• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #undef CREATE_TRACE_POINTS
44 #include <trace/hooks/ufshcd.h>
45 
46 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
47 				 UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK)
49 
50 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
51 				 UFSHCD_ERROR_MASK |\
52 				 MCQ_CQ_EVENT_STATUS)
53 
54 
55 /* UIC command timeout, unit: ms */
56 enum {
57 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
58 	UIC_CMD_TIMEOUT_MAX	= 2000,
59 };
60 /* NOP OUT retries waiting for NOP IN response */
61 #define NOP_OUT_RETRIES    10
62 /* Timeout after 50 msecs if NOP OUT hangs without response */
63 #define NOP_OUT_TIMEOUT    50 /* msecs */
64 
65 /* Query request retries */
66 #define QUERY_REQ_RETRIES 3
67 /* Query request timeout */
68 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
69 
70 /* Advanced RPMB request timeout */
71 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
72 
73 /* Task management command timeout */
74 #define TM_CMD_TIMEOUT	100 /* msecs */
75 
76 /* maximum number of retries for a general UIC command  */
77 #define UFS_UIC_COMMAND_RETRIES 3
78 
79 /* maximum number of link-startup retries */
80 #define DME_LINKSTARTUP_RETRIES 3
81 
82 /* maximum number of reset retries before giving up */
83 #define MAX_HOST_RESET_RETRIES 5
84 
85 /* Maximum number of error handler retries before giving up */
86 #define MAX_ERR_HANDLER_RETRIES 5
87 
88 /* Expose the flag value from utp_upiu_query.value */
89 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
90 
91 /* Interrupt aggregation default timeout, unit: 40us */
92 #define INT_AGGR_DEF_TO	0x02
93 
94 /* default delay of autosuspend: 2000 ms */
95 #define RPM_AUTOSUSPEND_DELAY_MS 2000
96 
97 /* Default delay of RPM device flush delayed work */
98 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
99 
100 /* Default value of wait time before gating device ref clock */
101 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
102 
103 /* Polling time to wait for fDeviceInit */
104 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
105 
106 /* UFSHC 4.0 compliant HC support this mode. */
107 static bool use_mcq_mode = true;
108 
is_mcq_supported(struct ufs_hba * hba)109 static bool is_mcq_supported(struct ufs_hba *hba)
110 {
111 	return hba->mcq_sup && use_mcq_mode;
112 }
113 
114 module_param(use_mcq_mode, bool, 0644);
115 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
116 
117 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
118 
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)119 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
120 {
121 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
122 				     UIC_CMD_TIMEOUT_MAX);
123 }
124 
125 static const struct kernel_param_ops uic_cmd_timeout_ops = {
126 	.set = uic_cmd_timeout_set,
127 	.get = param_get_uint,
128 };
129 
130 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
131 MODULE_PARM_DESC(uic_cmd_timeout,
132 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively");
133 
134 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
135 	({                                                              \
136 		int _ret;                                               \
137 		if (_on)                                                \
138 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
139 		else                                                    \
140 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
141 		_ret;                                                   \
142 	})
143 
144 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
145 	size_t __len = (len);                                            \
146 	print_hex_dump(KERN_ERR, prefix_str,                             \
147 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
148 		       16, 4, buf, __len, false);                        \
149 } while (0)
150 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)151 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
152 		     const char *prefix)
153 {
154 	u32 *regs;
155 	size_t pos;
156 
157 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
158 		return -EINVAL;
159 
160 	regs = kzalloc(len, GFP_ATOMIC);
161 	if (!regs)
162 		return -ENOMEM;
163 
164 	for (pos = 0; pos < len; pos += 4) {
165 		if (offset == 0 &&
166 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
167 		    pos <= REG_UIC_ERROR_CODE_DME)
168 			continue;
169 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
170 	}
171 
172 	ufshcd_hex_dump(prefix, regs, len);
173 	kfree(regs);
174 
175 	return 0;
176 }
177 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
178 
179 enum {
180 	UFSHCD_MAX_CHANNEL	= 0,
181 	UFSHCD_MAX_ID		= 1,
182 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
183 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
184 };
185 
186 static const char *const ufshcd_state_name[] = {
187 	[UFSHCD_STATE_RESET]			= "reset",
188 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
189 	[UFSHCD_STATE_ERROR]			= "error",
190 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
191 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
192 };
193 
194 /* UFSHCD error handling flags */
195 enum {
196 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
197 };
198 
199 /* UFSHCD UIC layer error flags */
200 enum {
201 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
202 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
203 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
204 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
205 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
206 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
207 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
208 };
209 
210 #define ufshcd_set_eh_in_progress(h) \
211 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
212 #define ufshcd_eh_in_progress(h) \
213 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
214 #define ufshcd_clear_eh_in_progress(h) \
215 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
216 
217 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
218 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
219 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
220 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
221 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
222 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
223 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
224 	/*
225 	 * For DeepSleep, the link is first put in hibern8 and then off.
226 	 * Leaving the link in hibern8 is not supported.
227 	 */
228 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
229 };
230 
231 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)232 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
233 {
234 	return ufs_pm_lvl_states[lvl].dev_state;
235 }
236 
237 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)238 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
239 {
240 	return ufs_pm_lvl_states[lvl].link_state;
241 }
242 
243 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)244 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
245 					enum uic_link_state link_state)
246 {
247 	enum ufs_pm_level lvl;
248 
249 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
250 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
251 			(ufs_pm_lvl_states[lvl].link_state == link_state))
252 			return lvl;
253 	}
254 
255 	/* if no match found, return the level 0 */
256 	return UFS_PM_LVL_0;
257 }
258 
259 static const struct ufs_dev_quirk ufs_fixups[] = {
260 	/* UFS cards deviations table */
261 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
262 	  .model = UFS_ANY_MODEL,
263 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
264 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
265 	  .model = UFS_ANY_MODEL,
266 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
267 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
268 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
269 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
270 	  .model = UFS_ANY_MODEL,
271 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
272 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
273 	  .model = "hB8aL1" /*H28U62301AMR*/,
274 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
275 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
276 	  .model = UFS_ANY_MODEL,
277 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
278 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
279 	  .model = "THGLF2G9C8KBADG",
280 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
281 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
282 	  .model = "THGLF2G9D8KBADG",
283 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
284 	{}
285 };
286 
287 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
288 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
289 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
290 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
291 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
292 static void ufshcd_hba_exit(struct ufs_hba *hba);
293 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
294 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
295 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
296 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
297 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
298 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
299 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
300 static irqreturn_t ufshcd_intr(int irq, void *__hba);
301 static int ufshcd_change_power_mode(struct ufs_hba *hba,
302 			     struct ufs_pa_layer_attr *pwr_mode);
303 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
304 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
305 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
306 					 struct ufs_vreg *vreg);
307 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
308 						 bool enable);
309 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
310 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
311 
ufshcd_enable_irq(struct ufs_hba * hba)312 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
313 {
314 	if (!hba->is_irq_enabled) {
315 		enable_irq(hba->irq);
316 		hba->is_irq_enabled = true;
317 	}
318 }
319 
ufshcd_disable_irq(struct ufs_hba * hba)320 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
321 {
322 	if (hba->is_irq_enabled) {
323 		disable_irq(hba->irq);
324 		hba->is_irq_enabled = false;
325 	}
326 }
327 
ufshcd_configure_wb(struct ufs_hba * hba)328 static void ufshcd_configure_wb(struct ufs_hba *hba)
329 {
330 	if (!ufshcd_is_wb_allowed(hba))
331 		return;
332 
333 	ufshcd_wb_toggle(hba, true);
334 
335 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
336 
337 	if (ufshcd_is_wb_buf_flush_allowed(hba))
338 		ufshcd_wb_toggle_buf_flush(hba, true);
339 }
340 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)341 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
342 {
343 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
344 		scsi_unblock_requests(hba->host);
345 }
346 
ufshcd_scsi_block_requests(struct ufs_hba * hba)347 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
348 {
349 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
350 		scsi_block_requests(hba->host);
351 }
352 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)353 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
354 				      enum ufs_trace_str_t str_t)
355 {
356 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
357 	struct utp_upiu_header *header;
358 
359 	if (!trace_ufshcd_upiu_enabled())
360 		return;
361 
362 	if (str_t == UFS_CMD_SEND)
363 		header = &rq->header;
364 	else
365 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
366 
367 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
368 			  UFS_TSF_CDB);
369 }
370 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)371 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
372 					enum ufs_trace_str_t str_t,
373 					struct utp_upiu_req *rq_rsp)
374 {
375 	if (!trace_ufshcd_upiu_enabled())
376 		return;
377 
378 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
379 			  &rq_rsp->qr, UFS_TSF_OSF);
380 }
381 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)382 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
383 				     enum ufs_trace_str_t str_t)
384 {
385 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
386 
387 	trace_android_vh_ufs_send_tm_command(hba, tag, (int)str_t);
388 
389 	if (!trace_ufshcd_upiu_enabled())
390 		return;
391 
392 	if (str_t == UFS_TM_SEND)
393 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
394 				  &descp->upiu_req.req_header,
395 				  &descp->upiu_req.input_param1,
396 				  UFS_TSF_TM_INPUT);
397 	else
398 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
399 				  &descp->upiu_rsp.rsp_header,
400 				  &descp->upiu_rsp.output_param1,
401 				  UFS_TSF_TM_OUTPUT);
402 }
403 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)404 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
405 					 const struct uic_command *ucmd,
406 					 enum ufs_trace_str_t str_t)
407 {
408 	u32 cmd;
409 
410 	trace_android_vh_ufs_send_uic_command(hba, ucmd, (int)str_t);
411 
412 	if (!trace_ufshcd_uic_command_enabled())
413 		return;
414 
415 	if (str_t == UFS_CMD_SEND)
416 		cmd = ucmd->command;
417 	else
418 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
419 
420 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
421 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
422 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
423 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
424 }
425 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)426 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
427 				     enum ufs_trace_str_t str_t)
428 {
429 	u64 lba = 0;
430 	u8 opcode = 0, group_id = 0;
431 	u32 doorbell = 0;
432 	u32 intr;
433 	int hwq_id = -1;
434 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
435 	struct scsi_cmnd *cmd = lrbp->cmd;
436 	struct request *rq = scsi_cmd_to_rq(cmd);
437 	int transfer_len = -1;
438 
439 	if (!cmd)
440 		return;
441 
442 	/* trace UPIU also */
443 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
444 	if (!trace_ufshcd_command_enabled())
445 		return;
446 
447 	opcode = cmd->cmnd[0];
448 
449 	if (opcode == READ_10 || opcode == WRITE_10 ||
450 				opcode == READ_16 || opcode == WRITE_16) {
451 		transfer_len =
452 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
453 		lba = scsi_get_lba(cmd);
454 		if (opcode == WRITE_10)
455 			group_id = lrbp->cmd->cmnd[6];
456 		if (opcode == WRITE_16)
457 			group_id = lrbp->cmd->cmnd[14];
458 	} else if (opcode == UNMAP) {
459 		/*
460 		 * The number of Bytes to be unmapped beginning with the lba.
461 		 */
462 		transfer_len = blk_rq_bytes(rq);
463 		lba = scsi_get_lba(cmd);
464 	}
465 
466 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
467 
468 	if (is_mcq_enabled(hba)) {
469 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
470 
471 		hwq_id = hwq->id;
472 	} else {
473 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
474 	}
475 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
476 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
477 }
478 
ufshcd_print_clk_freqs(struct ufs_hba * hba)479 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
480 {
481 	struct ufs_clk_info *clki;
482 	struct list_head *head = &hba->clk_list_head;
483 
484 	if (list_empty(head))
485 		return;
486 
487 	list_for_each_entry(clki, head, list) {
488 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
489 				clki->max_freq)
490 			dev_err(hba->dev, "clk: %s, rate: %u\n",
491 					clki->name, clki->curr_freq);
492 	}
493 }
494 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)495 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
496 			     const char *err_name)
497 {
498 	int i;
499 	bool found = false;
500 	const struct ufs_event_hist *e;
501 
502 	if (id >= UFS_EVT_CNT)
503 		return;
504 
505 	e = &hba->ufs_stats.event[id];
506 
507 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
508 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
509 
510 		if (e->tstamp[p] == 0)
511 			continue;
512 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
513 			e->val[p], div_u64(e->tstamp[p], 1000));
514 		found = true;
515 	}
516 
517 	if (!found)
518 		dev_err(hba->dev, "No record of %s\n", err_name);
519 	else
520 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
521 }
522 
ufshcd_print_evt_hist(struct ufs_hba * hba)523 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
524 {
525 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
526 
527 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
528 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
529 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
530 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
531 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
532 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
533 			 "auto_hibern8_err");
534 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
535 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
536 			 "link_startup_fail");
537 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
538 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
539 			 "suspend_fail");
540 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
541 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
542 			 "wlun suspend_fail");
543 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
544 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
545 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
546 
547 	ufshcd_vops_dbg_register_dump(hba);
548 }
549 
550 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)551 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
552 {
553 	const struct ufshcd_lrb *lrbp;
554 	int prdt_length;
555 
556 	lrbp = &hba->lrb[tag];
557 
558 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
559 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
560 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
561 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
562 	dev_err(hba->dev,
563 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
564 		tag, (u64)lrbp->utrd_dma_addr);
565 
566 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
567 			sizeof(struct utp_transfer_req_desc));
568 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
569 		(u64)lrbp->ucd_req_dma_addr);
570 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
571 			sizeof(struct utp_upiu_req));
572 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
573 		(u64)lrbp->ucd_rsp_dma_addr);
574 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
575 			sizeof(struct utp_upiu_rsp));
576 
577 	prdt_length = le16_to_cpu(
578 		lrbp->utr_descriptor_ptr->prd_table_length);
579 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
580 		prdt_length /= ufshcd_sg_entry_size(hba);
581 
582 	dev_err(hba->dev,
583 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
584 		tag, prdt_length,
585 		(u64)lrbp->ucd_prdt_dma_addr);
586 
587 	if (pr_prdt)
588 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
589 			ufshcd_sg_entry_size(hba) * prdt_length);
590 }
591 
ufshcd_print_tr_iter(struct request * req,void * priv)592 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
593 {
594 	struct scsi_device *sdev = req->q->queuedata;
595 	struct Scsi_Host *shost = sdev->host;
596 	struct ufs_hba *hba = shost_priv(shost);
597 
598 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
599 
600 	return true;
601 }
602 
603 /**
604  * ufshcd_print_trs_all - print trs for all started requests.
605  * @hba: per-adapter instance.
606  * @pr_prdt: need to print prdt or not.
607  */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)608 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
609 {
610 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
611 }
612 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)613 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
614 {
615 	int tag;
616 
617 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
618 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
619 
620 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
621 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
622 	}
623 }
624 
ufshcd_print_host_state(struct ufs_hba * hba)625 static void ufshcd_print_host_state(struct ufs_hba *hba)
626 {
627 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
628 
629 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
630 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
631 		hba->outstanding_reqs, hba->outstanding_tasks);
632 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
633 		hba->saved_err, hba->saved_uic_err);
634 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
635 		hba->curr_dev_pwr_mode, hba->uic_link_state);
636 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
637 		hba->pm_op_in_progress, hba->is_sys_suspended);
638 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
639 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
640 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
641 	dev_err(hba->dev,
642 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
643 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
644 		hba->ufs_stats.hibern8_exit_cnt);
645 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
646 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
647 		hba->ufs_stats.last_intr_status);
648 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
649 		hba->eh_flags, hba->req_abort_count);
650 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
651 		hba->ufs_version, hba->capabilities, hba->caps);
652 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
653 		hba->dev_quirks);
654 	if (sdev_ufs)
655 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
656 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
657 
658 	ufshcd_print_clk_freqs(hba);
659 }
660 
661 /**
662  * ufshcd_print_pwr_info - print power params as saved in hba
663  * power info
664  * @hba: per-adapter instance
665  */
ufshcd_print_pwr_info(struct ufs_hba * hba)666 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
667 {
668 	static const char * const names[] = {
669 		"INVALID MODE",
670 		"FAST MODE",
671 		"SLOW_MODE",
672 		"INVALID MODE",
673 		"FASTAUTO_MODE",
674 		"SLOWAUTO_MODE",
675 		"INVALID MODE",
676 	};
677 
678 	/*
679 	 * Using dev_dbg to avoid messages during runtime PM to avoid
680 	 * never-ending cycles of messages written back to storage by user space
681 	 * causing runtime resume, causing more messages and so on.
682 	 */
683 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
684 		 __func__,
685 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
686 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
687 		 names[hba->pwr_info.pwr_rx],
688 		 names[hba->pwr_info.pwr_tx],
689 		 hba->pwr_info.hs_rate);
690 }
691 
ufshcd_device_reset(struct ufs_hba * hba)692 static void ufshcd_device_reset(struct ufs_hba *hba)
693 {
694 	int err;
695 
696 	err = ufshcd_vops_device_reset(hba);
697 
698 	if (!err) {
699 		ufshcd_set_ufs_dev_active(hba);
700 		if (ufshcd_is_wb_allowed(hba)) {
701 			hba->dev_info.wb_enabled = false;
702 			hba->dev_info.wb_buf_flush_enabled = false;
703 		}
704 	}
705 	if (err != -EOPNOTSUPP)
706 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
707 }
708 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)709 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
710 {
711 	if (!us)
712 		return;
713 
714 	if (us < 10)
715 		udelay(us);
716 	else
717 		usleep_range(us, us + tolerance);
718 }
719 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
720 
721 /**
722  * ufshcd_wait_for_register - wait for register value to change
723  * @hba: per-adapter interface
724  * @reg: mmio register offset
725  * @mask: mask to apply to the read register value
726  * @val: value to wait for
727  * @interval_us: polling interval in microseconds
728  * @timeout_ms: timeout in milliseconds
729  *
730  * Return: -ETIMEDOUT on error, zero on success.
731  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)732 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
733 				u32 val, unsigned long interval_us,
734 				unsigned long timeout_ms)
735 {
736 	int err = 0;
737 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
738 
739 	/* ignore bits that we don't intend to wait on */
740 	val = val & mask;
741 
742 	while ((ufshcd_readl(hba, reg) & mask) != val) {
743 		usleep_range(interval_us, interval_us + 50);
744 		if (time_after(jiffies, timeout)) {
745 			if ((ufshcd_readl(hba, reg) & mask) != val)
746 				err = -ETIMEDOUT;
747 			break;
748 		}
749 	}
750 
751 	return err;
752 }
753 
754 /**
755  * ufshcd_get_intr_mask - Get the interrupt bit mask
756  * @hba: Pointer to adapter instance
757  *
758  * Return: interrupt bit mask per version
759  */
ufshcd_get_intr_mask(struct ufs_hba * hba)760 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
761 {
762 	if (hba->ufs_version == ufshci_version(1, 0))
763 		return INTERRUPT_MASK_ALL_VER_10;
764 	if (hba->ufs_version <= ufshci_version(2, 0))
765 		return INTERRUPT_MASK_ALL_VER_11;
766 
767 	return INTERRUPT_MASK_ALL_VER_21;
768 }
769 
770 /**
771  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
772  * @hba: Pointer to adapter instance
773  *
774  * Return: UFSHCI version supported by the controller
775  */
ufshcd_get_ufs_version(struct ufs_hba * hba)776 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
777 {
778 	u32 ufshci_ver;
779 
780 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
781 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
782 	else
783 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
784 
785 	/*
786 	 * UFSHCI v1.x uses a different version scheme, in order
787 	 * to allow the use of comparisons with the ufshci_version
788 	 * function, we convert it to the same scheme as ufs 2.0+.
789 	 */
790 	if (ufshci_ver & 0x00010000)
791 		return ufshci_version(1, ufshci_ver & 0x00000100);
792 
793 	return ufshci_ver;
794 }
795 
796 /**
797  * ufshcd_is_device_present - Check if any device connected to
798  *			      the host controller
799  * @hba: pointer to adapter instance
800  *
801  * Return: true if device present, false if no device detected
802  */
ufshcd_is_device_present(struct ufs_hba * hba)803 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
804 {
805 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
806 }
807 
808 /**
809  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
810  * @lrbp: pointer to local command reference block
811  * @cqe: pointer to the completion queue entry
812  *
813  * This function is used to get the OCS field from UTRD
814  *
815  * Return: the OCS field in the UTRD.
816  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)817 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
818 				      struct cq_entry *cqe)
819 {
820 	if (cqe)
821 		return le32_to_cpu(cqe->status) & MASK_OCS;
822 
823 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
824 }
825 
826 /**
827  * ufshcd_utrl_clear() - Clear requests from the controller request list.
828  * @hba: per adapter instance
829  * @mask: mask with one bit set for each request to be cleared
830  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)831 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
832 {
833 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 		mask = ~mask;
835 	/*
836 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
837 	 * Register (UTRLCLR): This field is bit significant. Each bit
838 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
839 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
840 	 * by host software to indicate to the host controller that a transfer
841 	 * request slot is cleared. The host controller
842 	 * shall free up any resources associated to the request slot
843 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
844 	 * host software indicates no change to request slots by setting the
845 	 * associated bits in this field to ‘1’. Bits in this field shall only
846 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
847 	 */
848 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
849 }
850 
851 /**
852  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
853  * @hba: per adapter instance
854  * @pos: position of the bit to be cleared
855  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)856 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
857 {
858 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
859 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
860 	else
861 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
862 }
863 
864 /**
865  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
866  * @reg: Register value of host controller status
867  *
868  * Return: 0 on success; a positive value if failed.
869  */
ufshcd_get_lists_status(u32 reg)870 static inline int ufshcd_get_lists_status(u32 reg)
871 {
872 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
873 }
874 
875 /**
876  * ufshcd_get_uic_cmd_result - Get the UIC command result
877  * @hba: Pointer to adapter instance
878  *
879  * This function gets the result of UIC command completion
880  *
881  * Return: 0 on success; non-zero value on error.
882  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)883 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
884 {
885 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
886 	       MASK_UIC_COMMAND_RESULT;
887 }
888 
889 /**
890  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
891  * @hba: Pointer to adapter instance
892  *
893  * This function gets UIC command argument3
894  *
895  * Return: 0 on success; non-zero value on error.
896  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)897 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
898 {
899 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
900 }
901 
902 /**
903  * ufshcd_get_req_rsp - returns the TR response transaction type
904  * @ucd_rsp_ptr: pointer to response UPIU
905  *
906  * Return: UPIU type.
907  */
908 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)909 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
910 {
911 	return ucd_rsp_ptr->header.transaction_code;
912 }
913 
914 /**
915  * ufshcd_is_exception_event - Check if the device raised an exception event
916  * @ucd_rsp_ptr: pointer to response UPIU
917  *
918  * The function checks if the device raised an exception event indicated in
919  * the Device Information field of response UPIU.
920  *
921  * Return: true if exception is raised, false otherwise.
922  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)923 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
924 {
925 	return ucd_rsp_ptr->header.device_information & 1;
926 }
927 
928 /**
929  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
930  * @hba: per adapter instance
931  */
932 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)933 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
934 {
935 	ufshcd_writel(hba, INT_AGGR_ENABLE |
936 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
937 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
938 }
939 
940 /**
941  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
942  * @hba: per adapter instance
943  * @cnt: Interrupt aggregation counter threshold
944  * @tmout: Interrupt aggregation timeout value
945  */
946 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)947 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
948 {
949 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
950 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
951 		      INT_AGGR_TIMEOUT_VAL(tmout),
952 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
953 }
954 
955 /**
956  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
957  * @hba: per adapter instance
958  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)959 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
960 {
961 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
962 }
963 
964 /**
965  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
966  *			When run-stop registers are set to 1, it indicates the
967  *			host controller that it can process the requests
968  * @hba: per adapter instance
969  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)970 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
971 {
972 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
973 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
974 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
975 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
976 }
977 
978 /**
979  * ufshcd_hba_start - Start controller initialization sequence
980  * @hba: per adapter instance
981  */
ufshcd_hba_start(struct ufs_hba * hba)982 static inline void ufshcd_hba_start(struct ufs_hba *hba)
983 {
984 	u32 val = CONTROLLER_ENABLE;
985 
986 	if (ufshcd_crypto_enable(hba))
987 		val |= CRYPTO_GENERAL_ENABLE;
988 
989 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
990 }
991 
992 /**
993  * ufshcd_is_hba_active - Get controller state
994  * @hba: per adapter instance
995  *
996  * Return: true if and only if the controller is active.
997  */
ufshcd_is_hba_active(struct ufs_hba * hba)998 bool ufshcd_is_hba_active(struct ufs_hba *hba)
999 {
1000 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1001 }
1002 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
1003 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)1004 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
1005 {
1006 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
1007 	if (hba->ufs_version <= ufshci_version(1, 1))
1008 		return UFS_UNIPRO_VER_1_41;
1009 	else
1010 		return UFS_UNIPRO_VER_1_6;
1011 }
1012 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1013 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)1014 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1015 {
1016 	/*
1017 	 * If both host and device support UniPro ver1.6 or later, PA layer
1018 	 * parameters tuning happens during link startup itself.
1019 	 *
1020 	 * We can manually tune PA layer parameters if either host or device
1021 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1022 	 * logic simple, we will only do manual tuning if local unipro version
1023 	 * doesn't support ver1.6 or later.
1024 	 */
1025 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1026 }
1027 
1028 /**
1029  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1030  * @hba: per adapter instance
1031  * @scale_up: If True, set max possible frequency othewise set low frequency
1032  *
1033  * Return: 0 if successful; < 0 upon failure.
1034  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1035 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1036 {
1037 	int ret = 0;
1038 	struct ufs_clk_info *clki;
1039 	struct list_head *head = &hba->clk_list_head;
1040 
1041 	if (list_empty(head))
1042 		goto out;
1043 
1044 	list_for_each_entry(clki, head, list) {
1045 		if (!IS_ERR_OR_NULL(clki->clk)) {
1046 			if (scale_up && clki->max_freq) {
1047 				if (clki->curr_freq == clki->max_freq)
1048 					continue;
1049 
1050 				ret = clk_set_rate(clki->clk, clki->max_freq);
1051 				if (ret) {
1052 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1053 						__func__, clki->name,
1054 						clki->max_freq, ret);
1055 					break;
1056 				}
1057 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1058 						"scaled up", clki->name,
1059 						clki->curr_freq,
1060 						clki->max_freq);
1061 
1062 				clki->curr_freq = clki->max_freq;
1063 
1064 			} else if (!scale_up && clki->min_freq) {
1065 				if (clki->curr_freq == clki->min_freq)
1066 					continue;
1067 
1068 				ret = clk_set_rate(clki->clk, clki->min_freq);
1069 				if (ret) {
1070 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1071 						__func__, clki->name,
1072 						clki->min_freq, ret);
1073 					break;
1074 				}
1075 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1076 						"scaled down", clki->name,
1077 						clki->curr_freq,
1078 						clki->min_freq);
1079 				clki->curr_freq = clki->min_freq;
1080 			}
1081 		}
1082 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1083 				clki->name, clk_get_rate(clki->clk));
1084 	}
1085 
1086 out:
1087 	return ret;
1088 }
1089 
1090 /**
1091  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1092  * @hba: per adapter instance
1093  * @scale_up: True if scaling up and false if scaling down
1094  *
1095  * Return: 0 if successful; < 0 upon failure.
1096  */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)1097 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1098 {
1099 	int ret = 0;
1100 	ktime_t start = ktime_get();
1101 
1102 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1103 	if (ret)
1104 		goto out;
1105 
1106 	ret = ufshcd_set_clk_freq(hba, scale_up);
1107 	if (ret)
1108 		goto out;
1109 
1110 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1111 	if (ret)
1112 		ufshcd_set_clk_freq(hba, !scale_up);
1113 
1114 out:
1115 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1116 			(scale_up ? "up" : "down"),
1117 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1118 	return ret;
1119 }
1120 
1121 /**
1122  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1123  * @hba: per adapter instance
1124  * @scale_up: True if scaling up and false if scaling down
1125  *
1126  * Return: true if scaling is required, false otherwise.
1127  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1128 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1129 					       bool scale_up)
1130 {
1131 	struct ufs_clk_info *clki;
1132 	struct list_head *head = &hba->clk_list_head;
1133 
1134 	if (list_empty(head))
1135 		return false;
1136 
1137 	list_for_each_entry(clki, head, list) {
1138 		if (!IS_ERR_OR_NULL(clki->clk)) {
1139 			if (scale_up && clki->max_freq) {
1140 				if (clki->curr_freq == clki->max_freq)
1141 					continue;
1142 				return true;
1143 			} else if (!scale_up && clki->min_freq) {
1144 				if (clki->curr_freq == clki->min_freq)
1145 					continue;
1146 				return true;
1147 			}
1148 		}
1149 	}
1150 
1151 	return false;
1152 }
1153 
1154 /*
1155  * Determine the number of pending commands by counting the bits in the SCSI
1156  * device budget maps. This approach has been selected because a bit is set in
1157  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1158  * flag. The host_self_blocked flag can be modified by calling
1159  * scsi_block_requests() or scsi_unblock_requests().
1160  */
ufshcd_pending_cmds(struct ufs_hba * hba)1161 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1162 {
1163 	const struct scsi_device *sdev;
1164 	u32 pending = 0;
1165 
1166 	lockdep_assert_held(hba->host->host_lock);
1167 	__shost_for_each_device(sdev, hba->host)
1168 		pending += sbitmap_weight(&sdev->budget_map);
1169 
1170 	return pending;
1171 }
1172 
1173 /*
1174  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1175  * has expired.
1176  *
1177  * Return: 0 upon success; -EBUSY upon timeout.
1178  */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1179 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1180 					u64 wait_timeout_us)
1181 {
1182 	unsigned long flags;
1183 	int ret = 0;
1184 	u32 tm_doorbell;
1185 	u32 tr_pending;
1186 	bool timeout = false, do_last_check = false;
1187 	ktime_t start;
1188 
1189 	ufshcd_hold(hba);
1190 	spin_lock_irqsave(hba->host->host_lock, flags);
1191 	/*
1192 	 * Wait for all the outstanding tasks/transfer requests.
1193 	 * Verify by checking the doorbell registers are clear.
1194 	 */
1195 	start = ktime_get();
1196 	do {
1197 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1198 			ret = -EBUSY;
1199 			goto out;
1200 		}
1201 
1202 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1203 		tr_pending = ufshcd_pending_cmds(hba);
1204 		if (!tm_doorbell && !tr_pending) {
1205 			timeout = false;
1206 			break;
1207 		} else if (do_last_check) {
1208 			break;
1209 		}
1210 
1211 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1212 		io_schedule_timeout(msecs_to_jiffies(20));
1213 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1214 		    wait_timeout_us) {
1215 			timeout = true;
1216 			/*
1217 			 * We might have scheduled out for long time so make
1218 			 * sure to check if doorbells are cleared by this time
1219 			 * or not.
1220 			 */
1221 			do_last_check = true;
1222 		}
1223 		spin_lock_irqsave(hba->host->host_lock, flags);
1224 	} while (tm_doorbell || tr_pending);
1225 
1226 	if (timeout) {
1227 		dev_err(hba->dev,
1228 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1229 			__func__, tm_doorbell, tr_pending);
1230 		ret = -EBUSY;
1231 	}
1232 out:
1233 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1234 	ufshcd_release(hba);
1235 	return ret;
1236 }
1237 
1238 /**
1239  * ufshcd_scale_gear - scale up/down UFS gear
1240  * @hba: per adapter instance
1241  * @scale_up: True for scaling up gear and false for scaling down
1242  *
1243  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1244  * non-zero for any other errors.
1245  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1246 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1247 {
1248 	int ret = 0;
1249 	struct ufs_pa_layer_attr new_pwr_info;
1250 
1251 	if (scale_up) {
1252 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1253 		       sizeof(struct ufs_pa_layer_attr));
1254 	} else {
1255 		memcpy(&new_pwr_info, &hba->pwr_info,
1256 		       sizeof(struct ufs_pa_layer_attr));
1257 
1258 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1259 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1260 			/* save the current power mode */
1261 			memcpy(&hba->clk_scaling.saved_pwr_info,
1262 				&hba->pwr_info,
1263 				sizeof(struct ufs_pa_layer_attr));
1264 
1265 			/* scale down gear */
1266 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1267 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1268 		}
1269 	}
1270 
1271 	/* check if the power mode needs to be changed or not? */
1272 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1273 	if (ret)
1274 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1275 			__func__, ret,
1276 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1277 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1278 
1279 	return ret;
1280 }
1281 
1282 /*
1283  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1284  * has expired.
1285  *
1286  * Return: 0 upon success; -EBUSY upon timeout.
1287  */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1288 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1289 {
1290 	int ret = 0;
1291 	/*
1292 	 * make sure that there are no outstanding requests when
1293 	 * clock scaling is in progress
1294 	 */
1295 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1296 	mutex_lock(&hba->wb_mutex);
1297 	down_write(&hba->clk_scaling_lock);
1298 
1299 	if (!hba->clk_scaling.is_allowed ||
1300 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1301 		ret = -EBUSY;
1302 		up_write(&hba->clk_scaling_lock);
1303 		mutex_unlock(&hba->wb_mutex);
1304 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1305 		goto out;
1306 	}
1307 
1308 	/* let's not get into low power until clock scaling is completed */
1309 	ufshcd_hold(hba);
1310 
1311 out:
1312 	return ret;
1313 }
1314 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err,bool scale_up)1315 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1316 {
1317 	up_write(&hba->clk_scaling_lock);
1318 
1319 	/* Enable Write Booster if we have scaled up else disable it */
1320 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1321 		ufshcd_wb_toggle(hba, scale_up);
1322 
1323 	mutex_unlock(&hba->wb_mutex);
1324 
1325 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1326 	ufshcd_release(hba);
1327 }
1328 
1329 /**
1330  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1331  * @hba: per adapter instance
1332  * @scale_up: True for scaling up and false for scalin down
1333  *
1334  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1335  * for any other errors.
1336  */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1337 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1338 {
1339 	int ret = 0;
1340 
1341 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1342 	if (ret)
1343 		return ret;
1344 
1345 	/* scale down the gear before scaling down clocks */
1346 	if (!scale_up) {
1347 		ret = ufshcd_scale_gear(hba, false);
1348 		if (ret)
1349 			goto out_unprepare;
1350 	}
1351 
1352 	ret = ufshcd_scale_clks(hba, scale_up);
1353 	if (ret) {
1354 		if (!scale_up)
1355 			ufshcd_scale_gear(hba, true);
1356 		goto out_unprepare;
1357 	}
1358 
1359 	/* scale up the gear after scaling up clocks */
1360 	if (scale_up) {
1361 		ret = ufshcd_scale_gear(hba, true);
1362 		if (ret) {
1363 			ufshcd_scale_clks(hba, false);
1364 			goto out_unprepare;
1365 		}
1366 	}
1367 
1368 out_unprepare:
1369 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1370 	return ret;
1371 }
1372 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1373 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1374 {
1375 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1376 					   clk_scaling.suspend_work);
1377 	unsigned long irq_flags;
1378 
1379 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1380 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1381 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1382 		return;
1383 	}
1384 	hba->clk_scaling.is_suspended = true;
1385 	hba->clk_scaling.window_start_t = 0;
1386 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1387 
1388 	devfreq_suspend_device(hba->devfreq);
1389 }
1390 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1391 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1392 {
1393 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1394 					   clk_scaling.resume_work);
1395 	unsigned long irq_flags;
1396 
1397 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1398 	if (!hba->clk_scaling.is_suspended) {
1399 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1400 		return;
1401 	}
1402 	hba->clk_scaling.is_suspended = false;
1403 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1404 
1405 	devfreq_resume_device(hba->devfreq);
1406 }
1407 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1408 static int ufshcd_devfreq_target(struct device *dev,
1409 				unsigned long *freq, u32 flags)
1410 {
1411 	int ret = 0;
1412 	struct ufs_hba *hba = dev_get_drvdata(dev);
1413 	ktime_t start;
1414 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1415 	struct list_head *clk_list = &hba->clk_list_head;
1416 	struct ufs_clk_info *clki;
1417 	unsigned long irq_flags;
1418 
1419 	if (!ufshcd_is_clkscaling_supported(hba))
1420 		return -EINVAL;
1421 
1422 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1423 	/* Override with the closest supported frequency */
1424 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1425 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1426 	if (ufshcd_eh_in_progress(hba)) {
1427 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1428 		return 0;
1429 	}
1430 
1431 	/* Skip scaling clock when clock scaling is suspended */
1432 	if (hba->clk_scaling.is_suspended) {
1433 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1434 		dev_warn(hba->dev, "clock scaling is suspended, skip");
1435 		return 0;
1436 	}
1437 
1438 	if (!hba->clk_scaling.active_reqs)
1439 		sched_clk_scaling_suspend_work = true;
1440 
1441 	if (list_empty(clk_list)) {
1442 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1443 		goto out;
1444 	}
1445 
1446 	/* Decide based on the rounded-off frequency and update */
1447 	scale_up = *freq == clki->max_freq;
1448 	if (!scale_up)
1449 		*freq = clki->min_freq;
1450 	/* Update the frequency */
1451 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1452 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1453 		ret = 0;
1454 		goto out; /* no state change required */
1455 	}
1456 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1457 
1458 	start = ktime_get();
1459 	ret = ufshcd_devfreq_scale(hba, scale_up);
1460 
1461 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1462 		(scale_up ? "up" : "down"),
1463 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1464 
1465 out:
1466 	if (sched_clk_scaling_suspend_work &&
1467 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1468 		queue_work(hba->clk_scaling.workq,
1469 			   &hba->clk_scaling.suspend_work);
1470 
1471 	return ret;
1472 }
1473 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1474 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1475 		struct devfreq_dev_status *stat)
1476 {
1477 	struct ufs_hba *hba = dev_get_drvdata(dev);
1478 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1479 	unsigned long flags;
1480 	struct list_head *clk_list = &hba->clk_list_head;
1481 	struct ufs_clk_info *clki;
1482 	ktime_t curr_t;
1483 
1484 	if (!ufshcd_is_clkscaling_supported(hba))
1485 		return -EINVAL;
1486 
1487 	memset(stat, 0, sizeof(*stat));
1488 
1489 	spin_lock_irqsave(hba->host->host_lock, flags);
1490 	curr_t = ktime_get();
1491 	if (!scaling->window_start_t)
1492 		goto start_window;
1493 
1494 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1495 	/*
1496 	 * If current frequency is 0, then the ondemand governor considers
1497 	 * there's no initial frequency set. And it always requests to set
1498 	 * to max. frequency.
1499 	 */
1500 	stat->current_frequency = clki->curr_freq;
1501 	if (scaling->is_busy_started)
1502 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1503 				scaling->busy_start_t);
1504 
1505 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1506 	stat->busy_time = scaling->tot_busy_t;
1507 start_window:
1508 	scaling->window_start_t = curr_t;
1509 	scaling->tot_busy_t = 0;
1510 
1511 	if (scaling->active_reqs) {
1512 		scaling->busy_start_t = curr_t;
1513 		scaling->is_busy_started = true;
1514 	} else {
1515 		scaling->busy_start_t = 0;
1516 		scaling->is_busy_started = false;
1517 	}
1518 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1519 	return 0;
1520 }
1521 
ufshcd_devfreq_init(struct ufs_hba * hba)1522 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1523 {
1524 	struct list_head *clk_list = &hba->clk_list_head;
1525 	struct ufs_clk_info *clki;
1526 	struct devfreq *devfreq;
1527 	int ret;
1528 
1529 	/* Skip devfreq if we don't have any clocks in the list */
1530 	if (list_empty(clk_list))
1531 		return 0;
1532 
1533 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1534 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1535 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1536 
1537 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1538 					 &hba->vps->ondemand_data);
1539 	devfreq = devfreq_add_device(hba->dev,
1540 			&hba->vps->devfreq_profile,
1541 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1542 			&hba->vps->ondemand_data);
1543 	if (IS_ERR(devfreq)) {
1544 		ret = PTR_ERR(devfreq);
1545 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1546 
1547 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1548 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1549 		return ret;
1550 	}
1551 
1552 	hba->devfreq = devfreq;
1553 
1554 	return 0;
1555 }
1556 
ufshcd_devfreq_remove(struct ufs_hba * hba)1557 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1558 {
1559 	struct list_head *clk_list = &hba->clk_list_head;
1560 	struct ufs_clk_info *clki;
1561 
1562 	if (!hba->devfreq)
1563 		return;
1564 
1565 	devfreq_remove_device(hba->devfreq);
1566 	hba->devfreq = NULL;
1567 
1568 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1569 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1570 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1571 }
1572 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1573 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1574 {
1575 	unsigned long flags;
1576 	bool suspend = false;
1577 
1578 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1579 	cancel_work_sync(&hba->clk_scaling.resume_work);
1580 
1581 	spin_lock_irqsave(hba->host->host_lock, flags);
1582 	if (!hba->clk_scaling.is_suspended) {
1583 		suspend = true;
1584 		hba->clk_scaling.is_suspended = true;
1585 		hba->clk_scaling.window_start_t = 0;
1586 	}
1587 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1588 
1589 	if (suspend)
1590 		devfreq_suspend_device(hba->devfreq);
1591 }
1592 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1593 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1594 {
1595 	unsigned long flags;
1596 	bool resume = false;
1597 
1598 	spin_lock_irqsave(hba->host->host_lock, flags);
1599 	if (hba->clk_scaling.is_suspended) {
1600 		resume = true;
1601 		hba->clk_scaling.is_suspended = false;
1602 	}
1603 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1604 
1605 	if (resume)
1606 		devfreq_resume_device(hba->devfreq);
1607 }
1608 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1609 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1610 		struct device_attribute *attr, char *buf)
1611 {
1612 	struct ufs_hba *hba = dev_get_drvdata(dev);
1613 
1614 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1615 }
1616 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1617 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1618 		struct device_attribute *attr, const char *buf, size_t count)
1619 {
1620 	struct ufs_hba *hba = dev_get_drvdata(dev);
1621 	u32 value;
1622 	int err = 0;
1623 
1624 	if (kstrtou32(buf, 0, &value))
1625 		return -EINVAL;
1626 
1627 	down(&hba->host_sem);
1628 	if (!ufshcd_is_user_access_allowed(hba)) {
1629 		err = -EBUSY;
1630 		goto out;
1631 	}
1632 
1633 	value = !!value;
1634 	if (value == hba->clk_scaling.is_enabled)
1635 		goto out;
1636 
1637 	ufshcd_rpm_get_sync(hba);
1638 	ufshcd_hold(hba);
1639 
1640 	hba->clk_scaling.is_enabled = value;
1641 
1642 	if (value) {
1643 		ufshcd_resume_clkscaling(hba);
1644 	} else {
1645 		ufshcd_suspend_clkscaling(hba);
1646 		err = ufshcd_devfreq_scale(hba, true);
1647 		if (err)
1648 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1649 					__func__, err);
1650 	}
1651 
1652 	ufshcd_release(hba);
1653 	ufshcd_rpm_put_sync(hba);
1654 out:
1655 	up(&hba->host_sem);
1656 	return err ? err : count;
1657 }
1658 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1659 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1660 {
1661 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1662 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1663 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1664 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1665 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1666 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1667 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1668 }
1669 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1670 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1671 {
1672 	if (hba->clk_scaling.enable_attr.attr.name)
1673 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1674 }
1675 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1676 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1677 {
1678 	char wq_name[sizeof("ufs_clkscaling_00")];
1679 
1680 	if (!ufshcd_is_clkscaling_supported(hba))
1681 		return;
1682 
1683 	if (!hba->clk_scaling.min_gear)
1684 		hba->clk_scaling.min_gear = UFS_HS_G1;
1685 
1686 	INIT_WORK(&hba->clk_scaling.suspend_work,
1687 		  ufshcd_clk_scaling_suspend_work);
1688 	INIT_WORK(&hba->clk_scaling.resume_work,
1689 		  ufshcd_clk_scaling_resume_work);
1690 
1691 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1692 		 hba->host->host_no);
1693 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1694 
1695 	hba->clk_scaling.is_initialized = true;
1696 }
1697 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1698 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1699 {
1700 	if (!hba->clk_scaling.is_initialized)
1701 		return;
1702 
1703 	ufshcd_remove_clk_scaling_sysfs(hba);
1704 	destroy_workqueue(hba->clk_scaling.workq);
1705 	ufshcd_devfreq_remove(hba);
1706 	hba->clk_scaling.is_initialized = false;
1707 }
1708 
ufshcd_ungate_work(struct work_struct * work)1709 static void ufshcd_ungate_work(struct work_struct *work)
1710 {
1711 	int ret;
1712 	unsigned long flags;
1713 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1714 			clk_gating.ungate_work);
1715 
1716 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1717 
1718 	spin_lock_irqsave(hba->host->host_lock, flags);
1719 	if (hba->clk_gating.state == CLKS_ON) {
1720 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1721 		return;
1722 	}
1723 
1724 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1725 	ufshcd_hba_vreg_set_hpm(hba);
1726 	ufshcd_setup_clocks(hba, true);
1727 
1728 	ufshcd_enable_irq(hba);
1729 
1730 	/* Exit from hibern8 */
1731 	if (ufshcd_can_hibern8_during_gating(hba)) {
1732 		/* Prevent gating in this path */
1733 		hba->clk_gating.is_suspended = true;
1734 		if (ufshcd_is_link_hibern8(hba)) {
1735 			ret = ufshcd_uic_hibern8_exit(hba);
1736 			if (ret)
1737 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1738 					__func__, ret);
1739 			else
1740 				ufshcd_set_link_active(hba);
1741 		}
1742 		hba->clk_gating.is_suspended = false;
1743 	}
1744 }
1745 
1746 /**
1747  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1748  * Also, exit from hibern8 mode and set the link as active.
1749  * @hba: per adapter instance
1750  */
ufshcd_hold(struct ufs_hba * hba)1751 void ufshcd_hold(struct ufs_hba *hba)
1752 {
1753 	bool flush_result;
1754 	unsigned long flags;
1755 
1756 	if (!ufshcd_is_clkgating_allowed(hba) ||
1757 	    !hba->clk_gating.is_initialized)
1758 		return;
1759 	spin_lock_irqsave(hba->host->host_lock, flags);
1760 	hba->clk_gating.active_reqs++;
1761 
1762 start:
1763 	switch (hba->clk_gating.state) {
1764 	case CLKS_ON:
1765 		/*
1766 		 * Wait for the ungate work to complete if in progress.
1767 		 * Though the clocks may be in ON state, the link could
1768 		 * still be in hibner8 state if hibern8 is allowed
1769 		 * during clock gating.
1770 		 * Make sure we exit hibern8 state also in addition to
1771 		 * clocks being ON.
1772 		 */
1773 		if (ufshcd_can_hibern8_during_gating(hba) &&
1774 		    ufshcd_is_link_hibern8(hba)) {
1775 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1776 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1777 			if (hba->clk_gating.is_suspended && !flush_result)
1778 				return;
1779 			spin_lock_irqsave(hba->host->host_lock, flags);
1780 			goto start;
1781 		}
1782 		break;
1783 	case REQ_CLKS_OFF:
1784 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1785 			hba->clk_gating.state = CLKS_ON;
1786 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1787 						hba->clk_gating.state);
1788 			break;
1789 		}
1790 		/*
1791 		 * If we are here, it means gating work is either done or
1792 		 * currently running. Hence, fall through to cancel gating
1793 		 * work and to enable clocks.
1794 		 */
1795 		fallthrough;
1796 	case CLKS_OFF:
1797 		hba->clk_gating.state = REQ_CLKS_ON;
1798 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1799 					hba->clk_gating.state);
1800 		queue_work(hba->clk_gating.clk_gating_workq,
1801 			   &hba->clk_gating.ungate_work);
1802 		/*
1803 		 * fall through to check if we should wait for this
1804 		 * work to be done or not.
1805 		 */
1806 		fallthrough;
1807 	case REQ_CLKS_ON:
1808 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1809 		flush_work(&hba->clk_gating.ungate_work);
1810 		/* Make sure state is CLKS_ON before returning */
1811 		spin_lock_irqsave(hba->host->host_lock, flags);
1812 		goto start;
1813 	default:
1814 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1815 				__func__, hba->clk_gating.state);
1816 		break;
1817 	}
1818 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1819 }
1820 EXPORT_SYMBOL_GPL(ufshcd_hold);
1821 
ufshcd_gate_work(struct work_struct * work)1822 static void ufshcd_gate_work(struct work_struct *work)
1823 {
1824 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1825 			clk_gating.gate_work.work);
1826 	unsigned long flags;
1827 	int ret;
1828 
1829 	spin_lock_irqsave(hba->host->host_lock, flags);
1830 	/*
1831 	 * In case you are here to cancel this work the gating state
1832 	 * would be marked as REQ_CLKS_ON. In this case save time by
1833 	 * skipping the gating work and exit after changing the clock
1834 	 * state to CLKS_ON.
1835 	 */
1836 	if (hba->clk_gating.is_suspended ||
1837 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1838 		hba->clk_gating.state = CLKS_ON;
1839 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1840 					hba->clk_gating.state);
1841 		goto rel_lock;
1842 	}
1843 
1844 	if (hba->clk_gating.active_reqs
1845 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1846 		|| hba->outstanding_reqs || hba->outstanding_tasks
1847 		|| hba->active_uic_cmd || hba->uic_async_done)
1848 		goto rel_lock;
1849 
1850 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1851 
1852 	/* put the link into hibern8 mode before turning off clocks */
1853 	if (ufshcd_can_hibern8_during_gating(hba)) {
1854 		ret = ufshcd_uic_hibern8_enter(hba);
1855 		if (ret) {
1856 			hba->clk_gating.state = CLKS_ON;
1857 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1858 					__func__, ret);
1859 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 						hba->clk_gating.state);
1861 			goto out;
1862 		}
1863 		ufshcd_set_link_hibern8(hba);
1864 	}
1865 
1866 	ufshcd_disable_irq(hba);
1867 
1868 	ufshcd_setup_clocks(hba, false);
1869 
1870 	/* Put the host controller in low power mode if possible */
1871 	ufshcd_hba_vreg_set_lpm(hba);
1872 	/*
1873 	 * In case you are here to cancel this work the gating state
1874 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1875 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1876 	 * and a request to turn them on is pending. By doing this way,
1877 	 * we keep the state machine in tact and this would ultimately
1878 	 * prevent from doing cancel work multiple times when there are
1879 	 * new requests arriving before the current cancel work is done.
1880 	 */
1881 	spin_lock_irqsave(hba->host->host_lock, flags);
1882 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1883 		hba->clk_gating.state = CLKS_OFF;
1884 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1885 					hba->clk_gating.state);
1886 	}
1887 rel_lock:
1888 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1889 out:
1890 	return;
1891 }
1892 
1893 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1894 static void __ufshcd_release(struct ufs_hba *hba)
1895 {
1896 	if (!ufshcd_is_clkgating_allowed(hba))
1897 		return;
1898 
1899 	hba->clk_gating.active_reqs--;
1900 
1901 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1902 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1903 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1904 	    hba->active_uic_cmd || hba->uic_async_done ||
1905 	    hba->clk_gating.state == CLKS_OFF)
1906 		return;
1907 
1908 	hba->clk_gating.state = REQ_CLKS_OFF;
1909 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1910 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1911 			   &hba->clk_gating.gate_work,
1912 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1913 }
1914 
ufshcd_release(struct ufs_hba * hba)1915 void ufshcd_release(struct ufs_hba *hba)
1916 {
1917 	unsigned long flags;
1918 
1919 	spin_lock_irqsave(hba->host->host_lock, flags);
1920 	__ufshcd_release(hba);
1921 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1922 }
1923 EXPORT_SYMBOL_GPL(ufshcd_release);
1924 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1925 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1926 		struct device_attribute *attr, char *buf)
1927 {
1928 	struct ufs_hba *hba = dev_get_drvdata(dev);
1929 
1930 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1931 }
1932 
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)1933 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1934 {
1935 	struct ufs_hba *hba = dev_get_drvdata(dev);
1936 	unsigned long flags;
1937 
1938 	spin_lock_irqsave(hba->host->host_lock, flags);
1939 	hba->clk_gating.delay_ms = value;
1940 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1941 }
1942 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1943 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1944 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1945 		struct device_attribute *attr, const char *buf, size_t count)
1946 {
1947 	unsigned long value;
1948 
1949 	if (kstrtoul(buf, 0, &value))
1950 		return -EINVAL;
1951 
1952 	ufshcd_clkgate_delay_set(dev, value);
1953 	return count;
1954 }
1955 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1956 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1957 		struct device_attribute *attr, char *buf)
1958 {
1959 	struct ufs_hba *hba = dev_get_drvdata(dev);
1960 
1961 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1962 }
1963 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1964 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1965 		struct device_attribute *attr, const char *buf, size_t count)
1966 {
1967 	struct ufs_hba *hba = dev_get_drvdata(dev);
1968 	unsigned long flags;
1969 	u32 value;
1970 
1971 	if (kstrtou32(buf, 0, &value))
1972 		return -EINVAL;
1973 
1974 	value = !!value;
1975 
1976 	spin_lock_irqsave(hba->host->host_lock, flags);
1977 	if (value == hba->clk_gating.is_enabled)
1978 		goto out;
1979 
1980 	if (value)
1981 		__ufshcd_release(hba);
1982 	else
1983 		hba->clk_gating.active_reqs++;
1984 
1985 	hba->clk_gating.is_enabled = value;
1986 out:
1987 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1988 	return count;
1989 }
1990 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)1991 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1992 {
1993 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1994 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1995 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1996 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1997 	hba->clk_gating.delay_attr.attr.mode = 0644;
1998 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1999 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2000 
2001 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2002 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2003 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2004 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2005 	hba->clk_gating.enable_attr.attr.mode = 0644;
2006 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2007 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2008 }
2009 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2010 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2011 {
2012 	if (hba->clk_gating.delay_attr.attr.name)
2013 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2014 	if (hba->clk_gating.enable_attr.attr.name)
2015 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2016 }
2017 
ufshcd_init_clk_gating(struct ufs_hba * hba)2018 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2019 {
2020 	char wq_name[sizeof("ufs_clk_gating_00")];
2021 
2022 	if (!ufshcd_is_clkgating_allowed(hba))
2023 		return;
2024 
2025 	hba->clk_gating.state = CLKS_ON;
2026 
2027 	hba->clk_gating.delay_ms = 150;
2028 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2029 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2030 
2031 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2032 		 hba->host->host_no);
2033 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2034 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2035 
2036 	ufshcd_init_clk_gating_sysfs(hba);
2037 
2038 	hba->clk_gating.is_enabled = true;
2039 	hba->clk_gating.is_initialized = true;
2040 }
2041 
ufshcd_exit_clk_gating(struct ufs_hba * hba)2042 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2043 {
2044 	if (!hba->clk_gating.is_initialized)
2045 		return;
2046 
2047 	ufshcd_remove_clk_gating_sysfs(hba);
2048 
2049 	/* Ungate the clock if necessary. */
2050 	ufshcd_hold(hba);
2051 	hba->clk_gating.is_initialized = false;
2052 	ufshcd_release(hba);
2053 
2054 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2055 }
2056 
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2057 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2058 {
2059 	bool queue_resume_work = false;
2060 	ktime_t curr_t = ktime_get();
2061 	unsigned long flags;
2062 
2063 	if (!ufshcd_is_clkscaling_supported(hba))
2064 		return;
2065 
2066 	spin_lock_irqsave(hba->host->host_lock, flags);
2067 	if (!hba->clk_scaling.active_reqs++)
2068 		queue_resume_work = true;
2069 
2070 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2071 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2072 		return;
2073 	}
2074 
2075 	if (queue_resume_work)
2076 		queue_work(hba->clk_scaling.workq,
2077 			   &hba->clk_scaling.resume_work);
2078 
2079 	if (!hba->clk_scaling.window_start_t) {
2080 		hba->clk_scaling.window_start_t = curr_t;
2081 		hba->clk_scaling.tot_busy_t = 0;
2082 		hba->clk_scaling.is_busy_started = false;
2083 	}
2084 
2085 	if (!hba->clk_scaling.is_busy_started) {
2086 		hba->clk_scaling.busy_start_t = curr_t;
2087 		hba->clk_scaling.is_busy_started = true;
2088 	}
2089 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2090 }
2091 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2092 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2093 {
2094 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2095 	unsigned long flags;
2096 
2097 	if (!ufshcd_is_clkscaling_supported(hba))
2098 		return;
2099 
2100 	spin_lock_irqsave(hba->host->host_lock, flags);
2101 	hba->clk_scaling.active_reqs--;
2102 	if (!scaling->active_reqs && scaling->is_busy_started) {
2103 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2104 					scaling->busy_start_t));
2105 		scaling->busy_start_t = 0;
2106 		scaling->is_busy_started = false;
2107 	}
2108 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2109 }
2110 
ufshcd_monitor_opcode2dir(u8 opcode)2111 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2112 {
2113 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2114 		return READ;
2115 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2116 		return WRITE;
2117 	else
2118 		return -EINVAL;
2119 }
2120 
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2121 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2122 						struct ufshcd_lrb *lrbp)
2123 {
2124 	const struct ufs_hba_monitor *m = &hba->monitor;
2125 
2126 	return (m->enabled && lrbp && lrbp->cmd &&
2127 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2128 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2129 }
2130 
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2131 static void ufshcd_start_monitor(struct ufs_hba *hba,
2132 				 const struct ufshcd_lrb *lrbp)
2133 {
2134 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2135 	unsigned long flags;
2136 
2137 	spin_lock_irqsave(hba->host->host_lock, flags);
2138 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2139 		hba->monitor.busy_start_ts[dir] = ktime_get();
2140 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2141 }
2142 
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2143 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2144 {
2145 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2146 	unsigned long flags;
2147 
2148 	spin_lock_irqsave(hba->host->host_lock, flags);
2149 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2150 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2151 		struct ufs_hba_monitor *m = &hba->monitor;
2152 		ktime_t now, inc, lat;
2153 
2154 		now = lrbp->compl_time_stamp;
2155 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2156 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2157 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2158 
2159 		/* Update latencies */
2160 		m->nr_req[dir]++;
2161 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2162 		m->lat_sum[dir] += lat;
2163 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2164 			m->lat_max[dir] = lat;
2165 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2166 			m->lat_min[dir] = lat;
2167 
2168 		m->nr_queued[dir]--;
2169 		/* Push forward the busy start of monitor */
2170 		m->busy_start_ts[dir] = now;
2171 	}
2172 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2173 }
2174 
2175 /**
2176  * ufshcd_send_command - Send SCSI or device management commands
2177  * @hba: per adapter instance
2178  * @task_tag: Task tag of the command
2179  * @hwq: pointer to hardware queue instance
2180  */
2181 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2182 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2183 			 struct ufs_hw_queue *hwq)
2184 {
2185 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2186 	unsigned long flags;
2187 
2188 	lrbp->issue_time_stamp = ktime_get();
2189 	lrbp->issue_time_stamp_local_clock = local_clock();
2190 	lrbp->compl_time_stamp = ktime_set(0, 0);
2191 	lrbp->compl_time_stamp_local_clock = 0;
2192 	trace_android_vh_ufs_send_command(hba, lrbp);
2193 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2194 	if (lrbp->cmd)
2195 		ufshcd_clk_scaling_start_busy(hba);
2196 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2197 		ufshcd_start_monitor(hba, lrbp);
2198 
2199 	if (is_mcq_enabled(hba)) {
2200 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2201 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2202 		struct utp_transfer_req_desc *dest;
2203 
2204 		spin_lock(&hwq->sq_lock);
2205 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2206 		memcpy(dest, src, utrd_size);
2207 		ufshcd_inc_sq_tail(hwq);
2208 		spin_unlock(&hwq->sq_lock);
2209 	} else {
2210 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2211 		if (hba->vops && hba->vops->setup_xfer_req)
2212 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2213 						  !!lrbp->cmd);
2214 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2215 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2216 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2217 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2218 	}
2219 	trace_android_vh_ufs_send_command_post_change(hba, lrbp);
2220 }
2221 
2222 /**
2223  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2224  * @lrbp: pointer to local reference block
2225  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2226 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2227 {
2228 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2229 	u16 resp_len;
2230 	int len;
2231 
2232 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2233 	if (sense_buffer && resp_len) {
2234 		int len_to_copy;
2235 
2236 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2237 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2238 
2239 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2240 		       len_to_copy);
2241 	}
2242 }
2243 
2244 /**
2245  * ufshcd_copy_query_response() - Copy the Query Response and the data
2246  * descriptor
2247  * @hba: per adapter instance
2248  * @lrbp: pointer to local reference block
2249  *
2250  * Return: 0 upon success; < 0 upon failure.
2251  */
2252 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2253 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2254 {
2255 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2256 
2257 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2258 
2259 	/* Get the descriptor */
2260 	if (hba->dev_cmd.query.descriptor &&
2261 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2262 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2263 				GENERAL_UPIU_REQUEST_SIZE;
2264 		u16 resp_len;
2265 		u16 buf_len;
2266 
2267 		/* data segment length */
2268 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2269 				       .data_segment_length);
2270 		buf_len = be16_to_cpu(
2271 				hba->dev_cmd.query.request.upiu_req.length);
2272 		if (likely(buf_len >= resp_len)) {
2273 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2274 		} else {
2275 			dev_warn(hba->dev,
2276 				 "%s: rsp size %d is bigger than buffer size %d",
2277 				 __func__, resp_len, buf_len);
2278 			return -EINVAL;
2279 		}
2280 	}
2281 
2282 	return 0;
2283 }
2284 
2285 /**
2286  * ufshcd_hba_capabilities - Read controller capabilities
2287  * @hba: per adapter instance
2288  *
2289  * Return: 0 on success, negative on error.
2290  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2291 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2292 {
2293 	int err;
2294 
2295 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2296 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2297 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2298 
2299 	/* nutrs and nutmrs are 0 based values */
2300 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2301 	hba->nutmrs =
2302 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2303 	hba->reserved_slot = hba->nutrs - 1;
2304 
2305 	/* Read crypto capabilities */
2306 	err = ufshcd_hba_init_crypto_capabilities(hba);
2307 	if (err) {
2308 		dev_err(hba->dev, "crypto setup failed\n");
2309 		return err;
2310 	}
2311 
2312 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2313 	if (!hba->mcq_sup)
2314 		return 0;
2315 
2316 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2317 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2318 				     hba->mcq_capabilities);
2319 
2320 	return 0;
2321 }
2322 
2323 /**
2324  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2325  *                            to accept UIC commands
2326  * @hba: per adapter instance
2327  *
2328  * Return: true on success, else false.
2329  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2330 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2331 {
2332 	u32 val;
2333 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2334 				    500, uic_cmd_timeout * 1000, false, hba,
2335 				    REG_CONTROLLER_STATUS);
2336 	return ret == 0 ? true : false;
2337 }
2338 
2339 /**
2340  * ufshcd_get_upmcrs - Get the power mode change request status
2341  * @hba: Pointer to adapter instance
2342  *
2343  * This function gets the UPMCRS field of HCS register
2344  *
2345  * Return: value of UPMCRS field.
2346  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2347 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2348 {
2349 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2350 }
2351 
2352 /**
2353  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2354  * @hba: per adapter instance
2355  * @uic_cmd: UIC command
2356  */
2357 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2358 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2359 {
2360 	lockdep_assert_held(&hba->uic_cmd_mutex);
2361 
2362 	WARN_ON(hba->active_uic_cmd);
2363 
2364 	hba->active_uic_cmd = uic_cmd;
2365 
2366 	/* Write Args */
2367 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2368 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2369 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2370 
2371 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2372 
2373 	/* Write UIC Cmd */
2374 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2375 		      REG_UIC_COMMAND);
2376 }
2377 
2378 /**
2379  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2380  * @hba: per adapter instance
2381  * @uic_cmd: UIC command
2382  *
2383  * Return: 0 only if success.
2384  */
2385 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2386 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2387 {
2388 	int ret;
2389 	unsigned long flags;
2390 
2391 	lockdep_assert_held(&hba->uic_cmd_mutex);
2392 
2393 	if (wait_for_completion_timeout(&uic_cmd->done,
2394 					msecs_to_jiffies(uic_cmd_timeout))) {
2395 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2396 	} else {
2397 		ret = -ETIMEDOUT;
2398 		dev_err(hba->dev,
2399 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2400 			uic_cmd->command, uic_cmd->argument3);
2401 
2402 		if (!uic_cmd->cmd_active) {
2403 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2404 				__func__);
2405 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2406 		}
2407 	}
2408 
2409 	spin_lock_irqsave(hba->host->host_lock, flags);
2410 	hba->active_uic_cmd = NULL;
2411 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2412 
2413 	return ret;
2414 }
2415 
2416 /**
2417  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2418  * @hba: per adapter instance
2419  * @uic_cmd: UIC command
2420  * @completion: initialize the completion only if this is set to true
2421  *
2422  * Return: 0 only if success.
2423  */
2424 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2425 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2426 		      bool completion)
2427 {
2428 	lockdep_assert_held(&hba->uic_cmd_mutex);
2429 
2430 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2431 		dev_err(hba->dev,
2432 			"Controller not ready to accept UIC commands\n");
2433 		return -EIO;
2434 	}
2435 
2436 	if (completion)
2437 		init_completion(&uic_cmd->done);
2438 
2439 	uic_cmd->cmd_active = 1;
2440 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2441 
2442 	return 0;
2443 }
2444 
2445 /**
2446  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2447  * @hba: per adapter instance
2448  * @uic_cmd: UIC command
2449  *
2450  * Return: 0 only if success.
2451  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2452 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2453 {
2454 	int ret;
2455 
2456 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2457 		return 0;
2458 
2459 	ufshcd_hold(hba);
2460 	mutex_lock(&hba->uic_cmd_mutex);
2461 	ufshcd_add_delay_before_dme_cmd(hba);
2462 	WARN_ON(hba->uic_async_done);
2463 
2464 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2465 	if (!ret)
2466 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2467 
2468 	mutex_unlock(&hba->uic_cmd_mutex);
2469 
2470 	ufshcd_release(hba);
2471 	return ret;
2472 }
2473 
2474 /**
2475  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2476  * @hba:	per-adapter instance
2477  * @lrbp:	pointer to local reference block
2478  * @sg_entries:	The number of sg lists actually used
2479  * @sg_list:	Pointer to SG list
2480  */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2481 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2482 			       struct scatterlist *sg_list)
2483 {
2484 	struct ufshcd_sg_entry *prd;
2485 	struct scatterlist *sg;
2486 	int i;
2487 
2488 	if (sg_entries) {
2489 
2490 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2491 			lrbp->utr_descriptor_ptr->prd_table_length =
2492 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2493 		else
2494 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2495 
2496 		prd = lrbp->ucd_prdt_ptr;
2497 
2498 		for_each_sg(sg_list, sg, sg_entries, i) {
2499 			const unsigned int len = sg_dma_len(sg);
2500 
2501 			/*
2502 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2503 			 * based value that indicates the length, in bytes, of
2504 			 * the data block. A maximum of length of 256KB may
2505 			 * exist for any entry. Bits 1:0 of this field shall be
2506 			 * 11b to indicate Dword granularity. A value of '3'
2507 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2508 			 */
2509 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2510 			prd->size = cpu_to_le32(len - 1);
2511 			prd->addr = cpu_to_le64(sg->dma_address);
2512 			prd->reserved = 0;
2513 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2514 		}
2515 	} else {
2516 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2517 	}
2518 }
2519 
2520 /**
2521  * ufshcd_map_sg - Map scatter-gather list to prdt
2522  * @hba: per adapter instance
2523  * @lrbp: pointer to local reference block
2524  *
2525  * Return: 0 in case of success, non-zero value in case of failure.
2526  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2527 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2528 {
2529 	struct scsi_cmnd *cmd = lrbp->cmd;
2530 	int sg_segments = scsi_dma_map(cmd);
2531 	int err;
2532 
2533 	if (sg_segments < 0)
2534 		return sg_segments;
2535 
2536 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2537 
2538 	err = 0;
2539 	trace_android_vh_ufs_fill_prdt(hba, lrbp, sg_segments, &err);
2540 	return err;
2541 }
2542 
2543 /**
2544  * ufshcd_enable_intr - enable interrupts
2545  * @hba: per adapter instance
2546  * @intrs: interrupt bits
2547  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2548 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2549 {
2550 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2551 
2552 	if (hba->ufs_version == ufshci_version(1, 0)) {
2553 		u32 rw;
2554 		rw = set & INTERRUPT_MASK_RW_VER_10;
2555 		set = rw | ((set ^ intrs) & intrs);
2556 	} else {
2557 		set |= intrs;
2558 	}
2559 
2560 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2561 }
2562 
2563 /**
2564  * ufshcd_disable_intr - disable interrupts
2565  * @hba: per adapter instance
2566  * @intrs: interrupt bits
2567  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2568 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2569 {
2570 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2571 
2572 	if (hba->ufs_version == ufshci_version(1, 0)) {
2573 		u32 rw;
2574 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2575 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2576 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2577 
2578 	} else {
2579 		set &= ~intrs;
2580 	}
2581 
2582 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2583 }
2584 
2585 /**
2586  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2587  * descriptor according to request
2588  * @lrbp: pointer to local reference block
2589  * @upiu_flags: flags required in the header
2590  * @cmd_dir: requests data direction
2591  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2592  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2593 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2594 					enum dma_data_direction cmd_dir, int ehs_length)
2595 {
2596 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2597 	struct request_desc_header *h = &req_desc->header;
2598 	enum utp_data_direction data_direction;
2599 
2600 	*h = (typeof(*h)){ };
2601 
2602 	if (cmd_dir == DMA_FROM_DEVICE) {
2603 		data_direction = UTP_DEVICE_TO_HOST;
2604 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2605 	} else if (cmd_dir == DMA_TO_DEVICE) {
2606 		data_direction = UTP_HOST_TO_DEVICE;
2607 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2608 	} else {
2609 		data_direction = UTP_NO_DATA_TRANSFER;
2610 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2611 	}
2612 
2613 	h->command_type = lrbp->command_type;
2614 	h->data_direction = data_direction;
2615 	h->ehs_length = ehs_length;
2616 
2617 	if (lrbp->intr_cmd)
2618 		h->interrupt = 1;
2619 
2620 	/* Prepare crypto related dwords */
2621 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2622 
2623 	/*
2624 	 * assigning invalid value for command status. Controller
2625 	 * updates OCS on command completion, with the command
2626 	 * status
2627 	 */
2628 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2629 
2630 	req_desc->prd_table_length = 0;
2631 }
2632 
2633 /**
2634  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2635  * for scsi commands
2636  * @lrbp: local reference block pointer
2637  * @upiu_flags: flags
2638  */
2639 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2640 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2641 {
2642 	struct scsi_cmnd *cmd = lrbp->cmd;
2643 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2644 	unsigned short cdb_len;
2645 
2646 	ucd_req_ptr->header = (struct utp_upiu_header){
2647 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2648 		.flags = upiu_flags,
2649 		.lun = lrbp->lun,
2650 		.task_tag = lrbp->task_tag,
2651 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2652 	};
2653 
2654 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2655 
2656 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2657 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2658 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2659 
2660 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2661 }
2662 
2663 /**
2664  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2665  * @hba: UFS hba
2666  * @lrbp: local reference block pointer
2667  * @upiu_flags: flags
2668  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2669 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2670 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2671 {
2672 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2673 	struct ufs_query *query = &hba->dev_cmd.query;
2674 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2675 
2676 	/* Query request header */
2677 	ucd_req_ptr->header = (struct utp_upiu_header){
2678 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2679 		.flags = upiu_flags,
2680 		.lun = lrbp->lun,
2681 		.task_tag = lrbp->task_tag,
2682 		.query_function = query->request.query_func,
2683 		/* Data segment length only need for WRITE_DESC */
2684 		.data_segment_length =
2685 			query->request.upiu_req.opcode ==
2686 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2687 				cpu_to_be16(len) :
2688 				0,
2689 	};
2690 
2691 	/* Copy the Query Request buffer as is */
2692 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2693 			QUERY_OSF_SIZE);
2694 
2695 	/* Copy the Descriptor */
2696 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2697 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2698 
2699 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2700 }
2701 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2702 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2703 {
2704 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2705 
2706 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2707 
2708 	ucd_req_ptr->header = (struct utp_upiu_header){
2709 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2710 		.task_tag = lrbp->task_tag,
2711 	};
2712 
2713 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2714 }
2715 
2716 /**
2717  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2718  *			     for Device Management Purposes
2719  * @hba: per adapter instance
2720  * @lrbp: pointer to local reference block
2721  *
2722  * Return: 0 upon success; < 0 upon failure.
2723  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2724 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2725 				      struct ufshcd_lrb *lrbp)
2726 {
2727 	u8 upiu_flags;
2728 	int ret = 0;
2729 
2730 	if (hba->ufs_version <= ufshci_version(1, 1))
2731 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2732 	else
2733 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2734 
2735 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2736 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2737 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2738 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2739 		ufshcd_prepare_utp_nop_upiu(lrbp);
2740 	else
2741 		ret = -EINVAL;
2742 
2743 	return ret;
2744 }
2745 
2746 /**
2747  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2748  *			   for SCSI Purposes
2749  * @hba: per adapter instance
2750  * @lrbp: pointer to local reference block
2751  *
2752  * Return: 0 upon success; < 0 upon failure.
2753  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2754 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2755 {
2756 	u8 upiu_flags;
2757 	int ret = 0;
2758 
2759 	if (hba->ufs_version <= ufshci_version(1, 1))
2760 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2761 	else
2762 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2763 
2764 	if (likely(lrbp->cmd)) {
2765 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2766 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2767 	} else {
2768 		ret = -EINVAL;
2769 	}
2770 
2771 	return ret;
2772 }
2773 
2774 /**
2775  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2776  * @upiu_wlun_id: UPIU W-LUN id
2777  *
2778  * Return: SCSI W-LUN id.
2779  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2780 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2781 {
2782 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2783 }
2784 
is_device_wlun(struct scsi_device * sdev)2785 static inline bool is_device_wlun(struct scsi_device *sdev)
2786 {
2787 	return sdev->lun ==
2788 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2789 }
2790 
2791 /*
2792  * Associate the UFS controller queue with the default and poll HCTX types.
2793  * Initialize the mq_map[] arrays.
2794  */
ufshcd_map_queues(struct Scsi_Host * shost)2795 static void ufshcd_map_queues(struct Scsi_Host *shost)
2796 {
2797 	struct ufs_hba *hba = shost_priv(shost);
2798 	int i, queue_offset = 0;
2799 
2800 	if (!is_mcq_supported(hba)) {
2801 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2802 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2803 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2804 		hba->nr_hw_queues = 1;
2805 	}
2806 
2807 	for (i = 0; i < shost->nr_maps; i++) {
2808 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2809 
2810 		map->nr_queues = hba->nr_queues[i];
2811 		if (!map->nr_queues)
2812 			continue;
2813 		map->queue_offset = queue_offset;
2814 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2815 			map->queue_offset = 0;
2816 
2817 		blk_mq_map_queues(map);
2818 		queue_offset += map->nr_queues;
2819 	}
2820 }
2821 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2822 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2823 {
2824 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2825 		i * ufshcd_get_ucd_size(hba);
2826 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2827 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2828 		i * ufshcd_get_ucd_size(hba);
2829 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2830 				       response_upiu);
2831 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2832 
2833 	lrb->utr_descriptor_ptr = utrdlp + i;
2834 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2835 		i * sizeof(struct utp_transfer_req_desc);
2836 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2837 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2838 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2839 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2840 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2841 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2842 }
2843 
2844 /**
2845  * ufshcd_queuecommand - main entry point for SCSI requests
2846  * @host: SCSI host pointer
2847  * @cmd: command from SCSI Midlayer
2848  *
2849  * Return: 0 for success, non-zero in case of failure.
2850  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2851 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2852 {
2853 	struct ufs_hba *hba = shost_priv(host);
2854 	int tag = scsi_cmd_to_rq(cmd)->tag;
2855 	struct ufshcd_lrb *lrbp;
2856 	int err = 0;
2857 	struct ufs_hw_queue *hwq = NULL;
2858 
2859 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2860 
2861 	switch (hba->ufshcd_state) {
2862 	case UFSHCD_STATE_OPERATIONAL:
2863 		break;
2864 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2865 		/*
2866 		 * SCSI error handler can call ->queuecommand() while UFS error
2867 		 * handler is in progress. Error interrupts could change the
2868 		 * state from UFSHCD_STATE_RESET to
2869 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2870 		 * being issued in that case.
2871 		 */
2872 		if (ufshcd_eh_in_progress(hba)) {
2873 			err = SCSI_MLQUEUE_HOST_BUSY;
2874 			goto out;
2875 		}
2876 		break;
2877 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2878 		/*
2879 		 * pm_runtime_get_sync() is used at error handling preparation
2880 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2881 		 * PM ops, it can never be finished if we let SCSI layer keep
2882 		 * retrying it, which gets err handler stuck forever. Neither
2883 		 * can we let the scsi cmd pass through, because UFS is in bad
2884 		 * state, the scsi cmd may eventually time out, which will get
2885 		 * err handler blocked for too long. So, just fail the scsi cmd
2886 		 * sent from PM ops, err handler can recover PM error anyways.
2887 		 */
2888 		if (hba->pm_op_in_progress) {
2889 			hba->force_reset = true;
2890 			set_host_byte(cmd, DID_BAD_TARGET);
2891 			scsi_done(cmd);
2892 			goto out;
2893 		}
2894 		fallthrough;
2895 	case UFSHCD_STATE_RESET:
2896 		err = SCSI_MLQUEUE_HOST_BUSY;
2897 		goto out;
2898 	case UFSHCD_STATE_ERROR:
2899 		set_host_byte(cmd, DID_ERROR);
2900 		scsi_done(cmd);
2901 		goto out;
2902 	}
2903 
2904 	hba->req_abort_count = 0;
2905 
2906 	ufshcd_hold(hba);
2907 
2908 	lrbp = &hba->lrb[tag];
2909 	lrbp->cmd = cmd;
2910 	lrbp->task_tag = tag;
2911 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2912 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2913 
2914 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2915 
2916 	trace_android_vh_ufs_prepare_command(hba, scsi_cmd_to_rq(cmd), lrbp,
2917 					     &err);
2918 	if (err) {
2919 		lrbp->cmd = NULL;
2920 		ufshcd_release(hba);
2921 		goto out;
2922 	}
2923 
2924 	lrbp->req_abort_skip = false;
2925 
2926 	ufshcd_comp_scsi_upiu(hba, lrbp);
2927 
2928 	err = ufshcd_map_sg(hba, lrbp);
2929 	if (err) {
2930 		ufshcd_release(hba);
2931 		goto out;
2932 	}
2933 
2934 	if (is_mcq_enabled(hba))
2935 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2936 
2937 	trace_android_vh_ufs_perf_huristic_ctrl(hba, lrbp, &err);
2938 	if (err)
2939 		goto out;
2940 	ufshcd_send_command(hba, tag, hwq);
2941 
2942 out:
2943 	if (ufs_trigger_eh()) {
2944 		unsigned long flags;
2945 
2946 		spin_lock_irqsave(hba->host->host_lock, flags);
2947 		ufshcd_schedule_eh_work(hba);
2948 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2949 	}
2950 
2951 	return err;
2952 }
2953 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2954 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2955 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2956 {
2957 	lrbp->cmd = NULL;
2958 	lrbp->task_tag = tag;
2959 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2960 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2961 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2962 	hba->dev_cmd.type = cmd_type;
2963 
2964 	return ufshcd_compose_devman_upiu(hba, lrbp);
2965 }
2966 
2967 /*
2968  * Check with the block layer if the command is inflight
2969  * @cmd: command to check.
2970  *
2971  * Return: true if command is inflight; false if not.
2972  */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)2973 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2974 {
2975 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
2976 }
2977 
2978 /*
2979  * Clear the pending command in the controller and wait until
2980  * the controller confirms that the command has been cleared.
2981  * @hba: per adapter instance
2982  * @task_tag: The tag number of the command to be cleared.
2983  */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)2984 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2985 {
2986 	u32 mask;
2987 	unsigned long flags;
2988 	int err;
2989 
2990 	if (is_mcq_enabled(hba)) {
2991 		/*
2992 		 * MCQ mode. Clean up the MCQ resources similar to
2993 		 * what the ufshcd_utrl_clear() does for SDB mode.
2994 		 */
2995 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2996 		if (err) {
2997 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2998 				__func__, task_tag, err);
2999 			return err;
3000 		}
3001 		return 0;
3002 	}
3003 
3004 	mask = 1U << task_tag;
3005 
3006 	/* clear outstanding transaction before retry */
3007 	spin_lock_irqsave(hba->host->host_lock, flags);
3008 	ufshcd_utrl_clear(hba, mask);
3009 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3010 
3011 	/*
3012 	 * wait for h/w to clear corresponding bit in door-bell.
3013 	 * max. wait is 1 sec.
3014 	 */
3015 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3016 					mask, ~mask, 1000, 1000);
3017 }
3018 
3019 /**
3020  * ufshcd_dev_cmd_completion() - handles device management command responses
3021  * @hba: per adapter instance
3022  * @lrbp: pointer to local reference block
3023  *
3024  * Return: 0 upon success; < 0 upon failure.
3025  */
3026 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3027 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3028 {
3029 	enum upiu_response_transaction resp;
3030 	int err = 0;
3031 
3032 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3033 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3034 
3035 	switch (resp) {
3036 	case UPIU_TRANSACTION_NOP_IN:
3037 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3038 			err = -EINVAL;
3039 			dev_err(hba->dev, "%s: unexpected response %x\n",
3040 					__func__, resp);
3041 		}
3042 		break;
3043 	case UPIU_TRANSACTION_QUERY_RSP: {
3044 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3045 
3046 		if (response == 0)
3047 			err = ufshcd_copy_query_response(hba, lrbp);
3048 		break;
3049 	}
3050 	case UPIU_TRANSACTION_REJECT_UPIU:
3051 		/* TODO: handle Reject UPIU Response */
3052 		err = -EPERM;
3053 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3054 				__func__);
3055 		break;
3056 	case UPIU_TRANSACTION_RESPONSE:
3057 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3058 			err = -EINVAL;
3059 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3060 		}
3061 		break;
3062 	default:
3063 		err = -EINVAL;
3064 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3065 				__func__, resp);
3066 		break;
3067 	}
3068 
3069 	return err;
3070 }
3071 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3072 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3073 		struct ufshcd_lrb *lrbp, int max_timeout)
3074 {
3075 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3076 	unsigned long flags;
3077 	bool pending;
3078 	int err;
3079 
3080 retry:
3081 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3082 						time_left);
3083 
3084 	if (likely(time_left)) {
3085 		/*
3086 		 * The completion handler called complete() and the caller of
3087 		 * this function still owns the @lrbp tag so the code below does
3088 		 * not trigger any race conditions.
3089 		 */
3090 		hba->dev_cmd.complete = NULL;
3091 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3092 		if (!err)
3093 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3094 	} else {
3095 		err = -ETIMEDOUT;
3096 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3097 			__func__, lrbp->task_tag);
3098 
3099 		/* MCQ mode */
3100 		if (is_mcq_enabled(hba)) {
3101 			/* successfully cleared the command, retry if needed */
3102 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3103 				err = -EAGAIN;
3104 			hba->dev_cmd.complete = NULL;
3105 			return err;
3106 		}
3107 
3108 		/* SDB mode */
3109 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3110 			/* successfully cleared the command, retry if needed */
3111 			err = -EAGAIN;
3112 			/*
3113 			 * Since clearing the command succeeded we also need to
3114 			 * clear the task tag bit from the outstanding_reqs
3115 			 * variable.
3116 			 */
3117 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3118 			pending = test_bit(lrbp->task_tag,
3119 					   &hba->outstanding_reqs);
3120 			if (pending) {
3121 				hba->dev_cmd.complete = NULL;
3122 				__clear_bit(lrbp->task_tag,
3123 					    &hba->outstanding_reqs);
3124 			}
3125 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3126 
3127 			if (!pending) {
3128 				/*
3129 				 * The completion handler ran while we tried to
3130 				 * clear the command.
3131 				 */
3132 				time_left = 1;
3133 				goto retry;
3134 			}
3135 		} else {
3136 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3137 				__func__, lrbp->task_tag);
3138 
3139 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3140 			pending = test_bit(lrbp->task_tag,
3141 					   &hba->outstanding_reqs);
3142 			if (pending)
3143 				hba->dev_cmd.complete = NULL;
3144 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3145 
3146 			if (!pending) {
3147 				/*
3148 				 * The completion handler ran while we tried to
3149 				 * clear the command.
3150 				 */
3151 				time_left = 1;
3152 				goto retry;
3153 			}
3154 		}
3155 	}
3156 
3157 	return err;
3158 }
3159 
3160 /**
3161  * ufshcd_exec_dev_cmd - API for sending device management requests
3162  * @hba: UFS hba
3163  * @cmd_type: specifies the type (NOP, Query...)
3164  * @timeout: timeout in milliseconds
3165  *
3166  * Return: 0 upon success; < 0 upon failure.
3167  *
3168  * NOTE: Since there is only one available tag for device management commands,
3169  * it is expected you hold the hba->dev_cmd.lock mutex.
3170  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3171 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3172 		enum dev_cmd_type cmd_type, int timeout)
3173 {
3174 	DECLARE_COMPLETION_ONSTACK(wait);
3175 	const u32 tag = hba->reserved_slot;
3176 	struct ufshcd_lrb *lrbp;
3177 	int err;
3178 
3179 	/* Protects use of hba->reserved_slot. */
3180 	lockdep_assert_held(&hba->dev_cmd.lock);
3181 
3182 	down_read(&hba->clk_scaling_lock);
3183 
3184 	lrbp = &hba->lrb[tag];
3185 	lrbp->cmd = NULL;
3186 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3187 	if (unlikely(err))
3188 		goto out;
3189 
3190 	hba->dev_cmd.complete = &wait;
3191 
3192 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3193 
3194 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3195 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3196 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3197 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3198 
3199 out:
3200 	up_read(&hba->clk_scaling_lock);
3201 	return err;
3202 }
3203 
3204 /**
3205  * ufshcd_init_query() - init the query response and request parameters
3206  * @hba: per-adapter instance
3207  * @request: address of the request pointer to be initialized
3208  * @response: address of the response pointer to be initialized
3209  * @opcode: operation to perform
3210  * @idn: flag idn to access
3211  * @index: LU number to access
3212  * @selector: query/flag/descriptor further identification
3213  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3214 static inline void ufshcd_init_query(struct ufs_hba *hba,
3215 		struct ufs_query_req **request, struct ufs_query_res **response,
3216 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3217 {
3218 	*request = &hba->dev_cmd.query.request;
3219 	*response = &hba->dev_cmd.query.response;
3220 	memset(*request, 0, sizeof(struct ufs_query_req));
3221 	memset(*response, 0, sizeof(struct ufs_query_res));
3222 	(*request)->upiu_req.opcode = opcode;
3223 	(*request)->upiu_req.idn = idn;
3224 	(*request)->upiu_req.index = index;
3225 	(*request)->upiu_req.selector = selector;
3226 }
3227 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3228 int ufshcd_query_flag_retry(struct ufs_hba *hba,
3229 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3230 {
3231 	int ret;
3232 	int retries;
3233 
3234 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3235 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3236 		if (ret)
3237 			dev_dbg(hba->dev,
3238 				"%s: failed with error %d, retries %d\n",
3239 				__func__, ret, retries);
3240 		else
3241 			break;
3242 	}
3243 
3244 	if (ret)
3245 		dev_err(hba->dev,
3246 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3247 			__func__, opcode, idn, ret, retries);
3248 	return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(ufshcd_query_flag_retry);
3251 
3252 /**
3253  * ufshcd_query_flag() - API function for sending flag query requests
3254  * @hba: per-adapter instance
3255  * @opcode: flag query to perform
3256  * @idn: flag idn to access
3257  * @index: flag index to access
3258  * @flag_res: the flag value after the query request completes
3259  *
3260  * Return: 0 for success, non-zero in case of failure.
3261  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3262 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3263 			enum flag_idn idn, u8 index, bool *flag_res)
3264 {
3265 	struct ufs_query_req *request = NULL;
3266 	struct ufs_query_res *response = NULL;
3267 	int err, selector = 0;
3268 	int timeout = QUERY_REQ_TIMEOUT;
3269 
3270 	BUG_ON(!hba);
3271 
3272 	ufshcd_hold(hba);
3273 	mutex_lock(&hba->dev_cmd.lock);
3274 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3275 			selector);
3276 
3277 	switch (opcode) {
3278 	case UPIU_QUERY_OPCODE_SET_FLAG:
3279 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3280 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3281 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3282 		break;
3283 	case UPIU_QUERY_OPCODE_READ_FLAG:
3284 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3285 		if (!flag_res) {
3286 			/* No dummy reads */
3287 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3288 					__func__);
3289 			err = -EINVAL;
3290 			goto out_unlock;
3291 		}
3292 		break;
3293 	default:
3294 		dev_err(hba->dev,
3295 			"%s: Expected query flag opcode but got = %d\n",
3296 			__func__, opcode);
3297 		err = -EINVAL;
3298 		goto out_unlock;
3299 	}
3300 
3301 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3302 
3303 	if (err) {
3304 		dev_err(hba->dev,
3305 			"%s: Sending flag query for idn %d failed, err = %d\n",
3306 			__func__, idn, err);
3307 		goto out_unlock;
3308 	}
3309 
3310 	if (flag_res)
3311 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3312 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3313 
3314 out_unlock:
3315 	mutex_unlock(&hba->dev_cmd.lock);
3316 	ufshcd_release(hba);
3317 	return err;
3318 }
3319 EXPORT_SYMBOL_GPL(ufshcd_query_flag);
3320 
3321 /**
3322  * ufshcd_query_attr - API function for sending attribute requests
3323  * @hba: per-adapter instance
3324  * @opcode: attribute opcode
3325  * @idn: attribute idn to access
3326  * @index: index field
3327  * @selector: selector field
3328  * @attr_val: the attribute value after the query request completes
3329  *
3330  * Return: 0 for success, non-zero in case of failure.
3331 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3332 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3333 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3334 {
3335 	struct ufs_query_req *request = NULL;
3336 	struct ufs_query_res *response = NULL;
3337 	int err;
3338 
3339 	BUG_ON(!hba);
3340 
3341 	if (!attr_val) {
3342 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3343 				__func__, opcode);
3344 		return -EINVAL;
3345 	}
3346 
3347 	ufshcd_hold(hba);
3348 
3349 	mutex_lock(&hba->dev_cmd.lock);
3350 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3351 			selector);
3352 
3353 	switch (opcode) {
3354 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3355 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3356 		request->upiu_req.value = cpu_to_be32(*attr_val);
3357 		break;
3358 	case UPIU_QUERY_OPCODE_READ_ATTR:
3359 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3360 		break;
3361 	default:
3362 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3363 				__func__, opcode);
3364 		err = -EINVAL;
3365 		goto out_unlock;
3366 	}
3367 
3368 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3369 
3370 	if (err) {
3371 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3372 				__func__, opcode, idn, index, err);
3373 		goto out_unlock;
3374 	}
3375 
3376 	*attr_val = be32_to_cpu(response->upiu_res.value);
3377 
3378 out_unlock:
3379 	mutex_unlock(&hba->dev_cmd.lock);
3380 	ufshcd_release(hba);
3381 	return err;
3382 }
3383 EXPORT_SYMBOL_GPL(ufshcd_query_attr);
3384 
3385 /**
3386  * ufshcd_query_attr_retry() - API function for sending query
3387  * attribute with retries
3388  * @hba: per-adapter instance
3389  * @opcode: attribute opcode
3390  * @idn: attribute idn to access
3391  * @index: index field
3392  * @selector: selector field
3393  * @attr_val: the attribute value after the query request
3394  * completes
3395  *
3396  * Return: 0 for success, non-zero in case of failure.
3397 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3398 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3399 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3400 	u32 *attr_val)
3401 {
3402 	int ret = 0;
3403 	u32 retries;
3404 
3405 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3406 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3407 						selector, attr_val);
3408 		if (ret)
3409 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3410 				__func__, ret, retries);
3411 		else
3412 			break;
3413 	}
3414 
3415 	if (ret)
3416 		dev_err(hba->dev,
3417 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3418 			__func__, idn, ret, QUERY_REQ_RETRIES);
3419 	return ret;
3420 }
3421 EXPORT_SYMBOL_GPL(ufshcd_query_attr_retry);
3422 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3423 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3424 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3425 			u8 selector, u8 *desc_buf, int *buf_len)
3426 {
3427 	struct ufs_query_req *request = NULL;
3428 	struct ufs_query_res *response = NULL;
3429 	int err;
3430 
3431 	BUG_ON(!hba);
3432 
3433 	if (!desc_buf) {
3434 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3435 				__func__, opcode);
3436 		return -EINVAL;
3437 	}
3438 
3439 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3440 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3441 				__func__, *buf_len);
3442 		return -EINVAL;
3443 	}
3444 
3445 	ufshcd_hold(hba);
3446 
3447 	mutex_lock(&hba->dev_cmd.lock);
3448 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3449 			selector);
3450 	hba->dev_cmd.query.descriptor = desc_buf;
3451 	request->upiu_req.length = cpu_to_be16(*buf_len);
3452 
3453 	switch (opcode) {
3454 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3455 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3456 		break;
3457 	case UPIU_QUERY_OPCODE_READ_DESC:
3458 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3459 		break;
3460 	default:
3461 		dev_err(hba->dev,
3462 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3463 				__func__, opcode);
3464 		err = -EINVAL;
3465 		goto out_unlock;
3466 	}
3467 
3468 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3469 
3470 	if (err) {
3471 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3472 				__func__, opcode, idn, index, err);
3473 		goto out_unlock;
3474 	}
3475 
3476 	*buf_len = be16_to_cpu(response->upiu_res.length);
3477 
3478 out_unlock:
3479 	hba->dev_cmd.query.descriptor = NULL;
3480 	mutex_unlock(&hba->dev_cmd.lock);
3481 	ufshcd_release(hba);
3482 	return err;
3483 }
3484 
3485 /**
3486  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3487  * @hba: per-adapter instance
3488  * @opcode: attribute opcode
3489  * @idn: attribute idn to access
3490  * @index: index field
3491  * @selector: selector field
3492  * @desc_buf: the buffer that contains the descriptor
3493  * @buf_len: length parameter passed to the device
3494  *
3495  * The buf_len parameter will contain, on return, the length parameter
3496  * received on the response.
3497  *
3498  * Return: 0 for success, non-zero in case of failure.
3499  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3500 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3501 				  enum query_opcode opcode,
3502 				  enum desc_idn idn, u8 index,
3503 				  u8 selector,
3504 				  u8 *desc_buf, int *buf_len)
3505 {
3506 	int err;
3507 	int retries;
3508 
3509 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3510 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3511 						selector, desc_buf, buf_len);
3512 		if (!err || err == -EINVAL)
3513 			break;
3514 	}
3515 
3516 	return err;
3517 }
3518 EXPORT_SYMBOL_GPL(ufshcd_query_descriptor_retry);
3519 
3520 /**
3521  * ufshcd_read_desc_param - read the specified descriptor parameter
3522  * @hba: Pointer to adapter instance
3523  * @desc_id: descriptor idn value
3524  * @desc_index: descriptor index
3525  * @param_offset: offset of the parameter to read
3526  * @param_read_buf: pointer to buffer where parameter would be read
3527  * @param_size: sizeof(param_read_buf)
3528  *
3529  * Return: 0 in case of success, non-zero otherwise.
3530  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3531 int ufshcd_read_desc_param(struct ufs_hba *hba,
3532 			   enum desc_idn desc_id,
3533 			   int desc_index,
3534 			   u8 param_offset,
3535 			   u8 *param_read_buf,
3536 			   u8 param_size)
3537 {
3538 	int ret;
3539 	u8 *desc_buf;
3540 	int buff_len = QUERY_DESC_MAX_SIZE;
3541 	bool is_kmalloc = true;
3542 
3543 	/* Safety check */
3544 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3545 		return -EINVAL;
3546 
3547 	/* Check whether we need temp memory */
3548 	if (param_offset != 0 || param_size < buff_len) {
3549 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3550 		if (!desc_buf)
3551 			return -ENOMEM;
3552 	} else {
3553 		desc_buf = param_read_buf;
3554 		is_kmalloc = false;
3555 	}
3556 
3557 	/* Request for full descriptor */
3558 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3559 					    desc_id, desc_index, 0,
3560 					    desc_buf, &buff_len);
3561 	if (ret) {
3562 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3563 			__func__, desc_id, desc_index, param_offset, ret);
3564 		goto out;
3565 	}
3566 
3567 	/* Update descriptor length */
3568 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3569 
3570 	if (param_offset >= buff_len) {
3571 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3572 			__func__, param_offset, desc_id, buff_len);
3573 		ret = -EINVAL;
3574 		goto out;
3575 	}
3576 
3577 	/* Sanity check */
3578 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3579 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3580 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3581 		ret = -EINVAL;
3582 		goto out;
3583 	}
3584 
3585 	if (is_kmalloc) {
3586 		/* Make sure we don't copy more data than available */
3587 		if (param_offset >= buff_len)
3588 			ret = -EINVAL;
3589 		else
3590 			memcpy(param_read_buf, &desc_buf[param_offset],
3591 			       min_t(u32, param_size, buff_len - param_offset));
3592 	}
3593 out:
3594 	if (is_kmalloc)
3595 		kfree(desc_buf);
3596 	return ret;
3597 }
3598 EXPORT_SYMBOL_GPL(ufshcd_read_desc_param);
3599 
3600 /**
3601  * struct uc_string_id - unicode string
3602  *
3603  * @len: size of this descriptor inclusive
3604  * @type: descriptor type
3605  * @uc: unicode string character
3606  */
3607 struct uc_string_id {
3608 	u8 len;
3609 	u8 type;
3610 	wchar_t uc[];
3611 } __packed;
3612 
3613 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3614 static inline char ufshcd_remove_non_printable(u8 ch)
3615 {
3616 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3617 }
3618 
3619 /**
3620  * ufshcd_read_string_desc - read string descriptor
3621  * @hba: pointer to adapter instance
3622  * @desc_index: descriptor index
3623  * @buf: pointer to buffer where descriptor would be read,
3624  *       the caller should free the memory.
3625  * @ascii: if true convert from unicode to ascii characters
3626  *         null terminated string.
3627  *
3628  * Return:
3629  * *      string size on success.
3630  * *      -ENOMEM: on allocation failure
3631  * *      -EINVAL: on a wrong parameter
3632  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3633 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3634 			    u8 **buf, bool ascii)
3635 {
3636 	struct uc_string_id *uc_str;
3637 	u8 *str;
3638 	int ret;
3639 
3640 	if (!buf)
3641 		return -EINVAL;
3642 
3643 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3644 	if (!uc_str)
3645 		return -ENOMEM;
3646 
3647 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3648 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3649 	if (ret < 0) {
3650 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3651 			QUERY_REQ_RETRIES, ret);
3652 		str = NULL;
3653 		goto out;
3654 	}
3655 
3656 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3657 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3658 		str = NULL;
3659 		ret = 0;
3660 		goto out;
3661 	}
3662 
3663 	if (ascii) {
3664 		ssize_t ascii_len;
3665 		int i;
3666 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3667 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3668 		str = kzalloc(ascii_len, GFP_KERNEL);
3669 		if (!str) {
3670 			ret = -ENOMEM;
3671 			goto out;
3672 		}
3673 
3674 		/*
3675 		 * the descriptor contains string in UTF16 format
3676 		 * we need to convert to utf-8 so it can be displayed
3677 		 */
3678 		ret = utf16s_to_utf8s(uc_str->uc,
3679 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3680 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3681 
3682 		/* replace non-printable or non-ASCII characters with spaces */
3683 		for (i = 0; i < ret; i++)
3684 			str[i] = ufshcd_remove_non_printable(str[i]);
3685 
3686 		str[ret++] = '\0';
3687 
3688 	} else {
3689 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3690 		if (!str) {
3691 			ret = -ENOMEM;
3692 			goto out;
3693 		}
3694 		ret = uc_str->len;
3695 	}
3696 out:
3697 	*buf = str;
3698 	kfree(uc_str);
3699 	return ret;
3700 }
3701 
3702 /**
3703  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3704  * @hba: Pointer to adapter instance
3705  * @lun: lun id
3706  * @param_offset: offset of the parameter to read
3707  * @param_read_buf: pointer to buffer where parameter would be read
3708  * @param_size: sizeof(param_read_buf)
3709  *
3710  * Return: 0 in case of success, non-zero otherwise.
3711  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3712 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3713 					      int lun,
3714 					      enum unit_desc_param param_offset,
3715 					      u8 *param_read_buf,
3716 					      u32 param_size)
3717 {
3718 	/*
3719 	 * Unit descriptors are only available for general purpose LUs (LUN id
3720 	 * from 0 to 7) and RPMB Well known LU.
3721 	 */
3722 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3723 		return -EOPNOTSUPP;
3724 
3725 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3726 				      param_offset, param_read_buf, param_size);
3727 }
3728 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3729 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3730 {
3731 	int err = 0;
3732 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3733 
3734 	if (hba->dev_info.wspecversion >= 0x300) {
3735 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3736 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3737 				&gating_wait);
3738 		if (err)
3739 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3740 					 err, gating_wait);
3741 
3742 		if (gating_wait == 0) {
3743 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3744 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3745 					 gating_wait);
3746 		}
3747 
3748 		hba->dev_info.clk_gating_wait_us = gating_wait;
3749 	}
3750 
3751 	return err;
3752 }
3753 
3754 /**
3755  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3756  * @hba: per adapter instance
3757  *
3758  * 1. Allocate DMA memory for Command Descriptor array
3759  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3760  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3761  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3762  *	(UTMRDL)
3763  * 4. Allocate memory for local reference block(lrb).
3764  *
3765  * Return: 0 for success, non-zero in case of failure.
3766  */
ufshcd_memory_alloc(struct ufs_hba * hba)3767 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3768 {
3769 	size_t utmrdl_size, utrdl_size, ucdl_size;
3770 
3771 	/* Allocate memory for UTP command descriptors */
3772 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3773 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3774 						  ucdl_size,
3775 						  &hba->ucdl_dma_addr,
3776 						  GFP_KERNEL);
3777 
3778 	/*
3779 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3780 	 */
3781 	if (!hba->ucdl_base_addr ||
3782 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3783 		dev_err(hba->dev,
3784 			"Command Descriptor Memory allocation failed\n");
3785 		goto out;
3786 	}
3787 
3788 	/*
3789 	 * Allocate memory for UTP Transfer descriptors
3790 	 * UFSHCI requires 1KB alignment of UTRD
3791 	 */
3792 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3793 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3794 						   utrdl_size,
3795 						   &hba->utrdl_dma_addr,
3796 						   GFP_KERNEL);
3797 	if (!hba->utrdl_base_addr ||
3798 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3799 		dev_err(hba->dev,
3800 			"Transfer Descriptor Memory allocation failed\n");
3801 		goto out;
3802 	}
3803 
3804 	/*
3805 	 * Skip utmrdl allocation; it may have been
3806 	 * allocated during first pass and not released during
3807 	 * MCQ memory allocation.
3808 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3809 	 */
3810 	if (hba->utmrdl_base_addr)
3811 		goto skip_utmrdl;
3812 	/*
3813 	 * Allocate memory for UTP Task Management descriptors
3814 	 * UFSHCI requires 1KB alignment of UTMRD
3815 	 */
3816 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3817 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3818 						    utmrdl_size,
3819 						    &hba->utmrdl_dma_addr,
3820 						    GFP_KERNEL);
3821 	if (!hba->utmrdl_base_addr ||
3822 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3823 		dev_err(hba->dev,
3824 		"Task Management Descriptor Memory allocation failed\n");
3825 		goto out;
3826 	}
3827 
3828 skip_utmrdl:
3829 	/* Allocate memory for local reference block */
3830 	hba->lrb = devm_kcalloc(hba->dev,
3831 				hba->nutrs, sizeof(struct ufshcd_lrb),
3832 				GFP_KERNEL);
3833 	if (!hba->lrb) {
3834 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3835 		goto out;
3836 	}
3837 	return 0;
3838 out:
3839 	return -ENOMEM;
3840 }
3841 
3842 /**
3843  * ufshcd_host_memory_configure - configure local reference block with
3844  *				memory offsets
3845  * @hba: per adapter instance
3846  *
3847  * Configure Host memory space
3848  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3849  * address.
3850  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3851  * and PRDT offset.
3852  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3853  * into local reference block.
3854  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3855 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3856 {
3857 	struct utp_transfer_req_desc *utrdlp;
3858 	dma_addr_t cmd_desc_dma_addr;
3859 	dma_addr_t cmd_desc_element_addr;
3860 	u16 response_offset;
3861 	u16 prdt_offset;
3862 	int cmd_desc_size;
3863 	int i;
3864 
3865 	utrdlp = hba->utrdl_base_addr;
3866 
3867 	response_offset =
3868 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3869 	prdt_offset =
3870 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3871 
3872 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3873 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3874 
3875 	for (i = 0; i < hba->nutrs; i++) {
3876 		/* Configure UTRD with command descriptor base address */
3877 		cmd_desc_element_addr =
3878 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3879 		utrdlp[i].command_desc_base_addr =
3880 				cpu_to_le64(cmd_desc_element_addr);
3881 
3882 		/* Response upiu and prdt offset should be in double words */
3883 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3884 			utrdlp[i].response_upiu_offset =
3885 				cpu_to_le16(response_offset);
3886 			utrdlp[i].prd_table_offset =
3887 				cpu_to_le16(prdt_offset);
3888 			utrdlp[i].response_upiu_length =
3889 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3890 		} else {
3891 			utrdlp[i].response_upiu_offset =
3892 				cpu_to_le16(response_offset >> 2);
3893 			utrdlp[i].prd_table_offset =
3894 				cpu_to_le16(prdt_offset >> 2);
3895 			utrdlp[i].response_upiu_length =
3896 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3897 		}
3898 
3899 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3900 	}
3901 }
3902 
3903 /**
3904  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3905  * @hba: per adapter instance
3906  *
3907  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3908  * in order to initialize the Unipro link startup procedure.
3909  * Once the Unipro links are up, the device connected to the controller
3910  * is detected.
3911  *
3912  * Return: 0 on success, non-zero value on failure.
3913  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3914 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3915 {
3916 	struct uic_command uic_cmd = {0};
3917 	int ret;
3918 
3919 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3920 
3921 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3922 	if (ret)
3923 		dev_dbg(hba->dev,
3924 			"dme-link-startup: error code %d\n", ret);
3925 	return ret;
3926 }
3927 /**
3928  * ufshcd_dme_reset - UIC command for DME_RESET
3929  * @hba: per adapter instance
3930  *
3931  * DME_RESET command is issued in order to reset UniPro stack.
3932  * This function now deals with cold reset.
3933  *
3934  * Return: 0 on success, non-zero value on failure.
3935  */
ufshcd_dme_reset(struct ufs_hba * hba)3936 static int ufshcd_dme_reset(struct ufs_hba *hba)
3937 {
3938 	struct uic_command uic_cmd = {0};
3939 	int ret;
3940 
3941 	uic_cmd.command = UIC_CMD_DME_RESET;
3942 
3943 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3944 	if (ret)
3945 		dev_err(hba->dev,
3946 			"dme-reset: error code %d\n", ret);
3947 
3948 	return ret;
3949 }
3950 
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)3951 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3952 			       int agreed_gear,
3953 			       int adapt_val)
3954 {
3955 	int ret;
3956 
3957 	if (agreed_gear < UFS_HS_G4)
3958 		adapt_val = PA_NO_ADAPT;
3959 
3960 	ret = ufshcd_dme_set(hba,
3961 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3962 			     adapt_val);
3963 	return ret;
3964 }
3965 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3966 
3967 /**
3968  * ufshcd_dme_enable - UIC command for DME_ENABLE
3969  * @hba: per adapter instance
3970  *
3971  * DME_ENABLE command is issued in order to enable UniPro stack.
3972  *
3973  * Return: 0 on success, non-zero value on failure.
3974  */
ufshcd_dme_enable(struct ufs_hba * hba)3975 static int ufshcd_dme_enable(struct ufs_hba *hba)
3976 {
3977 	struct uic_command uic_cmd = {0};
3978 	int ret;
3979 
3980 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3981 
3982 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3983 	if (ret)
3984 		dev_err(hba->dev,
3985 			"dme-enable: error code %d\n", ret);
3986 
3987 	return ret;
3988 }
3989 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3990 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3991 {
3992 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3993 	unsigned long min_sleep_time_us;
3994 
3995 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3996 		return;
3997 
3998 	/*
3999 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4000 	 * this function
4001 	 */
4002 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4003 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4004 	} else {
4005 		unsigned long delta =
4006 			(unsigned long) ktime_to_us(
4007 				ktime_sub(ktime_get(),
4008 				hba->last_dme_cmd_tstamp));
4009 
4010 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4011 			min_sleep_time_us =
4012 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4013 		else
4014 			min_sleep_time_us = 0; /* no more delay required */
4015 	}
4016 
4017 	if (min_sleep_time_us > 0) {
4018 		/* allow sleep for extra 50us if needed */
4019 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4020 	}
4021 
4022 	/* update the last_dme_cmd_tstamp */
4023 	hba->last_dme_cmd_tstamp = ktime_get();
4024 }
4025 
4026 /**
4027  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4028  * @hba: per adapter instance
4029  * @attr_sel: uic command argument1
4030  * @attr_set: attribute set type as uic command argument2
4031  * @mib_val: setting value as uic command argument3
4032  * @peer: indicate whether peer or local
4033  *
4034  * Return: 0 on success, non-zero value on failure.
4035  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4036 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4037 			u8 attr_set, u32 mib_val, u8 peer)
4038 {
4039 	struct uic_command uic_cmd = {0};
4040 	static const char *const action[] = {
4041 		"dme-set",
4042 		"dme-peer-set"
4043 	};
4044 	const char *set = action[!!peer];
4045 	int ret;
4046 	int retries = UFS_UIC_COMMAND_RETRIES;
4047 
4048 	uic_cmd.command = peer ?
4049 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4050 	uic_cmd.argument1 = attr_sel;
4051 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4052 	uic_cmd.argument3 = mib_val;
4053 
4054 	do {
4055 		/* for peer attributes we retry upon failure */
4056 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4057 		if (ret)
4058 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4059 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4060 	} while (ret && peer && --retries);
4061 
4062 	if (ret)
4063 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4064 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4065 			UFS_UIC_COMMAND_RETRIES - retries);
4066 
4067 	return ret;
4068 }
4069 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4070 
4071 /**
4072  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4073  * @hba: per adapter instance
4074  * @attr_sel: uic command argument1
4075  * @mib_val: the value of the attribute as returned by the UIC command
4076  * @peer: indicate whether peer or local
4077  *
4078  * Return: 0 on success, non-zero value on failure.
4079  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4080 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4081 			u32 *mib_val, u8 peer)
4082 {
4083 	struct uic_command uic_cmd = {0};
4084 	static const char *const action[] = {
4085 		"dme-get",
4086 		"dme-peer-get"
4087 	};
4088 	const char *get = action[!!peer];
4089 	int ret;
4090 	int retries = UFS_UIC_COMMAND_RETRIES;
4091 	struct ufs_pa_layer_attr orig_pwr_info;
4092 	struct ufs_pa_layer_attr temp_pwr_info;
4093 	bool pwr_mode_change = false;
4094 
4095 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4096 		orig_pwr_info = hba->pwr_info;
4097 		temp_pwr_info = orig_pwr_info;
4098 
4099 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4100 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4101 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4102 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4103 			pwr_mode_change = true;
4104 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4105 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4106 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4107 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4108 			pwr_mode_change = true;
4109 		}
4110 		if (pwr_mode_change) {
4111 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4112 			if (ret)
4113 				goto out;
4114 		}
4115 	}
4116 
4117 	uic_cmd.command = peer ?
4118 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4119 	uic_cmd.argument1 = attr_sel;
4120 
4121 	do {
4122 		/* for peer attributes we retry upon failure */
4123 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4124 		if (ret)
4125 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4126 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4127 	} while (ret && peer && --retries);
4128 
4129 	if (ret)
4130 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4131 			get, UIC_GET_ATTR_ID(attr_sel),
4132 			UFS_UIC_COMMAND_RETRIES - retries);
4133 
4134 	if (mib_val && !ret)
4135 		*mib_val = uic_cmd.argument3;
4136 
4137 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4138 	    && pwr_mode_change)
4139 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4140 out:
4141 	return ret;
4142 }
4143 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4144 
4145 /**
4146  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4147  * state) and waits for it to take effect.
4148  *
4149  * @hba: per adapter instance
4150  * @cmd: UIC command to execute
4151  *
4152  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4153  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4154  * and device UniPro link and hence it's final completion would be indicated by
4155  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4156  * addition to normal UIC command completion Status (UCCS). This function only
4157  * returns after the relevant status bits indicate the completion.
4158  *
4159  * Return: 0 on success, non-zero value on failure.
4160  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4161 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4162 {
4163 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4164 	unsigned long flags;
4165 	u8 status;
4166 	int ret;
4167 
4168 	mutex_lock(&hba->uic_cmd_mutex);
4169 	ufshcd_add_delay_before_dme_cmd(hba);
4170 
4171 	spin_lock_irqsave(hba->host->host_lock, flags);
4172 	if (ufshcd_is_link_broken(hba)) {
4173 		ret = -ENOLINK;
4174 		goto out_unlock;
4175 	}
4176 	hba->uic_async_done = &uic_async_done;
4177 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4178 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4179 	if (ret) {
4180 		dev_err(hba->dev,
4181 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4182 			cmd->command, cmd->argument3, ret);
4183 		goto out;
4184 	}
4185 
4186 	if (!wait_for_completion_timeout(hba->uic_async_done,
4187 					 msecs_to_jiffies(uic_cmd_timeout))) {
4188 		dev_err(hba->dev,
4189 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4190 			cmd->command, cmd->argument3);
4191 
4192 		if (!cmd->cmd_active) {
4193 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4194 				__func__);
4195 			goto check_upmcrs;
4196 		}
4197 
4198 		ret = -ETIMEDOUT;
4199 		goto out;
4200 	}
4201 
4202 check_upmcrs:
4203 	status = ufshcd_get_upmcrs(hba);
4204 	if (status != PWR_LOCAL) {
4205 		dev_err(hba->dev,
4206 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4207 			cmd->command, status);
4208 		ret = (status != PWR_OK) ? status : -1;
4209 	}
4210 out:
4211 	if (ret) {
4212 		ufshcd_print_host_state(hba);
4213 		ufshcd_print_pwr_info(hba);
4214 		ufshcd_print_evt_hist(hba);
4215 	}
4216 
4217 	spin_lock_irqsave(hba->host->host_lock, flags);
4218 	hba->active_uic_cmd = NULL;
4219 	hba->uic_async_done = NULL;
4220 	if (ret) {
4221 		ufshcd_set_link_broken(hba);
4222 		ufshcd_schedule_eh_work(hba);
4223 	}
4224 out_unlock:
4225 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4226 	mutex_unlock(&hba->uic_cmd_mutex);
4227 
4228 	return ret;
4229 }
4230 
4231 /**
4232  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4233  *				using DME_SET primitives.
4234  * @hba: per adapter instance
4235  * @mode: powr mode value
4236  *
4237  * Return: 0 on success, non-zero value on failure.
4238  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4239 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4240 {
4241 	struct uic_command uic_cmd = {0};
4242 	int ret;
4243 
4244 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4245 		ret = ufshcd_dme_set(hba,
4246 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4247 		if (ret) {
4248 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4249 						__func__, ret);
4250 			goto out;
4251 		}
4252 	}
4253 
4254 	uic_cmd.command = UIC_CMD_DME_SET;
4255 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4256 	uic_cmd.argument3 = mode;
4257 	ufshcd_hold(hba);
4258 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4259 	ufshcd_release(hba);
4260 
4261 out:
4262 	return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4265 
ufshcd_link_recovery(struct ufs_hba * hba)4266 int ufshcd_link_recovery(struct ufs_hba *hba)
4267 {
4268 	int ret;
4269 	unsigned long flags;
4270 
4271 	spin_lock_irqsave(hba->host->host_lock, flags);
4272 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4273 	ufshcd_set_eh_in_progress(hba);
4274 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4275 
4276 	/* Reset the attached device */
4277 	ufshcd_device_reset(hba);
4278 
4279 	ret = ufshcd_host_reset_and_restore(hba);
4280 
4281 	spin_lock_irqsave(hba->host->host_lock, flags);
4282 	if (ret)
4283 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4284 	ufshcd_clear_eh_in_progress(hba);
4285 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4286 
4287 	if (ret)
4288 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4289 			__func__, ret);
4290 
4291 	return ret;
4292 }
4293 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4294 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4295 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4296 {
4297 	int ret;
4298 	struct uic_command uic_cmd = {0};
4299 	ktime_t start = ktime_get();
4300 
4301 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4302 
4303 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4304 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4305 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4306 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4307 
4308 	if (ret)
4309 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4310 			__func__, ret);
4311 	else
4312 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4313 								POST_CHANGE);
4314 
4315 	return ret;
4316 }
4317 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4318 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4319 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4320 {
4321 	struct uic_command uic_cmd = {0};
4322 	int ret;
4323 	ktime_t start = ktime_get();
4324 
4325 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4326 
4327 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4328 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4329 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4330 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4331 
4332 	if (ret) {
4333 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4334 			__func__, ret);
4335 	} else {
4336 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4337 								POST_CHANGE);
4338 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4339 		hba->ufs_stats.hibern8_exit_cnt++;
4340 	}
4341 
4342 	return ret;
4343 }
4344 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4345 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4346 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4347 {
4348 	unsigned long flags;
4349 	bool update = false;
4350 
4351 	if (!ufshcd_is_auto_hibern8_supported(hba))
4352 		return;
4353 
4354 	spin_lock_irqsave(hba->host->host_lock, flags);
4355 	if (hba->ahit != ahit) {
4356 		hba->ahit = ahit;
4357 		update = true;
4358 	}
4359 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4360 
4361 	if (update &&
4362 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4363 		ufshcd_rpm_get_sync(hba);
4364 		ufshcd_hold(hba);
4365 		ufshcd_auto_hibern8_enable(hba);
4366 		ufshcd_release(hba);
4367 		ufshcd_rpm_put_sync(hba);
4368 	}
4369 }
4370 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4371 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4372 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4373 {
4374 	if (!ufshcd_is_auto_hibern8_supported(hba))
4375 		return;
4376 
4377 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4378 }
4379 
4380  /**
4381  * ufshcd_init_pwr_info - setting the POR (power on reset)
4382  * values in hba power info
4383  * @hba: per-adapter instance
4384  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4385 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4386 {
4387 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4388 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4389 	hba->pwr_info.lane_rx = UFS_LANE_1;
4390 	hba->pwr_info.lane_tx = UFS_LANE_1;
4391 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4392 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4393 	hba->pwr_info.hs_rate = 0;
4394 }
4395 
4396 /**
4397  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4398  * @hba: per-adapter instance
4399  *
4400  * Return: 0 upon success; < 0 upon failure.
4401  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4402 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4403 {
4404 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4405 
4406 	if (hba->max_pwr_info.is_valid)
4407 		return 0;
4408 
4409 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4410 		pwr_info->pwr_tx = FASTAUTO_MODE;
4411 		pwr_info->pwr_rx = FASTAUTO_MODE;
4412 	} else {
4413 		pwr_info->pwr_tx = FAST_MODE;
4414 		pwr_info->pwr_rx = FAST_MODE;
4415 	}
4416 	pwr_info->hs_rate = PA_HS_MODE_B;
4417 
4418 	/* Get the connected lane count */
4419 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4420 			&pwr_info->lane_rx);
4421 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4422 			&pwr_info->lane_tx);
4423 
4424 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4425 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4426 				__func__,
4427 				pwr_info->lane_rx,
4428 				pwr_info->lane_tx);
4429 		return -EINVAL;
4430 	}
4431 
4432 	/*
4433 	 * First, get the maximum gears of HS speed.
4434 	 * If a zero value, it means there is no HSGEAR capability.
4435 	 * Then, get the maximum gears of PWM speed.
4436 	 */
4437 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4438 	if (!pwr_info->gear_rx) {
4439 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4440 				&pwr_info->gear_rx);
4441 		if (!pwr_info->gear_rx) {
4442 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4443 				__func__, pwr_info->gear_rx);
4444 			return -EINVAL;
4445 		}
4446 		pwr_info->pwr_rx = SLOW_MODE;
4447 	}
4448 
4449 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4450 			&pwr_info->gear_tx);
4451 	if (!pwr_info->gear_tx) {
4452 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4453 				&pwr_info->gear_tx);
4454 		if (!pwr_info->gear_tx) {
4455 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4456 				__func__, pwr_info->gear_tx);
4457 			return -EINVAL;
4458 		}
4459 		pwr_info->pwr_tx = SLOW_MODE;
4460 	}
4461 
4462 	hba->max_pwr_info.is_valid = true;
4463 	return 0;
4464 }
4465 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4466 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4467 			     struct ufs_pa_layer_attr *pwr_mode)
4468 {
4469 	int ret;
4470 
4471 	/* if already configured to the requested pwr_mode */
4472 	if (!hba->force_pmc &&
4473 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4474 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4475 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4476 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4477 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4478 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4479 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4480 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4481 		return 0;
4482 	}
4483 
4484 	/*
4485 	 * Configure attributes for power mode change with below.
4486 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4487 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4488 	 * - PA_HSSERIES
4489 	 */
4490 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4491 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4492 			pwr_mode->lane_rx);
4493 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4494 			pwr_mode->pwr_rx == FAST_MODE)
4495 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4496 	else
4497 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4498 
4499 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4500 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4501 			pwr_mode->lane_tx);
4502 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4503 			pwr_mode->pwr_tx == FAST_MODE)
4504 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4505 	else
4506 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4507 
4508 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4509 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4510 	    pwr_mode->pwr_rx == FAST_MODE ||
4511 	    pwr_mode->pwr_tx == FAST_MODE)
4512 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4513 						pwr_mode->hs_rate);
4514 
4515 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4516 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4517 				DL_FC0ProtectionTimeOutVal_Default);
4518 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4519 				DL_TC0ReplayTimeOutVal_Default);
4520 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4521 				DL_AFC0ReqTimeOutVal_Default);
4522 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4523 				DL_FC1ProtectionTimeOutVal_Default);
4524 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4525 				DL_TC1ReplayTimeOutVal_Default);
4526 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4527 				DL_AFC1ReqTimeOutVal_Default);
4528 
4529 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4530 				DL_FC0ProtectionTimeOutVal_Default);
4531 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4532 				DL_TC0ReplayTimeOutVal_Default);
4533 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4534 				DL_AFC0ReqTimeOutVal_Default);
4535 	}
4536 
4537 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4538 			| pwr_mode->pwr_tx);
4539 
4540 	if (ret) {
4541 		dev_err(hba->dev,
4542 			"%s: power mode change failed %d\n", __func__, ret);
4543 	} else {
4544 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4545 								pwr_mode);
4546 
4547 		memcpy(&hba->pwr_info, pwr_mode,
4548 			sizeof(struct ufs_pa_layer_attr));
4549 	}
4550 
4551 	return ret;
4552 }
4553 
4554 /**
4555  * ufshcd_config_pwr_mode - configure a new power mode
4556  * @hba: per-adapter instance
4557  * @desired_pwr_mode: desired power configuration
4558  *
4559  * Return: 0 upon success; < 0 upon failure.
4560  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4561 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4562 		struct ufs_pa_layer_attr *desired_pwr_mode)
4563 {
4564 	struct ufs_pa_layer_attr final_params = { 0 };
4565 	int ret;
4566 
4567 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4568 					desired_pwr_mode, &final_params);
4569 
4570 	if (ret)
4571 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4572 
4573 	ret = ufshcd_change_power_mode(hba, &final_params);
4574 
4575 	return ret;
4576 }
4577 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4578 
4579 /**
4580  * ufshcd_complete_dev_init() - checks device readiness
4581  * @hba: per-adapter instance
4582  *
4583  * Set fDeviceInit flag and poll until device toggles it.
4584  *
4585  * Return: 0 upon success; < 0 upon failure.
4586  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4587 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4588 {
4589 	int err;
4590 	bool flag_res = true;
4591 	ktime_t timeout;
4592 
4593 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4594 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4595 	if (err) {
4596 		dev_err(hba->dev,
4597 			"%s: setting fDeviceInit flag failed with error %d\n",
4598 			__func__, err);
4599 		goto out;
4600 	}
4601 
4602 	/* Poll fDeviceInit flag to be cleared */
4603 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4604 	do {
4605 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4606 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4607 		if (!flag_res)
4608 			break;
4609 		usleep_range(500, 1000);
4610 	} while (ktime_before(ktime_get(), timeout));
4611 
4612 	if (err) {
4613 		dev_err(hba->dev,
4614 				"%s: reading fDeviceInit flag failed with error %d\n",
4615 				__func__, err);
4616 	} else if (flag_res) {
4617 		dev_err(hba->dev,
4618 				"%s: fDeviceInit was not cleared by the device\n",
4619 				__func__);
4620 		err = -EBUSY;
4621 	}
4622 out:
4623 	return err;
4624 }
4625 
4626 /**
4627  * ufshcd_make_hba_operational - Make UFS controller operational
4628  * @hba: per adapter instance
4629  *
4630  * To bring UFS host controller to operational state,
4631  * 1. Enable required interrupts
4632  * 2. Configure interrupt aggregation
4633  * 3. Program UTRL and UTMRL base address
4634  * 4. Configure run-stop-registers
4635  *
4636  * Return: 0 on success, non-zero value on failure.
4637  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4638 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4639 {
4640 	int err = 0;
4641 	u32 reg;
4642 
4643 	/* Enable required interrupts */
4644 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4645 
4646 	/* Configure interrupt aggregation */
4647 	if (ufshcd_is_intr_aggr_allowed(hba))
4648 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4649 	else
4650 		ufshcd_disable_intr_aggr(hba);
4651 
4652 	/* Configure UTRL and UTMRL base address registers */
4653 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4654 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4655 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4656 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4657 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4658 			REG_UTP_TASK_REQ_LIST_BASE_L);
4659 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4660 			REG_UTP_TASK_REQ_LIST_BASE_H);
4661 
4662 	/*
4663 	 * Make sure base address and interrupt setup are updated before
4664 	 * enabling the run/stop registers below.
4665 	 */
4666 	wmb();
4667 
4668 	/*
4669 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4670 	 */
4671 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4672 	if (!(ufshcd_get_lists_status(reg))) {
4673 		ufshcd_enable_run_stop_reg(hba);
4674 	} else {
4675 		dev_err(hba->dev,
4676 			"Host controller not ready to process requests");
4677 		err = -EIO;
4678 	}
4679 
4680 	return err;
4681 }
4682 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4683 
4684 /**
4685  * ufshcd_hba_stop - Send controller to reset state
4686  * @hba: per adapter instance
4687  */
ufshcd_hba_stop(struct ufs_hba * hba)4688 void ufshcd_hba_stop(struct ufs_hba *hba)
4689 {
4690 	unsigned long flags;
4691 	int err;
4692 
4693 	/*
4694 	 * Obtain the host lock to prevent that the controller is disabled
4695 	 * while the UFS interrupt handler is active on another CPU.
4696 	 */
4697 	spin_lock_irqsave(hba->host->host_lock, flags);
4698 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4699 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4700 
4701 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4702 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4703 					10, 1);
4704 	if (err)
4705 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4706 }
4707 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4708 
4709 /**
4710  * ufshcd_hba_execute_hce - initialize the controller
4711  * @hba: per adapter instance
4712  *
4713  * The controller resets itself and controller firmware initialization
4714  * sequence kicks off. When controller is ready it will set
4715  * the Host Controller Enable bit to 1.
4716  *
4717  * Return: 0 on success, non-zero value on failure.
4718  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4719 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4720 {
4721 	int retry_outer = 3;
4722 	int retry_inner;
4723 
4724 start:
4725 	if (ufshcd_is_hba_active(hba))
4726 		/* change controller state to "reset state" */
4727 		ufshcd_hba_stop(hba);
4728 
4729 	/* UniPro link is disabled at this point */
4730 	ufshcd_set_link_off(hba);
4731 
4732 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4733 
4734 	/* start controller initialization sequence */
4735 	ufshcd_hba_start(hba);
4736 
4737 	/*
4738 	 * To initialize a UFS host controller HCE bit must be set to 1.
4739 	 * During initialization the HCE bit value changes from 1->0->1.
4740 	 * When the host controller completes initialization sequence
4741 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4742 	 * to check if the controller has completed initialization sequence.
4743 	 * So without this delay the value HCE = 1, set in the previous
4744 	 * instruction might be read back.
4745 	 * This delay can be changed based on the controller.
4746 	 */
4747 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4748 
4749 	/* wait for the host controller to complete initialization */
4750 	retry_inner = 50;
4751 	while (!ufshcd_is_hba_active(hba)) {
4752 		if (retry_inner) {
4753 			retry_inner--;
4754 		} else {
4755 			dev_err(hba->dev,
4756 				"Controller enable failed\n");
4757 			if (retry_outer) {
4758 				retry_outer--;
4759 				goto start;
4760 			}
4761 			return -EIO;
4762 		}
4763 		usleep_range(1000, 1100);
4764 	}
4765 
4766 	/* enable UIC related interrupts */
4767 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4768 
4769 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4770 
4771 	return 0;
4772 }
4773 
ufshcd_hba_enable(struct ufs_hba * hba)4774 int ufshcd_hba_enable(struct ufs_hba *hba)
4775 {
4776 	int ret;
4777 
4778 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4779 		ufshcd_set_link_off(hba);
4780 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4781 
4782 		/* enable UIC related interrupts */
4783 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4784 		ret = ufshcd_dme_reset(hba);
4785 		if (ret) {
4786 			dev_err(hba->dev, "DME_RESET failed\n");
4787 			return ret;
4788 		}
4789 
4790 		ret = ufshcd_dme_enable(hba);
4791 		if (ret) {
4792 			dev_err(hba->dev, "Enabling DME failed\n");
4793 			return ret;
4794 		}
4795 
4796 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4797 	} else {
4798 		ret = ufshcd_hba_execute_hce(hba);
4799 	}
4800 
4801 	return ret;
4802 }
4803 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4804 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4805 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4806 {
4807 	int tx_lanes = 0, i, err = 0;
4808 
4809 	if (!peer)
4810 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4811 			       &tx_lanes);
4812 	else
4813 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4814 				    &tx_lanes);
4815 	for (i = 0; i < tx_lanes; i++) {
4816 		if (!peer)
4817 			err = ufshcd_dme_set(hba,
4818 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4819 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4820 					0);
4821 		else
4822 			err = ufshcd_dme_peer_set(hba,
4823 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4824 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4825 					0);
4826 		if (err) {
4827 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4828 				__func__, peer, i, err);
4829 			break;
4830 		}
4831 	}
4832 
4833 	return err;
4834 }
4835 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4836 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4837 {
4838 	return ufshcd_disable_tx_lcc(hba, true);
4839 }
4840 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4841 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4842 {
4843 	struct ufs_event_hist *e;
4844 
4845 	if (id >= UFS_EVT_CNT)
4846 		return;
4847 
4848 	e = &hba->ufs_stats.event[id];
4849 	e->val[e->pos] = val;
4850 	e->tstamp[e->pos] = local_clock();
4851 	e->cnt += 1;
4852 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4853 
4854 	ufshcd_vops_event_notify(hba, id, &val);
4855 }
4856 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4857 
4858 /**
4859  * ufshcd_link_startup - Initialize unipro link startup
4860  * @hba: per adapter instance
4861  *
4862  * Return: 0 for success, non-zero in case of failure.
4863  */
ufshcd_link_startup(struct ufs_hba * hba)4864 static int ufshcd_link_startup(struct ufs_hba *hba)
4865 {
4866 	int ret;
4867 	int retries = DME_LINKSTARTUP_RETRIES;
4868 	bool link_startup_again = false;
4869 
4870 	/*
4871 	 * If UFS device isn't active then we will have to issue link startup
4872 	 * 2 times to make sure the device state move to active.
4873 	 */
4874 	if (!ufshcd_is_ufs_dev_active(hba))
4875 		link_startup_again = true;
4876 
4877 link_startup:
4878 	do {
4879 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4880 
4881 		ret = ufshcd_dme_link_startup(hba);
4882 
4883 		/* check if device is detected by inter-connect layer */
4884 		if (!ret && !ufshcd_is_device_present(hba)) {
4885 			ufshcd_update_evt_hist(hba,
4886 					       UFS_EVT_LINK_STARTUP_FAIL,
4887 					       0);
4888 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4889 			ret = -ENXIO;
4890 			goto out;
4891 		}
4892 
4893 		/*
4894 		 * DME link lost indication is only received when link is up,
4895 		 * but we can't be sure if the link is up until link startup
4896 		 * succeeds. So reset the local Uni-Pro and try again.
4897 		 */
4898 		if (ret && retries && ufshcd_hba_enable(hba)) {
4899 			ufshcd_update_evt_hist(hba,
4900 					       UFS_EVT_LINK_STARTUP_FAIL,
4901 					       (u32)ret);
4902 			goto out;
4903 		}
4904 	} while (ret && retries--);
4905 
4906 	if (ret) {
4907 		/* failed to get the link up... retire */
4908 		ufshcd_update_evt_hist(hba,
4909 				       UFS_EVT_LINK_STARTUP_FAIL,
4910 				       (u32)ret);
4911 		goto out;
4912 	}
4913 
4914 	if (link_startup_again) {
4915 		link_startup_again = false;
4916 		retries = DME_LINKSTARTUP_RETRIES;
4917 		goto link_startup;
4918 	}
4919 
4920 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4921 	ufshcd_init_pwr_info(hba);
4922 	ufshcd_print_pwr_info(hba);
4923 
4924 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4925 		ret = ufshcd_disable_device_tx_lcc(hba);
4926 		if (ret)
4927 			goto out;
4928 	}
4929 
4930 	/* Include any host controller configuration via UIC commands */
4931 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4932 	if (ret)
4933 		goto out;
4934 
4935 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4936 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4937 	ret = ufshcd_make_hba_operational(hba);
4938 out:
4939 	if (ret) {
4940 		dev_err(hba->dev, "link startup failed %d\n", ret);
4941 		ufshcd_print_host_state(hba);
4942 		ufshcd_print_pwr_info(hba);
4943 		ufshcd_print_evt_hist(hba);
4944 	}
4945 	return ret;
4946 }
4947 
4948 /**
4949  * ufshcd_verify_dev_init() - Verify device initialization
4950  * @hba: per-adapter instance
4951  *
4952  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4953  * device Transport Protocol (UTP) layer is ready after a reset.
4954  * If the UTP layer at the device side is not initialized, it may
4955  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4956  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4957  *
4958  * Return: 0 upon success; < 0 upon failure.
4959  */
ufshcd_verify_dev_init(struct ufs_hba * hba)4960 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4961 {
4962 	int err = 0;
4963 	int retries;
4964 
4965 	ufshcd_hold(hba);
4966 	mutex_lock(&hba->dev_cmd.lock);
4967 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4968 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4969 					  hba->nop_out_timeout);
4970 
4971 		if (!err || err == -ETIMEDOUT)
4972 			break;
4973 
4974 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4975 	}
4976 	mutex_unlock(&hba->dev_cmd.lock);
4977 	ufshcd_release(hba);
4978 
4979 	if (err)
4980 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4981 	return err;
4982 }
4983 
4984 /**
4985  * ufshcd_setup_links - associate link b/w device wlun and other luns
4986  * @sdev: pointer to SCSI device
4987  * @hba: pointer to ufs hba
4988  */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)4989 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4990 {
4991 	struct device_link *link;
4992 
4993 	/*
4994 	 * Device wlun is the supplier & rest of the luns are consumers.
4995 	 * This ensures that device wlun suspends after all other luns.
4996 	 */
4997 	if (hba->ufs_device_wlun) {
4998 		link = device_link_add(&sdev->sdev_gendev,
4999 				       &hba->ufs_device_wlun->sdev_gendev,
5000 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5001 		if (!link) {
5002 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5003 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5004 			return;
5005 		}
5006 		hba->luns_avail--;
5007 		/* Ignore REPORT_LUN wlun probing */
5008 		if (hba->luns_avail == 1) {
5009 			ufshcd_rpm_put(hba);
5010 			return;
5011 		}
5012 	} else {
5013 		/*
5014 		 * Device wlun is probed. The assumption is that WLUNs are
5015 		 * scanned before other LUNs.
5016 		 */
5017 		hba->luns_avail--;
5018 	}
5019 }
5020 
5021 /**
5022  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5023  * @hba: per-adapter instance
5024  * @sdev: pointer to SCSI device
5025  */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5026 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5027 {
5028 	int len = QUERY_DESC_MAX_SIZE;
5029 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5030 	u8 lun_qdepth = hba->nutrs;
5031 	u8 *desc_buf;
5032 	int ret;
5033 
5034 	desc_buf = kzalloc(len, GFP_KERNEL);
5035 	if (!desc_buf)
5036 		goto set_qdepth;
5037 
5038 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5039 	if (ret < 0) {
5040 		if (ret == -EOPNOTSUPP)
5041 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5042 			lun_qdepth = 1;
5043 		kfree(desc_buf);
5044 		goto set_qdepth;
5045 	}
5046 
5047 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5048 		/*
5049 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5050 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5051 		 */
5052 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5053 	}
5054 	/*
5055 	 * According to UFS device specification, the write protection mode is only supported by
5056 	 * normal LU, not supported by WLUN.
5057 	 */
5058 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5059 	    !hba->dev_info.is_lu_power_on_wp &&
5060 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5061 		hba->dev_info.is_lu_power_on_wp = true;
5062 
5063 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5064 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5065 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5066 		hba->dev_info.b_advanced_rpmb_en = true;
5067 
5068 
5069 	kfree(desc_buf);
5070 set_qdepth:
5071 	/*
5072 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5073 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5074 	 */
5075 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5076 	scsi_change_queue_depth(sdev, lun_qdepth);
5077 }
5078 
5079 /**
5080  * ufshcd_slave_alloc - handle initial SCSI device configurations
5081  * @sdev: pointer to SCSI device
5082  *
5083  * Return: success.
5084  */
ufshcd_slave_alloc(struct scsi_device * sdev)5085 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5086 {
5087 	struct ufs_hba *hba;
5088 
5089 	hba = shost_priv(sdev->host);
5090 
5091 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5092 	sdev->use_10_for_ms = 1;
5093 
5094 	/* DBD field should be set to 1 in mode sense(10) */
5095 	sdev->set_dbd_for_ms = 1;
5096 
5097 	/* allow SCSI layer to restart the device in case of errors */
5098 	sdev->allow_restart = 1;
5099 
5100 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5101 	sdev->no_report_opcodes = 1;
5102 
5103 	/* WRITE_SAME command is not supported */
5104 	sdev->no_write_same = 1;
5105 
5106 	ufshcd_lu_init(hba, sdev);
5107 
5108 	ufshcd_setup_links(hba, sdev);
5109 
5110 	trace_android_vh_ufs_update_sdev(sdev);
5111 
5112 	return 0;
5113 }
5114 
5115 /**
5116  * ufshcd_change_queue_depth - change queue depth
5117  * @sdev: pointer to SCSI device
5118  * @depth: required depth to set
5119  *
5120  * Change queue depth and make sure the max. limits are not crossed.
5121  *
5122  * Return: new queue depth.
5123  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5124 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5125 {
5126 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5127 }
5128 
5129 /**
5130  * ufshcd_slave_configure - adjust SCSI device configurations
5131  * @sdev: pointer to SCSI device
5132  *
5133  * Return: 0 (success).
5134  */
ufshcd_slave_configure(struct scsi_device * sdev)5135 static int ufshcd_slave_configure(struct scsi_device *sdev)
5136 {
5137 	struct ufs_hba *hba = shost_priv(sdev->host);
5138 	struct request_queue *q = sdev->request_queue;
5139 
5140 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5141 
5142 	/*
5143 	 * Block runtime-pm until all consumers are added.
5144 	 * Refer ufshcd_setup_links().
5145 	 */
5146 	if (is_device_wlun(sdev))
5147 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5148 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5149 		sdev->rpm_autosuspend = 1;
5150 	/*
5151 	 * Do not print messages during runtime PM to avoid never-ending cycles
5152 	 * of messages written back to storage by user space causing runtime
5153 	 * resume, causing more messages and so on.
5154 	 */
5155 	sdev->silence_suspend = 1;
5156 
5157 	if (hba->vops && hba->vops->config_scsi_dev)
5158 		hba->vops->config_scsi_dev(sdev);
5159 
5160 	ufshcd_crypto_register(hba, q);
5161 
5162 	return 0;
5163 }
5164 
5165 /**
5166  * ufshcd_slave_destroy - remove SCSI device configurations
5167  * @sdev: pointer to SCSI device
5168  */
ufshcd_slave_destroy(struct scsi_device * sdev)5169 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5170 {
5171 	struct ufs_hba *hba;
5172 	unsigned long flags;
5173 
5174 	hba = shost_priv(sdev->host);
5175 
5176 	/* Drop the reference as it won't be needed anymore */
5177 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5178 		spin_lock_irqsave(hba->host->host_lock, flags);
5179 		hba->ufs_device_wlun = NULL;
5180 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5181 	} else if (hba->ufs_device_wlun) {
5182 		struct device *supplier = NULL;
5183 
5184 		/* Ensure UFS Device WLUN exists and does not disappear */
5185 		spin_lock_irqsave(hba->host->host_lock, flags);
5186 		if (hba->ufs_device_wlun) {
5187 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5188 			get_device(supplier);
5189 		}
5190 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5191 
5192 		if (supplier) {
5193 			/*
5194 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5195 			 * device will not have been registered but can still
5196 			 * have a device link holding a reference to the device.
5197 			 */
5198 			device_link_remove(&sdev->sdev_gendev, supplier);
5199 			put_device(supplier);
5200 		}
5201 	}
5202 }
5203 
5204 /**
5205  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5206  * @lrbp: pointer to local reference block of completed command
5207  * @scsi_status: SCSI command status
5208  *
5209  * Return: value base on SCSI command status.
5210  */
5211 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5212 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5213 {
5214 	int result = 0;
5215 
5216 	switch (scsi_status) {
5217 	case SAM_STAT_CHECK_CONDITION:
5218 		ufshcd_copy_sense_data(lrbp);
5219 		fallthrough;
5220 	case SAM_STAT_GOOD:
5221 		result |= DID_OK << 16 | scsi_status;
5222 		break;
5223 	case SAM_STAT_TASK_SET_FULL:
5224 	case SAM_STAT_BUSY:
5225 	case SAM_STAT_TASK_ABORTED:
5226 		ufshcd_copy_sense_data(lrbp);
5227 		result |= scsi_status;
5228 		break;
5229 	default:
5230 		result |= DID_ERROR << 16;
5231 		break;
5232 	} /* end of switch */
5233 
5234 	return result;
5235 }
5236 
5237 /**
5238  * ufshcd_transfer_rsp_status - Get overall status of the response
5239  * @hba: per adapter instance
5240  * @lrbp: pointer to local reference block of completed command
5241  * @cqe: pointer to the completion queue entry
5242  *
5243  * Return: result of the command to notify SCSI midlayer.
5244  */
5245 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5246 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5247 			   struct cq_entry *cqe)
5248 {
5249 	int result = 0;
5250 	int scsi_status;
5251 	enum utp_ocs ocs;
5252 	u8 upiu_flags;
5253 	u32 resid;
5254 
5255 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5256 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5257 	/*
5258 	 * Test !overflow instead of underflow to support UFS devices that do
5259 	 * not set either flag.
5260 	 */
5261 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5262 		scsi_set_resid(lrbp->cmd, resid);
5263 
5264 	/* overall command status of utrd */
5265 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5266 
5267 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5268 		if (lrbp->ucd_rsp_ptr->header.response ||
5269 		    lrbp->ucd_rsp_ptr->header.status)
5270 			ocs = OCS_SUCCESS;
5271 	}
5272 
5273 	switch (ocs) {
5274 	case OCS_SUCCESS:
5275 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5276 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5277 		case UPIU_TRANSACTION_RESPONSE:
5278 			/*
5279 			 * get the result based on SCSI status response
5280 			 * to notify the SCSI midlayer of the command status
5281 			 */
5282 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5283 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5284 
5285 			/*
5286 			 * Currently we are only supporting BKOPs exception
5287 			 * events hence we can ignore BKOPs exception event
5288 			 * during power management callbacks. BKOPs exception
5289 			 * event is not expected to be raised in runtime suspend
5290 			 * callback as it allows the urgent bkops.
5291 			 * During system suspend, we are anyway forcefully
5292 			 * disabling the bkops and if urgent bkops is needed
5293 			 * it will be enabled on system resume. Long term
5294 			 * solution could be to abort the system suspend if
5295 			 * UFS device needs urgent BKOPs.
5296 			 */
5297 			if (!hba->pm_op_in_progress &&
5298 			    !ufshcd_eh_in_progress(hba) &&
5299 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5300 				/* Flushed in suspend */
5301 				schedule_work(&hba->eeh_work);
5302 			break;
5303 		case UPIU_TRANSACTION_REJECT_UPIU:
5304 			/* TODO: handle Reject UPIU Response */
5305 			result = DID_ERROR << 16;
5306 			dev_err(hba->dev,
5307 				"Reject UPIU not fully implemented\n");
5308 			break;
5309 		default:
5310 			dev_err(hba->dev,
5311 				"Unexpected request response code = %x\n",
5312 				result);
5313 			result = DID_ERROR << 16;
5314 			break;
5315 		}
5316 		break;
5317 	case OCS_ABORTED:
5318 		result |= DID_ABORT << 16;
5319 		break;
5320 	case OCS_INVALID_COMMAND_STATUS:
5321 		result |= DID_REQUEUE << 16;
5322 		break;
5323 	case OCS_INVALID_CMD_TABLE_ATTR:
5324 	case OCS_INVALID_PRDT_ATTR:
5325 	case OCS_MISMATCH_DATA_BUF_SIZE:
5326 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5327 	case OCS_PEER_COMM_FAILURE:
5328 	case OCS_FATAL_ERROR:
5329 	case OCS_DEVICE_FATAL_ERROR:
5330 	case OCS_INVALID_CRYPTO_CONFIG:
5331 	case OCS_GENERAL_CRYPTO_ERROR:
5332 	default:
5333 		result |= DID_ERROR << 16;
5334 		dev_err(hba->dev,
5335 				"OCS error from controller = %x for tag %d\n",
5336 				ocs, lrbp->task_tag);
5337 		ufshcd_print_evt_hist(hba);
5338 		ufshcd_print_host_state(hba);
5339 		break;
5340 	} /* end of switch */
5341 
5342 	if ((host_byte(result) != DID_OK) &&
5343 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5344 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5345 	return result;
5346 }
5347 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5348 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5349 					 u32 intr_mask)
5350 {
5351 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5352 	    !ufshcd_is_auto_hibern8_enabled(hba))
5353 		return false;
5354 
5355 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5356 		return false;
5357 
5358 	if (hba->active_uic_cmd &&
5359 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5360 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5361 		return false;
5362 
5363 	return true;
5364 }
5365 
5366 /**
5367  * ufshcd_uic_cmd_compl - handle completion of uic command
5368  * @hba: per adapter instance
5369  * @intr_status: interrupt status generated by the controller
5370  *
5371  * Return:
5372  *  IRQ_HANDLED - If interrupt is valid
5373  *  IRQ_NONE    - If invalid interrupt
5374  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5375 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5376 {
5377 	irqreturn_t retval = IRQ_NONE;
5378 	struct uic_command *cmd;
5379 
5380 	spin_lock(hba->host->host_lock);
5381 	cmd = hba->active_uic_cmd;
5382 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5383 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5384 
5385 	if (intr_status & UIC_COMMAND_COMPL && cmd) {
5386 		if (!hba->uic_async_done) {
5387 			cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5388 			cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5389 			cmd->cmd_active = 0;
5390 			complete(&cmd->done);
5391 		}
5392 		retval = IRQ_HANDLED;
5393 	}
5394 
5395 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5396 		cmd->cmd_active = 0;
5397 		complete(hba->uic_async_done);
5398 		retval = IRQ_HANDLED;
5399 	}
5400 
5401 	if (retval == IRQ_HANDLED)
5402 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5403 	spin_unlock(hba->host->host_lock);
5404 	return retval;
5405 }
5406 
5407 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5408 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5409 			     struct ufshcd_lrb *lrbp)
5410 {
5411 	struct scsi_cmnd *cmd = lrbp->cmd;
5412 
5413 	scsi_dma_unmap(cmd);
5414 	ufshcd_crypto_clear_prdt(hba, lrbp);
5415 	ufshcd_release(hba);
5416 	ufshcd_clk_scaling_update_busy(hba);
5417 }
5418 EXPORT_SYMBOL_GPL(ufshcd_release_scsi_cmd);
5419 
5420 /**
5421  * ufshcd_compl_one_cqe - handle a completion queue entry
5422  * @hba: per adapter instance
5423  * @task_tag: the task tag of the request to be completed
5424  * @cqe: pointer to the completion queue entry
5425  */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5426 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5427 			  struct cq_entry *cqe)
5428 {
5429 	struct ufshcd_lrb *lrbp;
5430 	struct scsi_cmnd *cmd;
5431 	enum utp_ocs ocs;
5432 
5433 	lrbp = &hba->lrb[task_tag];
5434 	lrbp->compl_time_stamp = ktime_get();
5435 	cmd = lrbp->cmd;
5436 	if (cmd) {
5437 		bool done = false;
5438 		trace_android_vh_ufs_compl_command(hba, lrbp);
5439 		trace_android_vh_ufs_compl_rsp_check_done(hba, lrbp, &done);
5440 		if (done)
5441 			return;
5442 
5443 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5444 			ufshcd_update_monitor(hba, lrbp);
5445 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5446 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5447 		ufshcd_release_scsi_cmd(hba, lrbp);
5448 		/* Do not touch lrbp after scsi done */
5449 		scsi_done(cmd);
5450 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5451 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5452 		if (hba->dev_cmd.complete) {
5453 			trace_android_vh_ufs_compl_command(hba, lrbp);
5454 			if (cqe) {
5455 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5456 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5457 			}
5458 			complete(hba->dev_cmd.complete);
5459 		}
5460 	}
5461 }
5462 
5463 /**
5464  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5465  * @hba: per adapter instance
5466  * @completed_reqs: bitmask that indicates which requests to complete
5467  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5468 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5469 					unsigned long completed_reqs)
5470 {
5471 	int tag;
5472 
5473 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5474 		ufshcd_compl_one_cqe(hba, tag, NULL);
5475 }
5476 
5477 /* Any value that is not an existing queue number is fine for this constant. */
5478 enum {
5479 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5480 };
5481 
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5482 static void ufshcd_clear_polled(struct ufs_hba *hba,
5483 				unsigned long *completed_reqs)
5484 {
5485 	int tag;
5486 
5487 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5488 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5489 
5490 		if (!cmd)
5491 			continue;
5492 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5493 			__clear_bit(tag, completed_reqs);
5494 	}
5495 }
5496 
5497 /*
5498  * Return: > 0 if one or more commands have been completed or 0 if no
5499  * requests have been completed.
5500  */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5501 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5502 {
5503 	struct ufs_hba *hba = shost_priv(shost);
5504 	unsigned long completed_reqs, flags;
5505 	u32 tr_doorbell;
5506 	struct ufs_hw_queue *hwq;
5507 
5508 	if (is_mcq_enabled(hba)) {
5509 		hwq = &hba->uhq[queue_num];
5510 
5511 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5512 	}
5513 
5514 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5515 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5516 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5517 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5518 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5519 		  hba->outstanding_reqs);
5520 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5521 		/* Do not complete polled requests from interrupt context. */
5522 		ufshcd_clear_polled(hba, &completed_reqs);
5523 	}
5524 	hba->outstanding_reqs &= ~completed_reqs;
5525 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5526 
5527 	if (completed_reqs)
5528 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5529 
5530 	return completed_reqs != 0;
5531 }
5532 
5533 /**
5534  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5535  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5536  * to complete the pending transfers and free the resources associated with
5537  * the scsi command.
5538  *
5539  * @hba: per adapter instance
5540  * @force_compl: This flag is set to true when invoked
5541  * from ufshcd_host_reset_and_restore() in which case it requires special
5542  * handling because the host controller has been reset by ufshcd_hba_stop().
5543  */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5544 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5545 					      bool force_compl)
5546 {
5547 	struct ufs_hw_queue *hwq;
5548 	struct ufshcd_lrb *lrbp;
5549 	struct scsi_cmnd *cmd;
5550 	unsigned long flags;
5551 	u32 hwq_num, utag;
5552 	int tag;
5553 
5554 	for (tag = 0; tag < hba->nutrs; tag++) {
5555 		lrbp = &hba->lrb[tag];
5556 		cmd = lrbp->cmd;
5557 		if (!ufshcd_cmd_inflight(cmd) ||
5558 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5559 			continue;
5560 
5561 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5562 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5563 		hwq = &hba->uhq[hwq_num];
5564 
5565 		if (force_compl) {
5566 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5567 			/*
5568 			 * For those cmds of which the cqes are not present
5569 			 * in the cq, complete them explicitly.
5570 			 */
5571 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5572 				spin_lock_irqsave(&hwq->cq_lock, flags);
5573 				set_host_byte(cmd, DID_REQUEUE);
5574 				ufshcd_release_scsi_cmd(hba, lrbp);
5575 				scsi_done(cmd);
5576 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5577 			}
5578 		} else {
5579 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5580 		}
5581 	}
5582 }
5583 
5584 /**
5585  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5586  * @hba: per adapter instance
5587  *
5588  * Return:
5589  *  IRQ_HANDLED - If interrupt is valid
5590  *  IRQ_NONE    - If invalid interrupt
5591  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5592 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5593 {
5594 	/* Resetting interrupt aggregation counters first and reading the
5595 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5596 	 * In order to prevent other interrupts starvation the DB is read once
5597 	 * after reset. The down side of this solution is the possibility of
5598 	 * false interrupt if device completes another request after resetting
5599 	 * aggregation and before reading the DB.
5600 	 */
5601 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5602 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5603 		ufshcd_reset_intr_aggr(hba);
5604 
5605 	if (ufs_fail_completion())
5606 		return IRQ_HANDLED;
5607 
5608 	/*
5609 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5610 	 * do not want polling to trigger spurious interrupt complaints.
5611 	 */
5612 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5613 
5614 	return IRQ_HANDLED;
5615 }
5616 
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5617 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5618 {
5619 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5620 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5621 				       &ee_ctrl_mask);
5622 }
5623 
ufshcd_write_ee_control(struct ufs_hba * hba)5624 int ufshcd_write_ee_control(struct ufs_hba *hba)
5625 {
5626 	int err;
5627 
5628 	mutex_lock(&hba->ee_ctrl_mutex);
5629 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5630 	mutex_unlock(&hba->ee_ctrl_mutex);
5631 	if (err)
5632 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5633 			__func__, err);
5634 	return err;
5635 }
5636 
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5637 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5638 			     const u16 *other_mask, u16 set, u16 clr)
5639 {
5640 	u16 new_mask, ee_ctrl_mask;
5641 	int err = 0;
5642 
5643 	mutex_lock(&hba->ee_ctrl_mutex);
5644 	new_mask = (*mask & ~clr) | set;
5645 	ee_ctrl_mask = new_mask | *other_mask;
5646 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5647 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5648 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5649 	if (!err) {
5650 		hba->ee_ctrl_mask = ee_ctrl_mask;
5651 		*mask = new_mask;
5652 	}
5653 	mutex_unlock(&hba->ee_ctrl_mutex);
5654 	return err;
5655 }
5656 
5657 /**
5658  * ufshcd_disable_ee - disable exception event
5659  * @hba: per-adapter instance
5660  * @mask: exception event to disable
5661  *
5662  * Disables exception event in the device so that the EVENT_ALERT
5663  * bit is not set.
5664  *
5665  * Return: zero on success, non-zero error value on failure.
5666  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5667 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5668 {
5669 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5670 }
5671 
5672 /**
5673  * ufshcd_enable_ee - enable exception event
5674  * @hba: per-adapter instance
5675  * @mask: exception event to enable
5676  *
5677  * Enable corresponding exception event in the device to allow
5678  * device to alert host in critical scenarios.
5679  *
5680  * Return: zero on success, non-zero error value on failure.
5681  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5682 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5683 {
5684 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5685 }
5686 
5687 /**
5688  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5689  * @hba: per-adapter instance
5690  *
5691  * Allow device to manage background operations on its own. Enabling
5692  * this might lead to inconsistent latencies during normal data transfers
5693  * as the device is allowed to manage its own way of handling background
5694  * operations.
5695  *
5696  * Return: zero on success, non-zero on failure.
5697  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5698 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5699 {
5700 	int err = 0;
5701 
5702 	if (hba->auto_bkops_enabled)
5703 		goto out;
5704 
5705 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5706 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5707 	if (err) {
5708 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5709 				__func__, err);
5710 		goto out;
5711 	}
5712 
5713 	hba->auto_bkops_enabled = true;
5714 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5715 
5716 	/* No need of URGENT_BKOPS exception from the device */
5717 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5718 	if (err)
5719 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5720 				__func__, err);
5721 out:
5722 	return err;
5723 }
5724 
5725 /**
5726  * ufshcd_disable_auto_bkops - block device in doing background operations
5727  * @hba: per-adapter instance
5728  *
5729  * Disabling background operations improves command response latency but
5730  * has drawback of device moving into critical state where the device is
5731  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5732  * host is idle so that BKOPS are managed effectively without any negative
5733  * impacts.
5734  *
5735  * Return: zero on success, non-zero on failure.
5736  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5737 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5738 {
5739 	int err = 0;
5740 
5741 	if (!hba->auto_bkops_enabled)
5742 		goto out;
5743 
5744 	/*
5745 	 * If host assisted BKOPs is to be enabled, make sure
5746 	 * urgent bkops exception is allowed.
5747 	 */
5748 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5749 	if (err) {
5750 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5751 				__func__, err);
5752 		goto out;
5753 	}
5754 
5755 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5756 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5757 	if (err) {
5758 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5759 				__func__, err);
5760 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5761 		goto out;
5762 	}
5763 
5764 	hba->auto_bkops_enabled = false;
5765 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5766 	hba->is_urgent_bkops_lvl_checked = false;
5767 out:
5768 	return err;
5769 }
5770 
5771 /**
5772  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5773  * @hba: per adapter instance
5774  *
5775  * After a device reset the device may toggle the BKOPS_EN flag
5776  * to default value. The s/w tracking variables should be updated
5777  * as well. This function would change the auto-bkops state based on
5778  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5779  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5780 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5781 {
5782 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5783 		hba->auto_bkops_enabled = false;
5784 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5785 		ufshcd_enable_auto_bkops(hba);
5786 	} else {
5787 		hba->auto_bkops_enabled = true;
5788 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5789 		ufshcd_disable_auto_bkops(hba);
5790 	}
5791 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5792 	hba->is_urgent_bkops_lvl_checked = false;
5793 }
5794 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5795 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5796 {
5797 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5798 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5799 }
5800 
5801 /**
5802  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5803  * @hba: per-adapter instance
5804  * @status: bkops_status value
5805  *
5806  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5807  * flag in the device to permit background operations if the device
5808  * bkops_status is greater than or equal to "status" argument passed to
5809  * this function, disable otherwise.
5810  *
5811  * Return: 0 for success, non-zero in case of failure.
5812  *
5813  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5814  * to know whether auto bkops is enabled or disabled after this function
5815  * returns control to it.
5816  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5817 int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5818 			     enum bkops_status status)
5819 {
5820 	int err;
5821 	u32 curr_status = 0;
5822 
5823 	err = ufshcd_get_bkops_status(hba, &curr_status);
5824 	if (err) {
5825 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5826 				__func__, err);
5827 		goto out;
5828 	} else if (curr_status > BKOPS_STATUS_MAX) {
5829 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5830 				__func__, curr_status);
5831 		err = -EINVAL;
5832 		goto out;
5833 	}
5834 
5835 	if (curr_status >= status)
5836 		err = ufshcd_enable_auto_bkops(hba);
5837 	else
5838 		err = ufshcd_disable_auto_bkops(hba);
5839 out:
5840 	return err;
5841 }
5842 EXPORT_SYMBOL_GPL(ufshcd_bkops_ctrl);
5843 
5844 /**
5845  * ufshcd_urgent_bkops - handle urgent bkops exception event
5846  * @hba: per-adapter instance
5847  *
5848  * Enable fBackgroundOpsEn flag in the device to permit background
5849  * operations.
5850  *
5851  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5852  * and negative error value for any other failure.
5853  *
5854  * Return: 0 upon success; < 0 upon failure.
5855  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5856 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5857 {
5858 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5859 }
5860 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5861 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5862 {
5863 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5864 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5865 }
5866 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5867 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5868 {
5869 	int err;
5870 	u32 curr_status = 0;
5871 
5872 	if (hba->is_urgent_bkops_lvl_checked)
5873 		goto enable_auto_bkops;
5874 
5875 	err = ufshcd_get_bkops_status(hba, &curr_status);
5876 	if (err) {
5877 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5878 				__func__, err);
5879 		goto out;
5880 	}
5881 
5882 	/*
5883 	 * We are seeing that some devices are raising the urgent bkops
5884 	 * exception events even when BKOPS status doesn't indicate performace
5885 	 * impacted or critical. Handle these device by determining their urgent
5886 	 * bkops status at runtime.
5887 	 */
5888 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5889 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5890 				__func__, curr_status);
5891 		/* update the current status as the urgent bkops level */
5892 		hba->urgent_bkops_lvl = curr_status;
5893 		hba->is_urgent_bkops_lvl_checked = true;
5894 	}
5895 
5896 enable_auto_bkops:
5897 	err = ufshcd_enable_auto_bkops(hba);
5898 out:
5899 	if (err < 0)
5900 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5901 				__func__, err);
5902 }
5903 
ufshcd_temp_exception_event_handler(struct ufs_hba * hba,u16 status)5904 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5905 {
5906 	u32 value;
5907 
5908 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5909 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5910 		return;
5911 
5912 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5913 
5914 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5915 
5916 	/*
5917 	 * A placeholder for the platform vendors to add whatever additional
5918 	 * steps required
5919 	 */
5920 }
5921 
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)5922 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5923 {
5924 	u8 index;
5925 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5926 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5927 
5928 	index = ufshcd_wb_get_query_index(hba);
5929 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5930 }
5931 
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)5932 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5933 {
5934 	int ret;
5935 
5936 	if (!ufshcd_is_wb_allowed(hba) ||
5937 	    hba->dev_info.wb_enabled == enable)
5938 		return 0;
5939 
5940 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5941 	if (ret) {
5942 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5943 			__func__, enable ? "enabling" : "disabling", ret);
5944 		return ret;
5945 	}
5946 
5947 	hba->dev_info.wb_enabled = enable;
5948 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5949 			__func__, enable ? "enabled" : "disabled");
5950 
5951 	return ret;
5952 }
5953 
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)5954 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5955 						 bool enable)
5956 {
5957 	int ret;
5958 
5959 	ret = __ufshcd_wb_toggle(hba, enable,
5960 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5961 	if (ret) {
5962 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5963 			__func__, enable ? "enabling" : "disabling", ret);
5964 		return;
5965 	}
5966 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5967 			__func__, enable ? "enabled" : "disabled");
5968 }
5969 
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)5970 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5971 {
5972 	int ret;
5973 
5974 	if (!ufshcd_is_wb_allowed(hba) ||
5975 	    hba->dev_info.wb_buf_flush_enabled == enable)
5976 		return 0;
5977 
5978 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5979 	if (ret) {
5980 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5981 			__func__, enable ? "enabling" : "disabling", ret);
5982 		return ret;
5983 	}
5984 
5985 	hba->dev_info.wb_buf_flush_enabled = enable;
5986 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5987 			__func__, enable ? "enabled" : "disabled");
5988 
5989 	return ret;
5990 }
5991 
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5992 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5993 						u32 avail_buf)
5994 {
5995 	u32 cur_buf;
5996 	int ret;
5997 	u8 index;
5998 
5999 	index = ufshcd_wb_get_query_index(hba);
6000 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6001 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6002 					      index, 0, &cur_buf);
6003 	if (ret) {
6004 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6005 			__func__, ret);
6006 		return false;
6007 	}
6008 
6009 	if (!cur_buf) {
6010 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6011 			 cur_buf);
6012 		return false;
6013 	}
6014 	/* Let it continue to flush when available buffer exceeds threshold */
6015 	return avail_buf < hba->vps->wb_flush_threshold;
6016 }
6017 
ufshcd_wb_force_disable(struct ufs_hba * hba)6018 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6019 {
6020 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6021 		ufshcd_wb_toggle_buf_flush(hba, false);
6022 
6023 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6024 	ufshcd_wb_toggle(hba, false);
6025 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6026 
6027 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6028 }
6029 
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6030 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6031 {
6032 	u32 lifetime;
6033 	int ret;
6034 	u8 index;
6035 
6036 	index = ufshcd_wb_get_query_index(hba);
6037 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6038 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6039 				      index, 0, &lifetime);
6040 	if (ret) {
6041 		dev_err(hba->dev,
6042 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6043 			__func__, ret);
6044 		return false;
6045 	}
6046 
6047 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6048 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6049 			__func__, lifetime);
6050 		return false;
6051 	}
6052 
6053 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6054 		__func__, lifetime);
6055 
6056 	return true;
6057 }
6058 
ufshcd_wb_need_flush(struct ufs_hba * hba)6059 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6060 {
6061 	int ret;
6062 	u32 avail_buf;
6063 	u8 index;
6064 
6065 	if (!ufshcd_is_wb_allowed(hba))
6066 		return false;
6067 
6068 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6069 		ufshcd_wb_force_disable(hba);
6070 		return false;
6071 	}
6072 
6073 	/*
6074 	 * The ufs device needs the vcc to be ON to flush.
6075 	 * With user-space reduction enabled, it's enough to enable flush
6076 	 * by checking only the available buffer. The threshold
6077 	 * defined here is > 90% full.
6078 	 * With user-space preserved enabled, the current-buffer
6079 	 * should be checked too because the wb buffer size can reduce
6080 	 * when disk tends to be full. This info is provided by current
6081 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6082 	 * keeping vcc on when current buffer is empty.
6083 	 */
6084 	index = ufshcd_wb_get_query_index(hba);
6085 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6086 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6087 				      index, 0, &avail_buf);
6088 	if (ret) {
6089 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6090 			 __func__, ret);
6091 		return false;
6092 	}
6093 
6094 	if (!hba->dev_info.b_presrv_uspc_en)
6095 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6096 
6097 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6098 }
6099 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6100 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6101 {
6102 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6103 					   struct ufs_hba,
6104 					   rpm_dev_flush_recheck_work);
6105 	/*
6106 	 * To prevent unnecessary VCC power drain after device finishes
6107 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6108 	 * after a certain delay to recheck the threshold by next runtime
6109 	 * suspend.
6110 	 */
6111 	ufshcd_rpm_get_sync(hba);
6112 	ufshcd_rpm_put_sync(hba);
6113 }
6114 
6115 /**
6116  * ufshcd_exception_event_handler - handle exceptions raised by device
6117  * @work: pointer to work data
6118  *
6119  * Read bExceptionEventStatus attribute from the device and handle the
6120  * exception event accordingly.
6121  */
ufshcd_exception_event_handler(struct work_struct * work)6122 static void ufshcd_exception_event_handler(struct work_struct *work)
6123 {
6124 	struct ufs_hba *hba;
6125 	int err;
6126 	u32 status = 0;
6127 	hba = container_of(work, struct ufs_hba, eeh_work);
6128 
6129 	ufshcd_scsi_block_requests(hba);
6130 	err = ufshcd_get_ee_status(hba, &status);
6131 	if (err) {
6132 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6133 				__func__, err);
6134 		goto out;
6135 	}
6136 
6137 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6138 
6139 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6140 		ufshcd_bkops_exception_event_handler(hba);
6141 
6142 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6143 		ufshcd_temp_exception_event_handler(hba, status);
6144 
6145 	ufs_debugfs_exception_event(hba, status);
6146 out:
6147 	ufshcd_scsi_unblock_requests(hba);
6148 }
6149 
6150 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6151 void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6152 {
6153 	if (is_mcq_enabled(hba))
6154 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6155 	else
6156 		ufshcd_transfer_req_compl(hba);
6157 
6158 	ufshcd_tmc_handler(hba);
6159 }
6160 EXPORT_SYMBOL_GPL(ufshcd_complete_requests);
6161 
6162 /**
6163  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6164  *				to recover from the DL NAC errors or not.
6165  * @hba: per-adapter instance
6166  *
6167  * Return: true if error handling is required, false otherwise.
6168  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6169 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6170 {
6171 	unsigned long flags;
6172 	bool err_handling = true;
6173 
6174 	spin_lock_irqsave(hba->host->host_lock, flags);
6175 	/*
6176 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6177 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6178 	 */
6179 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6180 		goto out;
6181 
6182 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6183 	    ((hba->saved_err & UIC_ERROR) &&
6184 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6185 		goto out;
6186 
6187 	if ((hba->saved_err & UIC_ERROR) &&
6188 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6189 		int err;
6190 		/*
6191 		 * wait for 50ms to see if we can get any other errors or not.
6192 		 */
6193 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6194 		msleep(50);
6195 		spin_lock_irqsave(hba->host->host_lock, flags);
6196 
6197 		/*
6198 		 * now check if we have got any other severe errors other than
6199 		 * DL NAC error?
6200 		 */
6201 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6202 		    ((hba->saved_err & UIC_ERROR) &&
6203 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6204 			goto out;
6205 
6206 		/*
6207 		 * As DL NAC is the only error received so far, send out NOP
6208 		 * command to confirm if link is still active or not.
6209 		 *   - If we don't get any response then do error recovery.
6210 		 *   - If we get response then clear the DL NAC error bit.
6211 		 */
6212 
6213 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6214 		err = ufshcd_verify_dev_init(hba);
6215 		spin_lock_irqsave(hba->host->host_lock, flags);
6216 
6217 		if (err)
6218 			goto out;
6219 
6220 		/* Link seems to be alive hence ignore the DL NAC errors */
6221 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6222 			hba->saved_err &= ~UIC_ERROR;
6223 		/* clear NAC error */
6224 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6225 		if (!hba->saved_uic_err)
6226 			err_handling = false;
6227 	}
6228 out:
6229 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6230 	return err_handling;
6231 }
6232 
6233 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6234 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6235 {
6236 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6237 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6238 }
6239 
ufshcd_schedule_eh_work(struct ufs_hba * hba)6240 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6241 {
6242 	lockdep_assert_held(hba->host->host_lock);
6243 
6244 	/* handle fatal errors only when link is not in error state */
6245 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6246 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6247 		    ufshcd_is_saved_err_fatal(hba))
6248 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6249 		else
6250 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6251 		queue_work(hba->eh_wq, &hba->eh_work);
6252 	}
6253 }
6254 
ufshcd_force_error_recovery(struct ufs_hba * hba)6255 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6256 {
6257 	spin_lock_irq(hba->host->host_lock);
6258 	hba->force_reset = true;
6259 	ufshcd_schedule_eh_work(hba);
6260 	spin_unlock_irq(hba->host->host_lock);
6261 }
6262 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6263 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6264 {
6265 	mutex_lock(&hba->wb_mutex);
6266 	down_write(&hba->clk_scaling_lock);
6267 	hba->clk_scaling.is_allowed = allow;
6268 	up_write(&hba->clk_scaling_lock);
6269 	mutex_unlock(&hba->wb_mutex);
6270 }
6271 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6272 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6273 {
6274 	if (suspend) {
6275 		if (hba->clk_scaling.is_enabled)
6276 			ufshcd_suspend_clkscaling(hba);
6277 		ufshcd_clk_scaling_allow(hba, false);
6278 	} else {
6279 		ufshcd_clk_scaling_allow(hba, true);
6280 		if (hba->clk_scaling.is_enabled)
6281 			ufshcd_resume_clkscaling(hba);
6282 	}
6283 }
6284 
ufshcd_err_handling_prepare(struct ufs_hba * hba)6285 void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6286 {
6287 	ufshcd_rpm_get_sync(hba);
6288 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6289 	    hba->is_sys_suspended) {
6290 		enum ufs_pm_op pm_op;
6291 
6292 		/*
6293 		 * Don't assume anything of resume, if
6294 		 * resume fails, irq and clocks can be OFF, and powers
6295 		 * can be OFF or in LPM.
6296 		 */
6297 		ufshcd_setup_hba_vreg(hba, true);
6298 		ufshcd_enable_irq(hba);
6299 		ufshcd_setup_vreg(hba, true);
6300 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6301 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6302 		ufshcd_hold(hba);
6303 		if (!ufshcd_is_clkgating_allowed(hba))
6304 			ufshcd_setup_clocks(hba, true);
6305 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6306 		ufshcd_vops_resume(hba, pm_op);
6307 	} else {
6308 		ufshcd_hold(hba);
6309 		if (ufshcd_is_clkscaling_supported(hba) &&
6310 		    hba->clk_scaling.is_enabled)
6311 			ufshcd_suspend_clkscaling(hba);
6312 		ufshcd_clk_scaling_allow(hba, false);
6313 	}
6314 	ufshcd_scsi_block_requests(hba);
6315 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6316 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6317 	cancel_work_sync(&hba->eeh_work);
6318 }
6319 EXPORT_SYMBOL_GPL(ufshcd_err_handling_prepare);
6320 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6321 void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6322 {
6323 	ufshcd_scsi_unblock_requests(hba);
6324 	ufshcd_release(hba);
6325 	if (ufshcd_is_clkscaling_supported(hba))
6326 		ufshcd_clk_scaling_suspend(hba, false);
6327 	ufshcd_rpm_put(hba);
6328 }
6329 EXPORT_SYMBOL_GPL(ufshcd_err_handling_unprepare);
6330 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6331 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6332 {
6333 	return (!hba->is_powered || hba->shutting_down ||
6334 		!hba->ufs_device_wlun ||
6335 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6336 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6337 		   ufshcd_is_link_broken(hba))));
6338 }
6339 
6340 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6341 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6342 {
6343 	struct Scsi_Host *shost = hba->host;
6344 	struct scsi_device *sdev;
6345 	struct request_queue *q;
6346 	int ret;
6347 
6348 	hba->is_sys_suspended = false;
6349 	/*
6350 	 * Set RPM status of wlun device to RPM_ACTIVE,
6351 	 * this also clears its runtime error.
6352 	 */
6353 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6354 
6355 	/* hba device might have a runtime error otherwise */
6356 	if (ret)
6357 		ret = pm_runtime_set_active(hba->dev);
6358 	/*
6359 	 * If wlun device had runtime error, we also need to resume those
6360 	 * consumer scsi devices in case any of them has failed to be
6361 	 * resumed due to supplier runtime resume failure. This is to unblock
6362 	 * blk_queue_enter in case there are bios waiting inside it.
6363 	 */
6364 	if (!ret) {
6365 		shost_for_each_device(sdev, shost) {
6366 			q = sdev->request_queue;
6367 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6368 				       q->rpm_status == RPM_SUSPENDING))
6369 				pm_request_resume(q->dev);
6370 		}
6371 	}
6372 }
6373 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6374 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6375 {
6376 }
6377 #endif
6378 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6379 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6380 {
6381 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6382 	u32 mode;
6383 
6384 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6385 
6386 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6387 		return true;
6388 
6389 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6390 		return true;
6391 
6392 	return false;
6393 }
6394 
ufshcd_abort_one(struct request * rq,void * priv)6395 static bool ufshcd_abort_one(struct request *rq, void *priv)
6396 {
6397 	int *ret = priv;
6398 	u32 tag = rq->tag;
6399 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6400 	struct scsi_device *sdev = cmd->device;
6401 	struct Scsi_Host *shost = sdev->host;
6402 	struct ufs_hba *hba = shost_priv(shost);
6403 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6404 	struct ufs_hw_queue *hwq;
6405 	unsigned long flags;
6406 
6407 	*ret = ufshcd_try_to_abort_task(hba, tag);
6408 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6409 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6410 		*ret ? "failed" : "succeeded");
6411 
6412 	/* Release cmd in MCQ mode if abort succeeds */
6413 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6414 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6415 		if (!hwq)
6416 			return 0;
6417 		spin_lock_irqsave(&hwq->cq_lock, flags);
6418 		if (ufshcd_cmd_inflight(lrbp->cmd))
6419 			ufshcd_release_scsi_cmd(hba, lrbp);
6420 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6421 	}
6422 
6423 	return *ret == 0;
6424 }
6425 
6426 /**
6427  * ufshcd_abort_all - Abort all pending commands.
6428  * @hba: Host bus adapter pointer.
6429  *
6430  * Return: true if and only if the host controller needs to be reset.
6431  */
ufshcd_abort_all(struct ufs_hba * hba)6432 static bool ufshcd_abort_all(struct ufs_hba *hba)
6433 {
6434 	int tag, ret = 0;
6435 
6436 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6437 	if (ret)
6438 		goto out;
6439 
6440 	/* Clear pending task management requests */
6441 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6442 		ret = ufshcd_clear_tm_cmd(hba, tag);
6443 		if (ret)
6444 			goto out;
6445 	}
6446 
6447 out:
6448 	/* Complete the requests that are cleared by s/w */
6449 	ufshcd_complete_requests(hba, false);
6450 
6451 	return ret != 0;
6452 }
6453 
6454 /**
6455  * ufshcd_err_handler - handle UFS errors that require s/w attention
6456  * @work: pointer to work structure
6457  */
ufshcd_err_handler(struct work_struct * work)6458 static void ufshcd_err_handler(struct work_struct *work)
6459 {
6460 	int retries = MAX_ERR_HANDLER_RETRIES;
6461 	struct ufs_hba *hba;
6462 	unsigned long flags;
6463 	bool needs_restore;
6464 	bool needs_reset;
6465 	int pmc_err;
6466 	bool err_handled = false;
6467 
6468 	hba = container_of(work, struct ufs_hba, eh_work);
6469 
6470 	dev_info(hba->dev,
6471 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6472 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6473 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6474 		 hba->saved_uic_err, hba->force_reset,
6475 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6476 
6477 	trace_android_vh_ufs_err_handler(hba, &err_handled);
6478 	if (err_handled)
6479 		return;
6480 
6481 	down(&hba->host_sem);
6482 	spin_lock_irqsave(hba->host->host_lock, flags);
6483 	if (ufshcd_err_handling_should_stop(hba)) {
6484 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6485 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6486 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6487 		up(&hba->host_sem);
6488 		return;
6489 	}
6490 	ufshcd_set_eh_in_progress(hba);
6491 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6492 	ufshcd_err_handling_prepare(hba);
6493 	/* Complete requests that have door-bell cleared by h/w */
6494 	ufshcd_complete_requests(hba, false);
6495 	spin_lock_irqsave(hba->host->host_lock, flags);
6496 again:
6497 	needs_restore = false;
6498 	needs_reset = false;
6499 
6500 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6501 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6502 	/*
6503 	 * A full reset and restore might have happened after preparation
6504 	 * is finished, double check whether we should stop.
6505 	 */
6506 	if (ufshcd_err_handling_should_stop(hba))
6507 		goto skip_err_handling;
6508 
6509 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6510 		bool ret;
6511 
6512 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6513 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6514 		ret = ufshcd_quirk_dl_nac_errors(hba);
6515 		spin_lock_irqsave(hba->host->host_lock, flags);
6516 		if (!ret && ufshcd_err_handling_should_stop(hba))
6517 			goto skip_err_handling;
6518 	}
6519 
6520 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6521 	    (hba->saved_uic_err &&
6522 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6523 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6524 
6525 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6526 		ufshcd_print_host_state(hba);
6527 		ufshcd_print_pwr_info(hba);
6528 		ufshcd_print_evt_hist(hba);
6529 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6530 		ufshcd_print_trs_all(hba, pr_prdt);
6531 		spin_lock_irqsave(hba->host->host_lock, flags);
6532 	}
6533 
6534 	/*
6535 	 * if host reset is required then skip clearing the pending
6536 	 * transfers forcefully because they will get cleared during
6537 	 * host reset and restore
6538 	 */
6539 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6540 	    ufshcd_is_saved_err_fatal(hba) ||
6541 	    ((hba->saved_err & UIC_ERROR) &&
6542 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6543 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6544 		needs_reset = true;
6545 		goto do_reset;
6546 	}
6547 
6548 	/*
6549 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6550 	 * check if power mode restore is needed.
6551 	 */
6552 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6553 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6554 		if (!hba->saved_uic_err)
6555 			hba->saved_err &= ~UIC_ERROR;
6556 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6557 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6558 			needs_restore = true;
6559 		spin_lock_irqsave(hba->host->host_lock, flags);
6560 		if (!hba->saved_err && !needs_restore)
6561 			goto skip_err_handling;
6562 	}
6563 
6564 	hba->silence_err_logs = true;
6565 	/* release lock as clear command might sleep */
6566 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6567 
6568 	needs_reset = ufshcd_abort_all(hba);
6569 
6570 	spin_lock_irqsave(hba->host->host_lock, flags);
6571 	hba->silence_err_logs = false;
6572 	if (needs_reset)
6573 		goto do_reset;
6574 
6575 	/*
6576 	 * After all reqs and tasks are cleared from doorbell,
6577 	 * now it is safe to retore power mode.
6578 	 */
6579 	if (needs_restore) {
6580 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6581 		/*
6582 		 * Hold the scaling lock just in case dev cmds
6583 		 * are sent via bsg and/or sysfs.
6584 		 */
6585 		down_write(&hba->clk_scaling_lock);
6586 		hba->force_pmc = true;
6587 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6588 		if (pmc_err) {
6589 			needs_reset = true;
6590 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6591 					__func__, pmc_err);
6592 		}
6593 		hba->force_pmc = false;
6594 		ufshcd_print_pwr_info(hba);
6595 		up_write(&hba->clk_scaling_lock);
6596 		spin_lock_irqsave(hba->host->host_lock, flags);
6597 	}
6598 
6599 do_reset:
6600 	/* Fatal errors need reset */
6601 	if (needs_reset) {
6602 		int err;
6603 
6604 		hba->force_reset = false;
6605 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6606 		err = ufshcd_reset_and_restore(hba);
6607 		if (err)
6608 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6609 					__func__, err);
6610 		else
6611 			ufshcd_recover_pm_error(hba);
6612 		spin_lock_irqsave(hba->host->host_lock, flags);
6613 	}
6614 
6615 skip_err_handling:
6616 	if (!needs_reset) {
6617 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6618 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6619 		if (hba->saved_err || hba->saved_uic_err)
6620 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6621 			    __func__, hba->saved_err, hba->saved_uic_err);
6622 	}
6623 	/* Exit in an operational state or dead */
6624 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6625 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6626 		if (--retries)
6627 			goto again;
6628 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6629 	}
6630 	ufshcd_clear_eh_in_progress(hba);
6631 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6632 	ufshcd_err_handling_unprepare(hba);
6633 	up(&hba->host_sem);
6634 
6635 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6636 		 ufshcd_state_name[hba->ufshcd_state]);
6637 }
6638 
6639 /**
6640  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6641  * @hba: per-adapter instance
6642  *
6643  * Return:
6644  *  IRQ_HANDLED - If interrupt is valid
6645  *  IRQ_NONE    - If invalid interrupt
6646  */
ufshcd_update_uic_error(struct ufs_hba * hba)6647 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6648 {
6649 	u32 reg;
6650 	irqreturn_t retval = IRQ_NONE;
6651 
6652 	/* PHY layer error */
6653 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6654 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6655 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6656 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6657 		/*
6658 		 * To know whether this error is fatal or not, DB timeout
6659 		 * must be checked but this error is handled separately.
6660 		 */
6661 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6662 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6663 					__func__);
6664 
6665 		/* Got a LINERESET indication. */
6666 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6667 			struct uic_command *cmd = NULL;
6668 
6669 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6670 			if (hba->uic_async_done && hba->active_uic_cmd)
6671 				cmd = hba->active_uic_cmd;
6672 			/*
6673 			 * Ignore the LINERESET during power mode change
6674 			 * operation via DME_SET command.
6675 			 */
6676 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6677 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6678 		}
6679 		retval |= IRQ_HANDLED;
6680 	}
6681 
6682 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6683 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6684 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6685 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6686 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6687 
6688 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6689 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6690 		else if (hba->dev_quirks &
6691 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6692 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6693 				hba->uic_error |=
6694 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6695 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6696 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6697 		}
6698 		retval |= IRQ_HANDLED;
6699 	}
6700 
6701 	/* UIC NL/TL/DME errors needs software retry */
6702 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6703 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6704 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6705 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6706 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6707 		retval |= IRQ_HANDLED;
6708 	}
6709 
6710 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6711 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6712 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6713 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6714 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6715 		retval |= IRQ_HANDLED;
6716 	}
6717 
6718 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6719 	if ((reg & UIC_DME_ERROR) &&
6720 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6721 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6722 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6723 		retval |= IRQ_HANDLED;
6724 	}
6725 
6726 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6727 			__func__, hba->uic_error);
6728 	return retval;
6729 }
6730 
6731 /**
6732  * ufshcd_check_errors - Check for errors that need s/w attention
6733  * @hba: per-adapter instance
6734  * @intr_status: interrupt status generated by the controller
6735  *
6736  * Return:
6737  *  IRQ_HANDLED - If interrupt is valid
6738  *  IRQ_NONE    - If invalid interrupt
6739  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6740 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6741 {
6742 	bool queue_eh_work = false;
6743 	irqreturn_t retval = IRQ_NONE;
6744 
6745 	spin_lock(hba->host->host_lock);
6746 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6747 
6748 	if (hba->errors & INT_FATAL_ERRORS) {
6749 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6750 				       hba->errors);
6751 		queue_eh_work = true;
6752 	}
6753 
6754 	if (hba->errors & UIC_ERROR) {
6755 		hba->uic_error = 0;
6756 		retval = ufshcd_update_uic_error(hba);
6757 		if (hba->uic_error)
6758 			queue_eh_work = true;
6759 	}
6760 
6761 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6762 		dev_err(hba->dev,
6763 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6764 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6765 			"Enter" : "Exit",
6766 			hba->errors, ufshcd_get_upmcrs(hba));
6767 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6768 				       hba->errors);
6769 		ufshcd_set_link_broken(hba);
6770 		queue_eh_work = true;
6771 	}
6772 
6773 	trace_android_vh_ufs_check_int_errors(hba, queue_eh_work);
6774 
6775 	if (queue_eh_work) {
6776 		/*
6777 		 * update the transfer error masks to sticky bits, let's do this
6778 		 * irrespective of current ufshcd_state.
6779 		 */
6780 		bool skip = false;
6781 		hba->saved_err |= hba->errors;
6782 		hba->saved_uic_err |= hba->uic_error;
6783 
6784 		trace_android_vh_ufs_err_print_ctrl(hba, &skip);
6785 		/* dump controller state before resetting */
6786 		if (!skip &&((hba->saved_err &
6787 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6788 		    (hba->saved_uic_err &&
6789 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR)))) {
6790 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6791 					__func__, hba->saved_err,
6792 					hba->saved_uic_err);
6793 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6794 					 "host_regs: ");
6795 			ufshcd_print_pwr_info(hba);
6796 		}
6797 		ufshcd_schedule_eh_work(hba);
6798 		retval |= IRQ_HANDLED;
6799 	}
6800 	/*
6801 	 * if (!queue_eh_work) -
6802 	 * Other errors are either non-fatal where host recovers
6803 	 * itself without s/w intervention or errors that will be
6804 	 * handled by the SCSI core layer.
6805 	 */
6806 	hba->errors = 0;
6807 	hba->uic_error = 0;
6808 	spin_unlock(hba->host->host_lock);
6809 	return retval;
6810 }
6811 
6812 /**
6813  * ufshcd_tmc_handler - handle task management function completion
6814  * @hba: per adapter instance
6815  *
6816  * Return:
6817  *  IRQ_HANDLED - If interrupt is valid
6818  *  IRQ_NONE    - If invalid interrupt
6819  */
ufshcd_tmc_handler(struct ufs_hba * hba)6820 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6821 {
6822 	unsigned long flags, pending, issued;
6823 	irqreturn_t ret = IRQ_NONE;
6824 	int tag;
6825 
6826 	spin_lock_irqsave(hba->host->host_lock, flags);
6827 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6828 	issued = hba->outstanding_tasks & ~pending;
6829 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6830 		struct request *req = hba->tmf_rqs[tag];
6831 		struct completion *c = req->end_io_data;
6832 
6833 		complete(c);
6834 		ret = IRQ_HANDLED;
6835 	}
6836 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6837 
6838 	return ret;
6839 }
6840 
6841 /**
6842  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6843  * @hba: per adapter instance
6844  *
6845  * Return: IRQ_HANDLED if interrupt is handled.
6846  */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6847 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6848 {
6849 	struct ufs_hw_queue *hwq;
6850 	unsigned long outstanding_cqs;
6851 	unsigned int nr_queues;
6852 	int i, ret;
6853 	u32 events;
6854 
6855 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6856 	if (ret)
6857 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6858 
6859 	/* Exclude the poll queues */
6860 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6861 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6862 		hwq = &hba->uhq[i];
6863 
6864 		events = ufshcd_mcq_read_cqis(hba, i);
6865 		if (events)
6866 			ufshcd_mcq_write_cqis(hba, events, i);
6867 
6868 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6869 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6870 	}
6871 
6872 	return IRQ_HANDLED;
6873 }
6874 
6875 /**
6876  * ufshcd_sl_intr - Interrupt service routine
6877  * @hba: per adapter instance
6878  * @intr_status: contains interrupts generated by the controller
6879  *
6880  * Return:
6881  *  IRQ_HANDLED - If interrupt is valid
6882  *  IRQ_NONE    - If invalid interrupt
6883  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6884 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6885 {
6886 	irqreturn_t retval = IRQ_NONE;
6887 	bool err_check = false;
6888 
6889 	if (intr_status & UFSHCD_UIC_MASK)
6890 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6891 
6892 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6893 		retval |= ufshcd_check_errors(hba, intr_status);
6894 
6895 	if (intr_status & UTP_TASK_REQ_COMPL)
6896 		retval |= ufshcd_tmc_handler(hba);
6897 
6898 	if (intr_status & UTP_TRANSFER_REQ_COMPL) {
6899 		retval |= ufshcd_transfer_req_compl(hba);
6900 
6901 		trace_android_vh_ufs_err_check_ctrl(hba, &err_check);
6902 		if (err_check)
6903 			ufshcd_check_errors(hba, hba->errors);
6904 	}
6905 
6906 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6907 		retval |= ufshcd_handle_mcq_cq_events(hba);
6908 
6909 	return retval;
6910 }
6911 
6912 /**
6913  * ufshcd_intr - Main interrupt service routine
6914  * @irq: irq number
6915  * @__hba: pointer to adapter instance
6916  *
6917  * Return:
6918  *  IRQ_HANDLED - If interrupt is valid
6919  *  IRQ_NONE    - If invalid interrupt
6920  */
ufshcd_intr(int irq,void * __hba)6921 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6922 {
6923 	u32 intr_status, enabled_intr_status = 0;
6924 	irqreturn_t retval = IRQ_NONE;
6925 	struct ufs_hba *hba = __hba;
6926 	int retries = hba->nutrs;
6927 
6928 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6929 	hba->ufs_stats.last_intr_status = intr_status;
6930 	hba->ufs_stats.last_intr_ts = local_clock();
6931 
6932 	/*
6933 	 * There could be max of hba->nutrs reqs in flight and in worst case
6934 	 * if the reqs get finished 1 by 1 after the interrupt status is
6935 	 * read, make sure we handle them by checking the interrupt status
6936 	 * again in a loop until we process all of the reqs before returning.
6937 	 */
6938 	while (intr_status && retries--) {
6939 		enabled_intr_status =
6940 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6941 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6942 		if (enabled_intr_status)
6943 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6944 
6945 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6946 	}
6947 
6948 	if (enabled_intr_status && retval == IRQ_NONE &&
6949 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6950 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6951 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6952 					__func__,
6953 					intr_status,
6954 					hba->ufs_stats.last_intr_status,
6955 					enabled_intr_status);
6956 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6957 	}
6958 
6959 	return retval;
6960 }
6961 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6962 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6963 {
6964 	int err = 0;
6965 	u32 mask = 1 << tag;
6966 	unsigned long flags;
6967 
6968 	if (!test_bit(tag, &hba->outstanding_tasks))
6969 		goto out;
6970 
6971 	spin_lock_irqsave(hba->host->host_lock, flags);
6972 	ufshcd_utmrl_clear(hba, tag);
6973 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6974 
6975 	/* poll for max. 1 sec to clear door bell register by h/w */
6976 	err = ufshcd_wait_for_register(hba,
6977 			REG_UTP_TASK_REQ_DOOR_BELL,
6978 			mask, 0, 1000, 1000);
6979 
6980 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6981 		tag, err < 0 ? "failed" : "succeeded");
6982 
6983 out:
6984 	return err;
6985 }
6986 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6987 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6988 		struct utp_task_req_desc *treq, u8 tm_function)
6989 {
6990 	struct request_queue *q = hba->tmf_queue;
6991 	struct Scsi_Host *host = hba->host;
6992 	DECLARE_COMPLETION_ONSTACK(wait);
6993 	struct request *req;
6994 	unsigned long flags;
6995 	int task_tag, err;
6996 
6997 	/*
6998 	 * blk_mq_alloc_request() is used here only to get a free tag.
6999 	 */
7000 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7001 	if (IS_ERR(req))
7002 		return PTR_ERR(req);
7003 
7004 	req->end_io_data = &wait;
7005 	ufshcd_hold(hba);
7006 
7007 	spin_lock_irqsave(host->host_lock, flags);
7008 
7009 	task_tag = req->tag;
7010 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
7011 		  task_tag);
7012 	hba->tmf_rqs[req->tag] = req;
7013 	treq->upiu_req.req_header.task_tag = task_tag;
7014 
7015 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7016 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7017 
7018 	/* send command to the controller */
7019 	__set_bit(task_tag, &hba->outstanding_tasks);
7020 
7021 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7022 	/* Make sure that doorbell is committed immediately */
7023 	wmb();
7024 
7025 	spin_unlock_irqrestore(host->host_lock, flags);
7026 
7027 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7028 
7029 	/* wait until the task management command is completed */
7030 	err = wait_for_completion_io_timeout(&wait,
7031 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7032 	if (!err) {
7033 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7034 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7035 				__func__, tm_function);
7036 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7037 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7038 					__func__, task_tag);
7039 		err = -ETIMEDOUT;
7040 	} else {
7041 		err = 0;
7042 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7043 
7044 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7045 	}
7046 
7047 	spin_lock_irqsave(hba->host->host_lock, flags);
7048 	hba->tmf_rqs[req->tag] = NULL;
7049 	__clear_bit(task_tag, &hba->outstanding_tasks);
7050 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7051 
7052 	ufshcd_release(hba);
7053 	blk_mq_free_request(req);
7054 
7055 	return err;
7056 }
7057 
7058 /**
7059  * ufshcd_issue_tm_cmd - issues task management commands to controller
7060  * @hba: per adapter instance
7061  * @lun_id: LUN ID to which TM command is sent
7062  * @task_id: task ID to which the TM command is applicable
7063  * @tm_function: task management function opcode
7064  * @tm_response: task management service response return value
7065  *
7066  * Return: non-zero value on error, zero on success.
7067  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7068 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7069 		u8 tm_function, u8 *tm_response)
7070 {
7071 	struct utp_task_req_desc treq = { };
7072 	enum utp_ocs ocs_value;
7073 	int err;
7074 
7075 	/* Configure task request descriptor */
7076 	treq.header.interrupt = 1;
7077 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7078 
7079 	/* Configure task request UPIU */
7080 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7081 	treq.upiu_req.req_header.lun = lun_id;
7082 	treq.upiu_req.req_header.tm_function = tm_function;
7083 
7084 	/*
7085 	 * The host shall provide the same value for LUN field in the basic
7086 	 * header and for Input Parameter.
7087 	 */
7088 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7089 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7090 
7091 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7092 	if (err == -ETIMEDOUT)
7093 		return err;
7094 
7095 	ocs_value = treq.header.ocs & MASK_OCS;
7096 	if (ocs_value != OCS_SUCCESS)
7097 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7098 				__func__, ocs_value);
7099 	else if (tm_response)
7100 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7101 				MASK_TM_SERVICE_RESP;
7102 	return err;
7103 }
7104 
7105 /**
7106  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7107  * @hba:	per-adapter instance
7108  * @req_upiu:	upiu request
7109  * @rsp_upiu:	upiu reply
7110  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7111  * @buff_len:	descriptor size, 0 if NA
7112  * @cmd_type:	specifies the type (NOP, Query...)
7113  * @desc_op:	descriptor operation
7114  *
7115  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7116  * Therefore, it "rides" the device management infrastructure: uses its tag and
7117  * tasks work queues.
7118  *
7119  * Since there is only one available tag for device management commands,
7120  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7121  *
7122  * Return: 0 upon success; < 0 upon failure.
7123  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7124 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7125 					struct utp_upiu_req *req_upiu,
7126 					struct utp_upiu_req *rsp_upiu,
7127 					u8 *desc_buff, int *buff_len,
7128 					enum dev_cmd_type cmd_type,
7129 					enum query_opcode desc_op)
7130 {
7131 	DECLARE_COMPLETION_ONSTACK(wait);
7132 	const u32 tag = hba->reserved_slot;
7133 	struct ufshcd_lrb *lrbp;
7134 	int err = 0;
7135 	u8 upiu_flags;
7136 
7137 	/* Protects use of hba->reserved_slot. */
7138 	lockdep_assert_held(&hba->dev_cmd.lock);
7139 
7140 	down_read(&hba->clk_scaling_lock);
7141 
7142 	lrbp = &hba->lrb[tag];
7143 	lrbp->cmd = NULL;
7144 	lrbp->task_tag = tag;
7145 	lrbp->lun = 0;
7146 	lrbp->intr_cmd = true;
7147 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7148 	hba->dev_cmd.type = cmd_type;
7149 
7150 	if (hba->ufs_version <= ufshci_version(1, 1))
7151 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7152 	else
7153 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7154 
7155 	/* update the task tag in the request upiu */
7156 	req_upiu->header.task_tag = tag;
7157 
7158 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7159 
7160 	/* just copy the upiu request as it is */
7161 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7162 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7163 		/* The Data Segment Area is optional depending upon the query
7164 		 * function value. for WRITE DESCRIPTOR, the data segment
7165 		 * follows right after the tsf.
7166 		 */
7167 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7168 		*buff_len = 0;
7169 	}
7170 
7171 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7172 
7173 	hba->dev_cmd.complete = &wait;
7174 
7175 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7176 
7177 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7178 	/*
7179 	 * ignore the returning value here - ufshcd_check_query_response is
7180 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7181 	 * read the response directly ignoring all errors.
7182 	 */
7183 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7184 
7185 	/* just copy the upiu response as it is */
7186 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7187 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7188 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7189 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7190 					   .data_segment_length);
7191 
7192 		if (*buff_len >= resp_len) {
7193 			memcpy(desc_buff, descp, resp_len);
7194 			*buff_len = resp_len;
7195 		} else {
7196 			dev_warn(hba->dev,
7197 				 "%s: rsp size %d is bigger than buffer size %d",
7198 				 __func__, resp_len, *buff_len);
7199 			*buff_len = 0;
7200 			err = -EINVAL;
7201 		}
7202 	}
7203 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7204 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7205 
7206 	up_read(&hba->clk_scaling_lock);
7207 	return err;
7208 }
7209 
7210 /**
7211  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7212  * @hba:	per-adapter instance
7213  * @req_upiu:	upiu request
7214  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7215  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7216  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7217  * @buff_len:	descriptor size, 0 if NA
7218  * @desc_op:	descriptor operation
7219  *
7220  * Supports UTP Transfer requests (nop and query), and UTP Task
7221  * Management requests.
7222  * It is up to the caller to fill the upiu conent properly, as it will
7223  * be copied without any further input validations.
7224  *
7225  * Return: 0 upon success; < 0 upon failure.
7226  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7227 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7228 			     struct utp_upiu_req *req_upiu,
7229 			     struct utp_upiu_req *rsp_upiu,
7230 			     enum upiu_request_transaction msgcode,
7231 			     u8 *desc_buff, int *buff_len,
7232 			     enum query_opcode desc_op)
7233 {
7234 	int err;
7235 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7236 	struct utp_task_req_desc treq = { };
7237 	enum utp_ocs ocs_value;
7238 	u8 tm_f = req_upiu->header.tm_function;
7239 
7240 	switch (msgcode) {
7241 	case UPIU_TRANSACTION_NOP_OUT:
7242 		cmd_type = DEV_CMD_TYPE_NOP;
7243 		fallthrough;
7244 	case UPIU_TRANSACTION_QUERY_REQ:
7245 		ufshcd_hold(hba);
7246 		mutex_lock(&hba->dev_cmd.lock);
7247 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7248 						   desc_buff, buff_len,
7249 						   cmd_type, desc_op);
7250 		mutex_unlock(&hba->dev_cmd.lock);
7251 		ufshcd_release(hba);
7252 
7253 		break;
7254 	case UPIU_TRANSACTION_TASK_REQ:
7255 		treq.header.interrupt = 1;
7256 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7257 
7258 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7259 
7260 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7261 		if (err == -ETIMEDOUT)
7262 			break;
7263 
7264 		ocs_value = treq.header.ocs & MASK_OCS;
7265 		if (ocs_value != OCS_SUCCESS) {
7266 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7267 				ocs_value);
7268 			break;
7269 		}
7270 
7271 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7272 
7273 		break;
7274 	default:
7275 		err = -EINVAL;
7276 
7277 		break;
7278 	}
7279 
7280 	return err;
7281 }
7282 
7283 /**
7284  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7285  * @hba:	per adapter instance
7286  * @req_upiu:	upiu request
7287  * @rsp_upiu:	upiu reply
7288  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7289  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7290  * @sg_cnt:	The number of sg lists actually used
7291  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7292  * @dir:	DMA direction
7293  *
7294  * Return: zero on success, non-zero on failure.
7295  */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7296 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7297 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7298 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7299 			 enum dma_data_direction dir)
7300 {
7301 	DECLARE_COMPLETION_ONSTACK(wait);
7302 	const u32 tag = hba->reserved_slot;
7303 	struct ufshcd_lrb *lrbp;
7304 	int err = 0;
7305 	int result;
7306 	u8 upiu_flags;
7307 	u8 *ehs_data;
7308 	u16 ehs_len;
7309 
7310 	/* Protects use of hba->reserved_slot. */
7311 	ufshcd_hold(hba);
7312 	mutex_lock(&hba->dev_cmd.lock);
7313 	down_read(&hba->clk_scaling_lock);
7314 
7315 	lrbp = &hba->lrb[tag];
7316 	lrbp->cmd = NULL;
7317 	lrbp->task_tag = tag;
7318 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7319 
7320 	lrbp->intr_cmd = true;
7321 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7322 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7323 
7324 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7325 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7326 
7327 	/*
7328 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7329 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7330 	 * HW controller takes EHS length from UTRD.
7331 	 */
7332 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7333 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7334 	else
7335 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7336 
7337 	/* update the task tag */
7338 	req_upiu->header.task_tag = tag;
7339 
7340 	/* copy the UPIU(contains CDB) request as it is */
7341 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7342 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7343 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7344 
7345 	if (dir != DMA_NONE && sg_list)
7346 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7347 
7348 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7349 
7350 	hba->dev_cmd.complete = &wait;
7351 
7352 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7353 
7354 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7355 
7356 	if (!err) {
7357 		/* Just copy the upiu response as it is */
7358 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7359 		/* Get the response UPIU result */
7360 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7361 			lrbp->ucd_rsp_ptr->header.status;
7362 
7363 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7364 		/*
7365 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7366 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7367 		 * Message is 02h
7368 		 */
7369 		if (ehs_len == 2 && rsp_ehs) {
7370 			/*
7371 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7372 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7373 			 */
7374 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7375 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7376 		}
7377 	}
7378 
7379 	up_read(&hba->clk_scaling_lock);
7380 	mutex_unlock(&hba->dev_cmd.lock);
7381 	ufshcd_release(hba);
7382 	return err ? : result;
7383 }
7384 
7385 /**
7386  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7387  * @cmd: SCSI command pointer
7388  *
7389  * Return: SUCCESS or FAILED.
7390  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7391 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7392 {
7393 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7394 	struct Scsi_Host *host;
7395 	struct ufs_hba *hba;
7396 	struct ufs_hw_queue *hwq;
7397 	struct ufshcd_lrb *lrbp;
7398 	u32 pos, not_cleared_mask = 0;
7399 	int err;
7400 	u8 resp = 0xF, lun;
7401 
7402 	host = cmd->device->host;
7403 	hba = shost_priv(host);
7404 
7405 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7406 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7407 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7408 		if (!err)
7409 			err = resp;
7410 		goto out;
7411 	}
7412 
7413 	if (is_mcq_enabled(hba)) {
7414 		for (pos = 0; pos < hba->nutrs; pos++) {
7415 			lrbp = &hba->lrb[pos];
7416 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7417 			    lrbp->lun == lun) {
7418 				ufshcd_clear_cmd(hba, pos);
7419 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7420 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7421 			}
7422 		}
7423 		err = 0;
7424 		goto out;
7425 	}
7426 
7427 	/* clear the commands that were pending for corresponding LUN */
7428 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7429 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7430 		if (hba->lrb[pos].lun == lun)
7431 			__set_bit(pos, &pending_reqs);
7432 	hba->outstanding_reqs &= ~pending_reqs;
7433 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7434 
7435 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7436 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7437 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7438 			not_cleared = 1U << pos &
7439 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7440 			hba->outstanding_reqs |= not_cleared;
7441 			not_cleared_mask |= not_cleared;
7442 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7443 
7444 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7445 				__func__, pos);
7446 		}
7447 	}
7448 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7449 
7450 out:
7451 	hba->req_abort_count = 0;
7452 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7453 	if (!err) {
7454 		err = SUCCESS;
7455 	} else {
7456 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7457 		err = FAILED;
7458 	}
7459 	return err;
7460 }
7461 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7462 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7463 {
7464 	struct ufshcd_lrb *lrbp;
7465 	int tag;
7466 
7467 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7468 		lrbp = &hba->lrb[tag];
7469 		lrbp->req_abort_skip = true;
7470 	}
7471 }
7472 
7473 /**
7474  * ufshcd_try_to_abort_task - abort a specific task
7475  * @hba: Pointer to adapter instance
7476  * @tag: Task tag/index to be aborted
7477  *
7478  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7479  * command, and in host controller by clearing the door-bell register. There can
7480  * be race between controller sending the command to the device while abort is
7481  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7482  * really issued and then try to abort it.
7483  *
7484  * Return: zero on success, non-zero on failure.
7485  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7486 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7487 {
7488 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7489 	int err = 0;
7490 	int poll_cnt;
7491 	u8 resp = 0xF;
7492 	u32 reg;
7493 
7494 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7495 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7496 				UFS_QUERY_TASK, &resp);
7497 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7498 			/* cmd pending in the device */
7499 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7500 				__func__, tag);
7501 			break;
7502 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7503 			/*
7504 			 * cmd not pending in the device, check if it is
7505 			 * in transition.
7506 			 */
7507 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7508 				__func__, tag);
7509 			if (is_mcq_enabled(hba)) {
7510 				/* MCQ mode */
7511 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7512 					/* sleep for max. 200us same delay as in SDB mode */
7513 					usleep_range(100, 200);
7514 					continue;
7515 				}
7516 				/* command completed already */
7517 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7518 					__func__, tag);
7519 				goto out;
7520 			}
7521 
7522 			/* Single Doorbell Mode */
7523 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7524 			if (reg & (1 << tag)) {
7525 				/* sleep for max. 200us to stabilize */
7526 				usleep_range(100, 200);
7527 				continue;
7528 			}
7529 			/* command completed already */
7530 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7531 				__func__, tag);
7532 			goto out;
7533 		} else {
7534 			dev_err(hba->dev,
7535 				"%s: no response from device. tag = %d, err %d\n",
7536 				__func__, tag, err);
7537 			if (!err)
7538 				err = resp; /* service response error */
7539 			goto out;
7540 		}
7541 	}
7542 
7543 	if (!poll_cnt) {
7544 		err = -EBUSY;
7545 		goto out;
7546 	}
7547 
7548 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7549 			UFS_ABORT_TASK, &resp);
7550 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7551 		if (!err) {
7552 			err = resp; /* service response error */
7553 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7554 				__func__, tag, err);
7555 		}
7556 		goto out;
7557 	}
7558 
7559 	err = ufshcd_clear_cmd(hba, tag);
7560 	if (err)
7561 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7562 			__func__, tag, err);
7563 
7564 out:
7565 	return err;
7566 }
7567 
7568 /**
7569  * ufshcd_abort - scsi host template eh_abort_handler callback
7570  * @cmd: SCSI command pointer
7571  *
7572  * Return: SUCCESS or FAILED.
7573  */
ufshcd_abort(struct scsi_cmnd * cmd)7574 static int ufshcd_abort(struct scsi_cmnd *cmd)
7575 {
7576 	struct Scsi_Host *host = cmd->device->host;
7577 	struct ufs_hba *hba = shost_priv(host);
7578 	int tag = scsi_cmd_to_rq(cmd)->tag;
7579 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7580 	unsigned long flags;
7581 	int err = FAILED;
7582 	bool outstanding;
7583 	u32 reg;
7584 
7585 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7586 
7587 	ufshcd_hold(hba);
7588 
7589 	if (!is_mcq_enabled(hba)) {
7590 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7591 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7592 			/* If command is already aborted/completed, return FAILED. */
7593 			dev_err(hba->dev,
7594 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7595 				__func__, tag, hba->outstanding_reqs, reg);
7596 			goto release;
7597 		}
7598 	}
7599 
7600 	/* Print Transfer Request of aborted task */
7601 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7602 
7603 	/*
7604 	 * Print detailed info about aborted request.
7605 	 * As more than one request might get aborted at the same time,
7606 	 * print full information only for the first aborted request in order
7607 	 * to reduce repeated printouts. For other aborted requests only print
7608 	 * basic details.
7609 	 */
7610 	scsi_print_command(cmd);
7611 	if (!hba->req_abort_count) {
7612 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7613 		ufshcd_print_evt_hist(hba);
7614 		ufshcd_print_host_state(hba);
7615 		ufshcd_print_pwr_info(hba);
7616 		ufshcd_print_tr(hba, tag, true);
7617 	} else {
7618 		ufshcd_print_tr(hba, tag, false);
7619 	}
7620 	hba->req_abort_count++;
7621 
7622 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7623 		/* only execute this code in single doorbell mode */
7624 		dev_err(hba->dev,
7625 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7626 		__func__, tag);
7627 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7628 		goto release;
7629 	}
7630 
7631 	/*
7632 	 * Task abort to the device W-LUN is illegal. When this command
7633 	 * will fail, due to spec violation, scsi err handling next step
7634 	 * will be to send LU reset which, again, is a spec violation.
7635 	 * To avoid these unnecessary/illegal steps, first we clean up
7636 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7637 	 * then queue the eh_work and bail.
7638 	 */
7639 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7640 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7641 
7642 		spin_lock_irqsave(host->host_lock, flags);
7643 		hba->force_reset = true;
7644 		ufshcd_schedule_eh_work(hba);
7645 		spin_unlock_irqrestore(host->host_lock, flags);
7646 		goto release;
7647 	}
7648 
7649 	if (is_mcq_enabled(hba)) {
7650 		/* MCQ mode. Branch off to handle abort for mcq mode */
7651 		err = ufshcd_mcq_abort(cmd);
7652 		goto release;
7653 	}
7654 
7655 	/* Skip task abort in case previous aborts failed and report failure */
7656 	if (lrbp->req_abort_skip) {
7657 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7658 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7659 		goto release;
7660 	}
7661 
7662 	err = ufshcd_try_to_abort_task(hba, tag);
7663 	if (err) {
7664 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7665 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7666 		err = FAILED;
7667 		goto release;
7668 	}
7669 
7670 	/*
7671 	 * Clear the corresponding bit from outstanding_reqs since the command
7672 	 * has been aborted successfully.
7673 	 */
7674 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7675 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7676 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7677 
7678 	if (outstanding) {
7679 		ufshcd_release_scsi_cmd(hba, lrbp);
7680 		trace_android_vh_ufs_abort_success_ctrl(hba, lrbp);
7681 	}
7682 
7683 	err = SUCCESS;
7684 
7685 release:
7686 	/* Matches the ufshcd_hold() call at the start of this function. */
7687 	ufshcd_release(hba);
7688 	return err;
7689 }
7690 
7691 /**
7692  * ufshcd_host_reset_and_restore - reset and restore host controller
7693  * @hba: per-adapter instance
7694  *
7695  * Note that host controller reset may issue DME_RESET to
7696  * local and remote (device) Uni-Pro stack and the attributes
7697  * are reset to default state.
7698  *
7699  * Return: zero on success, non-zero on failure.
7700  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7701 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7702 {
7703 	int err;
7704 
7705 	/*
7706 	 * Stop the host controller and complete the requests
7707 	 * cleared by h/w
7708 	 */
7709 	ufshcd_hba_stop(hba);
7710 	hba->silence_err_logs = true;
7711 	ufshcd_complete_requests(hba, true);
7712 	hba->silence_err_logs = false;
7713 
7714 	/* scale up clocks to max frequency before full reinitialization */
7715 	ufshcd_scale_clks(hba, true);
7716 
7717 	err = ufshcd_hba_enable(hba);
7718 
7719 	/* Establish the link again and restore the device */
7720 	if (!err)
7721 		err = ufshcd_probe_hba(hba, false);
7722 
7723 	if (err)
7724 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7725 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7726 	return err;
7727 }
7728 
7729 /**
7730  * ufshcd_reset_and_restore - reset and re-initialize host/device
7731  * @hba: per-adapter instance
7732  *
7733  * Reset and recover device, host and re-establish link. This
7734  * is helpful to recover the communication in fatal error conditions.
7735  *
7736  * Return: zero on success, non-zero on failure.
7737  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7738 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7739 {
7740 	u32 saved_err = 0;
7741 	u32 saved_uic_err = 0;
7742 	int err = 0;
7743 	unsigned long flags;
7744 	int retries = MAX_HOST_RESET_RETRIES;
7745 
7746 	spin_lock_irqsave(hba->host->host_lock, flags);
7747 	do {
7748 		/*
7749 		 * This is a fresh start, cache and clear saved error first,
7750 		 * in case new error generated during reset and restore.
7751 		 */
7752 		saved_err |= hba->saved_err;
7753 		saved_uic_err |= hba->saved_uic_err;
7754 		hba->saved_err = 0;
7755 		hba->saved_uic_err = 0;
7756 		hba->force_reset = false;
7757 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7758 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7759 
7760 		/* Reset the attached device */
7761 		ufshcd_device_reset(hba);
7762 
7763 		err = ufshcd_host_reset_and_restore(hba);
7764 
7765 		spin_lock_irqsave(hba->host->host_lock, flags);
7766 		if (err)
7767 			continue;
7768 		/* Do not exit unless operational or dead */
7769 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7770 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7771 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7772 			err = -EAGAIN;
7773 	} while (err && --retries);
7774 
7775 	/*
7776 	 * Inform scsi mid-layer that we did reset and allow to handle
7777 	 * Unit Attention properly.
7778 	 */
7779 	scsi_report_bus_reset(hba->host, 0);
7780 	if (err) {
7781 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7782 		hba->saved_err |= saved_err;
7783 		hba->saved_uic_err |= saved_uic_err;
7784 	}
7785 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7786 
7787 	return err;
7788 }
7789 
7790 /**
7791  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7792  * @cmd: SCSI command pointer
7793  *
7794  * Return: SUCCESS or FAILED.
7795  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7796 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7797 {
7798 	int err = SUCCESS;
7799 	unsigned long flags;
7800 	struct ufs_hba *hba;
7801 
7802 	hba = shost_priv(cmd->device->host);
7803 
7804 	/*
7805 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7806 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7807 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7808 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7809 	 */
7810 	if (hba->pm_op_in_progress) {
7811 		if (ufshcd_link_recovery(hba))
7812 			err = FAILED;
7813 
7814 		return err;
7815 	}
7816 
7817 	spin_lock_irqsave(hba->host->host_lock, flags);
7818 	hba->force_reset = true;
7819 	ufshcd_schedule_eh_work(hba);
7820 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7821 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7822 
7823 	flush_work(&hba->eh_work);
7824 
7825 	spin_lock_irqsave(hba->host->host_lock, flags);
7826 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7827 		err = FAILED;
7828 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7829 
7830 	return err;
7831 }
7832 
7833 /**
7834  * ufshcd_get_max_icc_level - calculate the ICC level
7835  * @sup_curr_uA: max. current supported by the regulator
7836  * @start_scan: row at the desc table to start scan from
7837  * @buff: power descriptor buffer
7838  *
7839  * Return: calculated max ICC level for specific regulator.
7840  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7841 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7842 				    const char *buff)
7843 {
7844 	int i;
7845 	int curr_uA;
7846 	u16 data;
7847 	u16 unit;
7848 
7849 	for (i = start_scan; i >= 0; i--) {
7850 		data = get_unaligned_be16(&buff[2 * i]);
7851 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7852 						ATTR_ICC_LVL_UNIT_OFFSET;
7853 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7854 		switch (unit) {
7855 		case UFSHCD_NANO_AMP:
7856 			curr_uA = curr_uA / 1000;
7857 			break;
7858 		case UFSHCD_MILI_AMP:
7859 			curr_uA = curr_uA * 1000;
7860 			break;
7861 		case UFSHCD_AMP:
7862 			curr_uA = curr_uA * 1000 * 1000;
7863 			break;
7864 		case UFSHCD_MICRO_AMP:
7865 		default:
7866 			break;
7867 		}
7868 		if (sup_curr_uA >= curr_uA)
7869 			break;
7870 	}
7871 	if (i < 0) {
7872 		i = 0;
7873 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7874 	}
7875 
7876 	return (u32)i;
7877 }
7878 
7879 /**
7880  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7881  * In case regulators are not initialized we'll return 0
7882  * @hba: per-adapter instance
7883  * @desc_buf: power descriptor buffer to extract ICC levels from.
7884  *
7885  * Return: calculated ICC level.
7886  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7887 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7888 						const u8 *desc_buf)
7889 {
7890 	u32 icc_level = 0;
7891 
7892 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7893 						!hba->vreg_info.vccq2) {
7894 		/*
7895 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7896 		 * never-ending cycles of messages written back to storage by
7897 		 * user space causing runtime resume, causing more messages and
7898 		 * so on.
7899 		 */
7900 		dev_dbg(hba->dev,
7901 			"%s: Regulator capability was not set, actvIccLevel=%d",
7902 							__func__, icc_level);
7903 		goto out;
7904 	}
7905 
7906 	if (hba->vreg_info.vcc->max_uA)
7907 		icc_level = ufshcd_get_max_icc_level(
7908 				hba->vreg_info.vcc->max_uA,
7909 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7910 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7911 
7912 	if (hba->vreg_info.vccq->max_uA)
7913 		icc_level = ufshcd_get_max_icc_level(
7914 				hba->vreg_info.vccq->max_uA,
7915 				icc_level,
7916 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7917 
7918 	if (hba->vreg_info.vccq2->max_uA)
7919 		icc_level = ufshcd_get_max_icc_level(
7920 				hba->vreg_info.vccq2->max_uA,
7921 				icc_level,
7922 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7923 out:
7924 	return icc_level;
7925 }
7926 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7927 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7928 {
7929 	int ret;
7930 	u8 *desc_buf;
7931 	u32 icc_level;
7932 
7933 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7934 	if (!desc_buf)
7935 		return;
7936 
7937 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7938 				     desc_buf, QUERY_DESC_MAX_SIZE);
7939 	if (ret) {
7940 		dev_err(hba->dev,
7941 			"%s: Failed reading power descriptor ret = %d",
7942 			__func__, ret);
7943 		goto out;
7944 	}
7945 
7946 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7947 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7948 
7949 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7950 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7951 
7952 	if (ret)
7953 		dev_err(hba->dev,
7954 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7955 			__func__, icc_level, ret);
7956 
7957 out:
7958 	kfree(desc_buf);
7959 }
7960 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7961 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7962 {
7963 	struct Scsi_Host *shost = sdev->host;
7964 
7965 	scsi_autopm_get_device(sdev);
7966 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7967 	if (sdev->rpm_autosuspend)
7968 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7969 						 shost->rpm_autosuspend_delay);
7970 	scsi_autopm_put_device(sdev);
7971 }
7972 
7973 /**
7974  * ufshcd_scsi_add_wlus - Adds required W-LUs
7975  * @hba: per-adapter instance
7976  *
7977  * UFS device specification requires the UFS devices to support 4 well known
7978  * logical units:
7979  *	"REPORT_LUNS" (address: 01h)
7980  *	"UFS Device" (address: 50h)
7981  *	"RPMB" (address: 44h)
7982  *	"BOOT" (address: 30h)
7983  * UFS device's power management needs to be controlled by "POWER CONDITION"
7984  * field of SSU (START STOP UNIT) command. But this "power condition" field
7985  * will take effect only when its sent to "UFS device" well known logical unit
7986  * hence we require the scsi_device instance to represent this logical unit in
7987  * order for the UFS host driver to send the SSU command for power management.
7988  *
7989  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7990  * Block) LU so user space process can control this LU. User space may also
7991  * want to have access to BOOT LU.
7992  *
7993  * This function adds scsi device instances for each of all well known LUs
7994  * (except "REPORT LUNS" LU).
7995  *
7996  * Return: zero on success (all required W-LUs are added successfully),
7997  * non-zero error value on failure (if failed to add any of the required W-LU).
7998  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7999 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8000 {
8001 	int ret = 0;
8002 	struct scsi_device *sdev_boot, *sdev_rpmb;
8003 
8004 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8005 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8006 	if (IS_ERR(hba->ufs_device_wlun)) {
8007 		ret = PTR_ERR(hba->ufs_device_wlun);
8008 		hba->ufs_device_wlun = NULL;
8009 		goto out;
8010 	}
8011 	scsi_device_put(hba->ufs_device_wlun);
8012 
8013 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8014 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8015 	if (IS_ERR(sdev_rpmb)) {
8016 		ret = PTR_ERR(sdev_rpmb);
8017 		goto remove_ufs_device_wlun;
8018 	}
8019 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8020 	scsi_device_put(sdev_rpmb);
8021 
8022 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8023 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8024 	if (IS_ERR(sdev_boot)) {
8025 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8026 	} else {
8027 		ufshcd_blk_pm_runtime_init(sdev_boot);
8028 		scsi_device_put(sdev_boot);
8029 	}
8030 	goto out;
8031 
8032 remove_ufs_device_wlun:
8033 	scsi_remove_device(hba->ufs_device_wlun);
8034 out:
8035 	return ret;
8036 }
8037 
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8038 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8039 {
8040 	struct ufs_dev_info *dev_info = &hba->dev_info;
8041 	u8 lun;
8042 	u32 d_lu_wb_buf_alloc;
8043 	u32 ext_ufs_feature;
8044 
8045 	if (!ufshcd_is_wb_allowed(hba))
8046 		return;
8047 
8048 	/*
8049 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8050 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8051 	 * enabled
8052 	 */
8053 	if (!(dev_info->wspecversion >= 0x310 ||
8054 	      dev_info->wspecversion == 0x220 ||
8055 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8056 		goto wb_disabled;
8057 
8058 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8059 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8060 
8061 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8062 		goto wb_disabled;
8063 
8064 	/*
8065 	 * WB may be supported but not configured while provisioning. The spec
8066 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8067 	 * buffer configured.
8068 	 */
8069 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8070 
8071 	dev_info->b_presrv_uspc_en =
8072 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8073 
8074 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8075 		if (!get_unaligned_be32(desc_buf +
8076 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8077 			goto wb_disabled;
8078 	} else {
8079 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8080 			d_lu_wb_buf_alloc = 0;
8081 			ufshcd_read_unit_desc_param(hba,
8082 					lun,
8083 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8084 					(u8 *)&d_lu_wb_buf_alloc,
8085 					sizeof(d_lu_wb_buf_alloc));
8086 			if (d_lu_wb_buf_alloc) {
8087 				dev_info->wb_dedicated_lu = lun;
8088 				break;
8089 			}
8090 		}
8091 
8092 		if (!d_lu_wb_buf_alloc)
8093 			goto wb_disabled;
8094 	}
8095 
8096 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8097 		goto wb_disabled;
8098 
8099 	return;
8100 
8101 wb_disabled:
8102 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8103 }
8104 
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8105 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8106 {
8107 	struct ufs_dev_info *dev_info = &hba->dev_info;
8108 	u32 ext_ufs_feature;
8109 	u8 mask = 0;
8110 
8111 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8112 		return;
8113 
8114 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8115 
8116 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8117 		mask |= MASK_EE_TOO_LOW_TEMP;
8118 
8119 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8120 		mask |= MASK_EE_TOO_HIGH_TEMP;
8121 
8122 	if (mask) {
8123 		ufshcd_enable_ee(hba, mask);
8124 		ufs_hwmon_probe(hba, mask);
8125 	}
8126 }
8127 
ufshcd_ext_iid_probe(struct ufs_hba * hba,u8 * desc_buf)8128 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8129 {
8130 	struct ufs_dev_info *dev_info = &hba->dev_info;
8131 	u32 ext_ufs_feature;
8132 	u32 ext_iid_en = 0;
8133 	int err;
8134 
8135 	/* Only UFS-4.0 and above may support EXT_IID */
8136 	if (dev_info->wspecversion < 0x400)
8137 		goto out;
8138 
8139 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8140 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8141 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8142 		goto out;
8143 
8144 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8145 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8146 	if (err)
8147 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8148 
8149 out:
8150 	dev_info->b_ext_iid_en = ext_iid_en;
8151 }
8152 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8153 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8154 			     const struct ufs_dev_quirk *fixups)
8155 {
8156 	const struct ufs_dev_quirk *f;
8157 	struct ufs_dev_info *dev_info = &hba->dev_info;
8158 
8159 	if (!fixups)
8160 		return;
8161 
8162 	for (f = fixups; f->quirk; f++) {
8163 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8164 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8165 		     ((dev_info->model &&
8166 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8167 		      !strcmp(f->model, UFS_ANY_MODEL)))
8168 			hba->dev_quirks |= f->quirk;
8169 	}
8170 }
8171 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8172 
ufs_fixup_device_setup(struct ufs_hba * hba)8173 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8174 {
8175 	/* fix by general quirk table */
8176 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8177 
8178 	/* allow vendors to fix quirks */
8179 	ufshcd_vops_fixup_dev_quirks(hba);
8180 }
8181 
ufs_get_device_desc(struct ufs_hba * hba)8182 static int ufs_get_device_desc(struct ufs_hba *hba)
8183 {
8184 	int err;
8185 	u8 model_index;
8186 	u8 *desc_buf;
8187 	struct ufs_dev_info *dev_info = &hba->dev_info;
8188 
8189 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8190 	if (!desc_buf) {
8191 		err = -ENOMEM;
8192 		goto out;
8193 	}
8194 
8195 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8196 				     QUERY_DESC_MAX_SIZE);
8197 	if (err) {
8198 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8199 			__func__, err);
8200 		goto out;
8201 	}
8202 
8203 	/*
8204 	 * getting vendor (manufacturerID) and Bank Index in big endian
8205 	 * format
8206 	 */
8207 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8208 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8209 
8210 	/* getting Specification Version in big endian format */
8211 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8212 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8213 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8214 
8215 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8216 
8217 	err = ufshcd_read_string_desc(hba, model_index,
8218 				      &dev_info->model, SD_ASCII_STD);
8219 	if (err < 0) {
8220 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8221 			__func__, err);
8222 		goto out;
8223 	}
8224 
8225 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8226 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8227 
8228 	ufs_fixup_device_setup(hba);
8229 
8230 	ufshcd_wb_probe(hba, desc_buf);
8231 
8232 	ufshcd_temp_notif_probe(hba, desc_buf);
8233 
8234 	if (hba->ext_iid_sup)
8235 		ufshcd_ext_iid_probe(hba, desc_buf);
8236 
8237 	/*
8238 	 * ufshcd_read_string_desc returns size of the string
8239 	 * reset the error value
8240 	 */
8241 	err = 0;
8242 
8243 out:
8244 	kfree(desc_buf);
8245 	return err;
8246 }
8247 
ufs_put_device_desc(struct ufs_hba * hba)8248 static void ufs_put_device_desc(struct ufs_hba *hba)
8249 {
8250 	struct ufs_dev_info *dev_info = &hba->dev_info;
8251 
8252 	kfree(dev_info->model);
8253 	dev_info->model = NULL;
8254 }
8255 
8256 /**
8257  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8258  * @hba: per-adapter instance
8259  *
8260  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8261  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8262  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8263  * the hibern8 exit latency.
8264  *
8265  * Return: zero on success, non-zero error value on failure.
8266  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)8267 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8268 {
8269 	int ret = 0;
8270 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8271 
8272 	ret = ufshcd_dme_peer_get(hba,
8273 				  UIC_ARG_MIB_SEL(
8274 					RX_MIN_ACTIVATETIME_CAPABILITY,
8275 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8276 				  &peer_rx_min_activatetime);
8277 	if (ret)
8278 		goto out;
8279 
8280 	/* make sure proper unit conversion is applied */
8281 	tuned_pa_tactivate =
8282 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8283 		 / PA_TACTIVATE_TIME_UNIT_US);
8284 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8285 			     tuned_pa_tactivate);
8286 
8287 out:
8288 	return ret;
8289 }
8290 
8291 /**
8292  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8293  * @hba: per-adapter instance
8294  *
8295  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8296  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8297  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8298  * This optimal value can help reduce the hibern8 exit latency.
8299  *
8300  * Return: zero on success, non-zero error value on failure.
8301  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)8302 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8303 {
8304 	int ret = 0;
8305 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8306 	u32 max_hibern8_time, tuned_pa_hibern8time;
8307 
8308 	ret = ufshcd_dme_get(hba,
8309 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8310 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8311 				  &local_tx_hibern8_time_cap);
8312 	if (ret)
8313 		goto out;
8314 
8315 	ret = ufshcd_dme_peer_get(hba,
8316 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8317 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8318 				  &peer_rx_hibern8_time_cap);
8319 	if (ret)
8320 		goto out;
8321 
8322 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8323 			       peer_rx_hibern8_time_cap);
8324 	/* make sure proper unit conversion is applied */
8325 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8326 				/ PA_HIBERN8_TIME_UNIT_US);
8327 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8328 			     tuned_pa_hibern8time);
8329 out:
8330 	return ret;
8331 }
8332 
8333 /**
8334  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8335  * less than device PA_TACTIVATE time.
8336  * @hba: per-adapter instance
8337  *
8338  * Some UFS devices require host PA_TACTIVATE to be lower than device
8339  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8340  * for such devices.
8341  *
8342  * Return: zero on success, non-zero error value on failure.
8343  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8344 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8345 {
8346 	int ret = 0;
8347 	u32 granularity, peer_granularity;
8348 	u32 pa_tactivate, peer_pa_tactivate;
8349 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8350 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8351 
8352 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8353 				  &granularity);
8354 	if (ret)
8355 		goto out;
8356 
8357 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8358 				  &peer_granularity);
8359 	if (ret)
8360 		goto out;
8361 
8362 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8363 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8364 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8365 			__func__, granularity);
8366 		return -EINVAL;
8367 	}
8368 
8369 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8370 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8371 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8372 			__func__, peer_granularity);
8373 		return -EINVAL;
8374 	}
8375 
8376 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8377 	if (ret)
8378 		goto out;
8379 
8380 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8381 				  &peer_pa_tactivate);
8382 	if (ret)
8383 		goto out;
8384 
8385 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8386 	peer_pa_tactivate_us = peer_pa_tactivate *
8387 			     gran_to_us_table[peer_granularity - 1];
8388 
8389 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8390 		u32 new_peer_pa_tactivate;
8391 
8392 		new_peer_pa_tactivate = pa_tactivate_us /
8393 				      gran_to_us_table[peer_granularity - 1];
8394 		new_peer_pa_tactivate++;
8395 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8396 					  new_peer_pa_tactivate);
8397 	}
8398 
8399 out:
8400 	return ret;
8401 }
8402 
ufshcd_tune_unipro_params(struct ufs_hba * hba)8403 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8404 {
8405 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8406 		ufshcd_tune_pa_tactivate(hba);
8407 		ufshcd_tune_pa_hibern8time(hba);
8408 	}
8409 
8410 	ufshcd_vops_apply_dev_quirks(hba);
8411 
8412 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8413 		/* set 1ms timeout for PA_TACTIVATE */
8414 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8415 
8416 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8417 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8418 }
8419 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8420 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8421 {
8422 	hba->ufs_stats.hibern8_exit_cnt = 0;
8423 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8424 	hba->req_abort_count = 0;
8425 }
8426 
ufshcd_device_geo_params_init(struct ufs_hba * hba)8427 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8428 {
8429 	int err;
8430 	u8 *desc_buf;
8431 
8432 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8433 	if (!desc_buf) {
8434 		err = -ENOMEM;
8435 		goto out;
8436 	}
8437 
8438 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8439 				     desc_buf, QUERY_DESC_MAX_SIZE);
8440 	if (err) {
8441 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8442 				__func__, err);
8443 		goto out;
8444 	}
8445 
8446 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8447 		hba->dev_info.max_lu_supported = 32;
8448 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8449 		hba->dev_info.max_lu_supported = 8;
8450 
8451 out:
8452 	kfree(desc_buf);
8453 	return err;
8454 }
8455 
8456 struct ufs_ref_clk {
8457 	unsigned long freq_hz;
8458 	enum ufs_ref_clk_freq val;
8459 };
8460 
8461 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8462 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8463 	{26000000, REF_CLK_FREQ_26_MHZ},
8464 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8465 	{52000000, REF_CLK_FREQ_52_MHZ},
8466 	{0, REF_CLK_FREQ_INVAL},
8467 };
8468 
8469 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8470 ufs_get_bref_clk_from_hz(unsigned long freq)
8471 {
8472 	int i;
8473 
8474 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8475 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8476 			return ufs_ref_clk_freqs[i].val;
8477 
8478 	return REF_CLK_FREQ_INVAL;
8479 }
8480 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8481 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8482 {
8483 	unsigned long freq;
8484 
8485 	freq = clk_get_rate(refclk);
8486 
8487 	hba->dev_ref_clk_freq =
8488 		ufs_get_bref_clk_from_hz(freq);
8489 
8490 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8491 		dev_err(hba->dev,
8492 		"invalid ref_clk setting = %ld\n", freq);
8493 }
8494 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8495 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8496 {
8497 	int err;
8498 	u32 ref_clk;
8499 	u32 freq = hba->dev_ref_clk_freq;
8500 
8501 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8502 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8503 
8504 	if (err) {
8505 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8506 			err);
8507 		goto out;
8508 	}
8509 
8510 	if (ref_clk == freq)
8511 		goto out; /* nothing to update */
8512 
8513 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8514 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8515 
8516 	if (err) {
8517 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8518 			ufs_ref_clk_freqs[freq].freq_hz);
8519 		goto out;
8520 	}
8521 
8522 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8523 			ufs_ref_clk_freqs[freq].freq_hz);
8524 
8525 out:
8526 	return err;
8527 }
8528 
ufshcd_device_params_init(struct ufs_hba * hba)8529 static int ufshcd_device_params_init(struct ufs_hba *hba)
8530 {
8531 	bool flag;
8532 	int ret;
8533 
8534 	/* Init UFS geometry descriptor related parameters */
8535 	ret = ufshcd_device_geo_params_init(hba);
8536 	if (ret)
8537 		goto out;
8538 
8539 	/* Check and apply UFS device quirks */
8540 	ret = ufs_get_device_desc(hba);
8541 	if (ret) {
8542 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8543 			__func__, ret);
8544 		goto out;
8545 	}
8546 
8547 	ufshcd_get_ref_clk_gating_wait(hba);
8548 
8549 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8550 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8551 		hba->dev_info.f_power_on_wp_en = flag;
8552 
8553 	/* Probe maximum power mode co-supported by both UFS host and device */
8554 	if (ufshcd_get_max_pwr_mode(hba))
8555 		dev_err(hba->dev,
8556 			"%s: Failed getting max supported power mode\n",
8557 			__func__);
8558 out:
8559 	return ret;
8560 }
8561 
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8562 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8563 {
8564 	int err;
8565 	struct ufs_query_req *request = NULL;
8566 	struct ufs_query_res *response = NULL;
8567 	struct ufs_dev_info *dev_info = &hba->dev_info;
8568 	struct utp_upiu_query_v4_0 *upiu_data;
8569 
8570 	if (dev_info->wspecversion < 0x400)
8571 		return;
8572 
8573 	ufshcd_hold(hba);
8574 
8575 	mutex_lock(&hba->dev_cmd.lock);
8576 
8577 	ufshcd_init_query(hba, &request, &response,
8578 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8579 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8580 
8581 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8582 
8583 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8584 
8585 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8586 
8587 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8588 
8589 	if (err)
8590 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8591 			__func__, err);
8592 
8593 	mutex_unlock(&hba->dev_cmd.lock);
8594 	ufshcd_release(hba);
8595 }
8596 
8597 /**
8598  * ufshcd_add_lus - probe and add UFS logical units
8599  * @hba: per-adapter instance
8600  *
8601  * Return: 0 upon success; < 0 upon failure.
8602  */
ufshcd_add_lus(struct ufs_hba * hba)8603 static int ufshcd_add_lus(struct ufs_hba *hba)
8604 {
8605 	int ret;
8606 
8607 	/* Add required well known logical units to scsi mid layer */
8608 	ret = ufshcd_scsi_add_wlus(hba);
8609 	if (ret)
8610 		goto out;
8611 
8612 	/* Initialize devfreq after UFS device is detected */
8613 	if (ufshcd_is_clkscaling_supported(hba)) {
8614 		memcpy(&hba->clk_scaling.saved_pwr_info,
8615 			&hba->pwr_info,
8616 			sizeof(struct ufs_pa_layer_attr));
8617 		hba->clk_scaling.is_allowed = true;
8618 
8619 		ret = ufshcd_devfreq_init(hba);
8620 		if (ret)
8621 			goto out;
8622 
8623 		hba->clk_scaling.is_enabled = true;
8624 		ufshcd_init_clk_scaling_sysfs(hba);
8625 	}
8626 
8627 	ufs_bsg_probe(hba);
8628 	scsi_scan_host(hba->host);
8629 
8630 out:
8631 	return ret;
8632 }
8633 
8634 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8635 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8636 {
8637 	size_t ucdl_size, utrdl_size;
8638 
8639 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8640 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8641 			   hba->ucdl_dma_addr);
8642 
8643 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8644 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8645 			   hba->utrdl_dma_addr);
8646 
8647 	devm_kfree(hba->dev, hba->lrb);
8648 }
8649 
ufshcd_alloc_mcq(struct ufs_hba * hba)8650 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8651 {
8652 	int ret;
8653 	int old_nutrs = hba->nutrs;
8654 
8655 	ret = ufshcd_mcq_decide_queue_depth(hba);
8656 	if (ret < 0)
8657 		return ret;
8658 
8659 	hba->nutrs = ret;
8660 	ret = ufshcd_mcq_init(hba);
8661 	if (ret)
8662 		goto err;
8663 
8664 	/*
8665 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8666 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8667 	 */
8668 	if (hba->nutrs != old_nutrs) {
8669 		ufshcd_release_sdb_queue(hba, old_nutrs);
8670 		ret = ufshcd_memory_alloc(hba);
8671 		if (ret)
8672 			goto err;
8673 		ufshcd_host_memory_configure(hba);
8674 	}
8675 
8676 	ret = ufshcd_mcq_memory_alloc(hba);
8677 	if (ret)
8678 		goto err;
8679 
8680 	return 0;
8681 err:
8682 	hba->nutrs = old_nutrs;
8683 	return ret;
8684 }
8685 
ufshcd_config_mcq(struct ufs_hba * hba)8686 static void ufshcd_config_mcq(struct ufs_hba *hba)
8687 {
8688 	int ret;
8689 	u32 intrs;
8690 
8691 	ret = ufshcd_mcq_vops_config_esi(hba);
8692 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8693 
8694 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8695 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8696 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8697 	ufshcd_enable_intr(hba, intrs);
8698 	ufshcd_mcq_make_queues_operational(hba);
8699 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8700 
8701 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8702 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8703 
8704 	/* Select MCQ mode */
8705 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8706 		      REG_UFS_MEM_CFG);
8707 	hba->mcq_enabled = true;
8708 
8709 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8710 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8711 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8712 		 hba->nutrs);
8713 }
8714 
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8715 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8716 {
8717 	int ret;
8718 	struct Scsi_Host *host = hba->host;
8719 
8720 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8721 
8722 	ret = ufshcd_link_startup(hba);
8723 	if (ret)
8724 		return ret;
8725 
8726 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8727 		return ret;
8728 
8729 	/* Debug counters initialization */
8730 	ufshcd_clear_dbg_ufs_stats(hba);
8731 
8732 	/* UniPro link is active now */
8733 	ufshcd_set_link_active(hba);
8734 
8735 	/* Reconfigure MCQ upon reset */
8736 	if (is_mcq_enabled(hba) && !init_dev_params)
8737 		ufshcd_config_mcq(hba);
8738 
8739 	/* Verify device initialization by sending NOP OUT UPIU */
8740 	ret = ufshcd_verify_dev_init(hba);
8741 	if (ret)
8742 		return ret;
8743 
8744 	/* Initiate UFS initialization, and waiting until completion */
8745 	ret = ufshcd_complete_dev_init(hba);
8746 	if (ret)
8747 		return ret;
8748 
8749 	/*
8750 	 * Initialize UFS device parameters used by driver, these
8751 	 * parameters are associated with UFS descriptors.
8752 	 */
8753 	if (init_dev_params) {
8754 		ret = ufshcd_device_params_init(hba);
8755 		if (ret)
8756 			return ret;
8757 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8758 			ret = ufshcd_alloc_mcq(hba);
8759 			if (!ret) {
8760 				ufshcd_config_mcq(hba);
8761 			} else {
8762 				/* Continue with SDB mode */
8763 				use_mcq_mode = false;
8764 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8765 					 ret);
8766 			}
8767 			ret = scsi_add_host(host, hba->dev);
8768 			if (ret) {
8769 				dev_err(hba->dev, "scsi_add_host failed\n");
8770 				return ret;
8771 			}
8772 			hba->scsi_host_added = true;
8773 		} else if (is_mcq_supported(hba)) {
8774 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8775 			ufshcd_config_mcq(hba);
8776 		}
8777 	}
8778 
8779 	ufshcd_tune_unipro_params(hba);
8780 
8781 	/* UFS device is also active now */
8782 	ufshcd_set_ufs_dev_active(hba);
8783 	ufshcd_force_reset_auto_bkops(hba);
8784 
8785 	ufshcd_set_timestamp_attr(hba);
8786 
8787 	/* Gear up to HS gear if supported */
8788 	if (hba->max_pwr_info.is_valid) {
8789 		/*
8790 		 * Set the right value to bRefClkFreq before attempting to
8791 		 * switch to HS gears.
8792 		 */
8793 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8794 			ufshcd_set_dev_ref_clk(hba);
8795 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8796 		if (ret) {
8797 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8798 					__func__, ret);
8799 			return ret;
8800 		}
8801 	}
8802 
8803 	return 0;
8804 }
8805 
8806 /**
8807  * ufshcd_probe_hba - probe hba to detect device and initialize it
8808  * @hba: per-adapter instance
8809  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8810  *
8811  * Execute link-startup and verify device initialization
8812  *
8813  * Return: 0 upon success; < 0 upon failure.
8814  */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8815 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8816 {
8817 	ktime_t start = ktime_get();
8818 	unsigned long flags;
8819 	int ret;
8820 
8821 	ret = ufshcd_device_init(hba, init_dev_params);
8822 	if (ret)
8823 		goto out;
8824 
8825 	if (!hba->pm_op_in_progress &&
8826 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8827 		/* Reset the device and controller before doing reinit */
8828 		ufshcd_device_reset(hba);
8829 		ufs_put_device_desc(hba);
8830 		ufshcd_hba_stop(hba);
8831 		ufshcd_vops_reinit_notify(hba);
8832 		ret = ufshcd_hba_enable(hba);
8833 		if (ret) {
8834 			dev_err(hba->dev, "Host controller enable failed\n");
8835 			ufshcd_print_evt_hist(hba);
8836 			ufshcd_print_host_state(hba);
8837 			goto out;
8838 		}
8839 
8840 		/* Reinit the device */
8841 		ret = ufshcd_device_init(hba, init_dev_params);
8842 		if (ret)
8843 			goto out;
8844 	}
8845 
8846 	ufshcd_print_pwr_info(hba);
8847 
8848 	/*
8849 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8850 	 * and for removable UFS card as well, hence always set the parameter.
8851 	 * Note: Error handler may issue the device reset hence resetting
8852 	 * bActiveICCLevel as well so it is always safe to set this here.
8853 	 */
8854 	ufshcd_set_active_icc_lvl(hba);
8855 
8856 	/* Enable UFS Write Booster if supported */
8857 	ufshcd_configure_wb(hba);
8858 
8859 	if (hba->ee_usr_mask)
8860 		ufshcd_write_ee_control(hba);
8861 	/* Enable Auto-Hibernate if configured */
8862 	ufshcd_auto_hibern8_enable(hba);
8863 
8864 	trace_android_rvh_ufs_complete_init(hba);
8865 out:
8866 	spin_lock_irqsave(hba->host->host_lock, flags);
8867 	if (ret)
8868 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8869 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8870 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8871 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8872 
8873 	trace_ufshcd_init(dev_name(hba->dev), ret,
8874 		ktime_to_us(ktime_sub(ktime_get(), start)),
8875 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8876 	return ret;
8877 }
8878 
8879 /**
8880  * ufshcd_async_scan - asynchronous execution for probing hba
8881  * @data: data pointer to pass to this function
8882  * @cookie: cookie data
8883  */
ufshcd_async_scan(void * data,async_cookie_t cookie)8884 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8885 {
8886 	struct ufs_hba *hba = (struct ufs_hba *)data;
8887 	int ret;
8888 
8889 	down(&hba->host_sem);
8890 	/* Initialize hba, detect and initialize UFS device */
8891 	ret = ufshcd_probe_hba(hba, true);
8892 	up(&hba->host_sem);
8893 	if (ret)
8894 		goto out;
8895 
8896 	/* Probe and add UFS logical units  */
8897 	ret = ufshcd_add_lus(hba);
8898 
8899 out:
8900 	pm_runtime_put_sync(hba->dev);
8901 
8902 	if (ret)
8903 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8904 }
8905 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8906 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8907 {
8908 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8909 
8910 	if (!hba->system_suspending) {
8911 		/* Activate the error handler in the SCSI core. */
8912 		return SCSI_EH_NOT_HANDLED;
8913 	}
8914 
8915 	/*
8916 	 * If we get here we know that no TMFs are outstanding and also that
8917 	 * the only pending command is a START STOP UNIT command. Handle the
8918 	 * timeout of that command directly to prevent a deadlock between
8919 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8920 	 */
8921 	ufshcd_link_recovery(hba);
8922 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8923 		 __func__, hba->outstanding_tasks);
8924 
8925 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8926 }
8927 
8928 static const struct attribute_group *ufshcd_driver_groups[] = {
8929 	&ufs_sysfs_unit_descriptor_group,
8930 	&ufs_sysfs_lun_attributes_group,
8931 	NULL,
8932 };
8933 
8934 static struct ufs_hba_variant_params ufs_hba_vps = {
8935 	.hba_enable_delay_us		= 1000,
8936 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8937 	.devfreq_profile.polling_ms	= 100,
8938 	.devfreq_profile.target		= ufshcd_devfreq_target,
8939 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8940 	.ondemand_data.upthreshold	= 70,
8941 	.ondemand_data.downdifferential	= 5,
8942 };
8943 
8944 static const struct scsi_host_template ufshcd_driver_template = {
8945 	.module			= THIS_MODULE,
8946 	.name			= UFSHCD,
8947 	.proc_name		= UFSHCD,
8948 	.map_queues		= ufshcd_map_queues,
8949 	.queuecommand		= ufshcd_queuecommand,
8950 	.mq_poll		= ufshcd_poll,
8951 	.slave_alloc		= ufshcd_slave_alloc,
8952 	.slave_configure	= ufshcd_slave_configure,
8953 	.slave_destroy		= ufshcd_slave_destroy,
8954 	.change_queue_depth	= ufshcd_change_queue_depth,
8955 	.eh_abort_handler	= ufshcd_abort,
8956 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8957 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8958 	.eh_timed_out		= ufshcd_eh_timed_out,
8959 	.this_id		= -1,
8960 	.sg_tablesize		= SG_ALL,
8961 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8962 	.can_queue		= UFSHCD_CAN_QUEUE,
8963 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8964 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8965 	.max_host_blocked	= 1,
8966 	.track_queue_depth	= 1,
8967 	.skip_settle_delay	= 1,
8968 	.sdev_groups		= ufshcd_driver_groups,
8969 };
8970 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8971 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8972 				   int ua)
8973 {
8974 	int ret;
8975 
8976 	if (!vreg)
8977 		return 0;
8978 
8979 	/*
8980 	 * "set_load" operation shall be required on those regulators
8981 	 * which specifically configured current limitation. Otherwise
8982 	 * zero max_uA may cause unexpected behavior when regulator is
8983 	 * enabled or set as high power mode.
8984 	 */
8985 	if (!vreg->max_uA)
8986 		return 0;
8987 
8988 	ret = regulator_set_load(vreg->reg, ua);
8989 	if (ret < 0) {
8990 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8991 				__func__, vreg->name, ua, ret);
8992 	}
8993 
8994 	return ret;
8995 }
8996 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8997 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8998 					 struct ufs_vreg *vreg)
8999 {
9000 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9001 }
9002 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9003 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9004 					 struct ufs_vreg *vreg)
9005 {
9006 	if (!vreg)
9007 		return 0;
9008 
9009 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9010 }
9011 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9012 static int ufshcd_config_vreg(struct device *dev,
9013 		struct ufs_vreg *vreg, bool on)
9014 {
9015 	if (regulator_count_voltages(vreg->reg) <= 0)
9016 		return 0;
9017 
9018 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9019 }
9020 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9021 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9022 {
9023 	int ret = 0;
9024 
9025 	if (!vreg || vreg->enabled)
9026 		goto out;
9027 
9028 	ret = ufshcd_config_vreg(dev, vreg, true);
9029 	if (!ret)
9030 		ret = regulator_enable(vreg->reg);
9031 
9032 	if (!ret)
9033 		vreg->enabled = true;
9034 	else
9035 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9036 				__func__, vreg->name, ret);
9037 out:
9038 	return ret;
9039 }
9040 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9041 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9042 {
9043 	int ret = 0;
9044 
9045 	if (!vreg || !vreg->enabled || vreg->always_on)
9046 		goto out;
9047 
9048 	ret = regulator_disable(vreg->reg);
9049 
9050 	if (!ret) {
9051 		/* ignore errors on applying disable config */
9052 		ufshcd_config_vreg(dev, vreg, false);
9053 		vreg->enabled = false;
9054 	} else {
9055 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9056 				__func__, vreg->name, ret);
9057 	}
9058 out:
9059 	return ret;
9060 }
9061 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9062 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9063 {
9064 	int ret = 0;
9065 	struct device *dev = hba->dev;
9066 	struct ufs_vreg_info *info = &hba->vreg_info;
9067 
9068 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9069 	if (ret)
9070 		goto out;
9071 
9072 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9073 	if (ret)
9074 		goto out;
9075 
9076 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9077 
9078 out:
9079 	if (ret) {
9080 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9081 		ufshcd_toggle_vreg(dev, info->vccq, false);
9082 		ufshcd_toggle_vreg(dev, info->vcc, false);
9083 	}
9084 	return ret;
9085 }
9086 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9087 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9088 {
9089 	struct ufs_vreg_info *info = &hba->vreg_info;
9090 
9091 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9092 }
9093 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9094 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9095 {
9096 	int ret = 0;
9097 
9098 	if (!vreg)
9099 		goto out;
9100 
9101 	vreg->reg = devm_regulator_get(dev, vreg->name);
9102 	if (IS_ERR(vreg->reg)) {
9103 		ret = PTR_ERR(vreg->reg);
9104 		dev_err(dev, "%s: %s get failed, err=%d\n",
9105 				__func__, vreg->name, ret);
9106 	}
9107 out:
9108 	return ret;
9109 }
9110 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9111 
ufshcd_init_vreg(struct ufs_hba * hba)9112 static int ufshcd_init_vreg(struct ufs_hba *hba)
9113 {
9114 	int ret = 0;
9115 	struct device *dev = hba->dev;
9116 	struct ufs_vreg_info *info = &hba->vreg_info;
9117 
9118 	ret = ufshcd_get_vreg(dev, info->vcc);
9119 	if (ret)
9120 		goto out;
9121 
9122 	ret = ufshcd_get_vreg(dev, info->vccq);
9123 	if (!ret)
9124 		ret = ufshcd_get_vreg(dev, info->vccq2);
9125 out:
9126 	return ret;
9127 }
9128 
ufshcd_init_hba_vreg(struct ufs_hba * hba)9129 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9130 {
9131 	struct ufs_vreg_info *info = &hba->vreg_info;
9132 
9133 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9134 }
9135 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9136 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9137 {
9138 	int ret = 0;
9139 	struct ufs_clk_info *clki;
9140 	struct list_head *head = &hba->clk_list_head;
9141 	unsigned long flags;
9142 	ktime_t start = ktime_get();
9143 	bool clk_state_changed = false;
9144 
9145 	if (list_empty(head))
9146 		goto out;
9147 
9148 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9149 	if (ret)
9150 		return ret;
9151 
9152 	list_for_each_entry(clki, head, list) {
9153 		if (!IS_ERR_OR_NULL(clki->clk)) {
9154 			/*
9155 			 * Don't disable clocks which are needed
9156 			 * to keep the link active.
9157 			 */
9158 			if (ufshcd_is_link_active(hba) &&
9159 			    clki->keep_link_active)
9160 				continue;
9161 
9162 			clk_state_changed = on ^ clki->enabled;
9163 			if (on && !clki->enabled) {
9164 				ret = clk_prepare_enable(clki->clk);
9165 				if (ret) {
9166 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9167 						__func__, clki->name, ret);
9168 					goto out;
9169 				}
9170 			} else if (!on && clki->enabled) {
9171 				clk_disable_unprepare(clki->clk);
9172 			}
9173 			clki->enabled = on;
9174 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9175 					clki->name, on ? "en" : "dis");
9176 		}
9177 	}
9178 
9179 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9180 	if (ret)
9181 		return ret;
9182 
9183 out:
9184 	if (ret) {
9185 		list_for_each_entry(clki, head, list) {
9186 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9187 				clk_disable_unprepare(clki->clk);
9188 		}
9189 	} else if (!ret && on) {
9190 		spin_lock_irqsave(hba->host->host_lock, flags);
9191 		hba->clk_gating.state = CLKS_ON;
9192 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9193 					hba->clk_gating.state);
9194 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9195 	}
9196 
9197 	if (clk_state_changed)
9198 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9199 			(on ? "on" : "off"),
9200 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9201 	return ret;
9202 }
9203 
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9204 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9205 {
9206 	u32 freq;
9207 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9208 
9209 	if (ret) {
9210 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9211 		return REF_CLK_FREQ_INVAL;
9212 	}
9213 
9214 	return ufs_get_bref_clk_from_hz(freq);
9215 }
9216 
ufshcd_init_clocks(struct ufs_hba * hba)9217 static int ufshcd_init_clocks(struct ufs_hba *hba)
9218 {
9219 	int ret = 0;
9220 	struct ufs_clk_info *clki;
9221 	struct device *dev = hba->dev;
9222 	struct list_head *head = &hba->clk_list_head;
9223 
9224 	if (list_empty(head))
9225 		goto out;
9226 
9227 	list_for_each_entry(clki, head, list) {
9228 		if (!clki->name)
9229 			continue;
9230 
9231 		clki->clk = devm_clk_get(dev, clki->name);
9232 		if (IS_ERR(clki->clk)) {
9233 			ret = PTR_ERR(clki->clk);
9234 			dev_err(dev, "%s: %s clk get failed, %d\n",
9235 					__func__, clki->name, ret);
9236 			goto out;
9237 		}
9238 
9239 		/*
9240 		 * Parse device ref clk freq as per device tree "ref_clk".
9241 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9242 		 * in ufshcd_alloc_host().
9243 		 */
9244 		if (!strcmp(clki->name, "ref_clk"))
9245 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9246 
9247 		if (clki->max_freq) {
9248 			ret = clk_set_rate(clki->clk, clki->max_freq);
9249 			if (ret) {
9250 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9251 					__func__, clki->name,
9252 					clki->max_freq, ret);
9253 				goto out;
9254 			}
9255 			clki->curr_freq = clki->max_freq;
9256 		}
9257 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9258 				clki->name, clk_get_rate(clki->clk));
9259 	}
9260 out:
9261 	return ret;
9262 }
9263 
ufshcd_variant_hba_init(struct ufs_hba * hba)9264 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9265 {
9266 	int err = 0;
9267 
9268 	if (!hba->vops)
9269 		goto out;
9270 
9271 	err = ufshcd_vops_init(hba);
9272 	if (err)
9273 		dev_err_probe(hba->dev, err,
9274 			      "%s: variant %s init failed with err %d\n",
9275 			      __func__, ufshcd_get_var_name(hba), err);
9276 out:
9277 	return err;
9278 }
9279 
ufshcd_variant_hba_exit(struct ufs_hba * hba)9280 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9281 {
9282 	if (!hba->vops)
9283 		return;
9284 
9285 	ufshcd_vops_exit(hba);
9286 }
9287 
ufshcd_hba_init(struct ufs_hba * hba)9288 static int ufshcd_hba_init(struct ufs_hba *hba)
9289 {
9290 	int err;
9291 
9292 	/*
9293 	 * Handle host controller power separately from the UFS device power
9294 	 * rails as it will help controlling the UFS host controller power
9295 	 * collapse easily which is different than UFS device power collapse.
9296 	 * Also, enable the host controller power before we go ahead with rest
9297 	 * of the initialization here.
9298 	 */
9299 	err = ufshcd_init_hba_vreg(hba);
9300 	if (err)
9301 		goto out;
9302 
9303 	err = ufshcd_setup_hba_vreg(hba, true);
9304 	if (err)
9305 		goto out;
9306 
9307 	err = ufshcd_init_clocks(hba);
9308 	if (err)
9309 		goto out_disable_hba_vreg;
9310 
9311 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9312 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9313 
9314 	err = ufshcd_setup_clocks(hba, true);
9315 	if (err)
9316 		goto out_disable_hba_vreg;
9317 
9318 	err = ufshcd_init_vreg(hba);
9319 	if (err)
9320 		goto out_disable_clks;
9321 
9322 	err = ufshcd_setup_vreg(hba, true);
9323 	if (err)
9324 		goto out_disable_clks;
9325 
9326 	err = ufshcd_variant_hba_init(hba);
9327 	if (err)
9328 		goto out_disable_vreg;
9329 
9330 	ufs_debugfs_hba_init(hba);
9331 
9332 	hba->is_powered = true;
9333 	goto out;
9334 
9335 out_disable_vreg:
9336 	ufshcd_setup_vreg(hba, false);
9337 out_disable_clks:
9338 	ufshcd_setup_clocks(hba, false);
9339 out_disable_hba_vreg:
9340 	ufshcd_setup_hba_vreg(hba, false);
9341 out:
9342 	return err;
9343 }
9344 
ufshcd_hba_exit(struct ufs_hba * hba)9345 static void ufshcd_hba_exit(struct ufs_hba *hba)
9346 {
9347 	if (hba->is_powered) {
9348 		ufshcd_exit_clk_scaling(hba);
9349 		ufshcd_exit_clk_gating(hba);
9350 		if (hba->eh_wq)
9351 			destroy_workqueue(hba->eh_wq);
9352 		ufs_debugfs_hba_exit(hba);
9353 		ufshcd_variant_hba_exit(hba);
9354 		ufshcd_setup_vreg(hba, false);
9355 		ufshcd_setup_clocks(hba, false);
9356 		ufshcd_setup_hba_vreg(hba, false);
9357 		hba->is_powered = false;
9358 		ufs_put_device_desc(hba);
9359 	}
9360 }
9361 
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9362 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9363 				     enum ufs_dev_pwr_mode pwr_mode,
9364 				     struct scsi_sense_hdr *sshdr)
9365 {
9366 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9367 	const struct scsi_exec_args args = {
9368 		.sshdr = sshdr,
9369 		.req_flags = BLK_MQ_REQ_PM,
9370 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9371 	};
9372 
9373 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9374 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9375 			&args);
9376 }
9377 
9378 /**
9379  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9380  *			     power mode
9381  * @hba: per adapter instance
9382  * @pwr_mode: device power mode to set
9383  *
9384  * Return: 0 if requested power mode is set successfully;
9385  *         < 0 if failed to set the requested power mode.
9386  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9387 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9388 				     enum ufs_dev_pwr_mode pwr_mode)
9389 {
9390 	struct scsi_sense_hdr sshdr;
9391 	struct scsi_device *sdp;
9392 	unsigned long flags;
9393 	int ret, retries;
9394 
9395 	spin_lock_irqsave(hba->host->host_lock, flags);
9396 	sdp = hba->ufs_device_wlun;
9397 	if (sdp && scsi_device_online(sdp))
9398 		ret = scsi_device_get(sdp);
9399 	else
9400 		ret = -ENODEV;
9401 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9402 
9403 	if (ret)
9404 		return ret;
9405 
9406 	/*
9407 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9408 	 * handling, which would wait for host to be resumed. Since we know
9409 	 * we are functional while we are here, skip host resume in error
9410 	 * handling context.
9411 	 */
9412 	hba->host->eh_noresume = 1;
9413 
9414 	/*
9415 	 * Current function would be generally called from the power management
9416 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9417 	 * already suspended childs.
9418 	 */
9419 	for (retries = 3; retries > 0; --retries) {
9420 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9421 		/*
9422 		 * scsi_execute() only returns a negative value if the request
9423 		 * queue is dying.
9424 		 */
9425 		if (ret <= 0)
9426 			break;
9427 	}
9428 	if (ret) {
9429 		sdev_printk(KERN_WARNING, sdp,
9430 			    "START_STOP failed for power mode: %d, result %x\n",
9431 			    pwr_mode, ret);
9432 		if (ret > 0) {
9433 			if (scsi_sense_valid(&sshdr))
9434 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9435 			ret = -EIO;
9436 		}
9437 	} else {
9438 		hba->curr_dev_pwr_mode = pwr_mode;
9439 	}
9440 
9441 	scsi_device_put(sdp);
9442 	hba->host->eh_noresume = 0;
9443 	return ret;
9444 }
9445 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9446 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9447 					enum uic_link_state req_link_state,
9448 					bool check_for_bkops)
9449 {
9450 	int ret = 0;
9451 
9452 	if (req_link_state == hba->uic_link_state)
9453 		return 0;
9454 
9455 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9456 		ret = ufshcd_uic_hibern8_enter(hba);
9457 		if (!ret) {
9458 			ufshcd_set_link_hibern8(hba);
9459 		} else {
9460 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9461 					__func__, ret);
9462 			goto out;
9463 		}
9464 	}
9465 	/*
9466 	 * If autobkops is enabled, link can't be turned off because
9467 	 * turning off the link would also turn off the device, except in the
9468 	 * case of DeepSleep where the device is expected to remain powered.
9469 	 */
9470 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9471 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9472 		/*
9473 		 * Let's make sure that link is in low power mode, we are doing
9474 		 * this currently by putting the link in Hibern8. Otherway to
9475 		 * put the link in low power mode is to send the DME end point
9476 		 * to device and then send the DME reset command to local
9477 		 * unipro. But putting the link in hibern8 is much faster.
9478 		 *
9479 		 * Note also that putting the link in Hibern8 is a requirement
9480 		 * for entering DeepSleep.
9481 		 */
9482 		ret = ufshcd_uic_hibern8_enter(hba);
9483 		if (ret) {
9484 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9485 					__func__, ret);
9486 			goto out;
9487 		}
9488 		/*
9489 		 * Change controller state to "reset state" which
9490 		 * should also put the link in off/reset state
9491 		 */
9492 		ufshcd_hba_stop(hba);
9493 		/*
9494 		 * TODO: Check if we need any delay to make sure that
9495 		 * controller is reset
9496 		 */
9497 		ufshcd_set_link_off(hba);
9498 	}
9499 
9500 out:
9501 	return ret;
9502 }
9503 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9504 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9505 {
9506 	bool vcc_off = false;
9507 
9508 	/*
9509 	 * It seems some UFS devices may keep drawing more than sleep current
9510 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9511 	 * To avoid this situation, add 2ms delay before putting these UFS
9512 	 * rails in LPM mode.
9513 	 */
9514 	if (!ufshcd_is_link_active(hba) &&
9515 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9516 		usleep_range(2000, 2100);
9517 
9518 	/*
9519 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9520 	 * power.
9521 	 *
9522 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9523 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9524 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9525 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9526 	 *
9527 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9528 	 * in low power state which would save some power.
9529 	 *
9530 	 * If Write Booster is enabled and the device needs to flush the WB
9531 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9532 	 */
9533 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9534 	    !hba->dev_info.is_lu_power_on_wp) {
9535 		ufshcd_setup_vreg(hba, false);
9536 		vcc_off = true;
9537 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9538 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9539 		vcc_off = true;
9540 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9541 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9542 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9543 		}
9544 	}
9545 
9546 	/*
9547 	 * Some UFS devices require delay after VCC power rail is turned-off.
9548 	 */
9549 	if (vcc_off && hba->vreg_info.vcc &&
9550 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9551 		usleep_range(5000, 5100);
9552 }
9553 
9554 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9555 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9556 {
9557 	int ret = 0;
9558 
9559 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9560 	    !hba->dev_info.is_lu_power_on_wp) {
9561 		ret = ufshcd_setup_vreg(hba, true);
9562 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9563 		if (!ufshcd_is_link_active(hba)) {
9564 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9565 			if (ret)
9566 				goto vcc_disable;
9567 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9568 			if (ret)
9569 				goto vccq_lpm;
9570 		}
9571 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9572 	}
9573 	goto out;
9574 
9575 vccq_lpm:
9576 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9577 vcc_disable:
9578 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9579 out:
9580 	return ret;
9581 }
9582 #endif /* CONFIG_PM */
9583 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9584 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9585 {
9586 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9587 		ufshcd_setup_hba_vreg(hba, false);
9588 }
9589 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9590 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9591 {
9592 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9593 		ufshcd_setup_hba_vreg(hba, true);
9594 }
9595 
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9596 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9597 {
9598 	int ret = 0;
9599 	bool check_for_bkops;
9600 	enum ufs_pm_level pm_lvl;
9601 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9602 	enum uic_link_state req_link_state;
9603 
9604 	hba->pm_op_in_progress = true;
9605 	if (pm_op != UFS_SHUTDOWN_PM) {
9606 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9607 			 hba->rpm_lvl : hba->spm_lvl;
9608 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9609 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9610 	} else {
9611 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9612 		req_link_state = UIC_LINK_OFF_STATE;
9613 	}
9614 
9615 	/*
9616 	 * If we can't transition into any of the low power modes
9617 	 * just gate the clocks.
9618 	 */
9619 	ufshcd_hold(hba);
9620 	hba->clk_gating.is_suspended = true;
9621 
9622 	if (ufshcd_is_clkscaling_supported(hba))
9623 		ufshcd_clk_scaling_suspend(hba, true);
9624 
9625 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9626 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9627 		goto vops_suspend;
9628 	}
9629 
9630 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9631 	    (req_link_state == hba->uic_link_state))
9632 		goto enable_scaling;
9633 
9634 	/* UFS device & link must be active before we enter in this function */
9635 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9636 		/*  Wait err handler finish or trigger err recovery */
9637 		if (!ufshcd_eh_in_progress(hba))
9638 			ufshcd_force_error_recovery(hba);
9639 		ret = -EBUSY;
9640 		goto enable_scaling;
9641 	}
9642 
9643 	if (pm_op == UFS_RUNTIME_PM) {
9644 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9645 			/*
9646 			 * The device is idle with no requests in the queue,
9647 			 * allow background operations if bkops status shows
9648 			 * that performance might be impacted.
9649 			 */
9650 			ret = ufshcd_urgent_bkops(hba);
9651 			if (ret) {
9652 				/*
9653 				 * If return err in suspend flow, IO will hang.
9654 				 * Trigger error handler and break suspend for
9655 				 * error recovery.
9656 				 */
9657 				ufshcd_force_error_recovery(hba);
9658 				ret = -EBUSY;
9659 				goto enable_scaling;
9660 			}
9661 		} else {
9662 			/* make sure that auto bkops is disabled */
9663 			ufshcd_disable_auto_bkops(hba);
9664 		}
9665 		/*
9666 		 * If device needs to do BKOP or WB buffer flush during
9667 		 * Hibern8, keep device power mode as "active power mode"
9668 		 * and VCC supply.
9669 		 */
9670 		hba->dev_info.b_rpm_dev_flush_capable =
9671 			hba->auto_bkops_enabled ||
9672 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9673 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9674 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9675 			ufshcd_wb_need_flush(hba));
9676 	}
9677 
9678 	flush_work(&hba->eeh_work);
9679 
9680 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9681 	if (ret)
9682 		goto enable_scaling;
9683 
9684 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9685 		if (pm_op != UFS_RUNTIME_PM)
9686 			/* ensure that bkops is disabled */
9687 			ufshcd_disable_auto_bkops(hba);
9688 
9689 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9690 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9691 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9692 				/*
9693 				 * If return err in suspend flow, IO will hang.
9694 				 * Trigger error handler and break suspend for
9695 				 * error recovery.
9696 				 */
9697 				ufshcd_force_error_recovery(hba);
9698 				ret = -EBUSY;
9699 			}
9700 			if (ret)
9701 				goto enable_scaling;
9702 		}
9703 	}
9704 
9705 	/*
9706 	 * In the case of DeepSleep, the device is expected to remain powered
9707 	 * with the link off, so do not check for bkops.
9708 	 */
9709 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9710 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9711 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9712 		/*
9713 		 * If return err in suspend flow, IO will hang.
9714 		 * Trigger error handler and break suspend for
9715 		 * error recovery.
9716 		 */
9717 		ufshcd_force_error_recovery(hba);
9718 		ret = -EBUSY;
9719 	}
9720 	if (ret)
9721 		goto set_dev_active;
9722 
9723 vops_suspend:
9724 	/*
9725 	 * Call vendor specific suspend callback. As these callbacks may access
9726 	 * vendor specific host controller register space call them before the
9727 	 * host clocks are ON.
9728 	 */
9729 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9730 	if (ret)
9731 		goto set_link_active;
9732 	goto out;
9733 
9734 set_link_active:
9735 	/*
9736 	 * Device hardware reset is required to exit DeepSleep. Also, for
9737 	 * DeepSleep, the link is off so host reset and restore will be done
9738 	 * further below.
9739 	 */
9740 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9741 		ufshcd_device_reset(hba);
9742 		WARN_ON(!ufshcd_is_link_off(hba));
9743 	}
9744 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9745 		ufshcd_set_link_active(hba);
9746 	else if (ufshcd_is_link_off(hba))
9747 		ufshcd_host_reset_and_restore(hba);
9748 set_dev_active:
9749 	/* Can also get here needing to exit DeepSleep */
9750 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9751 		ufshcd_device_reset(hba);
9752 		ufshcd_host_reset_and_restore(hba);
9753 	}
9754 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9755 		ufshcd_disable_auto_bkops(hba);
9756 enable_scaling:
9757 	if (ufshcd_is_clkscaling_supported(hba))
9758 		ufshcd_clk_scaling_suspend(hba, false);
9759 
9760 	hba->dev_info.b_rpm_dev_flush_capable = false;
9761 out:
9762 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9763 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9764 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9765 	}
9766 
9767 	if (ret) {
9768 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9769 		hba->clk_gating.is_suspended = false;
9770 		ufshcd_release(hba);
9771 	}
9772 	hba->pm_op_in_progress = false;
9773 	return ret;
9774 }
9775 
9776 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9777 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9778 {
9779 	int ret;
9780 	enum uic_link_state old_link_state = hba->uic_link_state;
9781 
9782 	hba->pm_op_in_progress = true;
9783 
9784 	/*
9785 	 * Call vendor specific resume callback. As these callbacks may access
9786 	 * vendor specific host controller register space call them when the
9787 	 * host clocks are ON.
9788 	 */
9789 	ret = ufshcd_vops_resume(hba, pm_op);
9790 	if (ret)
9791 		goto out;
9792 
9793 	/* For DeepSleep, the only supported option is to have the link off */
9794 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9795 
9796 	if (ufshcd_is_link_hibern8(hba)) {
9797 		ret = ufshcd_uic_hibern8_exit(hba);
9798 		if (!ret) {
9799 			ufshcd_set_link_active(hba);
9800 		} else {
9801 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9802 					__func__, ret);
9803 			goto vendor_suspend;
9804 		}
9805 	} else if (ufshcd_is_link_off(hba)) {
9806 		/*
9807 		 * A full initialization of the host and the device is
9808 		 * required since the link was put to off during suspend.
9809 		 * Note, in the case of DeepSleep, the device will exit
9810 		 * DeepSleep due to device reset.
9811 		 */
9812 		ret = ufshcd_reset_and_restore(hba);
9813 		/*
9814 		 * ufshcd_reset_and_restore() should have already
9815 		 * set the link state as active
9816 		 */
9817 		if (ret || !ufshcd_is_link_active(hba))
9818 			goto vendor_suspend;
9819 	}
9820 
9821 	if (!ufshcd_is_ufs_dev_active(hba)) {
9822 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9823 		if (ret)
9824 			goto set_old_link_state;
9825 		ufshcd_set_timestamp_attr(hba);
9826 	}
9827 
9828 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9829 		ufshcd_enable_auto_bkops(hba);
9830 	else
9831 		/*
9832 		 * If BKOPs operations are urgently needed at this moment then
9833 		 * keep auto-bkops enabled or else disable it.
9834 		 */
9835 		ufshcd_urgent_bkops(hba);
9836 
9837 	if (hba->ee_usr_mask)
9838 		ufshcd_write_ee_control(hba);
9839 
9840 	if (ufshcd_is_clkscaling_supported(hba))
9841 		ufshcd_clk_scaling_suspend(hba, false);
9842 
9843 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9844 		hba->dev_info.b_rpm_dev_flush_capable = false;
9845 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9846 	}
9847 
9848 	/* Enable Auto-Hibernate if configured */
9849 	ufshcd_auto_hibern8_enable(hba);
9850 
9851 	goto out;
9852 
9853 set_old_link_state:
9854 	ufshcd_link_state_transition(hba, old_link_state, 0);
9855 vendor_suspend:
9856 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9857 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9858 out:
9859 	if (ret)
9860 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9861 	hba->clk_gating.is_suspended = false;
9862 	ufshcd_release(hba);
9863 	hba->pm_op_in_progress = false;
9864 	return ret;
9865 }
9866 
ufshcd_wl_runtime_suspend(struct device * dev)9867 static int ufshcd_wl_runtime_suspend(struct device *dev)
9868 {
9869 	struct scsi_device *sdev = to_scsi_device(dev);
9870 	struct ufs_hba *hba;
9871 	int ret;
9872 	ktime_t start = ktime_get();
9873 
9874 	hba = shost_priv(sdev->host);
9875 
9876 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9877 	if (ret)
9878 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9879 
9880 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9881 		ktime_to_us(ktime_sub(ktime_get(), start)),
9882 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9883 
9884 	return ret;
9885 }
9886 
ufshcd_wl_runtime_resume(struct device * dev)9887 static int ufshcd_wl_runtime_resume(struct device *dev)
9888 {
9889 	struct scsi_device *sdev = to_scsi_device(dev);
9890 	struct ufs_hba *hba;
9891 	int ret = 0;
9892 	ktime_t start = ktime_get();
9893 
9894 	hba = shost_priv(sdev->host);
9895 
9896 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9897 	if (ret)
9898 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9899 
9900 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9901 		ktime_to_us(ktime_sub(ktime_get(), start)),
9902 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9903 
9904 	return ret;
9905 }
9906 #endif
9907 
9908 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9909 static int ufshcd_wl_suspend(struct device *dev)
9910 {
9911 	struct scsi_device *sdev = to_scsi_device(dev);
9912 	struct ufs_hba *hba;
9913 	int ret = 0;
9914 	ktime_t start = ktime_get();
9915 
9916 	hba = shost_priv(sdev->host);
9917 	down(&hba->host_sem);
9918 	hba->system_suspending = true;
9919 
9920 	if (pm_runtime_suspended(dev))
9921 		goto out;
9922 
9923 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9924 	if (ret) {
9925 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9926 		up(&hba->host_sem);
9927 	}
9928 
9929 out:
9930 	if (!ret)
9931 		hba->is_sys_suspended = true;
9932 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9933 		ktime_to_us(ktime_sub(ktime_get(), start)),
9934 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9935 
9936 	return ret;
9937 }
9938 
ufshcd_wl_resume(struct device * dev)9939 static int ufshcd_wl_resume(struct device *dev)
9940 {
9941 	struct scsi_device *sdev = to_scsi_device(dev);
9942 	struct ufs_hba *hba;
9943 	int ret = 0;
9944 	ktime_t start = ktime_get();
9945 
9946 	hba = shost_priv(sdev->host);
9947 
9948 	if (pm_runtime_suspended(dev))
9949 		goto out;
9950 
9951 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9952 	if (ret)
9953 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9954 out:
9955 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9956 		ktime_to_us(ktime_sub(ktime_get(), start)),
9957 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9958 	if (!ret)
9959 		hba->is_sys_suspended = false;
9960 	hba->system_suspending = false;
9961 	up(&hba->host_sem);
9962 	return ret;
9963 }
9964 #endif
9965 
9966 /**
9967  * ufshcd_suspend - helper function for suspend operations
9968  * @hba: per adapter instance
9969  *
9970  * This function will put disable irqs, turn off clocks
9971  * and set vreg and hba-vreg in lpm mode.
9972  *
9973  * Return: 0 upon success; < 0 upon failure.
9974  */
ufshcd_suspend(struct ufs_hba * hba)9975 static int ufshcd_suspend(struct ufs_hba *hba)
9976 {
9977 	int ret;
9978 
9979 	if (!hba->is_powered)
9980 		return 0;
9981 	/*
9982 	 * Disable the host irq as host controller as there won't be any
9983 	 * host controller transaction expected till resume.
9984 	 */
9985 	ufshcd_disable_irq(hba);
9986 	ret = ufshcd_setup_clocks(hba, false);
9987 	if (ret) {
9988 		ufshcd_enable_irq(hba);
9989 		return ret;
9990 	}
9991 	if (ufshcd_is_clkgating_allowed(hba)) {
9992 		hba->clk_gating.state = CLKS_OFF;
9993 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9994 					hba->clk_gating.state);
9995 	}
9996 
9997 	ufshcd_vreg_set_lpm(hba);
9998 	/* Put the host controller in low power mode if possible */
9999 	ufshcd_hba_vreg_set_lpm(hba);
10000 	return ret;
10001 }
10002 
10003 #ifdef CONFIG_PM
10004 /**
10005  * ufshcd_resume - helper function for resume operations
10006  * @hba: per adapter instance
10007  *
10008  * This function basically turns on the regulators, clocks and
10009  * irqs of the hba.
10010  *
10011  * Return: 0 for success and non-zero for failure.
10012  */
ufshcd_resume(struct ufs_hba * hba)10013 static int ufshcd_resume(struct ufs_hba *hba)
10014 {
10015 	int ret;
10016 
10017 	if (!hba->is_powered)
10018 		return 0;
10019 
10020 	ufshcd_hba_vreg_set_hpm(hba);
10021 	ret = ufshcd_vreg_set_hpm(hba);
10022 	if (ret)
10023 		goto out;
10024 
10025 	/* Make sure clocks are enabled before accessing controller */
10026 	ret = ufshcd_setup_clocks(hba, true);
10027 	if (ret)
10028 		goto disable_vreg;
10029 
10030 	/* enable the host irq as host controller would be active soon */
10031 	ufshcd_enable_irq(hba);
10032 
10033 	goto out;
10034 
10035 disable_vreg:
10036 	ufshcd_vreg_set_lpm(hba);
10037 out:
10038 	if (ret)
10039 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10040 	return ret;
10041 }
10042 #endif /* CONFIG_PM */
10043 
10044 #ifdef CONFIG_PM_SLEEP
10045 /**
10046  * ufshcd_system_suspend - system suspend callback
10047  * @dev: Device associated with the UFS controller.
10048  *
10049  * Executed before putting the system into a sleep state in which the contents
10050  * of main memory are preserved.
10051  *
10052  * Return: 0 for success and non-zero for failure.
10053  */
ufshcd_system_suspend(struct device * dev)10054 int ufshcd_system_suspend(struct device *dev)
10055 {
10056 	struct ufs_hba *hba = dev_get_drvdata(dev);
10057 	int ret = 0;
10058 	ktime_t start = ktime_get();
10059 
10060 	if (pm_runtime_suspended(hba->dev))
10061 		goto out;
10062 
10063 	ret = ufshcd_suspend(hba);
10064 out:
10065 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10066 		ktime_to_us(ktime_sub(ktime_get(), start)),
10067 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10068 	return ret;
10069 }
10070 EXPORT_SYMBOL(ufshcd_system_suspend);
10071 
10072 /**
10073  * ufshcd_system_resume - system resume callback
10074  * @dev: Device associated with the UFS controller.
10075  *
10076  * Executed after waking the system up from a sleep state in which the contents
10077  * of main memory were preserved.
10078  *
10079  * Return: 0 for success and non-zero for failure.
10080  */
ufshcd_system_resume(struct device * dev)10081 int ufshcd_system_resume(struct device *dev)
10082 {
10083 	struct ufs_hba *hba = dev_get_drvdata(dev);
10084 	ktime_t start = ktime_get();
10085 	int ret = 0;
10086 
10087 	if (pm_runtime_suspended(hba->dev))
10088 		goto out;
10089 
10090 	ret = ufshcd_resume(hba);
10091 
10092 out:
10093 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10094 		ktime_to_us(ktime_sub(ktime_get(), start)),
10095 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10096 
10097 	return ret;
10098 }
10099 EXPORT_SYMBOL(ufshcd_system_resume);
10100 #endif /* CONFIG_PM_SLEEP */
10101 
10102 #ifdef CONFIG_PM
10103 /**
10104  * ufshcd_runtime_suspend - runtime suspend callback
10105  * @dev: Device associated with the UFS controller.
10106  *
10107  * Check the description of ufshcd_suspend() function for more details.
10108  *
10109  * Return: 0 for success and non-zero for failure.
10110  */
ufshcd_runtime_suspend(struct device * dev)10111 int ufshcd_runtime_suspend(struct device *dev)
10112 {
10113 	struct ufs_hba *hba = dev_get_drvdata(dev);
10114 	int ret;
10115 	ktime_t start = ktime_get();
10116 
10117 	ret = ufshcd_suspend(hba);
10118 
10119 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10120 		ktime_to_us(ktime_sub(ktime_get(), start)),
10121 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10122 	return ret;
10123 }
10124 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10125 
10126 /**
10127  * ufshcd_runtime_resume - runtime resume routine
10128  * @dev: Device associated with the UFS controller.
10129  *
10130  * This function basically brings controller
10131  * to active state. Following operations are done in this function:
10132  *
10133  * 1. Turn on all the controller related clocks
10134  * 2. Turn ON VCC rail
10135  *
10136  * Return: 0 upon success; < 0 upon failure.
10137  */
ufshcd_runtime_resume(struct device * dev)10138 int ufshcd_runtime_resume(struct device *dev)
10139 {
10140 	struct ufs_hba *hba = dev_get_drvdata(dev);
10141 	int ret;
10142 	ktime_t start = ktime_get();
10143 
10144 	ret = ufshcd_resume(hba);
10145 
10146 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10147 		ktime_to_us(ktime_sub(ktime_get(), start)),
10148 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10149 	return ret;
10150 }
10151 EXPORT_SYMBOL(ufshcd_runtime_resume);
10152 #endif /* CONFIG_PM */
10153 
ufshcd_wl_shutdown(struct device * dev)10154 static void ufshcd_wl_shutdown(struct device *dev)
10155 {
10156 	struct scsi_device *sdev = to_scsi_device(dev);
10157 	struct ufs_hba *hba = shost_priv(sdev->host);
10158 
10159 	down(&hba->host_sem);
10160 	hba->shutting_down = true;
10161 	up(&hba->host_sem);
10162 
10163 	/* Turn on everything while shutting down */
10164 	ufshcd_rpm_get_sync(hba);
10165 	scsi_device_quiesce(sdev);
10166 	shost_for_each_device(sdev, hba->host) {
10167 		if (sdev == hba->ufs_device_wlun)
10168 			continue;
10169 		scsi_device_quiesce(sdev);
10170 	}
10171 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10172 
10173 	/*
10174 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10175 	 * clocks.
10176 	 */
10177 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10178 		ufshcd_suspend(hba);
10179 
10180 	hba->is_powered = false;
10181 }
10182 
10183 /**
10184  * ufshcd_remove - de-allocate SCSI host and host memory space
10185  *		data structure memory
10186  * @hba: per adapter instance
10187  */
ufshcd_remove(struct ufs_hba * hba)10188 void ufshcd_remove(struct ufs_hba *hba)
10189 {
10190 	if (hba->ufs_device_wlun)
10191 		ufshcd_rpm_get_sync(hba);
10192 	ufs_hwmon_remove(hba);
10193 	ufs_bsg_remove(hba);
10194 	ufs_sysfs_remove_nodes(hba->dev);
10195 	blk_mq_destroy_queue(hba->tmf_queue);
10196 	blk_put_queue(hba->tmf_queue);
10197 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10198 	scsi_remove_host(hba->host);
10199 	/* disable interrupts */
10200 	ufshcd_disable_intr(hba, hba->intr_mask);
10201 	ufshcd_hba_stop(hba);
10202 	ufshcd_hba_exit(hba);
10203 }
10204 EXPORT_SYMBOL_GPL(ufshcd_remove);
10205 
10206 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10207 int ufshcd_system_freeze(struct device *dev)
10208 {
10209 
10210 	return ufshcd_system_suspend(dev);
10211 
10212 }
10213 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10214 
ufshcd_system_restore(struct device * dev)10215 int ufshcd_system_restore(struct device *dev)
10216 {
10217 
10218 	struct ufs_hba *hba = dev_get_drvdata(dev);
10219 	int ret;
10220 
10221 	ret = ufshcd_system_resume(dev);
10222 	if (ret)
10223 		return ret;
10224 
10225 	/* Configure UTRL and UTMRL base address registers */
10226 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10227 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10228 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10229 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10230 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10231 			REG_UTP_TASK_REQ_LIST_BASE_L);
10232 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10233 			REG_UTP_TASK_REQ_LIST_BASE_H);
10234 	/*
10235 	 * Make sure that UTRL and UTMRL base address registers
10236 	 * are updated with the latest queue addresses. Only after
10237 	 * updating these addresses, we can queue the new commands.
10238 	 */
10239 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10240 
10241 	return 0;
10242 
10243 }
10244 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10245 
ufshcd_system_thaw(struct device * dev)10246 int ufshcd_system_thaw(struct device *dev)
10247 {
10248 	return ufshcd_system_resume(dev);
10249 }
10250 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10251 #endif /* CONFIG_PM_SLEEP  */
10252 
10253 /**
10254  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10255  * @hba: pointer to Host Bus Adapter (HBA)
10256  */
ufshcd_dealloc_host(struct ufs_hba * hba)10257 void ufshcd_dealloc_host(struct ufs_hba *hba)
10258 {
10259 	scsi_host_put(hba->host);
10260 }
10261 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10262 
10263 /**
10264  * ufshcd_set_dma_mask - Set dma mask based on the controller
10265  *			 addressing capability
10266  * @hba: per adapter instance
10267  *
10268  * Return: 0 for success, non-zero for failure.
10269  */
ufshcd_set_dma_mask(struct ufs_hba * hba)10270 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10271 {
10272 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10273 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10274 			return 0;
10275 	}
10276 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10277 }
10278 
10279 /**
10280  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10281  * @dev: pointer to device handle
10282  * @hba_handle: driver private handle
10283  *
10284  * Return: 0 on success, non-zero value on failure.
10285  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10286 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10287 {
10288 	struct Scsi_Host *host;
10289 	struct ufs_hba *hba;
10290 	int err = 0;
10291 
10292 	if (!dev) {
10293 		dev_err(dev,
10294 		"Invalid memory reference for dev is NULL\n");
10295 		err = -ENODEV;
10296 		goto out_error;
10297 	}
10298 
10299 	host = scsi_host_alloc(&ufshcd_driver_template,
10300 				sizeof(struct ufs_hba));
10301 	if (!host) {
10302 		dev_err(dev, "scsi_host_alloc failed\n");
10303 		err = -ENOMEM;
10304 		goto out_error;
10305 	}
10306 	host->nr_maps = HCTX_TYPE_POLL + 1;
10307 	hba = shost_priv(host);
10308 	hba->host = host;
10309 	hba->dev = dev;
10310 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10311 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10312 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10313 	INIT_LIST_HEAD(&hba->clk_list_head);
10314 	spin_lock_init(&hba->outstanding_lock);
10315 
10316 	*hba_handle = hba;
10317 
10318 out_error:
10319 	return err;
10320 }
10321 EXPORT_SYMBOL(ufshcd_alloc_host);
10322 
10323 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10324 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10325 				     const struct blk_mq_queue_data *qd)
10326 {
10327 	WARN_ON_ONCE(true);
10328 	return BLK_STS_NOTSUPP;
10329 }
10330 
10331 static const struct blk_mq_ops ufshcd_tmf_ops = {
10332 	.queue_rq = ufshcd_queue_tmf,
10333 };
10334 
10335 /**
10336  * ufshcd_init - Driver initialization routine
10337  * @hba: per-adapter instance
10338  * @mmio_base: base register address
10339  * @irq: Interrupt line of device
10340  *
10341  * Return: 0 on success, non-zero value on failure.
10342  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10343 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10344 {
10345 	int err;
10346 	struct Scsi_Host *host = hba->host;
10347 	struct device *dev = hba->dev;
10348 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10349 
10350 	/*
10351 	 * dev_set_drvdata() must be called before any callbacks are registered
10352 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10353 	 * sysfs).
10354 	 */
10355 	dev_set_drvdata(dev, hba);
10356 
10357 	if (!mmio_base) {
10358 		dev_err(hba->dev,
10359 		"Invalid memory reference for mmio_base is NULL\n");
10360 		err = -ENODEV;
10361 		goto out_error;
10362 	}
10363 
10364 	hba->mmio_base = mmio_base;
10365 	hba->irq = irq;
10366 	hba->vps = &ufs_hba_vps;
10367 
10368 	err = ufshcd_hba_init(hba);
10369 	if (err)
10370 		goto out_error;
10371 
10372 	/* Read capabilities registers */
10373 	err = ufshcd_hba_capabilities(hba);
10374 	if (err)
10375 		goto out_disable;
10376 
10377 	/* Get UFS version supported by the controller */
10378 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10379 
10380 	/* Get Interrupt bit mask per version */
10381 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10382 
10383 	err = ufshcd_set_dma_mask(hba);
10384 	if (err) {
10385 		dev_err(hba->dev, "set dma mask failed\n");
10386 		goto out_disable;
10387 	}
10388 
10389 	/* Allocate memory for host memory space */
10390 	err = ufshcd_memory_alloc(hba);
10391 	if (err) {
10392 		dev_err(hba->dev, "Memory allocation failed\n");
10393 		goto out_disable;
10394 	}
10395 
10396 	/* Configure LRB */
10397 	ufshcd_host_memory_configure(hba);
10398 
10399 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10400 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10401 	host->max_id = UFSHCD_MAX_ID;
10402 	host->max_lun = UFS_MAX_LUNS;
10403 	host->max_channel = UFSHCD_MAX_CHANNEL;
10404 	host->unique_id = host->host_no;
10405 	host->max_cmd_len = UFS_CDB_SIZE;
10406 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10407 
10408 	/* Use default RPM delay if host not set */
10409 	if (host->rpm_autosuspend_delay == 0)
10410 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10411 
10412 	hba->max_pwr_info.is_valid = false;
10413 
10414 	/* Initialize work queues */
10415 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10416 		 hba->host->host_no);
10417 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10418 	if (!hba->eh_wq) {
10419 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10420 			__func__);
10421 		err = -ENOMEM;
10422 		goto out_disable;
10423 	}
10424 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10425 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10426 
10427 	sema_init(&hba->host_sem, 1);
10428 
10429 	/* Initialize UIC command mutex */
10430 	mutex_init(&hba->uic_cmd_mutex);
10431 
10432 	/* Initialize mutex for device management commands */
10433 	mutex_init(&hba->dev_cmd.lock);
10434 
10435 	/* Initialize mutex for exception event control */
10436 	mutex_init(&hba->ee_ctrl_mutex);
10437 
10438 	mutex_init(&hba->wb_mutex);
10439 	init_rwsem(&hba->clk_scaling_lock);
10440 
10441 	ufshcd_init_clk_gating(hba);
10442 
10443 	ufshcd_init_clk_scaling(hba);
10444 
10445 	/*
10446 	 * In order to avoid any spurious interrupt immediately after
10447 	 * registering UFS controller interrupt handler, clear any pending UFS
10448 	 * interrupt status and disable all the UFS interrupts.
10449 	 */
10450 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10451 		      REG_INTERRUPT_STATUS);
10452 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10453 	/*
10454 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10455 	 * status is cleared before registering UFS interrupt handler.
10456 	 */
10457 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10458 
10459 	/* IRQ registration */
10460 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10461 	if (err) {
10462 		dev_err(hba->dev, "request irq failed\n");
10463 		goto out_disable;
10464 	} else {
10465 		hba->is_irq_enabled = true;
10466 	}
10467 
10468 	if (!is_mcq_supported(hba)) {
10469 		err = scsi_add_host(host, hba->dev);
10470 		if (err) {
10471 			dev_err(hba->dev, "scsi_add_host failed\n");
10472 			goto out_disable;
10473 		}
10474 	}
10475 
10476 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10477 		.nr_hw_queues	= 1,
10478 		.queue_depth	= hba->nutmrs,
10479 		.ops		= &ufshcd_tmf_ops,
10480 		.flags		= BLK_MQ_F_NO_SCHED,
10481 	};
10482 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10483 	if (err < 0)
10484 		goto out_remove_scsi_host;
10485 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10486 	if (IS_ERR(hba->tmf_queue)) {
10487 		err = PTR_ERR(hba->tmf_queue);
10488 		goto free_tmf_tag_set;
10489 	}
10490 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10491 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10492 	if (!hba->tmf_rqs) {
10493 		err = -ENOMEM;
10494 		goto free_tmf_queue;
10495 	}
10496 
10497 	/* Reset the attached device */
10498 	ufshcd_device_reset(hba);
10499 
10500 	ufshcd_init_crypto(hba);
10501 
10502 	/* Host controller enable */
10503 	err = ufshcd_hba_enable(hba);
10504 	if (err) {
10505 		dev_err(hba->dev, "Host controller enable failed\n");
10506 		ufshcd_print_evt_hist(hba);
10507 		ufshcd_print_host_state(hba);
10508 		goto free_tmf_queue;
10509 	}
10510 
10511 	/*
10512 	 * Set the default power management level for runtime and system PM.
10513 	 * Default power saving mode is to keep UFS link in Hibern8 state
10514 	 * and UFS device in sleep state.
10515 	 */
10516 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10517 						UFS_SLEEP_PWR_MODE,
10518 						UIC_LINK_HIBERN8_STATE);
10519 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10520 						UFS_SLEEP_PWR_MODE,
10521 						UIC_LINK_HIBERN8_STATE);
10522 
10523 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10524 			  ufshcd_rpm_dev_flush_recheck_work);
10525 
10526 	/* Set the default auto-hiberate idle timer value to 150 ms */
10527 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10528 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10529 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10530 	}
10531 
10532 	/* Hold auto suspend until async scan completes */
10533 	pm_runtime_get_sync(dev);
10534 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10535 	/*
10536 	 * We are assuming that device wasn't put in sleep/power-down
10537 	 * state exclusively during the boot stage before kernel.
10538 	 * This assumption helps avoid doing link startup twice during
10539 	 * ufshcd_probe_hba().
10540 	 */
10541 	ufshcd_set_ufs_dev_active(hba);
10542 
10543 	async_schedule(ufshcd_async_scan, hba);
10544 	ufs_sysfs_add_nodes(dev);
10545 	trace_android_vh_ufs_update_sysfs(hba);
10546 
10547 	device_enable_async_suspend(dev);
10548 	return 0;
10549 
10550 free_tmf_queue:
10551 	blk_mq_destroy_queue(hba->tmf_queue);
10552 	blk_put_queue(hba->tmf_queue);
10553 free_tmf_tag_set:
10554 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10555 out_remove_scsi_host:
10556 	scsi_remove_host(hba->host);
10557 out_disable:
10558 	hba->is_irq_enabled = false;
10559 	ufshcd_hba_exit(hba);
10560 out_error:
10561 	return err;
10562 }
10563 EXPORT_SYMBOL_GPL(ufshcd_init);
10564 
ufshcd_resume_complete(struct device * dev)10565 void ufshcd_resume_complete(struct device *dev)
10566 {
10567 	struct ufs_hba *hba = dev_get_drvdata(dev);
10568 
10569 	if (hba->complete_put) {
10570 		ufshcd_rpm_put(hba);
10571 		hba->complete_put = false;
10572 	}
10573 }
10574 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10575 
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10576 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10577 {
10578 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10579 	enum ufs_dev_pwr_mode dev_pwr_mode;
10580 	enum uic_link_state link_state;
10581 	unsigned long flags;
10582 	bool res;
10583 
10584 	spin_lock_irqsave(&dev->power.lock, flags);
10585 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10586 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10587 	res = pm_runtime_suspended(dev) &&
10588 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10589 	      hba->uic_link_state == link_state &&
10590 	      !hba->dev_info.b_rpm_dev_flush_capable;
10591 	spin_unlock_irqrestore(&dev->power.lock, flags);
10592 
10593 	return res;
10594 }
10595 
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10596 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10597 {
10598 	struct ufs_hba *hba = dev_get_drvdata(dev);
10599 	int ret;
10600 
10601 	/*
10602 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10603 	 * are same. And it doesn't wake up the device for system-suspend
10604 	 * if it's runtime suspended. But ufs doesn't follow that.
10605 	 * Refer ufshcd_resume_complete()
10606 	 */
10607 	if (hba->ufs_device_wlun) {
10608 		/* Prevent runtime suspend */
10609 		ufshcd_rpm_get_noresume(hba);
10610 		/*
10611 		 * Check if already runtime suspended in same state as system
10612 		 * suspend would be.
10613 		 */
10614 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10615 			/* RPM state is not ok for SPM, so runtime resume */
10616 			ret = ufshcd_rpm_resume(hba);
10617 			if (ret < 0 && ret != -EACCES) {
10618 				ufshcd_rpm_put(hba);
10619 				return ret;
10620 			}
10621 		}
10622 		hba->complete_put = true;
10623 	}
10624 	return 0;
10625 }
10626 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10627 
ufshcd_suspend_prepare(struct device * dev)10628 int ufshcd_suspend_prepare(struct device *dev)
10629 {
10630 	return __ufshcd_suspend_prepare(dev, true);
10631 }
10632 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10633 
10634 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10635 static int ufshcd_wl_poweroff(struct device *dev)
10636 {
10637 	struct scsi_device *sdev = to_scsi_device(dev);
10638 	struct ufs_hba *hba = shost_priv(sdev->host);
10639 
10640 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10641 	return 0;
10642 }
10643 #endif
10644 
ufshcd_wl_probe(struct device * dev)10645 static int ufshcd_wl_probe(struct device *dev)
10646 {
10647 	struct scsi_device *sdev = to_scsi_device(dev);
10648 
10649 	if (!is_device_wlun(sdev))
10650 		return -ENODEV;
10651 
10652 	blk_pm_runtime_init(sdev->request_queue, dev);
10653 	pm_runtime_set_autosuspend_delay(dev, 0);
10654 	pm_runtime_allow(dev);
10655 
10656 	return  0;
10657 }
10658 
ufshcd_wl_remove(struct device * dev)10659 static int ufshcd_wl_remove(struct device *dev)
10660 {
10661 	pm_runtime_forbid(dev);
10662 	return 0;
10663 }
10664 
10665 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10666 #ifdef CONFIG_PM_SLEEP
10667 	.suspend = ufshcd_wl_suspend,
10668 	.resume = ufshcd_wl_resume,
10669 	.freeze = ufshcd_wl_suspend,
10670 	.thaw = ufshcd_wl_resume,
10671 	.poweroff = ufshcd_wl_poweroff,
10672 	.restore = ufshcd_wl_resume,
10673 #endif
10674 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10675 };
10676 
ufshcd_check_header_layout(void)10677 static void ufshcd_check_header_layout(void)
10678 {
10679 	/*
10680 	 * gcc compilers before version 10 cannot do constant-folding for
10681 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10682 	 * before.
10683 	 */
10684 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10685 		return;
10686 
10687 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10688 				.cci = 3})[0] != 3);
10689 
10690 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10691 				.ehs_length = 2})[1] != 2);
10692 
10693 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10694 				.enable_crypto = 1})[2]
10695 		     != 0x80);
10696 
10697 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10698 					.command_type = 5,
10699 					.data_direction = 3,
10700 					.interrupt = 1,
10701 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10702 
10703 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10704 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10705 		cpu_to_le32(0xdeadbeef));
10706 
10707 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10708 				.ocs = 4})[8] != 4);
10709 
10710 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10711 				.cds = 5})[9] != 5);
10712 
10713 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10714 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10715 		cpu_to_le32(0xbadcafe));
10716 
10717 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10718 			     .iid = 0xf })[4] != 0xf0);
10719 
10720 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10721 			     .command_set_type = 0xf })[4] != 0xf);
10722 }
10723 
10724 /*
10725  * ufs_dev_wlun_template - describes ufs device wlun
10726  * ufs-device wlun - used to send pm commands
10727  * All luns are consumers of ufs-device wlun.
10728  *
10729  * Currently, no sd driver is present for wluns.
10730  * Hence the no specific pm operations are performed.
10731  * With ufs design, SSU should be sent to ufs-device wlun.
10732  * Hence register a scsi driver for ufs wluns only.
10733  */
10734 static struct scsi_driver ufs_dev_wlun_template = {
10735 	.gendrv = {
10736 		.name = "ufs_device_wlun",
10737 		.owner = THIS_MODULE,
10738 		.probe = ufshcd_wl_probe,
10739 		.remove = ufshcd_wl_remove,
10740 		.pm = &ufshcd_wl_pm_ops,
10741 		.shutdown = ufshcd_wl_shutdown,
10742 	},
10743 };
10744 
ufshcd_core_init(void)10745 static int __init ufshcd_core_init(void)
10746 {
10747 	int ret;
10748 
10749 	ufshcd_check_header_layout();
10750 
10751 	ufs_debugfs_init();
10752 
10753 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10754 	if (ret)
10755 		ufs_debugfs_exit();
10756 	return ret;
10757 }
10758 
ufshcd_core_exit(void)10759 static void __exit ufshcd_core_exit(void)
10760 {
10761 	ufs_debugfs_exit();
10762 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10763 }
10764 
10765 module_init(ufshcd_core_init);
10766 module_exit(ufshcd_core_exit);
10767 
10768 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10769 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10770 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10771 MODULE_SOFTDEP("pre: governor_simpleondemand");
10772 MODULE_LICENSE("GPL");
10773