• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7 
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87 
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94 
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97 
98 /*
99  * Maximum difference between two erase counters. If this threshold is
100  * exceeded, the WL sub-system starts moving data from used physical
101  * eraseblocks with low erase counter to free physical eraseblocks with high
102  * erase counter.
103  */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105 
106 /*
107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
108  * physical eraseblock to move to. The simplest way would be just to pick the
109  * one with the highest erase counter. But in certain workloads this could lead
110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111  * situation when the picked physical eraseblock is constantly erased after the
112  * data is written to it. So, we have a constant which limits the highest erase
113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114  * does not pick eraseblocks with erase counter greater than the lowest erase
115  * counter plus %WL_FREE_MAX_DIFF.
116  */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118 
119 /*
120  * Maximum number of consecutive background thread failures which is enough to
121  * switch to read-only mode.
122  */
123 #define WL_MAX_FAILURES 32
124 
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 				 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 			    struct ubi_wl_entry *e);
130 
131 /**
132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133  * @e: the wear-leveling entry to add
134  * @root: the root of the tree
135  *
136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137  * the @ubi->used and @ubi->free RB-trees.
138  */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 	struct rb_node **p, *parent = NULL;
142 
143 	p = &root->rb_node;
144 	while (*p) {
145 		struct ubi_wl_entry *e1;
146 
147 		parent = *p;
148 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149 
150 		if (e->ec < e1->ec)
151 			p = &(*p)->rb_left;
152 		else if (e->ec > e1->ec)
153 			p = &(*p)->rb_right;
154 		else {
155 			ubi_assert(e->pnum != e1->pnum);
156 			if (e->pnum < e1->pnum)
157 				p = &(*p)->rb_left;
158 			else
159 				p = &(*p)->rb_right;
160 		}
161 	}
162 
163 	rb_link_node(&e->u.rb, parent, p);
164 	rb_insert_color(&e->u.rb, root);
165 }
166 
167 /**
168  * wl_entry_destroy - destroy a wear-leveling entry.
169  * @ubi: UBI device description object
170  * @e: the wear-leveling entry to add
171  *
172  * This function destroys a wear leveling entry and removes
173  * the reference from the lookup table.
174  */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 	ubi->lookuptbl[e->pnum] = NULL;
178 	kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180 
181 /**
182  * do_work - do one pending work.
183  * @ubi: UBI device description object
184  *
185  * This function returns zero in case of success and a negative error code in
186  * case of failure.
187  */
do_work(struct ubi_device * ubi)188 static int do_work(struct ubi_device *ubi)
189 {
190 	int err;
191 	struct ubi_work *wrk;
192 
193 	cond_resched();
194 
195 	/*
196 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 	 * it in read mode, so many of them may be doing works at a time. But
198 	 * the queue flush code has to be sure the whole queue of works is
199 	 * done, and it takes the mutex in write mode.
200 	 */
201 	down_read(&ubi->work_sem);
202 	spin_lock(&ubi->wl_lock);
203 	if (list_empty(&ubi->works)) {
204 		spin_unlock(&ubi->wl_lock);
205 		up_read(&ubi->work_sem);
206 		return 0;
207 	}
208 
209 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 	list_del(&wrk->list);
211 	ubi->works_count -= 1;
212 	ubi_assert(ubi->works_count >= 0);
213 	spin_unlock(&ubi->wl_lock);
214 
215 	/*
216 	 * Call the worker function. Do not touch the work structure
217 	 * after this call as it will have been freed or reused by that
218 	 * time by the worker function.
219 	 */
220 	err = wrk->func(ubi, wrk, 0);
221 	if (err)
222 		ubi_err(ubi, "work failed with error code %d", err);
223 	up_read(&ubi->work_sem);
224 
225 	return err;
226 }
227 
228 /**
229  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230  * @e: the wear-leveling entry to check
231  * @root: the root of the tree
232  *
233  * This function returns non-zero if @e is in the @root RB-tree and zero if it
234  * is not.
235  */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 	struct rb_node *p;
239 
240 	p = root->rb_node;
241 	while (p) {
242 		struct ubi_wl_entry *e1;
243 
244 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245 
246 		if (e->pnum == e1->pnum) {
247 			ubi_assert(e == e1);
248 			return 1;
249 		}
250 
251 		if (e->ec < e1->ec)
252 			p = p->rb_left;
253 		else if (e->ec > e1->ec)
254 			p = p->rb_right;
255 		else {
256 			ubi_assert(e->pnum != e1->pnum);
257 			if (e->pnum < e1->pnum)
258 				p = p->rb_left;
259 			else
260 				p = p->rb_right;
261 		}
262 	}
263 
264 	return 0;
265 }
266 
267 /**
268  * in_pq - check if a wear-leveling entry is present in the protection queue.
269  * @ubi: UBI device description object
270  * @e: the wear-leveling entry to check
271  *
272  * This function returns non-zero if @e is in the protection queue and zero
273  * if it is not.
274  */
in_pq(const struct ubi_device * ubi,struct ubi_wl_entry * e)275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 	struct ubi_wl_entry *p;
278 	int i;
279 
280 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 		list_for_each_entry(p, &ubi->pq[i], u.list)
282 			if (p == e)
283 				return 1;
284 
285 	return 0;
286 }
287 
288 /**
289  * prot_queue_add - add physical eraseblock to the protection queue.
290  * @ubi: UBI device description object
291  * @e: the physical eraseblock to add
292  *
293  * This function adds @e to the tail of the protection queue @ubi->pq, where
294  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296  * be locked.
297  */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 	int pq_tail = ubi->pq_head - 1;
301 
302 	if (pq_tail < 0)
303 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308 
309 /**
310  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311  * @ubi: UBI device description object
312  * @root: the RB-tree where to look for
313  * @diff: maximum possible difference from the smallest erase counter
314  *
315  * This function looks for a wear leveling entry with erase counter closest to
316  * min + @diff, where min is the smallest erase counter.
317  */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 					  struct rb_root *root, int diff)
320 {
321 	struct rb_node *p;
322 	struct ubi_wl_entry *e;
323 	int max;
324 
325 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 	max = e->ec + diff;
327 
328 	p = root->rb_node;
329 	while (p) {
330 		struct ubi_wl_entry *e1;
331 
332 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 		if (e1->ec >= max)
334 			p = p->rb_left;
335 		else {
336 			p = p->rb_right;
337 			e = e1;
338 		}
339 	}
340 
341 	return e;
342 }
343 
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 					       struct rb_root *root)
355 {
356 	struct ubi_wl_entry *e, *first, *last;
357 
358 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360 
361 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363 
364 		/* If no fastmap has been written and this WL entry can be used
365 		 * as anchor PEB, hold it back and return the second best
366 		 * WL entry such that fastmap can use the anchor PEB later. */
367 		e = may_reserve_for_fm(ubi, e, root);
368 	} else
369 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370 
371 	return e;
372 }
373 
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
wl_get_wle(struct ubi_device * ubi)382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 	struct ubi_wl_entry *e;
385 
386 	e = find_mean_wl_entry(ubi, &ubi->free);
387 	if (!e) {
388 		ubi_err(ubi, "no free eraseblocks");
389 		return NULL;
390 	}
391 
392 	self_check_in_wl_tree(ubi, e, &ubi->free);
393 
394 	/*
395 	 * Move the physical eraseblock to the protection queue where it will
396 	 * be protected from being moved for some time.
397 	 */
398 	rb_erase(&e->u.rb, &ubi->free);
399 	ubi->free_count--;
400 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401 
402 	return e;
403 }
404 
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
prot_queue_del(struct ubi_device * ubi,int pnum)413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 	struct ubi_wl_entry *e;
416 
417 	e = ubi->lookuptbl[pnum];
418 	if (!e)
419 		return -ENODEV;
420 
421 	if (self_check_in_pq(ubi, e))
422 		return -ENODEV;
423 
424 	list_del(&e->u.list);
425 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 	return 0;
427 }
428 
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 		      int torture)
440 {
441 	int err;
442 	struct ubi_ec_hdr *ec_hdr;
443 	unsigned long long ec = e->ec;
444 
445 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446 
447 	err = self_check_ec(ubi, e->pnum, e->ec);
448 	if (err)
449 		return -EINVAL;
450 
451 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 	if (!ec_hdr)
453 		return -ENOMEM;
454 
455 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 	if (err < 0)
457 		goto out_free;
458 
459 	ec += err;
460 	if (ec > UBI_MAX_ERASECOUNTER) {
461 		/*
462 		 * Erase counter overflow. Upgrade UBI and use 64-bit
463 		 * erase counters internally.
464 		 */
465 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 			e->pnum, ec);
467 		err = -EINVAL;
468 		goto out_free;
469 	}
470 
471 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472 
473 	ec_hdr->ec = cpu_to_be64(ec);
474 
475 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 	if (err)
477 		goto out_free;
478 
479 	e->ec = ec;
480 	spin_lock(&ubi->wl_lock);
481 	if (e->ec > ubi->max_ec)
482 		ubi->max_ec = e->ec;
483 	spin_unlock(&ubi->wl_lock);
484 
485 out_free:
486 	kfree(ec_hdr);
487 	return err;
488 }
489 
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
serve_prot_queue(struct ubi_device * ubi)498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 	struct ubi_wl_entry *e, *tmp;
501 	int count;
502 
503 	/*
504 	 * There may be several protected physical eraseblock to remove,
505 	 * process them all.
506 	 */
507 repeat:
508 	count = 0;
509 	spin_lock(&ubi->wl_lock);
510 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 		dbg_wl("PEB %d EC %d protection over, move to used tree",
512 			e->pnum, e->ec);
513 
514 		list_del(&e->u.list);
515 		wl_tree_add(e, &ubi->used);
516 		if (count++ > 32) {
517 			/*
518 			 * Let's be nice and avoid holding the spinlock for
519 			 * too long.
520 			 */
521 			spin_unlock(&ubi->wl_lock);
522 			cond_resched();
523 			goto repeat;
524 		}
525 	}
526 
527 	ubi->pq_head += 1;
528 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 		ubi->pq_head = 0;
530 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 	spin_unlock(&ubi->wl_lock);
532 }
533 
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 	spin_lock(&ubi->wl_lock);
545 	list_add_tail(&wrk->list, &ubi->works);
546 	ubi_assert(ubi->works_count >= 0);
547 	ubi->works_count += 1;
548 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 		wake_up_process(ubi->bgt_thread);
550 	spin_unlock(&ubi->wl_lock);
551 }
552 
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 	down_read(&ubi->work_sem);
564 	__schedule_ubi_work(ubi, wrk);
565 	up_read(&ubi->work_sem);
566 }
567 
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 			int shutdown);
570 
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  * @nested: denotes whether the work_sem is already held
579  *
580  * This function returns zero in case of success and a %-ENOMEM in case of
581  * failure.
582  */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture,bool nested)583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584 			  int vol_id, int lnum, int torture, bool nested)
585 {
586 	struct ubi_work *wl_wrk;
587 
588 	ubi_assert(e);
589 
590 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 	       e->pnum, e->ec, torture);
592 
593 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594 	if (!wl_wrk)
595 		return -ENOMEM;
596 
597 	wl_wrk->func = &erase_worker;
598 	wl_wrk->e = e;
599 	wl_wrk->vol_id = vol_id;
600 	wl_wrk->lnum = lnum;
601 	wl_wrk->torture = torture;
602 
603 	if (nested)
604 		__schedule_ubi_work(ubi, wl_wrk);
605 	else
606 		schedule_ubi_work(ubi, wl_wrk);
607 	return 0;
608 }
609 
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611 /**
612  * do_sync_erase - run the erase worker synchronously.
613  * @ubi: UBI device description object
614  * @e: the WL entry of the physical eraseblock to erase
615  * @vol_id: the volume ID that last used this PEB
616  * @lnum: the last used logical eraseblock number for the PEB
617  * @torture: if the physical eraseblock has to be tortured
618  *
619  */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621 			 int vol_id, int lnum, int torture)
622 {
623 	struct ubi_work wl_wrk;
624 
625 	dbg_wl("sync erase of PEB %i", e->pnum);
626 
627 	wl_wrk.e = e;
628 	wl_wrk.vol_id = vol_id;
629 	wl_wrk.lnum = lnum;
630 	wl_wrk.torture = torture;
631 
632 	return __erase_worker(ubi, &wl_wrk);
633 }
634 
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636 /**
637  * wear_leveling_worker - wear-leveling worker function.
638  * @ubi: UBI device description object
639  * @wrk: the work object
640  * @shutdown: non-zero if the worker has to free memory and exit
641  * because the WL-subsystem is shutting down
642  *
643  * This function copies a more worn out physical eraseblock to a less worn out
644  * one. Returns zero in case of success and a negative error code in case of
645  * failure.
646  */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648 				int shutdown)
649 {
650 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651 	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652 	struct ubi_wl_entry *e1, *e2;
653 	struct ubi_vid_io_buf *vidb;
654 	struct ubi_vid_hdr *vid_hdr;
655 	int dst_leb_clean = 0;
656 
657 	kfree(wrk);
658 	if (shutdown)
659 		return 0;
660 
661 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662 	if (!vidb)
663 		return -ENOMEM;
664 
665 	vid_hdr = ubi_get_vid_hdr(vidb);
666 
667 	down_read(&ubi->fm_eba_sem);
668 	mutex_lock(&ubi->move_mutex);
669 	spin_lock(&ubi->wl_lock);
670 	ubi_assert(!ubi->move_from && !ubi->move_to);
671 	ubi_assert(!ubi->move_to_put);
672 
673 #ifdef CONFIG_MTD_UBI_FASTMAP
674 	if (!next_peb_for_wl(ubi) ||
675 #else
676 	if (!ubi->free.rb_node ||
677 #endif
678 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
679 		/*
680 		 * No free physical eraseblocks? Well, they must be waiting in
681 		 * the queue to be erased. Cancel movement - it will be
682 		 * triggered again when a free physical eraseblock appears.
683 		 *
684 		 * No used physical eraseblocks? They must be temporarily
685 		 * protected from being moved. They will be moved to the
686 		 * @ubi->used tree later and the wear-leveling will be
687 		 * triggered again.
688 		 */
689 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
690 		       !ubi->free.rb_node, !ubi->used.rb_node);
691 		goto out_cancel;
692 	}
693 
694 #ifdef CONFIG_MTD_UBI_FASTMAP
695 	e1 = find_anchor_wl_entry(&ubi->used);
696 	if (e1 && ubi->fm_anchor &&
697 	    (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
698 		ubi->fm_do_produce_anchor = 1;
699 		/*
700 		 * fm_anchor is no longer considered a good anchor.
701 		 * NULL assignment also prevents multiple wear level checks
702 		 * of this PEB.
703 		 */
704 		wl_tree_add(ubi->fm_anchor, &ubi->free);
705 		ubi->fm_anchor = NULL;
706 		ubi->free_count++;
707 	}
708 
709 	if (ubi->fm_do_produce_anchor) {
710 		if (!e1)
711 			goto out_cancel;
712 		e2 = get_peb_for_wl(ubi);
713 		if (!e2)
714 			goto out_cancel;
715 
716 		self_check_in_wl_tree(ubi, e1, &ubi->used);
717 		rb_erase(&e1->u.rb, &ubi->used);
718 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
719 		ubi->fm_do_produce_anchor = 0;
720 	} else if (!ubi->scrub.rb_node) {
721 #else
722 	if (!ubi->scrub.rb_node) {
723 #endif
724 		/*
725 		 * Now pick the least worn-out used physical eraseblock and a
726 		 * highly worn-out free physical eraseblock. If the erase
727 		 * counters differ much enough, start wear-leveling.
728 		 */
729 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
730 		e2 = get_peb_for_wl(ubi);
731 		if (!e2)
732 			goto out_cancel;
733 
734 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
735 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
736 			       e1->ec, e2->ec);
737 
738 			/* Give the unused PEB back */
739 			wl_tree_add(e2, &ubi->free);
740 			ubi->free_count++;
741 			goto out_cancel;
742 		}
743 		self_check_in_wl_tree(ubi, e1, &ubi->used);
744 		rb_erase(&e1->u.rb, &ubi->used);
745 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
746 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
747 	} else {
748 		/* Perform scrubbing */
749 		scrubbing = 1;
750 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
751 		e2 = get_peb_for_wl(ubi);
752 		if (!e2)
753 			goto out_cancel;
754 
755 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
756 		rb_erase(&e1->u.rb, &ubi->scrub);
757 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
758 	}
759 
760 	ubi->move_from = e1;
761 	ubi->move_to = e2;
762 	spin_unlock(&ubi->wl_lock);
763 
764 	/*
765 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
766 	 * We so far do not know which logical eraseblock our physical
767 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
768 	 * header first.
769 	 *
770 	 * Note, we are protected from this PEB being unmapped and erased. The
771 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
772 	 * which is being moved was unmapped.
773 	 */
774 
775 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
776 	if (err && err != UBI_IO_BITFLIPS) {
777 		dst_leb_clean = 1;
778 		if (err == UBI_IO_FF) {
779 			/*
780 			 * We are trying to move PEB without a VID header. UBI
781 			 * always write VID headers shortly after the PEB was
782 			 * given, so we have a situation when it has not yet
783 			 * had a chance to write it, because it was preempted.
784 			 * So add this PEB to the protection queue so far,
785 			 * because presumably more data will be written there
786 			 * (including the missing VID header), and then we'll
787 			 * move it.
788 			 */
789 			dbg_wl("PEB %d has no VID header", e1->pnum);
790 			protect = 1;
791 			goto out_not_moved;
792 		} else if (err == UBI_IO_FF_BITFLIPS) {
793 			/*
794 			 * The same situation as %UBI_IO_FF, but bit-flips were
795 			 * detected. It is better to schedule this PEB for
796 			 * scrubbing.
797 			 */
798 			dbg_wl("PEB %d has no VID header but has bit-flips",
799 			       e1->pnum);
800 			scrubbing = 1;
801 			goto out_not_moved;
802 		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
803 			/*
804 			 * While a full scan would detect interrupted erasures
805 			 * at attach time we can face them here when attached from
806 			 * Fastmap.
807 			 */
808 			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
809 			       e1->pnum);
810 			erase = 1;
811 			goto out_not_moved;
812 		}
813 
814 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
815 			err, e1->pnum);
816 		goto out_error;
817 	}
818 
819 	vol_id = be32_to_cpu(vid_hdr->vol_id);
820 	lnum = be32_to_cpu(vid_hdr->lnum);
821 
822 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
823 	if (err) {
824 		if (err == MOVE_CANCEL_RACE) {
825 			/*
826 			 * The LEB has not been moved because the volume is
827 			 * being deleted or the PEB has been put meanwhile. We
828 			 * should prevent this PEB from being selected for
829 			 * wear-leveling movement again, so put it to the
830 			 * protection queue.
831 			 */
832 			protect = 1;
833 			dst_leb_clean = 1;
834 			goto out_not_moved;
835 		}
836 		if (err == MOVE_RETRY) {
837 			scrubbing = 1;
838 			dst_leb_clean = 1;
839 			goto out_not_moved;
840 		}
841 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
842 		    err == MOVE_TARGET_RD_ERR) {
843 			/*
844 			 * Target PEB had bit-flips or write error - torture it.
845 			 */
846 			torture = 1;
847 			keep = 1;
848 			goto out_not_moved;
849 		}
850 
851 		if (err == MOVE_SOURCE_RD_ERR) {
852 			/*
853 			 * An error happened while reading the source PEB. Do
854 			 * not switch to R/O mode in this case, and give the
855 			 * upper layers a possibility to recover from this,
856 			 * e.g. by unmapping corresponding LEB. Instead, just
857 			 * put this PEB to the @ubi->erroneous list to prevent
858 			 * UBI from trying to move it over and over again.
859 			 */
860 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
861 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
862 					ubi->erroneous_peb_count);
863 				goto out_error;
864 			}
865 			dst_leb_clean = 1;
866 			erroneous = 1;
867 			goto out_not_moved;
868 		}
869 
870 		if (err < 0)
871 			goto out_error;
872 
873 		ubi_assert(0);
874 	}
875 
876 	/* The PEB has been successfully moved */
877 	if (scrubbing)
878 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
879 			e1->pnum, vol_id, lnum, e2->pnum);
880 	ubi_free_vid_buf(vidb);
881 
882 	spin_lock(&ubi->wl_lock);
883 	if (!ubi->move_to_put) {
884 		wl_tree_add(e2, &ubi->used);
885 		e2 = NULL;
886 	}
887 	ubi->move_from = ubi->move_to = NULL;
888 	ubi->move_to_put = ubi->wl_scheduled = 0;
889 	spin_unlock(&ubi->wl_lock);
890 
891 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
892 	if (err) {
893 		if (e2) {
894 			spin_lock(&ubi->wl_lock);
895 			wl_entry_destroy(ubi, e2);
896 			spin_unlock(&ubi->wl_lock);
897 		}
898 		goto out_ro;
899 	}
900 
901 	if (e2) {
902 		/*
903 		 * Well, the target PEB was put meanwhile, schedule it for
904 		 * erasure.
905 		 */
906 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
907 		       e2->pnum, vol_id, lnum);
908 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
909 		if (err)
910 			goto out_ro;
911 	}
912 
913 	dbg_wl("done");
914 	mutex_unlock(&ubi->move_mutex);
915 	up_read(&ubi->fm_eba_sem);
916 	return 0;
917 
918 	/*
919 	 * For some reasons the LEB was not moved, might be an error, might be
920 	 * something else. @e1 was not changed, so return it back. @e2 might
921 	 * have been changed, schedule it for erasure.
922 	 */
923 out_not_moved:
924 	if (vol_id != -1)
925 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
926 		       e1->pnum, vol_id, lnum, e2->pnum, err);
927 	else
928 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
929 		       e1->pnum, e2->pnum, err);
930 	spin_lock(&ubi->wl_lock);
931 	if (protect)
932 		prot_queue_add(ubi, e1);
933 	else if (erroneous) {
934 		wl_tree_add(e1, &ubi->erroneous);
935 		ubi->erroneous_peb_count += 1;
936 	} else if (scrubbing)
937 		wl_tree_add(e1, &ubi->scrub);
938 	else if (keep)
939 		wl_tree_add(e1, &ubi->used);
940 	if (dst_leb_clean) {
941 		wl_tree_add(e2, &ubi->free);
942 		ubi->free_count++;
943 	}
944 
945 	ubi_assert(!ubi->move_to_put);
946 	ubi->move_from = ubi->move_to = NULL;
947 	ubi->wl_scheduled = 0;
948 	spin_unlock(&ubi->wl_lock);
949 
950 	ubi_free_vid_buf(vidb);
951 	if (dst_leb_clean) {
952 		ensure_wear_leveling(ubi, 1);
953 	} else {
954 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
955 		if (err)
956 			goto out_ro;
957 	}
958 
959 	if (erase) {
960 		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
961 		if (err)
962 			goto out_ro;
963 	}
964 
965 	mutex_unlock(&ubi->move_mutex);
966 	up_read(&ubi->fm_eba_sem);
967 	return 0;
968 
969 out_error:
970 	if (vol_id != -1)
971 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
972 			err, e1->pnum, e2->pnum);
973 	else
974 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
975 			err, e1->pnum, vol_id, lnum, e2->pnum);
976 	spin_lock(&ubi->wl_lock);
977 	ubi->move_from = ubi->move_to = NULL;
978 	ubi->move_to_put = ubi->wl_scheduled = 0;
979 	wl_entry_destroy(ubi, e1);
980 	wl_entry_destroy(ubi, e2);
981 	spin_unlock(&ubi->wl_lock);
982 
983 	ubi_free_vid_buf(vidb);
984 
985 out_ro:
986 	ubi_ro_mode(ubi);
987 	mutex_unlock(&ubi->move_mutex);
988 	up_read(&ubi->fm_eba_sem);
989 	ubi_assert(err != 0);
990 	return err < 0 ? err : -EIO;
991 
992 out_cancel:
993 	ubi->wl_scheduled = 0;
994 	spin_unlock(&ubi->wl_lock);
995 	mutex_unlock(&ubi->move_mutex);
996 	up_read(&ubi->fm_eba_sem);
997 	ubi_free_vid_buf(vidb);
998 	return 0;
999 }
1000 
1001 /**
1002  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1003  * @ubi: UBI device description object
1004  * @nested: set to non-zero if this function is called from UBI worker
1005  *
1006  * This function checks if it is time to start wear-leveling and schedules it
1007  * if yes. This function returns zero in case of success and a negative error
1008  * code in case of failure.
1009  */
1010 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1011 {
1012 	int err = 0;
1013 	struct ubi_work *wrk;
1014 
1015 	spin_lock(&ubi->wl_lock);
1016 	if (ubi->wl_scheduled)
1017 		/* Wear-leveling is already in the work queue */
1018 		goto out_unlock;
1019 
1020 	/*
1021 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1022 	 * WL worker has to be scheduled anyway.
1023 	 */
1024 	if (!ubi->scrub.rb_node) {
1025 #ifdef CONFIG_MTD_UBI_FASTMAP
1026 		if (!need_wear_leveling(ubi))
1027 			goto out_unlock;
1028 #else
1029 		struct ubi_wl_entry *e1;
1030 		struct ubi_wl_entry *e2;
1031 
1032 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1033 			/* No physical eraseblocks - no deal */
1034 			goto out_unlock;
1035 
1036 		/*
1037 		 * We schedule wear-leveling only if the difference between the
1038 		 * lowest erase counter of used physical eraseblocks and a high
1039 		 * erase counter of free physical eraseblocks is greater than
1040 		 * %UBI_WL_THRESHOLD.
1041 		 */
1042 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1043 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1044 
1045 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1046 			goto out_unlock;
1047 #endif
1048 		dbg_wl("schedule wear-leveling");
1049 	} else
1050 		dbg_wl("schedule scrubbing");
1051 
1052 	ubi->wl_scheduled = 1;
1053 	spin_unlock(&ubi->wl_lock);
1054 
1055 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1056 	if (!wrk) {
1057 		err = -ENOMEM;
1058 		goto out_cancel;
1059 	}
1060 
1061 	wrk->func = &wear_leveling_worker;
1062 	if (nested)
1063 		__schedule_ubi_work(ubi, wrk);
1064 	else
1065 		schedule_ubi_work(ubi, wrk);
1066 	return err;
1067 
1068 out_cancel:
1069 	spin_lock(&ubi->wl_lock);
1070 	ubi->wl_scheduled = 0;
1071 out_unlock:
1072 	spin_unlock(&ubi->wl_lock);
1073 	return err;
1074 }
1075 
1076 /**
1077  * __erase_worker - physical eraseblock erase worker function.
1078  * @ubi: UBI device description object
1079  * @wl_wrk: the work object
1080  *
1081  * This function erases a physical eraseblock and perform torture testing if
1082  * needed. It also takes care about marking the physical eraseblock bad if
1083  * needed. Returns zero in case of success and a negative error code in case of
1084  * failure.
1085  */
1086 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1087 {
1088 	struct ubi_wl_entry *e = wl_wrk->e;
1089 	int pnum = e->pnum;
1090 	int vol_id = wl_wrk->vol_id;
1091 	int lnum = wl_wrk->lnum;
1092 	int err, available_consumed = 0;
1093 
1094 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1095 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1096 
1097 	err = sync_erase(ubi, e, wl_wrk->torture);
1098 	if (!err) {
1099 		spin_lock(&ubi->wl_lock);
1100 
1101 		if (!ubi->fm_disabled && !ubi->fm_anchor &&
1102 		    e->pnum < UBI_FM_MAX_START) {
1103 			/*
1104 			 * Abort anchor production, if needed it will be
1105 			 * enabled again in the wear leveling started below.
1106 			 */
1107 			ubi->fm_anchor = e;
1108 			ubi->fm_do_produce_anchor = 0;
1109 		} else {
1110 			wl_tree_add(e, &ubi->free);
1111 			ubi->free_count++;
1112 		}
1113 
1114 		spin_unlock(&ubi->wl_lock);
1115 
1116 		/*
1117 		 * One more erase operation has happened, take care about
1118 		 * protected physical eraseblocks.
1119 		 */
1120 		serve_prot_queue(ubi);
1121 
1122 		/* And take care about wear-leveling */
1123 		err = ensure_wear_leveling(ubi, 1);
1124 		return err;
1125 	}
1126 
1127 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1128 
1129 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1130 	    err == -EBUSY) {
1131 		int err1;
1132 
1133 		/* Re-schedule the LEB for erasure */
1134 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1135 		if (err1) {
1136 			spin_lock(&ubi->wl_lock);
1137 			wl_entry_destroy(ubi, e);
1138 			spin_unlock(&ubi->wl_lock);
1139 			err = err1;
1140 			goto out_ro;
1141 		}
1142 		return err;
1143 	}
1144 
1145 	spin_lock(&ubi->wl_lock);
1146 	wl_entry_destroy(ubi, e);
1147 	spin_unlock(&ubi->wl_lock);
1148 	if (err != -EIO)
1149 		/*
1150 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1151 		 * this physical eraseblock for erasure again would cause
1152 		 * errors again and again. Well, lets switch to R/O mode.
1153 		 */
1154 		goto out_ro;
1155 
1156 	/* It is %-EIO, the PEB went bad */
1157 
1158 	if (!ubi->bad_allowed) {
1159 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1160 		goto out_ro;
1161 	}
1162 
1163 	spin_lock(&ubi->volumes_lock);
1164 	if (ubi->beb_rsvd_pebs == 0) {
1165 		if (ubi->avail_pebs == 0) {
1166 			spin_unlock(&ubi->volumes_lock);
1167 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1168 			goto out_ro;
1169 		}
1170 		ubi->avail_pebs -= 1;
1171 		available_consumed = 1;
1172 	}
1173 	spin_unlock(&ubi->volumes_lock);
1174 
1175 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1176 	err = ubi_io_mark_bad(ubi, pnum);
1177 	if (err)
1178 		goto out_ro;
1179 
1180 	spin_lock(&ubi->volumes_lock);
1181 	if (ubi->beb_rsvd_pebs > 0) {
1182 		if (available_consumed) {
1183 			/*
1184 			 * The amount of reserved PEBs increased since we last
1185 			 * checked.
1186 			 */
1187 			ubi->avail_pebs += 1;
1188 			available_consumed = 0;
1189 		}
1190 		ubi->beb_rsvd_pebs -= 1;
1191 	}
1192 	ubi->bad_peb_count += 1;
1193 	ubi->good_peb_count -= 1;
1194 	ubi_calculate_reserved(ubi);
1195 	if (available_consumed)
1196 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1197 	else if (ubi->beb_rsvd_pebs)
1198 		ubi_msg(ubi, "%d PEBs left in the reserve",
1199 			ubi->beb_rsvd_pebs);
1200 	else
1201 		ubi_warn(ubi, "last PEB from the reserve was used");
1202 	spin_unlock(&ubi->volumes_lock);
1203 
1204 	return err;
1205 
1206 out_ro:
1207 	if (available_consumed) {
1208 		spin_lock(&ubi->volumes_lock);
1209 		ubi->avail_pebs += 1;
1210 		spin_unlock(&ubi->volumes_lock);
1211 	}
1212 	ubi_ro_mode(ubi);
1213 	return err;
1214 }
1215 
1216 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1217 			  int shutdown)
1218 {
1219 	int ret;
1220 
1221 	if (shutdown) {
1222 		struct ubi_wl_entry *e = wl_wrk->e;
1223 
1224 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1225 		kfree(wl_wrk);
1226 		wl_entry_destroy(ubi, e);
1227 		return 0;
1228 	}
1229 
1230 	ret = __erase_worker(ubi, wl_wrk);
1231 	kfree(wl_wrk);
1232 	return ret;
1233 }
1234 
1235 /**
1236  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1237  * @ubi: UBI device description object
1238  * @vol_id: the volume ID that last used this PEB
1239  * @lnum: the last used logical eraseblock number for the PEB
1240  * @pnum: physical eraseblock to return
1241  * @torture: if this physical eraseblock has to be tortured
1242  *
1243  * This function is called to return physical eraseblock @pnum to the pool of
1244  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1245  * occurred to this @pnum and it has to be tested. This function returns zero
1246  * in case of success, and a negative error code in case of failure.
1247  */
1248 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1249 		   int pnum, int torture)
1250 {
1251 	int err;
1252 	struct ubi_wl_entry *e;
1253 
1254 	dbg_wl("PEB %d", pnum);
1255 	ubi_assert(pnum >= 0);
1256 	ubi_assert(pnum < ubi->peb_count);
1257 
1258 	down_read(&ubi->fm_protect);
1259 
1260 retry:
1261 	spin_lock(&ubi->wl_lock);
1262 	e = ubi->lookuptbl[pnum];
1263 	if (!e) {
1264 		/*
1265 		 * This wl entry has been removed for some errors by other
1266 		 * process (eg. wear leveling worker), corresponding process
1267 		 * (except __erase_worker, which cannot concurrent with
1268 		 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1269 		 * just ignore this wl entry.
1270 		 */
1271 		spin_unlock(&ubi->wl_lock);
1272 		up_read(&ubi->fm_protect);
1273 		return 0;
1274 	}
1275 	if (e == ubi->move_from) {
1276 		/*
1277 		 * User is putting the physical eraseblock which was selected to
1278 		 * be moved. It will be scheduled for erasure in the
1279 		 * wear-leveling worker.
1280 		 */
1281 		dbg_wl("PEB %d is being moved, wait", pnum);
1282 		spin_unlock(&ubi->wl_lock);
1283 
1284 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1285 		mutex_lock(&ubi->move_mutex);
1286 		mutex_unlock(&ubi->move_mutex);
1287 		goto retry;
1288 	} else if (e == ubi->move_to) {
1289 		/*
1290 		 * User is putting the physical eraseblock which was selected
1291 		 * as the target the data is moved to. It may happen if the EBA
1292 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1293 		 * but the WL sub-system has not put the PEB to the "used" tree
1294 		 * yet, but it is about to do this. So we just set a flag which
1295 		 * will tell the WL worker that the PEB is not needed anymore
1296 		 * and should be scheduled for erasure.
1297 		 */
1298 		dbg_wl("PEB %d is the target of data moving", pnum);
1299 		ubi_assert(!ubi->move_to_put);
1300 		ubi->move_to_put = 1;
1301 		spin_unlock(&ubi->wl_lock);
1302 		up_read(&ubi->fm_protect);
1303 		return 0;
1304 	} else {
1305 		if (in_wl_tree(e, &ubi->used)) {
1306 			self_check_in_wl_tree(ubi, e, &ubi->used);
1307 			rb_erase(&e->u.rb, &ubi->used);
1308 		} else if (in_wl_tree(e, &ubi->scrub)) {
1309 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1310 			rb_erase(&e->u.rb, &ubi->scrub);
1311 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1312 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1313 			rb_erase(&e->u.rb, &ubi->erroneous);
1314 			ubi->erroneous_peb_count -= 1;
1315 			ubi_assert(ubi->erroneous_peb_count >= 0);
1316 			/* Erroneous PEBs should be tortured */
1317 			torture = 1;
1318 		} else {
1319 			err = prot_queue_del(ubi, e->pnum);
1320 			if (err) {
1321 				ubi_err(ubi, "PEB %d not found", pnum);
1322 				ubi_ro_mode(ubi);
1323 				spin_unlock(&ubi->wl_lock);
1324 				up_read(&ubi->fm_protect);
1325 				return err;
1326 			}
1327 		}
1328 	}
1329 	spin_unlock(&ubi->wl_lock);
1330 
1331 	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1332 	if (err) {
1333 		spin_lock(&ubi->wl_lock);
1334 		wl_tree_add(e, &ubi->used);
1335 		spin_unlock(&ubi->wl_lock);
1336 	}
1337 
1338 	up_read(&ubi->fm_protect);
1339 	return err;
1340 }
1341 
1342 /**
1343  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1344  * @ubi: UBI device description object
1345  * @pnum: the physical eraseblock to schedule
1346  *
1347  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1348  * needs scrubbing. This function schedules a physical eraseblock for
1349  * scrubbing which is done in background. This function returns zero in case of
1350  * success and a negative error code in case of failure.
1351  */
1352 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1353 {
1354 	struct ubi_wl_entry *e;
1355 
1356 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1357 
1358 retry:
1359 	spin_lock(&ubi->wl_lock);
1360 	e = ubi->lookuptbl[pnum];
1361 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1362 				   in_wl_tree(e, &ubi->erroneous)) {
1363 		spin_unlock(&ubi->wl_lock);
1364 		return 0;
1365 	}
1366 
1367 	if (e == ubi->move_to) {
1368 		/*
1369 		 * This physical eraseblock was used to move data to. The data
1370 		 * was moved but the PEB was not yet inserted to the proper
1371 		 * tree. We should just wait a little and let the WL worker
1372 		 * proceed.
1373 		 */
1374 		spin_unlock(&ubi->wl_lock);
1375 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1376 		yield();
1377 		goto retry;
1378 	}
1379 
1380 	if (in_wl_tree(e, &ubi->used)) {
1381 		self_check_in_wl_tree(ubi, e, &ubi->used);
1382 		rb_erase(&e->u.rb, &ubi->used);
1383 	} else {
1384 		int err;
1385 
1386 		err = prot_queue_del(ubi, e->pnum);
1387 		if (err) {
1388 			ubi_err(ubi, "PEB %d not found", pnum);
1389 			ubi_ro_mode(ubi);
1390 			spin_unlock(&ubi->wl_lock);
1391 			return err;
1392 		}
1393 	}
1394 
1395 	wl_tree_add(e, &ubi->scrub);
1396 	spin_unlock(&ubi->wl_lock);
1397 
1398 	/*
1399 	 * Technically scrubbing is the same as wear-leveling, so it is done
1400 	 * by the WL worker.
1401 	 */
1402 	return ensure_wear_leveling(ubi, 0);
1403 }
1404 
1405 /**
1406  * ubi_wl_flush - flush all pending works.
1407  * @ubi: UBI device description object
1408  * @vol_id: the volume id to flush for
1409  * @lnum: the logical eraseblock number to flush for
1410  *
1411  * This function executes all pending works for a particular volume id /
1412  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1413  * acts as a wildcard for all of the corresponding volume numbers or logical
1414  * eraseblock numbers. It returns zero in case of success and a negative error
1415  * code in case of failure.
1416  */
1417 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1418 {
1419 	int err = 0;
1420 	int found = 1;
1421 
1422 	/*
1423 	 * Erase while the pending works queue is not empty, but not more than
1424 	 * the number of currently pending works.
1425 	 */
1426 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1427 	       vol_id, lnum, ubi->works_count);
1428 
1429 	while (found) {
1430 		struct ubi_work *wrk, *tmp;
1431 		found = 0;
1432 
1433 		down_read(&ubi->work_sem);
1434 		spin_lock(&ubi->wl_lock);
1435 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1436 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1437 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1438 				list_del(&wrk->list);
1439 				ubi->works_count -= 1;
1440 				ubi_assert(ubi->works_count >= 0);
1441 				spin_unlock(&ubi->wl_lock);
1442 
1443 				err = wrk->func(ubi, wrk, 0);
1444 				if (err) {
1445 					up_read(&ubi->work_sem);
1446 					return err;
1447 				}
1448 
1449 				spin_lock(&ubi->wl_lock);
1450 				found = 1;
1451 				break;
1452 			}
1453 		}
1454 		spin_unlock(&ubi->wl_lock);
1455 		up_read(&ubi->work_sem);
1456 	}
1457 
1458 	/*
1459 	 * Make sure all the works which have been done in parallel are
1460 	 * finished.
1461 	 */
1462 	down_write(&ubi->work_sem);
1463 	up_write(&ubi->work_sem);
1464 
1465 	return err;
1466 }
1467 
1468 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1469 {
1470 	if (in_wl_tree(e, &ubi->scrub))
1471 		return false;
1472 	else if (in_wl_tree(e, &ubi->erroneous))
1473 		return false;
1474 	else if (ubi->move_from == e)
1475 		return false;
1476 	else if (ubi->move_to == e)
1477 		return false;
1478 
1479 	return true;
1480 }
1481 
1482 /**
1483  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1484  * @ubi: UBI device description object
1485  * @pnum: the physical eraseblock to schedule
1486  * @force: don't read the block, assume bitflips happened and take action.
1487  *
1488  * This function reads the given eraseblock and checks if bitflips occured.
1489  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1490  * If scrubbing is forced with @force, the eraseblock is not read,
1491  * but scheduled for scrubbing right away.
1492  *
1493  * Returns:
1494  * %EINVAL, PEB is out of range
1495  * %ENOENT, PEB is no longer used by UBI
1496  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1497  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1498  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1499  * %0, no bit flips detected
1500  */
1501 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1502 {
1503 	int err = 0;
1504 	struct ubi_wl_entry *e;
1505 
1506 	if (pnum < 0 || pnum >= ubi->peb_count) {
1507 		err = -EINVAL;
1508 		goto out;
1509 	}
1510 
1511 	/*
1512 	 * Pause all parallel work, otherwise it can happen that the
1513 	 * erase worker frees a wl entry under us.
1514 	 */
1515 	down_write(&ubi->work_sem);
1516 
1517 	/*
1518 	 * Make sure that the wl entry does not change state while
1519 	 * inspecting it.
1520 	 */
1521 	spin_lock(&ubi->wl_lock);
1522 	e = ubi->lookuptbl[pnum];
1523 	if (!e) {
1524 		spin_unlock(&ubi->wl_lock);
1525 		err = -ENOENT;
1526 		goto out_resume;
1527 	}
1528 
1529 	/*
1530 	 * Does it make sense to check this PEB?
1531 	 */
1532 	if (!scrub_possible(ubi, e)) {
1533 		spin_unlock(&ubi->wl_lock);
1534 		err = -EBUSY;
1535 		goto out_resume;
1536 	}
1537 	spin_unlock(&ubi->wl_lock);
1538 
1539 	if (!force) {
1540 		mutex_lock(&ubi->buf_mutex);
1541 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1542 		mutex_unlock(&ubi->buf_mutex);
1543 	}
1544 
1545 	if (force || err == UBI_IO_BITFLIPS) {
1546 		/*
1547 		 * Okay, bit flip happened, let's figure out what we can do.
1548 		 */
1549 		spin_lock(&ubi->wl_lock);
1550 
1551 		/*
1552 		 * Recheck. We released wl_lock, UBI might have killed the
1553 		 * wl entry under us.
1554 		 */
1555 		e = ubi->lookuptbl[pnum];
1556 		if (!e) {
1557 			spin_unlock(&ubi->wl_lock);
1558 			err = -ENOENT;
1559 			goto out_resume;
1560 		}
1561 
1562 		/*
1563 		 * Need to re-check state
1564 		 */
1565 		if (!scrub_possible(ubi, e)) {
1566 			spin_unlock(&ubi->wl_lock);
1567 			err = -EBUSY;
1568 			goto out_resume;
1569 		}
1570 
1571 		if (in_pq(ubi, e)) {
1572 			prot_queue_del(ubi, e->pnum);
1573 			wl_tree_add(e, &ubi->scrub);
1574 			spin_unlock(&ubi->wl_lock);
1575 
1576 			err = ensure_wear_leveling(ubi, 1);
1577 		} else if (in_wl_tree(e, &ubi->used)) {
1578 			rb_erase(&e->u.rb, &ubi->used);
1579 			wl_tree_add(e, &ubi->scrub);
1580 			spin_unlock(&ubi->wl_lock);
1581 
1582 			err = ensure_wear_leveling(ubi, 1);
1583 		} else if (in_wl_tree(e, &ubi->free)) {
1584 			rb_erase(&e->u.rb, &ubi->free);
1585 			ubi->free_count--;
1586 			spin_unlock(&ubi->wl_lock);
1587 
1588 			/*
1589 			 * This PEB is empty we can schedule it for
1590 			 * erasure right away. No wear leveling needed.
1591 			 */
1592 			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1593 					     force ? 0 : 1, true);
1594 		} else {
1595 			spin_unlock(&ubi->wl_lock);
1596 			err = -EAGAIN;
1597 		}
1598 
1599 		if (!err && !force)
1600 			err = -EUCLEAN;
1601 	} else {
1602 		err = 0;
1603 	}
1604 
1605 out_resume:
1606 	up_write(&ubi->work_sem);
1607 out:
1608 
1609 	return err;
1610 }
1611 
1612 /**
1613  * tree_destroy - destroy an RB-tree.
1614  * @ubi: UBI device description object
1615  * @root: the root of the tree to destroy
1616  */
1617 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1618 {
1619 	struct rb_node *rb;
1620 	struct ubi_wl_entry *e;
1621 
1622 	rb = root->rb_node;
1623 	while (rb) {
1624 		if (rb->rb_left)
1625 			rb = rb->rb_left;
1626 		else if (rb->rb_right)
1627 			rb = rb->rb_right;
1628 		else {
1629 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1630 
1631 			rb = rb_parent(rb);
1632 			if (rb) {
1633 				if (rb->rb_left == &e->u.rb)
1634 					rb->rb_left = NULL;
1635 				else
1636 					rb->rb_right = NULL;
1637 			}
1638 
1639 			wl_entry_destroy(ubi, e);
1640 		}
1641 	}
1642 }
1643 
1644 /**
1645  * ubi_thread - UBI background thread.
1646  * @u: the UBI device description object pointer
1647  */
1648 int ubi_thread(void *u)
1649 {
1650 	int failures = 0;
1651 	struct ubi_device *ubi = u;
1652 
1653 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1654 		ubi->bgt_name, task_pid_nr(current));
1655 
1656 	set_freezable();
1657 	for (;;) {
1658 		int err;
1659 
1660 		if (kthread_should_stop())
1661 			break;
1662 
1663 		if (try_to_freeze())
1664 			continue;
1665 
1666 		spin_lock(&ubi->wl_lock);
1667 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1668 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1669 			set_current_state(TASK_INTERRUPTIBLE);
1670 			spin_unlock(&ubi->wl_lock);
1671 
1672 			/*
1673 			 * Check kthread_should_stop() after we set the task
1674 			 * state to guarantee that we either see the stop bit
1675 			 * and exit or the task state is reset to runnable such
1676 			 * that it's not scheduled out indefinitely and detects
1677 			 * the stop bit at kthread_should_stop().
1678 			 */
1679 			if (kthread_should_stop()) {
1680 				set_current_state(TASK_RUNNING);
1681 				break;
1682 			}
1683 
1684 			schedule();
1685 			continue;
1686 		}
1687 		spin_unlock(&ubi->wl_lock);
1688 
1689 		err = do_work(ubi);
1690 		if (err) {
1691 			ubi_err(ubi, "%s: work failed with error code %d",
1692 				ubi->bgt_name, err);
1693 			if (failures++ > WL_MAX_FAILURES) {
1694 				/*
1695 				 * Too many failures, disable the thread and
1696 				 * switch to read-only mode.
1697 				 */
1698 				ubi_msg(ubi, "%s: %d consecutive failures",
1699 					ubi->bgt_name, WL_MAX_FAILURES);
1700 				ubi_ro_mode(ubi);
1701 				ubi->thread_enabled = 0;
1702 				continue;
1703 			}
1704 		} else
1705 			failures = 0;
1706 
1707 		cond_resched();
1708 	}
1709 
1710 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1711 	ubi->thread_enabled = 0;
1712 	return 0;
1713 }
1714 
1715 /**
1716  * shutdown_work - shutdown all pending works.
1717  * @ubi: UBI device description object
1718  */
1719 static void shutdown_work(struct ubi_device *ubi)
1720 {
1721 	while (!list_empty(&ubi->works)) {
1722 		struct ubi_work *wrk;
1723 
1724 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1725 		list_del(&wrk->list);
1726 		wrk->func(ubi, wrk, 1);
1727 		ubi->works_count -= 1;
1728 		ubi_assert(ubi->works_count >= 0);
1729 	}
1730 }
1731 
1732 /**
1733  * erase_aeb - erase a PEB given in UBI attach info PEB
1734  * @ubi: UBI device description object
1735  * @aeb: UBI attach info PEB
1736  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1737  */
1738 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1739 {
1740 	struct ubi_wl_entry *e;
1741 	int err;
1742 
1743 	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1744 	if (!e)
1745 		return -ENOMEM;
1746 
1747 	e->pnum = aeb->pnum;
1748 	e->ec = aeb->ec;
1749 	ubi->lookuptbl[e->pnum] = e;
1750 
1751 	if (sync) {
1752 		err = sync_erase(ubi, e, false);
1753 		if (err)
1754 			goto out_free;
1755 
1756 		wl_tree_add(e, &ubi->free);
1757 		ubi->free_count++;
1758 	} else {
1759 		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1760 		if (err)
1761 			goto out_free;
1762 	}
1763 
1764 	return 0;
1765 
1766 out_free:
1767 	wl_entry_destroy(ubi, e);
1768 
1769 	return err;
1770 }
1771 
1772 /**
1773  * ubi_wl_init - initialize the WL sub-system using attaching information.
1774  * @ubi: UBI device description object
1775  * @ai: attaching information
1776  *
1777  * This function returns zero in case of success, and a negative error code in
1778  * case of failure.
1779  */
1780 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1781 {
1782 	int err, i, reserved_pebs, found_pebs = 0;
1783 	struct rb_node *rb1, *rb2;
1784 	struct ubi_ainf_volume *av;
1785 	struct ubi_ainf_peb *aeb, *tmp;
1786 	struct ubi_wl_entry *e;
1787 
1788 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1789 	spin_lock_init(&ubi->wl_lock);
1790 	mutex_init(&ubi->move_mutex);
1791 	init_rwsem(&ubi->work_sem);
1792 	ubi->max_ec = ai->max_ec;
1793 	INIT_LIST_HEAD(&ubi->works);
1794 
1795 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1796 
1797 	err = -ENOMEM;
1798 	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1799 	if (!ubi->lookuptbl)
1800 		return err;
1801 
1802 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1803 		INIT_LIST_HEAD(&ubi->pq[i]);
1804 	ubi->pq_head = 0;
1805 
1806 	ubi->free_count = 0;
1807 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1808 		cond_resched();
1809 
1810 		err = erase_aeb(ubi, aeb, false);
1811 		if (err)
1812 			goto out_free;
1813 
1814 		found_pebs++;
1815 	}
1816 
1817 	list_for_each_entry(aeb, &ai->free, u.list) {
1818 		cond_resched();
1819 
1820 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1821 		if (!e) {
1822 			err = -ENOMEM;
1823 			goto out_free;
1824 		}
1825 
1826 		e->pnum = aeb->pnum;
1827 		e->ec = aeb->ec;
1828 		ubi_assert(e->ec >= 0);
1829 
1830 		wl_tree_add(e, &ubi->free);
1831 		ubi->free_count++;
1832 
1833 		ubi->lookuptbl[e->pnum] = e;
1834 
1835 		found_pebs++;
1836 	}
1837 
1838 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1839 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1840 			cond_resched();
1841 
1842 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1843 			if (!e) {
1844 				err = -ENOMEM;
1845 				goto out_free;
1846 			}
1847 
1848 			e->pnum = aeb->pnum;
1849 			e->ec = aeb->ec;
1850 			ubi->lookuptbl[e->pnum] = e;
1851 
1852 			if (!aeb->scrub) {
1853 				dbg_wl("add PEB %d EC %d to the used tree",
1854 				       e->pnum, e->ec);
1855 				wl_tree_add(e, &ubi->used);
1856 			} else {
1857 				dbg_wl("add PEB %d EC %d to the scrub tree",
1858 				       e->pnum, e->ec);
1859 				wl_tree_add(e, &ubi->scrub);
1860 			}
1861 
1862 			found_pebs++;
1863 		}
1864 	}
1865 
1866 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1867 		cond_resched();
1868 
1869 		e = ubi_find_fm_block(ubi, aeb->pnum);
1870 
1871 		if (e) {
1872 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1873 			ubi->lookuptbl[e->pnum] = e;
1874 		} else {
1875 			bool sync = false;
1876 
1877 			/*
1878 			 * Usually old Fastmap PEBs are scheduled for erasure
1879 			 * and we don't have to care about them but if we face
1880 			 * an power cut before scheduling them we need to
1881 			 * take care of them here.
1882 			 */
1883 			if (ubi->lookuptbl[aeb->pnum])
1884 				continue;
1885 
1886 			/*
1887 			 * The fastmap update code might not find a free PEB for
1888 			 * writing the fastmap anchor to and then reuses the
1889 			 * current fastmap anchor PEB. When this PEB gets erased
1890 			 * and a power cut happens before it is written again we
1891 			 * must make sure that the fastmap attach code doesn't
1892 			 * find any outdated fastmap anchors, hence we erase the
1893 			 * outdated fastmap anchor PEBs synchronously here.
1894 			 */
1895 			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1896 				sync = true;
1897 
1898 			err = erase_aeb(ubi, aeb, sync);
1899 			if (err)
1900 				goto out_free;
1901 		}
1902 
1903 		found_pebs++;
1904 	}
1905 
1906 	dbg_wl("found %i PEBs", found_pebs);
1907 
1908 	ubi_assert(ubi->good_peb_count == found_pebs);
1909 
1910 	reserved_pebs = WL_RESERVED_PEBS;
1911 	ubi_fastmap_init(ubi, &reserved_pebs);
1912 
1913 	if (ubi->avail_pebs < reserved_pebs) {
1914 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1915 			ubi->avail_pebs, reserved_pebs);
1916 		if (ubi->corr_peb_count)
1917 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1918 				ubi->corr_peb_count);
1919 		err = -ENOSPC;
1920 		goto out_free;
1921 	}
1922 	ubi->avail_pebs -= reserved_pebs;
1923 	ubi->rsvd_pebs += reserved_pebs;
1924 
1925 	/* Schedule wear-leveling if needed */
1926 	err = ensure_wear_leveling(ubi, 0);
1927 	if (err)
1928 		goto out_free;
1929 
1930 #ifdef CONFIG_MTD_UBI_FASTMAP
1931 	if (!ubi->ro_mode && !ubi->fm_disabled)
1932 		ubi_ensure_anchor_pebs(ubi);
1933 #endif
1934 	return 0;
1935 
1936 out_free:
1937 	shutdown_work(ubi);
1938 	tree_destroy(ubi, &ubi->used);
1939 	tree_destroy(ubi, &ubi->free);
1940 	tree_destroy(ubi, &ubi->scrub);
1941 	kfree(ubi->lookuptbl);
1942 	return err;
1943 }
1944 
1945 /**
1946  * protection_queue_destroy - destroy the protection queue.
1947  * @ubi: UBI device description object
1948  */
1949 static void protection_queue_destroy(struct ubi_device *ubi)
1950 {
1951 	int i;
1952 	struct ubi_wl_entry *e, *tmp;
1953 
1954 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1955 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1956 			list_del(&e->u.list);
1957 			wl_entry_destroy(ubi, e);
1958 		}
1959 	}
1960 }
1961 
1962 /**
1963  * ubi_wl_close - close the wear-leveling sub-system.
1964  * @ubi: UBI device description object
1965  */
1966 void ubi_wl_close(struct ubi_device *ubi)
1967 {
1968 	dbg_wl("close the WL sub-system");
1969 	ubi_fastmap_close(ubi);
1970 	shutdown_work(ubi);
1971 	protection_queue_destroy(ubi);
1972 	tree_destroy(ubi, &ubi->used);
1973 	tree_destroy(ubi, &ubi->erroneous);
1974 	tree_destroy(ubi, &ubi->free);
1975 	tree_destroy(ubi, &ubi->scrub);
1976 	kfree(ubi->lookuptbl);
1977 }
1978 
1979 /**
1980  * self_check_ec - make sure that the erase counter of a PEB is correct.
1981  * @ubi: UBI device description object
1982  * @pnum: the physical eraseblock number to check
1983  * @ec: the erase counter to check
1984  *
1985  * This function returns zero if the erase counter of physical eraseblock @pnum
1986  * is equivalent to @ec, and a negative error code if not or if an error
1987  * occurred.
1988  */
1989 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1990 {
1991 	int err;
1992 	long long read_ec;
1993 	struct ubi_ec_hdr *ec_hdr;
1994 
1995 	if (!ubi_dbg_chk_gen(ubi))
1996 		return 0;
1997 
1998 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1999 	if (!ec_hdr)
2000 		return -ENOMEM;
2001 
2002 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2003 	if (err && err != UBI_IO_BITFLIPS) {
2004 		/* The header does not have to exist */
2005 		err = 0;
2006 		goto out_free;
2007 	}
2008 
2009 	read_ec = be64_to_cpu(ec_hdr->ec);
2010 	if (ec != read_ec && read_ec - ec > 1) {
2011 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
2012 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2013 		dump_stack();
2014 		err = 1;
2015 	} else
2016 		err = 0;
2017 
2018 out_free:
2019 	kfree(ec_hdr);
2020 	return err;
2021 }
2022 
2023 /**
2024  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2025  * @ubi: UBI device description object
2026  * @e: the wear-leveling entry to check
2027  * @root: the root of the tree
2028  *
2029  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2030  * is not.
2031  */
2032 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2033 				 struct ubi_wl_entry *e, struct rb_root *root)
2034 {
2035 	if (!ubi_dbg_chk_gen(ubi))
2036 		return 0;
2037 
2038 	if (in_wl_tree(e, root))
2039 		return 0;
2040 
2041 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2042 		e->pnum, e->ec, root);
2043 	dump_stack();
2044 	return -EINVAL;
2045 }
2046 
2047 /**
2048  * self_check_in_pq - check if wear-leveling entry is in the protection
2049  *                        queue.
2050  * @ubi: UBI device description object
2051  * @e: the wear-leveling entry to check
2052  *
2053  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2054  */
2055 static int self_check_in_pq(const struct ubi_device *ubi,
2056 			    struct ubi_wl_entry *e)
2057 {
2058 	if (!ubi_dbg_chk_gen(ubi))
2059 		return 0;
2060 
2061 	if (in_pq(ubi, e))
2062 		return 0;
2063 
2064 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2065 		e->pnum, e->ec);
2066 	dump_stack();
2067 	return -EINVAL;
2068 }
2069 #ifndef CONFIG_MTD_UBI_FASTMAP
2070 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2071 {
2072 	struct ubi_wl_entry *e;
2073 
2074 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2075 	self_check_in_wl_tree(ubi, e, &ubi->free);
2076 	ubi->free_count--;
2077 	ubi_assert(ubi->free_count >= 0);
2078 	rb_erase(&e->u.rb, &ubi->free);
2079 
2080 	return e;
2081 }
2082 
2083 /**
2084  * produce_free_peb - produce a free physical eraseblock.
2085  * @ubi: UBI device description object
2086  *
2087  * This function tries to make a free PEB by means of synchronous execution of
2088  * pending works. This may be needed if, for example the background thread is
2089  * disabled. Returns zero in case of success and a negative error code in case
2090  * of failure.
2091  */
2092 static int produce_free_peb(struct ubi_device *ubi)
2093 {
2094 	int err;
2095 
2096 	while (!ubi->free.rb_node && ubi->works_count) {
2097 		spin_unlock(&ubi->wl_lock);
2098 
2099 		dbg_wl("do one work synchronously");
2100 		err = do_work(ubi);
2101 
2102 		spin_lock(&ubi->wl_lock);
2103 		if (err)
2104 			return err;
2105 	}
2106 
2107 	return 0;
2108 }
2109 
2110 /**
2111  * ubi_wl_get_peb - get a physical eraseblock.
2112  * @ubi: UBI device description object
2113  *
2114  * This function returns a physical eraseblock in case of success and a
2115  * negative error code in case of failure.
2116  * Returns with ubi->fm_eba_sem held in read mode!
2117  */
2118 int ubi_wl_get_peb(struct ubi_device *ubi)
2119 {
2120 	int err;
2121 	struct ubi_wl_entry *e;
2122 
2123 retry:
2124 	down_read(&ubi->fm_eba_sem);
2125 	spin_lock(&ubi->wl_lock);
2126 	if (!ubi->free.rb_node) {
2127 		if (ubi->works_count == 0) {
2128 			ubi_err(ubi, "no free eraseblocks");
2129 			ubi_assert(list_empty(&ubi->works));
2130 			spin_unlock(&ubi->wl_lock);
2131 			return -ENOSPC;
2132 		}
2133 
2134 		err = produce_free_peb(ubi);
2135 		if (err < 0) {
2136 			spin_unlock(&ubi->wl_lock);
2137 			return err;
2138 		}
2139 		spin_unlock(&ubi->wl_lock);
2140 		up_read(&ubi->fm_eba_sem);
2141 		goto retry;
2142 
2143 	}
2144 	e = wl_get_wle(ubi);
2145 	prot_queue_add(ubi, e);
2146 	spin_unlock(&ubi->wl_lock);
2147 
2148 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2149 				    ubi->peb_size - ubi->vid_hdr_aloffset);
2150 	if (err) {
2151 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2152 		return err;
2153 	}
2154 
2155 	return e->pnum;
2156 }
2157 #else
2158 #include "fastmap-wl.c"
2159 #endif
2160