• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <trace/events/power.h>
20 #include <trace/hooks/sched.h>
21 
22 #include <asm/irq_regs.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Tick devices
28  */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31  * Tick next event: keeps track of the tick time. It's updated by the
32  * CPU which handles the tick and protected by jiffies_lock. There is
33  * no requirement to write hold the jiffies seqcount for it.
34  */
35 ktime_t tick_next_period;
36 
37 /*
38  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40  * variable has two functions:
41  *
42  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43  *    timekeeping lock all at once. Only the CPU which is assigned to do the
44  *    update is handling it.
45  *
46  * 2) Hand off the duty in the NOHZ idle case by setting the value to
47  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48  *    at it will take over and keep the time keeping alive.  The handover
49  *    procedure also covers cpu hotplug.
50  */
51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
52 #ifdef CONFIG_NO_HZ_FULL
53 /*
54  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
55  * tick_do_timer_cpu and it should be taken over by an eligible secondary
56  * when one comes online.
57  */
58 static int tick_do_timer_boot_cpu __read_mostly = -1;
59 #endif
60 
61 /*
62  * Debugging: see timer_list.c
63  */
tick_get_device(int cpu)64 struct tick_device *tick_get_device(int cpu)
65 {
66 	return &per_cpu(tick_cpu_device, cpu);
67 }
68 
69 /**
70  * tick_is_oneshot_available - check for a oneshot capable event device
71  */
tick_is_oneshot_available(void)72 int tick_is_oneshot_available(void)
73 {
74 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
75 
76 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
77 		return 0;
78 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
79 		return 1;
80 	return tick_broadcast_oneshot_available();
81 }
82 
83 /*
84  * Periodic tick
85  */
tick_periodic(int cpu)86 static void tick_periodic(int cpu)
87 {
88 	if (READ_ONCE(tick_do_timer_cpu) == cpu) {
89 		raw_spin_lock(&jiffies_lock);
90 		write_seqcount_begin(&jiffies_seq);
91 
92 		/* Keep track of the next tick event */
93 		tick_next_period = ktime_add_ns(tick_next_period, TICK_NSEC);
94 
95 		do_timer(1);
96 		write_seqcount_end(&jiffies_seq);
97 		raw_spin_unlock(&jiffies_lock);
98 		update_wall_time();
99 		trace_android_vh_jiffies_update(NULL);
100 	}
101 
102 	update_process_times(user_mode(get_irq_regs()));
103 	profile_tick(CPU_PROFILING);
104 }
105 
106 /*
107  * Event handler for periodic ticks
108  */
tick_handle_periodic(struct clock_event_device * dev)109 void tick_handle_periodic(struct clock_event_device *dev)
110 {
111 	int cpu = smp_processor_id();
112 	ktime_t next = dev->next_event;
113 
114 	tick_periodic(cpu);
115 
116 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
117 	/*
118 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
119 	 * update_process_times() -> run_local_timers() ->
120 	 * hrtimer_run_queues().
121 	 */
122 	if (dev->event_handler != tick_handle_periodic)
123 		return;
124 #endif
125 
126 	if (!clockevent_state_oneshot(dev))
127 		return;
128 	for (;;) {
129 		/*
130 		 * Setup the next period for devices, which do not have
131 		 * periodic mode:
132 		 */
133 		next = ktime_add_ns(next, TICK_NSEC);
134 
135 		if (!clockevents_program_event(dev, next, false))
136 			return;
137 		/*
138 		 * Have to be careful here. If we're in oneshot mode,
139 		 * before we call tick_periodic() in a loop, we need
140 		 * to be sure we're using a real hardware clocksource.
141 		 * Otherwise we could get trapped in an infinite
142 		 * loop, as the tick_periodic() increments jiffies,
143 		 * which then will increment time, possibly causing
144 		 * the loop to trigger again and again.
145 		 */
146 		if (timekeeping_valid_for_hres())
147 			tick_periodic(cpu);
148 	}
149 }
150 
151 /*
152  * Setup the device for a periodic tick
153  */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)154 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
155 {
156 	tick_set_periodic_handler(dev, broadcast);
157 
158 	/* Broadcast setup ? */
159 	if (!tick_device_is_functional(dev))
160 		return;
161 
162 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
163 	    !tick_broadcast_oneshot_active()) {
164 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
165 	} else {
166 		unsigned int seq;
167 		ktime_t next;
168 
169 		do {
170 			seq = read_seqcount_begin(&jiffies_seq);
171 			next = tick_next_period;
172 		} while (read_seqcount_retry(&jiffies_seq, seq));
173 
174 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
175 
176 		for (;;) {
177 			if (!clockevents_program_event(dev, next, false))
178 				return;
179 			next = ktime_add_ns(next, TICK_NSEC);
180 		}
181 	}
182 }
183 
184 /*
185  * Setup the tick device
186  */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)187 static void tick_setup_device(struct tick_device *td,
188 			      struct clock_event_device *newdev, int cpu,
189 			      const struct cpumask *cpumask)
190 {
191 	void (*handler)(struct clock_event_device *) = NULL;
192 	ktime_t next_event = 0;
193 
194 	/*
195 	 * First device setup ?
196 	 */
197 	if (!td->evtdev) {
198 		/*
199 		 * If no cpu took the do_timer update, assign it to
200 		 * this cpu:
201 		 */
202 		if (READ_ONCE(tick_do_timer_cpu) == TICK_DO_TIMER_BOOT) {
203 			WRITE_ONCE(tick_do_timer_cpu, cpu);
204 			tick_next_period = ktime_get();
205 #ifdef CONFIG_NO_HZ_FULL
206 			/*
207 			 * The boot CPU may be nohz_full, in which case the
208 			 * first housekeeping secondary will take do_timer()
209 			 * from it.
210 			 */
211 			if (tick_nohz_full_cpu(cpu))
212 				tick_do_timer_boot_cpu = cpu;
213 
214 		} else if (tick_do_timer_boot_cpu != -1 && !tick_nohz_full_cpu(cpu)) {
215 			tick_do_timer_boot_cpu = -1;
216 			/*
217 			 * The boot CPU will stay in periodic (NOHZ disabled)
218 			 * mode until clocksource_done_booting() called after
219 			 * smp_init() selects a high resolution clocksource and
220 			 * timekeeping_notify() kicks the NOHZ stuff alive.
221 			 *
222 			 * So this WRITE_ONCE can only race with the READ_ONCE
223 			 * check in tick_periodic() but this race is harmless.
224 			 */
225 			WRITE_ONCE(tick_do_timer_cpu, cpu);
226 #endif
227 		}
228 
229 		/*
230 		 * Startup in periodic mode first.
231 		 */
232 		td->mode = TICKDEV_MODE_PERIODIC;
233 	} else {
234 		handler = td->evtdev->event_handler;
235 		next_event = td->evtdev->next_event;
236 		td->evtdev->event_handler = clockevents_handle_noop;
237 	}
238 
239 	td->evtdev = newdev;
240 
241 	/*
242 	 * When the device is not per cpu, pin the interrupt to the
243 	 * current cpu:
244 	 */
245 	if (!cpumask_equal(newdev->cpumask, cpumask))
246 		irq_set_affinity(newdev->irq, cpumask);
247 
248 	/*
249 	 * When global broadcasting is active, check if the current
250 	 * device is registered as a placeholder for broadcast mode.
251 	 * This allows us to handle this x86 misfeature in a generic
252 	 * way. This function also returns !=0 when we keep the
253 	 * current active broadcast state for this CPU.
254 	 */
255 	if (tick_device_uses_broadcast(newdev, cpu))
256 		return;
257 
258 	if (td->mode == TICKDEV_MODE_PERIODIC)
259 		tick_setup_periodic(newdev, 0);
260 	else
261 		tick_setup_oneshot(newdev, handler, next_event);
262 }
263 
tick_install_replacement(struct clock_event_device * newdev)264 void tick_install_replacement(struct clock_event_device *newdev)
265 {
266 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
267 	int cpu = smp_processor_id();
268 
269 	clockevents_exchange_device(td->evtdev, newdev);
270 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
271 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
272 		tick_oneshot_notify();
273 }
274 
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)275 static bool tick_check_percpu(struct clock_event_device *curdev,
276 			      struct clock_event_device *newdev, int cpu)
277 {
278 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
279 		return false;
280 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
281 		return true;
282 	/* Check if irq affinity can be set */
283 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
284 		return false;
285 	/* Prefer an existing cpu local device */
286 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
287 		return false;
288 	return true;
289 }
290 
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)291 static bool tick_check_preferred(struct clock_event_device *curdev,
292 				 struct clock_event_device *newdev)
293 {
294 	/* Prefer oneshot capable device */
295 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
296 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
297 			return false;
298 		if (tick_oneshot_mode_active())
299 			return false;
300 	}
301 
302 	/*
303 	 * Use the higher rated one, but prefer a CPU local device with a lower
304 	 * rating than a non-CPU local device
305 	 */
306 	return !curdev ||
307 		newdev->rating > curdev->rating ||
308 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
309 }
310 
311 /*
312  * Check whether the new device is a better fit than curdev. curdev
313  * can be NULL !
314  */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)315 bool tick_check_replacement(struct clock_event_device *curdev,
316 			    struct clock_event_device *newdev)
317 {
318 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
319 		return false;
320 
321 	return tick_check_preferred(curdev, newdev);
322 }
323 
324 /*
325  * Check, if the new registered device should be used. Called with
326  * clockevents_lock held and interrupts disabled.
327  */
tick_check_new_device(struct clock_event_device * newdev)328 void tick_check_new_device(struct clock_event_device *newdev)
329 {
330 	struct clock_event_device *curdev;
331 	struct tick_device *td;
332 	int cpu;
333 
334 	cpu = smp_processor_id();
335 	td = &per_cpu(tick_cpu_device, cpu);
336 	curdev = td->evtdev;
337 
338 	if (!tick_check_replacement(curdev, newdev))
339 		goto out_bc;
340 
341 	if (!try_module_get(newdev->owner))
342 		return;
343 
344 	/*
345 	 * Replace the eventually existing device by the new
346 	 * device. If the current device is the broadcast device, do
347 	 * not give it back to the clockevents layer !
348 	 */
349 	if (tick_is_broadcast_device(curdev)) {
350 		clockevents_shutdown(curdev);
351 		curdev = NULL;
352 	}
353 	clockevents_exchange_device(curdev, newdev);
354 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
355 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
356 		tick_oneshot_notify();
357 	return;
358 
359 out_bc:
360 	/*
361 	 * Can the new device be used as a broadcast device ?
362 	 */
363 	tick_install_broadcast_device(newdev, cpu);
364 }
365 
366 /**
367  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
368  * @state:	The target state (enter/exit)
369  *
370  * The system enters/leaves a state, where affected devices might stop
371  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
372  *
373  * Called with interrupts disabled, so clockevents_lock is not
374  * required here because the local clock event device cannot go away
375  * under us.
376  */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)377 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
378 {
379 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
380 
381 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
382 		return 0;
383 
384 	return __tick_broadcast_oneshot_control(state);
385 }
386 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
387 
388 #ifdef CONFIG_HOTPLUG_CPU
389 /*
390  * Transfer the do_timer job away from a dying cpu.
391  *
392  * Called with interrupts disabled. No locking required. If
393  * tick_do_timer_cpu is owned by this cpu, nothing can change it.
394  */
tick_handover_do_timer(void)395 void tick_handover_do_timer(void)
396 {
397 	if (tick_do_timer_cpu == smp_processor_id())
398 		tick_do_timer_cpu = cpumask_first(cpu_online_mask);
399 }
400 
401 /*
402  * Shutdown an event device on a given cpu:
403  *
404  * This is called on a life CPU, when a CPU is dead. So we cannot
405  * access the hardware device itself.
406  * We just set the mode and remove it from the lists.
407  */
tick_shutdown(unsigned int cpu)408 void tick_shutdown(unsigned int cpu)
409 {
410 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
411 	struct clock_event_device *dev = td->evtdev;
412 
413 	td->mode = TICKDEV_MODE_PERIODIC;
414 	if (dev) {
415 		/*
416 		 * Prevent that the clock events layer tries to call
417 		 * the set mode function!
418 		 */
419 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
420 		clockevents_exchange_device(dev, NULL);
421 		dev->event_handler = clockevents_handle_noop;
422 		td->evtdev = NULL;
423 	}
424 }
425 #endif
426 
427 /**
428  * tick_suspend_local - Suspend the local tick device
429  *
430  * Called from the local cpu for freeze with interrupts disabled.
431  *
432  * No locks required. Nothing can change the per cpu device.
433  */
tick_suspend_local(void)434 void tick_suspend_local(void)
435 {
436 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
437 
438 	clockevents_shutdown(td->evtdev);
439 }
440 
441 /**
442  * tick_resume_local - Resume the local tick device
443  *
444  * Called from the local CPU for unfreeze or XEN resume magic.
445  *
446  * No locks required. Nothing can change the per cpu device.
447  */
tick_resume_local(void)448 void tick_resume_local(void)
449 {
450 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
451 	bool broadcast = tick_resume_check_broadcast();
452 
453 	clockevents_tick_resume(td->evtdev);
454 	if (!broadcast) {
455 		if (td->mode == TICKDEV_MODE_PERIODIC)
456 			tick_setup_periodic(td->evtdev, 0);
457 		else
458 			tick_resume_oneshot();
459 	}
460 
461 	/*
462 	 * Ensure that hrtimers are up to date and the clockevents device
463 	 * is reprogrammed correctly when high resolution timers are
464 	 * enabled.
465 	 */
466 	hrtimers_resume_local();
467 }
468 
469 /**
470  * tick_suspend - Suspend the tick and the broadcast device
471  *
472  * Called from syscore_suspend() via timekeeping_suspend with only one
473  * CPU online and interrupts disabled or from tick_unfreeze() under
474  * tick_freeze_lock.
475  *
476  * No locks required. Nothing can change the per cpu device.
477  */
tick_suspend(void)478 void tick_suspend(void)
479 {
480 	tick_suspend_local();
481 	tick_suspend_broadcast();
482 }
483 
484 /**
485  * tick_resume - Resume the tick and the broadcast device
486  *
487  * Called from syscore_resume() via timekeeping_resume with only one
488  * CPU online and interrupts disabled.
489  *
490  * No locks required. Nothing can change the per cpu device.
491  */
tick_resume(void)492 void tick_resume(void)
493 {
494 	tick_resume_broadcast();
495 	tick_resume_local();
496 }
497 
498 #ifdef CONFIG_SUSPEND
499 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
500 static unsigned int tick_freeze_depth;
501 
502 /**
503  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
504  *
505  * Check if this is the last online CPU executing the function and if so,
506  * suspend timekeeping.  Otherwise suspend the local tick.
507  *
508  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
509  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
510  */
tick_freeze(void)511 void tick_freeze(void)
512 {
513 	raw_spin_lock(&tick_freeze_lock);
514 
515 	tick_freeze_depth++;
516 	if (tick_freeze_depth == num_online_cpus()) {
517 		trace_suspend_resume(TPS("timekeeping_freeze"),
518 				     smp_processor_id(), true);
519 		system_state = SYSTEM_SUSPEND;
520 		sched_clock_suspend();
521 		timekeeping_suspend();
522 	} else {
523 		tick_suspend_local();
524 	}
525 
526 	raw_spin_unlock(&tick_freeze_lock);
527 }
528 
529 /**
530  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
531  *
532  * Check if this is the first CPU executing the function and if so, resume
533  * timekeeping.  Otherwise resume the local tick.
534  *
535  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
536  * Interrupts must not be enabled after the preceding %tick_freeze().
537  */
tick_unfreeze(void)538 void tick_unfreeze(void)
539 {
540 	raw_spin_lock(&tick_freeze_lock);
541 
542 	if (tick_freeze_depth == num_online_cpus()) {
543 		timekeeping_resume();
544 		sched_clock_resume();
545 		system_state = SYSTEM_RUNNING;
546 		trace_suspend_resume(TPS("timekeeping_freeze"),
547 				     smp_processor_id(), false);
548 	} else {
549 		touch_softlockup_watchdog();
550 		tick_resume_local();
551 	}
552 
553 	tick_freeze_depth--;
554 
555 	raw_spin_unlock(&tick_freeze_lock);
556 }
557 #endif /* CONFIG_SUSPEND */
558 
559 /**
560  * tick_init - initialize the tick control
561  */
tick_init(void)562 void __init tick_init(void)
563 {
564 	tick_broadcast_init();
565 	tick_nohz_init();
566 }
567