_lock(struct super_block * sb,bool excl)54 static inline void __super_lock(struct super_block *sb, bool excl)
55 {
56 if (excl)
57 down_write(&sb->s_umount);
58 else
59 down_read(&sb->s_umount);
60 }
61
super_unlock(struct super_block * sb,bool excl)62 static inline void super_unlock(struct super_block *sb, bool excl)
63 {
64 if (excl)
65 up_write(&sb->s_umount);
66 else
67 up_read(&sb->s_umount);
68 }
69
__super_lock_excl(struct super_block * sb)70 static inline void __super_lock_excl(struct super_block *sb)
71 {
72 __super_lock(sb, true);
73 }
74
super_unlock_excl(struct super_block * sb)75 static inline void super_unlock_excl(struct super_block *sb)
76 {
77 super_unlock(sb, true);
78 }
79
super_unlock_shared(struct super_block * sb)80 static inline void super_unlock_shared(struct super_block *sb)
81 {
82 super_unlock(sb, false);
83 }
84
wait_born(struct super_block * sb)85 static inline bool wait_born(struct super_block *sb)
86 {
87 unsigned int flags;
88
89 /*
90 * Pairs with smp_store_release() in super_wake() and ensures
91 * that we see SB_BORN or SB_DYING after we're woken.
92 */
93 flags = smp_load_acquire(&sb->s_flags);
94 return flags & (SB_BORN | SB_DYING);
95 }
96
97 /**
98 * super_lock - wait for superblock to become ready and lock it
99 * @sb: superblock to wait for
100 * @excl: whether exclusive access is required
101 *
102 * If the superblock has neither passed through vfs_get_tree() or
103 * generic_shutdown_super() yet wait for it to happen. Either superblock
104 * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
105 * woken and we'll see SB_DYING.
106 *
107 * The caller must have acquired a temporary reference on @sb->s_count.
108 *
109 * Return: This returns true if SB_BORN was set, false if SB_DYING was
110 * set. The function acquires s_umount and returns with it held.
111 */
super_lock(struct super_block * sb,bool excl)112 static __must_check bool super_lock(struct super_block *sb, bool excl)
113 {
114
115 lockdep_assert_not_held(&sb->s_umount);
116
117 relock:
118 __super_lock(sb, excl);
119
120 /*
121 * Has gone through generic_shutdown_super() in the meantime.
122 * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
123 * grab a reference to this. Tell them so.
124 */
125 if (sb->s_flags & SB_DYING)
126 return false;
127
128 /* Has called ->get_tree() successfully. */
129 if (sb->s_flags & SB_BORN)
130 return true;
131
132 super_unlock(sb, excl);
133
134 /* wait until the superblock is ready or dying */
135 wait_var_event(&sb->s_flags, wait_born(sb));
136
137 /*
138 * Neither SB_BORN nor SB_DYING are ever unset so we never loop.
139 * Just reacquire @sb->s_umount for the caller.
140 */
141 goto relock;
142 }
143
144 /* wait and acquire read-side of @sb->s_umount */
super_lock_shared(struct super_block * sb)145 static inline bool super_lock_shared(struct super_block *sb)
146 {
147 return super_lock(sb, false);
148 }
149
150 /* wait and acquire write-side of @sb->s_umount */
super_lock_excl(struct super_block * sb)151 static inline bool super_lock_excl(struct super_block *sb)
152 {
153 return super_lock(sb, true);
154 }
155
156 /* wake waiters */
157 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
super_wake(struct super_block * sb,unsigned int flag)158 static void super_wake(struct super_block *sb, unsigned int flag)
159 {
160 WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
161 WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
162
163 /*
164 * Pairs with smp_load_acquire() in super_lock() to make sure
165 * all initializations in the superblock are seen by the user
166 * seeing SB_BORN sent.
167 */
168 smp_store_release(&sb->s_flags, sb->s_flags | flag);
169 /*
170 * Pairs with the barrier in prepare_to_wait_event() to make sure
171 * ___wait_var_event() either sees SB_BORN set or
172 * waitqueue_active() check in wake_up_var() sees the waiter.
173 */
174 smp_mb();
175 wake_up_var(&sb->s_flags);
176 }
177
178 /*
179 * One thing we have to be careful of with a per-sb shrinker is that we don't
180 * drop the last active reference to the superblock from within the shrinker.
181 * If that happens we could trigger unregistering the shrinker from within the
182 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
183 * take a passive reference to the superblock to avoid this from occurring.
184 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)185 static unsigned long super_cache_scan(struct shrinker *shrink,
186 struct shrink_control *sc)
187 {
188 struct super_block *sb;
189 long fs_objects = 0;
190 long total_objects;
191 long freed = 0;
192 long dentries;
193 long inodes;
194
195 sb = container_of(shrink, struct super_block, s_shrink);
196
197 /*
198 * Deadlock avoidance. We may hold various FS locks, and we don't want
199 * to recurse into the FS that called us in clear_inode() and friends..
200 */
201 if (!(sc->gfp_mask & __GFP_FS))
202 return SHRINK_STOP;
203
204 if (!super_trylock_shared(sb))
205 return SHRINK_STOP;
206
207 if (sb->s_op->nr_cached_objects)
208 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
209
210 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
211 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
212 total_objects = dentries + inodes + fs_objects + 1;
213 if (!total_objects)
214 total_objects = 1;
215
216 /* proportion the scan between the caches */
217 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
218 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
219 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
220
221 /*
222 * prune the dcache first as the icache is pinned by it, then
223 * prune the icache, followed by the filesystem specific caches
224 *
225 * Ensure that we always scan at least one object - memcg kmem
226 * accounting uses this to fully empty the caches.
227 */
228 sc->nr_to_scan = dentries + 1;
229 freed = prune_dcache_sb(sb, sc);
230 sc->nr_to_scan = inodes + 1;
231 freed += prune_icache_sb(sb, sc);
232
233 if (fs_objects) {
234 sc->nr_to_scan = fs_objects + 1;
235 freed += sb->s_op->free_cached_objects(sb, sc);
236 }
237
238 super_unlock_shared(sb);
239 return freed;
240 }
241
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)242 static unsigned long super_cache_count(struct shrinker *shrink,
243 struct shrink_control *sc)
244 {
245 struct super_block *sb;
246 long total_objects = 0;
247
248 sb = container_of(shrink, struct super_block, s_shrink);
249
250 /*
251 * We don't call super_trylock_shared() here as it is a scalability
252 * bottleneck, so we're exposed to partial setup state. The shrinker
253 * rwsem does not protect filesystem operations backing
254 * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
255 * change between super_cache_count and super_cache_scan, so we really
256 * don't need locks here.
257 *
258 * However, if we are currently mounting the superblock, the underlying
259 * filesystem might be in a state of partial construction and hence it
260 * is dangerous to access it. super_trylock_shared() uses a SB_BORN check
261 * to avoid this situation, so do the same here. The memory barrier is
262 * matched with the one in mount_fs() as we don't hold locks here.
263 */
264 if (!(sb->s_flags & SB_BORN))
265 return 0;
266 smp_rmb();
267
268 if (sb->s_op && sb->s_op->nr_cached_objects)
269 total_objects = sb->s_op->nr_cached_objects(sb, sc);
270
271 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
272 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
273
274 if (!total_objects)
275 return SHRINK_EMPTY;
276
277 total_objects = vfs_pressure_ratio(total_objects);
278 return total_objects;
279 }
280
destroy_super_work(struct work_struct * work)281 static void destroy_super_work(struct work_struct *work)
282 {
283 struct super_block *s = container_of(work, struct super_block,
284 destroy_work);
285 int i;
286
287 for (i = 0; i < SB_FREEZE_LEVELS; i++)
288 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
289 kfree(s);
290 }
291
destroy_super_rcu(struct rcu_head * head)292 static void destroy_super_rcu(struct rcu_head *head)
293 {
294 struct super_block *s = container_of(head, struct super_block, rcu);
295 INIT_WORK(&s->destroy_work, destroy_super_work);
296 schedule_work(&s->destroy_work);
297 }
298
299 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)300 static void destroy_unused_super(struct super_block *s)
301 {
302 if (!s)
303 return;
304 super_unlock_excl(s);
305 list_lru_destroy(&s->s_dentry_lru);
306 list_lru_destroy(&s->s_inode_lru);
307 security_sb_free(s);
308 put_user_ns(s->s_user_ns);
309 kfree(s->s_subtype);
310 free_prealloced_shrinker(&s->s_shrink);
311 /* no delays needed */
312 destroy_super_work(&s->destroy_work);
313 }
314
315 /**
316 * alloc_super - create new superblock
317 * @type: filesystem type superblock should belong to
318 * @flags: the mount flags
319 * @user_ns: User namespace for the super_block
320 *
321 * Allocates and initializes a new &struct super_block. alloc_super()
322 * returns a pointer new superblock or %NULL if allocation had failed.
323 */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)324 static struct super_block *alloc_super(struct file_system_type *type, int flags,
325 struct user_namespace *user_ns)
326 {
327 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
328 static const struct super_operations default_op;
329 int i;
330
331 if (!s)
332 return NULL;
333
334 INIT_LIST_HEAD(&s->s_mounts);
335 s->s_user_ns = get_user_ns(user_ns);
336 init_rwsem(&s->s_umount);
337 lockdep_set_class(&s->s_umount, &type->s_umount_key);
338 /*
339 * sget() can have s_umount recursion.
340 *
341 * When it cannot find a suitable sb, it allocates a new
342 * one (this one), and tries again to find a suitable old
343 * one.
344 *
345 * In case that succeeds, it will acquire the s_umount
346 * lock of the old one. Since these are clearly distrinct
347 * locks, and this object isn't exposed yet, there's no
348 * risk of deadlocks.
349 *
350 * Annotate this by putting this lock in a different
351 * subclass.
352 */
353 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
354
355 if (security_sb_alloc(s))
356 goto fail;
357
358 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
359 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
360 sb_writers_name[i],
361 &type->s_writers_key[i]))
362 goto fail;
363 }
364 s->s_bdi = &noop_backing_dev_info;
365 s->s_flags = flags;
366 if (s->s_user_ns != &init_user_ns)
367 s->s_iflags |= SB_I_NODEV;
368 INIT_HLIST_NODE(&s->s_instances);
369 INIT_HLIST_BL_HEAD(&s->s_roots);
370 mutex_init(&s->s_sync_lock);
371 INIT_LIST_HEAD(&s->s_inodes);
372 spin_lock_init(&s->s_inode_list_lock);
373 INIT_LIST_HEAD(&s->s_inodes_wb);
374 spin_lock_init(&s->s_inode_wblist_lock);
375
376 s->s_count = 1;
377 atomic_set(&s->s_active, 1);
378 mutex_init(&s->s_vfs_rename_mutex);
379 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
380 init_rwsem(&s->s_dquot.dqio_sem);
381 s->s_maxbytes = MAX_NON_LFS;
382 s->s_op = &default_op;
383 s->s_time_gran = 1000000000;
384 s->s_time_min = TIME64_MIN;
385 s->s_time_max = TIME64_MAX;
386 s->cleancache_poolid = CLEANCACHE_NO_POOL;
387
388 s->s_shrink.seeks = DEFAULT_SEEKS;
389 s->s_shrink.scan_objects = super_cache_scan;
390 s->s_shrink.count_objects = super_cache_count;
391 s->s_shrink.batch = 1024;
392 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
393 if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
394 goto fail;
395 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
396 goto fail;
397 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
398 goto fail;
399 return s;
400
401 fail:
402 destroy_unused_super(s);
403 return NULL;
404 }
405
406 /* Superblock refcounting */
407
408 /*
409 * Drop a superblock's refcount. The caller must hold sb_lock.
410 */
__put_super(struct super_block * s)411 static void __put_super(struct super_block *s)
412 {
413 if (!--s->s_count) {
414 list_del_init(&s->s_list);
415 WARN_ON(s->s_dentry_lru.node);
416 WARN_ON(s->s_inode_lru.node);
417 WARN_ON(!list_empty(&s->s_mounts));
418 security_sb_free(s);
419 put_user_ns(s->s_user_ns);
420 kfree(s->s_subtype);
421 call_rcu(&s->rcu, destroy_super_rcu);
422 }
423 }
424
425 /**
426 * put_super - drop a temporary reference to superblock
427 * @sb: superblock in question
428 *
429 * Drops a temporary reference, frees superblock if there's no
430 * references left.
431 */
put_super(struct super_block * sb)432 void put_super(struct super_block *sb)
433 {
434 spin_lock(&sb_lock);
435 __put_super(sb);
436 spin_unlock(&sb_lock);
437 }
438
kill_super_notify(struct super_block * sb)439 static void kill_super_notify(struct super_block *sb)
440 {
441 lockdep_assert_not_held(&sb->s_umount);
442
443 /* already notified earlier */
444 if (sb->s_flags & SB_DEAD)
445 return;
446
447 /*
448 * Remove it from @fs_supers so it isn't found by new
449 * sget{_fc}() walkers anymore. Any concurrent mounter still
450 * managing to grab a temporary reference is guaranteed to
451 * already see SB_DYING and will wait until we notify them about
452 * SB_DEAD.
453 */
454 spin_lock(&sb_lock);
455 hlist_del_init(&sb->s_instances);
456 spin_unlock(&sb_lock);
457
458 /*
459 * Let concurrent mounts know that this thing is really dead.
460 * We don't need @sb->s_umount here as every concurrent caller
461 * will see SB_DYING and either discard the superblock or wait
462 * for SB_DEAD.
463 */
464 super_wake(sb, SB_DEAD);
465 }
466
467 /**
468 * deactivate_locked_super - drop an active reference to superblock
469 * @s: superblock to deactivate
470 *
471 * Drops an active reference to superblock, converting it into a temporary
472 * one if there is no other active references left. In that case we
473 * tell fs driver to shut it down and drop the temporary reference we
474 * had just acquired.
475 *
476 * Caller holds exclusive lock on superblock; that lock is released.
477 */
deactivate_locked_super(struct super_block * s)478 void deactivate_locked_super(struct super_block *s)
479 {
480 struct file_system_type *fs = s->s_type;
481 if (atomic_dec_and_test(&s->s_active)) {
482 cleancache_invalidate_fs(s);
483 unregister_shrinker(&s->s_shrink);
484 fs->kill_sb(s);
485
486 kill_super_notify(s);
487
488 /*
489 * Since list_lru_destroy() may sleep, we cannot call it from
490 * put_super(), where we hold the sb_lock. Therefore we destroy
491 * the lru lists right now.
492 */
493 list_lru_destroy(&s->s_dentry_lru);
494 list_lru_destroy(&s->s_inode_lru);
495
496 put_filesystem(fs);
497 put_super(s);
498 } else {
499 super_unlock_excl(s);
500 }
501 }
502
503 EXPORT_SYMBOL(deactivate_locked_super);
504
505 /**
506 * deactivate_super - drop an active reference to superblock
507 * @s: superblock to deactivate
508 *
509 * Variant of deactivate_locked_super(), except that superblock is *not*
510 * locked by caller. If we are going to drop the final active reference,
511 * lock will be acquired prior to that.
512 */
deactivate_super(struct super_block * s)513 void deactivate_super(struct super_block *s)
514 {
515 if (!atomic_add_unless(&s->s_active, -1, 1)) {
516 __super_lock_excl(s);
517 deactivate_locked_super(s);
518 }
519 }
520
521 EXPORT_SYMBOL(deactivate_super);
522
523 /**
524 * grab_super - acquire an active reference
525 * @s: reference we are trying to make active
526 *
527 * Tries to acquire an active reference. grab_super() is used when we
528 * had just found a superblock in super_blocks or fs_type->fs_supers
529 * and want to turn it into a full-blown active reference. grab_super()
530 * is called with sb_lock held and drops it. Returns 1 in case of
531 * success, 0 if we had failed (superblock contents was already dead or
532 * dying when grab_super() had been called). Note that this is only
533 * called for superblocks not in rundown mode (== ones still on ->fs_supers
534 * of their type), so increment of ->s_count is OK here.
535 */
grab_super(struct super_block * s)536 static int grab_super(struct super_block *s) __releases(sb_lock)
537 {
538 bool born;
539
540 s->s_count++;
541 spin_unlock(&sb_lock);
542 born = super_lock_excl(s);
543 if (born && atomic_inc_not_zero(&s->s_active)) {
544 put_super(s);
545 return 1;
546 }
547 super_unlock_excl(s);
548 put_super(s);
549 return 0;
550 }
551
wait_dead(struct super_block * sb)552 static inline bool wait_dead(struct super_block *sb)
553 {
554 unsigned int flags;
555
556 /*
557 * Pairs with memory barrier in super_wake() and ensures
558 * that we see SB_DEAD after we're woken.
559 */
560 flags = smp_load_acquire(&sb->s_flags);
561 return flags & SB_DEAD;
562 }
563
564 /**
565 * grab_super_dead - acquire an active reference to a superblock
566 * @sb: superblock to acquire
567 *
568 * Acquire a temporary reference on a superblock and try to trade it for
569 * an active reference. This is used in sget{_fc}() to wait for a
570 * superblock to either become SB_BORN or for it to pass through
571 * sb->kill() and be marked as SB_DEAD.
572 *
573 * Return: This returns true if an active reference could be acquired,
574 * false if not.
575 */
grab_super_dead(struct super_block * sb)576 static bool grab_super_dead(struct super_block *sb)
577 {
578
579 sb->s_count++;
580 if (grab_super(sb)) {
581 put_super(sb);
582 lockdep_assert_held(&sb->s_umount);
583 return true;
584 }
585 wait_var_event(&sb->s_flags, wait_dead(sb));
586 lockdep_assert_not_held(&sb->s_umount);
587 put_super(sb);
588 return false;
589 }
590
591 /*
592 * super_trylock_shared - try to grab ->s_umount shared
593 * @sb: reference we are trying to grab
594 *
595 * Try to prevent fs shutdown. This is used in places where we
596 * cannot take an active reference but we need to ensure that the
597 * filesystem is not shut down while we are working on it. It returns
598 * false if we cannot acquire s_umount or if we lose the race and
599 * filesystem already got into shutdown, and returns true with the s_umount
600 * lock held in read mode in case of success. On successful return,
601 * the caller must drop the s_umount lock when done.
602 *
603 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
604 * The reason why it's safe is that we are OK with doing trylock instead
605 * of down_read(). There's a couple of places that are OK with that, but
606 * it's very much not a general-purpose interface.
607 */
super_trylock_shared(struct super_block * sb)608 bool super_trylock_shared(struct super_block *sb)
609 {
610 if (down_read_trylock(&sb->s_umount)) {
611 if (!(sb->s_flags & SB_DYING) && sb->s_root &&
612 (sb->s_flags & SB_BORN))
613 return true;
614 super_unlock_shared(sb);
615 }
616
617 return false;
618 }
619
620 /**
621 * retire_super - prevents superblock from being reused
622 * @sb: superblock to retire
623 *
624 * The function marks superblock to be ignored in superblock test, which
625 * prevents it from being reused for any new mounts. If the superblock has
626 * a private bdi, it also unregisters it, but doesn't reduce the refcount
627 * of the superblock to prevent potential races. The refcount is reduced
628 * by generic_shutdown_super(). The function can not be called
629 * concurrently with generic_shutdown_super(). It is safe to call the
630 * function multiple times, subsequent calls have no effect.
631 *
632 * The marker will affect the re-use only for block-device-based
633 * superblocks. Other superblocks will still get marked if this function
634 * is used, but that will not affect their reusability.
635 */
retire_super(struct super_block * sb)636 void retire_super(struct super_block *sb)
637 {
638 WARN_ON(!sb->s_bdev);
639 __super_lock_excl(sb);
640 if (sb->s_iflags & SB_I_PERSB_BDI) {
641 bdi_unregister(sb->s_bdi);
642 sb->s_iflags &= ~SB_I_PERSB_BDI;
643 }
644 sb->s_iflags |= SB_I_RETIRED;
645 super_unlock_excl(sb);
646 }
647 EXPORT_SYMBOL(retire_super);
648
649 /**
650 * generic_shutdown_super - common helper for ->kill_sb()
651 * @sb: superblock to kill
652 *
653 * generic_shutdown_super() does all fs-independent work on superblock
654 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
655 * that need destruction out of superblock, call generic_shutdown_super()
656 * and release aforementioned objects. Note: dentries and inodes _are_
657 * taken care of and do not need specific handling.
658 *
659 * Upon calling this function, the filesystem may no longer alter or
660 * rearrange the set of dentries belonging to this super_block, nor may it
661 * change the attachments of dentries to inodes.
662 */
generic_shutdown_super(struct super_block * sb)663 void generic_shutdown_super(struct super_block *sb)
664 {
665 const struct super_operations *sop = sb->s_op;
666
667 if (sb->s_root) {
668 shrink_dcache_for_umount(sb);
669 sync_filesystem(sb);
670 sb->s_flags &= ~SB_ACTIVE;
671
672 cgroup_writeback_umount();
673
674 /* Evict all inodes with zero refcount. */
675 evict_inodes(sb);
676
677 /*
678 * Clean up and evict any inodes that still have references due
679 * to fsnotify or the security policy.
680 */
681 fsnotify_sb_delete(sb);
682 security_sb_delete(sb);
683
684 /*
685 * Now that all potentially-encrypted inodes have been evicted,
686 * the fscrypt keyring can be destroyed.
687 */
688 fscrypt_destroy_keyring(sb);
689
690 if (sb->s_dio_done_wq) {
691 destroy_workqueue(sb->s_dio_done_wq);
692 sb->s_dio_done_wq = NULL;
693 }
694
695 if (sop->put_super)
696 sop->put_super(sb);
697
698 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
699 "VFS: Busy inodes after unmount of %s (%s)",
700 sb->s_id, sb->s_type->name)) {
701 /*
702 * Adding a proper bailout path here would be hard, but
703 * we can at least make it more likely that a later
704 * iput_final() or such crashes cleanly.
705 */
706 struct inode *inode;
707
708 spin_lock(&sb->s_inode_list_lock);
709 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
710 inode->i_op = VFS_PTR_POISON;
711 inode->i_sb = VFS_PTR_POISON;
712 inode->i_mapping = VFS_PTR_POISON;
713 }
714 spin_unlock(&sb->s_inode_list_lock);
715 }
716 }
717 /*
718 * Broadcast to everyone that grabbed a temporary reference to this
719 * superblock before we removed it from @fs_supers that the superblock
720 * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
721 * discard this superblock and treat it as dead.
722 *
723 * We leave the superblock on @fs_supers so it can be found by
724 * sget{_fc}() until we passed sb->kill_sb().
725 */
726 super_wake(sb, SB_DYING);
727 super_unlock_excl(sb);
728 if (sb->s_bdi != &noop_backing_dev_info) {
729 if (sb->s_iflags & SB_I_PERSB_BDI)
730 bdi_unregister(sb->s_bdi);
731 bdi_put(sb->s_bdi);
732 sb->s_bdi = &noop_backing_dev_info;
733 }
734 }
735
736 EXPORT_SYMBOL(generic_shutdown_super);
737
mount_capable(struct fs_context * fc)738 bool mount_capable(struct fs_context *fc)
739 {
740 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
741 return capable(CAP_SYS_ADMIN);
742 else
743 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
744 }
745
746 /**
747 * sget_fc - Find or create a superblock
748 * @fc: Filesystem context.
749 * @test: Comparison callback
750 * @set: Setup callback
751 *
752 * Create a new superblock or find an existing one.
753 *
754 * The @test callback is used to find a matching existing superblock.
755 * Whether or not the requested parameters in @fc are taken into account
756 * is specific to the @test callback that is used. They may even be
757 * completely ignored.
758 *
759 * If an extant superblock is matched, it will be returned unless:
760 *
761 * (1) the namespace the filesystem context @fc and the extant
762 * superblock's namespace differ
763 *
764 * (2) the filesystem context @fc has requested that reusing an extant
765 * superblock is not allowed
766 *
767 * In both cases EBUSY will be returned.
768 *
769 * If no match is made, a new superblock will be allocated and basic
770 * initialisation will be performed (s_type, s_fs_info and s_id will be
771 * set and the @set callback will be invoked), the superblock will be
772 * published and it will be returned in a partially constructed state
773 * with SB_BORN and SB_ACTIVE as yet unset.
774 *
775 * Return: On success, an extant or newly created superblock is
776 * returned. On failure an error pointer is returned.
777 */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))778 struct super_block *sget_fc(struct fs_context *fc,
779 int (*test)(struct super_block *, struct fs_context *),
780 int (*set)(struct super_block *, struct fs_context *))
781 {
782 struct super_block *s = NULL;
783 struct super_block *old;
784 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
785 int err;
786
787 /*
788 * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
789 * not set, as the filesystem is likely unprepared to handle it.
790 * This can happen when fsconfig() is called from init_user_ns with
791 * an fs_fd opened in another user namespace.
792 */
793 if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
794 errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed");
795 return ERR_PTR(-EPERM);
796 }
797
798 retry:
799 spin_lock(&sb_lock);
800 if (test) {
801 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
802 if (test(old, fc))
803 goto share_extant_sb;
804 }
805 }
806 if (!s) {
807 spin_unlock(&sb_lock);
808 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
809 if (!s)
810 return ERR_PTR(-ENOMEM);
811 goto retry;
812 }
813
814 s->s_fs_info = fc->s_fs_info;
815 err = set(s, fc);
816 if (err) {
817 s->s_fs_info = NULL;
818 spin_unlock(&sb_lock);
819 destroy_unused_super(s);
820 return ERR_PTR(err);
821 }
822 fc->s_fs_info = NULL;
823 s->s_type = fc->fs_type;
824 s->s_iflags |= fc->s_iflags;
825 strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
826 /*
827 * Make the superblock visible on @super_blocks and @fs_supers.
828 * It's in a nascent state and users should wait on SB_BORN or
829 * SB_DYING to be set.
830 */
831 list_add_tail(&s->s_list, &super_blocks);
832 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
833 spin_unlock(&sb_lock);
834 get_filesystem(s->s_type);
835 register_shrinker_prepared(&s->s_shrink);
836 return s;
837
838 share_extant_sb:
839 if (user_ns != old->s_user_ns || fc->exclusive) {
840 spin_unlock(&sb_lock);
841 destroy_unused_super(s);
842 if (fc->exclusive)
843 warnfc(fc, "reusing existing filesystem not allowed");
844 else
845 warnfc(fc, "reusing existing filesystem in another namespace not allowed");
846 return ERR_PTR(-EBUSY);
847 }
848 if (!grab_super_dead(old))
849 goto retry;
850 destroy_unused_super(s);
851 return old;
852 }
853 EXPORT_SYMBOL(sget_fc);
854
855 /**
856 * sget - find or create a superblock
857 * @type: filesystem type superblock should belong to
858 * @test: comparison callback
859 * @set: setup callback
860 * @flags: mount flags
861 * @data: argument to each of them
862 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)863 struct super_block *sget(struct file_system_type *type,
864 int (*test)(struct super_block *,void *),
865 int (*set)(struct super_block *,void *),
866 int flags,
867 void *data)
868 {
869 struct user_namespace *user_ns = current_user_ns();
870 struct super_block *s = NULL;
871 struct super_block *old;
872 int err;
873
874 /* We don't yet pass the user namespace of the parent
875 * mount through to here so always use &init_user_ns
876 * until that changes.
877 */
878 if (flags & SB_SUBMOUNT)
879 user_ns = &init_user_ns;
880
881 retry:
882 spin_lock(&sb_lock);
883 if (test) {
884 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
885 if (!test(old, data))
886 continue;
887 if (user_ns != old->s_user_ns) {
888 spin_unlock(&sb_lock);
889 destroy_unused_super(s);
890 return ERR_PTR(-EBUSY);
891 }
892 if (!grab_super_dead(old))
893 goto retry;
894 destroy_unused_super(s);
895 return old;
896 }
897 }
898 if (!s) {
899 spin_unlock(&sb_lock);
900 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
901 if (!s)
902 return ERR_PTR(-ENOMEM);
903 goto retry;
904 }
905
906 err = set(s, data);
907 if (err) {
908 spin_unlock(&sb_lock);
909 destroy_unused_super(s);
910 return ERR_PTR(err);
911 }
912 s->s_type = type;
913 strscpy(s->s_id, type->name, sizeof(s->s_id));
914 list_add_tail(&s->s_list, &super_blocks);
915 hlist_add_head(&s->s_instances, &type->fs_supers);
916 spin_unlock(&sb_lock);
917 get_filesystem(type);
918 register_shrinker_prepared(&s->s_shrink);
919 return s;
920 }
921 EXPORT_SYMBOL(sget);
922
drop_super(struct super_block * sb)923 void drop_super(struct super_block *sb)
924 {
925 super_unlock_shared(sb);
926 put_super(sb);
927 }
928
929 EXPORT_SYMBOL(drop_super);
930
drop_super_exclusive(struct super_block * sb)931 void drop_super_exclusive(struct super_block *sb)
932 {
933 super_unlock_excl(sb);
934 put_super(sb);
935 }
936 EXPORT_SYMBOL(drop_super_exclusive);
937
__iterate_supers(void (* f)(struct super_block *))938 static void __iterate_supers(void (*f)(struct super_block *))
939 {
940 struct super_block *sb, *p = NULL;
941
942 spin_lock(&sb_lock);
943 list_for_each_entry(sb, &super_blocks, s_list) {
944 /* Pairs with memory marrier in super_wake(). */
945 if (smp_load_acquire(&sb->s_flags) & SB_DYING)
946 continue;
947 sb->s_count++;
948 spin_unlock(&sb_lock);
949
950 f(sb);
951
952 spin_lock(&sb_lock);
953 if (p)
954 __put_super(p);
955 p = sb;
956 }
957 if (p)
958 __put_super(p);
959 spin_unlock(&sb_lock);
960 }
961 /**
962 * iterate_supers - call function for all active superblocks
963 * @f: function to call
964 * @arg: argument to pass to it
965 *
966 * Scans the superblock list and calls given function, passing it
967 * locked superblock and given argument.
968 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)969 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
970 {
971 struct super_block *sb, *p = NULL;
972
973 spin_lock(&sb_lock);
974 list_for_each_entry(sb, &super_blocks, s_list) {
975 bool born;
976
977 sb->s_count++;
978 spin_unlock(&sb_lock);
979
980 born = super_lock_shared(sb);
981 if (born && sb->s_root)
982 f(sb, arg);
983 super_unlock_shared(sb);
984
985 spin_lock(&sb_lock);
986 if (p)
987 __put_super(p);
988 p = sb;
989 }
990 if (p)
991 __put_super(p);
992 spin_unlock(&sb_lock);
993 }
994
995 /**
996 * iterate_supers_type - call function for superblocks of given type
997 * @type: fs type
998 * @f: function to call
999 * @arg: argument to pass to it
1000 *
1001 * Scans the superblock list and calls given function, passing it
1002 * locked superblock and given argument.
1003 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)1004 void iterate_supers_type(struct file_system_type *type,
1005 void (*f)(struct super_block *, void *), void *arg)
1006 {
1007 struct super_block *sb, *p = NULL;
1008
1009 spin_lock(&sb_lock);
1010 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
1011 bool born;
1012
1013 sb->s_count++;
1014 spin_unlock(&sb_lock);
1015
1016 born = super_lock_shared(sb);
1017 if (born && sb->s_root)
1018 f(sb, arg);
1019 super_unlock_shared(sb);
1020
1021 spin_lock(&sb_lock);
1022 if (p)
1023 __put_super(p);
1024 p = sb;
1025 }
1026 if (p)
1027 __put_super(p);
1028 spin_unlock(&sb_lock);
1029 }
1030
1031 EXPORT_SYMBOL(iterate_supers_type);
1032
1033 /**
1034 * get_active_super - get an active reference to the superblock of a device
1035 * @bdev: device to get the superblock for
1036 *
1037 * Scans the superblock list and finds the superblock of the file system
1038 * mounted on the device given. Returns the superblock with an active
1039 * reference or %NULL if none was found.
1040 */
get_active_super(struct block_device * bdev)1041 struct super_block *get_active_super(struct block_device *bdev)
1042 {
1043 struct super_block *sb;
1044
1045 if (!bdev)
1046 return NULL;
1047
1048 spin_lock(&sb_lock);
1049 list_for_each_entry(sb, &super_blocks, s_list) {
1050 if (sb->s_bdev == bdev) {
1051 if (!grab_super(sb))
1052 return NULL;
1053 super_unlock_excl(sb);
1054 return sb;
1055 }
1056 }
1057 spin_unlock(&sb_lock);
1058 return NULL;
1059 }
1060
user_get_super(dev_t dev,bool excl)1061 struct super_block *user_get_super(dev_t dev, bool excl)
1062 {
1063 struct super_block *sb;
1064
1065 spin_lock(&sb_lock);
1066 list_for_each_entry(sb, &super_blocks, s_list) {
1067 if (sb->s_dev == dev) {
1068 bool born;
1069
1070 sb->s_count++;
1071 spin_unlock(&sb_lock);
1072 /* still alive? */
1073 born = super_lock(sb, excl);
1074 if (born && sb->s_root)
1075 return sb;
1076 super_unlock(sb, excl);
1077 /* nope, got unmounted */
1078 spin_lock(&sb_lock);
1079 __put_super(sb);
1080 break;
1081 }
1082 }
1083 spin_unlock(&sb_lock);
1084 return NULL;
1085 }
1086
1087 /**
1088 * reconfigure_super - asks filesystem to change superblock parameters
1089 * @fc: The superblock and configuration
1090 *
1091 * Alters the configuration parameters of a live superblock.
1092 */
reconfigure_super(struct fs_context * fc)1093 int reconfigure_super(struct fs_context *fc)
1094 {
1095 struct super_block *sb = fc->root->d_sb;
1096 int retval;
1097 bool remount_ro = false;
1098 bool remount_rw = false;
1099 bool force = fc->sb_flags & SB_FORCE;
1100
1101 if (fc->sb_flags_mask & ~MS_RMT_MASK)
1102 return -EINVAL;
1103 if (sb->s_writers.frozen != SB_UNFROZEN)
1104 return -EBUSY;
1105
1106 retval = security_sb_remount(sb, fc->security);
1107 if (retval)
1108 return retval;
1109
1110 if (fc->sb_flags_mask & SB_RDONLY) {
1111 #ifdef CONFIG_BLOCK
1112 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1113 bdev_read_only(sb->s_bdev))
1114 return -EACCES;
1115 #endif
1116 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1117 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1118 }
1119
1120 if (remount_ro) {
1121 if (!hlist_empty(&sb->s_pins)) {
1122 super_unlock_excl(sb);
1123 group_pin_kill(&sb->s_pins);
1124 __super_lock_excl(sb);
1125 if (!sb->s_root)
1126 return 0;
1127 if (sb->s_writers.frozen != SB_UNFROZEN)
1128 return -EBUSY;
1129 remount_ro = !sb_rdonly(sb);
1130 }
1131 }
1132 shrink_dcache_sb(sb);
1133
1134 /* If we are reconfiguring to RDONLY and current sb is read/write,
1135 * make sure there are no files open for writing.
1136 */
1137 if (remount_ro) {
1138 if (force) {
1139 sb_start_ro_state_change(sb);
1140 } else {
1141 retval = sb_prepare_remount_readonly(sb);
1142 if (retval)
1143 return retval;
1144 }
1145 } else if (remount_rw) {
1146 /*
1147 * Protect filesystem's reconfigure code from writes from
1148 * userspace until reconfigure finishes.
1149 */
1150 sb_start_ro_state_change(sb);
1151 }
1152
1153 if (fc->ops->reconfigure) {
1154 retval = fc->ops->reconfigure(fc);
1155 if (retval) {
1156 if (!force)
1157 goto cancel_readonly;
1158 /* If forced remount, go ahead despite any errors */
1159 WARN(1, "forced remount of a %s fs returned %i\n",
1160 sb->s_type->name, retval);
1161 }
1162 }
1163
1164 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1165 (fc->sb_flags & fc->sb_flags_mask)));
1166 sb_end_ro_state_change(sb);
1167
1168 /*
1169 * Some filesystems modify their metadata via some other path than the
1170 * bdev buffer cache (eg. use a private mapping, or directories in
1171 * pagecache, etc). Also file data modifications go via their own
1172 * mappings. So If we try to mount readonly then copy the filesystem
1173 * from bdev, we could get stale data, so invalidate it to give a best
1174 * effort at coherency.
1175 */
1176 if (remount_ro && sb->s_bdev)
1177 invalidate_bdev(sb->s_bdev);
1178 return 0;
1179
1180 cancel_readonly:
1181 sb_end_ro_state_change(sb);
1182 return retval;
1183 }
1184
do_emergency_remount_callback(struct super_block * sb)1185 static void do_emergency_remount_callback(struct super_block *sb)
1186 {
1187 bool born = super_lock_excl(sb);
1188
1189 if (born && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1190 struct fs_context *fc;
1191
1192 fc = fs_context_for_reconfigure(sb->s_root,
1193 SB_RDONLY | SB_FORCE, SB_RDONLY);
1194 if (!IS_ERR(fc)) {
1195 if (parse_monolithic_mount_data(fc, NULL) == 0)
1196 (void)reconfigure_super(fc);
1197 put_fs_context(fc);
1198 }
1199 }
1200 super_unlock_excl(sb);
1201 }
1202
do_emergency_remount(struct work_struct * work)1203 static void do_emergency_remount(struct work_struct *work)
1204 {
1205 __iterate_supers(do_emergency_remount_callback);
1206 kfree(work);
1207 printk("Emergency Remount complete\n");
1208 }
1209
emergency_remount(void)1210 void emergency_remount(void)
1211 {
1212 struct work_struct *work;
1213
1214 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1215 if (work) {
1216 INIT_WORK(work, do_emergency_remount);
1217 schedule_work(work);
1218 }
1219 }
1220
do_thaw_all_callback(struct super_block * sb)1221 static void do_thaw_all_callback(struct super_block *sb)
1222 {
1223 bool born = super_lock_excl(sb);
1224
1225 if (born && sb->s_root) {
1226 if (IS_ENABLED(CONFIG_BLOCK))
1227 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
1228 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1229 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1230 } else {
1231 super_unlock_excl(sb);
1232 }
1233 }
1234
do_thaw_all(struct work_struct * work)1235 static void do_thaw_all(struct work_struct *work)
1236 {
1237 __iterate_supers(do_thaw_all_callback);
1238 kfree(work);
1239 printk(KERN_WARNING "Emergency Thaw complete\n");
1240 }
1241
1242 /**
1243 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1244 *
1245 * Used for emergency unfreeze of all filesystems via SysRq
1246 */
emergency_thaw_all(void)1247 void emergency_thaw_all(void)
1248 {
1249 struct work_struct *work;
1250
1251 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1252 if (work) {
1253 INIT_WORK(work, do_thaw_all);
1254 schedule_work(work);
1255 }
1256 }
1257
1258 static DEFINE_IDA(unnamed_dev_ida);
1259
1260 /**
1261 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1262 * @p: Pointer to a dev_t.
1263 *
1264 * Filesystems which don't use real block devices can call this function
1265 * to allocate a virtual block device.
1266 *
1267 * Context: Any context. Frequently called while holding sb_lock.
1268 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1269 * or -ENOMEM if memory allocation failed.
1270 */
get_anon_bdev(dev_t * p)1271 int get_anon_bdev(dev_t *p)
1272 {
1273 int dev;
1274
1275 /*
1276 * Many userspace utilities consider an FSID of 0 invalid.
1277 * Always return at least 1 from get_anon_bdev.
1278 */
1279 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1280 GFP_ATOMIC);
1281 if (dev == -ENOSPC)
1282 dev = -EMFILE;
1283 if (dev < 0)
1284 return dev;
1285
1286 *p = MKDEV(0, dev);
1287 return 0;
1288 }
1289 EXPORT_SYMBOL(get_anon_bdev);
1290
free_anon_bdev(dev_t dev)1291 void free_anon_bdev(dev_t dev)
1292 {
1293 ida_free(&unnamed_dev_ida, MINOR(dev));
1294 }
1295 EXPORT_SYMBOL(free_anon_bdev);
1296
set_anon_super(struct super_block * s,void * data)1297 int set_anon_super(struct super_block *s, void *data)
1298 {
1299 return get_anon_bdev(&s->s_dev);
1300 }
1301 EXPORT_SYMBOL(set_anon_super);
1302
kill_anon_super(struct super_block * sb)1303 void kill_anon_super(struct super_block *sb)
1304 {
1305 dev_t dev = sb->s_dev;
1306 generic_shutdown_super(sb);
1307 kill_super_notify(sb);
1308 free_anon_bdev(dev);
1309 }
1310 EXPORT_SYMBOL(kill_anon_super);
1311
kill_litter_super(struct super_block * sb)1312 void kill_litter_super(struct super_block *sb)
1313 {
1314 if (sb->s_root)
1315 d_genocide(sb->s_root);
1316 kill_anon_super(sb);
1317 }
1318 EXPORT_SYMBOL(kill_litter_super);
1319
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1320 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1321 {
1322 return set_anon_super(sb, NULL);
1323 }
1324 EXPORT_SYMBOL(set_anon_super_fc);
1325
test_keyed_super(struct super_block * sb,struct fs_context * fc)1326 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1327 {
1328 return sb->s_fs_info == fc->s_fs_info;
1329 }
1330
test_single_super(struct super_block * s,struct fs_context * fc)1331 static int test_single_super(struct super_block *s, struct fs_context *fc)
1332 {
1333 return 1;
1334 }
1335
vfs_get_super(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* fill_super)(struct super_block * sb,struct fs_context * fc))1336 static int vfs_get_super(struct fs_context *fc,
1337 int (*test)(struct super_block *, struct fs_context *),
1338 int (*fill_super)(struct super_block *sb,
1339 struct fs_context *fc))
1340 {
1341 struct super_block *sb;
1342 int err;
1343
1344 sb = sget_fc(fc, test, set_anon_super_fc);
1345 if (IS_ERR(sb))
1346 return PTR_ERR(sb);
1347
1348 if (!sb->s_root) {
1349 err = fill_super(sb, fc);
1350 if (err)
1351 goto error;
1352
1353 sb->s_flags |= SB_ACTIVE;
1354 }
1355
1356 fc->root = dget(sb->s_root);
1357 return 0;
1358
1359 error:
1360 deactivate_locked_super(sb);
1361 return err;
1362 }
1363
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1364 int get_tree_nodev(struct fs_context *fc,
1365 int (*fill_super)(struct super_block *sb,
1366 struct fs_context *fc))
1367 {
1368 return vfs_get_super(fc, NULL, fill_super);
1369 }
1370 EXPORT_SYMBOL(get_tree_nodev);
1371
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1372 int get_tree_single(struct fs_context *fc,
1373 int (*fill_super)(struct super_block *sb,
1374 struct fs_context *fc))
1375 {
1376 return vfs_get_super(fc, test_single_super, fill_super);
1377 }
1378 EXPORT_SYMBOL(get_tree_single);
1379
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1380 int get_tree_keyed(struct fs_context *fc,
1381 int (*fill_super)(struct super_block *sb,
1382 struct fs_context *fc),
1383 void *key)
1384 {
1385 fc->s_fs_info = key;
1386 return vfs_get_super(fc, test_keyed_super, fill_super);
1387 }
1388 EXPORT_SYMBOL(get_tree_keyed);
1389
set_bdev_super(struct super_block * s,void * data)1390 static int set_bdev_super(struct super_block *s, void *data)
1391 {
1392 s->s_dev = *(dev_t *)data;
1393 return 0;
1394 }
1395
super_s_dev_set(struct super_block * s,struct fs_context * fc)1396 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1397 {
1398 return set_bdev_super(s, fc->sget_key);
1399 }
1400
super_s_dev_test(struct super_block * s,struct fs_context * fc)1401 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1402 {
1403 return !(s->s_iflags & SB_I_RETIRED) &&
1404 s->s_dev == *(dev_t *)fc->sget_key;
1405 }
1406
1407 /**
1408 * sget_dev - Find or create a superblock by device number
1409 * @fc: Filesystem context.
1410 * @dev: device number
1411 *
1412 * Find or create a superblock using the provided device number that
1413 * will be stored in fc->sget_key.
1414 *
1415 * If an extant superblock is matched, then that will be returned with
1416 * an elevated reference count that the caller must transfer or discard.
1417 *
1418 * If no match is made, a new superblock will be allocated and basic
1419 * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1420 * be set). The superblock will be published and it will be returned in
1421 * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1422 * unset.
1423 *
1424 * Return: an existing or newly created superblock on success, an error
1425 * pointer on failure.
1426 */
sget_dev(struct fs_context * fc,dev_t dev)1427 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1428 {
1429 fc->sget_key = &dev;
1430 return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1431 }
1432 EXPORT_SYMBOL(sget_dev);
1433
1434 #ifdef CONFIG_BLOCK
1435 /*
1436 * Lock a super block that the callers holds a reference to.
1437 *
1438 * The caller needs to ensure that the super_block isn't being freed while
1439 * calling this function, e.g. by holding a lock over the call to this function
1440 * and the place that clears the pointer to the superblock used by this function
1441 * before freeing the superblock.
1442 */
super_lock_shared_active(struct super_block * sb)1443 static bool super_lock_shared_active(struct super_block *sb)
1444 {
1445 bool born = super_lock_shared(sb);
1446
1447 if (!born || !sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1448 super_unlock_shared(sb);
1449 return false;
1450 }
1451 return true;
1452 }
1453
fs_bdev_mark_dead(struct block_device * bdev,bool surprise)1454 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1455 {
1456 struct super_block *sb = bdev->bd_holder;
1457
1458 /* bd_holder_lock ensures that the sb isn't freed */
1459 lockdep_assert_held(&bdev->bd_holder_lock);
1460
1461 if (!super_lock_shared_active(sb))
1462 return;
1463
1464 if (!surprise)
1465 sync_filesystem(sb);
1466 shrink_dcache_sb(sb);
1467 invalidate_inodes(sb);
1468 if (sb->s_op->shutdown)
1469 sb->s_op->shutdown(sb);
1470
1471 super_unlock_shared(sb);
1472 }
1473
fs_bdev_sync(struct block_device * bdev)1474 static void fs_bdev_sync(struct block_device *bdev)
1475 {
1476 struct super_block *sb = bdev->bd_holder;
1477
1478 lockdep_assert_held(&bdev->bd_holder_lock);
1479
1480 if (!super_lock_shared_active(sb))
1481 return;
1482 sync_filesystem(sb);
1483 super_unlock_shared(sb);
1484 }
1485
1486 const struct blk_holder_ops fs_holder_ops = {
1487 .mark_dead = fs_bdev_mark_dead,
1488 .sync = fs_bdev_sync,
1489 };
1490 EXPORT_SYMBOL_GPL(fs_holder_ops);
1491
setup_bdev_super(struct super_block * sb,int sb_flags,struct fs_context * fc)1492 int setup_bdev_super(struct super_block *sb, int sb_flags,
1493 struct fs_context *fc)
1494 {
1495 blk_mode_t mode = sb_open_mode(sb_flags);
1496 struct block_device *bdev;
1497
1498 bdev = blkdev_get_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1499 if (IS_ERR(bdev)) {
1500 if (fc)
1501 errorf(fc, "%s: Can't open blockdev", fc->source);
1502 return PTR_ERR(bdev);
1503 }
1504
1505 /*
1506 * This really should be in blkdev_get_by_dev, but right now can't due
1507 * to legacy issues that require us to allow opening a block device node
1508 * writable from userspace even for a read-only block device.
1509 */
1510 if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1511 blkdev_put(bdev, sb);
1512 return -EACCES;
1513 }
1514
1515 /*
1516 * Until SB_BORN flag is set, there can be no active superblock
1517 * references and thus no filesystem freezing. get_active_super() will
1518 * just loop waiting for SB_BORN so even freeze_bdev() cannot proceed.
1519 *
1520 * It is enough to check bdev was not frozen before we set s_bdev.
1521 */
1522 mutex_lock(&bdev->bd_fsfreeze_mutex);
1523 if (bdev->bd_fsfreeze_count > 0) {
1524 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1525 if (fc)
1526 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1527 blkdev_put(bdev, sb);
1528 return -EBUSY;
1529 }
1530 spin_lock(&sb_lock);
1531 sb->s_bdev = bdev;
1532 sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1533 if (bdev_stable_writes(bdev))
1534 sb->s_iflags |= SB_I_STABLE_WRITES;
1535 spin_unlock(&sb_lock);
1536 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1537
1538 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1539 shrinker_debugfs_rename(&sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1540 sb->s_id);
1541 sb_set_blocksize(sb, block_size(bdev));
1542 return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(setup_bdev_super);
1545
1546 /**
1547 * get_tree_bdev - Get a superblock based on a single block device
1548 * @fc: The filesystem context holding the parameters
1549 * @fill_super: Helper to initialise a new superblock
1550 */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1551 int get_tree_bdev(struct fs_context *fc,
1552 int (*fill_super)(struct super_block *,
1553 struct fs_context *))
1554 {
1555 struct super_block *s;
1556 int error = 0;
1557 dev_t dev;
1558
1559 if (!fc->source)
1560 return invalf(fc, "No source specified");
1561
1562 error = lookup_bdev(fc->source, &dev);
1563 if (error) {
1564 errorf(fc, "%s: Can't lookup blockdev", fc->source);
1565 return error;
1566 }
1567
1568 fc->sb_flags |= SB_NOSEC;
1569 s = sget_dev(fc, dev);
1570 if (IS_ERR(s))
1571 return PTR_ERR(s);
1572
1573 if (s->s_root) {
1574 /* Don't summarily change the RO/RW state. */
1575 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1576 warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1577 deactivate_locked_super(s);
1578 return -EBUSY;
1579 }
1580 } else {
1581 /*
1582 * We drop s_umount here because we need to open the bdev and
1583 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1584 * bdev_mark_dead()). It is safe because we have active sb
1585 * reference and SB_BORN is not set yet.
1586 */
1587 super_unlock_excl(s);
1588 error = setup_bdev_super(s, fc->sb_flags, fc);
1589 __super_lock_excl(s);
1590 if (!error)
1591 error = fill_super(s, fc);
1592 if (error) {
1593 deactivate_locked_super(s);
1594 return error;
1595 }
1596 s->s_flags |= SB_ACTIVE;
1597 }
1598
1599 BUG_ON(fc->root);
1600 fc->root = dget(s->s_root);
1601 return 0;
1602 }
1603 EXPORT_SYMBOL(get_tree_bdev);
1604
test_bdev_super(struct super_block * s,void * data)1605 static int test_bdev_super(struct super_block *s, void *data)
1606 {
1607 return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1608 }
1609
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1610 struct dentry *mount_bdev(struct file_system_type *fs_type,
1611 int flags, const char *dev_name, void *data,
1612 int (*fill_super)(struct super_block *, void *, int))
1613 {
1614 struct super_block *s;
1615 int error;
1616 dev_t dev;
1617
1618 error = lookup_bdev(dev_name, &dev);
1619 if (error)
1620 return ERR_PTR(error);
1621
1622 flags |= SB_NOSEC;
1623 s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1624 if (IS_ERR(s))
1625 return ERR_CAST(s);
1626
1627 if (s->s_root) {
1628 if ((flags ^ s->s_flags) & SB_RDONLY) {
1629 deactivate_locked_super(s);
1630 return ERR_PTR(-EBUSY);
1631 }
1632 } else {
1633 /*
1634 * We drop s_umount here because we need to open the bdev and
1635 * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1636 * bdev_mark_dead()). It is safe because we have active sb
1637 * reference and SB_BORN is not set yet.
1638 */
1639 super_unlock_excl(s);
1640 error = setup_bdev_super(s, flags, NULL);
1641 __super_lock_excl(s);
1642 if (!error)
1643 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1644 if (error) {
1645 deactivate_locked_super(s);
1646 return ERR_PTR(error);
1647 }
1648
1649 s->s_flags |= SB_ACTIVE;
1650 }
1651
1652 return dget(s->s_root);
1653 }
1654 EXPORT_SYMBOL_NS(mount_bdev, ANDROID_GKI_VFS_EXPORT_ONLY);
1655
kill_block_super(struct super_block * sb)1656 void kill_block_super(struct super_block *sb)
1657 {
1658 struct block_device *bdev = sb->s_bdev;
1659
1660 generic_shutdown_super(sb);
1661 if (bdev) {
1662 sync_blockdev(bdev);
1663 blkdev_put(bdev, sb);
1664 }
1665 }
1666
1667 EXPORT_SYMBOL_NS(kill_block_super, ANDROID_GKI_VFS_EXPORT_ONLY);
1668 #endif
1669
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1670 struct dentry *mount_nodev(struct file_system_type *fs_type,
1671 int flags, void *data,
1672 int (*fill_super)(struct super_block *, void *, int))
1673 {
1674 int error;
1675 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1676
1677 if (IS_ERR(s))
1678 return ERR_CAST(s);
1679
1680 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1681 if (error) {
1682 deactivate_locked_super(s);
1683 return ERR_PTR(error);
1684 }
1685 s->s_flags |= SB_ACTIVE;
1686 return dget(s->s_root);
1687 }
1688 EXPORT_SYMBOL_NS(mount_nodev, ANDROID_GKI_VFS_EXPORT_ONLY);
1689
reconfigure_single(struct super_block * s,int flags,void * data)1690 int reconfigure_single(struct super_block *s,
1691 int flags, void *data)
1692 {
1693 struct fs_context *fc;
1694 int ret;
1695
1696 /* The caller really need to be passing fc down into mount_single(),
1697 * then a chunk of this can be removed. [Bollocks -- AV]
1698 * Better yet, reconfiguration shouldn't happen, but rather the second
1699 * mount should be rejected if the parameters are not compatible.
1700 */
1701 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1702 if (IS_ERR(fc))
1703 return PTR_ERR(fc);
1704
1705 ret = parse_monolithic_mount_data(fc, data);
1706 if (ret < 0)
1707 goto out;
1708
1709 ret = reconfigure_super(fc);
1710 out:
1711 put_fs_context(fc);
1712 return ret;
1713 }
1714
compare_single(struct super_block * s,void * p)1715 static int compare_single(struct super_block *s, void *p)
1716 {
1717 return 1;
1718 }
1719
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1720 struct dentry *mount_single(struct file_system_type *fs_type,
1721 int flags, void *data,
1722 int (*fill_super)(struct super_block *, void *, int))
1723 {
1724 struct super_block *s;
1725 int error;
1726
1727 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1728 if (IS_ERR(s))
1729 return ERR_CAST(s);
1730 if (!s->s_root) {
1731 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1732 if (!error)
1733 s->s_flags |= SB_ACTIVE;
1734 } else {
1735 error = reconfigure_single(s, flags, data);
1736 }
1737 if (unlikely(error)) {
1738 deactivate_locked_super(s);
1739 return ERR_PTR(error);
1740 }
1741 return dget(s->s_root);
1742 }
1743 EXPORT_SYMBOL(mount_single);
1744
1745 /**
1746 * vfs_get_tree - Get the mountable root
1747 * @fc: The superblock configuration context.
1748 *
1749 * The filesystem is invoked to get or create a superblock which can then later
1750 * be used for mounting. The filesystem places a pointer to the root to be
1751 * used for mounting in @fc->root.
1752 */
vfs_get_tree(struct fs_context * fc)1753 int vfs_get_tree(struct fs_context *fc)
1754 {
1755 struct super_block *sb;
1756 int error;
1757
1758 if (fc->root)
1759 return -EBUSY;
1760
1761 /* Get the mountable root in fc->root, with a ref on the root and a ref
1762 * on the superblock.
1763 */
1764 error = fc->ops->get_tree(fc);
1765 if (error < 0)
1766 return error;
1767
1768 if (!fc->root) {
1769 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1770 fc->fs_type->name);
1771 /* We don't know what the locking state of the superblock is -
1772 * if there is a superblock.
1773 */
1774 BUG();
1775 }
1776
1777 sb = fc->root->d_sb;
1778 WARN_ON(!sb->s_bdi);
1779
1780 /*
1781 * super_wake() contains a memory barrier which also care of
1782 * ordering for super_cache_count(). We place it before setting
1783 * SB_BORN as the data dependency between the two functions is
1784 * the superblock structure contents that we just set up, not
1785 * the SB_BORN flag.
1786 */
1787 super_wake(sb, SB_BORN);
1788
1789 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1790 if (unlikely(error)) {
1791 fc_drop_locked(fc);
1792 return error;
1793 }
1794
1795 /*
1796 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1797 * but s_maxbytes was an unsigned long long for many releases. Throw
1798 * this warning for a little while to try and catch filesystems that
1799 * violate this rule.
1800 */
1801 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1802 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1803
1804 return 0;
1805 }
1806 EXPORT_SYMBOL(vfs_get_tree);
1807
1808 /*
1809 * Setup private BDI for given superblock. It gets automatically cleaned up
1810 * in generic_shutdown_super().
1811 */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1812 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1813 {
1814 struct backing_dev_info *bdi;
1815 int err;
1816 va_list args;
1817
1818 bdi = bdi_alloc(NUMA_NO_NODE);
1819 if (!bdi)
1820 return -ENOMEM;
1821
1822 va_start(args, fmt);
1823 err = bdi_register_va(bdi, fmt, args);
1824 va_end(args);
1825 if (err) {
1826 bdi_put(bdi);
1827 return err;
1828 }
1829 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1830 sb->s_bdi = bdi;
1831 sb->s_iflags |= SB_I_PERSB_BDI;
1832
1833 return 0;
1834 }
1835 EXPORT_SYMBOL(super_setup_bdi_name);
1836
1837 /*
1838 * Setup private BDI for given superblock. I gets automatically cleaned up
1839 * in generic_shutdown_super().
1840 */
super_setup_bdi(struct super_block * sb)1841 int super_setup_bdi(struct super_block *sb)
1842 {
1843 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1844
1845 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1846 atomic_long_inc_return(&bdi_seq));
1847 }
1848 EXPORT_SYMBOL(super_setup_bdi);
1849
1850 /**
1851 * sb_wait_write - wait until all writers to given file system finish
1852 * @sb: the super for which we wait
1853 * @level: type of writers we wait for (normal vs page fault)
1854 *
1855 * This function waits until there are no writers of given type to given file
1856 * system.
1857 */
sb_wait_write(struct super_block * sb,int level)1858 static void sb_wait_write(struct super_block *sb, int level)
1859 {
1860 percpu_down_write(sb->s_writers.rw_sem + level-1);
1861 }
1862
1863 /*
1864 * We are going to return to userspace and forget about these locks, the
1865 * ownership goes to the caller of thaw_super() which does unlock().
1866 */
lockdep_sb_freeze_release(struct super_block * sb)1867 static void lockdep_sb_freeze_release(struct super_block *sb)
1868 {
1869 int level;
1870
1871 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1872 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1873 }
1874
1875 /*
1876 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1877 */
lockdep_sb_freeze_acquire(struct super_block * sb)1878 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1879 {
1880 int level;
1881
1882 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1883 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1884 }
1885
sb_freeze_unlock(struct super_block * sb,int level)1886 static void sb_freeze_unlock(struct super_block *sb, int level)
1887 {
1888 for (level--; level >= 0; level--)
1889 percpu_up_write(sb->s_writers.rw_sem + level);
1890 }
1891
wait_for_partially_frozen(struct super_block * sb)1892 static int wait_for_partially_frozen(struct super_block *sb)
1893 {
1894 int ret = 0;
1895
1896 do {
1897 unsigned short old = sb->s_writers.frozen;
1898
1899 up_write(&sb->s_umount);
1900 ret = wait_var_event_killable(&sb->s_writers.frozen,
1901 sb->s_writers.frozen != old);
1902 down_write(&sb->s_umount);
1903 } while (ret == 0 &&
1904 sb->s_writers.frozen != SB_UNFROZEN &&
1905 sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1906
1907 return ret;
1908 }
1909
1910 /**
1911 * freeze_super - lock the filesystem and force it into a consistent state
1912 * @sb: the super to lock
1913 * @who: context that wants to freeze
1914 *
1915 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1916 * freeze_fs. Subsequent calls to this without first thawing the fs may return
1917 * -EBUSY.
1918 *
1919 * @who should be:
1920 * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
1921 * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
1922 *
1923 * The @who argument distinguishes between the kernel and userspace trying to
1924 * freeze the filesystem. Although there cannot be multiple kernel freezes or
1925 * multiple userspace freezes in effect at any given time, the kernel and
1926 * userspace can both hold a filesystem frozen. The filesystem remains frozen
1927 * until there are no kernel or userspace freezes in effect.
1928 *
1929 * During this function, sb->s_writers.frozen goes through these values:
1930 *
1931 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1932 *
1933 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1934 * writes should be blocked, though page faults are still allowed. We wait for
1935 * all writes to complete and then proceed to the next stage.
1936 *
1937 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1938 * but internal fs threads can still modify the filesystem (although they
1939 * should not dirty new pages or inodes), writeback can run etc. After waiting
1940 * for all running page faults we sync the filesystem which will clean all
1941 * dirty pages and inodes (no new dirty pages or inodes can be created when
1942 * sync is running).
1943 *
1944 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1945 * modification are blocked (e.g. XFS preallocation truncation on inode
1946 * reclaim). This is usually implemented by blocking new transactions for
1947 * filesystems that have them and need this additional guard. After all
1948 * internal writers are finished we call ->freeze_fs() to finish filesystem
1949 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1950 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1951 *
1952 * sb->s_writers.frozen is protected by sb->s_umount.
1953 */
freeze_super(struct super_block * sb,enum freeze_holder who)1954 int freeze_super(struct super_block *sb, enum freeze_holder who)
1955 {
1956 int ret;
1957
1958 atomic_inc(&sb->s_active);
1959 if (!super_lock_excl(sb))
1960 WARN(1, "Dying superblock while freezing!");
1961
1962 retry:
1963 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
1964 if (sb->s_writers.freeze_holders & who) {
1965 deactivate_locked_super(sb);
1966 return -EBUSY;
1967 }
1968
1969 WARN_ON(sb->s_writers.freeze_holders == 0);
1970
1971 /*
1972 * Someone else already holds this type of freeze; share the
1973 * freeze and assign the active ref to the freeze.
1974 */
1975 sb->s_writers.freeze_holders |= who;
1976 super_unlock_excl(sb);
1977 return 0;
1978 }
1979
1980 if (sb->s_writers.frozen != SB_UNFROZEN) {
1981 ret = wait_for_partially_frozen(sb);
1982 if (ret) {
1983 deactivate_locked_super(sb);
1984 return ret;
1985 }
1986
1987 goto retry;
1988 }
1989
1990 if (!(sb->s_flags & SB_BORN)) {
1991 super_unlock_excl(sb);
1992 return 0; /* sic - it's "nothing to do" */
1993 }
1994
1995 if (sb_rdonly(sb)) {
1996 /* Nothing to do really... */
1997 sb->s_writers.freeze_holders |= who;
1998 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1999 wake_up_var(&sb->s_writers.frozen);
2000 super_unlock_excl(sb);
2001 return 0;
2002 }
2003
2004 sb->s_writers.frozen = SB_FREEZE_WRITE;
2005 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
2006 super_unlock_excl(sb);
2007 sb_wait_write(sb, SB_FREEZE_WRITE);
2008 if (!super_lock_excl(sb))
2009 WARN(1, "Dying superblock while freezing!");
2010
2011 /* Now we go and block page faults... */
2012 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2013 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2014
2015 /* All writers are done so after syncing there won't be dirty data */
2016 ret = sync_filesystem(sb);
2017 if (ret) {
2018 sb->s_writers.frozen = SB_UNFROZEN;
2019 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2020 wake_up_var(&sb->s_writers.frozen);
2021 deactivate_locked_super(sb);
2022 return ret;
2023 }
2024
2025 /* Now wait for internal filesystem counter */
2026 sb->s_writers.frozen = SB_FREEZE_FS;
2027 sb_wait_write(sb, SB_FREEZE_FS);
2028
2029 if (sb->s_op->freeze_fs) {
2030 ret = sb->s_op->freeze_fs(sb);
2031 if (ret) {
2032 printk(KERN_ERR
2033 "VFS:Filesystem freeze failed\n");
2034 sb->s_writers.frozen = SB_UNFROZEN;
2035 sb_freeze_unlock(sb, SB_FREEZE_FS);
2036 wake_up_var(&sb->s_writers.frozen);
2037 deactivate_locked_super(sb);
2038 return ret;
2039 }
2040 }
2041 /*
2042 * For debugging purposes so that fs can warn if it sees write activity
2043 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2044 */
2045 sb->s_writers.freeze_holders |= who;
2046 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2047 wake_up_var(&sb->s_writers.frozen);
2048 lockdep_sb_freeze_release(sb);
2049 super_unlock_excl(sb);
2050 return 0;
2051 }
2052 EXPORT_SYMBOL(freeze_super);
2053
2054 /*
2055 * Undoes the effect of a freeze_super_locked call. If the filesystem is
2056 * frozen both by userspace and the kernel, a thaw call from either source
2057 * removes that state without releasing the other state or unlocking the
2058 * filesystem.
2059 */
thaw_super_locked(struct super_block * sb,enum freeze_holder who)2060 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2061 {
2062 int error;
2063
2064 if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2065 if (!(sb->s_writers.freeze_holders & who)) {
2066 super_unlock_excl(sb);
2067 return -EINVAL;
2068 }
2069
2070 /*
2071 * Freeze is shared with someone else. Release our hold and
2072 * drop the active ref that freeze_super assigned to the
2073 * freezer.
2074 */
2075 if (sb->s_writers.freeze_holders & ~who) {
2076 sb->s_writers.freeze_holders &= ~who;
2077 deactivate_locked_super(sb);
2078 return 0;
2079 }
2080 } else {
2081 super_unlock_excl(sb);
2082 return -EINVAL;
2083 }
2084
2085 if (sb_rdonly(sb)) {
2086 sb->s_writers.freeze_holders &= ~who;
2087 sb->s_writers.frozen = SB_UNFROZEN;
2088 wake_up_var(&sb->s_writers.frozen);
2089 goto out;
2090 }
2091
2092 lockdep_sb_freeze_acquire(sb);
2093
2094 if (sb->s_op->unfreeze_fs) {
2095 error = sb->s_op->unfreeze_fs(sb);
2096 if (error) {
2097 printk(KERN_ERR "VFS:Filesystem thaw failed\n");
2098 lockdep_sb_freeze_release(sb);
2099 super_unlock_excl(sb);
2100 return error;
2101 }
2102 }
2103
2104 sb->s_writers.freeze_holders &= ~who;
2105 sb->s_writers.frozen = SB_UNFROZEN;
2106 wake_up_var(&sb->s_writers.frozen);
2107 sb_freeze_unlock(sb, SB_FREEZE_FS);
2108 out:
2109 deactivate_locked_super(sb);
2110 return 0;
2111 }
2112
2113 /**
2114 * thaw_super -- unlock filesystem
2115 * @sb: the super to thaw
2116 * @who: context that wants to freeze
2117 *
2118 * Unlocks the filesystem and marks it writeable again after freeze_super()
2119 * if there are no remaining freezes on the filesystem.
2120 *
2121 * @who should be:
2122 * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2123 * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2124 */
thaw_super(struct super_block * sb,enum freeze_holder who)2125 int thaw_super(struct super_block *sb, enum freeze_holder who)
2126 {
2127 if (!super_lock_excl(sb))
2128 WARN(1, "Dying superblock while thawing!");
2129 return thaw_super_locked(sb, who);
2130 }
2131 EXPORT_SYMBOL(thaw_super);
2132
2133 /*
2134 * Create workqueue for deferred direct IO completions. We allocate the
2135 * workqueue when it's first needed. This avoids creating workqueue for
2136 * filesystems that don't need it and also allows us to create the workqueue
2137 * late enough so the we can include s_id in the name of the workqueue.
2138 */
sb_init_dio_done_wq(struct super_block * sb)2139 int sb_init_dio_done_wq(struct super_block *sb)
2140 {
2141 struct workqueue_struct *old;
2142 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2143 WQ_MEM_RECLAIM, 0,
2144 sb->s_id);
2145 if (!wq)
2146 return -ENOMEM;
2147 /*
2148 * This has to be atomic as more DIOs can race to create the workqueue
2149 */
2150 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2151 /* Someone created workqueue before us? Free ours... */
2152 if (old)
2153 destroy_workqueue(wq);
2154 return 0;
2155 }
2156