• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 #include <trace/hooks/net.h>
122 
123 struct udp_table udp_table __read_mostly;
124 EXPORT_SYMBOL(udp_table);
125 
126 long sysctl_udp_mem[3] __read_mostly;
127 EXPORT_SYMBOL(sysctl_udp_mem);
128 
129 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
130 EXPORT_SYMBOL(udp_memory_allocated);
131 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
132 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
133 
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
136 
udp_get_table_prot(struct sock * sk)137 static struct udp_table *udp_get_table_prot(struct sock *sk)
138 {
139 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
140 }
141 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 			       const struct udp_hslot *hslot,
144 			       unsigned long *bitmap,
145 			       struct sock *sk, unsigned int log)
146 {
147 	struct sock *sk2;
148 	kuid_t uid = sock_i_uid(sk);
149 
150 	sk_for_each(sk2, &hslot->head) {
151 		if (net_eq(sock_net(sk2), net) &&
152 		    sk2 != sk &&
153 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
155 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 		    inet_rcv_saddr_equal(sk, sk2, true)) {
158 			if (sk2->sk_reuseport && sk->sk_reuseport &&
159 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 			    uid_eq(uid, sock_i_uid(sk2))) {
161 				if (!bitmap)
162 					return 0;
163 			} else {
164 				if (!bitmap)
165 					return 1;
166 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
167 					  bitmap);
168 			}
169 		}
170 	}
171 	return 0;
172 }
173 
174 /*
175  * Note: we still hold spinlock of primary hash chain, so no other writer
176  * can insert/delete a socket with local_port == num
177  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 				struct udp_hslot *hslot2,
180 				struct sock *sk)
181 {
182 	struct sock *sk2;
183 	kuid_t uid = sock_i_uid(sk);
184 	int res = 0;
185 
186 	spin_lock(&hslot2->lock);
187 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 		if (net_eq(sock_net(sk2), net) &&
189 		    sk2 != sk &&
190 		    (udp_sk(sk2)->udp_port_hash == num) &&
191 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
192 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 		    inet_rcv_saddr_equal(sk, sk2, true)) {
195 			if (sk2->sk_reuseport && sk->sk_reuseport &&
196 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 			    uid_eq(uid, sock_i_uid(sk2))) {
198 				res = 0;
199 			} else {
200 				res = 1;
201 			}
202 			break;
203 		}
204 	}
205 	spin_unlock(&hslot2->lock);
206 	return res;
207 }
208 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
210 {
211 	struct net *net = sock_net(sk);
212 	kuid_t uid = sock_i_uid(sk);
213 	struct sock *sk2;
214 
215 	sk_for_each(sk2, &hslot->head) {
216 		if (net_eq(sock_net(sk2), net) &&
217 		    sk2 != sk &&
218 		    sk2->sk_family == sk->sk_family &&
219 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 		    inet_rcv_saddr_equal(sk, sk2, false)) {
224 			return reuseport_add_sock(sk, sk2,
225 						  inet_rcv_saddr_any(sk));
226 		}
227 	}
228 
229 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
230 }
231 
232 /**
233  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
234  *
235  *  @sk:          socket struct in question
236  *  @snum:        port number to look up
237  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
238  *                   with NULL address
239  */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)240 int udp_lib_get_port(struct sock *sk, unsigned short snum,
241 		     unsigned int hash2_nulladdr)
242 {
243 	struct udp_table *udptable = udp_get_table_prot(sk);
244 	struct udp_hslot *hslot, *hslot2;
245 	struct net *net = sock_net(sk);
246 	int error = -EADDRINUSE;
247 
248 	if (!snum) {
249 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
250 		unsigned short first, last;
251 		int low, high, remaining;
252 		unsigned int rand;
253 
254 		inet_sk_get_local_port_range(sk, &low, &high);
255 		remaining = (high - low) + 1;
256 
257 		rand = get_random_u32();
258 		first = reciprocal_scale(rand, remaining) + low;
259 		/*
260 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 		 */
262 		rand = (rand | 1) * (udptable->mask + 1);
263 		last = first + udptable->mask + 1;
264 		do {
265 			hslot = udp_hashslot(udptable, net, first);
266 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
267 			spin_lock_bh(&hslot->lock);
268 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
269 					    udptable->log);
270 
271 			snum = first;
272 			/*
273 			 * Iterate on all possible values of snum for this hash.
274 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
275 			 * give us randomization and full range coverage.
276 			 */
277 			do {
278 				if (low <= snum && snum <= high &&
279 				    !test_bit(snum >> udptable->log, bitmap) &&
280 				    !inet_is_local_reserved_port(net, snum))
281 					goto found;
282 				snum += rand;
283 			} while (snum != first);
284 			spin_unlock_bh(&hslot->lock);
285 			cond_resched();
286 		} while (++first != last);
287 		goto fail;
288 	} else {
289 		hslot = udp_hashslot(udptable, net, snum);
290 		spin_lock_bh(&hslot->lock);
291 		if (hslot->count > 10) {
292 			int exist;
293 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 
295 			slot2          &= udptable->mask;
296 			hash2_nulladdr &= udptable->mask;
297 
298 			hslot2 = udp_hashslot2(udptable, slot2);
299 			if (hslot->count < hslot2->count)
300 				goto scan_primary_hash;
301 
302 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
303 			if (!exist && (hash2_nulladdr != slot2)) {
304 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
305 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
306 							     sk);
307 			}
308 			if (exist)
309 				goto fail_unlock;
310 			else
311 				goto found;
312 		}
313 scan_primary_hash:
314 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
315 			goto fail_unlock;
316 	}
317 found:
318 	inet_sk(sk)->inet_num = snum;
319 	udp_sk(sk)->udp_port_hash = snum;
320 	udp_sk(sk)->udp_portaddr_hash ^= snum;
321 	if (sk_unhashed(sk)) {
322 		if (sk->sk_reuseport &&
323 		    udp_reuseport_add_sock(sk, hslot)) {
324 			inet_sk(sk)->inet_num = 0;
325 			udp_sk(sk)->udp_port_hash = 0;
326 			udp_sk(sk)->udp_portaddr_hash ^= snum;
327 			goto fail_unlock;
328 		}
329 
330 		sock_set_flag(sk, SOCK_RCU_FREE);
331 
332 		sk_add_node_rcu(sk, &hslot->head);
333 		hslot->count++;
334 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
335 
336 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
337 		spin_lock(&hslot2->lock);
338 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
339 		    sk->sk_family == AF_INET6)
340 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
341 					   &hslot2->head);
342 		else
343 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
344 					   &hslot2->head);
345 		hslot2->count++;
346 		spin_unlock(&hslot2->lock);
347 	}
348 
349 	error = 0;
350 fail_unlock:
351 	spin_unlock_bh(&hslot->lock);
352 fail:
353 	return error;
354 }
355 EXPORT_SYMBOL(udp_lib_get_port);
356 
udp_v4_get_port(struct sock * sk,unsigned short snum)357 int udp_v4_get_port(struct sock *sk, unsigned short snum)
358 {
359 	unsigned int hash2_nulladdr =
360 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
361 	unsigned int hash2_partial =
362 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
363 
364 	/* precompute partial secondary hash */
365 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
366 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
367 }
368 
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)369 static int compute_score(struct sock *sk, struct net *net,
370 			 __be32 saddr, __be16 sport,
371 			 __be32 daddr, unsigned short hnum,
372 			 int dif, int sdif)
373 {
374 	int score;
375 	struct inet_sock *inet;
376 	bool dev_match;
377 
378 	if (!net_eq(sock_net(sk), net) ||
379 	    udp_sk(sk)->udp_port_hash != hnum ||
380 	    ipv6_only_sock(sk))
381 		return -1;
382 
383 	if (sk->sk_rcv_saddr != daddr)
384 		return -1;
385 
386 	score = (sk->sk_family == PF_INET) ? 2 : 1;
387 
388 	inet = inet_sk(sk);
389 	if (inet->inet_daddr) {
390 		if (inet->inet_daddr != saddr)
391 			return -1;
392 		score += 4;
393 	}
394 
395 	if (inet->inet_dport) {
396 		if (inet->inet_dport != sport)
397 			return -1;
398 		score += 4;
399 	}
400 
401 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
402 					dif, sdif);
403 	if (!dev_match)
404 		return -1;
405 	if (sk->sk_bound_dev_if)
406 		score += 4;
407 
408 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
409 		score++;
410 	return score;
411 }
412 
413 INDIRECT_CALLABLE_SCOPE
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)414 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
415 		const __be32 faddr, const __be16 fport)
416 {
417 	static u32 udp_ehash_secret __read_mostly;
418 
419 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
420 
421 	return __inet_ehashfn(laddr, lport, faddr, fport,
422 			      udp_ehash_secret + net_hash_mix(net));
423 }
424 
425 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)426 static struct sock *udp4_lib_lookup2(struct net *net,
427 				     __be32 saddr, __be16 sport,
428 				     __be32 daddr, unsigned int hnum,
429 				     int dif, int sdif,
430 				     struct udp_hslot *hslot2,
431 				     struct sk_buff *skb)
432 {
433 	struct sock *sk, *result;
434 	int score, badness;
435 	bool need_rescore;
436 
437 	result = NULL;
438 	badness = 0;
439 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
440 		need_rescore = false;
441 rescore:
442 		score = compute_score(need_rescore ? result : sk, net, saddr,
443 				      sport, daddr, hnum, dif, sdif);
444 		if (score > badness) {
445 			badness = score;
446 
447 			if (need_rescore)
448 				continue;
449 
450 			if (sk->sk_state == TCP_ESTABLISHED) {
451 				result = sk;
452 				continue;
453 			}
454 
455 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
456 						       saddr, sport, daddr, hnum, udp_ehashfn);
457 			if (!result) {
458 				result = sk;
459 				continue;
460 			}
461 
462 			/* Fall back to scoring if group has connections */
463 			if (!reuseport_has_conns(sk))
464 				return result;
465 
466 			/* Reuseport logic returned an error, keep original score. */
467 			if (IS_ERR(result))
468 				continue;
469 
470 			/* compute_score is too long of a function to be
471 			 * inlined, and calling it again here yields
472 			 * measureable overhead for some
473 			 * workloads. Work around it by jumping
474 			 * backwards to rescore 'result'.
475 			 */
476 			need_rescore = true;
477 			goto rescore;
478 		}
479 	}
480 	return result;
481 }
482 
483 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
484  * harder than this. -DaveM
485  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)486 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
487 		__be16 sport, __be32 daddr, __be16 dport, int dif,
488 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
489 {
490 	unsigned short hnum = ntohs(dport);
491 	unsigned int hash2, slot2;
492 	struct udp_hslot *hslot2;
493 	struct sock *result, *sk;
494 
495 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
496 	slot2 = hash2 & udptable->mask;
497 	hslot2 = &udptable->hash2[slot2];
498 
499 	/* Lookup connected or non-wildcard socket */
500 	result = udp4_lib_lookup2(net, saddr, sport,
501 				  daddr, hnum, dif, sdif,
502 				  hslot2, skb);
503 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
504 		goto done;
505 
506 	/* Lookup redirect from BPF */
507 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
508 	    udptable == net->ipv4.udp_table) {
509 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
510 					       saddr, sport, daddr, hnum, dif,
511 					       udp_ehashfn);
512 		if (sk) {
513 			result = sk;
514 			goto done;
515 		}
516 	}
517 
518 	/* Got non-wildcard socket or error on first lookup */
519 	if (result)
520 		goto done;
521 
522 	/* Lookup wildcard sockets */
523 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
524 	slot2 = hash2 & udptable->mask;
525 	hslot2 = &udptable->hash2[slot2];
526 
527 	result = udp4_lib_lookup2(net, saddr, sport,
528 				  htonl(INADDR_ANY), hnum, dif, sdif,
529 				  hslot2, skb);
530 done:
531 	if (IS_ERR(result))
532 		return NULL;
533 	return result;
534 }
535 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
536 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)537 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
538 						 __be16 sport, __be16 dport,
539 						 struct udp_table *udptable)
540 {
541 	const struct iphdr *iph = ip_hdr(skb);
542 
543 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
544 				 iph->daddr, dport, inet_iif(skb),
545 				 inet_sdif(skb), udptable, skb);
546 }
547 
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)548 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
549 				 __be16 sport, __be16 dport)
550 {
551 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
552 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
553 	struct net *net = dev_net(skb->dev);
554 	int iif, sdif;
555 
556 	inet_get_iif_sdif(skb, &iif, &sdif);
557 
558 	return __udp4_lib_lookup(net, iph->saddr, sport,
559 				 iph->daddr, dport, iif,
560 				 sdif, net->ipv4.udp_table, NULL);
561 }
562 
563 /* Must be called under rcu_read_lock().
564  * Does increment socket refcount.
565  */
566 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)567 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
568 			     __be32 daddr, __be16 dport, int dif)
569 {
570 	struct sock *sk;
571 
572 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
573 			       dif, 0, net->ipv4.udp_table, NULL);
574 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
575 		sk = NULL;
576 	return sk;
577 }
578 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
579 #endif
580 
__udp_is_mcast_sock(struct net * net,const struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)581 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
582 				       __be16 loc_port, __be32 loc_addr,
583 				       __be16 rmt_port, __be32 rmt_addr,
584 				       int dif, int sdif, unsigned short hnum)
585 {
586 	const struct inet_sock *inet = inet_sk(sk);
587 
588 	if (!net_eq(sock_net(sk), net) ||
589 	    udp_sk(sk)->udp_port_hash != hnum ||
590 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
591 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
592 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
593 	    ipv6_only_sock(sk) ||
594 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
595 		return false;
596 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
597 		return false;
598 	return true;
599 }
600 
601 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
602 EXPORT_SYMBOL(udp_encap_needed_key);
603 
604 #if IS_ENABLED(CONFIG_IPV6)
605 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
606 EXPORT_SYMBOL(udpv6_encap_needed_key);
607 #endif
608 
udp_encap_enable(void)609 void udp_encap_enable(void)
610 {
611 	static_branch_inc(&udp_encap_needed_key);
612 }
613 EXPORT_SYMBOL(udp_encap_enable);
614 
udp_encap_disable(void)615 void udp_encap_disable(void)
616 {
617 	static_branch_dec(&udp_encap_needed_key);
618 }
619 EXPORT_SYMBOL(udp_encap_disable);
620 
621 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
622  * through error handlers in encapsulations looking for a match.
623  */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)624 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
625 {
626 	int i;
627 
628 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
629 		int (*handler)(struct sk_buff *skb, u32 info);
630 		const struct ip_tunnel_encap_ops *encap;
631 
632 		encap = rcu_dereference(iptun_encaps[i]);
633 		if (!encap)
634 			continue;
635 		handler = encap->err_handler;
636 		if (handler && !handler(skb, info))
637 			return 0;
638 	}
639 
640 	return -ENOENT;
641 }
642 
643 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
644  * reversing source and destination port: this will match tunnels that force the
645  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
646  * lwtunnels might actually break this assumption by being configured with
647  * different destination ports on endpoints, in this case we won't be able to
648  * trace ICMP messages back to them.
649  *
650  * If this doesn't match any socket, probe tunnels with arbitrary destination
651  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
652  * we've sent packets to won't necessarily match the local destination port.
653  *
654  * Then ask the tunnel implementation to match the error against a valid
655  * association.
656  *
657  * Return an error if we can't find a match, the socket if we need further
658  * processing, zero otherwise.
659  */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)660 static struct sock *__udp4_lib_err_encap(struct net *net,
661 					 const struct iphdr *iph,
662 					 struct udphdr *uh,
663 					 struct udp_table *udptable,
664 					 struct sock *sk,
665 					 struct sk_buff *skb, u32 info)
666 {
667 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
668 	int network_offset, transport_offset;
669 	struct udp_sock *up;
670 
671 	network_offset = skb_network_offset(skb);
672 	transport_offset = skb_transport_offset(skb);
673 
674 	/* Network header needs to point to the outer IPv4 header inside ICMP */
675 	skb_reset_network_header(skb);
676 
677 	/* Transport header needs to point to the UDP header */
678 	skb_set_transport_header(skb, iph->ihl << 2);
679 
680 	if (sk) {
681 		up = udp_sk(sk);
682 
683 		lookup = READ_ONCE(up->encap_err_lookup);
684 		if (lookup && lookup(sk, skb))
685 			sk = NULL;
686 
687 		goto out;
688 	}
689 
690 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
691 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
692 			       udptable, NULL);
693 	if (sk) {
694 		up = udp_sk(sk);
695 
696 		lookup = READ_ONCE(up->encap_err_lookup);
697 		if (!lookup || lookup(sk, skb))
698 			sk = NULL;
699 	}
700 
701 out:
702 	if (!sk)
703 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
704 
705 	skb_set_transport_header(skb, transport_offset);
706 	skb_set_network_header(skb, network_offset);
707 
708 	return sk;
709 }
710 
711 /*
712  * This routine is called by the ICMP module when it gets some
713  * sort of error condition.  If err < 0 then the socket should
714  * be closed and the error returned to the user.  If err > 0
715  * it's just the icmp type << 8 | icmp code.
716  * Header points to the ip header of the error packet. We move
717  * on past this. Then (as it used to claim before adjustment)
718  * header points to the first 8 bytes of the udp header.  We need
719  * to find the appropriate port.
720  */
721 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)722 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
723 {
724 	struct inet_sock *inet;
725 	const struct iphdr *iph = (const struct iphdr *)skb->data;
726 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
727 	const int type = icmp_hdr(skb)->type;
728 	const int code = icmp_hdr(skb)->code;
729 	bool tunnel = false;
730 	struct sock *sk;
731 	int harderr;
732 	int err;
733 	struct net *net = dev_net(skb->dev);
734 
735 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
736 			       iph->saddr, uh->source, skb->dev->ifindex,
737 			       inet_sdif(skb), udptable, NULL);
738 
739 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
740 		/* No socket for error: try tunnels before discarding */
741 		if (static_branch_unlikely(&udp_encap_needed_key)) {
742 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
743 						  info);
744 			if (!sk)
745 				return 0;
746 		} else
747 			sk = ERR_PTR(-ENOENT);
748 
749 		if (IS_ERR(sk)) {
750 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
751 			return PTR_ERR(sk);
752 		}
753 
754 		tunnel = true;
755 	}
756 
757 	err = 0;
758 	harderr = 0;
759 	inet = inet_sk(sk);
760 
761 	switch (type) {
762 	default:
763 	case ICMP_TIME_EXCEEDED:
764 		err = EHOSTUNREACH;
765 		break;
766 	case ICMP_SOURCE_QUENCH:
767 		goto out;
768 	case ICMP_PARAMETERPROB:
769 		err = EPROTO;
770 		harderr = 1;
771 		break;
772 	case ICMP_DEST_UNREACH:
773 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
774 			ipv4_sk_update_pmtu(skb, sk, info);
775 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
776 				err = EMSGSIZE;
777 				harderr = 1;
778 				break;
779 			}
780 			goto out;
781 		}
782 		err = EHOSTUNREACH;
783 		if (code <= NR_ICMP_UNREACH) {
784 			harderr = icmp_err_convert[code].fatal;
785 			err = icmp_err_convert[code].errno;
786 		}
787 		break;
788 	case ICMP_REDIRECT:
789 		ipv4_sk_redirect(skb, sk);
790 		goto out;
791 	}
792 
793 	/*
794 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
795 	 *	4.1.3.3.
796 	 */
797 	if (tunnel) {
798 		/* ...not for tunnels though: we don't have a sending socket */
799 		if (udp_sk(sk)->encap_err_rcv)
800 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
801 						  (u8 *)(uh+1));
802 		goto out;
803 	}
804 	if (!inet_test_bit(RECVERR, sk)) {
805 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
806 			goto out;
807 	} else
808 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
809 
810 	sk->sk_err = err;
811 	sk_error_report(sk);
812 out:
813 	return 0;
814 }
815 
udp_err(struct sk_buff * skb,u32 info)816 int udp_err(struct sk_buff *skb, u32 info)
817 {
818 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
819 }
820 
821 /*
822  * Throw away all pending data and cancel the corking. Socket is locked.
823  */
udp_flush_pending_frames(struct sock * sk)824 void udp_flush_pending_frames(struct sock *sk)
825 {
826 	struct udp_sock *up = udp_sk(sk);
827 
828 	if (up->pending) {
829 		up->len = 0;
830 		WRITE_ONCE(up->pending, 0);
831 		ip_flush_pending_frames(sk);
832 	}
833 }
834 EXPORT_SYMBOL(udp_flush_pending_frames);
835 
836 /**
837  * 	udp4_hwcsum  -  handle outgoing HW checksumming
838  * 	@skb: 	sk_buff containing the filled-in UDP header
839  * 	        (checksum field must be zeroed out)
840  *	@src:	source IP address
841  *	@dst:	destination IP address
842  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)843 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
844 {
845 	struct udphdr *uh = udp_hdr(skb);
846 	int offset = skb_transport_offset(skb);
847 	int len = skb->len - offset;
848 	int hlen = len;
849 	__wsum csum = 0;
850 
851 	if (!skb_has_frag_list(skb)) {
852 		/*
853 		 * Only one fragment on the socket.
854 		 */
855 		skb->csum_start = skb_transport_header(skb) - skb->head;
856 		skb->csum_offset = offsetof(struct udphdr, check);
857 		uh->check = ~csum_tcpudp_magic(src, dst, len,
858 					       IPPROTO_UDP, 0);
859 	} else {
860 		struct sk_buff *frags;
861 
862 		/*
863 		 * HW-checksum won't work as there are two or more
864 		 * fragments on the socket so that all csums of sk_buffs
865 		 * should be together
866 		 */
867 		skb_walk_frags(skb, frags) {
868 			csum = csum_add(csum, frags->csum);
869 			hlen -= frags->len;
870 		}
871 
872 		csum = skb_checksum(skb, offset, hlen, csum);
873 		skb->ip_summed = CHECKSUM_NONE;
874 
875 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
876 		if (uh->check == 0)
877 			uh->check = CSUM_MANGLED_0;
878 	}
879 }
880 EXPORT_SYMBOL_GPL(udp4_hwcsum);
881 
882 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
883  * for the simple case like when setting the checksum for a UDP tunnel.
884  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)885 void udp_set_csum(bool nocheck, struct sk_buff *skb,
886 		  __be32 saddr, __be32 daddr, int len)
887 {
888 	struct udphdr *uh = udp_hdr(skb);
889 
890 	if (nocheck) {
891 		uh->check = 0;
892 	} else if (skb_is_gso(skb)) {
893 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
894 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
895 		uh->check = 0;
896 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
897 		if (uh->check == 0)
898 			uh->check = CSUM_MANGLED_0;
899 	} else {
900 		skb->ip_summed = CHECKSUM_PARTIAL;
901 		skb->csum_start = skb_transport_header(skb) - skb->head;
902 		skb->csum_offset = offsetof(struct udphdr, check);
903 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
904 	}
905 }
906 EXPORT_SYMBOL(udp_set_csum);
907 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)908 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
909 			struct inet_cork *cork)
910 {
911 	struct sock *sk = skb->sk;
912 	struct inet_sock *inet = inet_sk(sk);
913 	struct udphdr *uh;
914 	int err;
915 	int is_udplite = IS_UDPLITE(sk);
916 	int offset = skb_transport_offset(skb);
917 	int len = skb->len - offset;
918 	int datalen = len - sizeof(*uh);
919 	__wsum csum = 0;
920 
921 	/*
922 	 * Create a UDP header
923 	 */
924 	uh = udp_hdr(skb);
925 	uh->source = inet->inet_sport;
926 	uh->dest = fl4->fl4_dport;
927 	uh->len = htons(len);
928 	uh->check = 0;
929 
930 	if (cork->gso_size) {
931 		const int hlen = skb_network_header_len(skb) +
932 				 sizeof(struct udphdr);
933 
934 		if (hlen + cork->gso_size > cork->fragsize) {
935 			kfree_skb(skb);
936 			return -EINVAL;
937 		}
938 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
939 			kfree_skb(skb);
940 			return -EINVAL;
941 		}
942 		if (sk->sk_no_check_tx) {
943 			kfree_skb(skb);
944 			return -EINVAL;
945 		}
946 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
947 		    dst_xfrm(skb_dst(skb))) {
948 			kfree_skb(skb);
949 			return -EIO;
950 		}
951 
952 		if (datalen > cork->gso_size) {
953 			skb_shinfo(skb)->gso_size = cork->gso_size;
954 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
955 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
956 								 cork->gso_size);
957 		}
958 		goto csum_partial;
959 	}
960 
961 	if (is_udplite)  				 /*     UDP-Lite      */
962 		csum = udplite_csum(skb);
963 
964 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
965 
966 		skb->ip_summed = CHECKSUM_NONE;
967 		goto send;
968 
969 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
970 csum_partial:
971 
972 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
973 		goto send;
974 
975 	} else
976 		csum = udp_csum(skb);
977 
978 	/* add protocol-dependent pseudo-header */
979 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
980 				      sk->sk_protocol, csum);
981 	if (uh->check == 0)
982 		uh->check = CSUM_MANGLED_0;
983 
984 send:
985 	err = ip_send_skb(sock_net(sk), skb);
986 	if (err) {
987 		if (err == -ENOBUFS &&
988 		    !inet_test_bit(RECVERR, sk)) {
989 			UDP_INC_STATS(sock_net(sk),
990 				      UDP_MIB_SNDBUFERRORS, is_udplite);
991 			err = 0;
992 		}
993 	} else
994 		UDP_INC_STATS(sock_net(sk),
995 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
996 	return err;
997 }
998 
999 /*
1000  * Push out all pending data as one UDP datagram. Socket is locked.
1001  */
udp_push_pending_frames(struct sock * sk)1002 int udp_push_pending_frames(struct sock *sk)
1003 {
1004 	struct udp_sock  *up = udp_sk(sk);
1005 	struct inet_sock *inet = inet_sk(sk);
1006 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1007 	struct sk_buff *skb;
1008 	int err = 0;
1009 
1010 	skb = ip_finish_skb(sk, fl4);
1011 	if (!skb)
1012 		goto out;
1013 
1014 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1015 
1016 out:
1017 	up->len = 0;
1018 	WRITE_ONCE(up->pending, 0);
1019 	return err;
1020 }
1021 EXPORT_SYMBOL(udp_push_pending_frames);
1022 
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1023 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1024 {
1025 	switch (cmsg->cmsg_type) {
1026 	case UDP_SEGMENT:
1027 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1028 			return -EINVAL;
1029 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1030 		return 0;
1031 	default:
1032 		return -EINVAL;
1033 	}
1034 }
1035 
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1036 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1037 {
1038 	struct cmsghdr *cmsg;
1039 	bool need_ip = false;
1040 	int err;
1041 
1042 	for_each_cmsghdr(cmsg, msg) {
1043 		if (!CMSG_OK(msg, cmsg))
1044 			return -EINVAL;
1045 
1046 		if (cmsg->cmsg_level != SOL_UDP) {
1047 			need_ip = true;
1048 			continue;
1049 		}
1050 
1051 		err = __udp_cmsg_send(cmsg, gso_size);
1052 		if (err)
1053 			return err;
1054 	}
1055 
1056 	return need_ip;
1057 }
1058 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1059 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1060 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1061 {
1062 	struct inet_sock *inet = inet_sk(sk);
1063 	struct udp_sock *up = udp_sk(sk);
1064 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1065 	struct flowi4 fl4_stack;
1066 	struct flowi4 *fl4;
1067 	int ulen = len;
1068 	struct ipcm_cookie ipc;
1069 	struct rtable *rt = NULL;
1070 	int free = 0;
1071 	int connected = 0;
1072 	__be32 daddr, faddr, saddr;
1073 	u8 tos, scope;
1074 	__be16 dport;
1075 	int err, is_udplite = IS_UDPLITE(sk);
1076 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1077 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1078 	struct sk_buff *skb;
1079 	struct ip_options_data opt_copy;
1080 
1081 	trace_android_rvh_udp_sendmsg(sk, msg, len);
1082 
1083 	if (len > 0xFFFF)
1084 		return -EMSGSIZE;
1085 
1086 	/*
1087 	 *	Check the flags.
1088 	 */
1089 
1090 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1091 		return -EOPNOTSUPP;
1092 
1093 	trace_android_vh_uplink_send_msg(sk);
1094 
1095 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1096 
1097 	fl4 = &inet->cork.fl.u.ip4;
1098 	if (READ_ONCE(up->pending)) {
1099 		/*
1100 		 * There are pending frames.
1101 		 * The socket lock must be held while it's corked.
1102 		 */
1103 		lock_sock(sk);
1104 		if (likely(up->pending)) {
1105 			if (unlikely(up->pending != AF_INET)) {
1106 				release_sock(sk);
1107 				return -EINVAL;
1108 			}
1109 			goto do_append_data;
1110 		}
1111 		release_sock(sk);
1112 	}
1113 	ulen += sizeof(struct udphdr);
1114 
1115 	/*
1116 	 *	Get and verify the address.
1117 	 */
1118 	if (usin) {
1119 		if (msg->msg_namelen < sizeof(*usin))
1120 			return -EINVAL;
1121 		if (usin->sin_family != AF_INET) {
1122 			if (usin->sin_family != AF_UNSPEC)
1123 				return -EAFNOSUPPORT;
1124 		}
1125 
1126 		daddr = usin->sin_addr.s_addr;
1127 		dport = usin->sin_port;
1128 		if (dport == 0)
1129 			return -EINVAL;
1130 	} else {
1131 		if (sk->sk_state != TCP_ESTABLISHED)
1132 			return -EDESTADDRREQ;
1133 		daddr = inet->inet_daddr;
1134 		dport = inet->inet_dport;
1135 		/* Open fast path for connected socket.
1136 		   Route will not be used, if at least one option is set.
1137 		 */
1138 		connected = 1;
1139 	}
1140 
1141 	trace_android_vh_udp_v4_connect(sk, daddr, dport, AF_INET);
1142 
1143 	ipcm_init_sk(&ipc, inet);
1144 	ipc.gso_size = READ_ONCE(up->gso_size);
1145 
1146 	if (msg->msg_controllen) {
1147 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1148 		if (err > 0) {
1149 			err = ip_cmsg_send(sk, msg, &ipc,
1150 					   sk->sk_family == AF_INET6);
1151 			connected = 0;
1152 		}
1153 		if (unlikely(err < 0)) {
1154 			kfree(ipc.opt);
1155 			return err;
1156 		}
1157 		if (ipc.opt)
1158 			free = 1;
1159 	}
1160 	if (!ipc.opt) {
1161 		struct ip_options_rcu *inet_opt;
1162 
1163 		rcu_read_lock();
1164 		inet_opt = rcu_dereference(inet->inet_opt);
1165 		if (inet_opt) {
1166 			memcpy(&opt_copy, inet_opt,
1167 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1168 			ipc.opt = &opt_copy.opt;
1169 		}
1170 		rcu_read_unlock();
1171 	}
1172 
1173 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1174 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1175 					    (struct sockaddr *)usin,
1176 					    &msg->msg_namelen,
1177 					    &ipc.addr);
1178 		if (err)
1179 			goto out_free;
1180 		if (usin) {
1181 			if (usin->sin_port == 0) {
1182 				/* BPF program set invalid port. Reject it. */
1183 				err = -EINVAL;
1184 				goto out_free;
1185 			}
1186 			daddr = usin->sin_addr.s_addr;
1187 			dport = usin->sin_port;
1188 		}
1189 	}
1190 
1191 	saddr = ipc.addr;
1192 	ipc.addr = faddr = daddr;
1193 
1194 	if (ipc.opt && ipc.opt->opt.srr) {
1195 		if (!daddr) {
1196 			err = -EINVAL;
1197 			goto out_free;
1198 		}
1199 		faddr = ipc.opt->opt.faddr;
1200 		connected = 0;
1201 	}
1202 	tos = get_rttos(&ipc, inet);
1203 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1204 	if (scope == RT_SCOPE_LINK)
1205 		connected = 0;
1206 
1207 	if (ipv4_is_multicast(daddr)) {
1208 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1209 			ipc.oif = inet->mc_index;
1210 		if (!saddr)
1211 			saddr = inet->mc_addr;
1212 		connected = 0;
1213 	} else if (!ipc.oif) {
1214 		ipc.oif = inet->uc_index;
1215 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1216 		/* oif is set, packet is to local broadcast and
1217 		 * uc_index is set. oif is most likely set
1218 		 * by sk_bound_dev_if. If uc_index != oif check if the
1219 		 * oif is an L3 master and uc_index is an L3 slave.
1220 		 * If so, we want to allow the send using the uc_index.
1221 		 */
1222 		if (ipc.oif != inet->uc_index &&
1223 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1224 							      inet->uc_index)) {
1225 			ipc.oif = inet->uc_index;
1226 		}
1227 	}
1228 
1229 	if (connected)
1230 		rt = (struct rtable *)sk_dst_check(sk, 0);
1231 
1232 	if (!rt) {
1233 		struct net *net = sock_net(sk);
1234 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1235 
1236 		fl4 = &fl4_stack;
1237 
1238 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1239 				   sk->sk_protocol, flow_flags, faddr, saddr,
1240 				   dport, inet->inet_sport, sk->sk_uid);
1241 
1242 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1243 		rt = ip_route_output_flow(net, fl4, sk);
1244 		if (IS_ERR(rt)) {
1245 			err = PTR_ERR(rt);
1246 			rt = NULL;
1247 			if (err == -ENETUNREACH)
1248 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1249 			goto out;
1250 		}
1251 
1252 		err = -EACCES;
1253 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1254 		    !sock_flag(sk, SOCK_BROADCAST))
1255 			goto out;
1256 		if (connected)
1257 			sk_dst_set(sk, dst_clone(&rt->dst));
1258 	}
1259 
1260 	if (msg->msg_flags&MSG_CONFIRM)
1261 		goto do_confirm;
1262 back_from_confirm:
1263 
1264 	saddr = fl4->saddr;
1265 	if (!ipc.addr)
1266 		daddr = ipc.addr = fl4->daddr;
1267 
1268 	/* Lockless fast path for the non-corking case. */
1269 	if (!corkreq) {
1270 		struct inet_cork cork;
1271 
1272 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1273 				  sizeof(struct udphdr), &ipc, &rt,
1274 				  &cork, msg->msg_flags);
1275 		err = PTR_ERR(skb);
1276 		if (!IS_ERR_OR_NULL(skb))
1277 			err = udp_send_skb(skb, fl4, &cork);
1278 		goto out;
1279 	}
1280 
1281 	lock_sock(sk);
1282 	if (unlikely(up->pending)) {
1283 		/* The socket is already corked while preparing it. */
1284 		/* ... which is an evident application bug. --ANK */
1285 		release_sock(sk);
1286 
1287 		net_dbg_ratelimited("socket already corked\n");
1288 		err = -EINVAL;
1289 		goto out;
1290 	}
1291 	/*
1292 	 *	Now cork the socket to pend data.
1293 	 */
1294 	fl4 = &inet->cork.fl.u.ip4;
1295 	fl4->daddr = daddr;
1296 	fl4->saddr = saddr;
1297 	fl4->fl4_dport = dport;
1298 	fl4->fl4_sport = inet->inet_sport;
1299 	WRITE_ONCE(up->pending, AF_INET);
1300 
1301 do_append_data:
1302 	up->len += ulen;
1303 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1304 			     sizeof(struct udphdr), &ipc, &rt,
1305 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1306 	if (err)
1307 		udp_flush_pending_frames(sk);
1308 	else if (!corkreq)
1309 		err = udp_push_pending_frames(sk);
1310 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1311 		WRITE_ONCE(up->pending, 0);
1312 	release_sock(sk);
1313 
1314 out:
1315 	ip_rt_put(rt);
1316 out_free:
1317 	if (free)
1318 		kfree(ipc.opt);
1319 	if (!err)
1320 		return len;
1321 	/*
1322 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1323 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1324 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1325 	 * things).  We could add another new stat but at least for now that
1326 	 * seems like overkill.
1327 	 */
1328 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1329 		UDP_INC_STATS(sock_net(sk),
1330 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1331 	}
1332 	return err;
1333 
1334 do_confirm:
1335 	if (msg->msg_flags & MSG_PROBE)
1336 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1337 	if (!(msg->msg_flags&MSG_PROBE) || len)
1338 		goto back_from_confirm;
1339 	err = 0;
1340 	goto out;
1341 }
1342 EXPORT_SYMBOL(udp_sendmsg);
1343 
udp_splice_eof(struct socket * sock)1344 void udp_splice_eof(struct socket *sock)
1345 {
1346 	struct sock *sk = sock->sk;
1347 	struct udp_sock *up = udp_sk(sk);
1348 
1349 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1350 		return;
1351 
1352 	lock_sock(sk);
1353 	if (up->pending && !udp_test_bit(CORK, sk))
1354 		udp_push_pending_frames(sk);
1355 	release_sock(sk);
1356 }
1357 EXPORT_SYMBOL_GPL(udp_splice_eof);
1358 
1359 #define UDP_SKB_IS_STATELESS 0x80000000
1360 
1361 /* all head states (dst, sk, nf conntrack) except skb extensions are
1362  * cleared by udp_rcv().
1363  *
1364  * We need to preserve secpath, if present, to eventually process
1365  * IP_CMSG_PASSSEC at recvmsg() time.
1366  *
1367  * Other extensions can be cleared.
1368  */
udp_try_make_stateless(struct sk_buff * skb)1369 static bool udp_try_make_stateless(struct sk_buff *skb)
1370 {
1371 	if (!skb_has_extensions(skb))
1372 		return true;
1373 
1374 	if (!secpath_exists(skb)) {
1375 		skb_ext_reset(skb);
1376 		return true;
1377 	}
1378 
1379 	return false;
1380 }
1381 
udp_set_dev_scratch(struct sk_buff * skb)1382 static void udp_set_dev_scratch(struct sk_buff *skb)
1383 {
1384 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1385 
1386 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1387 	scratch->_tsize_state = skb->truesize;
1388 #if BITS_PER_LONG == 64
1389 	scratch->len = skb->len;
1390 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1391 	scratch->is_linear = !skb_is_nonlinear(skb);
1392 #endif
1393 	if (udp_try_make_stateless(skb))
1394 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1395 }
1396 
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1397 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1398 {
1399 	/* We come here after udp_lib_checksum_complete() returned 0.
1400 	 * This means that __skb_checksum_complete() might have
1401 	 * set skb->csum_valid to 1.
1402 	 * On 64bit platforms, we can set csum_unnecessary
1403 	 * to true, but only if the skb is not shared.
1404 	 */
1405 #if BITS_PER_LONG == 64
1406 	if (!skb_shared(skb))
1407 		udp_skb_scratch(skb)->csum_unnecessary = true;
1408 #endif
1409 }
1410 
udp_skb_truesize(struct sk_buff * skb)1411 static int udp_skb_truesize(struct sk_buff *skb)
1412 {
1413 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1414 }
1415 
udp_skb_has_head_state(struct sk_buff * skb)1416 static bool udp_skb_has_head_state(struct sk_buff *skb)
1417 {
1418 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1419 }
1420 
1421 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1422 static void udp_rmem_release(struct sock *sk, int size, int partial,
1423 			     bool rx_queue_lock_held)
1424 {
1425 	struct udp_sock *up = udp_sk(sk);
1426 	struct sk_buff_head *sk_queue;
1427 	int amt;
1428 
1429 	if (likely(partial)) {
1430 		up->forward_deficit += size;
1431 		size = up->forward_deficit;
1432 		if (size < READ_ONCE(up->forward_threshold) &&
1433 		    !skb_queue_empty(&up->reader_queue))
1434 			return;
1435 	} else {
1436 		size += up->forward_deficit;
1437 	}
1438 	up->forward_deficit = 0;
1439 
1440 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1441 	 * if the called don't held it already
1442 	 */
1443 	sk_queue = &sk->sk_receive_queue;
1444 	if (!rx_queue_lock_held)
1445 		spin_lock(&sk_queue->lock);
1446 
1447 
1448 	sk_forward_alloc_add(sk, size);
1449 	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1450 	sk_forward_alloc_add(sk, -amt);
1451 
1452 	if (amt)
1453 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1454 
1455 	atomic_sub(size, &sk->sk_rmem_alloc);
1456 
1457 	/* this can save us from acquiring the rx queue lock on next receive */
1458 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1459 
1460 	if (!rx_queue_lock_held)
1461 		spin_unlock(&sk_queue->lock);
1462 }
1463 
1464 /* Note: called with reader_queue.lock held.
1465  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1466  * This avoids a cache line miss while receive_queue lock is held.
1467  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1468  */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1469 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1470 {
1471 	prefetch(&skb->data);
1472 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1473 }
1474 EXPORT_SYMBOL(udp_skb_destructor);
1475 
1476 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1477 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1478 {
1479 	prefetch(&skb->data);
1480 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1481 }
1482 
1483 /* Idea of busylocks is to let producers grab an extra spinlock
1484  * to relieve pressure on the receive_queue spinlock shared by consumer.
1485  * Under flood, this means that only one producer can be in line
1486  * trying to acquire the receive_queue spinlock.
1487  * These busylock can be allocated on a per cpu manner, instead of a
1488  * per socket one (that would consume a cache line per socket)
1489  */
1490 static int udp_busylocks_log __read_mostly;
1491 static spinlock_t *udp_busylocks __read_mostly;
1492 
busylock_acquire(void * ptr)1493 static spinlock_t *busylock_acquire(void *ptr)
1494 {
1495 	spinlock_t *busy;
1496 
1497 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1498 	spin_lock(busy);
1499 	return busy;
1500 }
1501 
busylock_release(spinlock_t * busy)1502 static void busylock_release(spinlock_t *busy)
1503 {
1504 	if (busy)
1505 		spin_unlock(busy);
1506 }
1507 
udp_rmem_schedule(struct sock * sk,int size)1508 static int udp_rmem_schedule(struct sock *sk, int size)
1509 {
1510 	int delta;
1511 
1512 	delta = size - sk->sk_forward_alloc;
1513 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1514 		return -ENOBUFS;
1515 
1516 	return 0;
1517 }
1518 
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1519 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1520 {
1521 	struct sk_buff_head *list = &sk->sk_receive_queue;
1522 	int rmem, err = -ENOMEM;
1523 	spinlock_t *busy = NULL;
1524 	int size;
1525 
1526 	trace_android_vh_udp_enqueue_schedule_skb(sk, skb);
1527 
1528 	/* try to avoid the costly atomic add/sub pair when the receive
1529 	 * queue is full; always allow at least a packet
1530 	 */
1531 	rmem = atomic_read(&sk->sk_rmem_alloc);
1532 	if (rmem > sk->sk_rcvbuf)
1533 		goto drop;
1534 
1535 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1536 	 * having linear skbs :
1537 	 * - Reduce memory overhead and thus increase receive queue capacity
1538 	 * - Less cache line misses at copyout() time
1539 	 * - Less work at consume_skb() (less alien page frag freeing)
1540 	 */
1541 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1542 		skb_condense(skb);
1543 
1544 		busy = busylock_acquire(sk);
1545 	}
1546 	size = skb->truesize;
1547 	udp_set_dev_scratch(skb);
1548 
1549 	/* we drop only if the receive buf is full and the receive
1550 	 * queue contains some other skb
1551 	 */
1552 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1553 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1554 		goto uncharge_drop;
1555 
1556 	spin_lock(&list->lock);
1557 	err = udp_rmem_schedule(sk, size);
1558 	if (err) {
1559 		spin_unlock(&list->lock);
1560 		goto uncharge_drop;
1561 	}
1562 
1563 	sk_forward_alloc_add(sk, -size);
1564 
1565 	/* no need to setup a destructor, we will explicitly release the
1566 	 * forward allocated memory on dequeue
1567 	 */
1568 	sock_skb_set_dropcount(sk, skb);
1569 
1570 	__skb_queue_tail(list, skb);
1571 	spin_unlock(&list->lock);
1572 
1573 	if (!sock_flag(sk, SOCK_DEAD))
1574 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1575 
1576 	busylock_release(busy);
1577 	return 0;
1578 
1579 uncharge_drop:
1580 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1581 
1582 drop:
1583 	atomic_inc(&sk->sk_drops);
1584 	busylock_release(busy);
1585 	return err;
1586 }
1587 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1588 
udp_destruct_common(struct sock * sk)1589 void udp_destruct_common(struct sock *sk)
1590 {
1591 	/* reclaim completely the forward allocated memory */
1592 	struct udp_sock *up = udp_sk(sk);
1593 	unsigned int total = 0;
1594 	struct sk_buff *skb;
1595 
1596 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1597 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1598 		total += skb->truesize;
1599 		kfree_skb(skb);
1600 	}
1601 	udp_rmem_release(sk, total, 0, true);
1602 }
1603 EXPORT_SYMBOL_GPL(udp_destruct_common);
1604 
udp_destruct_sock(struct sock * sk)1605 static void udp_destruct_sock(struct sock *sk)
1606 {
1607 	udp_destruct_common(sk);
1608 	inet_sock_destruct(sk);
1609 }
1610 
udp_init_sock(struct sock * sk)1611 int udp_init_sock(struct sock *sk)
1612 {
1613 	udp_lib_init_sock(sk);
1614 	sk->sk_destruct = udp_destruct_sock;
1615 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1616 	return 0;
1617 }
1618 
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1619 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1620 {
1621 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1622 		bool slow = lock_sock_fast(sk);
1623 
1624 		sk_peek_offset_bwd(sk, len);
1625 		unlock_sock_fast(sk, slow);
1626 	}
1627 
1628 	if (!skb_unref(skb))
1629 		return;
1630 
1631 	/* In the more common cases we cleared the head states previously,
1632 	 * see __udp_queue_rcv_skb().
1633 	 */
1634 	if (unlikely(udp_skb_has_head_state(skb)))
1635 		skb_release_head_state(skb);
1636 	__consume_stateless_skb(skb);
1637 }
1638 EXPORT_SYMBOL_GPL(skb_consume_udp);
1639 
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1640 static struct sk_buff *__first_packet_length(struct sock *sk,
1641 					     struct sk_buff_head *rcvq,
1642 					     int *total)
1643 {
1644 	struct sk_buff *skb;
1645 
1646 	while ((skb = skb_peek(rcvq)) != NULL) {
1647 		if (udp_lib_checksum_complete(skb)) {
1648 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1649 					IS_UDPLITE(sk));
1650 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1651 					IS_UDPLITE(sk));
1652 			atomic_inc(&sk->sk_drops);
1653 			__skb_unlink(skb, rcvq);
1654 			*total += skb->truesize;
1655 			kfree_skb(skb);
1656 		} else {
1657 			udp_skb_csum_unnecessary_set(skb);
1658 			break;
1659 		}
1660 	}
1661 	return skb;
1662 }
1663 
1664 /**
1665  *	first_packet_length	- return length of first packet in receive queue
1666  *	@sk: socket
1667  *
1668  *	Drops all bad checksum frames, until a valid one is found.
1669  *	Returns the length of found skb, or -1 if none is found.
1670  */
first_packet_length(struct sock * sk)1671 static int first_packet_length(struct sock *sk)
1672 {
1673 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1674 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1675 	struct sk_buff *skb;
1676 	int total = 0;
1677 	int res;
1678 
1679 	spin_lock_bh(&rcvq->lock);
1680 	skb = __first_packet_length(sk, rcvq, &total);
1681 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1682 		spin_lock(&sk_queue->lock);
1683 		skb_queue_splice_tail_init(sk_queue, rcvq);
1684 		spin_unlock(&sk_queue->lock);
1685 
1686 		skb = __first_packet_length(sk, rcvq, &total);
1687 	}
1688 	res = skb ? skb->len : -1;
1689 	if (total)
1690 		udp_rmem_release(sk, total, 1, false);
1691 	spin_unlock_bh(&rcvq->lock);
1692 	return res;
1693 }
1694 
1695 /*
1696  *	IOCTL requests applicable to the UDP protocol
1697  */
1698 
udp_ioctl(struct sock * sk,int cmd,int * karg)1699 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1700 {
1701 	switch (cmd) {
1702 	case SIOCOUTQ:
1703 	{
1704 		*karg = sk_wmem_alloc_get(sk);
1705 		return 0;
1706 	}
1707 
1708 	case SIOCINQ:
1709 	{
1710 		*karg = max_t(int, 0, first_packet_length(sk));
1711 		return 0;
1712 	}
1713 
1714 	default:
1715 		return -ENOIOCTLCMD;
1716 	}
1717 
1718 	return 0;
1719 }
1720 EXPORT_SYMBOL(udp_ioctl);
1721 
__skb_recv_udp(struct sock * sk,unsigned int flags,int * off,int * err)1722 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1723 			       int *off, int *err)
1724 {
1725 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1726 	struct sk_buff_head *queue;
1727 	struct sk_buff *last;
1728 	long timeo;
1729 	int error;
1730 
1731 	queue = &udp_sk(sk)->reader_queue;
1732 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1733 	do {
1734 		struct sk_buff *skb;
1735 
1736 		error = sock_error(sk);
1737 		if (error)
1738 			break;
1739 
1740 		error = -EAGAIN;
1741 		do {
1742 			spin_lock_bh(&queue->lock);
1743 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1744 							err, &last);
1745 			if (skb) {
1746 				if (!(flags & MSG_PEEK))
1747 					udp_skb_destructor(sk, skb);
1748 				spin_unlock_bh(&queue->lock);
1749 				return skb;
1750 			}
1751 
1752 			if (skb_queue_empty_lockless(sk_queue)) {
1753 				spin_unlock_bh(&queue->lock);
1754 				goto busy_check;
1755 			}
1756 
1757 			/* refill the reader queue and walk it again
1758 			 * keep both queues locked to avoid re-acquiring
1759 			 * the sk_receive_queue lock if fwd memory scheduling
1760 			 * is needed.
1761 			 */
1762 			spin_lock(&sk_queue->lock);
1763 			skb_queue_splice_tail_init(sk_queue, queue);
1764 
1765 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1766 							err, &last);
1767 			if (skb && !(flags & MSG_PEEK))
1768 				udp_skb_dtor_locked(sk, skb);
1769 			spin_unlock(&sk_queue->lock);
1770 			spin_unlock_bh(&queue->lock);
1771 			if (skb)
1772 				return skb;
1773 
1774 busy_check:
1775 			if (!sk_can_busy_loop(sk))
1776 				break;
1777 
1778 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1779 		} while (!skb_queue_empty_lockless(sk_queue));
1780 
1781 		/* sk_queue is empty, reader_queue may contain peeked packets */
1782 	} while (timeo &&
1783 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1784 					      &error, &timeo,
1785 					      (struct sk_buff *)sk_queue));
1786 
1787 	*err = error;
1788 	return NULL;
1789 }
1790 EXPORT_SYMBOL(__skb_recv_udp);
1791 
udp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1792 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1793 {
1794 	struct sk_buff *skb;
1795 	int err;
1796 
1797 try_again:
1798 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1799 	if (!skb)
1800 		return err;
1801 
1802 	if (udp_lib_checksum_complete(skb)) {
1803 		int is_udplite = IS_UDPLITE(sk);
1804 		struct net *net = sock_net(sk);
1805 
1806 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1807 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1808 		atomic_inc(&sk->sk_drops);
1809 		kfree_skb(skb);
1810 		goto try_again;
1811 	}
1812 
1813 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1814 	return recv_actor(sk, skb);
1815 }
1816 EXPORT_SYMBOL(udp_read_skb);
1817 
1818 /*
1819  * 	This should be easy, if there is something there we
1820  * 	return it, otherwise we block.
1821  */
1822 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1823 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1824 		int *addr_len)
1825 {
1826 	struct inet_sock *inet = inet_sk(sk);
1827 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1828 	struct sk_buff *skb;
1829 	unsigned int ulen, copied;
1830 	int off, err, peeking = flags & MSG_PEEK;
1831 	int is_udplite = IS_UDPLITE(sk);
1832 	bool checksum_valid = false;
1833 
1834 	if (flags & MSG_ERRQUEUE)
1835 		return ip_recv_error(sk, msg, len, addr_len);
1836 
1837 try_again:
1838 	off = sk_peek_offset(sk, flags);
1839 	skb = __skb_recv_udp(sk, flags, &off, &err);
1840 	if (!skb)
1841 		return err;
1842 
1843 	ulen = udp_skb_len(skb);
1844 	copied = len;
1845 	if (copied > ulen - off)
1846 		copied = ulen - off;
1847 	else if (copied < ulen)
1848 		msg->msg_flags |= MSG_TRUNC;
1849 
1850 	/*
1851 	 * If checksum is needed at all, try to do it while copying the
1852 	 * data.  If the data is truncated, or if we only want a partial
1853 	 * coverage checksum (UDP-Lite), do it before the copy.
1854 	 */
1855 
1856 	if (copied < ulen || peeking ||
1857 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1858 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1859 				!__udp_lib_checksum_complete(skb);
1860 		if (!checksum_valid)
1861 			goto csum_copy_err;
1862 	}
1863 
1864 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1865 		if (udp_skb_is_linear(skb))
1866 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1867 		else
1868 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1869 	} else {
1870 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1871 
1872 		if (err == -EINVAL)
1873 			goto csum_copy_err;
1874 	}
1875 
1876 	if (unlikely(err)) {
1877 		if (!peeking) {
1878 			atomic_inc(&sk->sk_drops);
1879 			UDP_INC_STATS(sock_net(sk),
1880 				      UDP_MIB_INERRORS, is_udplite);
1881 		}
1882 		kfree_skb(skb);
1883 		return err;
1884 	}
1885 
1886 	if (!peeking)
1887 		UDP_INC_STATS(sock_net(sk),
1888 			      UDP_MIB_INDATAGRAMS, is_udplite);
1889 
1890 	sock_recv_cmsgs(msg, sk, skb);
1891 
1892 	/* Copy the address. */
1893 	if (sin) {
1894 		sin->sin_family = AF_INET;
1895 		sin->sin_port = udp_hdr(skb)->source;
1896 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1897 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1898 		*addr_len = sizeof(*sin);
1899 
1900 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1901 						      (struct sockaddr *)sin,
1902 						      addr_len);
1903 	}
1904 
1905 	if (udp_test_bit(GRO_ENABLED, sk))
1906 		udp_cmsg_recv(msg, sk, skb);
1907 
1908 	if (inet_cmsg_flags(inet))
1909 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1910 
1911 	err = copied;
1912 	if (flags & MSG_TRUNC)
1913 		err = ulen;
1914 
1915 	trace_android_rvh_udp_recvmsg(sk, msg, len, flags, addr_len);
1916 
1917 	skb_consume_udp(sk, skb, peeking ? -err : err);
1918 	return err;
1919 
1920 csum_copy_err:
1921 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1922 				 udp_skb_destructor)) {
1923 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1924 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1925 	}
1926 	kfree_skb(skb);
1927 
1928 	/* starting over for a new packet, but check if we need to yield */
1929 	cond_resched();
1930 	msg->msg_flags &= ~MSG_TRUNC;
1931 	goto try_again;
1932 }
1933 
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1934 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1935 {
1936 	/* This check is replicated from __ip4_datagram_connect() and
1937 	 * intended to prevent BPF program called below from accessing bytes
1938 	 * that are out of the bound specified by user in addr_len.
1939 	 */
1940 	if (addr_len < sizeof(struct sockaddr_in))
1941 		return -EINVAL;
1942 
1943 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1944 }
1945 EXPORT_SYMBOL(udp_pre_connect);
1946 
__udp_disconnect(struct sock * sk,int flags)1947 int __udp_disconnect(struct sock *sk, int flags)
1948 {
1949 	struct inet_sock *inet = inet_sk(sk);
1950 	/*
1951 	 *	1003.1g - break association.
1952 	 */
1953 
1954 	sk->sk_state = TCP_CLOSE;
1955 	inet->inet_daddr = 0;
1956 	inet->inet_dport = 0;
1957 	sock_rps_reset_rxhash(sk);
1958 	sk->sk_bound_dev_if = 0;
1959 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1960 		inet_reset_saddr(sk);
1961 		if (sk->sk_prot->rehash &&
1962 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1963 			sk->sk_prot->rehash(sk);
1964 	}
1965 
1966 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1967 		sk->sk_prot->unhash(sk);
1968 		inet->inet_sport = 0;
1969 	}
1970 	sk_dst_reset(sk);
1971 	return 0;
1972 }
1973 EXPORT_SYMBOL(__udp_disconnect);
1974 
udp_disconnect(struct sock * sk,int flags)1975 int udp_disconnect(struct sock *sk, int flags)
1976 {
1977 	lock_sock(sk);
1978 	__udp_disconnect(sk, flags);
1979 	release_sock(sk);
1980 	return 0;
1981 }
1982 EXPORT_SYMBOL(udp_disconnect);
1983 
udp_lib_unhash(struct sock * sk)1984 void udp_lib_unhash(struct sock *sk)
1985 {
1986 	if (sk_hashed(sk)) {
1987 		struct udp_table *udptable = udp_get_table_prot(sk);
1988 		struct udp_hslot *hslot, *hslot2;
1989 
1990 		hslot  = udp_hashslot(udptable, sock_net(sk),
1991 				      udp_sk(sk)->udp_port_hash);
1992 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1993 
1994 		spin_lock_bh(&hslot->lock);
1995 		if (rcu_access_pointer(sk->sk_reuseport_cb))
1996 			reuseport_detach_sock(sk);
1997 		if (sk_del_node_init_rcu(sk)) {
1998 			hslot->count--;
1999 			inet_sk(sk)->inet_num = 0;
2000 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2001 
2002 			spin_lock(&hslot2->lock);
2003 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2004 			hslot2->count--;
2005 			spin_unlock(&hslot2->lock);
2006 		}
2007 		spin_unlock_bh(&hslot->lock);
2008 	}
2009 }
2010 EXPORT_SYMBOL(udp_lib_unhash);
2011 
2012 /*
2013  * inet_rcv_saddr was changed, we must rehash secondary hash
2014  */
udp_lib_rehash(struct sock * sk,u16 newhash)2015 void udp_lib_rehash(struct sock *sk, u16 newhash)
2016 {
2017 	if (sk_hashed(sk)) {
2018 		struct udp_table *udptable = udp_get_table_prot(sk);
2019 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2020 
2021 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2022 		nhslot2 = udp_hashslot2(udptable, newhash);
2023 		udp_sk(sk)->udp_portaddr_hash = newhash;
2024 
2025 		if (hslot2 != nhslot2 ||
2026 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2027 			hslot = udp_hashslot(udptable, sock_net(sk),
2028 					     udp_sk(sk)->udp_port_hash);
2029 			/* we must lock primary chain too */
2030 			spin_lock_bh(&hslot->lock);
2031 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2032 				reuseport_detach_sock(sk);
2033 
2034 			if (hslot2 != nhslot2) {
2035 				spin_lock(&hslot2->lock);
2036 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2037 				hslot2->count--;
2038 				spin_unlock(&hslot2->lock);
2039 
2040 				spin_lock(&nhslot2->lock);
2041 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2042 							 &nhslot2->head);
2043 				nhslot2->count++;
2044 				spin_unlock(&nhslot2->lock);
2045 			}
2046 
2047 			spin_unlock_bh(&hslot->lock);
2048 		}
2049 	}
2050 }
2051 EXPORT_SYMBOL(udp_lib_rehash);
2052 
udp_v4_rehash(struct sock * sk)2053 void udp_v4_rehash(struct sock *sk)
2054 {
2055 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2056 					  inet_sk(sk)->inet_rcv_saddr,
2057 					  inet_sk(sk)->inet_num);
2058 	udp_lib_rehash(sk, new_hash);
2059 }
2060 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2061 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2062 {
2063 	int rc;
2064 
2065 	if (inet_sk(sk)->inet_daddr) {
2066 		sock_rps_save_rxhash(sk, skb);
2067 		sk_mark_napi_id(sk, skb);
2068 		sk_incoming_cpu_update(sk);
2069 	} else {
2070 		sk_mark_napi_id_once(sk, skb);
2071 	}
2072 
2073 	rc = __udp_enqueue_schedule_skb(sk, skb);
2074 	if (rc < 0) {
2075 		int is_udplite = IS_UDPLITE(sk);
2076 		int drop_reason;
2077 
2078 		/* Note that an ENOMEM error is charged twice */
2079 		if (rc == -ENOMEM) {
2080 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2081 					is_udplite);
2082 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2083 		} else {
2084 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2085 				      is_udplite);
2086 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2087 		}
2088 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2089 		kfree_skb_reason(skb, drop_reason);
2090 		trace_udp_fail_queue_rcv_skb(rc, sk);
2091 		return -1;
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 /* returns:
2098  *  -1: error
2099  *   0: success
2100  *  >0: "udp encap" protocol resubmission
2101  *
2102  * Note that in the success and error cases, the skb is assumed to
2103  * have either been requeued or freed.
2104  */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2105 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2106 {
2107 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2108 	struct udp_sock *up = udp_sk(sk);
2109 	int is_udplite = IS_UDPLITE(sk);
2110 
2111 	/*
2112 	 *	Charge it to the socket, dropping if the queue is full.
2113 	 */
2114 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2115 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2116 		goto drop;
2117 	}
2118 	nf_reset_ct(skb);
2119 
2120 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2121 	    READ_ONCE(up->encap_type)) {
2122 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2123 
2124 		/*
2125 		 * This is an encapsulation socket so pass the skb to
2126 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2127 		 * fall through and pass this up the UDP socket.
2128 		 * up->encap_rcv() returns the following value:
2129 		 * =0 if skb was successfully passed to the encap
2130 		 *    handler or was discarded by it.
2131 		 * >0 if skb should be passed on to UDP.
2132 		 * <0 if skb should be resubmitted as proto -N
2133 		 */
2134 
2135 		/* if we're overly short, let UDP handle it */
2136 		encap_rcv = READ_ONCE(up->encap_rcv);
2137 		if (encap_rcv) {
2138 			int ret;
2139 
2140 			/* Verify checksum before giving to encap */
2141 			if (udp_lib_checksum_complete(skb))
2142 				goto csum_error;
2143 
2144 			ret = encap_rcv(sk, skb);
2145 			if (ret <= 0) {
2146 				__UDP_INC_STATS(sock_net(sk),
2147 						UDP_MIB_INDATAGRAMS,
2148 						is_udplite);
2149 				return -ret;
2150 			}
2151 		}
2152 
2153 		/* FALLTHROUGH -- it's a UDP Packet */
2154 	}
2155 
2156 	/*
2157 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2158 	 */
2159 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2160 		u16 pcrlen = READ_ONCE(up->pcrlen);
2161 
2162 		/*
2163 		 * MIB statistics other than incrementing the error count are
2164 		 * disabled for the following two types of errors: these depend
2165 		 * on the application settings, not on the functioning of the
2166 		 * protocol stack as such.
2167 		 *
2168 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2169 		 * way ... to ... at least let the receiving application block
2170 		 * delivery of packets with coverage values less than a value
2171 		 * provided by the application."
2172 		 */
2173 		if (pcrlen == 0) {          /* full coverage was set  */
2174 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2175 					    UDP_SKB_CB(skb)->cscov, skb->len);
2176 			goto drop;
2177 		}
2178 		/* The next case involves violating the min. coverage requested
2179 		 * by the receiver. This is subtle: if receiver wants x and x is
2180 		 * greater than the buffersize/MTU then receiver will complain
2181 		 * that it wants x while sender emits packets of smaller size y.
2182 		 * Therefore the above ...()->partial_cov statement is essential.
2183 		 */
2184 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2185 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2186 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2187 			goto drop;
2188 		}
2189 	}
2190 
2191 	prefetch(&sk->sk_rmem_alloc);
2192 	if (rcu_access_pointer(sk->sk_filter) &&
2193 	    udp_lib_checksum_complete(skb))
2194 			goto csum_error;
2195 
2196 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2197 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2198 		goto drop;
2199 	}
2200 
2201 	udp_csum_pull_header(skb);
2202 
2203 	ipv4_pktinfo_prepare(sk, skb, true);
2204 	return __udp_queue_rcv_skb(sk, skb);
2205 
2206 csum_error:
2207 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2208 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2209 drop:
2210 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2211 	atomic_inc(&sk->sk_drops);
2212 	kfree_skb_reason(skb, drop_reason);
2213 	return -1;
2214 }
2215 
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2216 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2217 {
2218 	struct sk_buff *next, *segs;
2219 	int ret;
2220 
2221 	if (likely(!udp_unexpected_gso(sk, skb)))
2222 		return udp_queue_rcv_one_skb(sk, skb);
2223 
2224 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2225 	__skb_push(skb, -skb_mac_offset(skb));
2226 	segs = udp_rcv_segment(sk, skb, true);
2227 	skb_list_walk_safe(segs, skb, next) {
2228 		__skb_pull(skb, skb_transport_offset(skb));
2229 
2230 		udp_post_segment_fix_csum(skb);
2231 		ret = udp_queue_rcv_one_skb(sk, skb);
2232 		if (ret > 0)
2233 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2234 	}
2235 	return 0;
2236 }
2237 
2238 /* For TCP sockets, sk_rx_dst is protected by socket lock
2239  * For UDP, we use xchg() to guard against concurrent changes.
2240  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2241 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2242 {
2243 	struct dst_entry *old;
2244 
2245 	if (dst_hold_safe(dst)) {
2246 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2247 		dst_release(old);
2248 		return old != dst;
2249 	}
2250 	return false;
2251 }
2252 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2253 
2254 /*
2255  *	Multicasts and broadcasts go to each listener.
2256  *
2257  *	Note: called only from the BH handler context.
2258  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2259 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2260 				    struct udphdr  *uh,
2261 				    __be32 saddr, __be32 daddr,
2262 				    struct udp_table *udptable,
2263 				    int proto)
2264 {
2265 	struct sock *sk, *first = NULL;
2266 	unsigned short hnum = ntohs(uh->dest);
2267 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2268 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2269 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2270 	int dif = skb->dev->ifindex;
2271 	int sdif = inet_sdif(skb);
2272 	struct hlist_node *node;
2273 	struct sk_buff *nskb;
2274 
2275 	if (use_hash2) {
2276 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2277 			    udptable->mask;
2278 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2279 start_lookup:
2280 		hslot = &udptable->hash2[hash2];
2281 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2282 	}
2283 
2284 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2285 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2286 					 uh->source, saddr, dif, sdif, hnum))
2287 			continue;
2288 
2289 		if (!first) {
2290 			first = sk;
2291 			continue;
2292 		}
2293 		nskb = skb_clone(skb, GFP_ATOMIC);
2294 
2295 		if (unlikely(!nskb)) {
2296 			atomic_inc(&sk->sk_drops);
2297 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2298 					IS_UDPLITE(sk));
2299 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2300 					IS_UDPLITE(sk));
2301 			continue;
2302 		}
2303 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2304 			consume_skb(nskb);
2305 	}
2306 
2307 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2308 	if (use_hash2 && hash2 != hash2_any) {
2309 		hash2 = hash2_any;
2310 		goto start_lookup;
2311 	}
2312 
2313 	if (first) {
2314 		if (udp_queue_rcv_skb(first, skb) > 0)
2315 			consume_skb(skb);
2316 	} else {
2317 		kfree_skb(skb);
2318 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2319 				proto == IPPROTO_UDPLITE);
2320 	}
2321 	return 0;
2322 }
2323 
2324 /* Initialize UDP checksum. If exited with zero value (success),
2325  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2326  * Otherwise, csum completion requires checksumming packet body,
2327  * including udp header and folding it to skb->csum.
2328  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2329 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2330 				 int proto)
2331 {
2332 	int err;
2333 
2334 	UDP_SKB_CB(skb)->partial_cov = 0;
2335 	UDP_SKB_CB(skb)->cscov = skb->len;
2336 
2337 	if (proto == IPPROTO_UDPLITE) {
2338 		err = udplite_checksum_init(skb, uh);
2339 		if (err)
2340 			return err;
2341 
2342 		if (UDP_SKB_CB(skb)->partial_cov) {
2343 			skb->csum = inet_compute_pseudo(skb, proto);
2344 			return 0;
2345 		}
2346 	}
2347 
2348 	/* Note, we are only interested in != 0 or == 0, thus the
2349 	 * force to int.
2350 	 */
2351 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2352 							inet_compute_pseudo);
2353 	if (err)
2354 		return err;
2355 
2356 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2357 		/* If SW calculated the value, we know it's bad */
2358 		if (skb->csum_complete_sw)
2359 			return 1;
2360 
2361 		/* HW says the value is bad. Let's validate that.
2362 		 * skb->csum is no longer the full packet checksum,
2363 		 * so don't treat it as such.
2364 		 */
2365 		skb_checksum_complete_unset(skb);
2366 	}
2367 
2368 	return 0;
2369 }
2370 
2371 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2372  * return code conversion for ip layer consumption
2373  */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2374 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2375 			       struct udphdr *uh)
2376 {
2377 	int ret;
2378 
2379 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2380 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2381 
2382 	ret = udp_queue_rcv_skb(sk, skb);
2383 
2384 	/* a return value > 0 means to resubmit the input, but
2385 	 * it wants the return to be -protocol, or 0
2386 	 */
2387 	if (ret > 0)
2388 		return -ret;
2389 	return 0;
2390 }
2391 
2392 /*
2393  *	All we need to do is get the socket, and then do a checksum.
2394  */
2395 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2396 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2397 		   int proto)
2398 {
2399 	struct sock *sk;
2400 	struct udphdr *uh;
2401 	unsigned short ulen;
2402 	struct rtable *rt = skb_rtable(skb);
2403 	__be32 saddr, daddr;
2404 	struct net *net = dev_net(skb->dev);
2405 	bool refcounted;
2406 	int drop_reason;
2407 
2408 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2409 
2410 	/*
2411 	 *  Validate the packet.
2412 	 */
2413 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2414 		goto drop;		/* No space for header. */
2415 
2416 	uh   = udp_hdr(skb);
2417 	ulen = ntohs(uh->len);
2418 	saddr = ip_hdr(skb)->saddr;
2419 	daddr = ip_hdr(skb)->daddr;
2420 
2421 	if (ulen > skb->len)
2422 		goto short_packet;
2423 
2424 	if (proto == IPPROTO_UDP) {
2425 		/* UDP validates ulen. */
2426 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2427 			goto short_packet;
2428 		uh = udp_hdr(skb);
2429 	}
2430 
2431 	if (udp4_csum_init(skb, uh, proto))
2432 		goto csum_error;
2433 
2434 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2435 			     &refcounted, udp_ehashfn);
2436 	if (IS_ERR(sk))
2437 		goto no_sk;
2438 
2439 	if (sk) {
2440 		struct dst_entry *dst = skb_dst(skb);
2441 		int ret;
2442 
2443 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2444 			udp_sk_rx_dst_set(sk, dst);
2445 
2446 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2447 		if (refcounted)
2448 			sock_put(sk);
2449 		return ret;
2450 	}
2451 
2452 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2453 		return __udp4_lib_mcast_deliver(net, skb, uh,
2454 						saddr, daddr, udptable, proto);
2455 
2456 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2457 	if (sk)
2458 		return udp_unicast_rcv_skb(sk, skb, uh);
2459 no_sk:
2460 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2461 		goto drop;
2462 	nf_reset_ct(skb);
2463 
2464 	/* No socket. Drop packet silently, if checksum is wrong */
2465 	if (udp_lib_checksum_complete(skb))
2466 		goto csum_error;
2467 
2468 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2469 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2470 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2471 
2472 	/*
2473 	 * Hmm.  We got an UDP packet to a port to which we
2474 	 * don't wanna listen.  Ignore it.
2475 	 */
2476 	kfree_skb_reason(skb, drop_reason);
2477 	return 0;
2478 
2479 short_packet:
2480 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2481 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2482 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2483 			    &saddr, ntohs(uh->source),
2484 			    ulen, skb->len,
2485 			    &daddr, ntohs(uh->dest));
2486 	goto drop;
2487 
2488 csum_error:
2489 	/*
2490 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2491 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2492 	 */
2493 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2494 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2495 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2496 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2497 			    ulen);
2498 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2499 drop:
2500 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2501 	kfree_skb_reason(skb, drop_reason);
2502 	return 0;
2503 }
2504 
2505 /* We can only early demux multicast if there is a single matching socket.
2506  * If more than one socket found returns NULL
2507  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2508 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2509 						  __be16 loc_port, __be32 loc_addr,
2510 						  __be16 rmt_port, __be32 rmt_addr,
2511 						  int dif, int sdif)
2512 {
2513 	struct udp_table *udptable = net->ipv4.udp_table;
2514 	unsigned short hnum = ntohs(loc_port);
2515 	struct sock *sk, *result;
2516 	struct udp_hslot *hslot;
2517 	unsigned int slot;
2518 
2519 	slot = udp_hashfn(net, hnum, udptable->mask);
2520 	hslot = &udptable->hash[slot];
2521 
2522 	/* Do not bother scanning a too big list */
2523 	if (hslot->count > 10)
2524 		return NULL;
2525 
2526 	result = NULL;
2527 	sk_for_each_rcu(sk, &hslot->head) {
2528 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2529 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2530 			if (result)
2531 				return NULL;
2532 			result = sk;
2533 		}
2534 	}
2535 
2536 	return result;
2537 }
2538 
2539 /* For unicast we should only early demux connected sockets or we can
2540  * break forwarding setups.  The chains here can be long so only check
2541  * if the first socket is an exact match and if not move on.
2542  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2543 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2544 					    __be16 loc_port, __be32 loc_addr,
2545 					    __be16 rmt_port, __be32 rmt_addr,
2546 					    int dif, int sdif)
2547 {
2548 	struct udp_table *udptable = net->ipv4.udp_table;
2549 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2550 	unsigned short hnum = ntohs(loc_port);
2551 	unsigned int hash2, slot2;
2552 	struct udp_hslot *hslot2;
2553 	__portpair ports;
2554 	struct sock *sk;
2555 
2556 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2557 	slot2 = hash2 & udptable->mask;
2558 	hslot2 = &udptable->hash2[slot2];
2559 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2560 
2561 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2562 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2563 			return sk;
2564 		/* Only check first socket in chain */
2565 		break;
2566 	}
2567 	return NULL;
2568 }
2569 
udp_v4_early_demux(struct sk_buff * skb)2570 int udp_v4_early_demux(struct sk_buff *skb)
2571 {
2572 	struct net *net = dev_net(skb->dev);
2573 	struct in_device *in_dev = NULL;
2574 	const struct iphdr *iph;
2575 	const struct udphdr *uh;
2576 	struct sock *sk = NULL;
2577 	struct dst_entry *dst;
2578 	int dif = skb->dev->ifindex;
2579 	int sdif = inet_sdif(skb);
2580 	int ours;
2581 
2582 	/* validate the packet */
2583 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2584 		return 0;
2585 
2586 	iph = ip_hdr(skb);
2587 	uh = udp_hdr(skb);
2588 
2589 	if (skb->pkt_type == PACKET_MULTICAST) {
2590 		in_dev = __in_dev_get_rcu(skb->dev);
2591 
2592 		if (!in_dev)
2593 			return 0;
2594 
2595 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2596 				       iph->protocol);
2597 		if (!ours)
2598 			return 0;
2599 
2600 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2601 						   uh->source, iph->saddr,
2602 						   dif, sdif);
2603 	} else if (skb->pkt_type == PACKET_HOST) {
2604 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2605 					     uh->source, iph->saddr, dif, sdif);
2606 	}
2607 
2608 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2609 		return 0;
2610 
2611 	skb->sk = sk;
2612 	skb->destructor = sock_efree;
2613 	dst = rcu_dereference(sk->sk_rx_dst);
2614 
2615 	if (dst)
2616 		dst = dst_check(dst, 0);
2617 	if (dst) {
2618 		u32 itag = 0;
2619 
2620 		/* set noref for now.
2621 		 * any place which wants to hold dst has to call
2622 		 * dst_hold_safe()
2623 		 */
2624 		skb_dst_set_noref(skb, dst);
2625 
2626 		/* for unconnected multicast sockets we need to validate
2627 		 * the source on each packet
2628 		 */
2629 		if (!inet_sk(sk)->inet_daddr && in_dev)
2630 			return ip_mc_validate_source(skb, iph->daddr,
2631 						     iph->saddr,
2632 						     iph->tos & IPTOS_RT_MASK,
2633 						     skb->dev, in_dev, &itag);
2634 	}
2635 	return 0;
2636 }
2637 
udp_rcv(struct sk_buff * skb)2638 int udp_rcv(struct sk_buff *skb)
2639 {
2640 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2641 }
2642 
udp_destroy_sock(struct sock * sk)2643 void udp_destroy_sock(struct sock *sk)
2644 {
2645 	struct udp_sock *up = udp_sk(sk);
2646 	bool slow = lock_sock_fast(sk);
2647 
2648 	/* protects from races with udp_abort() */
2649 	sock_set_flag(sk, SOCK_DEAD);
2650 	udp_flush_pending_frames(sk);
2651 	unlock_sock_fast(sk, slow);
2652 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2653 		if (up->encap_type) {
2654 			void (*encap_destroy)(struct sock *sk);
2655 			encap_destroy = READ_ONCE(up->encap_destroy);
2656 			if (encap_destroy)
2657 				encap_destroy(sk);
2658 		}
2659 		if (udp_test_bit(ENCAP_ENABLED, sk))
2660 			static_branch_dec(&udp_encap_needed_key);
2661 	}
2662 }
2663 
2664 /*
2665  *	Socket option code for UDP
2666  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2667 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2668 		       sockptr_t optval, unsigned int optlen,
2669 		       int (*push_pending_frames)(struct sock *))
2670 {
2671 	struct udp_sock *up = udp_sk(sk);
2672 	int val, valbool;
2673 	int err = 0;
2674 	int is_udplite = IS_UDPLITE(sk);
2675 
2676 	if (level == SOL_SOCKET) {
2677 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2678 
2679 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2680 			sockopt_lock_sock(sk);
2681 			/* paired with READ_ONCE in udp_rmem_release() */
2682 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2683 			sockopt_release_sock(sk);
2684 		}
2685 		return err;
2686 	}
2687 
2688 	if (optlen < sizeof(int))
2689 		return -EINVAL;
2690 
2691 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2692 		return -EFAULT;
2693 
2694 	valbool = val ? 1 : 0;
2695 
2696 	switch (optname) {
2697 	case UDP_CORK:
2698 		if (val != 0) {
2699 			udp_set_bit(CORK, sk);
2700 		} else {
2701 			udp_clear_bit(CORK, sk);
2702 			lock_sock(sk);
2703 			push_pending_frames(sk);
2704 			release_sock(sk);
2705 		}
2706 		break;
2707 
2708 	case UDP_ENCAP:
2709 		switch (val) {
2710 		case 0:
2711 #ifdef CONFIG_XFRM
2712 		case UDP_ENCAP_ESPINUDP:
2713 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2714 #if IS_ENABLED(CONFIG_IPV6)
2715 			if (sk->sk_family == AF_INET6)
2716 				WRITE_ONCE(up->encap_rcv,
2717 					   ipv6_stub->xfrm6_udp_encap_rcv);
2718 			else
2719 #endif
2720 				WRITE_ONCE(up->encap_rcv,
2721 					   xfrm4_udp_encap_rcv);
2722 #endif
2723 			fallthrough;
2724 		case UDP_ENCAP_L2TPINUDP:
2725 			WRITE_ONCE(up->encap_type, val);
2726 			udp_tunnel_encap_enable(sk);
2727 			break;
2728 		default:
2729 			err = -ENOPROTOOPT;
2730 			break;
2731 		}
2732 		break;
2733 
2734 	case UDP_NO_CHECK6_TX:
2735 		udp_set_no_check6_tx(sk, valbool);
2736 		break;
2737 
2738 	case UDP_NO_CHECK6_RX:
2739 		udp_set_no_check6_rx(sk, valbool);
2740 		break;
2741 
2742 	case UDP_SEGMENT:
2743 		if (val < 0 || val > USHRT_MAX)
2744 			return -EINVAL;
2745 		WRITE_ONCE(up->gso_size, val);
2746 		break;
2747 
2748 	case UDP_GRO:
2749 
2750 		/* when enabling GRO, accept the related GSO packet type */
2751 		if (valbool)
2752 			udp_tunnel_encap_enable(sk);
2753 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2754 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2755 		break;
2756 
2757 	/*
2758 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2759 	 */
2760 	/* The sender sets actual checksum coverage length via this option.
2761 	 * The case coverage > packet length is handled by send module. */
2762 	case UDPLITE_SEND_CSCOV:
2763 		if (!is_udplite)         /* Disable the option on UDP sockets */
2764 			return -ENOPROTOOPT;
2765 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2766 			val = 8;
2767 		else if (val > USHRT_MAX)
2768 			val = USHRT_MAX;
2769 		WRITE_ONCE(up->pcslen, val);
2770 		udp_set_bit(UDPLITE_SEND_CC, sk);
2771 		break;
2772 
2773 	/* The receiver specifies a minimum checksum coverage value. To make
2774 	 * sense, this should be set to at least 8 (as done below). If zero is
2775 	 * used, this again means full checksum coverage.                     */
2776 	case UDPLITE_RECV_CSCOV:
2777 		if (!is_udplite)         /* Disable the option on UDP sockets */
2778 			return -ENOPROTOOPT;
2779 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2780 			val = 8;
2781 		else if (val > USHRT_MAX)
2782 			val = USHRT_MAX;
2783 		WRITE_ONCE(up->pcrlen, val);
2784 		udp_set_bit(UDPLITE_RECV_CC, sk);
2785 		break;
2786 
2787 	default:
2788 		err = -ENOPROTOOPT;
2789 		break;
2790 	}
2791 
2792 	return err;
2793 }
2794 EXPORT_SYMBOL(udp_lib_setsockopt);
2795 
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2796 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2797 		   unsigned int optlen)
2798 {
2799 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2800 		return udp_lib_setsockopt(sk, level, optname,
2801 					  optval, optlen,
2802 					  udp_push_pending_frames);
2803 	return ip_setsockopt(sk, level, optname, optval, optlen);
2804 }
2805 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2806 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2807 		       char __user *optval, int __user *optlen)
2808 {
2809 	struct udp_sock *up = udp_sk(sk);
2810 	int val, len;
2811 
2812 	if (get_user(len, optlen))
2813 		return -EFAULT;
2814 
2815 	if (len < 0)
2816 		return -EINVAL;
2817 
2818 	len = min_t(unsigned int, len, sizeof(int));
2819 
2820 	switch (optname) {
2821 	case UDP_CORK:
2822 		val = udp_test_bit(CORK, sk);
2823 		break;
2824 
2825 	case UDP_ENCAP:
2826 		val = READ_ONCE(up->encap_type);
2827 		break;
2828 
2829 	case UDP_NO_CHECK6_TX:
2830 		val = udp_get_no_check6_tx(sk);
2831 		break;
2832 
2833 	case UDP_NO_CHECK6_RX:
2834 		val = udp_get_no_check6_rx(sk);
2835 		break;
2836 
2837 	case UDP_SEGMENT:
2838 		val = READ_ONCE(up->gso_size);
2839 		break;
2840 
2841 	case UDP_GRO:
2842 		val = udp_test_bit(GRO_ENABLED, sk);
2843 		break;
2844 
2845 	/* The following two cannot be changed on UDP sockets, the return is
2846 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2847 	case UDPLITE_SEND_CSCOV:
2848 		val = READ_ONCE(up->pcslen);
2849 		break;
2850 
2851 	case UDPLITE_RECV_CSCOV:
2852 		val = READ_ONCE(up->pcrlen);
2853 		break;
2854 
2855 	default:
2856 		return -ENOPROTOOPT;
2857 	}
2858 
2859 	if (put_user(len, optlen))
2860 		return -EFAULT;
2861 	if (copy_to_user(optval, &val, len))
2862 		return -EFAULT;
2863 	return 0;
2864 }
2865 EXPORT_SYMBOL(udp_lib_getsockopt);
2866 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2867 int udp_getsockopt(struct sock *sk, int level, int optname,
2868 		   char __user *optval, int __user *optlen)
2869 {
2870 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2871 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2872 	return ip_getsockopt(sk, level, optname, optval, optlen);
2873 }
2874 
2875 /**
2876  * 	udp_poll - wait for a UDP event.
2877  *	@file: - file struct
2878  *	@sock: - socket
2879  *	@wait: - poll table
2880  *
2881  *	This is same as datagram poll, except for the special case of
2882  *	blocking sockets. If application is using a blocking fd
2883  *	and a packet with checksum error is in the queue;
2884  *	then it could get return from select indicating data available
2885  *	but then block when reading it. Add special case code
2886  *	to work around these arguably broken applications.
2887  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2888 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2889 {
2890 	__poll_t mask = datagram_poll(file, sock, wait);
2891 	struct sock *sk = sock->sk;
2892 
2893 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2894 		mask |= EPOLLIN | EPOLLRDNORM;
2895 
2896 	/* Check for false positives due to checksum errors */
2897 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2898 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2899 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2900 
2901 	/* psock ingress_msg queue should not contain any bad checksum frames */
2902 	if (sk_is_readable(sk))
2903 		mask |= EPOLLIN | EPOLLRDNORM;
2904 	return mask;
2905 
2906 }
2907 EXPORT_SYMBOL(udp_poll);
2908 
udp_abort(struct sock * sk,int err)2909 int udp_abort(struct sock *sk, int err)
2910 {
2911 	if (!has_current_bpf_ctx())
2912 		lock_sock(sk);
2913 
2914 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2915 	 * with close()
2916 	 */
2917 	if (sock_flag(sk, SOCK_DEAD))
2918 		goto out;
2919 
2920 	sk->sk_err = err;
2921 	sk_error_report(sk);
2922 	__udp_disconnect(sk, 0);
2923 
2924 out:
2925 	if (!has_current_bpf_ctx())
2926 		release_sock(sk);
2927 
2928 	return 0;
2929 }
2930 EXPORT_SYMBOL_GPL(udp_abort);
2931 
2932 struct proto udp_prot = {
2933 	.name			= "UDP",
2934 	.owner			= THIS_MODULE,
2935 	.close			= udp_lib_close,
2936 	.pre_connect		= udp_pre_connect,
2937 	.connect		= ip4_datagram_connect,
2938 	.disconnect		= udp_disconnect,
2939 	.ioctl			= udp_ioctl,
2940 	.init			= udp_init_sock,
2941 	.destroy		= udp_destroy_sock,
2942 	.setsockopt		= udp_setsockopt,
2943 	.getsockopt		= udp_getsockopt,
2944 	.sendmsg		= udp_sendmsg,
2945 	.recvmsg		= udp_recvmsg,
2946 	.splice_eof		= udp_splice_eof,
2947 	.release_cb		= ip4_datagram_release_cb,
2948 	.hash			= udp_lib_hash,
2949 	.unhash			= udp_lib_unhash,
2950 	.rehash			= udp_v4_rehash,
2951 	.get_port		= udp_v4_get_port,
2952 	.put_port		= udp_lib_unhash,
2953 #ifdef CONFIG_BPF_SYSCALL
2954 	.psock_update_sk_prot	= udp_bpf_update_proto,
2955 #endif
2956 	.memory_allocated	= &udp_memory_allocated,
2957 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2958 
2959 	.sysctl_mem		= sysctl_udp_mem,
2960 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2961 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2962 	.obj_size		= sizeof(struct udp_sock),
2963 	.h.udp_table		= NULL,
2964 	.diag_destroy		= udp_abort,
2965 };
2966 EXPORT_SYMBOL(udp_prot);
2967 
2968 /* ------------------------------------------------------------------------ */
2969 #ifdef CONFIG_PROC_FS
2970 
2971 static unsigned short seq_file_family(const struct seq_file *seq);
seq_sk_match(struct seq_file * seq,const struct sock * sk)2972 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2973 {
2974 	unsigned short family = seq_file_family(seq);
2975 
2976 	/* AF_UNSPEC is used as a match all */
2977 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2978 		net_eq(sock_net(sk), seq_file_net(seq)));
2979 }
2980 
2981 #ifdef CONFIG_BPF_SYSCALL
2982 static const struct seq_operations bpf_iter_udp_seq_ops;
2983 #endif
udp_get_table_seq(struct seq_file * seq,struct net * net)2984 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2985 					   struct net *net)
2986 {
2987 	const struct udp_seq_afinfo *afinfo;
2988 
2989 #ifdef CONFIG_BPF_SYSCALL
2990 	if (seq->op == &bpf_iter_udp_seq_ops)
2991 		return net->ipv4.udp_table;
2992 #endif
2993 
2994 	afinfo = pde_data(file_inode(seq->file));
2995 	return afinfo->udp_table ? : net->ipv4.udp_table;
2996 }
2997 
udp_get_first(struct seq_file * seq,int start)2998 static struct sock *udp_get_first(struct seq_file *seq, int start)
2999 {
3000 	struct udp_iter_state *state = seq->private;
3001 	struct net *net = seq_file_net(seq);
3002 	struct udp_table *udptable;
3003 	struct sock *sk;
3004 
3005 	udptable = udp_get_table_seq(seq, net);
3006 
3007 	for (state->bucket = start; state->bucket <= udptable->mask;
3008 	     ++state->bucket) {
3009 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3010 
3011 		if (hlist_empty(&hslot->head))
3012 			continue;
3013 
3014 		spin_lock_bh(&hslot->lock);
3015 		sk_for_each(sk, &hslot->head) {
3016 			if (seq_sk_match(seq, sk))
3017 				goto found;
3018 		}
3019 		spin_unlock_bh(&hslot->lock);
3020 	}
3021 	sk = NULL;
3022 found:
3023 	return sk;
3024 }
3025 
udp_get_next(struct seq_file * seq,struct sock * sk)3026 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3027 {
3028 	struct udp_iter_state *state = seq->private;
3029 	struct net *net = seq_file_net(seq);
3030 	struct udp_table *udptable;
3031 
3032 	do {
3033 		sk = sk_next(sk);
3034 	} while (sk && !seq_sk_match(seq, sk));
3035 
3036 	if (!sk) {
3037 		udptable = udp_get_table_seq(seq, net);
3038 
3039 		if (state->bucket <= udptable->mask)
3040 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3041 
3042 		return udp_get_first(seq, state->bucket + 1);
3043 	}
3044 	return sk;
3045 }
3046 
udp_get_idx(struct seq_file * seq,loff_t pos)3047 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3048 {
3049 	struct sock *sk = udp_get_first(seq, 0);
3050 
3051 	if (sk)
3052 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3053 			--pos;
3054 	return pos ? NULL : sk;
3055 }
3056 
udp_seq_start(struct seq_file * seq,loff_t * pos)3057 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3058 {
3059 	struct udp_iter_state *state = seq->private;
3060 	state->bucket = MAX_UDP_PORTS;
3061 
3062 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3063 }
3064 EXPORT_SYMBOL(udp_seq_start);
3065 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3066 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3067 {
3068 	struct sock *sk;
3069 
3070 	if (v == SEQ_START_TOKEN)
3071 		sk = udp_get_idx(seq, 0);
3072 	else
3073 		sk = udp_get_next(seq, v);
3074 
3075 	++*pos;
3076 	return sk;
3077 }
3078 EXPORT_SYMBOL(udp_seq_next);
3079 
udp_seq_stop(struct seq_file * seq,void * v)3080 void udp_seq_stop(struct seq_file *seq, void *v)
3081 {
3082 	struct udp_iter_state *state = seq->private;
3083 	struct udp_table *udptable;
3084 
3085 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3086 
3087 	if (state->bucket <= udptable->mask)
3088 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3089 }
3090 EXPORT_SYMBOL(udp_seq_stop);
3091 
3092 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3093 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3094 		int bucket)
3095 {
3096 	struct inet_sock *inet = inet_sk(sp);
3097 	__be32 dest = inet->inet_daddr;
3098 	__be32 src  = inet->inet_rcv_saddr;
3099 	__u16 destp	  = ntohs(inet->inet_dport);
3100 	__u16 srcp	  = ntohs(inet->inet_sport);
3101 
3102 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3103 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3104 		bucket, src, srcp, dest, destp, sp->sk_state,
3105 		sk_wmem_alloc_get(sp),
3106 		udp_rqueue_get(sp),
3107 		0, 0L, 0,
3108 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3109 		0, sock_i_ino(sp),
3110 		refcount_read(&sp->sk_refcnt), sp,
3111 		atomic_read(&sp->sk_drops));
3112 }
3113 
udp4_seq_show(struct seq_file * seq,void * v)3114 int udp4_seq_show(struct seq_file *seq, void *v)
3115 {
3116 	seq_setwidth(seq, 127);
3117 	if (v == SEQ_START_TOKEN)
3118 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3119 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3120 			   "inode ref pointer drops");
3121 	else {
3122 		struct udp_iter_state *state = seq->private;
3123 
3124 		udp4_format_sock(v, seq, state->bucket);
3125 	}
3126 	seq_pad(seq, '\n');
3127 	return 0;
3128 }
3129 
3130 #ifdef CONFIG_BPF_SYSCALL
3131 struct bpf_iter__udp {
3132 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3133 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3134 	uid_t uid __aligned(8);
3135 	int bucket __aligned(8);
3136 };
3137 
3138 struct bpf_udp_iter_state {
3139 	struct udp_iter_state state;
3140 	unsigned int cur_sk;
3141 	unsigned int end_sk;
3142 	unsigned int max_sk;
3143 	int offset;
3144 	struct sock **batch;
3145 	bool st_bucket_done;
3146 };
3147 
3148 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3149 				      unsigned int new_batch_sz);
bpf_iter_udp_batch(struct seq_file * seq)3150 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3151 {
3152 	struct bpf_udp_iter_state *iter = seq->private;
3153 	struct udp_iter_state *state = &iter->state;
3154 	struct net *net = seq_file_net(seq);
3155 	int resume_bucket, resume_offset;
3156 	struct udp_table *udptable;
3157 	unsigned int batch_sks = 0;
3158 	bool resized = false;
3159 	struct sock *sk;
3160 
3161 	resume_bucket = state->bucket;
3162 	resume_offset = iter->offset;
3163 
3164 	/* The current batch is done, so advance the bucket. */
3165 	if (iter->st_bucket_done)
3166 		state->bucket++;
3167 
3168 	udptable = udp_get_table_seq(seq, net);
3169 
3170 again:
3171 	/* New batch for the next bucket.
3172 	 * Iterate over the hash table to find a bucket with sockets matching
3173 	 * the iterator attributes, and return the first matching socket from
3174 	 * the bucket. The remaining matched sockets from the bucket are batched
3175 	 * before releasing the bucket lock. This allows BPF programs that are
3176 	 * called in seq_show to acquire the bucket lock if needed.
3177 	 */
3178 	iter->cur_sk = 0;
3179 	iter->end_sk = 0;
3180 	iter->st_bucket_done = false;
3181 	batch_sks = 0;
3182 
3183 	for (; state->bucket <= udptable->mask; state->bucket++) {
3184 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3185 
3186 		if (hlist_empty(&hslot2->head))
3187 			continue;
3188 
3189 		iter->offset = 0;
3190 		spin_lock_bh(&hslot2->lock);
3191 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3192 			if (seq_sk_match(seq, sk)) {
3193 				/* Resume from the last iterated socket at the
3194 				 * offset in the bucket before iterator was stopped.
3195 				 */
3196 				if (state->bucket == resume_bucket &&
3197 				    iter->offset < resume_offset) {
3198 					++iter->offset;
3199 					continue;
3200 				}
3201 				if (iter->end_sk < iter->max_sk) {
3202 					sock_hold(sk);
3203 					iter->batch[iter->end_sk++] = sk;
3204 				}
3205 				batch_sks++;
3206 			}
3207 		}
3208 		spin_unlock_bh(&hslot2->lock);
3209 
3210 		if (iter->end_sk)
3211 			break;
3212 	}
3213 
3214 	/* All done: no batch made. */
3215 	if (!iter->end_sk)
3216 		return NULL;
3217 
3218 	if (iter->end_sk == batch_sks) {
3219 		/* Batching is done for the current bucket; return the first
3220 		 * socket to be iterated from the batch.
3221 		 */
3222 		iter->st_bucket_done = true;
3223 		goto done;
3224 	}
3225 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3226 		resized = true;
3227 		/* After allocating a larger batch, retry one more time to grab
3228 		 * the whole bucket.
3229 		 */
3230 		goto again;
3231 	}
3232 done:
3233 	return iter->batch[0];
3234 }
3235 
bpf_iter_udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3236 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3237 {
3238 	struct bpf_udp_iter_state *iter = seq->private;
3239 	struct sock *sk;
3240 
3241 	/* Whenever seq_next() is called, the iter->cur_sk is
3242 	 * done with seq_show(), so unref the iter->cur_sk.
3243 	 */
3244 	if (iter->cur_sk < iter->end_sk) {
3245 		sock_put(iter->batch[iter->cur_sk++]);
3246 		++iter->offset;
3247 	}
3248 
3249 	/* After updating iter->cur_sk, check if there are more sockets
3250 	 * available in the current bucket batch.
3251 	 */
3252 	if (iter->cur_sk < iter->end_sk)
3253 		sk = iter->batch[iter->cur_sk];
3254 	else
3255 		/* Prepare a new batch. */
3256 		sk = bpf_iter_udp_batch(seq);
3257 
3258 	++*pos;
3259 	return sk;
3260 }
3261 
bpf_iter_udp_seq_start(struct seq_file * seq,loff_t * pos)3262 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3263 {
3264 	/* bpf iter does not support lseek, so it always
3265 	 * continue from where it was stop()-ped.
3266 	 */
3267 	if (*pos)
3268 		return bpf_iter_udp_batch(seq);
3269 
3270 	return SEQ_START_TOKEN;
3271 }
3272 
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3273 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3274 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3275 {
3276 	struct bpf_iter__udp ctx;
3277 
3278 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3279 	ctx.meta = meta;
3280 	ctx.udp_sk = udp_sk;
3281 	ctx.uid = uid;
3282 	ctx.bucket = bucket;
3283 	return bpf_iter_run_prog(prog, &ctx);
3284 }
3285 
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3286 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3287 {
3288 	struct udp_iter_state *state = seq->private;
3289 	struct bpf_iter_meta meta;
3290 	struct bpf_prog *prog;
3291 	struct sock *sk = v;
3292 	uid_t uid;
3293 	int ret;
3294 
3295 	if (v == SEQ_START_TOKEN)
3296 		return 0;
3297 
3298 	lock_sock(sk);
3299 
3300 	if (unlikely(sk_unhashed(sk))) {
3301 		ret = SEQ_SKIP;
3302 		goto unlock;
3303 	}
3304 
3305 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3306 	meta.seq = seq;
3307 	prog = bpf_iter_get_info(&meta, false);
3308 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3309 
3310 unlock:
3311 	release_sock(sk);
3312 	return ret;
3313 }
3314 
bpf_iter_udp_put_batch(struct bpf_udp_iter_state * iter)3315 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3316 {
3317 	while (iter->cur_sk < iter->end_sk)
3318 		sock_put(iter->batch[iter->cur_sk++]);
3319 }
3320 
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3321 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3322 {
3323 	struct bpf_udp_iter_state *iter = seq->private;
3324 	struct bpf_iter_meta meta;
3325 	struct bpf_prog *prog;
3326 
3327 	if (!v) {
3328 		meta.seq = seq;
3329 		prog = bpf_iter_get_info(&meta, true);
3330 		if (prog)
3331 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3332 	}
3333 
3334 	if (iter->cur_sk < iter->end_sk) {
3335 		bpf_iter_udp_put_batch(iter);
3336 		iter->st_bucket_done = false;
3337 	}
3338 }
3339 
3340 static const struct seq_operations bpf_iter_udp_seq_ops = {
3341 	.start		= bpf_iter_udp_seq_start,
3342 	.next		= bpf_iter_udp_seq_next,
3343 	.stop		= bpf_iter_udp_seq_stop,
3344 	.show		= bpf_iter_udp_seq_show,
3345 };
3346 #endif
3347 
seq_file_family(const struct seq_file * seq)3348 static unsigned short seq_file_family(const struct seq_file *seq)
3349 {
3350 	const struct udp_seq_afinfo *afinfo;
3351 
3352 #ifdef CONFIG_BPF_SYSCALL
3353 	/* BPF iterator: bpf programs to filter sockets. */
3354 	if (seq->op == &bpf_iter_udp_seq_ops)
3355 		return AF_UNSPEC;
3356 #endif
3357 
3358 	/* Proc fs iterator */
3359 	afinfo = pde_data(file_inode(seq->file));
3360 	return afinfo->family;
3361 }
3362 
3363 const struct seq_operations udp_seq_ops = {
3364 	.start		= udp_seq_start,
3365 	.next		= udp_seq_next,
3366 	.stop		= udp_seq_stop,
3367 	.show		= udp4_seq_show,
3368 };
3369 EXPORT_SYMBOL(udp_seq_ops);
3370 
3371 static struct udp_seq_afinfo udp4_seq_afinfo = {
3372 	.family		= AF_INET,
3373 	.udp_table	= NULL,
3374 };
3375 
udp4_proc_init_net(struct net * net)3376 static int __net_init udp4_proc_init_net(struct net *net)
3377 {
3378 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3379 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3380 		return -ENOMEM;
3381 	return 0;
3382 }
3383 
udp4_proc_exit_net(struct net * net)3384 static void __net_exit udp4_proc_exit_net(struct net *net)
3385 {
3386 	remove_proc_entry("udp", net->proc_net);
3387 }
3388 
3389 static struct pernet_operations udp4_net_ops = {
3390 	.init = udp4_proc_init_net,
3391 	.exit = udp4_proc_exit_net,
3392 };
3393 
udp4_proc_init(void)3394 int __init udp4_proc_init(void)
3395 {
3396 	return register_pernet_subsys(&udp4_net_ops);
3397 }
3398 
udp4_proc_exit(void)3399 void udp4_proc_exit(void)
3400 {
3401 	unregister_pernet_subsys(&udp4_net_ops);
3402 }
3403 #endif /* CONFIG_PROC_FS */
3404 
3405 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3406 static int __init set_uhash_entries(char *str)
3407 {
3408 	ssize_t ret;
3409 
3410 	if (!str)
3411 		return 0;
3412 
3413 	ret = kstrtoul(str, 0, &uhash_entries);
3414 	if (ret)
3415 		return 0;
3416 
3417 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3418 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3419 	return 1;
3420 }
3421 __setup("uhash_entries=", set_uhash_entries);
3422 
udp_table_init(struct udp_table * table,const char * name)3423 void __init udp_table_init(struct udp_table *table, const char *name)
3424 {
3425 	unsigned int i;
3426 
3427 	table->hash = alloc_large_system_hash(name,
3428 					      2 * sizeof(struct udp_hslot),
3429 					      uhash_entries,
3430 					      21, /* one slot per 2 MB */
3431 					      0,
3432 					      &table->log,
3433 					      &table->mask,
3434 					      UDP_HTABLE_SIZE_MIN,
3435 					      UDP_HTABLE_SIZE_MAX);
3436 
3437 	table->hash2 = table->hash + (table->mask + 1);
3438 	for (i = 0; i <= table->mask; i++) {
3439 		INIT_HLIST_HEAD(&table->hash[i].head);
3440 		table->hash[i].count = 0;
3441 		spin_lock_init(&table->hash[i].lock);
3442 	}
3443 	for (i = 0; i <= table->mask; i++) {
3444 		INIT_HLIST_HEAD(&table->hash2[i].head);
3445 		table->hash2[i].count = 0;
3446 		spin_lock_init(&table->hash2[i].lock);
3447 	}
3448 }
3449 
udp_flow_hashrnd(void)3450 u32 udp_flow_hashrnd(void)
3451 {
3452 	static u32 hashrnd __read_mostly;
3453 
3454 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3455 
3456 	return hashrnd;
3457 }
3458 EXPORT_SYMBOL(udp_flow_hashrnd);
3459 
udp_sysctl_init(struct net * net)3460 static void __net_init udp_sysctl_init(struct net *net)
3461 {
3462 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3463 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3464 
3465 #ifdef CONFIG_NET_L3_MASTER_DEV
3466 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3467 #endif
3468 }
3469 
udp_pernet_table_alloc(unsigned int hash_entries)3470 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3471 {
3472 	struct udp_table *udptable;
3473 	int i;
3474 
3475 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3476 	if (!udptable)
3477 		goto out;
3478 
3479 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3480 				      GFP_KERNEL_ACCOUNT);
3481 	if (!udptable->hash)
3482 		goto free_table;
3483 
3484 	udptable->hash2 = udptable->hash + hash_entries;
3485 	udptable->mask = hash_entries - 1;
3486 	udptable->log = ilog2(hash_entries);
3487 
3488 	for (i = 0; i < hash_entries; i++) {
3489 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3490 		udptable->hash[i].count = 0;
3491 		spin_lock_init(&udptable->hash[i].lock);
3492 
3493 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3494 		udptable->hash2[i].count = 0;
3495 		spin_lock_init(&udptable->hash2[i].lock);
3496 	}
3497 
3498 	return udptable;
3499 
3500 free_table:
3501 	kfree(udptable);
3502 out:
3503 	return NULL;
3504 }
3505 
udp_pernet_table_free(struct net * net)3506 static void __net_exit udp_pernet_table_free(struct net *net)
3507 {
3508 	struct udp_table *udptable = net->ipv4.udp_table;
3509 
3510 	if (udptable == &udp_table)
3511 		return;
3512 
3513 	kvfree(udptable->hash);
3514 	kfree(udptable);
3515 }
3516 
udp_set_table(struct net * net)3517 static void __net_init udp_set_table(struct net *net)
3518 {
3519 	struct udp_table *udptable;
3520 	unsigned int hash_entries;
3521 	struct net *old_net;
3522 
3523 	if (net_eq(net, &init_net))
3524 		goto fallback;
3525 
3526 	old_net = current->nsproxy->net_ns;
3527 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3528 	if (!hash_entries)
3529 		goto fallback;
3530 
3531 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3532 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3533 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3534 	else
3535 		hash_entries = roundup_pow_of_two(hash_entries);
3536 
3537 	udptable = udp_pernet_table_alloc(hash_entries);
3538 	if (udptable) {
3539 		net->ipv4.udp_table = udptable;
3540 	} else {
3541 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3542 			"for a netns, fallback to the global one\n",
3543 			hash_entries);
3544 fallback:
3545 		net->ipv4.udp_table = &udp_table;
3546 	}
3547 }
3548 
udp_pernet_init(struct net * net)3549 static int __net_init udp_pernet_init(struct net *net)
3550 {
3551 	udp_sysctl_init(net);
3552 	udp_set_table(net);
3553 
3554 	return 0;
3555 }
3556 
udp_pernet_exit(struct net * net)3557 static void __net_exit udp_pernet_exit(struct net *net)
3558 {
3559 	udp_pernet_table_free(net);
3560 }
3561 
3562 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3563 	.init	= udp_pernet_init,
3564 	.exit	= udp_pernet_exit,
3565 };
3566 
3567 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3568 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3569 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3570 
3571 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3572 				      unsigned int new_batch_sz)
3573 {
3574 	struct sock **new_batch;
3575 
3576 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3577 				   GFP_USER | __GFP_NOWARN);
3578 	if (!new_batch)
3579 		return -ENOMEM;
3580 
3581 	bpf_iter_udp_put_batch(iter);
3582 	kvfree(iter->batch);
3583 	iter->batch = new_batch;
3584 	iter->max_sk = new_batch_sz;
3585 
3586 	return 0;
3587 }
3588 
3589 #define INIT_BATCH_SZ 16
3590 
bpf_iter_init_udp(void * priv_data,struct bpf_iter_aux_info * aux)3591 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3592 {
3593 	struct bpf_udp_iter_state *iter = priv_data;
3594 	int ret;
3595 
3596 	ret = bpf_iter_init_seq_net(priv_data, aux);
3597 	if (ret)
3598 		return ret;
3599 
3600 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3601 	if (ret)
3602 		bpf_iter_fini_seq_net(priv_data);
3603 
3604 	return ret;
3605 }
3606 
bpf_iter_fini_udp(void * priv_data)3607 static void bpf_iter_fini_udp(void *priv_data)
3608 {
3609 	struct bpf_udp_iter_state *iter = priv_data;
3610 
3611 	bpf_iter_fini_seq_net(priv_data);
3612 	kvfree(iter->batch);
3613 }
3614 
3615 static const struct bpf_iter_seq_info udp_seq_info = {
3616 	.seq_ops		= &bpf_iter_udp_seq_ops,
3617 	.init_seq_private	= bpf_iter_init_udp,
3618 	.fini_seq_private	= bpf_iter_fini_udp,
3619 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3620 };
3621 
3622 static struct bpf_iter_reg udp_reg_info = {
3623 	.target			= "udp",
3624 	.ctx_arg_info_size	= 1,
3625 	.ctx_arg_info		= {
3626 		{ offsetof(struct bpf_iter__udp, udp_sk),
3627 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3628 	},
3629 	.seq_info		= &udp_seq_info,
3630 };
3631 
bpf_iter_register(void)3632 static void __init bpf_iter_register(void)
3633 {
3634 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3635 	if (bpf_iter_reg_target(&udp_reg_info))
3636 		pr_warn("Warning: could not register bpf iterator udp\n");
3637 }
3638 #endif
3639 
udp_init(void)3640 void __init udp_init(void)
3641 {
3642 	unsigned long limit;
3643 	unsigned int i;
3644 
3645 	udp_table_init(&udp_table, "UDP");
3646 	limit = nr_free_buffer_pages() / 8;
3647 	limit = max(limit, 128UL);
3648 	sysctl_udp_mem[0] = limit / 4 * 3;
3649 	sysctl_udp_mem[1] = limit;
3650 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3651 
3652 	/* 16 spinlocks per cpu */
3653 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3654 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3655 				GFP_KERNEL);
3656 	if (!udp_busylocks)
3657 		panic("UDP: failed to alloc udp_busylocks\n");
3658 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3659 		spin_lock_init(udp_busylocks + i);
3660 
3661 	if (register_pernet_subsys(&udp_sysctl_ops))
3662 		panic("UDP: failed to init sysctl parameters.\n");
3663 
3664 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3665 	bpf_iter_register();
3666 #endif
3667 }
3668