1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 #include <trace/hooks/sched.h>
30
31 #include <asm/irq_regs.h>
32
33 #include "tick-internal.h"
34
35 #include <trace/events/timer.h>
36
37 /*
38 * Per-CPU nohz control structure
39 */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41
tick_get_tick_sched(int cpu)42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 return &per_cpu(tick_cpu_sched, cpu);
45 }
46
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
48 /*
49 * The time, when the last jiffy update happened. Write access must hold
50 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
51 * consistent view of jiffies and last_jiffies_update.
52 */
53 static ktime_t last_jiffies_update;
54
55 /*
56 * Must be called with interrupts disabled !
57 */
tick_do_update_jiffies64(ktime_t now)58 static void tick_do_update_jiffies64(ktime_t now)
59 {
60 unsigned long ticks = 1;
61 ktime_t delta, nextp;
62
63 /*
64 * 64bit can do a quick check without holding jiffies lock and
65 * without looking at the sequence count. The smp_load_acquire()
66 * pairs with the update done later in this function.
67 *
68 * 32bit cannot do that because the store of tick_next_period
69 * consists of two 32bit stores and the first store could move it
70 * to a random point in the future.
71 */
72 if (IS_ENABLED(CONFIG_64BIT)) {
73 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
74 return;
75 } else {
76 unsigned int seq;
77
78 /*
79 * Avoid contention on jiffies_lock and protect the quick
80 * check with the sequence count.
81 */
82 do {
83 seq = read_seqcount_begin(&jiffies_seq);
84 nextp = tick_next_period;
85 } while (read_seqcount_retry(&jiffies_seq, seq));
86
87 if (ktime_before(now, nextp))
88 return;
89 }
90
91 /* Quick check failed, i.e. update is required. */
92 raw_spin_lock(&jiffies_lock);
93 /*
94 * Reevaluate with the lock held. Another CPU might have done the
95 * update already.
96 */
97 if (ktime_before(now, tick_next_period)) {
98 raw_spin_unlock(&jiffies_lock);
99 return;
100 }
101
102 write_seqcount_begin(&jiffies_seq);
103
104 delta = ktime_sub(now, tick_next_period);
105 if (unlikely(delta >= TICK_NSEC)) {
106 /* Slow path for long idle sleep times */
107 s64 incr = TICK_NSEC;
108
109 ticks += ktime_divns(delta, incr);
110
111 last_jiffies_update = ktime_add_ns(last_jiffies_update,
112 incr * ticks);
113 } else {
114 last_jiffies_update = ktime_add_ns(last_jiffies_update,
115 TICK_NSEC);
116 }
117
118 /* Advance jiffies to complete the jiffies_seq protected job */
119 jiffies_64 += ticks;
120
121 /*
122 * Keep the tick_next_period variable up to date.
123 */
124 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
125
126 if (IS_ENABLED(CONFIG_64BIT)) {
127 /*
128 * Pairs with smp_load_acquire() in the lockless quick
129 * check above and ensures that the update to jiffies_64 is
130 * not reordered vs. the store to tick_next_period, neither
131 * by the compiler nor by the CPU.
132 */
133 smp_store_release(&tick_next_period, nextp);
134 } else {
135 /*
136 * A plain store is good enough on 32bit as the quick check
137 * above is protected by the sequence count.
138 */
139 tick_next_period = nextp;
140 }
141
142 /*
143 * Release the sequence count. calc_global_load() below is not
144 * protected by it, but jiffies_lock needs to be held to prevent
145 * concurrent invocations.
146 */
147 write_seqcount_end(&jiffies_seq);
148
149 calc_global_load();
150
151 raw_spin_unlock(&jiffies_lock);
152 update_wall_time();
153 }
154
155 /*
156 * Initialize and return retrieve the jiffies update.
157 */
tick_init_jiffy_update(void)158 static ktime_t tick_init_jiffy_update(void)
159 {
160 ktime_t period;
161
162 raw_spin_lock(&jiffies_lock);
163 write_seqcount_begin(&jiffies_seq);
164 /* Did we start the jiffies update yet ? */
165 if (last_jiffies_update == 0) {
166 u32 rem;
167
168 /*
169 * Ensure that the tick is aligned to a multiple of
170 * TICK_NSEC.
171 */
172 div_u64_rem(tick_next_period, TICK_NSEC, &rem);
173 if (rem)
174 tick_next_period += TICK_NSEC - rem;
175
176 last_jiffies_update = tick_next_period;
177 }
178 period = last_jiffies_update;
179 write_seqcount_end(&jiffies_seq);
180 raw_spin_unlock(&jiffies_lock);
181 return period;
182 }
183
184 #define MAX_STALLED_JIFFIES 5
185
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)186 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
187 {
188 int tick_cpu, cpu = smp_processor_id();
189
190 #ifdef CONFIG_NO_HZ_COMMON
191 /*
192 * Check if the do_timer duty was dropped. We don't care about
193 * concurrency: This happens only when the CPU in charge went
194 * into a long sleep. If two CPUs happen to assign themselves to
195 * this duty, then the jiffies update is still serialized by
196 * jiffies_lock.
197 *
198 * If nohz_full is enabled, this should not happen because the
199 * tick_do_timer_cpu never relinquishes.
200 */
201 tick_cpu = READ_ONCE(tick_do_timer_cpu);
202 if (unlikely(tick_cpu == TICK_DO_TIMER_NONE)) {
203 #ifdef CONFIG_NO_HZ_FULL
204 WARN_ON_ONCE(tick_nohz_full_running);
205 #endif
206 WRITE_ONCE(tick_do_timer_cpu, cpu);
207 tick_cpu = cpu;
208 }
209 #endif
210
211 /* Check, if the jiffies need an update */
212 if (tick_cpu == cpu) {
213 tick_do_update_jiffies64(now);
214 trace_android_vh_jiffies_update(NULL);
215 }
216
217 /*
218 * If jiffies update stalled for too long (timekeeper in stop_machine()
219 * or VMEXIT'ed for several msecs), force an update.
220 */
221 if (ts->last_tick_jiffies != jiffies) {
222 ts->stalled_jiffies = 0;
223 ts->last_tick_jiffies = READ_ONCE(jiffies);
224 } else {
225 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
226 tick_do_update_jiffies64(now);
227 ts->stalled_jiffies = 0;
228 ts->last_tick_jiffies = READ_ONCE(jiffies);
229 }
230 }
231
232 if (ts->inidle)
233 ts->got_idle_tick = 1;
234 }
235
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)236 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
237 {
238 #ifdef CONFIG_NO_HZ_COMMON
239 /*
240 * When we are idle and the tick is stopped, we have to touch
241 * the watchdog as we might not schedule for a really long
242 * time. This happens on complete idle SMP systems while
243 * waiting on the login prompt. We also increment the "start of
244 * idle" jiffy stamp so the idle accounting adjustment we do
245 * when we go busy again does not account too much ticks.
246 */
247 if (ts->tick_stopped) {
248 touch_softlockup_watchdog_sched();
249 if (is_idle_task(current))
250 ts->idle_jiffies++;
251 /*
252 * In case the current tick fired too early past its expected
253 * expiration, make sure we don't bypass the next clock reprogramming
254 * to the same deadline.
255 */
256 ts->next_tick = 0;
257 }
258 #endif
259 update_process_times(user_mode(regs));
260 profile_tick(CPU_PROFILING);
261 }
262 #endif
263
264 #ifdef CONFIG_NO_HZ_FULL
265 cpumask_var_t tick_nohz_full_mask;
266 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
267 bool tick_nohz_full_running;
268 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
269 static atomic_t tick_dep_mask;
270
check_tick_dependency(atomic_t * dep)271 static bool check_tick_dependency(atomic_t *dep)
272 {
273 int val = atomic_read(dep);
274
275 if (val & TICK_DEP_MASK_POSIX_TIMER) {
276 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
277 return true;
278 }
279
280 if (val & TICK_DEP_MASK_PERF_EVENTS) {
281 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
282 return true;
283 }
284
285 if (val & TICK_DEP_MASK_SCHED) {
286 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
287 return true;
288 }
289
290 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
291 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
292 return true;
293 }
294
295 if (val & TICK_DEP_MASK_RCU) {
296 trace_tick_stop(0, TICK_DEP_MASK_RCU);
297 return true;
298 }
299
300 if (val & TICK_DEP_MASK_RCU_EXP) {
301 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
302 return true;
303 }
304
305 return false;
306 }
307
can_stop_full_tick(int cpu,struct tick_sched * ts)308 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
309 {
310 lockdep_assert_irqs_disabled();
311
312 if (unlikely(!cpu_online(cpu)))
313 return false;
314
315 if (check_tick_dependency(&tick_dep_mask))
316 return false;
317
318 if (check_tick_dependency(&ts->tick_dep_mask))
319 return false;
320
321 if (check_tick_dependency(¤t->tick_dep_mask))
322 return false;
323
324 if (check_tick_dependency(¤t->signal->tick_dep_mask))
325 return false;
326
327 return true;
328 }
329
nohz_full_kick_func(struct irq_work * work)330 static void nohz_full_kick_func(struct irq_work *work)
331 {
332 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
333 }
334
335 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
336 IRQ_WORK_INIT_HARD(nohz_full_kick_func);
337
338 /*
339 * Kick this CPU if it's full dynticks in order to force it to
340 * re-evaluate its dependency on the tick and restart it if necessary.
341 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
342 * is NMI safe.
343 */
tick_nohz_full_kick(void)344 static void tick_nohz_full_kick(void)
345 {
346 if (!tick_nohz_full_cpu(smp_processor_id()))
347 return;
348
349 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
350 }
351
352 /*
353 * Kick the CPU if it's full dynticks in order to force it to
354 * re-evaluate its dependency on the tick and restart it if necessary.
355 */
tick_nohz_full_kick_cpu(int cpu)356 void tick_nohz_full_kick_cpu(int cpu)
357 {
358 if (!tick_nohz_full_cpu(cpu))
359 return;
360
361 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
362 }
363
tick_nohz_kick_task(struct task_struct * tsk)364 static void tick_nohz_kick_task(struct task_struct *tsk)
365 {
366 int cpu;
367
368 /*
369 * If the task is not running, run_posix_cpu_timers()
370 * has nothing to elapse, IPI can then be spared.
371 *
372 * activate_task() STORE p->tick_dep_mask
373 * STORE p->on_rq
374 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
375 * LOCK rq->lock LOAD p->on_rq
376 * smp_mb__after_spin_lock()
377 * tick_nohz_task_switch()
378 * LOAD p->tick_dep_mask
379 */
380 if (!sched_task_on_rq(tsk))
381 return;
382
383 /*
384 * If the task concurrently migrates to another CPU,
385 * we guarantee it sees the new tick dependency upon
386 * schedule.
387 *
388 * set_task_cpu(p, cpu);
389 * STORE p->cpu = @cpu
390 * __schedule() (switch to task 'p')
391 * LOCK rq->lock
392 * smp_mb__after_spin_lock() STORE p->tick_dep_mask
393 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
394 * LOAD p->tick_dep_mask LOAD p->cpu
395 */
396 cpu = task_cpu(tsk);
397
398 preempt_disable();
399 if (cpu_online(cpu))
400 tick_nohz_full_kick_cpu(cpu);
401 preempt_enable();
402 }
403
404 /*
405 * Kick all full dynticks CPUs in order to force these to re-evaluate
406 * their dependency on the tick and restart it if necessary.
407 */
tick_nohz_full_kick_all(void)408 static void tick_nohz_full_kick_all(void)
409 {
410 int cpu;
411
412 if (!tick_nohz_full_running)
413 return;
414
415 preempt_disable();
416 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
417 tick_nohz_full_kick_cpu(cpu);
418 preempt_enable();
419 }
420
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)421 static void tick_nohz_dep_set_all(atomic_t *dep,
422 enum tick_dep_bits bit)
423 {
424 int prev;
425
426 prev = atomic_fetch_or(BIT(bit), dep);
427 if (!prev)
428 tick_nohz_full_kick_all();
429 }
430
431 /*
432 * Set a global tick dependency. Used by perf events that rely on freq and
433 * by unstable clock.
434 */
tick_nohz_dep_set(enum tick_dep_bits bit)435 void tick_nohz_dep_set(enum tick_dep_bits bit)
436 {
437 tick_nohz_dep_set_all(&tick_dep_mask, bit);
438 }
439
tick_nohz_dep_clear(enum tick_dep_bits bit)440 void tick_nohz_dep_clear(enum tick_dep_bits bit)
441 {
442 atomic_andnot(BIT(bit), &tick_dep_mask);
443 }
444
445 /*
446 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
447 * manage events throttling.
448 */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)449 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
450 {
451 int prev;
452 struct tick_sched *ts;
453
454 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
455
456 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
457 if (!prev) {
458 preempt_disable();
459 /* Perf needs local kick that is NMI safe */
460 if (cpu == smp_processor_id()) {
461 tick_nohz_full_kick();
462 } else {
463 /* Remote irq work not NMI-safe */
464 if (!WARN_ON_ONCE(in_nmi()))
465 tick_nohz_full_kick_cpu(cpu);
466 }
467 preempt_enable();
468 }
469 }
470 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
471
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)472 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
473 {
474 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
475
476 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
477 }
478 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
479
480 /*
481 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
482 * in order to elapse per task timers.
483 */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)484 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
485 {
486 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
487 tick_nohz_kick_task(tsk);
488 }
489 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
490
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)491 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
492 {
493 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
494 }
495 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
496
497 /*
498 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
499 * per process timers.
500 */
tick_nohz_dep_set_signal(struct task_struct * tsk,enum tick_dep_bits bit)501 void tick_nohz_dep_set_signal(struct task_struct *tsk,
502 enum tick_dep_bits bit)
503 {
504 int prev;
505 struct signal_struct *sig = tsk->signal;
506
507 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
508 if (!prev) {
509 struct task_struct *t;
510
511 lockdep_assert_held(&tsk->sighand->siglock);
512 __for_each_thread(sig, t)
513 tick_nohz_kick_task(t);
514 }
515 }
516
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)517 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
518 {
519 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
520 }
521
522 /*
523 * Re-evaluate the need for the tick as we switch the current task.
524 * It might need the tick due to per task/process properties:
525 * perf events, posix CPU timers, ...
526 */
__tick_nohz_task_switch(void)527 void __tick_nohz_task_switch(void)
528 {
529 struct tick_sched *ts;
530
531 if (!tick_nohz_full_cpu(smp_processor_id()))
532 return;
533
534 ts = this_cpu_ptr(&tick_cpu_sched);
535
536 if (ts->tick_stopped) {
537 if (atomic_read(¤t->tick_dep_mask) ||
538 atomic_read(¤t->signal->tick_dep_mask))
539 tick_nohz_full_kick();
540 }
541 }
542
543 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)544 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
545 {
546 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
547 cpumask_copy(tick_nohz_full_mask, cpumask);
548 tick_nohz_full_running = true;
549 }
550
tick_nohz_cpu_hotpluggable(unsigned int cpu)551 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
552 {
553 /*
554 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
555 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
556 * CPUs. It must remain online when nohz full is enabled.
557 */
558 if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
559 return false;
560 return true;
561 }
562
tick_nohz_cpu_down(unsigned int cpu)563 static int tick_nohz_cpu_down(unsigned int cpu)
564 {
565 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
566 }
567
tick_nohz_init(void)568 void __init tick_nohz_init(void)
569 {
570 int cpu, ret;
571
572 if (!tick_nohz_full_running)
573 return;
574
575 /*
576 * Full dynticks uses irq work to drive the tick rescheduling on safe
577 * locking contexts. But then we need irq work to raise its own
578 * interrupts to avoid circular dependency on the tick
579 */
580 if (!arch_irq_work_has_interrupt()) {
581 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
582 cpumask_clear(tick_nohz_full_mask);
583 tick_nohz_full_running = false;
584 return;
585 }
586
587 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
588 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
589 cpu = smp_processor_id();
590
591 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
592 pr_warn("NO_HZ: Clearing %d from nohz_full range "
593 "for timekeeping\n", cpu);
594 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
595 }
596 }
597
598 for_each_cpu(cpu, tick_nohz_full_mask)
599 ct_cpu_track_user(cpu);
600
601 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
602 "kernel/nohz:predown", NULL,
603 tick_nohz_cpu_down);
604 WARN_ON(ret < 0);
605 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
606 cpumask_pr_args(tick_nohz_full_mask));
607 }
608 #endif
609
610 /*
611 * NOHZ - aka dynamic tick functionality
612 */
613 #ifdef CONFIG_NO_HZ_COMMON
614 /*
615 * NO HZ enabled ?
616 */
617 bool tick_nohz_enabled __read_mostly = true;
618 unsigned long tick_nohz_active __read_mostly;
619 /*
620 * Enable / Disable tickless mode
621 */
setup_tick_nohz(char * str)622 static int __init setup_tick_nohz(char *str)
623 {
624 return (kstrtobool(str, &tick_nohz_enabled) == 0);
625 }
626
627 __setup("nohz=", setup_tick_nohz);
628
tick_nohz_tick_stopped(void)629 bool tick_nohz_tick_stopped(void)
630 {
631 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
632
633 return ts->tick_stopped;
634 }
635
tick_nohz_tick_stopped_cpu(int cpu)636 bool tick_nohz_tick_stopped_cpu(int cpu)
637 {
638 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
639
640 return ts->tick_stopped;
641 }
642
643 /**
644 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
645 *
646 * Called from interrupt entry when the CPU was idle
647 *
648 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
649 * must be updated. Otherwise an interrupt handler could use a stale jiffy
650 * value. We do this unconditionally on any CPU, as we don't know whether the
651 * CPU, which has the update task assigned is in a long sleep.
652 */
tick_nohz_update_jiffies(ktime_t now)653 static void tick_nohz_update_jiffies(ktime_t now)
654 {
655 unsigned long flags;
656
657 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
658
659 local_irq_save(flags);
660 tick_do_update_jiffies64(now);
661 local_irq_restore(flags);
662
663 touch_softlockup_watchdog_sched();
664 }
665
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)666 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
667 {
668 ktime_t delta;
669
670 if (WARN_ON_ONCE(!ts->idle_active))
671 return;
672
673 delta = ktime_sub(now, ts->idle_entrytime);
674
675 write_seqcount_begin(&ts->idle_sleeptime_seq);
676 if (nr_iowait_cpu(smp_processor_id()) > 0)
677 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
678 else
679 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
680
681 ts->idle_entrytime = now;
682 ts->idle_active = 0;
683 write_seqcount_end(&ts->idle_sleeptime_seq);
684
685 sched_clock_idle_wakeup_event();
686 }
687
tick_nohz_start_idle(struct tick_sched * ts)688 static void tick_nohz_start_idle(struct tick_sched *ts)
689 {
690 write_seqcount_begin(&ts->idle_sleeptime_seq);
691 ts->idle_entrytime = ktime_get();
692 ts->idle_active = 1;
693 write_seqcount_end(&ts->idle_sleeptime_seq);
694
695 sched_clock_idle_sleep_event();
696 }
697
get_cpu_sleep_time_us(struct tick_sched * ts,ktime_t * sleeptime,bool compute_delta,u64 * last_update_time)698 static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
699 bool compute_delta, u64 *last_update_time)
700 {
701 ktime_t now, idle;
702 unsigned int seq;
703
704 if (!tick_nohz_active)
705 return -1;
706
707 now = ktime_get();
708 if (last_update_time)
709 *last_update_time = ktime_to_us(now);
710
711 do {
712 seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
713
714 if (ts->idle_active && compute_delta) {
715 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
716
717 idle = ktime_add(*sleeptime, delta);
718 } else {
719 idle = *sleeptime;
720 }
721 } while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
722
723 return ktime_to_us(idle);
724
725 }
726
727 /**
728 * get_cpu_idle_time_us - get the total idle time of a CPU
729 * @cpu: CPU number to query
730 * @last_update_time: variable to store update time in. Do not update
731 * counters if NULL.
732 *
733 * Return the cumulative idle time (since boot) for a given
734 * CPU, in microseconds. Note this is partially broken due to
735 * the counter of iowait tasks that can be remotely updated without
736 * any synchronization. Therefore it is possible to observe backward
737 * values within two consecutive reads.
738 *
739 * This time is measured via accounting rather than sampling,
740 * and is as accurate as ktime_get() is.
741 *
742 * This function returns -1 if NOHZ is not enabled.
743 */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)744 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
745 {
746 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
747
748 return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
749 !nr_iowait_cpu(cpu), last_update_time);
750 }
751 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
752
753 /**
754 * get_cpu_iowait_time_us - get the total iowait time of a CPU
755 * @cpu: CPU number to query
756 * @last_update_time: variable to store update time in. Do not update
757 * counters if NULL.
758 *
759 * Return the cumulative iowait time (since boot) for a given
760 * CPU, in microseconds. Note this is partially broken due to
761 * the counter of iowait tasks that can be remotely updated without
762 * any synchronization. Therefore it is possible to observe backward
763 * values within two consecutive reads.
764 *
765 * This time is measured via accounting rather than sampling,
766 * and is as accurate as ktime_get() is.
767 *
768 * This function returns -1 if NOHZ is not enabled.
769 */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)770 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
771 {
772 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
773
774 return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
775 nr_iowait_cpu(cpu), last_update_time);
776 }
777 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
778
tick_nohz_restart(struct tick_sched * ts,ktime_t now)779 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
780 {
781 hrtimer_cancel(&ts->sched_timer);
782 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
783
784 /* Forward the time to expire in the future */
785 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
786
787 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
788 hrtimer_start_expires(&ts->sched_timer,
789 HRTIMER_MODE_ABS_PINNED_HARD);
790 } else {
791 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
792 }
793
794 /*
795 * Reset to make sure next tick stop doesn't get fooled by past
796 * cached clock deadline.
797 */
798 ts->next_tick = 0;
799 }
800
local_timer_softirq_pending(void)801 static inline bool local_timer_softirq_pending(void)
802 {
803 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
804 }
805
tick_nohz_next_event(struct tick_sched * ts,int cpu)806 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
807 {
808 u64 basemono, next_tick, delta, expires;
809 unsigned long basejiff;
810 unsigned int seq;
811 int tick_cpu;
812
813 /* Read jiffies and the time when jiffies were updated last */
814 do {
815 seq = read_seqcount_begin(&jiffies_seq);
816 basemono = last_jiffies_update;
817 basejiff = jiffies;
818 } while (read_seqcount_retry(&jiffies_seq, seq));
819 ts->last_jiffies = basejiff;
820 ts->timer_expires_base = basemono;
821
822 /*
823 * Keep the periodic tick, when RCU, architecture or irq_work
824 * requests it.
825 * Aside of that check whether the local timer softirq is
826 * pending. If so its a bad idea to call get_next_timer_interrupt()
827 * because there is an already expired timer, so it will request
828 * immediate expiry, which rearms the hardware timer with a
829 * minimal delta which brings us back to this place
830 * immediately. Lather, rinse and repeat...
831 */
832 if (rcu_needs_cpu() || arch_needs_cpu() ||
833 irq_work_needs_cpu() || local_timer_softirq_pending()) {
834 next_tick = basemono + TICK_NSEC;
835 } else {
836 /*
837 * Get the next pending timer. If high resolution
838 * timers are enabled this only takes the timer wheel
839 * timers into account. If high resolution timers are
840 * disabled this also looks at the next expiring
841 * hrtimer.
842 */
843 next_tick = get_next_timer_interrupt(basejiff, basemono);
844 ts->next_timer = next_tick;
845 }
846
847 /*
848 * If the tick is due in the next period, keep it ticking or
849 * force prod the timer.
850 */
851 delta = next_tick - basemono;
852 if (delta <= (u64)TICK_NSEC) {
853 /*
854 * Tell the timer code that the base is not idle, i.e. undo
855 * the effect of get_next_timer_interrupt():
856 */
857 timer_clear_idle();
858 /*
859 * We've not stopped the tick yet, and there's a timer in the
860 * next period, so no point in stopping it either, bail.
861 */
862 if (!ts->tick_stopped) {
863 ts->timer_expires = 0;
864 goto out;
865 }
866 }
867
868 /*
869 * If this CPU is the one which had the do_timer() duty last, we limit
870 * the sleep time to the timekeeping max_deferment value.
871 * Otherwise we can sleep as long as we want.
872 */
873 delta = timekeeping_max_deferment();
874 tick_cpu = READ_ONCE(tick_do_timer_cpu);
875 if (tick_cpu != cpu &&
876 (tick_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
877 delta = KTIME_MAX;
878
879 /* Calculate the next expiry time */
880 if (delta < (KTIME_MAX - basemono))
881 expires = basemono + delta;
882 else
883 expires = KTIME_MAX;
884
885 ts->timer_expires = min_t(u64, expires, next_tick);
886
887 out:
888 return ts->timer_expires;
889 }
890
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)891 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
892 {
893 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
894 u64 basemono = ts->timer_expires_base;
895 u64 expires = ts->timer_expires;
896 ktime_t tick = expires;
897 int tick_cpu;
898
899 /* Make sure we won't be trying to stop it twice in a row. */
900 ts->timer_expires_base = 0;
901
902 /*
903 * If this CPU is the one which updates jiffies, then give up
904 * the assignment and let it be taken by the CPU which runs
905 * the tick timer next, which might be this CPU as well. If we
906 * don't drop this here the jiffies might be stale and
907 * do_timer() never invoked. Keep track of the fact that it
908 * was the one which had the do_timer() duty last.
909 */
910 tick_cpu = READ_ONCE(tick_do_timer_cpu);
911 if (tick_cpu == cpu) {
912 WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
913 ts->do_timer_last = 1;
914 } else if (tick_cpu != TICK_DO_TIMER_NONE) {
915 ts->do_timer_last = 0;
916 }
917
918 /* Skip reprogram of event if its not changed */
919 if (ts->tick_stopped && (expires == ts->next_tick)) {
920 /* Sanity check: make sure clockevent is actually programmed */
921 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
922 return;
923
924 WARN_ON_ONCE(1);
925 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
926 basemono, ts->next_tick, dev->next_event,
927 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
928 }
929
930 /*
931 * nohz_stop_sched_tick can be called several times before
932 * the nohz_restart_sched_tick is called. This happens when
933 * interrupts arrive which do not cause a reschedule. In the
934 * first call we save the current tick time, so we can restart
935 * the scheduler tick in nohz_restart_sched_tick.
936 */
937 if (!ts->tick_stopped) {
938 calc_load_nohz_start();
939 quiet_vmstat();
940
941 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
942 ts->tick_stopped = 1;
943 trace_tick_stop(1, TICK_DEP_MASK_NONE);
944 }
945
946 ts->next_tick = tick;
947
948 /*
949 * If the expiration time == KTIME_MAX, then we simply stop
950 * the tick timer.
951 */
952 if (unlikely(expires == KTIME_MAX)) {
953 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
954 hrtimer_cancel(&ts->sched_timer);
955 else
956 tick_program_event(KTIME_MAX, 1);
957 return;
958 }
959
960 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
961 hrtimer_start(&ts->sched_timer, tick,
962 HRTIMER_MODE_ABS_PINNED_HARD);
963 } else {
964 hrtimer_set_expires(&ts->sched_timer, tick);
965 tick_program_event(tick, 1);
966 }
967 }
968
tick_nohz_retain_tick(struct tick_sched * ts)969 static void tick_nohz_retain_tick(struct tick_sched *ts)
970 {
971 ts->timer_expires_base = 0;
972 }
973
974 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)975 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
976 {
977 if (tick_nohz_next_event(ts, cpu))
978 tick_nohz_stop_tick(ts, cpu);
979 else
980 tick_nohz_retain_tick(ts);
981 }
982 #endif /* CONFIG_NO_HZ_FULL */
983
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)984 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
985 {
986 /* Update jiffies first */
987 tick_do_update_jiffies64(now);
988
989 /*
990 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
991 * the clock forward checks in the enqueue path:
992 */
993 timer_clear_idle();
994
995 calc_load_nohz_stop();
996 touch_softlockup_watchdog_sched();
997 /*
998 * Cancel the scheduled timer and restore the tick
999 */
1000 ts->tick_stopped = 0;
1001 tick_nohz_restart(ts, now);
1002 }
1003
__tick_nohz_full_update_tick(struct tick_sched * ts,ktime_t now)1004 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1005 ktime_t now)
1006 {
1007 #ifdef CONFIG_NO_HZ_FULL
1008 int cpu = smp_processor_id();
1009
1010 if (can_stop_full_tick(cpu, ts))
1011 tick_nohz_stop_sched_tick(ts, cpu);
1012 else if (ts->tick_stopped)
1013 tick_nohz_restart_sched_tick(ts, now);
1014 #endif
1015 }
1016
tick_nohz_full_update_tick(struct tick_sched * ts)1017 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1018 {
1019 if (!tick_nohz_full_cpu(smp_processor_id()))
1020 return;
1021
1022 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
1023 return;
1024
1025 __tick_nohz_full_update_tick(ts, ktime_get());
1026 }
1027
1028 /*
1029 * A pending softirq outside an IRQ (or softirq disabled section) context
1030 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1031 * reach here due to the need_resched() early check in can_stop_idle_tick().
1032 *
1033 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1034 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1035 * triggering the below since wakep_softirqd() is ignored.
1036 *
1037 */
report_idle_softirq(void)1038 static bool report_idle_softirq(void)
1039 {
1040 static int ratelimit;
1041 unsigned int pending = local_softirq_pending();
1042
1043 if (likely(!pending))
1044 return false;
1045
1046 /* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1047 if (!cpu_active(smp_processor_id())) {
1048 pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1049 if (!pending)
1050 return false;
1051 }
1052
1053 if (ratelimit >= 10)
1054 return false;
1055
1056 /* On RT, softirqs handling may be waiting on some lock */
1057 if (local_bh_blocked())
1058 return false;
1059
1060 pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1061 pending);
1062 ratelimit++;
1063
1064 return true;
1065 }
1066
can_stop_idle_tick(int cpu,struct tick_sched * ts)1067 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1068 {
1069 /*
1070 * If this CPU is offline and it is the one which updates
1071 * jiffies, then give up the assignment and let it be taken by
1072 * the CPU which runs the tick timer next. If we don't drop
1073 * this here the jiffies might be stale and do_timer() never
1074 * invoked.
1075 */
1076 if (unlikely(!cpu_online(cpu))) {
1077 int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1078
1079 if (tick_cpu == cpu)
1080 WRITE_ONCE(tick_do_timer_cpu, TICK_DO_TIMER_NONE);
1081 /*
1082 * Make sure the CPU doesn't get fooled by obsolete tick
1083 * deadline if it comes back online later.
1084 */
1085 ts->next_tick = 0;
1086 return false;
1087 }
1088
1089 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1090 return false;
1091
1092 if (need_resched())
1093 return false;
1094
1095 if (unlikely(report_idle_softirq()))
1096 return false;
1097
1098 if (tick_nohz_full_enabled()) {
1099 int tick_cpu = READ_ONCE(tick_do_timer_cpu);
1100 /*
1101 * Keep the tick alive to guarantee timekeeping progression
1102 * if there are full dynticks CPUs around
1103 */
1104 if (tick_cpu == cpu)
1105 return false;
1106
1107 /* Should not happen for nohz-full */
1108 if (WARN_ON_ONCE(tick_cpu == TICK_DO_TIMER_NONE))
1109 return false;
1110 }
1111
1112 return true;
1113 }
1114
1115 /**
1116 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1117 *
1118 * When the next event is more than a tick into the future, stop the idle tick
1119 */
tick_nohz_idle_stop_tick(void)1120 void tick_nohz_idle_stop_tick(void)
1121 {
1122 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1123 int cpu = smp_processor_id();
1124 ktime_t expires;
1125
1126 trace_android_vh_tick_nohz_idle_stop_tick(NULL);
1127
1128 /*
1129 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1130 * tick timer expiration time is known already.
1131 */
1132 if (ts->timer_expires_base)
1133 expires = ts->timer_expires;
1134 else if (can_stop_idle_tick(cpu, ts))
1135 expires = tick_nohz_next_event(ts, cpu);
1136 else
1137 return;
1138
1139 ts->idle_calls++;
1140
1141 if (expires > 0LL) {
1142 int was_stopped = ts->tick_stopped;
1143
1144 tick_nohz_stop_tick(ts, cpu);
1145
1146 ts->idle_sleeps++;
1147 ts->idle_expires = expires;
1148
1149 if (!was_stopped && ts->tick_stopped) {
1150 ts->idle_jiffies = ts->last_jiffies;
1151 nohz_balance_enter_idle(cpu);
1152 }
1153 } else {
1154 tick_nohz_retain_tick(ts);
1155 }
1156 }
1157
tick_nohz_idle_retain_tick(void)1158 void tick_nohz_idle_retain_tick(void)
1159 {
1160 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1161 /*
1162 * Undo the effect of get_next_timer_interrupt() called from
1163 * tick_nohz_next_event().
1164 */
1165 timer_clear_idle();
1166 }
1167
1168 /**
1169 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1170 *
1171 * Called when we start the idle loop.
1172 */
tick_nohz_idle_enter(void)1173 void tick_nohz_idle_enter(void)
1174 {
1175 struct tick_sched *ts;
1176
1177 lockdep_assert_irqs_enabled();
1178
1179 local_irq_disable();
1180
1181 ts = this_cpu_ptr(&tick_cpu_sched);
1182
1183 WARN_ON_ONCE(ts->timer_expires_base);
1184
1185 ts->inidle = 1;
1186 tick_nohz_start_idle(ts);
1187
1188 local_irq_enable();
1189 }
1190
1191 /**
1192 * tick_nohz_irq_exit - update next tick event from interrupt exit
1193 *
1194 * When an interrupt fires while we are idle and it doesn't cause
1195 * a reschedule, it may still add, modify or delete a timer, enqueue
1196 * an RCU callback, etc...
1197 * So we need to re-calculate and reprogram the next tick event.
1198 */
tick_nohz_irq_exit(void)1199 void tick_nohz_irq_exit(void)
1200 {
1201 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1202
1203 if (ts->inidle)
1204 tick_nohz_start_idle(ts);
1205 else
1206 tick_nohz_full_update_tick(ts);
1207 }
1208
1209 /**
1210 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1211 */
tick_nohz_idle_got_tick(void)1212 bool tick_nohz_idle_got_tick(void)
1213 {
1214 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1215
1216 if (ts->got_idle_tick) {
1217 ts->got_idle_tick = 0;
1218 return true;
1219 }
1220 return false;
1221 }
1222
1223 /**
1224 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1225 * or the tick, whatever that expires first. Note that, if the tick has been
1226 * stopped, it returns the next hrtimer.
1227 *
1228 * Called from power state control code with interrupts disabled
1229 */
tick_nohz_get_next_hrtimer(void)1230 ktime_t tick_nohz_get_next_hrtimer(void)
1231 {
1232 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1233 }
1234
1235 /**
1236 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1237 * @delta_next: duration until the next event if the tick cannot be stopped
1238 *
1239 * Called from power state control code with interrupts disabled.
1240 *
1241 * The return value of this function and/or the value returned by it through the
1242 * @delta_next pointer can be negative which must be taken into account by its
1243 * callers.
1244 */
tick_nohz_get_sleep_length(ktime_t * delta_next)1245 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1246 {
1247 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1248 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1249 int cpu = smp_processor_id();
1250 /*
1251 * The idle entry time is expected to be a sufficient approximation of
1252 * the current time at this point.
1253 */
1254 ktime_t now = ts->idle_entrytime;
1255 ktime_t next_event;
1256
1257 WARN_ON_ONCE(!ts->inidle);
1258
1259 *delta_next = ktime_sub(dev->next_event, now);
1260
1261 if (!can_stop_idle_tick(cpu, ts))
1262 return *delta_next;
1263
1264 next_event = tick_nohz_next_event(ts, cpu);
1265 if (!next_event)
1266 return *delta_next;
1267
1268 /*
1269 * If the next highres timer to expire is earlier than next_event, the
1270 * idle governor needs to know that.
1271 */
1272 next_event = min_t(u64, next_event,
1273 hrtimer_next_event_without(&ts->sched_timer));
1274
1275 return ktime_sub(next_event, now);
1276 }
1277 EXPORT_SYMBOL_GPL(tick_nohz_get_sleep_length);
1278
1279 /**
1280 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1281 * for a particular CPU.
1282 *
1283 * Called from the schedutil frequency scaling governor in scheduler context.
1284 */
tick_nohz_get_idle_calls_cpu(int cpu)1285 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1286 {
1287 struct tick_sched *ts = tick_get_tick_sched(cpu);
1288
1289 return ts->idle_calls;
1290 }
1291 EXPORT_SYMBOL_GPL(tick_nohz_get_idle_calls_cpu);
1292
1293 /**
1294 * tick_nohz_get_idle_calls - return the current idle calls counter value
1295 *
1296 * Called from the schedutil frequency scaling governor in scheduler context.
1297 */
tick_nohz_get_idle_calls(void)1298 unsigned long tick_nohz_get_idle_calls(void)
1299 {
1300 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1301
1302 return ts->idle_calls;
1303 }
1304
tick_nohz_account_idle_time(struct tick_sched * ts,ktime_t now)1305 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1306 ktime_t now)
1307 {
1308 unsigned long ticks;
1309
1310 ts->idle_exittime = now;
1311
1312 if (vtime_accounting_enabled_this_cpu())
1313 return;
1314 /*
1315 * We stopped the tick in idle. Update process times would miss the
1316 * time we slept as update_process_times does only a 1 tick
1317 * accounting. Enforce that this is accounted to idle !
1318 */
1319 ticks = jiffies - ts->idle_jiffies;
1320 /*
1321 * We might be one off. Do not randomly account a huge number of ticks!
1322 */
1323 if (ticks && ticks < LONG_MAX)
1324 account_idle_ticks(ticks);
1325 }
1326
tick_nohz_idle_restart_tick(void)1327 void tick_nohz_idle_restart_tick(void)
1328 {
1329 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1330
1331 if (ts->tick_stopped) {
1332 ktime_t now = ktime_get();
1333 tick_nohz_restart_sched_tick(ts, now);
1334 tick_nohz_account_idle_time(ts, now);
1335 }
1336 }
1337
tick_nohz_idle_update_tick(struct tick_sched * ts,ktime_t now)1338 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1339 {
1340 if (tick_nohz_full_cpu(smp_processor_id()))
1341 __tick_nohz_full_update_tick(ts, now);
1342 else
1343 tick_nohz_restart_sched_tick(ts, now);
1344
1345 tick_nohz_account_idle_time(ts, now);
1346 }
1347
1348 /**
1349 * tick_nohz_idle_exit - restart the idle tick from the idle task
1350 *
1351 * Restart the idle tick when the CPU is woken up from idle
1352 * This also exit the RCU extended quiescent state. The CPU
1353 * can use RCU again after this function is called.
1354 */
tick_nohz_idle_exit(void)1355 void tick_nohz_idle_exit(void)
1356 {
1357 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1358 bool idle_active, tick_stopped;
1359 ktime_t now;
1360
1361 local_irq_disable();
1362
1363 WARN_ON_ONCE(!ts->inidle);
1364 WARN_ON_ONCE(ts->timer_expires_base);
1365
1366 ts->inidle = 0;
1367 idle_active = ts->idle_active;
1368 tick_stopped = ts->tick_stopped;
1369
1370 if (idle_active || tick_stopped)
1371 now = ktime_get();
1372
1373 if (idle_active)
1374 tick_nohz_stop_idle(ts, now);
1375
1376 if (tick_stopped)
1377 tick_nohz_idle_update_tick(ts, now);
1378
1379 local_irq_enable();
1380 }
1381
1382 /*
1383 * The nohz low res interrupt handler
1384 */
tick_nohz_handler(struct clock_event_device * dev)1385 static void tick_nohz_handler(struct clock_event_device *dev)
1386 {
1387 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1388 struct pt_regs *regs = get_irq_regs();
1389 ktime_t now = ktime_get();
1390
1391 dev->next_event = KTIME_MAX;
1392
1393 tick_sched_do_timer(ts, now);
1394 tick_sched_handle(ts, regs);
1395
1396 if (unlikely(ts->tick_stopped)) {
1397 /*
1398 * The clockevent device is not reprogrammed, so change the
1399 * clock event device to ONESHOT_STOPPED to avoid spurious
1400 * interrupts on devices which might not be truly one shot.
1401 */
1402 tick_program_event(KTIME_MAX, 1);
1403 return;
1404 }
1405
1406 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1407 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1408 }
1409
tick_nohz_activate(struct tick_sched * ts,int mode)1410 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1411 {
1412 if (!tick_nohz_enabled)
1413 return;
1414 ts->nohz_mode = mode;
1415 /* One update is enough */
1416 if (!test_and_set_bit(0, &tick_nohz_active))
1417 timers_update_nohz();
1418 }
1419
1420 /**
1421 * tick_nohz_switch_to_nohz - switch to nohz mode
1422 */
tick_nohz_switch_to_nohz(void)1423 static void tick_nohz_switch_to_nohz(void)
1424 {
1425 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1426 ktime_t next;
1427
1428 if (!tick_nohz_enabled)
1429 return;
1430
1431 if (tick_switch_to_oneshot(tick_nohz_handler))
1432 return;
1433
1434 /*
1435 * Recycle the hrtimer in ts, so we can share the
1436 * hrtimer_forward with the highres code.
1437 */
1438 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1439 /* Get the next period */
1440 next = tick_init_jiffy_update();
1441
1442 hrtimer_set_expires(&ts->sched_timer, next);
1443 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1444 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1445 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1446 }
1447
tick_nohz_irq_enter(void)1448 static inline void tick_nohz_irq_enter(void)
1449 {
1450 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1451 ktime_t now;
1452
1453 if (!ts->idle_active && !ts->tick_stopped)
1454 return;
1455 now = ktime_get();
1456 if (ts->idle_active)
1457 tick_nohz_stop_idle(ts, now);
1458 /*
1459 * If all CPUs are idle. We may need to update a stale jiffies value.
1460 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1461 * alive but it might be busy looping with interrupts disabled in some
1462 * rare case (typically stop machine). So we must make sure we have a
1463 * last resort.
1464 */
1465 if (ts->tick_stopped)
1466 tick_nohz_update_jiffies(now);
1467 }
1468
1469 #else
1470
tick_nohz_switch_to_nohz(void)1471 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1472 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1473 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1474
1475 #endif /* CONFIG_NO_HZ_COMMON */
1476
1477 /*
1478 * Called from irq_enter to notify about the possible interruption of idle()
1479 */
tick_irq_enter(void)1480 void tick_irq_enter(void)
1481 {
1482 tick_check_oneshot_broadcast_this_cpu();
1483 tick_nohz_irq_enter();
1484 }
1485
1486 /*
1487 * High resolution timer specific code
1488 */
1489 #ifdef CONFIG_HIGH_RES_TIMERS
1490 /*
1491 * We rearm the timer until we get disabled by the idle code.
1492 * Called with interrupts disabled.
1493 */
tick_sched_timer(struct hrtimer * timer)1494 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1495 {
1496 struct tick_sched *ts =
1497 container_of(timer, struct tick_sched, sched_timer);
1498 struct pt_regs *regs = get_irq_regs();
1499 ktime_t now = ktime_get();
1500
1501 tick_sched_do_timer(ts, now);
1502
1503 /*
1504 * Do not call, when we are not in irq context and have
1505 * no valid regs pointer
1506 */
1507 if (regs)
1508 tick_sched_handle(ts, regs);
1509 else
1510 ts->next_tick = 0;
1511
1512 /* No need to reprogram if we are in idle or full dynticks mode */
1513 if (unlikely(ts->tick_stopped))
1514 return HRTIMER_NORESTART;
1515
1516 hrtimer_forward(timer, now, TICK_NSEC);
1517
1518 return HRTIMER_RESTART;
1519 }
1520
1521 static int sched_skew_tick;
1522
skew_tick(char * str)1523 static int __init skew_tick(char *str)
1524 {
1525 get_option(&str, &sched_skew_tick);
1526
1527 return 0;
1528 }
1529 early_param("skew_tick", skew_tick);
1530
1531 /**
1532 * tick_setup_sched_timer - setup the tick emulation timer
1533 */
tick_setup_sched_timer(void)1534 void tick_setup_sched_timer(void)
1535 {
1536 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1537 ktime_t now = ktime_get();
1538
1539 /*
1540 * Emulate tick processing via per-CPU hrtimers:
1541 */
1542 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1543 ts->sched_timer.function = tick_sched_timer;
1544
1545 /* Get the next period (per-CPU) */
1546 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1547
1548 /* Offset the tick to avert jiffies_lock contention. */
1549 if (sched_skew_tick) {
1550 u64 offset = TICK_NSEC >> 1;
1551 do_div(offset, num_possible_cpus());
1552 offset *= smp_processor_id();
1553 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1554 }
1555
1556 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1557 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1558 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1559 }
1560 #endif /* HIGH_RES_TIMERS */
1561
1562 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1563 void tick_cancel_sched_timer(int cpu)
1564 {
1565 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1566 ktime_t idle_sleeptime, iowait_sleeptime;
1567 unsigned long idle_calls, idle_sleeps;
1568
1569 # ifdef CONFIG_HIGH_RES_TIMERS
1570 if (ts->sched_timer.base)
1571 hrtimer_cancel(&ts->sched_timer);
1572 # endif
1573
1574 idle_sleeptime = ts->idle_sleeptime;
1575 iowait_sleeptime = ts->iowait_sleeptime;
1576 idle_calls = ts->idle_calls;
1577 idle_sleeps = ts->idle_sleeps;
1578 memset(ts, 0, sizeof(*ts));
1579 ts->idle_sleeptime = idle_sleeptime;
1580 ts->iowait_sleeptime = iowait_sleeptime;
1581 ts->idle_calls = idle_calls;
1582 ts->idle_sleeps = idle_sleeps;
1583 }
1584 #endif
1585
1586 /*
1587 * Async notification about clocksource changes
1588 */
tick_clock_notify(void)1589 void tick_clock_notify(void)
1590 {
1591 int cpu;
1592
1593 for_each_possible_cpu(cpu)
1594 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1595 }
1596
1597 /*
1598 * Async notification about clock event changes
1599 */
tick_oneshot_notify(void)1600 void tick_oneshot_notify(void)
1601 {
1602 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1603
1604 set_bit(0, &ts->check_clocks);
1605 }
1606
1607 /*
1608 * Check, if a change happened, which makes oneshot possible.
1609 *
1610 * Called cyclic from the hrtimer softirq (driven by the timer
1611 * softirq) allow_nohz signals, that we can switch into low-res nohz
1612 * mode, because high resolution timers are disabled (either compile
1613 * or runtime). Called with interrupts disabled.
1614 */
tick_check_oneshot_change(int allow_nohz)1615 int tick_check_oneshot_change(int allow_nohz)
1616 {
1617 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1618
1619 if (!test_and_clear_bit(0, &ts->check_clocks))
1620 return 0;
1621
1622 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1623 return 0;
1624
1625 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1626 return 0;
1627
1628 if (!allow_nohz)
1629 return 1;
1630
1631 tick_nohz_switch_to_nohz();
1632 return 0;
1633 }
1634