1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains the base functions to manage periodic tick
4 * related events.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20 #include <trace/hooks/sched.h>
21
22 #include <asm/irq_regs.h>
23
24 #include "tick-internal.h"
25
26 /*
27 * Tick devices
28 */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31 * Tick next event: keeps track of the tick time. It's updated by the
32 * CPU which handles the tick and protected by jiffies_lock. There is
33 * no requirement to write hold the jiffies seqcount for it.
34 */
35 ktime_t tick_next_period;
36
37 /*
38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40 * variable has two functions:
41 *
42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43 * timekeeping lock all at once. Only the CPU which is assigned to do the
44 * update is handling it.
45 *
46 * 2) Hand off the duty in the NOHZ idle case by setting the value to
47 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48 * at it will take over and keep the time keeping alive. The handover
49 * procedure also covers cpu hotplug.
50 */
51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
52 #ifdef CONFIG_NO_HZ_FULL
53 /*
54 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
55 * tick_do_timer_cpu and it should be taken over by an eligible secondary
56 * when one comes online.
57 */
58 static int tick_do_timer_boot_cpu __read_mostly = -1;
59 #endif
60
61 /*
62 * Debugging: see timer_list.c
63 */
tick_get_device(int cpu)64 struct tick_device *tick_get_device(int cpu)
65 {
66 return &per_cpu(tick_cpu_device, cpu);
67 }
68
69 /**
70 * tick_is_oneshot_available - check for a oneshot capable event device
71 */
tick_is_oneshot_available(void)72 int tick_is_oneshot_available(void)
73 {
74 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
75
76 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
77 return 0;
78 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
79 return 1;
80 return tick_broadcast_oneshot_available();
81 }
82
83 /*
84 * Periodic tick
85 */
tick_periodic(int cpu)86 static void tick_periodic(int cpu)
87 {
88 if (READ_ONCE(tick_do_timer_cpu) == cpu) {
89 raw_spin_lock(&jiffies_lock);
90 write_seqcount_begin(&jiffies_seq);
91
92 /* Keep track of the next tick event */
93 tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
94
95 do_timer(1);
96 write_seqcount_end(&jiffies_seq);
97 raw_spin_unlock(&jiffies_lock);
98 update_wall_time();
99 trace_android_vh_jiffies_update(NULL);
100 }
101
102 update_process_times(user_mode(get_irq_regs()));
103 profile_tick(CPU_PROFILING);
104 }
105
106 /*
107 * Event handler for periodic ticks
108 */
tick_handle_periodic(struct clock_event_device * dev)109 void tick_handle_periodic(struct clock_event_device *dev)
110 {
111 int cpu = smp_processor_id();
112 ktime_t next = dev->next_event;
113
114 tick_periodic(cpu);
115
116 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
117 /*
118 * The cpu might have transitioned to HIGHRES or NOHZ mode via
119 * update_process_times() -> run_local_timers() ->
120 * hrtimer_run_queues().
121 */
122 if (dev->event_handler != tick_handle_periodic)
123 return;
124 #endif
125
126 if (!clockevent_state_oneshot(dev))
127 return;
128 for (;;) {
129 /*
130 * Setup the next period for devices, which do not have
131 * periodic mode:
132 */
133 next = ktime_add_ns(next, TICK_NSEC);
134
135 if (!clockevents_program_event(dev, next, false))
136 return;
137 /*
138 * Have to be careful here. If we're in oneshot mode,
139 * before we call tick_periodic() in a loop, we need
140 * to be sure we're using a real hardware clocksource.
141 * Otherwise we could get trapped in an infinite
142 * loop, as the tick_periodic() increments jiffies,
143 * which then will increment time, possibly causing
144 * the loop to trigger again and again.
145 */
146 if (timekeeping_valid_for_hres())
147 tick_periodic(cpu);
148 }
149 }
150
151 /*
152 * Setup the device for a periodic tick
153 */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)154 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
155 {
156 tick_set_periodic_handler(dev, broadcast);
157
158 /* Broadcast setup ? */
159 if (!tick_device_is_functional(dev))
160 return;
161
162 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
163 !tick_broadcast_oneshot_active()) {
164 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
165 } else {
166 unsigned int seq;
167 ktime_t next;
168
169 do {
170 seq = read_seqcount_begin(&jiffies_seq);
171 next = tick_next_period;
172 } while (read_seqcount_retry(&jiffies_seq, seq));
173
174 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
175
176 for (;;) {
177 if (!clockevents_program_event(dev, next, false))
178 return;
179 next = ktime_add_ns(next, TICK_NSEC);
180 }
181 }
182 }
183
184 /*
185 * Setup the tick device
186 */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)187 static void tick_setup_device(struct tick_device *td,
188 struct clock_event_device *newdev, int cpu,
189 const struct cpumask *cpumask)
190 {
191 void (*handler)(struct clock_event_device *) = NULL;
192 ktime_t next_event = 0;
193
194 /*
195 * First device setup ?
196 */
197 if (!td->evtdev) {
198 /*
199 * If no cpu took the do_timer update, assign it to
200 * this cpu:
201 */
202 if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) {
203 WRITE_ONCE(tick_do_timer_cpu, cpu);
204 tick_next_period = ktime_get();
205 #ifdef CONFIG_NO_HZ_FULL
206 /*
207 * The boot CPU may be nohz_full, in which case the
208 * first housekeeping secondary will take do_timer()
209 * from it.
210 */
211 if (tick_nohz_full_cpu(cpu))
212 tick_do_timer_boot_cpu = cpu;
213
214 } else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) {
215 tick_do_timer_boot_cpu = -1;
216 /*
217 * The boot CPU will stay in periodic (NOHZ disabled)
218 * mode until clocksource_done_booting() called after
219 * smp_init() selects a high resolution clocksource and
220 * timekeeping_notify() kicks the NOHZ stuff alive.
221 *
222 * So this WRITE_ONCE can only race with the READ_ONCE
223 * check in tick_periodic() but this race is harmless.
224 */
225 WRITE_ONCE(tick_do_timer_cpu, cpu);
226 #endif
227 }
228
229 /*
230 * Startup in periodic mode first.
231 */
232 td->mode = TICKDEV_MODE_PERIODIC;
233 } else {
234 handler = td->evtdev->event_handler;
235 next_event = td->evtdev->next_event;
236 td->evtdev->event_handler = clockevents_handle_noop;
237 }
238
239 td->evtdev = newdev;
240
241 /*
242 * When the device is not per cpu, pin the interrupt to the
243 * current cpu:
244 */
245 if (!cpumask_equal(newdev->cpumask, cpumask))
246 irq_set_affinity(newdev->irq, cpumask);
247
248 /*
249 * When global broadcasting is active, check if the current
250 * device is registered as a placeholder for broadcast mode.
251 * This allows us to handle this x86 misfeature in a generic
252 * way. This function also returns !=0 when we keep the
253 * current active broadcast state for this CPU.
254 */
255 if (tick_device_uses_broadcast(newdev, cpu))
256 return;
257
258 if (td->mode == TICKDEV_MODE_PERIODIC)
259 tick_setup_periodic(newdev, 0);
260 else
261 tick_setup_oneshot(newdev, handler, next_event);
262 }
263
tick_install_replacement(struct clock_event_device * newdev)264 void tick_install_replacement(struct clock_event_device *newdev)
265 {
266 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
267 int cpu = smp_processor_id();
268
269 clockevents_exchange_device(td->evtdev, newdev);
270 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
271 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
272 tick_oneshot_notify();
273 }
274
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)275 static bool tick_check_percpu(struct clock_event_device *curdev,
276 struct clock_event_device *newdev, int cpu)
277 {
278 if (!cpumask_test_cpu(cpu, newdev->cpumask))
279 return false;
280 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
281 return true;
282 /* Check if irq affinity can be set */
283 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
284 return false;
285 /* Prefer an existing cpu local device */
286 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
287 return false;
288 return true;
289 }
290
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)291 static bool tick_check_preferred(struct clock_event_device *curdev,
292 struct clock_event_device *newdev)
293 {
294 /* Prefer oneshot capable device */
295 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
296 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
297 return false;
298 if (tick_oneshot_mode_active())
299 return false;
300 }
301
302 /*
303 * Use the higher rated one, but prefer a CPU local device with a lower
304 * rating than a non-CPU local device
305 */
306 return !curdev ||
307 newdev->rating > curdev->rating ||
308 !cpumask_equal(curdev->cpumask, newdev->cpumask);
309 }
310
311 /*
312 * Check whether the new device is a better fit than curdev. curdev
313 * can be NULL !
314 */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)315 bool tick_check_replacement(struct clock_event_device *curdev,
316 struct clock_event_device *newdev)
317 {
318 if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
319 return false;
320
321 return tick_check_preferred(curdev, newdev);
322 }
323
324 /*
325 * Check, if the new registered device should be used. Called with
326 * clockevents_lock held and interrupts disabled.
327 */
tick_check_new_device(struct clock_event_device * newdev)328 void tick_check_new_device(struct clock_event_device *newdev)
329 {
330 struct clock_event_device *curdev;
331 struct tick_device *td;
332 int cpu;
333
334 cpu = smp_processor_id();
335 td = &per_cpu(tick_cpu_device, cpu);
336 curdev = td->evtdev;
337
338 if (!tick_check_replacement(curdev, newdev))
339 goto out_bc;
340
341 if (!try_module_get(newdev->owner))
342 return;
343
344 /*
345 * Replace the eventually existing device by the new
346 * device. If the current device is the broadcast device, do
347 * not give it back to the clockevents layer !
348 */
349 if (tick_is_broadcast_device(curdev)) {
350 clockevents_shutdown(curdev);
351 curdev = NULL;
352 }
353 clockevents_exchange_device(curdev, newdev);
354 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
355 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
356 tick_oneshot_notify();
357 return;
358
359 out_bc:
360 /*
361 * Can the new device be used as a broadcast device ?
362 */
363 tick_install_broadcast_device(newdev, cpu);
364 }
365
366 /**
367 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
368 * @state: The target state (enter/exit)
369 *
370 * The system enters/leaves a state, where affected devices might stop
371 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
372 *
373 * Called with interrupts disabled, so clockevents_lock is not
374 * required here because the local clock event device cannot go away
375 * under us.
376 */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)377 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
378 {
379 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
380
381 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
382 return 0;
383
384 return __tick_broadcast_oneshot_control(state);
385 }
386 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
387
388 #ifdef CONFIG_HOTPLUG_CPU
389 /*
390 * Transfer the do_timer job away from a dying cpu.
391 *
392 * Called with interrupts disabled. No locking required. If
393 * tick_do_timer_cpu is owned by this cpu, nothing can change it.
394 */
tick_handover_do_timer(void)395 void tick_handover_do_timer(void)
396 {
397 if (tick_do_timer_cpu == smp_processor_id())
398 tick_do_timer_cpu = cpumask_first(cpu_online_mask);
399 }
400
401 /*
402 * Shutdown an event device on a given cpu:
403 *
404 * This is called on a life CPU, when a CPU is dead. So we cannot
405 * access the hardware device itself.
406 * We just set the mode and remove it from the lists.
407 */
tick_shutdown(unsigned int cpu)408 void tick_shutdown(unsigned int cpu)
409 {
410 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
411 struct clock_event_device *dev = td->evtdev;
412
413 td->mode = TICKDEV_MODE_PERIODIC;
414 if (dev) {
415 /*
416 * Prevent that the clock events layer tries to call
417 * the set mode function!
418 */
419 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
420 clockevents_exchange_device(dev, NULL);
421 dev->event_handler = clockevents_handle_noop;
422 td->evtdev = NULL;
423 }
424 }
425 #endif
426
427 /**
428 * tick_suspend_local - Suspend the local tick device
429 *
430 * Called from the local cpu for freeze with interrupts disabled.
431 *
432 * No locks required. Nothing can change the per cpu device.
433 */
tick_suspend_local(void)434 void tick_suspend_local(void)
435 {
436 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
437
438 clockevents_shutdown(td->evtdev);
439 }
440
441 /**
442 * tick_resume_local - Resume the local tick device
443 *
444 * Called from the local CPU for unfreeze or XEN resume magic.
445 *
446 * No locks required. Nothing can change the per cpu device.
447 */
tick_resume_local(void)448 void tick_resume_local(void)
449 {
450 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
451 bool broadcast = tick_resume_check_broadcast();
452
453 clockevents_tick_resume(td->evtdev);
454 if (!broadcast) {
455 if (td->mode == TICKDEV_MODE_PERIODIC)
456 tick_setup_periodic(td->evtdev, 0);
457 else
458 tick_resume_oneshot();
459 }
460
461 /*
462 * Ensure that hrtimers are up to date and the clockevents device
463 * is reprogrammed correctly when high resolution timers are
464 * enabled.
465 */
466 hrtimers_resume_local();
467 }
468
469 /**
470 * tick_suspend - Suspend the tick and the broadcast device
471 *
472 * Called from syscore_suspend() via timekeeping_suspend with only one
473 * CPU online and interrupts disabled or from tick_unfreeze() under
474 * tick_freeze_lock.
475 *
476 * No locks required. Nothing can change the per cpu device.
477 */
tick_suspend(void)478 void tick_suspend(void)
479 {
480 tick_suspend_local();
481 tick_suspend_broadcast();
482 }
483
484 /**
485 * tick_resume - Resume the tick and the broadcast device
486 *
487 * Called from syscore_resume() via timekeeping_resume with only one
488 * CPU online and interrupts disabled.
489 *
490 * No locks required. Nothing can change the per cpu device.
491 */
tick_resume(void)492 void tick_resume(void)
493 {
494 tick_resume_broadcast();
495 tick_resume_local();
496 }
497
498 #ifdef CONFIG_SUSPEND
499 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
500 static unsigned int tick_freeze_depth;
501
502 /**
503 * tick_freeze - Suspend the local tick and (possibly) timekeeping.
504 *
505 * Check if this is the last online CPU executing the function and if so,
506 * suspend timekeeping. Otherwise suspend the local tick.
507 *
508 * Call with interrupts disabled. Must be balanced with %tick_unfreeze().
509 * Interrupts must not be enabled before the subsequent %tick_unfreeze().
510 */
tick_freeze(void)511 void tick_freeze(void)
512 {
513 raw_spin_lock(&tick_freeze_lock);
514
515 tick_freeze_depth++;
516 if (tick_freeze_depth == num_online_cpus()) {
517 trace_suspend_resume(TPS("timekeeping_freeze"),
518 smp_processor_id(), true);
519 system_state = SYSTEM_SUSPEND;
520 sched_clock_suspend();
521 timekeeping_suspend();
522 } else {
523 tick_suspend_local();
524 }
525
526 raw_spin_unlock(&tick_freeze_lock);
527 }
528
529 /**
530 * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
531 *
532 * Check if this is the first CPU executing the function and if so, resume
533 * timekeeping. Otherwise resume the local tick.
534 *
535 * Call with interrupts disabled. Must be balanced with %tick_freeze().
536 * Interrupts must not be enabled after the preceding %tick_freeze().
537 */
tick_unfreeze(void)538 void tick_unfreeze(void)
539 {
540 raw_spin_lock(&tick_freeze_lock);
541
542 if (tick_freeze_depth == num_online_cpus()) {
543 timekeeping_resume();
544 sched_clock_resume();
545 system_state = SYSTEM_RUNNING;
546 trace_suspend_resume(TPS("timekeeping_freeze"),
547 smp_processor_id(), false);
548 } else {
549 touch_softlockup_watchdog();
550 tick_resume_local();
551 }
552
553 tick_freeze_depth--;
554
555 raw_spin_unlock(&tick_freeze_lock);
556 }
557 #endif /* CONFIG_SUSPEND */
558
559 /**
560 * tick_init - initialize the tick control
561 */
tick_init(void)562 void __init tick_init(void)
563 {
564 tick_broadcast_init();
565 tick_nohz_init();
566 }
567