1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28
ubifs_default_version_set(const char * val,const struct kernel_param * kp)29 static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30 {
31 int n = 0, ret;
32
33 ret = kstrtoint(val, 10, &n);
34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 return -EINVAL;
36 return param_set_int(val, kp);
37 }
38
39 static const struct kernel_param_ops ubifs_default_version_ops = {
40 .set = ubifs_default_version_set,
41 .get = param_get_int,
42 };
43
44 int ubifs_default_version = UBIFS_FORMAT_VERSION;
45 module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46
47 /*
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
50 */
51 #define UBIFS_KMALLOC_OK (128*1024)
52
53 /* Slab cache for UBIFS inodes */
54 static struct kmem_cache *ubifs_inode_slab;
55
56 /* UBIFS TNC shrinker description */
57 static struct shrinker ubifs_shrinker_info = {
58 .scan_objects = ubifs_shrink_scan,
59 .count_objects = ubifs_shrink_count,
60 .seeks = DEFAULT_SEEKS,
61 };
62
63 /**
64 * validate_inode - validate inode.
65 * @c: UBIFS file-system description object
66 * @inode: the inode to validate
67 *
68 * This is a helper function for 'ubifs_iget()' which validates various fields
69 * of a newly built inode to make sure they contain sane values and prevent
70 * possible vulnerabilities. Returns zero if the inode is all right and
71 * a non-zero error code if not.
72 */
validate_inode(struct ubifs_info * c,const struct inode * inode)73 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
74 {
75 int err;
76 const struct ubifs_inode *ui = ubifs_inode(inode);
77
78 if (inode->i_size > c->max_inode_sz) {
79 ubifs_err(c, "inode is too large (%lld)",
80 (long long)inode->i_size);
81 return 1;
82 }
83
84 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
85 ubifs_err(c, "unknown compression type %d", ui->compr_type);
86 return 2;
87 }
88
89 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
90 return 3;
91
92 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
93 return 4;
94
95 if (ui->xattr && !S_ISREG(inode->i_mode))
96 return 5;
97
98 if (!ubifs_compr_present(c, ui->compr_type)) {
99 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
100 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
101 }
102
103 err = dbg_check_dir(c, inode);
104 return err;
105 }
106
ubifs_iget(struct super_block * sb,unsigned long inum)107 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
108 {
109 int err;
110 union ubifs_key key;
111 struct ubifs_ino_node *ino;
112 struct ubifs_info *c = sb->s_fs_info;
113 struct inode *inode;
114 struct ubifs_inode *ui;
115
116 dbg_gen("inode %lu", inum);
117
118 inode = iget_locked(sb, inum);
119 if (!inode)
120 return ERR_PTR(-ENOMEM);
121 if (!(inode->i_state & I_NEW))
122 return inode;
123 ui = ubifs_inode(inode);
124
125 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
126 if (!ino) {
127 err = -ENOMEM;
128 goto out;
129 }
130
131 ino_key_init(c, &key, inode->i_ino);
132
133 err = ubifs_tnc_lookup(c, &key, ino);
134 if (err)
135 goto out_ino;
136
137 inode->i_flags |= S_NOCMTIME;
138
139 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
140 inode->i_flags |= S_NOATIME;
141
142 set_nlink(inode, le32_to_cpu(ino->nlink));
143 i_uid_write(inode, le32_to_cpu(ino->uid));
144 i_gid_write(inode, le32_to_cpu(ino->gid));
145 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
146 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
147 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
148 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
149 inode_set_ctime(inode, (int64_t)le64_to_cpu(ino->ctime_sec),
150 le32_to_cpu(ino->ctime_nsec));
151 inode->i_mode = le32_to_cpu(ino->mode);
152 inode->i_size = le64_to_cpu(ino->size);
153
154 ui->data_len = le32_to_cpu(ino->data_len);
155 ui->flags = le32_to_cpu(ino->flags);
156 ui->compr_type = le16_to_cpu(ino->compr_type);
157 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
158 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
159 ui->xattr_size = le32_to_cpu(ino->xattr_size);
160 ui->xattr_names = le32_to_cpu(ino->xattr_names);
161 ui->synced_i_size = ui->ui_size = inode->i_size;
162
163 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
164
165 err = validate_inode(c, inode);
166 if (err)
167 goto out_invalid;
168
169 switch (inode->i_mode & S_IFMT) {
170 case S_IFREG:
171 inode->i_mapping->a_ops = &ubifs_file_address_operations;
172 inode->i_op = &ubifs_file_inode_operations;
173 inode->i_fop = &ubifs_file_operations;
174 if (ui->xattr) {
175 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
176 if (!ui->data) {
177 err = -ENOMEM;
178 goto out_ino;
179 }
180 memcpy(ui->data, ino->data, ui->data_len);
181 ((char *)ui->data)[ui->data_len] = '\0';
182 } else if (ui->data_len != 0) {
183 err = 10;
184 goto out_invalid;
185 }
186 break;
187 case S_IFDIR:
188 inode->i_op = &ubifs_dir_inode_operations;
189 inode->i_fop = &ubifs_dir_operations;
190 if (ui->data_len != 0) {
191 err = 11;
192 goto out_invalid;
193 }
194 break;
195 case S_IFLNK:
196 inode->i_op = &ubifs_symlink_inode_operations;
197 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
198 err = 12;
199 goto out_invalid;
200 }
201 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
202 if (!ui->data) {
203 err = -ENOMEM;
204 goto out_ino;
205 }
206 memcpy(ui->data, ino->data, ui->data_len);
207 ((char *)ui->data)[ui->data_len] = '\0';
208 break;
209 case S_IFBLK:
210 case S_IFCHR:
211 {
212 dev_t rdev;
213 union ubifs_dev_desc *dev;
214
215 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
216 if (!ui->data) {
217 err = -ENOMEM;
218 goto out_ino;
219 }
220
221 dev = (union ubifs_dev_desc *)ino->data;
222 if (ui->data_len == sizeof(dev->new))
223 rdev = new_decode_dev(le32_to_cpu(dev->new));
224 else if (ui->data_len == sizeof(dev->huge))
225 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
226 else {
227 err = 13;
228 goto out_invalid;
229 }
230 memcpy(ui->data, ino->data, ui->data_len);
231 inode->i_op = &ubifs_file_inode_operations;
232 init_special_inode(inode, inode->i_mode, rdev);
233 break;
234 }
235 case S_IFSOCK:
236 case S_IFIFO:
237 inode->i_op = &ubifs_file_inode_operations;
238 init_special_inode(inode, inode->i_mode, 0);
239 if (ui->data_len != 0) {
240 err = 14;
241 goto out_invalid;
242 }
243 break;
244 default:
245 err = 15;
246 goto out_invalid;
247 }
248
249 kfree(ino);
250 ubifs_set_inode_flags(inode);
251 unlock_new_inode(inode);
252 return inode;
253
254 out_invalid:
255 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
256 ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
257 ubifs_dump_inode(c, inode);
258 err = -EINVAL;
259 out_ino:
260 kfree(ino);
261 out:
262 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
263 iget_failed(inode);
264 return ERR_PTR(err);
265 }
266
ubifs_alloc_inode(struct super_block * sb)267 static struct inode *ubifs_alloc_inode(struct super_block *sb)
268 {
269 struct ubifs_inode *ui;
270
271 ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS);
272 if (!ui)
273 return NULL;
274
275 memset((void *)ui + sizeof(struct inode), 0,
276 sizeof(struct ubifs_inode) - sizeof(struct inode));
277 mutex_init(&ui->ui_mutex);
278 init_rwsem(&ui->xattr_sem);
279 spin_lock_init(&ui->ui_lock);
280 return &ui->vfs_inode;
281 };
282
ubifs_free_inode(struct inode * inode)283 static void ubifs_free_inode(struct inode *inode)
284 {
285 struct ubifs_inode *ui = ubifs_inode(inode);
286
287 kfree(ui->data);
288 fscrypt_free_inode(inode);
289
290 kmem_cache_free(ubifs_inode_slab, ui);
291 }
292
293 /*
294 * Note, Linux write-back code calls this without 'i_mutex'.
295 */
ubifs_write_inode(struct inode * inode,struct writeback_control * wbc)296 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
297 {
298 int err = 0;
299 struct ubifs_info *c = inode->i_sb->s_fs_info;
300 struct ubifs_inode *ui = ubifs_inode(inode);
301
302 ubifs_assert(c, !ui->xattr);
303 if (is_bad_inode(inode))
304 return 0;
305
306 mutex_lock(&ui->ui_mutex);
307 /*
308 * Due to races between write-back forced by budgeting
309 * (see 'sync_some_inodes()') and background write-back, the inode may
310 * have already been synchronized, do not do this again. This might
311 * also happen if it was synchronized in an VFS operation, e.g.
312 * 'ubifs_link()'.
313 */
314 if (!ui->dirty) {
315 mutex_unlock(&ui->ui_mutex);
316 return 0;
317 }
318
319 /*
320 * As an optimization, do not write orphan inodes to the media just
321 * because this is not needed.
322 */
323 dbg_gen("inode %lu, mode %#x, nlink %u",
324 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
325 if (inode->i_nlink) {
326 err = ubifs_jnl_write_inode(c, inode);
327 if (err)
328 ubifs_err(c, "can't write inode %lu, error %d",
329 inode->i_ino, err);
330 else
331 err = dbg_check_inode_size(c, inode, ui->ui_size);
332 }
333
334 ui->dirty = 0;
335 mutex_unlock(&ui->ui_mutex);
336 ubifs_release_dirty_inode_budget(c, ui);
337 return err;
338 }
339
ubifs_drop_inode(struct inode * inode)340 static int ubifs_drop_inode(struct inode *inode)
341 {
342 int drop = generic_drop_inode(inode);
343
344 if (!drop)
345 drop = fscrypt_drop_inode(inode);
346
347 return drop;
348 }
349
ubifs_evict_inode(struct inode * inode)350 static void ubifs_evict_inode(struct inode *inode)
351 {
352 int err;
353 struct ubifs_info *c = inode->i_sb->s_fs_info;
354 struct ubifs_inode *ui = ubifs_inode(inode);
355
356 if (ui->xattr)
357 /*
358 * Extended attribute inode deletions are fully handled in
359 * 'ubifs_removexattr()'. These inodes are special and have
360 * limited usage, so there is nothing to do here.
361 */
362 goto out;
363
364 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
365 ubifs_assert(c, !atomic_read(&inode->i_count));
366
367 truncate_inode_pages_final(&inode->i_data);
368
369 if (inode->i_nlink)
370 goto done;
371
372 if (is_bad_inode(inode))
373 goto out;
374
375 ui->ui_size = inode->i_size = 0;
376 err = ubifs_jnl_delete_inode(c, inode);
377 if (err)
378 /*
379 * Worst case we have a lost orphan inode wasting space, so a
380 * simple error message is OK here.
381 */
382 ubifs_err(c, "can't delete inode %lu, error %d",
383 inode->i_ino, err);
384
385 out:
386 if (ui->dirty)
387 ubifs_release_dirty_inode_budget(c, ui);
388 else {
389 /* We've deleted something - clean the "no space" flags */
390 c->bi.nospace = c->bi.nospace_rp = 0;
391 smp_wmb();
392 }
393 done:
394 clear_inode(inode);
395 fscrypt_put_encryption_info(inode);
396 }
397
ubifs_dirty_inode(struct inode * inode,int flags)398 static void ubifs_dirty_inode(struct inode *inode, int flags)
399 {
400 struct ubifs_info *c = inode->i_sb->s_fs_info;
401 struct ubifs_inode *ui = ubifs_inode(inode);
402
403 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
404 if (!ui->dirty) {
405 ui->dirty = 1;
406 dbg_gen("inode %lu", inode->i_ino);
407 }
408 }
409
ubifs_statfs(struct dentry * dentry,struct kstatfs * buf)410 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
411 {
412 struct ubifs_info *c = dentry->d_sb->s_fs_info;
413 unsigned long long free;
414 __le32 *uuid = (__le32 *)c->uuid;
415
416 free = ubifs_get_free_space(c);
417 dbg_gen("free space %lld bytes (%lld blocks)",
418 free, free >> UBIFS_BLOCK_SHIFT);
419
420 buf->f_type = UBIFS_SUPER_MAGIC;
421 buf->f_bsize = UBIFS_BLOCK_SIZE;
422 buf->f_blocks = c->block_cnt;
423 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
424 if (free > c->report_rp_size)
425 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
426 else
427 buf->f_bavail = 0;
428 buf->f_files = 0;
429 buf->f_ffree = 0;
430 buf->f_namelen = UBIFS_MAX_NLEN;
431 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
432 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
433 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
434 return 0;
435 }
436
ubifs_show_options(struct seq_file * s,struct dentry * root)437 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
438 {
439 struct ubifs_info *c = root->d_sb->s_fs_info;
440
441 if (c->mount_opts.unmount_mode == 2)
442 seq_puts(s, ",fast_unmount");
443 else if (c->mount_opts.unmount_mode == 1)
444 seq_puts(s, ",norm_unmount");
445
446 if (c->mount_opts.bulk_read == 2)
447 seq_puts(s, ",bulk_read");
448 else if (c->mount_opts.bulk_read == 1)
449 seq_puts(s, ",no_bulk_read");
450
451 if (c->mount_opts.chk_data_crc == 2)
452 seq_puts(s, ",chk_data_crc");
453 else if (c->mount_opts.chk_data_crc == 1)
454 seq_puts(s, ",no_chk_data_crc");
455
456 if (c->mount_opts.override_compr) {
457 seq_printf(s, ",compr=%s",
458 ubifs_compr_name(c, c->mount_opts.compr_type));
459 }
460
461 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
462 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
463
464 return 0;
465 }
466
ubifs_sync_fs(struct super_block * sb,int wait)467 static int ubifs_sync_fs(struct super_block *sb, int wait)
468 {
469 int i, err;
470 struct ubifs_info *c = sb->s_fs_info;
471
472 /*
473 * Zero @wait is just an advisory thing to help the file system shove
474 * lots of data into the queues, and there will be the second
475 * '->sync_fs()' call, with non-zero @wait.
476 */
477 if (!wait)
478 return 0;
479
480 /*
481 * Synchronize write buffers, because 'ubifs_run_commit()' does not
482 * do this if it waits for an already running commit.
483 */
484 for (i = 0; i < c->jhead_cnt; i++) {
485 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
486 if (err)
487 return err;
488 }
489
490 /*
491 * Strictly speaking, it is not necessary to commit the journal here,
492 * synchronizing write-buffers would be enough. But committing makes
493 * UBIFS free space predictions much more accurate, so we want to let
494 * the user be able to get more accurate results of 'statfs()' after
495 * they synchronize the file system.
496 */
497 err = ubifs_run_commit(c);
498 if (err)
499 return err;
500
501 return ubi_sync(c->vi.ubi_num);
502 }
503
504 /**
505 * init_constants_early - initialize UBIFS constants.
506 * @c: UBIFS file-system description object
507 *
508 * This function initialize UBIFS constants which do not need the superblock to
509 * be read. It also checks that the UBI volume satisfies basic UBIFS
510 * requirements. Returns zero in case of success and a negative error code in
511 * case of failure.
512 */
init_constants_early(struct ubifs_info * c)513 static int init_constants_early(struct ubifs_info *c)
514 {
515 if (c->vi.corrupted) {
516 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
517 c->ro_media = 1;
518 }
519
520 if (c->di.ro_mode) {
521 ubifs_msg(c, "read-only UBI device");
522 c->ro_media = 1;
523 }
524
525 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
526 ubifs_msg(c, "static UBI volume - read-only mode");
527 c->ro_media = 1;
528 }
529
530 c->leb_cnt = c->vi.size;
531 c->leb_size = c->vi.usable_leb_size;
532 c->leb_start = c->di.leb_start;
533 c->half_leb_size = c->leb_size / 2;
534 c->min_io_size = c->di.min_io_size;
535 c->min_io_shift = fls(c->min_io_size) - 1;
536 c->max_write_size = c->di.max_write_size;
537 c->max_write_shift = fls(c->max_write_size) - 1;
538
539 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
540 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
541 c->leb_size, UBIFS_MIN_LEB_SZ);
542 return -EINVAL;
543 }
544
545 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
546 ubifs_errc(c, "too few LEBs (%d), min. is %d",
547 c->leb_cnt, UBIFS_MIN_LEB_CNT);
548 return -EINVAL;
549 }
550
551 if (!is_power_of_2(c->min_io_size)) {
552 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
553 return -EINVAL;
554 }
555
556 /*
557 * Maximum write size has to be greater or equivalent to min. I/O
558 * size, and be multiple of min. I/O size.
559 */
560 if (c->max_write_size < c->min_io_size ||
561 c->max_write_size % c->min_io_size ||
562 !is_power_of_2(c->max_write_size)) {
563 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
564 c->max_write_size, c->min_io_size);
565 return -EINVAL;
566 }
567
568 /*
569 * UBIFS aligns all node to 8-byte boundary, so to make function in
570 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
571 * less than 8.
572 */
573 if (c->min_io_size < 8) {
574 c->min_io_size = 8;
575 c->min_io_shift = 3;
576 if (c->max_write_size < c->min_io_size) {
577 c->max_write_size = c->min_io_size;
578 c->max_write_shift = c->min_io_shift;
579 }
580 }
581
582 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
583 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
584
585 /*
586 * Initialize node length ranges which are mostly needed for node
587 * length validation.
588 */
589 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
590 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
591 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
592 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
593 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
594 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
595 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
596 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
597 UBIFS_MAX_HMAC_LEN;
598 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
599 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
600
601 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
602 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
603 c->ranges[UBIFS_ORPH_NODE].min_len =
604 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
605 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
606 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
607 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
608 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
609 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
610 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
611 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
612 /*
613 * Minimum indexing node size is amended later when superblock is
614 * read and the key length is known.
615 */
616 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
617 /*
618 * Maximum indexing node size is amended later when superblock is
619 * read and the fanout is known.
620 */
621 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
622
623 /*
624 * Initialize dead and dark LEB space watermarks. See gc.c for comments
625 * about these values.
626 */
627 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
628 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
629
630 /*
631 * Calculate how many bytes would be wasted at the end of LEB if it was
632 * fully filled with data nodes of maximum size. This is used in
633 * calculations when reporting free space.
634 */
635 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
636
637 /* Buffer size for bulk-reads */
638 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
639 if (c->max_bu_buf_len > c->leb_size)
640 c->max_bu_buf_len = c->leb_size;
641
642 /* Log is ready, preserve one LEB for commits. */
643 c->min_log_bytes = c->leb_size;
644
645 return 0;
646 }
647
648 /**
649 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
650 * @c: UBIFS file-system description object
651 * @lnum: LEB the write-buffer was synchronized to
652 * @free: how many free bytes left in this LEB
653 * @pad: how many bytes were padded
654 *
655 * This is a callback function which is called by the I/O unit when the
656 * write-buffer is synchronized. We need this to correctly maintain space
657 * accounting in bud logical eraseblocks. This function returns zero in case of
658 * success and a negative error code in case of failure.
659 *
660 * This function actually belongs to the journal, but we keep it here because
661 * we want to keep it static.
662 */
bud_wbuf_callback(struct ubifs_info * c,int lnum,int free,int pad)663 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
664 {
665 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
666 }
667
668 /*
669 * init_constants_sb - initialize UBIFS constants.
670 * @c: UBIFS file-system description object
671 *
672 * This is a helper function which initializes various UBIFS constants after
673 * the superblock has been read. It also checks various UBIFS parameters and
674 * makes sure they are all right. Returns zero in case of success and a
675 * negative error code in case of failure.
676 */
init_constants_sb(struct ubifs_info * c)677 static int init_constants_sb(struct ubifs_info *c)
678 {
679 int tmp, err;
680 long long tmp64;
681
682 c->main_bytes = (long long)c->main_lebs * c->leb_size;
683 c->max_znode_sz = sizeof(struct ubifs_znode) +
684 c->fanout * sizeof(struct ubifs_zbranch);
685
686 tmp = ubifs_idx_node_sz(c, 1);
687 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
688 c->min_idx_node_sz = ALIGN(tmp, 8);
689
690 tmp = ubifs_idx_node_sz(c, c->fanout);
691 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
692 c->max_idx_node_sz = ALIGN(tmp, 8);
693
694 /* Make sure LEB size is large enough to fit full commit */
695 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
696 tmp = ALIGN(tmp, c->min_io_size);
697 if (tmp > c->leb_size) {
698 ubifs_err(c, "too small LEB size %d, at least %d needed",
699 c->leb_size, tmp);
700 return -EINVAL;
701 }
702
703 /*
704 * Make sure that the log is large enough to fit reference nodes for
705 * all buds plus one reserved LEB.
706 */
707 tmp64 = c->max_bud_bytes + c->leb_size - 1;
708 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
709 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
710 tmp /= c->leb_size;
711 tmp += 1;
712 if (c->log_lebs < tmp) {
713 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
714 c->log_lebs, tmp);
715 return -EINVAL;
716 }
717
718 /*
719 * When budgeting we assume worst-case scenarios when the pages are not
720 * be compressed and direntries are of the maximum size.
721 *
722 * Note, data, which may be stored in inodes is budgeted separately, so
723 * it is not included into 'c->bi.inode_budget'.
724 */
725 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
726 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
727 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
728
729 /*
730 * When the amount of flash space used by buds becomes
731 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
732 * The writers are unblocked when the commit is finished. To avoid
733 * writers to be blocked UBIFS initiates background commit in advance,
734 * when number of bud bytes becomes above the limit defined below.
735 */
736 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
737
738 /*
739 * Ensure minimum journal size. All the bytes in the journal heads are
740 * considered to be used, when calculating the current journal usage.
741 * Consequently, if the journal is too small, UBIFS will treat it as
742 * always full.
743 */
744 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
745 if (c->bg_bud_bytes < tmp64)
746 c->bg_bud_bytes = tmp64;
747 if (c->max_bud_bytes < tmp64 + c->leb_size)
748 c->max_bud_bytes = tmp64 + c->leb_size;
749
750 err = ubifs_calc_lpt_geom(c);
751 if (err)
752 return err;
753
754 /* Initialize effective LEB size used in budgeting calculations */
755 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
756 return 0;
757 }
758
759 /*
760 * init_constants_master - initialize UBIFS constants.
761 * @c: UBIFS file-system description object
762 *
763 * This is a helper function which initializes various UBIFS constants after
764 * the master node has been read. It also checks various UBIFS parameters and
765 * makes sure they are all right.
766 */
init_constants_master(struct ubifs_info * c)767 static void init_constants_master(struct ubifs_info *c)
768 {
769 long long tmp64;
770
771 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
772 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
773
774 /*
775 * Calculate total amount of FS blocks. This number is not used
776 * internally because it does not make much sense for UBIFS, but it is
777 * necessary to report something for the 'statfs()' call.
778 *
779 * Subtract the LEB reserved for GC, the LEB which is reserved for
780 * deletions, minimum LEBs for the index, and assume only one journal
781 * head is available.
782 */
783 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
784 tmp64 *= (long long)c->leb_size - c->leb_overhead;
785 tmp64 = ubifs_reported_space(c, tmp64);
786 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
787 }
788
789 /**
790 * take_gc_lnum - reserve GC LEB.
791 * @c: UBIFS file-system description object
792 *
793 * This function ensures that the LEB reserved for garbage collection is marked
794 * as "taken" in lprops. We also have to set free space to LEB size and dirty
795 * space to zero, because lprops may contain out-of-date information if the
796 * file-system was un-mounted before it has been committed. This function
797 * returns zero in case of success and a negative error code in case of
798 * failure.
799 */
take_gc_lnum(struct ubifs_info * c)800 static int take_gc_lnum(struct ubifs_info *c)
801 {
802 int err;
803
804 if (c->gc_lnum == -1) {
805 ubifs_err(c, "no LEB for GC");
806 return -EINVAL;
807 }
808
809 /* And we have to tell lprops that this LEB is taken */
810 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
811 LPROPS_TAKEN, 0, 0);
812 return err;
813 }
814
815 /**
816 * alloc_wbufs - allocate write-buffers.
817 * @c: UBIFS file-system description object
818 *
819 * This helper function allocates and initializes UBIFS write-buffers. Returns
820 * zero in case of success and %-ENOMEM in case of failure.
821 */
alloc_wbufs(struct ubifs_info * c)822 static int alloc_wbufs(struct ubifs_info *c)
823 {
824 int i, err;
825
826 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
827 GFP_KERNEL);
828 if (!c->jheads)
829 return -ENOMEM;
830
831 /* Initialize journal heads */
832 for (i = 0; i < c->jhead_cnt; i++) {
833 INIT_LIST_HEAD(&c->jheads[i].buds_list);
834 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
835 if (err)
836 goto out_wbuf;
837
838 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
839 c->jheads[i].wbuf.jhead = i;
840 c->jheads[i].grouped = 1;
841 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
842 if (IS_ERR(c->jheads[i].log_hash)) {
843 err = PTR_ERR(c->jheads[i].log_hash);
844 goto out_log_hash;
845 }
846 }
847
848 /*
849 * Garbage Collector head does not need to be synchronized by timer.
850 * Also GC head nodes are not grouped.
851 */
852 c->jheads[GCHD].wbuf.no_timer = 1;
853 c->jheads[GCHD].grouped = 0;
854
855 return 0;
856
857 out_log_hash:
858 kfree(c->jheads[i].wbuf.buf);
859 kfree(c->jheads[i].wbuf.inodes);
860
861 out_wbuf:
862 while (i--) {
863 kfree(c->jheads[i].wbuf.buf);
864 kfree(c->jheads[i].wbuf.inodes);
865 kfree(c->jheads[i].log_hash);
866 }
867 kfree(c->jheads);
868 c->jheads = NULL;
869
870 return err;
871 }
872
873 /**
874 * free_wbufs - free write-buffers.
875 * @c: UBIFS file-system description object
876 */
free_wbufs(struct ubifs_info * c)877 static void free_wbufs(struct ubifs_info *c)
878 {
879 int i;
880
881 if (c->jheads) {
882 for (i = 0; i < c->jhead_cnt; i++) {
883 kfree(c->jheads[i].wbuf.buf);
884 kfree(c->jheads[i].wbuf.inodes);
885 kfree(c->jheads[i].log_hash);
886 }
887 kfree(c->jheads);
888 c->jheads = NULL;
889 }
890 }
891
892 /**
893 * free_orphans - free orphans.
894 * @c: UBIFS file-system description object
895 */
free_orphans(struct ubifs_info * c)896 static void free_orphans(struct ubifs_info *c)
897 {
898 struct ubifs_orphan *orph;
899
900 while (c->orph_dnext) {
901 orph = c->orph_dnext;
902 c->orph_dnext = orph->dnext;
903 list_del(&orph->list);
904 kfree(orph);
905 }
906
907 while (!list_empty(&c->orph_list)) {
908 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
909 list_del(&orph->list);
910 kfree(orph);
911 ubifs_err(c, "orphan list not empty at unmount");
912 }
913
914 vfree(c->orph_buf);
915 c->orph_buf = NULL;
916 }
917
918 /**
919 * free_buds - free per-bud objects.
920 * @c: UBIFS file-system description object
921 */
free_buds(struct ubifs_info * c)922 static void free_buds(struct ubifs_info *c)
923 {
924 struct ubifs_bud *bud, *n;
925
926 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
927 kfree(bud);
928 }
929
930 /**
931 * check_volume_empty - check if the UBI volume is empty.
932 * @c: UBIFS file-system description object
933 *
934 * This function checks if the UBIFS volume is empty by looking if its LEBs are
935 * mapped or not. The result of checking is stored in the @c->empty variable.
936 * Returns zero in case of success and a negative error code in case of
937 * failure.
938 */
check_volume_empty(struct ubifs_info * c)939 static int check_volume_empty(struct ubifs_info *c)
940 {
941 int lnum, err;
942
943 c->empty = 1;
944 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
945 err = ubifs_is_mapped(c, lnum);
946 if (unlikely(err < 0))
947 return err;
948 if (err == 1) {
949 c->empty = 0;
950 break;
951 }
952
953 cond_resched();
954 }
955
956 return 0;
957 }
958
959 /*
960 * UBIFS mount options.
961 *
962 * Opt_fast_unmount: do not run a journal commit before un-mounting
963 * Opt_norm_unmount: run a journal commit before un-mounting
964 * Opt_bulk_read: enable bulk-reads
965 * Opt_no_bulk_read: disable bulk-reads
966 * Opt_chk_data_crc: check CRCs when reading data nodes
967 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
968 * Opt_override_compr: override default compressor
969 * Opt_assert: set ubifs_assert() action
970 * Opt_auth_key: The key name used for authentication
971 * Opt_auth_hash_name: The hash type used for authentication
972 * Opt_err: just end of array marker
973 */
974 enum {
975 Opt_fast_unmount,
976 Opt_norm_unmount,
977 Opt_bulk_read,
978 Opt_no_bulk_read,
979 Opt_chk_data_crc,
980 Opt_no_chk_data_crc,
981 Opt_override_compr,
982 Opt_assert,
983 Opt_auth_key,
984 Opt_auth_hash_name,
985 Opt_ignore,
986 Opt_err,
987 };
988
989 static const match_table_t tokens = {
990 {Opt_fast_unmount, "fast_unmount"},
991 {Opt_norm_unmount, "norm_unmount"},
992 {Opt_bulk_read, "bulk_read"},
993 {Opt_no_bulk_read, "no_bulk_read"},
994 {Opt_chk_data_crc, "chk_data_crc"},
995 {Opt_no_chk_data_crc, "no_chk_data_crc"},
996 {Opt_override_compr, "compr=%s"},
997 {Opt_auth_key, "auth_key=%s"},
998 {Opt_auth_hash_name, "auth_hash_name=%s"},
999 {Opt_ignore, "ubi=%s"},
1000 {Opt_ignore, "vol=%s"},
1001 {Opt_assert, "assert=%s"},
1002 {Opt_err, NULL},
1003 };
1004
1005 /**
1006 * parse_standard_option - parse a standard mount option.
1007 * @option: the option to parse
1008 *
1009 * Normally, standard mount options like "sync" are passed to file-systems as
1010 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1011 * be present in the options string. This function tries to deal with this
1012 * situation and parse standard options. Returns 0 if the option was not
1013 * recognized, and the corresponding integer flag if it was.
1014 *
1015 * UBIFS is only interested in the "sync" option, so do not check for anything
1016 * else.
1017 */
parse_standard_option(const char * option)1018 static int parse_standard_option(const char *option)
1019 {
1020
1021 pr_notice("UBIFS: parse %s\n", option);
1022 if (!strcmp(option, "sync"))
1023 return SB_SYNCHRONOUS;
1024 return 0;
1025 }
1026
1027 /**
1028 * ubifs_parse_options - parse mount parameters.
1029 * @c: UBIFS file-system description object
1030 * @options: parameters to parse
1031 * @is_remount: non-zero if this is FS re-mount
1032 *
1033 * This function parses UBIFS mount options and returns zero in case success
1034 * and a negative error code in case of failure.
1035 */
ubifs_parse_options(struct ubifs_info * c,char * options,int is_remount)1036 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1037 int is_remount)
1038 {
1039 char *p;
1040 substring_t args[MAX_OPT_ARGS];
1041
1042 if (!options)
1043 return 0;
1044
1045 while ((p = strsep(&options, ","))) {
1046 int token;
1047
1048 if (!*p)
1049 continue;
1050
1051 token = match_token(p, tokens, args);
1052 switch (token) {
1053 /*
1054 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1055 * We accept them in order to be backward-compatible. But this
1056 * should be removed at some point.
1057 */
1058 case Opt_fast_unmount:
1059 c->mount_opts.unmount_mode = 2;
1060 break;
1061 case Opt_norm_unmount:
1062 c->mount_opts.unmount_mode = 1;
1063 break;
1064 case Opt_bulk_read:
1065 c->mount_opts.bulk_read = 2;
1066 c->bulk_read = 1;
1067 break;
1068 case Opt_no_bulk_read:
1069 c->mount_opts.bulk_read = 1;
1070 c->bulk_read = 0;
1071 break;
1072 case Opt_chk_data_crc:
1073 c->mount_opts.chk_data_crc = 2;
1074 c->no_chk_data_crc = 0;
1075 break;
1076 case Opt_no_chk_data_crc:
1077 c->mount_opts.chk_data_crc = 1;
1078 c->no_chk_data_crc = 1;
1079 break;
1080 case Opt_override_compr:
1081 {
1082 char *name = match_strdup(&args[0]);
1083
1084 if (!name)
1085 return -ENOMEM;
1086 if (!strcmp(name, "none"))
1087 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1088 else if (!strcmp(name, "lzo"))
1089 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1090 else if (!strcmp(name, "zlib"))
1091 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1092 else if (!strcmp(name, "zstd"))
1093 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1094 else {
1095 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1096 kfree(name);
1097 return -EINVAL;
1098 }
1099 kfree(name);
1100 c->mount_opts.override_compr = 1;
1101 c->default_compr = c->mount_opts.compr_type;
1102 break;
1103 }
1104 case Opt_assert:
1105 {
1106 char *act = match_strdup(&args[0]);
1107
1108 if (!act)
1109 return -ENOMEM;
1110 if (!strcmp(act, "report"))
1111 c->assert_action = ASSACT_REPORT;
1112 else if (!strcmp(act, "read-only"))
1113 c->assert_action = ASSACT_RO;
1114 else if (!strcmp(act, "panic"))
1115 c->assert_action = ASSACT_PANIC;
1116 else {
1117 ubifs_err(c, "unknown assert action \"%s\"", act);
1118 kfree(act);
1119 return -EINVAL;
1120 }
1121 kfree(act);
1122 break;
1123 }
1124 case Opt_auth_key:
1125 if (!is_remount) {
1126 c->auth_key_name = kstrdup(args[0].from,
1127 GFP_KERNEL);
1128 if (!c->auth_key_name)
1129 return -ENOMEM;
1130 }
1131 break;
1132 case Opt_auth_hash_name:
1133 if (!is_remount) {
1134 c->auth_hash_name = kstrdup(args[0].from,
1135 GFP_KERNEL);
1136 if (!c->auth_hash_name)
1137 return -ENOMEM;
1138 }
1139 break;
1140 case Opt_ignore:
1141 break;
1142 default:
1143 {
1144 unsigned long flag;
1145 struct super_block *sb = c->vfs_sb;
1146
1147 flag = parse_standard_option(p);
1148 if (!flag) {
1149 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1150 p);
1151 return -EINVAL;
1152 }
1153 sb->s_flags |= flag;
1154 break;
1155 }
1156 }
1157 }
1158
1159 return 0;
1160 }
1161
1162 /*
1163 * ubifs_release_options - release mount parameters which have been dumped.
1164 * @c: UBIFS file-system description object
1165 */
ubifs_release_options(struct ubifs_info * c)1166 static void ubifs_release_options(struct ubifs_info *c)
1167 {
1168 kfree(c->auth_key_name);
1169 c->auth_key_name = NULL;
1170 kfree(c->auth_hash_name);
1171 c->auth_hash_name = NULL;
1172 }
1173
1174 /**
1175 * destroy_journal - destroy journal data structures.
1176 * @c: UBIFS file-system description object
1177 *
1178 * This function destroys journal data structures including those that may have
1179 * been created by recovery functions.
1180 */
destroy_journal(struct ubifs_info * c)1181 static void destroy_journal(struct ubifs_info *c)
1182 {
1183 while (!list_empty(&c->unclean_leb_list)) {
1184 struct ubifs_unclean_leb *ucleb;
1185
1186 ucleb = list_entry(c->unclean_leb_list.next,
1187 struct ubifs_unclean_leb, list);
1188 list_del(&ucleb->list);
1189 kfree(ucleb);
1190 }
1191 while (!list_empty(&c->old_buds)) {
1192 struct ubifs_bud *bud;
1193
1194 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1195 list_del(&bud->list);
1196 kfree(bud);
1197 }
1198 ubifs_destroy_idx_gc(c);
1199 ubifs_destroy_size_tree(c);
1200 ubifs_tnc_close(c);
1201 free_buds(c);
1202 }
1203
1204 /**
1205 * bu_init - initialize bulk-read information.
1206 * @c: UBIFS file-system description object
1207 */
bu_init(struct ubifs_info * c)1208 static void bu_init(struct ubifs_info *c)
1209 {
1210 ubifs_assert(c, c->bulk_read == 1);
1211
1212 if (c->bu.buf)
1213 return; /* Already initialized */
1214
1215 again:
1216 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1217 if (!c->bu.buf) {
1218 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1219 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1220 goto again;
1221 }
1222
1223 /* Just disable bulk-read */
1224 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1225 c->max_bu_buf_len);
1226 c->mount_opts.bulk_read = 1;
1227 c->bulk_read = 0;
1228 return;
1229 }
1230 }
1231
1232 /**
1233 * check_free_space - check if there is enough free space to mount.
1234 * @c: UBIFS file-system description object
1235 *
1236 * This function makes sure UBIFS has enough free space to be mounted in
1237 * read/write mode. UBIFS must always have some free space to allow deletions.
1238 */
check_free_space(struct ubifs_info * c)1239 static int check_free_space(struct ubifs_info *c)
1240 {
1241 ubifs_assert(c, c->dark_wm > 0);
1242 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1243 ubifs_err(c, "insufficient free space to mount in R/W mode");
1244 ubifs_dump_budg(c, &c->bi);
1245 ubifs_dump_lprops(c);
1246 return -ENOSPC;
1247 }
1248 return 0;
1249 }
1250
1251 /**
1252 * mount_ubifs - mount UBIFS file-system.
1253 * @c: UBIFS file-system description object
1254 *
1255 * This function mounts UBIFS file system. Returns zero in case of success and
1256 * a negative error code in case of failure.
1257 */
mount_ubifs(struct ubifs_info * c)1258 static int mount_ubifs(struct ubifs_info *c)
1259 {
1260 int err;
1261 long long x, y;
1262 size_t sz;
1263
1264 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1265 /* Suppress error messages while probing if SB_SILENT is set */
1266 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1267
1268 err = init_constants_early(c);
1269 if (err)
1270 return err;
1271
1272 err = ubifs_debugging_init(c);
1273 if (err)
1274 return err;
1275
1276 err = ubifs_sysfs_register(c);
1277 if (err)
1278 goto out_debugging;
1279
1280 err = check_volume_empty(c);
1281 if (err)
1282 goto out_free;
1283
1284 if (c->empty && (c->ro_mount || c->ro_media)) {
1285 /*
1286 * This UBI volume is empty, and read-only, or the file system
1287 * is mounted read-only - we cannot format it.
1288 */
1289 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1290 c->ro_media ? "UBI volume" : "mount");
1291 err = -EROFS;
1292 goto out_free;
1293 }
1294
1295 if (c->ro_media && !c->ro_mount) {
1296 ubifs_err(c, "cannot mount read-write - read-only media");
1297 err = -EROFS;
1298 goto out_free;
1299 }
1300
1301 /*
1302 * The requirement for the buffer is that it should fit indexing B-tree
1303 * height amount of integers. We assume the height if the TNC tree will
1304 * never exceed 64.
1305 */
1306 err = -ENOMEM;
1307 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1308 GFP_KERNEL);
1309 if (!c->bottom_up_buf)
1310 goto out_free;
1311
1312 c->sbuf = vmalloc(c->leb_size);
1313 if (!c->sbuf)
1314 goto out_free;
1315
1316 if (!c->ro_mount) {
1317 c->ileb_buf = vmalloc(c->leb_size);
1318 if (!c->ileb_buf)
1319 goto out_free;
1320 }
1321
1322 if (c->bulk_read == 1)
1323 bu_init(c);
1324
1325 if (!c->ro_mount) {
1326 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1327 UBIFS_CIPHER_BLOCK_SIZE,
1328 GFP_KERNEL);
1329 if (!c->write_reserve_buf)
1330 goto out_free;
1331 }
1332
1333 c->mounting = 1;
1334
1335 if (c->auth_key_name) {
1336 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1337 err = ubifs_init_authentication(c);
1338 if (err)
1339 goto out_free;
1340 } else {
1341 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1342 " authentication support");
1343 err = -EINVAL;
1344 goto out_free;
1345 }
1346 }
1347
1348 err = ubifs_read_superblock(c);
1349 if (err)
1350 goto out_auth;
1351
1352 c->probing = 0;
1353
1354 /*
1355 * Make sure the compressor which is set as default in the superblock
1356 * or overridden by mount options is actually compiled in.
1357 */
1358 if (!ubifs_compr_present(c, c->default_compr)) {
1359 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1360 ubifs_compr_name(c, c->default_compr));
1361 err = -ENOTSUPP;
1362 goto out_auth;
1363 }
1364
1365 err = init_constants_sb(c);
1366 if (err)
1367 goto out_auth;
1368
1369 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1370 c->cbuf = kmalloc(sz, GFP_NOFS);
1371 if (!c->cbuf) {
1372 err = -ENOMEM;
1373 goto out_auth;
1374 }
1375
1376 err = alloc_wbufs(c);
1377 if (err)
1378 goto out_cbuf;
1379
1380 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1381 if (!c->ro_mount) {
1382 /* Create background thread */
1383 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1384 if (IS_ERR(c->bgt)) {
1385 err = PTR_ERR(c->bgt);
1386 c->bgt = NULL;
1387 ubifs_err(c, "cannot spawn \"%s\", error %d",
1388 c->bgt_name, err);
1389 goto out_wbufs;
1390 }
1391 }
1392
1393 err = ubifs_read_master(c);
1394 if (err)
1395 goto out_master;
1396
1397 init_constants_master(c);
1398
1399 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1400 ubifs_msg(c, "recovery needed");
1401 c->need_recovery = 1;
1402 }
1403
1404 if (c->need_recovery && !c->ro_mount) {
1405 err = ubifs_recover_inl_heads(c, c->sbuf);
1406 if (err)
1407 goto out_master;
1408 }
1409
1410 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1411 if (err)
1412 goto out_master;
1413
1414 if (!c->ro_mount && c->space_fixup) {
1415 err = ubifs_fixup_free_space(c);
1416 if (err)
1417 goto out_lpt;
1418 }
1419
1420 if (!c->ro_mount && !c->need_recovery) {
1421 /*
1422 * Set the "dirty" flag so that if we reboot uncleanly we
1423 * will notice this immediately on the next mount.
1424 */
1425 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1426 err = ubifs_write_master(c);
1427 if (err)
1428 goto out_lpt;
1429 }
1430
1431 /*
1432 * Handle offline signed images: Now that the master node is
1433 * written and its validation no longer depends on the hash
1434 * in the superblock, we can update the offline signed
1435 * superblock with a HMAC version,
1436 */
1437 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1438 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1439 if (err)
1440 goto out_lpt;
1441 c->superblock_need_write = 1;
1442 }
1443
1444 if (!c->ro_mount && c->superblock_need_write) {
1445 err = ubifs_write_sb_node(c, c->sup_node);
1446 if (err)
1447 goto out_lpt;
1448 c->superblock_need_write = 0;
1449 }
1450
1451 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1452 if (err)
1453 goto out_lpt;
1454
1455 err = ubifs_replay_journal(c);
1456 if (err)
1457 goto out_journal;
1458
1459 /* Calculate 'min_idx_lebs' after journal replay */
1460 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1461
1462 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1463 if (err)
1464 goto out_orphans;
1465
1466 if (!c->ro_mount) {
1467 int lnum;
1468
1469 err = check_free_space(c);
1470 if (err)
1471 goto out_orphans;
1472
1473 /* Check for enough log space */
1474 lnum = c->lhead_lnum + 1;
1475 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1476 lnum = UBIFS_LOG_LNUM;
1477 if (lnum == c->ltail_lnum) {
1478 err = ubifs_consolidate_log(c);
1479 if (err)
1480 goto out_orphans;
1481 }
1482
1483 if (c->need_recovery) {
1484 if (!ubifs_authenticated(c)) {
1485 err = ubifs_recover_size(c, true);
1486 if (err)
1487 goto out_orphans;
1488 }
1489
1490 err = ubifs_rcvry_gc_commit(c);
1491 if (err)
1492 goto out_orphans;
1493
1494 if (ubifs_authenticated(c)) {
1495 err = ubifs_recover_size(c, false);
1496 if (err)
1497 goto out_orphans;
1498 }
1499 } else {
1500 err = take_gc_lnum(c);
1501 if (err)
1502 goto out_orphans;
1503
1504 /*
1505 * GC LEB may contain garbage if there was an unclean
1506 * reboot, and it should be un-mapped.
1507 */
1508 err = ubifs_leb_unmap(c, c->gc_lnum);
1509 if (err)
1510 goto out_orphans;
1511 }
1512
1513 err = dbg_check_lprops(c);
1514 if (err)
1515 goto out_orphans;
1516 } else if (c->need_recovery) {
1517 err = ubifs_recover_size(c, false);
1518 if (err)
1519 goto out_orphans;
1520 } else {
1521 /*
1522 * Even if we mount read-only, we have to set space in GC LEB
1523 * to proper value because this affects UBIFS free space
1524 * reporting. We do not want to have a situation when
1525 * re-mounting from R/O to R/W changes amount of free space.
1526 */
1527 err = take_gc_lnum(c);
1528 if (err)
1529 goto out_orphans;
1530 }
1531
1532 spin_lock(&ubifs_infos_lock);
1533 list_add_tail(&c->infos_list, &ubifs_infos);
1534 spin_unlock(&ubifs_infos_lock);
1535
1536 if (c->need_recovery) {
1537 if (c->ro_mount)
1538 ubifs_msg(c, "recovery deferred");
1539 else {
1540 c->need_recovery = 0;
1541 ubifs_msg(c, "recovery completed");
1542 /*
1543 * GC LEB has to be empty and taken at this point. But
1544 * the journal head LEBs may also be accounted as
1545 * "empty taken" if they are empty.
1546 */
1547 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1548 }
1549 } else
1550 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1551
1552 err = dbg_check_filesystem(c);
1553 if (err)
1554 goto out_infos;
1555
1556 dbg_debugfs_init_fs(c);
1557
1558 c->mounting = 0;
1559
1560 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1561 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1562 c->ro_mount ? ", R/O mode" : "");
1563 x = (long long)c->main_lebs * c->leb_size;
1564 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1565 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1566 c->leb_size, c->leb_size >> 10, c->min_io_size,
1567 c->max_write_size);
1568 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1569 x, x >> 20, c->main_lebs, c->max_leb_cnt,
1570 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1571 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1572 c->report_rp_size, c->report_rp_size >> 10);
1573 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1574 c->fmt_version, c->ro_compat_version,
1575 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1576 c->big_lpt ? ", big LPT model" : ", small LPT model");
1577
1578 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1579 dbg_gen("data journal heads: %d",
1580 c->jhead_cnt - NONDATA_JHEADS_CNT);
1581 dbg_gen("log LEBs: %d (%d - %d)",
1582 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1583 dbg_gen("LPT area LEBs: %d (%d - %d)",
1584 c->lpt_lebs, c->lpt_first, c->lpt_last);
1585 dbg_gen("orphan area LEBs: %d (%d - %d)",
1586 c->orph_lebs, c->orph_first, c->orph_last);
1587 dbg_gen("main area LEBs: %d (%d - %d)",
1588 c->main_lebs, c->main_first, c->leb_cnt - 1);
1589 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1590 dbg_gen("total index bytes: %llu (%llu KiB, %llu MiB)",
1591 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1592 c->bi.old_idx_sz >> 20);
1593 dbg_gen("key hash type: %d", c->key_hash_type);
1594 dbg_gen("tree fanout: %d", c->fanout);
1595 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1596 dbg_gen("max. znode size %d", c->max_znode_sz);
1597 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1598 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1599 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1600 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1601 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1602 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1603 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1604 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1605 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1606 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1607 dbg_gen("dead watermark: %d", c->dead_wm);
1608 dbg_gen("dark watermark: %d", c->dark_wm);
1609 dbg_gen("LEB overhead: %d", c->leb_overhead);
1610 x = (long long)c->main_lebs * c->dark_wm;
1611 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1612 x, x >> 10, x >> 20);
1613 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1614 c->max_bud_bytes, c->max_bud_bytes >> 10,
1615 c->max_bud_bytes >> 20);
1616 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1617 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1618 c->bg_bud_bytes >> 20);
1619 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1620 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1621 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1622 dbg_gen("commit number: %llu", c->cmt_no);
1623 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1624 dbg_gen("max orphans: %d", c->max_orphans);
1625
1626 return 0;
1627
1628 out_infos:
1629 spin_lock(&ubifs_infos_lock);
1630 list_del(&c->infos_list);
1631 spin_unlock(&ubifs_infos_lock);
1632 out_orphans:
1633 free_orphans(c);
1634 out_journal:
1635 destroy_journal(c);
1636 out_lpt:
1637 ubifs_lpt_free(c, 0);
1638 out_master:
1639 kfree(c->mst_node);
1640 kfree(c->rcvrd_mst_node);
1641 if (c->bgt)
1642 kthread_stop(c->bgt);
1643 out_wbufs:
1644 free_wbufs(c);
1645 out_cbuf:
1646 kfree(c->cbuf);
1647 out_auth:
1648 ubifs_exit_authentication(c);
1649 out_free:
1650 kfree(c->write_reserve_buf);
1651 kfree(c->bu.buf);
1652 vfree(c->ileb_buf);
1653 vfree(c->sbuf);
1654 kfree(c->bottom_up_buf);
1655 kfree(c->sup_node);
1656 ubifs_sysfs_unregister(c);
1657 out_debugging:
1658 ubifs_debugging_exit(c);
1659 return err;
1660 }
1661
1662 /**
1663 * ubifs_umount - un-mount UBIFS file-system.
1664 * @c: UBIFS file-system description object
1665 *
1666 * Note, this function is called to free allocated resourced when un-mounting,
1667 * as well as free resources when an error occurred while we were half way
1668 * through mounting (error path cleanup function). So it has to make sure the
1669 * resource was actually allocated before freeing it.
1670 */
ubifs_umount(struct ubifs_info * c)1671 static void ubifs_umount(struct ubifs_info *c)
1672 {
1673 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1674 c->vi.vol_id);
1675
1676 dbg_debugfs_exit_fs(c);
1677 spin_lock(&ubifs_infos_lock);
1678 list_del(&c->infos_list);
1679 spin_unlock(&ubifs_infos_lock);
1680
1681 if (c->bgt)
1682 kthread_stop(c->bgt);
1683
1684 destroy_journal(c);
1685 free_wbufs(c);
1686 free_orphans(c);
1687 ubifs_lpt_free(c, 0);
1688 ubifs_exit_authentication(c);
1689
1690 ubifs_release_options(c);
1691 kfree(c->cbuf);
1692 kfree(c->rcvrd_mst_node);
1693 kfree(c->mst_node);
1694 kfree(c->write_reserve_buf);
1695 kfree(c->bu.buf);
1696 vfree(c->ileb_buf);
1697 vfree(c->sbuf);
1698 kfree(c->bottom_up_buf);
1699 kfree(c->sup_node);
1700 ubifs_debugging_exit(c);
1701 ubifs_sysfs_unregister(c);
1702 }
1703
1704 /**
1705 * ubifs_remount_rw - re-mount in read-write mode.
1706 * @c: UBIFS file-system description object
1707 *
1708 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1709 * mode. This function allocates the needed resources and re-mounts UBIFS in
1710 * read-write mode.
1711 */
ubifs_remount_rw(struct ubifs_info * c)1712 static int ubifs_remount_rw(struct ubifs_info *c)
1713 {
1714 int err, lnum;
1715
1716 if (c->rw_incompat) {
1717 ubifs_err(c, "the file-system is not R/W-compatible");
1718 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1719 c->fmt_version, c->ro_compat_version,
1720 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1721 return -EROFS;
1722 }
1723
1724 mutex_lock(&c->umount_mutex);
1725 dbg_save_space_info(c);
1726 c->remounting_rw = 1;
1727 c->ro_mount = 0;
1728
1729 if (c->space_fixup) {
1730 err = ubifs_fixup_free_space(c);
1731 if (err)
1732 goto out;
1733 }
1734
1735 err = check_free_space(c);
1736 if (err)
1737 goto out;
1738
1739 if (c->need_recovery) {
1740 ubifs_msg(c, "completing deferred recovery");
1741 err = ubifs_write_rcvrd_mst_node(c);
1742 if (err)
1743 goto out;
1744 if (!ubifs_authenticated(c)) {
1745 err = ubifs_recover_size(c, true);
1746 if (err)
1747 goto out;
1748 }
1749 err = ubifs_clean_lebs(c, c->sbuf);
1750 if (err)
1751 goto out;
1752 err = ubifs_recover_inl_heads(c, c->sbuf);
1753 if (err)
1754 goto out;
1755 } else {
1756 /* A readonly mount is not allowed to have orphans */
1757 ubifs_assert(c, c->tot_orphans == 0);
1758 err = ubifs_clear_orphans(c);
1759 if (err)
1760 goto out;
1761 }
1762
1763 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1764 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1765 err = ubifs_write_master(c);
1766 if (err)
1767 goto out;
1768 }
1769
1770 if (c->superblock_need_write) {
1771 struct ubifs_sb_node *sup = c->sup_node;
1772
1773 err = ubifs_write_sb_node(c, sup);
1774 if (err)
1775 goto out;
1776
1777 c->superblock_need_write = 0;
1778 }
1779
1780 c->ileb_buf = vmalloc(c->leb_size);
1781 if (!c->ileb_buf) {
1782 err = -ENOMEM;
1783 goto out;
1784 }
1785
1786 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1787 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1788 if (!c->write_reserve_buf) {
1789 err = -ENOMEM;
1790 goto out;
1791 }
1792
1793 err = ubifs_lpt_init(c, 0, 1);
1794 if (err)
1795 goto out;
1796
1797 /* Create background thread */
1798 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1799 if (IS_ERR(c->bgt)) {
1800 err = PTR_ERR(c->bgt);
1801 c->bgt = NULL;
1802 ubifs_err(c, "cannot spawn \"%s\", error %d",
1803 c->bgt_name, err);
1804 goto out;
1805 }
1806
1807 c->orph_buf = vmalloc(c->leb_size);
1808 if (!c->orph_buf) {
1809 err = -ENOMEM;
1810 goto out;
1811 }
1812
1813 /* Check for enough log space */
1814 lnum = c->lhead_lnum + 1;
1815 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1816 lnum = UBIFS_LOG_LNUM;
1817 if (lnum == c->ltail_lnum) {
1818 err = ubifs_consolidate_log(c);
1819 if (err)
1820 goto out;
1821 }
1822
1823 if (c->need_recovery) {
1824 err = ubifs_rcvry_gc_commit(c);
1825 if (err)
1826 goto out;
1827
1828 if (ubifs_authenticated(c)) {
1829 err = ubifs_recover_size(c, false);
1830 if (err)
1831 goto out;
1832 }
1833 } else {
1834 err = ubifs_leb_unmap(c, c->gc_lnum);
1835 }
1836 if (err)
1837 goto out;
1838
1839 dbg_gen("re-mounted read-write");
1840 c->remounting_rw = 0;
1841
1842 if (c->need_recovery) {
1843 c->need_recovery = 0;
1844 ubifs_msg(c, "deferred recovery completed");
1845 } else {
1846 /*
1847 * Do not run the debugging space check if the were doing
1848 * recovery, because when we saved the information we had the
1849 * file-system in a state where the TNC and lprops has been
1850 * modified in memory, but all the I/O operations (including a
1851 * commit) were deferred. So the file-system was in
1852 * "non-committed" state. Now the file-system is in committed
1853 * state, and of course the amount of free space will change
1854 * because, for example, the old index size was imprecise.
1855 */
1856 err = dbg_check_space_info(c);
1857 }
1858
1859 mutex_unlock(&c->umount_mutex);
1860 return err;
1861
1862 out:
1863 c->ro_mount = 1;
1864 vfree(c->orph_buf);
1865 c->orph_buf = NULL;
1866 if (c->bgt) {
1867 kthread_stop(c->bgt);
1868 c->bgt = NULL;
1869 }
1870 kfree(c->write_reserve_buf);
1871 c->write_reserve_buf = NULL;
1872 vfree(c->ileb_buf);
1873 c->ileb_buf = NULL;
1874 ubifs_lpt_free(c, 1);
1875 c->remounting_rw = 0;
1876 mutex_unlock(&c->umount_mutex);
1877 return err;
1878 }
1879
1880 /**
1881 * ubifs_remount_ro - re-mount in read-only mode.
1882 * @c: UBIFS file-system description object
1883 *
1884 * We assume VFS has stopped writing. Possibly the background thread could be
1885 * running a commit, however kthread_stop will wait in that case.
1886 */
ubifs_remount_ro(struct ubifs_info * c)1887 static void ubifs_remount_ro(struct ubifs_info *c)
1888 {
1889 int i, err;
1890
1891 ubifs_assert(c, !c->need_recovery);
1892 ubifs_assert(c, !c->ro_mount);
1893
1894 mutex_lock(&c->umount_mutex);
1895 if (c->bgt) {
1896 kthread_stop(c->bgt);
1897 c->bgt = NULL;
1898 }
1899
1900 dbg_save_space_info(c);
1901
1902 for (i = 0; i < c->jhead_cnt; i++) {
1903 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1904 if (err)
1905 ubifs_ro_mode(c, err);
1906 }
1907
1908 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1909 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1910 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1911 err = ubifs_write_master(c);
1912 if (err)
1913 ubifs_ro_mode(c, err);
1914
1915 vfree(c->orph_buf);
1916 c->orph_buf = NULL;
1917 kfree(c->write_reserve_buf);
1918 c->write_reserve_buf = NULL;
1919 vfree(c->ileb_buf);
1920 c->ileb_buf = NULL;
1921 ubifs_lpt_free(c, 1);
1922 c->ro_mount = 1;
1923 err = dbg_check_space_info(c);
1924 if (err)
1925 ubifs_ro_mode(c, err);
1926 mutex_unlock(&c->umount_mutex);
1927 }
1928
ubifs_put_super(struct super_block * sb)1929 static void ubifs_put_super(struct super_block *sb)
1930 {
1931 int i;
1932 struct ubifs_info *c = sb->s_fs_info;
1933
1934 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1935
1936 /*
1937 * The following asserts are only valid if there has not been a failure
1938 * of the media. For example, there will be dirty inodes if we failed
1939 * to write them back because of I/O errors.
1940 */
1941 if (!c->ro_error) {
1942 ubifs_assert(c, c->bi.idx_growth == 0);
1943 ubifs_assert(c, c->bi.dd_growth == 0);
1944 ubifs_assert(c, c->bi.data_growth == 0);
1945 }
1946
1947 /*
1948 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1949 * and file system un-mount. Namely, it prevents the shrinker from
1950 * picking this superblock for shrinking - it will be just skipped if
1951 * the mutex is locked.
1952 */
1953 mutex_lock(&c->umount_mutex);
1954 if (!c->ro_mount) {
1955 /*
1956 * First of all kill the background thread to make sure it does
1957 * not interfere with un-mounting and freeing resources.
1958 */
1959 if (c->bgt) {
1960 kthread_stop(c->bgt);
1961 c->bgt = NULL;
1962 }
1963
1964 /*
1965 * On fatal errors c->ro_error is set to 1, in which case we do
1966 * not write the master node.
1967 */
1968 if (!c->ro_error) {
1969 int err;
1970
1971 /* Synchronize write-buffers */
1972 for (i = 0; i < c->jhead_cnt; i++) {
1973 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1974 if (err)
1975 ubifs_ro_mode(c, err);
1976 }
1977
1978 /*
1979 * We are being cleanly unmounted which means the
1980 * orphans were killed - indicate this in the master
1981 * node. Also save the reserved GC LEB number.
1982 */
1983 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1984 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1985 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1986 err = ubifs_write_master(c);
1987 if (err)
1988 /*
1989 * Recovery will attempt to fix the master area
1990 * next mount, so we just print a message and
1991 * continue to unmount normally.
1992 */
1993 ubifs_err(c, "failed to write master node, error %d",
1994 err);
1995 } else {
1996 for (i = 0; i < c->jhead_cnt; i++)
1997 /* Make sure write-buffer timers are canceled */
1998 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1999 }
2000 }
2001
2002 ubifs_umount(c);
2003 ubi_close_volume(c->ubi);
2004 mutex_unlock(&c->umount_mutex);
2005 }
2006
ubifs_remount_fs(struct super_block * sb,int * flags,char * data)2007 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2008 {
2009 int err;
2010 struct ubifs_info *c = sb->s_fs_info;
2011
2012 sync_filesystem(sb);
2013 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2014
2015 err = ubifs_parse_options(c, data, 1);
2016 if (err) {
2017 ubifs_err(c, "invalid or unknown remount parameter");
2018 return err;
2019 }
2020
2021 if (c->ro_mount && !(*flags & SB_RDONLY)) {
2022 if (c->ro_error) {
2023 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2024 return -EROFS;
2025 }
2026 if (c->ro_media) {
2027 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2028 return -EROFS;
2029 }
2030 err = ubifs_remount_rw(c);
2031 if (err)
2032 return err;
2033 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2034 if (c->ro_error) {
2035 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2036 return -EROFS;
2037 }
2038 ubifs_remount_ro(c);
2039 }
2040
2041 if (c->bulk_read == 1)
2042 bu_init(c);
2043 else {
2044 dbg_gen("disable bulk-read");
2045 mutex_lock(&c->bu_mutex);
2046 kfree(c->bu.buf);
2047 c->bu.buf = NULL;
2048 mutex_unlock(&c->bu_mutex);
2049 }
2050
2051 if (!c->need_recovery)
2052 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2053
2054 return 0;
2055 }
2056
2057 const struct super_operations ubifs_super_operations = {
2058 .alloc_inode = ubifs_alloc_inode,
2059 .free_inode = ubifs_free_inode,
2060 .put_super = ubifs_put_super,
2061 .write_inode = ubifs_write_inode,
2062 .drop_inode = ubifs_drop_inode,
2063 .evict_inode = ubifs_evict_inode,
2064 .statfs = ubifs_statfs,
2065 .dirty_inode = ubifs_dirty_inode,
2066 .remount_fs = ubifs_remount_fs,
2067 .show_options = ubifs_show_options,
2068 .sync_fs = ubifs_sync_fs,
2069 };
2070
2071 /**
2072 * open_ubi - parse UBI device name string and open the UBI device.
2073 * @name: UBI volume name
2074 * @mode: UBI volume open mode
2075 *
2076 * The primary method of mounting UBIFS is by specifying the UBI volume
2077 * character device node path. However, UBIFS may also be mounted without any
2078 * character device node using one of the following methods:
2079 *
2080 * o ubiX_Y - mount UBI device number X, volume Y;
2081 * o ubiY - mount UBI device number 0, volume Y;
2082 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2083 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2084 *
2085 * Alternative '!' separator may be used instead of ':' (because some shells
2086 * like busybox may interpret ':' as an NFS host name separator). This function
2087 * returns UBI volume description object in case of success and a negative
2088 * error code in case of failure.
2089 */
open_ubi(const char * name,int mode)2090 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2091 {
2092 struct ubi_volume_desc *ubi;
2093 int dev, vol;
2094 char *endptr;
2095
2096 if (!name || !*name)
2097 return ERR_PTR(-EINVAL);
2098
2099 /* First, try to open using the device node path method */
2100 ubi = ubi_open_volume_path(name, mode);
2101 if (!IS_ERR(ubi))
2102 return ubi;
2103
2104 /* Try the "nodev" method */
2105 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2106 return ERR_PTR(-EINVAL);
2107
2108 /* ubi:NAME method */
2109 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2110 return ubi_open_volume_nm(0, name + 4, mode);
2111
2112 if (!isdigit(name[3]))
2113 return ERR_PTR(-EINVAL);
2114
2115 dev = simple_strtoul(name + 3, &endptr, 0);
2116
2117 /* ubiY method */
2118 if (*endptr == '\0')
2119 return ubi_open_volume(0, dev, mode);
2120
2121 /* ubiX_Y method */
2122 if (*endptr == '_' && isdigit(endptr[1])) {
2123 vol = simple_strtoul(endptr + 1, &endptr, 0);
2124 if (*endptr != '\0')
2125 return ERR_PTR(-EINVAL);
2126 return ubi_open_volume(dev, vol, mode);
2127 }
2128
2129 /* ubiX:NAME method */
2130 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2131 return ubi_open_volume_nm(dev, ++endptr, mode);
2132
2133 return ERR_PTR(-EINVAL);
2134 }
2135
alloc_ubifs_info(struct ubi_volume_desc * ubi)2136 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2137 {
2138 struct ubifs_info *c;
2139
2140 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2141 if (c) {
2142 spin_lock_init(&c->cnt_lock);
2143 spin_lock_init(&c->cs_lock);
2144 spin_lock_init(&c->buds_lock);
2145 spin_lock_init(&c->space_lock);
2146 spin_lock_init(&c->orphan_lock);
2147 init_rwsem(&c->commit_sem);
2148 mutex_init(&c->lp_mutex);
2149 mutex_init(&c->tnc_mutex);
2150 mutex_init(&c->log_mutex);
2151 mutex_init(&c->umount_mutex);
2152 mutex_init(&c->bu_mutex);
2153 mutex_init(&c->write_reserve_mutex);
2154 init_waitqueue_head(&c->cmt_wq);
2155 c->buds = RB_ROOT;
2156 c->old_idx = RB_ROOT;
2157 c->size_tree = RB_ROOT;
2158 c->orph_tree = RB_ROOT;
2159 INIT_LIST_HEAD(&c->infos_list);
2160 INIT_LIST_HEAD(&c->idx_gc);
2161 INIT_LIST_HEAD(&c->replay_list);
2162 INIT_LIST_HEAD(&c->replay_buds);
2163 INIT_LIST_HEAD(&c->uncat_list);
2164 INIT_LIST_HEAD(&c->empty_list);
2165 INIT_LIST_HEAD(&c->freeable_list);
2166 INIT_LIST_HEAD(&c->frdi_idx_list);
2167 INIT_LIST_HEAD(&c->unclean_leb_list);
2168 INIT_LIST_HEAD(&c->old_buds);
2169 INIT_LIST_HEAD(&c->orph_list);
2170 INIT_LIST_HEAD(&c->orph_new);
2171 c->no_chk_data_crc = 1;
2172 c->assert_action = ASSACT_RO;
2173
2174 c->highest_inum = UBIFS_FIRST_INO;
2175 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2176
2177 ubi_get_volume_info(ubi, &c->vi);
2178 ubi_get_device_info(c->vi.ubi_num, &c->di);
2179 }
2180 return c;
2181 }
2182
ubifs_fill_super(struct super_block * sb,void * data,int silent)2183 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2184 {
2185 struct ubifs_info *c = sb->s_fs_info;
2186 struct inode *root;
2187 int err;
2188
2189 c->vfs_sb = sb;
2190 /* Re-open the UBI device in read-write mode */
2191 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2192 if (IS_ERR(c->ubi)) {
2193 err = PTR_ERR(c->ubi);
2194 goto out;
2195 }
2196
2197 err = ubifs_parse_options(c, data, 0);
2198 if (err)
2199 goto out_close;
2200
2201 /*
2202 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2203 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
2204 * which means the user would have to wait not just for their own I/O
2205 * but the read-ahead I/O as well i.e. completely pointless.
2206 *
2207 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2208 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2209 * writeback happening.
2210 */
2211 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2212 c->vi.vol_id);
2213 if (err)
2214 goto out_close;
2215 sb->s_bdi->ra_pages = 0;
2216 sb->s_bdi->io_pages = 0;
2217
2218 sb->s_fs_info = c;
2219 sb->s_magic = UBIFS_SUPER_MAGIC;
2220 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2221 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2222 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2223 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2224 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2225 sb->s_op = &ubifs_super_operations;
2226 sb->s_xattr = ubifs_xattr_handlers;
2227 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2228
2229 mutex_lock(&c->umount_mutex);
2230 err = mount_ubifs(c);
2231 if (err) {
2232 ubifs_assert(c, err < 0);
2233 goto out_unlock;
2234 }
2235
2236 /* Read the root inode */
2237 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2238 if (IS_ERR(root)) {
2239 err = PTR_ERR(root);
2240 goto out_umount;
2241 }
2242
2243 sb->s_root = d_make_root(root);
2244 if (!sb->s_root) {
2245 err = -ENOMEM;
2246 goto out_umount;
2247 }
2248
2249 import_uuid(&sb->s_uuid, c->uuid);
2250
2251 mutex_unlock(&c->umount_mutex);
2252 return 0;
2253
2254 out_umount:
2255 ubifs_umount(c);
2256 out_unlock:
2257 mutex_unlock(&c->umount_mutex);
2258 out_close:
2259 ubifs_release_options(c);
2260 ubi_close_volume(c->ubi);
2261 out:
2262 return err;
2263 }
2264
sb_test(struct super_block * sb,void * data)2265 static int sb_test(struct super_block *sb, void *data)
2266 {
2267 struct ubifs_info *c1 = data;
2268 struct ubifs_info *c = sb->s_fs_info;
2269
2270 return c->vi.cdev == c1->vi.cdev;
2271 }
2272
sb_set(struct super_block * sb,void * data)2273 static int sb_set(struct super_block *sb, void *data)
2274 {
2275 sb->s_fs_info = data;
2276 return set_anon_super(sb, NULL);
2277 }
2278
ubifs_mount(struct file_system_type * fs_type,int flags,const char * name,void * data)2279 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2280 const char *name, void *data)
2281 {
2282 struct ubi_volume_desc *ubi;
2283 struct ubifs_info *c;
2284 struct super_block *sb;
2285 int err;
2286
2287 dbg_gen("name %s, flags %#x", name, flags);
2288
2289 /*
2290 * Get UBI device number and volume ID. Mount it read-only so far
2291 * because this might be a new mount point, and UBI allows only one
2292 * read-write user at a time.
2293 */
2294 ubi = open_ubi(name, UBI_READONLY);
2295 if (IS_ERR(ubi)) {
2296 if (!(flags & SB_SILENT))
2297 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2298 current->pid, name, (int)PTR_ERR(ubi));
2299 return ERR_CAST(ubi);
2300 }
2301
2302 c = alloc_ubifs_info(ubi);
2303 if (!c) {
2304 err = -ENOMEM;
2305 goto out_close;
2306 }
2307
2308 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2309
2310 sb = sget(fs_type, sb_test, sb_set, flags, c);
2311 if (IS_ERR(sb)) {
2312 err = PTR_ERR(sb);
2313 kfree(c);
2314 goto out_close;
2315 }
2316
2317 if (sb->s_root) {
2318 struct ubifs_info *c1 = sb->s_fs_info;
2319 kfree(c);
2320 /* A new mount point for already mounted UBIFS */
2321 dbg_gen("this ubi volume is already mounted");
2322 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2323 err = -EBUSY;
2324 goto out_deact;
2325 }
2326 } else {
2327 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2328 if (err)
2329 goto out_deact;
2330 /* We do not support atime */
2331 sb->s_flags |= SB_ACTIVE;
2332 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2333 ubifs_msg(c, "full atime support is enabled.");
2334 else
2335 sb->s_flags |= SB_NOATIME;
2336 }
2337
2338 /* 'fill_super()' opens ubi again so we must close it here */
2339 ubi_close_volume(ubi);
2340
2341 return dget(sb->s_root);
2342
2343 out_deact:
2344 deactivate_locked_super(sb);
2345 out_close:
2346 ubi_close_volume(ubi);
2347 return ERR_PTR(err);
2348 }
2349
kill_ubifs_super(struct super_block * s)2350 static void kill_ubifs_super(struct super_block *s)
2351 {
2352 struct ubifs_info *c = s->s_fs_info;
2353 kill_anon_super(s);
2354 kfree(c);
2355 }
2356
2357 static struct file_system_type ubifs_fs_type = {
2358 .name = "ubifs",
2359 .owner = THIS_MODULE,
2360 .mount = ubifs_mount,
2361 .kill_sb = kill_ubifs_super,
2362 };
2363 MODULE_ALIAS_FS("ubifs");
2364
2365 /*
2366 * Inode slab cache constructor.
2367 */
inode_slab_ctor(void * obj)2368 static void inode_slab_ctor(void *obj)
2369 {
2370 struct ubifs_inode *ui = obj;
2371 inode_init_once(&ui->vfs_inode);
2372 }
2373
ubifs_init(void)2374 static int __init ubifs_init(void)
2375 {
2376 int err;
2377
2378 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2379
2380 /* Make sure node sizes are 8-byte aligned */
2381 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2382 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2383 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2384 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2385 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2386 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2387 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2388 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2389 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2390 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2391 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2392
2393 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2394 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2395 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2396 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2397 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2398 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2399
2400 /* Check min. node size */
2401 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2402 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2403 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2404 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2405
2406 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2407 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2408 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2409 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2410
2411 /* Defined node sizes */
2412 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2413 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2414 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2415 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2416
2417 /*
2418 * We use 2 bit wide bit-fields to store compression type, which should
2419 * be amended if more compressors are added. The bit-fields are:
2420 * @compr_type in 'struct ubifs_inode', @default_compr in
2421 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2422 */
2423 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2424
2425 /*
2426 * We require that PAGE_SIZE is greater-than-or-equal-to
2427 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2428 */
2429 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2430 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2431 current->pid, (unsigned int)PAGE_SIZE);
2432 return -EINVAL;
2433 }
2434
2435 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2436 sizeof(struct ubifs_inode), 0,
2437 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2438 SLAB_ACCOUNT, &inode_slab_ctor);
2439 if (!ubifs_inode_slab)
2440 return -ENOMEM;
2441
2442 err = register_shrinker(&ubifs_shrinker_info, "ubifs-slab");
2443 if (err)
2444 goto out_slab;
2445
2446 err = ubifs_compressors_init();
2447 if (err)
2448 goto out_shrinker;
2449
2450 dbg_debugfs_init();
2451
2452 err = ubifs_sysfs_init();
2453 if (err)
2454 goto out_dbg;
2455
2456 err = register_filesystem(&ubifs_fs_type);
2457 if (err) {
2458 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2459 current->pid, err);
2460 goto out_sysfs;
2461 }
2462 return 0;
2463
2464 out_sysfs:
2465 ubifs_sysfs_exit();
2466 out_dbg:
2467 dbg_debugfs_exit();
2468 ubifs_compressors_exit();
2469 out_shrinker:
2470 unregister_shrinker(&ubifs_shrinker_info);
2471 out_slab:
2472 kmem_cache_destroy(ubifs_inode_slab);
2473 return err;
2474 }
2475 /* late_initcall to let compressors initialize first */
2476 late_initcall(ubifs_init);
2477
ubifs_exit(void)2478 static void __exit ubifs_exit(void)
2479 {
2480 WARN_ON(!list_empty(&ubifs_infos));
2481 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2482
2483 dbg_debugfs_exit();
2484 ubifs_sysfs_exit();
2485 ubifs_compressors_exit();
2486 unregister_shrinker(&ubifs_shrinker_info);
2487
2488 /*
2489 * Make sure all delayed rcu free inodes are flushed before we
2490 * destroy cache.
2491 */
2492 rcu_barrier();
2493 kmem_cache_destroy(ubifs_inode_slab);
2494 unregister_filesystem(&ubifs_fs_type);
2495 }
2496 module_exit(ubifs_exit);
2497
2498 MODULE_LICENSE("GPL");
2499 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
2500 MODULE_VERSION(__stringify(UBIFS_VERSION));
2501 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2502 MODULE_DESCRIPTION("UBIFS - UBI File System");
2503