1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/maple_tree.h>
8 #include <linux/mman.h>
9 #include <linux/kvm_host.h>
10 #include <linux/io.h>
11 #include <linux/hugetlb.h>
12 #include <linux/sched/signal.h>
13 #include <trace/events/kvm.h>
14 #include <asm/pgalloc.h>
15 #include <asm/cacheflush.h>
16 #include <asm/kvm_arm.h>
17 #include <asm/kvm_mmu.h>
18 #include <asm/kvm_pgtable.h>
19 #include <asm/kvm_pkvm.h>
20 #include <asm/kvm_ras.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/virt.h>
24
25 #include "trace.h"
26
27 static struct kvm_pgtable *hyp_pgtable;
28 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
29
30 static unsigned long __ro_after_init hyp_idmap_start;
31 static unsigned long __ro_after_init hyp_idmap_end;
32 static phys_addr_t __ro_after_init hyp_idmap_vector;
33
34 static unsigned long __ro_after_init io_map_base;
35
36 static bool stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
37 static bool stage2_pte_is_counted(kvm_pte_t pte, u32 level);
38
39 static struct kvm_pgtable_pte_ops kvm_s2_pte_ops = {
40 .force_pte_cb = stage2_force_pte_cb,
41 .pte_is_counted_cb = stage2_pte_is_counted
42
43 };
44
__stage2_range_addr_end(phys_addr_t addr,phys_addr_t end,phys_addr_t size)45 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
46 phys_addr_t size)
47 {
48 phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
49
50 return (boundary - 1 < end - 1) ? boundary : end;
51 }
52
stage2_range_addr_end(phys_addr_t addr,phys_addr_t end)53 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
54 {
55 phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
56
57 return __stage2_range_addr_end(addr, end, size);
58 }
59
60 /*
61 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
62 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
63 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
64 * long will also starve other vCPUs.
65 */
stage2_apply_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm *,u64,u64),bool resched)66 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
67 phys_addr_t end,
68 int (*fn)(struct kvm *, u64, u64),
69 bool resched)
70 {
71 int ret;
72 u64 next;
73
74 do {
75 next = stage2_range_addr_end(addr, end);
76 ret = fn(kvm, addr, next - addr);
77 if (ret)
78 break;
79
80 if (resched && next != end)
81 cond_resched_rwlock_write(&kvm->mmu_lock);
82 } while (addr = next, addr != end);
83
84 return ret;
85 }
86
87 #define stage2_apply_range_resched(kvm, addr, end, fn) \
88 stage2_apply_range(kvm, addr, end, fn, true)
89
90 /*
91 * Get the maximum number of page-tables pages needed to split a range
92 * of blocks into PAGE_SIZE PTEs. It assumes the range is already
93 * mapped at level 2, or at level 1 if allowed.
94 */
kvm_mmu_split_nr_page_tables(u64 range)95 static int kvm_mmu_split_nr_page_tables(u64 range)
96 {
97 int n = 0;
98
99 if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
100 n += DIV_ROUND_UP(range, PUD_SIZE);
101 n += DIV_ROUND_UP(range, PMD_SIZE);
102 return n;
103 }
104
need_split_memcache_topup_or_resched(struct kvm * kvm)105 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
106 {
107 struct kvm_mmu_memory_cache *cache;
108 u64 chunk_size, min;
109
110 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
111 return true;
112
113 chunk_size = kvm->arch.mmu.split_page_chunk_size;
114 min = kvm_mmu_split_nr_page_tables(chunk_size);
115 cache = &kvm->arch.mmu.split_page_cache;
116 return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
117 }
118
kvm_mmu_split_huge_pages(struct kvm * kvm,phys_addr_t addr,phys_addr_t end)119 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
120 phys_addr_t end)
121 {
122 struct kvm_mmu_memory_cache *cache;
123 struct kvm_pgtable *pgt;
124 int ret, cache_capacity;
125 u64 next, chunk_size;
126
127 lockdep_assert_held_write(&kvm->mmu_lock);
128
129 chunk_size = kvm->arch.mmu.split_page_chunk_size;
130 cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
131
132 if (chunk_size == 0)
133 return 0;
134
135 cache = &kvm->arch.mmu.split_page_cache;
136
137 do {
138 if (need_split_memcache_topup_or_resched(kvm)) {
139 write_unlock(&kvm->mmu_lock);
140 cond_resched();
141 /* Eager page splitting is best-effort. */
142 ret = __kvm_mmu_topup_memory_cache(cache,
143 cache_capacity,
144 cache_capacity);
145 write_lock(&kvm->mmu_lock);
146 if (ret)
147 break;
148 }
149
150 pgt = kvm->arch.mmu.pgt;
151 if (!pgt)
152 return -EINVAL;
153
154 next = __stage2_range_addr_end(addr, end, chunk_size);
155 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
156 if (ret)
157 break;
158 } while (addr = next, addr != end);
159
160 return ret;
161 }
162
memslot_is_logging(struct kvm_memory_slot * memslot)163 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
164 {
165 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
166 }
167
168 /**
169 * kvm_arch_flush_remote_tlbs() - flush all VM TLB entries for v7/8
170 * @kvm: pointer to kvm structure.
171 *
172 * Interface to HYP function to flush all VM TLB entries
173 */
kvm_arch_flush_remote_tlbs(struct kvm * kvm)174 int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
175 {
176 if (is_protected_kvm_enabled())
177 kvm_call_hyp_nvhe(__pkvm_tlb_flush_vmid, kvm->arch.pkvm.handle);
178 else
179 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
180 return 0;
181 }
182
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)183 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
184 gfn_t gfn, u64 nr_pages)
185 {
186 kvm_tlb_flush_vmid_range(&kvm->arch.mmu,
187 gfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
188 return 0;
189 }
190
kvm_is_device_pfn(unsigned long pfn)191 static bool kvm_is_device_pfn(unsigned long pfn)
192 {
193 return !pfn_is_map_memory(pfn);
194 }
195
stage2_memcache_zalloc_page(void * arg)196 static void *stage2_memcache_zalloc_page(void *arg)
197 {
198 struct kvm_mmu_memory_cache *mc = arg;
199 void *virt;
200
201 /* Allocated with __GFP_ZERO, so no need to zero */
202 virt = kvm_mmu_memory_cache_alloc(mc);
203 if (virt)
204 kvm_account_pgtable_pages(virt, 1);
205 return virt;
206 }
207
kvm_host_zalloc_pages_exact(size_t size)208 static void *kvm_host_zalloc_pages_exact(size_t size)
209 {
210 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
211 }
212
kvm_s2_zalloc_pages_exact(size_t size)213 static void *kvm_s2_zalloc_pages_exact(size_t size)
214 {
215 void *virt = kvm_host_zalloc_pages_exact(size);
216
217 if (virt)
218 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
219 return virt;
220 }
221
kvm_s2_free_pages_exact(void * virt,size_t size)222 static void kvm_s2_free_pages_exact(void *virt, size_t size)
223 {
224 kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
225 free_pages_exact(virt, size);
226 }
227
228 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
229
stage2_free_unlinked_table_rcu_cb(struct rcu_head * head)230 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
231 {
232 struct page *page = container_of(head, struct page, rcu_head);
233 void *pgtable = page_to_virt(page);
234 u32 level = page_private(page);
235
236 kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, &kvm_s2_pte_ops,
237 pgtable, level);
238 }
239
stage2_free_unlinked_table(void * addr,u32 level)240 static void stage2_free_unlinked_table(void *addr, u32 level)
241 {
242 struct page *page = virt_to_page(addr);
243
244 set_page_private(page, (unsigned long)level);
245 call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
246 }
247
kvm_host_get_page(void * addr)248 static void kvm_host_get_page(void *addr)
249 {
250 get_page(virt_to_page(addr));
251 }
252
kvm_host_put_page(void * addr)253 static void kvm_host_put_page(void *addr)
254 {
255 put_page(virt_to_page(addr));
256 }
257
kvm_s2_put_page(void * addr)258 static void kvm_s2_put_page(void *addr)
259 {
260 struct page *p = virt_to_page(addr);
261 /* Dropping last refcount, the page will be freed */
262 if (page_count(p) == 1)
263 kvm_account_pgtable_pages(addr, -1);
264 put_page(p);
265 }
266
kvm_host_page_count(void * addr)267 static int kvm_host_page_count(void *addr)
268 {
269 return page_count(virt_to_page(addr));
270 }
271
kvm_host_pa(void * addr)272 static phys_addr_t kvm_host_pa(void *addr)
273 {
274 return __pa(addr);
275 }
276
kvm_host_va(phys_addr_t phys)277 static void *kvm_host_va(phys_addr_t phys)
278 {
279 return __va(phys);
280 }
281
clean_dcache_guest_page(void * va,size_t size)282 static void clean_dcache_guest_page(void *va, size_t size)
283 {
284 __clean_dcache_guest_page(va, size);
285 }
286
invalidate_icache_guest_page(void * va,size_t size)287 static void invalidate_icache_guest_page(void *va, size_t size)
288 {
289 __invalidate_icache_guest_page(va, size);
290 }
291
__pkvm_unmap_guest_call(u64 pfn,u64 gfn,u8 order,void * args)292 static int __pkvm_unmap_guest_call(u64 pfn, u64 gfn, u8 order, void *args)
293 {
294 struct kvm *kvm = args;
295
296 return kvm_call_hyp_nvhe(__pkvm_host_unmap_guest, kvm->arch.pkvm.handle,
297 pfn, gfn, order);
298 }
299
pkvm_unmap_guest(struct kvm * kvm,struct kvm_pinned_page * ppage)300 static int pkvm_unmap_guest(struct kvm *kvm, struct kvm_pinned_page *ppage)
301 {
302 int ret;
303
304 ret = pkvm_call_hyp_nvhe_ppage(ppage, __pkvm_unmap_guest_call, kvm, true);
305 if (ret)
306 return ret;
307
308 /*
309 * Non-protected guest pages are marked dirty from user_mem_abort(),
310 * no update needed from here.
311 */
312 unpin_user_pages(&ppage->page, 1);
313 mtree_erase(&kvm->arch.pkvm.pinned_pages, ppage->ipa);
314 kfree(ppage);
315
316 return 0;
317 }
318
pkvm_unmap_range(struct kvm * kvm,u64 start,u64 end)319 static int pkvm_unmap_range(struct kvm *kvm, u64 start, u64 end)
320 {
321 struct mm_struct *mm = kvm->mm;
322 unsigned long index = start;
323 unsigned long cnt = 0;
324 void *entry;
325 int ret = 0;
326
327 mt_for_each(&kvm->arch.pkvm.pinned_pages, entry, index, end - 1) {
328 struct kvm_pinned_page *ppage = entry;
329 ret = pkvm_unmap_guest(kvm, ppage);
330 if (ret)
331 break;
332 cnt++;
333 }
334
335 /* account_locked_vm may sleep */
336 write_unlock(&kvm->mmu_lock);
337 account_locked_vm(mm, cnt, false);
338 write_lock(&kvm->mmu_lock);
339
340 return ret;
341 }
342
343 /*
344 * Unmapping vs dcache management:
345 *
346 * If a guest maps certain memory pages as uncached, all writes will
347 * bypass the data cache and go directly to RAM. However, the CPUs
348 * can still speculate reads (not writes) and fill cache lines with
349 * data.
350 *
351 * Those cache lines will be *clean* cache lines though, so a
352 * clean+invalidate operation is equivalent to an invalidate
353 * operation, because no cache lines are marked dirty.
354 *
355 * Those clean cache lines could be filled prior to an uncached write
356 * by the guest, and the cache coherent IO subsystem would therefore
357 * end up writing old data to disk.
358 *
359 * This is why right after unmapping a page/section and invalidating
360 * the corresponding TLBs, we flush to make sure the IO subsystem will
361 * never hit in the cache.
362 *
363 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
364 * we then fully enforce cacheability of RAM, no matter what the guest
365 * does.
366 */
367 /**
368 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
369 * @mmu: The KVM stage-2 MMU pointer
370 * @start: The intermediate physical base address of the range to unmap
371 * @size: The size of the area to unmap
372 * @may_block: Whether or not we are permitted to block
373 *
374 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
375 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
376 * destroying the VM), otherwise another faulting VCPU may come in and mess
377 * with things behind our backs.
378 */
379
___unmap_stage2_range(struct kvm * kvm,u64 addr,u64 size)380 static int ___unmap_stage2_range(struct kvm *kvm, u64 addr, u64 size)
381 {
382 if (!is_protected_kvm_enabled())
383 return kvm_pgtable_stage2_unmap(kvm->arch.mmu.pgt, addr, size);
384
385 return pkvm_unmap_range(kvm, addr, addr + size);
386 }
387
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)388 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
389 bool may_block)
390 {
391 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
392 phys_addr_t end = start + size;
393
394 if (is_protected_kvm_enabled() && kvm->arch.pkvm.enabled)
395 return;
396
397 /*
398 * pkvm_unmap_range() will release mmu_lock before calling
399 * account_locked_vm() hence, only supporting may_block.
400 */
401 WARN_ON_ONCE(!may_block);
402
403 lockdep_assert_held_write(&kvm->mmu_lock);
404 WARN_ON(size & ~PAGE_MASK);
405 WARN_ON(stage2_apply_range(kvm, start, end, ___unmap_stage2_range,
406 may_block));
407 }
408
unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size)409 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
410 {
411 __unmap_stage2_range(mmu, start, size, true);
412 }
413
pkvm_stage2_flush(struct kvm * kvm)414 static void pkvm_stage2_flush(struct kvm *kvm)
415 {
416 unsigned long index = 0;
417 void *entry;
418
419 /*
420 * Contrary to stage2_apply_range(), we don't need to check
421 * whether the VM is being torn down, as this is always called
422 * from a vcpu thread, and the list is only ever freed on VM
423 * destroy (which only occurs when all vcpu are gone).
424 */
425 mt_for_each(&kvm->arch.pkvm.pinned_pages, entry, index, ULONG_MAX) {
426 struct kvm_pinned_page *ppage = entry;
427
428 __clean_dcache_guest_page(page_address(ppage->page), PAGE_SIZE);
429 cond_resched_rwlock_write(&kvm->mmu_lock);
430 }
431 }
432
__stage2_flush_range(struct kvm * kvm,u64 addr,u64 size)433 static int __stage2_flush_range(struct kvm *kvm, u64 addr, u64 size)
434 {
435 return kvm_pgtable_stage2_flush(kvm->arch.mmu.pgt, addr, size);
436 }
437
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)438 static void stage2_flush_memslot(struct kvm *kvm,
439 struct kvm_memory_slot *memslot)
440 {
441 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
442 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
443
444 stage2_apply_range_resched(kvm, addr, end, __stage2_flush_range);
445 }
446
447 /**
448 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
449 * @kvm: The struct kvm pointer
450 *
451 * Go through the stage 2 page tables and invalidate any cache lines
452 * backing memory already mapped to the VM.
453 */
stage2_flush_vm(struct kvm * kvm)454 static void stage2_flush_vm(struct kvm *kvm)
455 {
456 struct kvm_memslots *slots;
457 struct kvm_memory_slot *memslot;
458 int idx, bkt;
459
460 idx = srcu_read_lock(&kvm->srcu);
461 write_lock(&kvm->mmu_lock);
462
463 if (!is_protected_kvm_enabled()) {
464 slots = kvm_memslots(kvm);
465 kvm_for_each_memslot(memslot, bkt, slots)
466 stage2_flush_memslot(kvm, memslot);
467 } else if (!kvm_vm_is_protected(kvm)) {
468 pkvm_stage2_flush(kvm);
469 }
470
471 write_unlock(&kvm->mmu_lock);
472 srcu_read_unlock(&kvm->srcu, idx);
473 }
474
475 /**
476 * free_hyp_pgds - free Hyp-mode page tables
477 */
free_hyp_pgds(void)478 void __init free_hyp_pgds(void)
479 {
480 mutex_lock(&kvm_hyp_pgd_mutex);
481 if (hyp_pgtable) {
482 kvm_pgtable_hyp_destroy(hyp_pgtable);
483 kfree(hyp_pgtable);
484 hyp_pgtable = NULL;
485 }
486 mutex_unlock(&kvm_hyp_pgd_mutex);
487 }
488
kvm_host_owns_hyp_mappings(void)489 static bool kvm_host_owns_hyp_mappings(void)
490 {
491 if (is_kernel_in_hyp_mode())
492 return false;
493
494 if (static_branch_likely(&kvm_protected_mode_initialized))
495 return false;
496
497 /*
498 * This can happen at boot time when __create_hyp_mappings() is called
499 * after the hyp protection has been enabled, but the static key has
500 * not been flipped yet.
501 */
502 if (!hyp_pgtable && is_protected_kvm_enabled())
503 return false;
504
505 WARN_ON(!hyp_pgtable);
506
507 return true;
508 }
509
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)510 int __create_hyp_mappings(unsigned long start, unsigned long size,
511 unsigned long phys, enum kvm_pgtable_prot prot)
512 {
513 int err;
514
515 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
516 return -EINVAL;
517
518 mutex_lock(&kvm_hyp_pgd_mutex);
519 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
520 mutex_unlock(&kvm_hyp_pgd_mutex);
521
522 return err;
523 }
524
kvm_kaddr_to_phys(void * kaddr)525 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
526 {
527 if (!is_vmalloc_addr(kaddr)) {
528 BUG_ON(!virt_addr_valid(kaddr));
529 return __pa(kaddr);
530 } else {
531 return page_to_phys(vmalloc_to_page(kaddr)) +
532 offset_in_page(kaddr);
533 }
534 }
535
536 struct hyp_shared_pfn {
537 u64 pfn;
538 int count;
539 struct rb_node node;
540 };
541
542 static DEFINE_MUTEX(hyp_shared_pfns_lock);
543 static struct rb_root hyp_shared_pfns = RB_ROOT;
544
find_shared_pfn(u64 pfn,struct rb_node *** node,struct rb_node ** parent)545 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
546 struct rb_node **parent)
547 {
548 struct hyp_shared_pfn *this;
549
550 *node = &hyp_shared_pfns.rb_node;
551 *parent = NULL;
552 while (**node) {
553 this = container_of(**node, struct hyp_shared_pfn, node);
554 *parent = **node;
555 if (this->pfn < pfn)
556 *node = &((**node)->rb_left);
557 else if (this->pfn > pfn)
558 *node = &((**node)->rb_right);
559 else
560 return this;
561 }
562
563 return NULL;
564 }
565
share_pfn_hyp(u64 pfn)566 static int share_pfn_hyp(u64 pfn)
567 {
568 struct rb_node **node, *parent;
569 struct hyp_shared_pfn *this;
570 int ret = 0;
571
572 mutex_lock(&hyp_shared_pfns_lock);
573 this = find_shared_pfn(pfn, &node, &parent);
574 if (this) {
575 this->count++;
576 goto unlock;
577 }
578
579 this = kzalloc(sizeof(*this), GFP_KERNEL);
580 if (!this) {
581 ret = -ENOMEM;
582 goto unlock;
583 }
584
585 this->pfn = pfn;
586 this->count = 1;
587 rb_link_node(&this->node, parent, node);
588 rb_insert_color(&this->node, &hyp_shared_pfns);
589 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
590 unlock:
591 mutex_unlock(&hyp_shared_pfns_lock);
592
593 return ret;
594 }
595
unshare_pfn_hyp(u64 pfn)596 static int unshare_pfn_hyp(u64 pfn)
597 {
598 struct rb_node **node, *parent;
599 struct hyp_shared_pfn *this;
600 int ret = 0;
601
602 mutex_lock(&hyp_shared_pfns_lock);
603 this = find_shared_pfn(pfn, &node, &parent);
604 if (WARN_ON(!this)) {
605 ret = -ENOENT;
606 goto unlock;
607 }
608
609 this->count--;
610 if (this->count)
611 goto unlock;
612
613 rb_erase(&this->node, &hyp_shared_pfns);
614 kfree(this);
615 ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
616 unlock:
617 mutex_unlock(&hyp_shared_pfns_lock);
618
619 return ret;
620 }
621
kvm_share_hyp(void * from,void * to)622 int kvm_share_hyp(void *from, void *to)
623 {
624 phys_addr_t start, end, cur;
625 u64 pfn;
626 int ret;
627
628 if (is_kernel_in_hyp_mode())
629 return 0;
630
631 /*
632 * The share hcall maps things in the 'fixed-offset' region of the hyp
633 * VA space, so we can only share physically contiguous data-structures
634 * for now.
635 */
636 if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
637 return -EINVAL;
638
639 if (kvm_host_owns_hyp_mappings())
640 return create_hyp_mappings(from, to, PAGE_HYP);
641
642 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
643 end = PAGE_ALIGN(__pa(to));
644 for (cur = start; cur < end; cur += PAGE_SIZE) {
645 pfn = __phys_to_pfn(cur);
646 ret = share_pfn_hyp(pfn);
647 if (ret)
648 return ret;
649 }
650
651 return 0;
652 }
653
kvm_unshare_hyp(void * from,void * to)654 void kvm_unshare_hyp(void *from, void *to)
655 {
656 phys_addr_t start, end, cur;
657 u64 pfn;
658
659 if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
660 return;
661
662 start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
663 end = PAGE_ALIGN(__pa(to));
664 for (cur = start; cur < end; cur += PAGE_SIZE) {
665 pfn = __phys_to_pfn(cur);
666 WARN_ON(unshare_pfn_hyp(pfn));
667 }
668 }
669
670 /**
671 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
672 * @from: The virtual kernel start address of the range
673 * @to: The virtual kernel end address of the range (exclusive)
674 * @prot: The protection to be applied to this range
675 *
676 * The same virtual address as the kernel virtual address is also used
677 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
678 * physical pages.
679 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)680 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
681 {
682 phys_addr_t phys_addr;
683 unsigned long virt_addr;
684 unsigned long start = kern_hyp_va((unsigned long)from);
685 unsigned long end = kern_hyp_va((unsigned long)to);
686
687 if (is_kernel_in_hyp_mode())
688 return 0;
689
690 if (!kvm_host_owns_hyp_mappings())
691 return -EPERM;
692
693 start = start & PAGE_MASK;
694 end = PAGE_ALIGN(end);
695
696 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
697 int err;
698
699 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
700 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
701 prot);
702 if (err)
703 return err;
704 }
705
706 return 0;
707 }
708
__hyp_alloc_private_va_range(unsigned long base)709 static int __hyp_alloc_private_va_range(unsigned long base)
710 {
711 lockdep_assert_held(&kvm_hyp_pgd_mutex);
712
713 if (!PAGE_ALIGNED(base))
714 return -EINVAL;
715
716 /*
717 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
718 * allocating the new area, as it would indicate we've
719 * overflowed the idmap/IO address range.
720 */
721 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
722 return -ENOMEM;
723
724 io_map_base = base;
725
726 return 0;
727 }
728
729 /**
730 * hyp_alloc_private_va_range - Allocates a private VA range.
731 * @size: The size of the VA range to reserve.
732 * @haddr: The hypervisor virtual start address of the allocation.
733 *
734 * The private virtual address (VA) range is allocated below io_map_base
735 * and aligned based on the order of @size.
736 *
737 * Return: 0 on success or negative error code on failure.
738 */
hyp_alloc_private_va_range(size_t size,unsigned long * haddr)739 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
740 {
741 unsigned long base;
742 int ret = 0;
743
744 mutex_lock(&kvm_hyp_pgd_mutex);
745
746 /*
747 * This assumes that we have enough space below the idmap
748 * page to allocate our VAs. If not, the check in
749 * __hyp_alloc_private_va_range() will kick. A potential
750 * alternative would be to detect that overflow and switch
751 * to an allocation above the idmap.
752 *
753 * The allocated size is always a multiple of PAGE_SIZE.
754 */
755 size = PAGE_ALIGN(size);
756 base = io_map_base - size;
757 ret = __hyp_alloc_private_va_range(base);
758
759 mutex_unlock(&kvm_hyp_pgd_mutex);
760
761 if (!ret)
762 *haddr = base;
763
764 return ret;
765 }
766
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)767 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
768 unsigned long *haddr,
769 enum kvm_pgtable_prot prot)
770 {
771 unsigned long addr;
772 int ret = 0;
773
774 if (!kvm_host_owns_hyp_mappings()) {
775 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
776 phys_addr, size, prot);
777 if (IS_ERR_VALUE(addr))
778 return addr;
779 *haddr = addr;
780
781 return 0;
782 }
783
784 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
785 ret = hyp_alloc_private_va_range(size, &addr);
786 if (ret)
787 return ret;
788
789 ret = __create_hyp_mappings(addr, size, phys_addr, prot);
790 if (ret)
791 return ret;
792
793 *haddr = addr + offset_in_page(phys_addr);
794 return ret;
795 }
796
create_hyp_stack(phys_addr_t phys_addr,unsigned long * haddr)797 int create_hyp_stack(phys_addr_t phys_addr, unsigned long *haddr)
798 {
799 unsigned long base;
800 size_t size;
801 int ret;
802
803 mutex_lock(&kvm_hyp_pgd_mutex);
804 /*
805 * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
806 * an alignment of our allocation on the order of the size.
807 */
808 size = NVHE_STACK_SIZE * 2;
809 base = ALIGN_DOWN(io_map_base - size, size);
810
811 ret = __hyp_alloc_private_va_range(base);
812
813 mutex_unlock(&kvm_hyp_pgd_mutex);
814
815 if (ret) {
816 kvm_err("Cannot allocate hyp stack guard page\n");
817 return ret;
818 }
819
820 /*
821 * Since the stack grows downwards, map the stack to the page
822 * at the higher address and leave the lower guard page
823 * unbacked.
824 *
825 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
826 * and addresses corresponding to the guard page have the
827 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
828 */
829 ret = __create_hyp_mappings(base + NVHE_STACK_SIZE, NVHE_STACK_SIZE,
830 phys_addr, PAGE_HYP);
831 if (ret)
832 kvm_err("Cannot map hyp stack\n");
833
834 *haddr = base + size;
835
836 return ret;
837 }
838
839 /**
840 * create_hyp_io_mappings - Map IO into both kernel and HYP
841 * @phys_addr: The physical start address which gets mapped
842 * @size: Size of the region being mapped
843 * @kaddr: Kernel VA for this mapping
844 * @haddr: HYP VA for this mapping
845 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)846 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
847 void __iomem **kaddr,
848 void __iomem **haddr)
849 {
850 unsigned long addr;
851 int ret;
852
853 if (is_protected_kvm_enabled())
854 return -EPERM;
855
856 *kaddr = ioremap(phys_addr, size);
857 if (!*kaddr)
858 return -ENOMEM;
859
860 if (is_kernel_in_hyp_mode()) {
861 *haddr = *kaddr;
862 return 0;
863 }
864
865 ret = __create_hyp_private_mapping(phys_addr, size,
866 &addr, PAGE_HYP_DEVICE);
867 if (ret) {
868 iounmap(*kaddr);
869 *kaddr = NULL;
870 *haddr = NULL;
871 return ret;
872 }
873
874 *haddr = (void __iomem *)addr;
875 return 0;
876 }
877
878 /**
879 * create_hyp_exec_mappings - Map an executable range into HYP
880 * @phys_addr: The physical start address which gets mapped
881 * @size: Size of the region being mapped
882 * @haddr: HYP VA for this mapping
883 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)884 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
885 void **haddr)
886 {
887 unsigned long addr;
888 int ret;
889
890 BUG_ON(is_kernel_in_hyp_mode());
891
892 ret = __create_hyp_private_mapping(phys_addr, size,
893 &addr, PAGE_HYP_EXEC);
894 if (ret) {
895 *haddr = NULL;
896 return ret;
897 }
898
899 *haddr = (void *)addr;
900 return 0;
901 }
902
903 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
904 /* We shouldn't need any other callback to walk the PT */
905 .phys_to_virt = kvm_host_va,
906 };
907
get_user_mapping_size(struct kvm * kvm,u64 addr)908 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
909 {
910 struct kvm_pgtable pgt = {
911 .pgd = (kvm_pteref_t)kvm->mm->pgd,
912 .ia_bits = vabits_actual,
913 .start_level = (KVM_PGTABLE_MAX_LEVELS -
914 CONFIG_PGTABLE_LEVELS),
915 .mm_ops = &kvm_user_mm_ops,
916 };
917 unsigned long flags;
918 kvm_pte_t pte = 0; /* Keep GCC quiet... */
919 u32 level = ~0;
920 int ret;
921
922 /*
923 * Disable IRQs so that we hazard against a concurrent
924 * teardown of the userspace page tables (which relies on
925 * IPI-ing threads).
926 */
927 local_irq_save(flags);
928 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
929 local_irq_restore(flags);
930
931 if (ret)
932 return ret;
933
934 /*
935 * Not seeing an error, but not updating level? Something went
936 * deeply wrong...
937 */
938 if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS))
939 return -EFAULT;
940
941 /* Oops, the userspace PTs are gone... Replay the fault */
942 if (!kvm_pte_valid(pte))
943 return -EAGAIN;
944
945 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
946 }
947
stage2_force_pte_cb(u64 addr,u64 end,enum kvm_pgtable_prot prot)948 static bool stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
949 {
950 return false;
951 }
952
stage2_pte_is_counted(kvm_pte_t pte,u32 level)953 static bool stage2_pte_is_counted(kvm_pte_t pte, u32 level)
954
955 {
956 return !!pte;
957 }
958
959 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
960 .zalloc_page = stage2_memcache_zalloc_page,
961 .zalloc_pages_exact = kvm_s2_zalloc_pages_exact,
962 .free_pages_exact = kvm_s2_free_pages_exact,
963 .free_unlinked_table = stage2_free_unlinked_table,
964 .get_page = kvm_host_get_page,
965 .put_page = kvm_s2_put_page,
966 .page_count = kvm_host_page_count,
967 .phys_to_virt = kvm_host_va,
968 .virt_to_phys = kvm_host_pa,
969 .dcache_clean_inval_poc = clean_dcache_guest_page,
970 .icache_inval_pou = invalidate_icache_guest_page,
971 };
972
973 /**
974 * kvm_init_stage2_mmu - Initialise a S2 MMU structure
975 * @kvm: The pointer to the KVM structure
976 * @mmu: The pointer to the s2 MMU structure
977 * @type: The machine type of the virtual machine
978 *
979 * Allocates only the stage-2 HW PGD level table(s).
980 * Note we don't need locking here as this is only called when the VM is
981 * created, which can only be done once.
982 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu,unsigned long type)983 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
984 {
985 u32 kvm_ipa_limit = get_kvm_ipa_limit();
986 int cpu, err;
987 struct kvm_pgtable *pgt;
988 u64 mmfr0, mmfr1;
989 u32 phys_shift;
990
991 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
992 if (is_protected_kvm_enabled()) {
993 phys_shift = kvm_ipa_limit;
994 } else if (phys_shift) {
995 if (phys_shift > kvm_ipa_limit ||
996 phys_shift < ARM64_MIN_PARANGE_BITS)
997 return -EINVAL;
998 } else {
999 phys_shift = KVM_PHYS_SHIFT;
1000 if (phys_shift > kvm_ipa_limit) {
1001 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
1002 current->comm);
1003 return -EINVAL;
1004 }
1005 }
1006
1007 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1008 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1009 kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
1010 mt_init(&kvm->arch.pkvm.pinned_pages);
1011 mmu->arch = &kvm->arch;
1012
1013 if (is_protected_kvm_enabled())
1014 return 0;
1015
1016 if (mmu->pgt != NULL) {
1017 kvm_err("kvm_arch already initialized?\n");
1018 return -EINVAL;
1019 }
1020
1021 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
1022 if (!pgt)
1023 return -ENOMEM;
1024
1025 mmu->arch = &kvm->arch;
1026 err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops,
1027 &kvm_s2_pte_ops);
1028 if (err)
1029 goto out_free_pgtable;
1030
1031 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
1032 if (!mmu->last_vcpu_ran) {
1033 err = -ENOMEM;
1034 goto out_destroy_pgtable;
1035 }
1036
1037 for_each_possible_cpu(cpu)
1038 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
1039
1040 /* The eager page splitting is disabled by default */
1041 mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
1042 mmu->split_page_cache.gfp_zero = __GFP_ZERO;
1043
1044 mmu->pgt = pgt;
1045 mmu->pgd_phys = __pa(pgt->pgd);
1046 return 0;
1047
1048 out_destroy_pgtable:
1049 kvm_pgtable_stage2_destroy(pgt);
1050 out_free_pgtable:
1051 kfree(pgt);
1052 return err;
1053 }
1054
kvm_uninit_stage2_mmu(struct kvm * kvm)1055 void kvm_uninit_stage2_mmu(struct kvm *kvm)
1056 {
1057 kvm_free_stage2_pgd(&kvm->arch.mmu);
1058 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
1059 }
1060
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)1061 static void stage2_unmap_memslot(struct kvm *kvm,
1062 struct kvm_memory_slot *memslot)
1063 {
1064 hva_t hva = memslot->userspace_addr;
1065 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1066 phys_addr_t size = PAGE_SIZE * memslot->npages;
1067 hva_t reg_end = hva + size;
1068
1069 /*
1070 * A memory region could potentially cover multiple VMAs, and any holes
1071 * between them, so iterate over all of them to find out if we should
1072 * unmap any of them.
1073 *
1074 * +--------------------------------------------+
1075 * +---------------+----------------+ +----------------+
1076 * | : VMA 1 | VMA 2 | | VMA 3 : |
1077 * +---------------+----------------+ +----------------+
1078 * | memory region |
1079 * +--------------------------------------------+
1080 */
1081 do {
1082 struct vm_area_struct *vma;
1083 hva_t vm_start, vm_end;
1084
1085 vma = find_vma_intersection(current->mm, hva, reg_end);
1086 if (!vma)
1087 break;
1088
1089 /*
1090 * Take the intersection of this VMA with the memory region
1091 */
1092 vm_start = max(hva, vma->vm_start);
1093 vm_end = min(reg_end, vma->vm_end);
1094
1095 if (!(vma->vm_flags & VM_PFNMAP)) {
1096 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1097 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
1098 }
1099 hva = vm_end;
1100 } while (hva < reg_end);
1101 }
1102
1103 /**
1104 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1105 * @kvm: The struct kvm pointer
1106 *
1107 * Go through the memregions and unmap any regular RAM
1108 * backing memory already mapped to the VM.
1109 */
stage2_unmap_vm(struct kvm * kvm)1110 void stage2_unmap_vm(struct kvm *kvm)
1111 {
1112 struct kvm_memslots *slots;
1113 struct kvm_memory_slot *memslot;
1114 int idx, bkt;
1115
1116 idx = srcu_read_lock(&kvm->srcu);
1117 mmap_read_lock(current->mm);
1118 write_lock(&kvm->mmu_lock);
1119
1120 slots = kvm_memslots(kvm);
1121 kvm_for_each_memslot(memslot, bkt, slots)
1122 stage2_unmap_memslot(kvm, memslot);
1123
1124 write_unlock(&kvm->mmu_lock);
1125 mmap_read_unlock(current->mm);
1126 srcu_read_unlock(&kvm->srcu, idx);
1127 }
1128
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)1129 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1130 {
1131 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1132 struct kvm_pgtable *pgt = NULL;
1133
1134 if (is_protected_kvm_enabled())
1135 return;
1136
1137 write_lock(&kvm->mmu_lock);
1138 pgt = mmu->pgt;
1139 if (pgt) {
1140 mmu->pgd_phys = 0;
1141 mmu->pgt = NULL;
1142 free_percpu(mmu->last_vcpu_ran);
1143 }
1144 write_unlock(&kvm->mmu_lock);
1145
1146 if (pgt) {
1147 kvm_pgtable_stage2_destroy(pgt);
1148 kfree(pgt);
1149 }
1150 }
1151
hyp_mc_free_fn(void * addr,void * flags,unsigned long order)1152 static void hyp_mc_free_fn(void *addr, void *flags, unsigned long order)
1153 {
1154 if (!addr)
1155 return;
1156
1157 if ((unsigned long)flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1158 kvm_account_pgtable_pages(addr, -1);
1159
1160 free_pages((unsigned long)addr, order);
1161 }
1162
hyp_mc_alloc_fn(void * flags,unsigned long order)1163 static void *hyp_mc_alloc_fn(void *flags, unsigned long order)
1164 {
1165 unsigned long __flags = (unsigned long)flags;
1166 gfp_t gfp_mask;
1167 void *addr;
1168
1169 gfp_mask = __flags & HYP_MEMCACHE_ACCOUNT_KMEMCG ?
1170 GFP_KERNEL_ACCOUNT : GFP_KERNEL;
1171
1172 addr = (void *)__get_free_pages(gfp_mask, order);
1173
1174 if (addr && __flags & HYP_MEMCACHE_ACCOUNT_STAGE2)
1175 kvm_account_pgtable_pages(addr, 1);
1176
1177 return addr;
1178 }
1179
free_hyp_memcache(struct kvm_hyp_memcache * mc)1180 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
1181 {
1182 unsigned long flags = mc->flags;
1183
1184 if (is_protected_kvm_enabled())
1185 __free_hyp_memcache(mc, hyp_mc_free_fn,
1186 kvm_host_va, (void *)flags);
1187 }
1188 EXPORT_SYMBOL(free_hyp_memcache);
1189
topup_hyp_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages,unsigned long order)1190 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
1191 unsigned long order)
1192 {
1193 unsigned long flags = mc->flags;
1194
1195 if (!is_protected_kvm_enabled())
1196 return 0;
1197
1198 if (order > PAGE_SHIFT)
1199 return -E2BIG;
1200
1201 return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
1202 kvm_host_pa, (void *)flags, order);
1203 }
1204 EXPORT_SYMBOL(topup_hyp_memcache);
1205
1206 /**
1207 * kvm_phys_addr_ioremap - map a device range to guest IPA
1208 *
1209 * @kvm: The KVM pointer
1210 * @guest_ipa: The IPA at which to insert the mapping
1211 * @pa: The physical address of the device
1212 * @size: The size of the mapping
1213 * @writable: Whether or not to create a writable mapping
1214 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)1215 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1216 phys_addr_t pa, unsigned long size, bool writable)
1217 {
1218 phys_addr_t addr;
1219 int ret = 0;
1220 struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1221 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
1222 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1223 KVM_PGTABLE_PROT_R |
1224 (writable ? KVM_PGTABLE_PROT_W : 0);
1225
1226 if (is_protected_kvm_enabled())
1227 return -EPERM;
1228
1229 size += offset_in_page(guest_ipa);
1230 guest_ipa &= PAGE_MASK;
1231
1232 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1233 ret = kvm_mmu_topup_memory_cache(&cache,
1234 kvm_mmu_cache_min_pages(kvm));
1235 if (ret)
1236 break;
1237
1238 write_lock(&kvm->mmu_lock);
1239 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1240 &cache, 0);
1241 write_unlock(&kvm->mmu_lock);
1242 if (ret)
1243 break;
1244
1245 pa += PAGE_SIZE;
1246 }
1247
1248 kvm_mmu_free_memory_cache(&cache);
1249 return ret;
1250 }
1251
__pkvm_wrprotect_call(u64 pfn,u64 gfn,u8 order,void * args)1252 static int __pkvm_wrprotect_call(u64 pfn, u64 gfn, u8 order, void *args)
1253 {
1254 struct kvm *kvm = (struct kvm *)args;
1255
1256 return kvm_call_hyp_nvhe(__pkvm_wrprotect, kvm->arch.pkvm.handle, pfn,
1257 gfn, order);
1258 }
1259
pkvm_wp_range(struct kvm * kvm,u64 start,u64 end)1260 static int pkvm_wp_range(struct kvm *kvm, u64 start, u64 end)
1261 {
1262 unsigned long index = start;
1263 void *entry;
1264
1265 mt_for_each(&kvm->arch.pkvm.pinned_pages, entry, index, end - 1) {
1266 struct kvm_pinned_page *ppage = entry;
1267 int ret = pkvm_call_hyp_nvhe_ppage(ppage, __pkvm_wrprotect_call,
1268 kvm, false);
1269
1270 if (ret)
1271 return ret;
1272 }
1273
1274 return 0;
1275 }
1276
__stage2_wp_range(struct kvm * kvm,u64 addr,u64 size)1277 static int __stage2_wp_range(struct kvm *kvm, u64 addr, u64 size)
1278 {
1279 if (!is_protected_kvm_enabled())
1280 return kvm_pgtable_stage2_wrprotect(kvm->arch.mmu.pgt, addr, size);
1281
1282 return pkvm_wp_range(kvm, addr, addr + size);
1283 }
1284
1285 /**
1286 * stage2_wp_range() - write protect stage2 memory region range
1287 * @mmu: The KVM stage-2 MMU pointer
1288 * @addr: Start address of range
1289 * @end: End address of range
1290 */
stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)1291 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1292 {
1293 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
1294 stage2_apply_range_resched(kvm, addr, end, __stage2_wp_range);
1295 }
1296
1297 /**
1298 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1299 * @kvm: The KVM pointer
1300 * @slot: The memory slot to write protect
1301 *
1302 * Called to start logging dirty pages after memory region
1303 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1304 * all present PUD, PMD and PTEs are write protected in the memory region.
1305 * Afterwards read of dirty page log can be called.
1306 *
1307 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1308 * serializing operations for VM memory regions.
1309 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)1310 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1311 {
1312 struct kvm_memslots *slots = kvm_memslots(kvm);
1313 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1314 phys_addr_t start, end;
1315
1316 if (WARN_ON_ONCE(!memslot))
1317 return;
1318
1319 start = memslot->base_gfn << PAGE_SHIFT;
1320 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1321
1322 write_lock(&kvm->mmu_lock);
1323 stage2_wp_range(&kvm->arch.mmu, start, end);
1324 write_unlock(&kvm->mmu_lock);
1325 kvm_flush_remote_tlbs_memslot(kvm, memslot);
1326 }
1327
1328 /**
1329 * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1330 * pages for memory slot
1331 * @kvm: The KVM pointer
1332 * @slot: The memory slot to split
1333 *
1334 * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1335 * serializing operations for VM memory regions.
1336 */
kvm_mmu_split_memory_region(struct kvm * kvm,int slot)1337 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1338 {
1339 struct kvm_memslots *slots;
1340 struct kvm_memory_slot *memslot;
1341 phys_addr_t start, end;
1342
1343 lockdep_assert_held(&kvm->slots_lock);
1344
1345 slots = kvm_memslots(kvm);
1346 memslot = id_to_memslot(slots, slot);
1347
1348 start = memslot->base_gfn << PAGE_SHIFT;
1349 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1350
1351 write_lock(&kvm->mmu_lock);
1352 kvm_mmu_split_huge_pages(kvm, start, end);
1353 write_unlock(&kvm->mmu_lock);
1354 }
1355
1356 /*
1357 * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1358 * @kvm: The KVM pointer
1359 * @slot: The memory slot associated with mask
1360 * @gfn_offset: The gfn offset in memory slot
1361 * @mask: The mask of pages at offset 'gfn_offset' in this memory
1362 * slot to enable dirty logging on
1363 *
1364 * Writes protect selected pages to enable dirty logging, and then
1365 * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1366 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1367 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1368 struct kvm_memory_slot *slot,
1369 gfn_t gfn_offset, unsigned long mask)
1370 {
1371 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1372 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1373 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1374
1375 lockdep_assert_held_write(&kvm->mmu_lock);
1376
1377 stage2_wp_range(&kvm->arch.mmu, start, end);
1378
1379 /*
1380 * Eager-splitting is done when manual-protect is set. We
1381 * also check for initially-all-set because we can avoid
1382 * eager-splitting if initially-all-set is false.
1383 * Initially-all-set equal false implies that huge-pages were
1384 * already split when enabling dirty logging: no need to do it
1385 * again.
1386 */
1387 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1388 kvm_mmu_split_huge_pages(kvm, start, end);
1389 }
1390
kvm_send_hwpoison_signal(unsigned long address,short lsb)1391 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1392 {
1393 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1394 }
1395
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)1396 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1397 unsigned long hva,
1398 unsigned long map_size)
1399 {
1400 gpa_t gpa_start;
1401 hva_t uaddr_start, uaddr_end;
1402 size_t size;
1403
1404 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1405 if (map_size == PAGE_SIZE)
1406 return true;
1407
1408 size = memslot->npages * PAGE_SIZE;
1409
1410 gpa_start = memslot->base_gfn << PAGE_SHIFT;
1411
1412 uaddr_start = memslot->userspace_addr;
1413 uaddr_end = uaddr_start + size;
1414
1415 /*
1416 * Pages belonging to memslots that don't have the same alignment
1417 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1418 * PMD/PUD entries, because we'll end up mapping the wrong pages.
1419 *
1420 * Consider a layout like the following:
1421 *
1422 * memslot->userspace_addr:
1423 * +-----+--------------------+--------------------+---+
1424 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
1425 * +-----+--------------------+--------------------+---+
1426 *
1427 * memslot->base_gfn << PAGE_SHIFT:
1428 * +---+--------------------+--------------------+-----+
1429 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
1430 * +---+--------------------+--------------------+-----+
1431 *
1432 * If we create those stage-2 blocks, we'll end up with this incorrect
1433 * mapping:
1434 * d -> f
1435 * e -> g
1436 * f -> h
1437 */
1438 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1439 return false;
1440
1441 /*
1442 * Next, let's make sure we're not trying to map anything not covered
1443 * by the memslot. This means we have to prohibit block size mappings
1444 * for the beginning and end of a non-block aligned and non-block sized
1445 * memory slot (illustrated by the head and tail parts of the
1446 * userspace view above containing pages 'abcde' and 'xyz',
1447 * respectively).
1448 *
1449 * Note that it doesn't matter if we do the check using the
1450 * userspace_addr or the base_gfn, as both are equally aligned (per
1451 * the check above) and equally sized.
1452 */
1453 return (hva & ~(map_size - 1)) >= uaddr_start &&
1454 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1455 }
1456
1457 /*
1458 * Check if the given hva is backed by a transparent huge page (THP) and
1459 * whether it can be mapped using block mapping in stage2. If so, adjust
1460 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1461 * supported. This will need to be updated to support other THP sizes.
1462 *
1463 * Returns the size of the mapping.
1464 */
1465 static long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)1466 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1467 unsigned long hva, kvm_pfn_t *pfnp,
1468 phys_addr_t *ipap)
1469 {
1470 kvm_pfn_t pfn = *pfnp;
1471
1472 /*
1473 * Make sure the adjustment is done only for THP pages. Also make
1474 * sure that the HVA and IPA are sufficiently aligned and that the
1475 * block map is contained within the memslot.
1476 */
1477 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1478 int sz = get_user_mapping_size(kvm, hva);
1479
1480 if (sz < 0)
1481 return sz;
1482
1483 if (sz < PMD_SIZE)
1484 return PAGE_SIZE;
1485
1486 /*
1487 * The address we faulted on is backed by a transparent huge
1488 * page. However, because we map the compound huge page and
1489 * not the individual tail page, we need to transfer the
1490 * refcount to the head page. We have to be careful that the
1491 * THP doesn't start to split while we are adjusting the
1492 * refcounts.
1493 *
1494 * We are sure this doesn't happen, because mmu_invalidate_retry
1495 * was successful and we are holding the mmu_lock, so if this
1496 * THP is trying to split, it will be blocked in the mmu
1497 * notifier before touching any of the pages, specifically
1498 * before being able to call __split_huge_page_refcount().
1499 *
1500 * We can therefore safely transfer the refcount from PG_tail
1501 * to PG_head and switch the pfn from a tail page to the head
1502 * page accordingly.
1503 */
1504 *ipap &= PMD_MASK;
1505 kvm_release_pfn_clean(pfn);
1506 pfn &= ~(PTRS_PER_PMD - 1);
1507 get_page(pfn_to_page(pfn));
1508 *pfnp = pfn;
1509
1510 return PMD_SIZE;
1511 }
1512
1513 /* Use page mapping if we cannot use block mapping. */
1514 return PAGE_SIZE;
1515 }
1516
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)1517 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1518 {
1519 unsigned long pa;
1520
1521 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1522 return huge_page_shift(hstate_vma(vma));
1523
1524 if (!(vma->vm_flags & VM_PFNMAP))
1525 return PAGE_SHIFT;
1526
1527 VM_BUG_ON(is_vm_hugetlb_page(vma));
1528
1529 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1530
1531 #ifndef __PAGETABLE_PMD_FOLDED
1532 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1533 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1534 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1535 return PUD_SHIFT;
1536 #endif
1537
1538 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1539 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1540 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1541 return PMD_SHIFT;
1542
1543 return PAGE_SHIFT;
1544 }
1545
1546 /*
1547 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1548 * able to see the page's tags and therefore they must be initialised first. If
1549 * PG_mte_tagged is set, tags have already been initialised.
1550 *
1551 * The race in the test/set of the PG_mte_tagged flag is handled by:
1552 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1553 * racing to santise the same page
1554 * - mmap_lock protects between a VM faulting a page in and the VMM performing
1555 * an mprotect() to add VM_MTE
1556 */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)1557 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1558 unsigned long size)
1559 {
1560 unsigned long i, nr_pages = size >> PAGE_SHIFT;
1561 struct page *page = pfn_to_page(pfn);
1562
1563 if (!kvm_has_mte(kvm))
1564 return;
1565
1566 for (i = 0; i < nr_pages; i++, page++) {
1567 if (try_page_mte_tagging(page)) {
1568 mte_clear_page_tags(page_address(page));
1569 set_page_mte_tagged(page);
1570 }
1571 }
1572 }
1573
kvm_vma_mte_allowed(struct vm_area_struct * vma)1574 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1575 {
1576 return vma->vm_flags & VM_MTE_ALLOWED;
1577 }
1578
pkvm_host_map_guest(u64 pfn,u64 gfn,u64 nr_pages,enum kvm_pgtable_prot prot)1579 static int pkvm_host_map_guest(u64 pfn, u64 gfn, u64 nr_pages,
1580 enum kvm_pgtable_prot prot)
1581 {
1582 int ret = kvm_call_hyp_nvhe(__pkvm_host_map_guest, pfn, gfn, nr_pages, prot);
1583
1584 /*
1585 * Getting -EPERM at this point implies that the pfn has already been
1586 * mapped. This should only ever happen when two vCPUs faulted on the
1587 * same page, and the current one lost the race to do the mapping...
1588 *
1589 * ...or if we've tried to map a region containing an already mapped
1590 * entry.
1591 */
1592 return (ret == -EPERM) ? -EAGAIN : ret;
1593 }
1594
1595 static struct kvm_pinned_page *
find_ppage_or_above(struct kvm * kvm,phys_addr_t ipa)1596 find_ppage_or_above(struct kvm *kvm, phys_addr_t ipa)
1597 {
1598 unsigned long index = ipa;
1599 void *entry;
1600
1601 mt_for_each(&kvm->arch.pkvm.pinned_pages, entry, index, ULONG_MAX)
1602 return entry;
1603
1604 return NULL;
1605 }
1606
insert_ppage(struct kvm * kvm,struct kvm_pinned_page * ppage)1607 static int insert_ppage(struct kvm *kvm, struct kvm_pinned_page *ppage)
1608 {
1609 size_t size = PAGE_SIZE << ppage->order;
1610 unsigned long start = ppage->ipa;
1611 unsigned long end = start + size - 1;
1612
1613 return mtree_insert_range(&kvm->arch.pkvm.pinned_pages, start, end,
1614 ppage, GFP_KERNEL);
1615 }
1616
find_ppage(struct kvm * kvm,u64 ipa)1617 static struct kvm_pinned_page *find_ppage(struct kvm *kvm, u64 ipa)
1618 {
1619 unsigned long index = ipa;
1620
1621 return mt_find(&kvm->arch.pkvm.pinned_pages, &index, ipa + PAGE_SIZE - 1);
1622 }
1623
__pkvm_relax_perms_call(u64 pfn,u64 gfn,u8 order,void * args)1624 static int __pkvm_relax_perms_call(u64 pfn, u64 gfn, u8 order, void *args)
1625 {
1626 enum kvm_pgtable_prot prot = (enum kvm_pgtable_prot)args;
1627
1628 return kvm_call_hyp_nvhe(__pkvm_relax_perms, pfn, gfn, order, prot);
1629 }
1630
pkvm_relax_perms(struct kvm_vcpu * vcpu,u64 pfn,u64 gfn,u8 order,enum kvm_pgtable_prot prot,bool logging_active)1631 static int pkvm_relax_perms(struct kvm_vcpu *vcpu, u64 pfn, u64 gfn, u8 order,
1632 enum kvm_pgtable_prot prot, bool logging_active)
1633 {
1634 unsigned long host_addr, guest_addr;
1635 struct kvm_pinned_page *ppage;
1636 struct kvm *kvm = vcpu->kvm;
1637
1638 host_addr = ALIGN_DOWN(pfn << PAGE_SHIFT, PAGE_SIZE << order);
1639 guest_addr = ALIGN_DOWN(gfn << PAGE_SHIFT, PAGE_SIZE << order);
1640
1641 pfn = host_addr >> PAGE_SHIFT;
1642 gfn = guest_addr >> PAGE_SHIFT;
1643
1644 /* read_lock(kvm->mmu_lock) protects against structural changes to the maple tree. */
1645 ppage = find_ppage(kvm, gfn << PAGE_SHIFT);
1646 if (!ppage || page_to_pfn(ppage->page) != pfn)
1647 return -EFAULT;
1648
1649 if (!PageSwapBacked(ppage->page))
1650 return -EIO;
1651
1652 if (logging_active) {
1653 struct kvm_hyp_memcache *hyp_memcache = &vcpu->arch.stage2_mc;
1654 int ret = topup_hyp_memcache(hyp_memcache,
1655 kvm_mmu_cache_min_pages(kvm), 0);
1656
1657 if (ret)
1658 return ret;
1659
1660 return kvm_call_hyp_nvhe(__pkvm_dirty_log, pfn, gfn);
1661 }
1662
1663 return pkvm_call_hyp_nvhe_ppage(ppage, __pkvm_relax_perms_call,
1664 (void *)prot, false);
1665 }
1666
pkvm_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t * fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,size_t * size)1667 static int pkvm_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t *fault_ipa,
1668 struct kvm_memory_slot *memslot, unsigned long hva,
1669 size_t *size)
1670 {
1671 unsigned int flags = FOLL_HWPOISON | FOLL_LONGTERM | FOLL_WRITE;
1672 struct kvm_hyp_memcache *hyp_memcache = &vcpu->arch.stage2_mc;
1673 unsigned long index, pmd_offset, page_size;
1674 struct mm_struct *mm = current->mm;
1675 struct kvm_pinned_page *ppage;
1676 struct kvm *kvm = vcpu->kvm;
1677 int ret, nr_pages;
1678 struct page *page;
1679 u64 pfn;
1680
1681 nr_pages = hyp_memcache->nr_pages;
1682 ret = topup_hyp_memcache(hyp_memcache, kvm_mmu_cache_min_pages(kvm), 0);
1683 if (ret)
1684 return -ENOMEM;
1685
1686 nr_pages = hyp_memcache->nr_pages - nr_pages;
1687 atomic64_add(nr_pages << PAGE_SHIFT, &kvm->stat.protected_hyp_mem);
1688 atomic64_add(nr_pages << PAGE_SHIFT, &kvm->stat.protected_pgtable_mem);
1689
1690 ppage = kmalloc(sizeof(*ppage), GFP_KERNEL_ACCOUNT);
1691 if (!ppage)
1692 return -ENOMEM;
1693
1694 mmap_read_lock(mm);
1695 ret = pin_user_pages(hva, 1, flags, &page);
1696 mmap_read_unlock(mm);
1697
1698 if (ret == -EHWPOISON) {
1699 kvm_send_hwpoison_signal(hva, PAGE_SHIFT);
1700 ret = 0;
1701 goto free_ppage;
1702 } else if (ret != 1) {
1703 ret = -EFAULT;
1704 goto free_ppage;
1705 } else if (kvm->arch.pkvm.enabled && !PageSwapBacked(page)) {
1706 /*
1707 * We really can't deal with page-cache pages returned by GUP
1708 * because (a) we may trigger writeback of a page for which we
1709 * no longer have access and (b) page_mkclean() won't find the
1710 * stage-2 mapping in the rmap so we can get out-of-whack with
1711 * the filesystem when marking the page dirty during unpinning
1712 * (see cc5095747edf ("ext4: don't BUG if someone dirty pages
1713 * without asking ext4 first")).
1714 *
1715 * Ideally we'd just restrict ourselves to anonymous pages, but
1716 * we also want to allow memfd (i.e. shmem) pages, so check for
1717 * pages backed by swap in the knowledge that the GUP pin will
1718 * prevent try_to_unmap() from succeeding.
1719 */
1720 ret = -EIO;
1721 goto unpin;
1722 }
1723
1724 pfn = page_to_pfn(page);
1725 pmd_offset = *fault_ipa & (PMD_SIZE - 1);
1726 page_size = transparent_hugepage_adjust(kvm, memslot,
1727 hva, &pfn,
1728 fault_ipa);
1729 page = pfn_to_page(pfn);
1730
1731 if (size)
1732 *size = page_size;
1733
1734 retry:
1735 ret = account_locked_vm(mm, page_size >> PAGE_SHIFT, true);
1736 if (ret)
1737 goto unpin;
1738
1739 write_lock(&kvm->mmu_lock);
1740 /*
1741 * If we already have a mapping in the middle of the THP, we have no
1742 * other choice than enforcing PAGE_SIZE for pkvm_host_map_guest() to
1743 * succeed.
1744 */
1745 index = *fault_ipa;
1746 if (page_size > PAGE_SIZE &&
1747 mt_find(&kvm->arch.pkvm.pinned_pages, &index, index + page_size - 1)) {
1748 write_unlock(&kvm->mmu_lock);
1749 *fault_ipa += pmd_offset;
1750 pfn += pmd_offset >> PAGE_SHIFT;
1751 page = pfn_to_page(pfn);
1752 page_size = PAGE_SIZE;
1753 account_locked_vm(mm, page_size >> PAGE_SHIFT, false);
1754 goto retry;
1755 }
1756
1757 ret = pkvm_host_map_guest(pfn, *fault_ipa >> PAGE_SHIFT,
1758 page_size >> PAGE_SHIFT, KVM_PGTABLE_PROT_R);
1759 if (ret) {
1760 if (ret == -EAGAIN)
1761 ret = 0;
1762
1763 goto dec_account;
1764 }
1765
1766 ppage->page = page;
1767 ppage->ipa = *fault_ipa;
1768 ppage->order = get_order(page_size);
1769 ppage->pins = 1 << ppage->order;
1770 WARN_ON(insert_ppage(kvm, ppage));
1771
1772 write_unlock(&kvm->mmu_lock);
1773
1774 return 0;
1775
1776 dec_account:
1777 write_unlock(&kvm->mmu_lock);
1778 account_locked_vm(mm, page_size >> PAGE_SHIFT, false);
1779 unpin:
1780 unpin_user_pages(&page, 1);
1781 free_ppage:
1782 kfree(ppage);
1783
1784 return ret;
1785 }
1786
pkvm_mem_abort_range(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,size_t size)1787 int pkvm_mem_abort_range(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, size_t size)
1788 {
1789 phys_addr_t ipa_end = fault_ipa + size - 1;
1790 struct kvm_pinned_page *ppage;
1791 unsigned long page_size;
1792 int err = 0, idx;
1793
1794 if (!PAGE_ALIGNED(size) || !PAGE_ALIGNED(fault_ipa))
1795 return -EINVAL;
1796
1797 if (ipa_end >= BIT_ULL(get_kvm_ipa_limit()) ||
1798 ipa_end >= kvm_phys_size(vcpu->kvm) ||
1799 ipa_end <= fault_ipa)
1800 return -EINVAL;
1801
1802 idx = srcu_read_lock(&vcpu->kvm->srcu);
1803
1804 read_lock(&vcpu->kvm->mmu_lock);
1805 ppage = find_ppage_or_above(vcpu->kvm, fault_ipa);
1806
1807 while (fault_ipa < ipa_end) {
1808 if (ppage && ppage->ipa == fault_ipa) {
1809 page_size = PAGE_SIZE << ppage->order;
1810 ppage = mt_next(&vcpu->kvm->arch.pkvm.pinned_pages,
1811 ppage->ipa, ULONG_MAX);
1812 } else {
1813 gfn_t gfn = gpa_to_gfn(fault_ipa);
1814 struct kvm_memory_slot *memslot;
1815 unsigned long hva;
1816 bool writable;
1817
1818 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1819 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1820 if (kvm_is_error_hva(hva) || !writable) {
1821 err = -EINVAL;
1822 goto end;
1823 }
1824
1825 read_unlock(&vcpu->kvm->mmu_lock);
1826 err = pkvm_mem_abort(vcpu, &fault_ipa, memslot, hva, &page_size);
1827 read_lock(&vcpu->kvm->mmu_lock);
1828 if (err)
1829 goto end;
1830
1831 /*
1832 * We had to release the mmu_lock so let's update the
1833 * reference.
1834 */
1835 ppage = find_ppage_or_above(vcpu->kvm, fault_ipa + page_size);
1836 }
1837
1838 fault_ipa += page_size;
1839 }
1840 end:
1841 read_unlock(&vcpu->kvm->mmu_lock);
1842 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1843
1844 return err;
1845 }
1846
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)1847 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1848 struct kvm_memory_slot *memslot, unsigned long hva,
1849 unsigned long fault_status)
1850 {
1851 int ret = 0;
1852 bool write_fault, writable, force_pte = false;
1853 bool exec_fault, mte_allowed;
1854 bool device = false;
1855 unsigned long mmu_seq;
1856 struct kvm *kvm = vcpu->kvm;
1857 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1858 struct vm_area_struct *vma;
1859 short vma_shift;
1860 gfn_t gfn;
1861 kvm_pfn_t pfn;
1862 bool logging_active = memslot_is_logging(memslot);
1863 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1864 long vma_pagesize, fault_granule;
1865 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1866 struct kvm_pgtable *pgt;
1867
1868 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1869 write_fault = kvm_is_write_fault(vcpu);
1870 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1871 VM_BUG_ON(write_fault && exec_fault);
1872
1873 if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) {
1874 kvm_err("Unexpected L2 read permission error\n");
1875 return -EFAULT;
1876 }
1877
1878 /*
1879 * Permission faults just need to update the existing leaf entry,
1880 * and so normally don't require allocations from the memcache. The
1881 * only exception to this is when dirty logging is enabled at runtime
1882 * and a write fault needs to collapse a block entry into a table.
1883 */
1884 if (fault_status != ESR_ELx_FSC_PERM ||
1885 (logging_active && write_fault)) {
1886 ret = kvm_mmu_topup_memory_cache(memcache,
1887 kvm_mmu_cache_min_pages(kvm));
1888 if (ret)
1889 return ret;
1890 }
1891
1892 /*
1893 * Let's check if we will get back a huge page backed by hugetlbfs, or
1894 * get block mapping for device MMIO region.
1895 */
1896 mmap_read_lock(current->mm);
1897 vma = vma_lookup(current->mm, hva);
1898 if (unlikely(!vma)) {
1899 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1900 mmap_read_unlock(current->mm);
1901 return -EFAULT;
1902 }
1903
1904 /*
1905 * logging_active is guaranteed to never be true for VM_PFNMAP
1906 * memslots.
1907 */
1908 if (logging_active) {
1909 force_pte = true;
1910 vma_shift = PAGE_SHIFT;
1911 } else {
1912 vma_shift = get_vma_page_shift(vma, hva);
1913 }
1914
1915 switch (vma_shift) {
1916 #ifndef __PAGETABLE_PMD_FOLDED
1917 case PUD_SHIFT:
1918 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1919 break;
1920 fallthrough;
1921 #endif
1922 case CONT_PMD_SHIFT:
1923 vma_shift = PMD_SHIFT;
1924 fallthrough;
1925 case PMD_SHIFT:
1926 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1927 break;
1928 fallthrough;
1929 case CONT_PTE_SHIFT:
1930 vma_shift = PAGE_SHIFT;
1931 force_pte = true;
1932 fallthrough;
1933 case PAGE_SHIFT:
1934 break;
1935 default:
1936 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1937 }
1938
1939 vma_pagesize = 1UL << vma_shift;
1940 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1941 fault_ipa &= ~(vma_pagesize - 1);
1942
1943 gfn = fault_ipa >> PAGE_SHIFT;
1944 mte_allowed = kvm_vma_mte_allowed(vma);
1945
1946 /* Don't use the VMA after the unlock -- it may have vanished */
1947 vma = NULL;
1948
1949 /*
1950 * Read mmu_invalidate_seq so that KVM can detect if the results of
1951 * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1952 * acquiring kvm->mmu_lock.
1953 *
1954 * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1955 * with the smp_wmb() in kvm_mmu_invalidate_end().
1956 */
1957 mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1958 mmap_read_unlock(current->mm);
1959
1960 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1961 write_fault, &writable, NULL);
1962 if (pfn == KVM_PFN_ERR_HWPOISON) {
1963 kvm_send_hwpoison_signal(hva, vma_shift);
1964 return 0;
1965 }
1966 if (is_error_noslot_pfn(pfn))
1967 return -EFAULT;
1968
1969 if (kvm_is_device_pfn(pfn)) {
1970 /*
1971 * If the page was identified as device early by looking at
1972 * the VMA flags, vma_pagesize is already representing the
1973 * largest quantity we can map. If instead it was mapped
1974 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1975 * and must not be upgraded.
1976 *
1977 * In both cases, we don't let transparent_hugepage_adjust()
1978 * change things at the last minute.
1979 */
1980 device = true;
1981 } else if (logging_active && !write_fault) {
1982 /*
1983 * Only actually map the page as writable if this was a write
1984 * fault.
1985 */
1986 writable = false;
1987 }
1988
1989 if (exec_fault && device)
1990 return -ENOEXEC;
1991
1992 read_lock(&kvm->mmu_lock);
1993 pgt = vcpu->arch.hw_mmu->pgt;
1994 if (mmu_invalidate_retry(kvm, mmu_seq))
1995 goto out_unlock;
1996
1997 /*
1998 * If we are not forced to use page mapping, check if we are
1999 * backed by a THP and thus use block mapping if possible.
2000 */
2001 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
2002 if (fault_status == ESR_ELx_FSC_PERM &&
2003 fault_granule > PAGE_SIZE)
2004 vma_pagesize = fault_granule;
2005 else
2006 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
2007 hva, &pfn,
2008 &fault_ipa);
2009
2010 if (vma_pagesize < 0) {
2011 ret = vma_pagesize;
2012 goto out_unlock;
2013 }
2014 }
2015
2016 if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) {
2017 /* Check the VMM hasn't introduced a new disallowed VMA */
2018 if (mte_allowed) {
2019 sanitise_mte_tags(kvm, pfn, vma_pagesize);
2020 } else {
2021 ret = -EFAULT;
2022 goto out_unlock;
2023 }
2024 }
2025
2026 if (writable)
2027 prot |= KVM_PGTABLE_PROT_W;
2028
2029 if (exec_fault)
2030 prot |= KVM_PGTABLE_PROT_X;
2031
2032 if (device)
2033 prot |= KVM_PGTABLE_PROT_DEVICE;
2034 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
2035 prot |= KVM_PGTABLE_PROT_X;
2036
2037 if (is_protected_kvm_enabled()) {
2038 if (WARN_ON(fault_status != ESR_ELx_FSC_PERM))
2039 ret = -EINVAL;
2040 else
2041 ret = pkvm_relax_perms(vcpu, pfn, gfn, get_order(fault_granule),
2042 prot, logging_active);
2043 goto mark_dirty;
2044 }
2045
2046 /*
2047 * Under the premise of getting a FSC_PERM fault, we just need to relax
2048 * permissions only if vma_pagesize equals fault_granule. Otherwise,
2049 * kvm_pgtable_stage2_map() should be called to change block size.
2050 */
2051 if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule)
2052 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
2053 else
2054 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
2055 __pfn_to_phys(pfn), prot,
2056 memcache,
2057 KVM_PGTABLE_WALK_HANDLE_FAULT |
2058 KVM_PGTABLE_WALK_SHARED);
2059 mark_dirty:
2060 /* Mark the page dirty only if the fault is handled successfully */
2061 if (writable && !ret) {
2062 kvm_set_pfn_dirty(pfn);
2063 mark_page_dirty_in_slot(kvm, memslot, gfn);
2064 }
2065
2066 out_unlock:
2067 read_unlock(&kvm->mmu_lock);
2068 kvm_release_pfn_clean(pfn);
2069 return ret != -EAGAIN ? ret : 0;
2070 }
2071
2072 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)2073 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
2074 {
2075 kvm_pte_t pte;
2076 struct kvm_s2_mmu *mmu;
2077
2078 trace_kvm_access_fault(fault_ipa);
2079
2080 read_lock(&vcpu->kvm->mmu_lock);
2081 mmu = vcpu->arch.hw_mmu;
2082 pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
2083 read_unlock(&vcpu->kvm->mmu_lock);
2084
2085 if (kvm_pte_valid(pte))
2086 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
2087 }
2088
2089 /**
2090 * kvm_handle_guest_abort - handles all 2nd stage aborts
2091 * @vcpu: the VCPU pointer
2092 *
2093 * Any abort that gets to the host is almost guaranteed to be caused by a
2094 * missing second stage translation table entry, which can mean that either the
2095 * guest simply needs more memory and we must allocate an appropriate page or it
2096 * can mean that the guest tried to access I/O memory, which is emulated by user
2097 * space. The distinction is based on the IPA causing the fault and whether this
2098 * memory region has been registered as standard RAM by user space.
2099 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)2100 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
2101 {
2102 unsigned long fault_status;
2103 phys_addr_t fault_ipa;
2104 struct kvm_memory_slot *memslot;
2105 unsigned long hva;
2106 bool is_iabt, write_fault, writable;
2107 gfn_t gfn;
2108 int ret, idx;
2109
2110 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
2111
2112 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
2113 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
2114
2115 if (fault_status == ESR_ELx_FSC_FAULT) {
2116 /* Beyond sanitised PARange (which is the IPA limit) */
2117 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
2118 kvm_inject_size_fault(vcpu);
2119 return 1;
2120 }
2121
2122 /* Falls between the IPA range and the PARange? */
2123 if (!is_protected_kvm_enabled() &&
2124 fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
2125 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
2126
2127 if (is_iabt)
2128 kvm_inject_pabt(vcpu, fault_ipa);
2129 else
2130 kvm_inject_dabt(vcpu, fault_ipa);
2131 return 1;
2132 }
2133 }
2134
2135 /* Synchronous External Abort? */
2136 if (kvm_vcpu_abt_issea(vcpu)) {
2137 /*
2138 * For RAS the host kernel may handle this abort.
2139 * There is no need to pass the error into the guest.
2140 */
2141 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
2142 kvm_inject_vabt(vcpu);
2143
2144 return 1;
2145 }
2146
2147 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
2148 kvm_vcpu_get_hfar(vcpu), fault_ipa);
2149
2150 /* Check the stage-2 fault is trans. fault or write fault */
2151 if (fault_status != ESR_ELx_FSC_FAULT &&
2152 fault_status != ESR_ELx_FSC_PERM &&
2153 fault_status != ESR_ELx_FSC_ACCESS) {
2154 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
2155 kvm_vcpu_trap_get_class(vcpu),
2156 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
2157 (unsigned long)kvm_vcpu_get_esr(vcpu));
2158 return -EFAULT;
2159 }
2160
2161 idx = srcu_read_lock(&vcpu->kvm->srcu);
2162
2163 gfn = fault_ipa >> PAGE_SHIFT;
2164 memslot = gfn_to_memslot(vcpu->kvm, gfn);
2165 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
2166 write_fault = kvm_is_write_fault(vcpu);
2167 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
2168 /*
2169 * The guest has put either its instructions or its page-tables
2170 * somewhere it shouldn't have. Userspace won't be able to do
2171 * anything about this (there's no syndrome for a start), so
2172 * re-inject the abort back into the guest.
2173 */
2174 if (is_iabt) {
2175 ret = -ENOEXEC;
2176 goto out;
2177 }
2178
2179 if (kvm_vcpu_abt_iss1tw(vcpu)) {
2180 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2181 ret = 1;
2182 goto out_unlock;
2183 }
2184
2185 /*
2186 * Check for a cache maintenance operation. Since we
2187 * ended-up here, we know it is outside of any memory
2188 * slot. But we can't find out if that is for a device,
2189 * or if the guest is just being stupid. The only thing
2190 * we know for sure is that this range cannot be cached.
2191 *
2192 * So let's assume that the guest is just being
2193 * cautious, and skip the instruction.
2194 */
2195 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
2196 kvm_incr_pc(vcpu);
2197 ret = 1;
2198 goto out_unlock;
2199 }
2200
2201 /*
2202 * The IPA is reported as [MAX:12], so we need to
2203 * complement it with the bottom 12 bits from the
2204 * faulting VA. This is always 12 bits, irrespective
2205 * of the page size.
2206 */
2207 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & FAR_MASK;
2208 ret = io_mem_abort(vcpu, fault_ipa);
2209 goto out_unlock;
2210 }
2211
2212 /* Userspace should not be able to register out-of-bounds IPAs */
2213 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
2214
2215 if (fault_status == ESR_ELx_FSC_ACCESS) {
2216 handle_access_fault(vcpu, fault_ipa);
2217 ret = 1;
2218 goto out_unlock;
2219 }
2220
2221 if (is_protected_kvm_enabled() && fault_status != ESR_ELx_FSC_PERM)
2222 ret = pkvm_mem_abort(vcpu, &fault_ipa, memslot, hva, NULL);
2223 else
2224 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2225
2226 if (ret == 0)
2227 ret = 1;
2228 out:
2229 if (ret == -ENOEXEC) {
2230 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2231 ret = 1;
2232 }
2233 out_unlock:
2234 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2235 return ret;
2236 }
2237
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)2238 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
2239 {
2240 if (is_protected_kvm_enabled())
2241 return false;
2242
2243 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
2244 (range->end - range->start) << PAGE_SHIFT,
2245 range->may_block);
2246
2247 return false;
2248 }
2249
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)2250 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2251 {
2252 kvm_pfn_t pfn = pte_pfn(range->arg.pte);
2253
2254 if (is_protected_kvm_enabled())
2255 return false;
2256
2257 WARN_ON(range->end - range->start != 1);
2258
2259 /*
2260 * If the page isn't tagged, defer to user_mem_abort() for sanitising
2261 * the MTE tags. The S2 pte should have been unmapped by
2262 * mmu_notifier_invalidate_range_end().
2263 */
2264 if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
2265 return false;
2266
2267 /*
2268 * We've moved a page around, probably through CoW, so let's treat
2269 * it just like a translation fault and the map handler will clean
2270 * the cache to the PoC.
2271 *
2272 * The MMU notifiers will have unmapped a huge PMD before calling
2273 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
2274 * therefore we never need to clear out a huge PMD through this
2275 * calling path and a memcache is not required.
2276 */
2277 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
2278 PAGE_SIZE, __pfn_to_phys(pfn),
2279 KVM_PGTABLE_PROT_R, NULL, 0);
2280
2281 return false;
2282 }
2283
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)2284 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2285 {
2286 u64 size = (range->end - range->start) << PAGE_SHIFT;
2287
2288 if (is_protected_kvm_enabled())
2289 return false;
2290
2291 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
2292 range->start << PAGE_SHIFT,
2293 size, true);
2294 }
2295
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)2296 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
2297 {
2298 u64 size = (range->end - range->start) << PAGE_SHIFT;
2299
2300 if (is_protected_kvm_enabled())
2301 return false;
2302
2303 return kvm_pgtable_stage2_test_clear_young(kvm->arch.mmu.pgt,
2304 range->start << PAGE_SHIFT,
2305 size, false);
2306 }
2307
kvm_mmu_get_httbr(void)2308 phys_addr_t kvm_mmu_get_httbr(void)
2309 {
2310 return __pa(hyp_pgtable->pgd);
2311 }
2312
kvm_get_idmap_vector(void)2313 phys_addr_t kvm_get_idmap_vector(void)
2314 {
2315 return hyp_idmap_vector;
2316 }
2317
kvm_map_idmap_text(void)2318 static int kvm_map_idmap_text(void)
2319 {
2320 unsigned long size = hyp_idmap_end - hyp_idmap_start;
2321 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
2322 PAGE_HYP_EXEC);
2323 if (err)
2324 kvm_err("Failed to idmap %lx-%lx\n",
2325 hyp_idmap_start, hyp_idmap_end);
2326
2327 return err;
2328 }
2329
kvm_hyp_zalloc_page(void * arg)2330 static void *kvm_hyp_zalloc_page(void *arg)
2331 {
2332 return (void *)get_zeroed_page(GFP_KERNEL);
2333 }
2334
2335 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
2336 .zalloc_page = kvm_hyp_zalloc_page,
2337 .get_page = kvm_host_get_page,
2338 .put_page = kvm_host_put_page,
2339 .phys_to_virt = kvm_host_va,
2340 .virt_to_phys = kvm_host_pa,
2341 };
2342
kvm_mmu_init(u32 * hyp_va_bits)2343 int __init kvm_mmu_init(u32 *hyp_va_bits)
2344 {
2345 int err;
2346 u32 idmap_bits;
2347 u32 kernel_bits;
2348
2349 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2350 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2351 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2352 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2353 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2354
2355 /*
2356 * We rely on the linker script to ensure at build time that the HYP
2357 * init code does not cross a page boundary.
2358 */
2359 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2360
2361 /*
2362 * The ID map may be configured to use an extended virtual address
2363 * range. This is only the case if system RAM is out of range for the
2364 * currently configured page size and VA_BITS_MIN, in which case we will
2365 * also need the extended virtual range for the HYP ID map, or we won't
2366 * be able to enable the EL2 MMU.
2367 *
2368 * However, in some cases the ID map may be configured for fewer than
2369 * the number of VA bits used by the regular kernel stage 1. This
2370 * happens when VA_BITS=52 and the kernel image is placed in PA space
2371 * below 48 bits.
2372 *
2373 * At EL2, there is only one TTBR register, and we can't switch between
2374 * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
2375 * line: we need to use the extended range with *both* our translation
2376 * tables.
2377 *
2378 * So use the maximum of the idmap VA bits and the regular kernel stage
2379 * 1 VA bits to assure that the hypervisor can both ID map its code page
2380 * and map any kernel memory.
2381 */
2382 idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
2383 kernel_bits = vabits_actual;
2384 *hyp_va_bits = max(idmap_bits, kernel_bits);
2385
2386 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
2387 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2388 kvm_debug("HYP VA range: %lx:%lx\n",
2389 kern_hyp_va(PAGE_OFFSET),
2390 kern_hyp_va((unsigned long)high_memory - 1));
2391
2392 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2393 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
2394 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2395 /*
2396 * The idmap page is intersecting with the VA space,
2397 * it is not safe to continue further.
2398 */
2399 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2400 err = -EINVAL;
2401 goto out;
2402 }
2403
2404 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
2405 if (!hyp_pgtable) {
2406 kvm_err("Hyp mode page-table not allocated\n");
2407 err = -ENOMEM;
2408 goto out;
2409 }
2410
2411 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
2412 if (err)
2413 goto out_free_pgtable;
2414
2415 err = kvm_map_idmap_text();
2416 if (err)
2417 goto out_destroy_pgtable;
2418
2419 io_map_base = hyp_idmap_start;
2420 return 0;
2421
2422 out_destroy_pgtable:
2423 kvm_pgtable_hyp_destroy(hyp_pgtable);
2424 out_free_pgtable:
2425 kfree(hyp_pgtable);
2426 hyp_pgtable = NULL;
2427 out:
2428 return err;
2429 }
2430
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)2431 void kvm_arch_commit_memory_region(struct kvm *kvm,
2432 struct kvm_memory_slot *old,
2433 const struct kvm_memory_slot *new,
2434 enum kvm_mr_change change)
2435 {
2436 bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
2437
2438 /*
2439 * At this point memslot has been committed and there is an
2440 * allocated dirty_bitmap[], dirty pages will be tracked while the
2441 * memory slot is write protected.
2442 */
2443 if (log_dirty_pages) {
2444
2445 if (change == KVM_MR_DELETE)
2446 return;
2447
2448 /*
2449 * Huge and normal pages are write-protected and split
2450 * on either of these two cases:
2451 *
2452 * 1. with initial-all-set: gradually with CLEAR ioctls,
2453 */
2454 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
2455 return;
2456 /*
2457 * or
2458 * 2. without initial-all-set: all in one shot when
2459 * enabling dirty logging.
2460 */
2461 kvm_mmu_wp_memory_region(kvm, new->id);
2462 kvm_mmu_split_memory_region(kvm, new->id);
2463 } else {
2464 /*
2465 * Free any leftovers from the eager page splitting cache. Do
2466 * this when deleting, moving, disabling dirty logging, or
2467 * creating the memslot (a nop). Doing it for deletes makes
2468 * sure we don't leak memory, and there's no need to keep the
2469 * cache around for any of the other cases.
2470 */
2471 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
2472 }
2473 }
2474
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)2475 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2476 const struct kvm_memory_slot *old,
2477 struct kvm_memory_slot *new,
2478 enum kvm_mr_change change)
2479 {
2480 hva_t hva, reg_end;
2481 int ret = 0;
2482
2483 if (is_protected_kvm_enabled()) {
2484 /* In protected mode, cannot modify memslots once a pVM has run. */
2485 if ((change == KVM_MR_DELETE || change == KVM_MR_MOVE) &&
2486 kvm->arch.pkvm.handle && kvm->arch.pkvm.enabled) {
2487 return -EPERM;
2488 }
2489
2490 if (new && kvm->arch.pkvm.enabled &&
2491 new->flags & (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)) {
2492 return -EPERM;
2493 }
2494 }
2495
2496 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2497 change != KVM_MR_FLAGS_ONLY)
2498 return 0;
2499
2500 /*
2501 * Prevent userspace from creating a memory region outside of the IPA
2502 * space addressable by the KVM guest IPA space.
2503 */
2504 if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
2505 return -EFAULT;
2506
2507 hva = new->userspace_addr;
2508 reg_end = hva + (new->npages << PAGE_SHIFT);
2509
2510 mmap_read_lock(current->mm);
2511 /*
2512 * A memory region could potentially cover multiple VMAs, and any holes
2513 * between them, so iterate over all of them.
2514 *
2515 * +--------------------------------------------+
2516 * +---------------+----------------+ +----------------+
2517 * | : VMA 1 | VMA 2 | | VMA 3 : |
2518 * +---------------+----------------+ +----------------+
2519 * | memory region |
2520 * +--------------------------------------------+
2521 */
2522 do {
2523 struct vm_area_struct *vma;
2524
2525 vma = find_vma_intersection(current->mm, hva, reg_end);
2526 if (!vma)
2527 break;
2528
2529 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
2530 ret = -EINVAL;
2531 break;
2532 }
2533
2534 if (vma->vm_flags & VM_PFNMAP) {
2535 /* IO region dirty page logging not allowed */
2536 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2537 ret = -EINVAL;
2538 break;
2539 }
2540 }
2541 hva = min(reg_end, vma->vm_end);
2542 } while (hva < reg_end);
2543
2544 mmap_read_unlock(current->mm);
2545 return ret;
2546 }
2547
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2548 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2549 {
2550 }
2551
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)2552 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2553 {
2554 }
2555
kvm_arch_flush_shadow_all(struct kvm * kvm)2556 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2557 {
2558 write_lock(&kvm->mmu_lock);
2559 unmap_stage2_range(&kvm->arch.mmu, 0, BIT(VTCR_EL2_IPA(kvm->arch.vtcr)));
2560 write_unlock(&kvm->mmu_lock);
2561 }
2562
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)2563 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2564 struct kvm_memory_slot *slot)
2565 {
2566 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2567 phys_addr_t size = slot->npages << PAGE_SHIFT;
2568
2569 write_lock(&kvm->mmu_lock);
2570 unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2571 write_unlock(&kvm->mmu_lock);
2572 }
2573
2574 /*
2575 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2576 *
2577 * Main problems:
2578 * - S/W ops are local to a CPU (not broadcast)
2579 * - We have line migration behind our back (speculation)
2580 * - System caches don't support S/W at all (damn!)
2581 *
2582 * In the face of the above, the best we can do is to try and convert
2583 * S/W ops to VA ops. Because the guest is not allowed to infer the
2584 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2585 * which is a rather good thing for us.
2586 *
2587 * Also, it is only used when turning caches on/off ("The expected
2588 * usage of the cache maintenance instructions that operate by set/way
2589 * is associated with the cache maintenance instructions associated
2590 * with the powerdown and powerup of caches, if this is required by
2591 * the implementation.").
2592 *
2593 * We use the following policy:
2594 *
2595 * - If we trap a S/W operation, we enable VM trapping to detect
2596 * caches being turned on/off, and do a full clean.
2597 *
2598 * - We flush the caches on both caches being turned on and off.
2599 *
2600 * - Once the caches are enabled, we stop trapping VM ops.
2601 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)2602 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2603 {
2604 unsigned long hcr = *vcpu_hcr(vcpu);
2605
2606 /*
2607 * If this is the first time we do a S/W operation
2608 * (i.e. HCR_TVM not set) flush the whole memory, and set the
2609 * VM trapping.
2610 *
2611 * Otherwise, rely on the VM trapping to wait for the MMU +
2612 * Caches to be turned off. At that point, we'll be able to
2613 * clean the caches again.
2614 */
2615 if (!(hcr & HCR_TVM)) {
2616 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2617 vcpu_has_cache_enabled(vcpu));
2618 stage2_flush_vm(vcpu->kvm);
2619 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2620 }
2621 }
2622
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)2623 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2624 {
2625 bool now_enabled = vcpu_has_cache_enabled(vcpu);
2626
2627 /*
2628 * If switching the MMU+caches on, need to invalidate the caches.
2629 * If switching it off, need to clean the caches.
2630 * Clean + invalidate does the trick always.
2631 */
2632 if (now_enabled != was_enabled)
2633 stage2_flush_vm(vcpu->kvm);
2634
2635 /* Caches are now on, stop trapping VM ops (until a S/W op) */
2636 if (now_enabled)
2637 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2638
2639 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2640 }
2641